WorldWideScience

Sample records for hybrid proline-rich protein

  1. Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1, a Hybrid Proline-Rich Protein from Arabidopsis

    Directory of Open Access Journals (Sweden)

    Andrea Pitzschke

    2016-01-01

    Full Text Available Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs consist of a putative N-terminal secretion signal, a proline-rich domain (PRD, and a characteristic eight-cysteine-motif (8-CM. They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions.

  2. GhHyPRP4, a cotton gene encoding putative hybrid proline-rich protein, is preferentially expressed in leaves and involved in plant response to cold stress

    Institute of Scientific and Technical Information of China (English)

    Gengqing Huang; Siying Gong; Wenliang Xu; Peng Li; Dejing Zhang; Lixia Qin; Wen Li; Xuebao Li

    2011-01-01

    Plant hybrid proline-rich proteins (HyPRPs) usually consist of an N-terminal signal peptide, a central prolinerich domain, and a conserved eight-cysteine motif C-terminal domain. In this study, one gene (designated as GhHyPRP4) encoding putative HyPRP was isolated from cotton cDNA library. Northern blot and quantitative reverse transcriptase-polymerase chain reaction analyses revealed that GhHyPRP4 was preferentially expressed in leaves. Under cold stress, GhHyPRP4 expression was significantly up-regulated in leaves of cotton seedlings.Using the genome walking approach, a promoter fragment of GhHyPRP4 gene was isolated from cotton genome.GUS (β-glucuronidase) gene driven by GhHyPRP4 promoter was specifically expressed in leaves and cotyledons of the transgenic 4rabidopsis thaliana. Furthermore,GUS expression in leaves was remarkably induced by cold stress. Overexpression of GhHyPRP4 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival rate upon treatment under -20℃ for 60 h.These data suggested that GhHyPRP4 may be involved in plant response to cold stress during seedling development of cotton.

  3. A gene encoding a protein with a proline-rich domain (MtPPRD1), revealed by suppressive subtractive hybridization (SSH), is specifically expressed in the Medicago truncatula embryo axis during germination.

    Science.gov (United States)

    Bouton, Sophie; Viau, Laure; Lelièvre, Eric; Limami, Anis M

    2005-03-01

    A gene MtPPRD1, encoding a protein of 132 amino acids containing a proline-rich domain (PRD), has been revealed by suppressive subtractive hybridization (SSH) with two mRNA populations of embryo axes harvested immediately before and after radicle emergence. Although at the protein level MtPPRD1 showed low homology with plant lipid transfer proteins (LTPs), it did exhibit the eight cysteine residues conserved in all plant LTPs, a characteristic signature that allows the formation of a hydrophobic cavity adapted for loading hydrophobic molecules. Expression studies of MtPPRD1 have been carried out by quantitative real time RT-PCR throughout germination and post-germination processes in control seeds and seeds in which germination was delayed by abscisic acid (ABA) or the glutamine synthetase inhibitor methionine sulphoximine (MSX) treatments. The results showed that MtPPRD1 expression is developmentally regulated, induced in the embryo axis immediately before radicle emergence, reaches its maximum expression and declines during the early post-germination phase. Organ specificity studies showed that, except for a low and probably constitutive expression in roots, MtPPRD1 is specifically expressed in the embryo axis. Based on both experimental and in silico studies several putative roles are proposed for MtPPRD1 in Medicago truncatula, this protein can intervene (i) as an LTP in membrane biogenesis and regulation of the intracellular fatty acid pool by binding and transferring fatty acids and phospholipids between membranes, (ii) in the control of a developmental process specific to late germination and to early phases of post-germination, and (iii) and/or pathogen defence.

  4. PRGL:A cell wall proline-rich protein containning GASA domain in Gerbera hybrida

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    PRPs (proline-rich proteins) are a group of cell wall proteins characterized by their proline and hy- droproline-rich repetitive peptides. The expression of PRPs in plants is stimulated by wounding and environmental stress. GASA (gibberellic acid stimulated in Arabidopsis) proteins are small peptides sharing a 60 amino acid conserved C-terminal domain containing twelve invariant cysteine residues. Most of GASAs reported are localized to apoplasm or cell wall and their expression was regulated by gibberellins (GAs). It has been reported that, in French bean, these two proteins encoding by two distinct genes formed a two-component chitin-receptor involved in plant-pathogen interactions when plant was infected. We cloned a full-length cDNA of PRGL (proline-rich GASA-like) gene which encodes a protein containing both PRP and GASA-like domains. It is demonstrated that PRGL is a new protein with characteristics of PRP and GASA by analyzing its protein structure and gene expression.

  5. Structure and function of the proline-rich region of myelin basic protein.

    Science.gov (United States)

    Fraser, P E; Deber, C M

    1985-08-13

    Myelin basic protein (MBP)--the major extrinsic membrane protein of central nervous system myelin--from several species contains a rarely encountered highly conserved triproline segment as residues 99-101 of its 170-residue sequence. Cis peptide bonds are known to arise at X-Pro junctions in proteins and may be of functional significance in protein folding, chain reversal, and/or maintenance of tertiary structure. We have examined the conformation of this proline-rich region using principally 13C nuclear magnetic resonance spectroscopy (125 MHz) both in intact bovine MBP and in several MBP fragment peptides which we synthesized, including octapeptide 97-104 (Arg-Thr-Pro-Pro-Pro-Ser-Gln-Gly). Results suggested an all-trans conformation in aqueous solution for the triproline segment in MBP hexapeptide (99-104), heptapeptide (98-104), and octapeptide. Comparison with the 13C spectrum of intact MBP (125 MHz) suggested that the proline-rich region, as well as all other X-Pro MBP peptide junctures, was also essentially all trans in aqueous solution. Although experiments in which octapeptide 97-104 was bound to a lipid preparation (4:1 dipalmitoylphosphatidylcholine/dimyristoylphosphatidic acid) demonstrated that cis-proline bonds do arise (to the extent of ca. 5%) in the membrane environment, a role of linear chain propagation is suggested for the triproline segment of myelin basic protein.

  6. Epigallocatechin-3-gallate inhibits lactase but is alleviated by salivary proline-rich proteins.

    Science.gov (United States)

    Naz, Shahina; Siddiqi, Rahmanullah; Dew, Tristan P; Williamson, Gary

    2011-03-23

    Lactase phlorizin hydrolase is a small intestinal brush border enzyme that catalyzes the hydrolysis of the milk sugar, lactose, and also many flavonoid glucosides. We demonstrate that epigallocatechin-3-gallate (EGCG), the principal flavonoid from green tea, inhibits in vitro hydrolysis of lactose by intestinal lactase. We then tested the hypothesis that salivary proline-rich proteins (PRPs) could modulate this inhibition and stabilize EGCG. Inhibition by EGCG of digestive enzymes (α-amylase>chymotrypsin>trypsin>lactase≫pepsin) was alleviated ∼2-6-fold by PRPs. Furthermore, PRPs appeared stable to proteolysis and also stabilized EGCG under digestive conditions in vitro. This is the first report on EGCG inhibition of lactase, and it quantifies the protective role of PRPs against EGCG inhibition of digestive enzymes.

  7. Susceptibility to Dental Caries and the Salivary Proline-Rich Proteins

    Directory of Open Access Journals (Sweden)

    Martin Levine

    2011-01-01

    Full Text Available Early childhood caries affects 28% of children aged 2–6 in the US and is not decreasing. There is a well-recognized need to identify susceptible children at birth. Caries-free adults neutralize bacterial acids in dental biofilms better than adults with severe caries. Saliva contains acidic and basic proline-rich proteins (PRPs which attach to oral streptococci. The PRPs are encoded within a small region of chromosome 12. An acidic PRP allele (Db protects Caucasian children from caries but is more common in African Americans. Some basic PRP allelic phenotypes have a three-fold greater frequency in caries-free adults than in those with severe caries. Early childhood caries may associate with an absence of certain basic PRP alleles which bind oral streptococci, neutralize biofilm acids, and are in linkage disequilibrium with Db in Caucasians. The encoding of basic PRP alleles is updated and a new technology for genotyping them is described.

  8. Antioxidant properties of small proline-rich proteins : from epidermal cornification to global ROS detoxification and wound healing

    NARCIS (Netherlands)

    Vermeij, Wilbert Peter

    2011-01-01

    The small proline-rich (SPRR) proteins are generally known for their involvement in the formation and adaptation of the skin’s barrier. During the cornification process, they are cross-linked within the cornified cell envelope (CE) and as such they are responsible for the physical and permeability

  9. Antioxidant properties of small proline-rich proteins : from epidermal cornification to global ROS detoxification and wound healing

    NARCIS (Netherlands)

    Vermeij, Wilbert Peter

    2011-01-01

    The small proline-rich (SPRR) proteins are generally known for their involvement in the formation and adaptation of the skin’s barrier. During the cornification process, they are cross-linked within the cornified cell envelope (CE) and as such they are responsible for the physical and permeability b

  10. Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide.

    Science.gov (United States)

    Macias, M J; Hyvönen, M; Baraldi, E; Schultz, J; Sudol, M; Saraste, M; Oschkinat, H

    1996-08-15

    The WW domain is a new protein module with two highly conserved tryptophans that binds proline-rich peptide motifs in vitro. It is present in a number of signalling and regulatory proteins, often in several copies. Here we investigate the solution structure of the WW domain of human YAP65 (for Yes kinase-associated protein) in complex with proline-rich peptides containing the core motif PPxY. The structure of the domain with the bound peptide GTPPPPYTVG is a slightly curved, three-stranded, antiparallel beta-sheet. Two prolines pack against the first tryptophan, forming a hydrophobic buckle on the convex side of the sheet. The concave side has three exposed hydrophobic residues (tyrosine, tryptophan and leucine) which form the binding site for the ligand. A non-conserved isoleucine in the amino-terminal flanking region covers a hydrophobic patch and stabilizes the WW domain of human YAP65 in vitro. The structure of the WW domain differs from that of the SH3 domain and reveals a new design for a protein module that uses stacked aromatic surface residues to arrange a binding site for proline-rich peptides.

  11. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2): HINTS FOR AN INTRACELLULAR FUNCTION AT THE SYNAPSE.

    Science.gov (United States)

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-03-18

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (N cyt/C exo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders.

  12. N- and O-linked glycosylation site profiling of the human basic salivary proline-rich protein 3M.

    Science.gov (United States)

    Manconi, Barbara; Cabras, Tiziana; Sanna, Monica; Piras, Valentina; Liori, Barbara; Pisano, Elisabetta; Iavarone, Federica; Vincenzoni, Federica; Cordaro, Massimo; Faa, Gavino; Castagnola, Massimo; Messana, Irene

    2016-05-01

    In the present study, we show that the heterogeneous mixture of glycoforms of the basic salivary proline-rich protein 3M, encoded by PRB3-M locus, is a major component of the acidic soluble fraction of human whole saliva in the first years of life. Reversed-phase high-performance liquid chromatography with high-resolution electrospray ionization mass spectrometry analysis of the intact proteoforms before and after N-deglycosylation with Peptide-N-Glycosidase F and tandem mass spectrometry sequencing of peptides obtained after Endoproteinase GluC digestion allowed the structural characterization of the peptide backbone and identification of N- and O-glycosylation sites. The heterogeneous mixture of the proteoforms derives from the combination of 8 different neutral and sialylated glycans O-linked to Threonine 50, and 33 different glycans N-linked to Asparagine residues at positions 66, 87, 108, 129, 150, 171, 192, and 213.

  13. Lacrimal proline rich 4 (LPRR4 protein in the tear fluid is a potential biomarker of dry eye syndrome.

    Directory of Open Access Journals (Sweden)

    Saijyothi Venkata Aluru

    Full Text Available Dry eye syndrome (DES is a complex, multifactorial, immune-associated disorder of the tear and ocular surface. DES with a high prevalence world over needs identification of potential biomarkers so as to understand not only the disease mechanism but also to identify drug targets. In this study we looked for differentially expressed proteins in tear samples of DES to arrive at characteristic biomarkers. As part of a prospective case-control study, tear specimen were collected using Schirmer strips from 129 dry eye cases and 73 age matched controls. 2D electrophoresis (2DE and Differential gel electrophoresis (DIGE was done to identify differentially expressed proteins. One of the differentially expressed protein in DES is lacrimal proline rich 4 protein (LPRR4. LPRR4 protein expression was quantified by enzyme immune sorbent assay (ELISA. LPRR4 was down regulated significantly in all types of dry eye cases, correlating with the disease severity as measured by clinical investigations. Further characterization of the protein is required to assess its therapeutic potential in DES.

  14. Proline-rich Gla protein 2 is a cell-surface vitamin K-dependent protein that binds to the transcriptional coactivator Yes-associated protein.

    Science.gov (United States)

    Kulman, John D; Harris, Jeff E; Xie, Ling; Davie, Earl W

    2007-05-22

    Proline-rich Gla protein 2 (PRGP2) is one of four known vertebrate transmembrane gamma-carboxyglutamic acid (Gla) proteins. Members of this protein family are broadly expressed in fetal and adult human tissues and share a common architecture consisting of a predicted propeptide and Gla domain, a single-pass transmembrane segment, and tandem Pro/Leu-Pro-Xaa-Tyr (PY) motifs near their C termini. Using a methodology developed for the regulated expression of enzymatically biotinylated proteins in mammalian cells, we demonstrate that PRGP2 undergoes gamma-glutamyl carboxylation in a manner that is both dependent upon the presence of a proteolytically cleavable propeptide and sensitive to warfarin, a vitamin K antagonist that is widely used as an antithrombotic agent. When expressed at physiologically relevant levels, the majority of PRGP2 is present in the gamma-glutamyl carboxylated, propeptide-cleaved (mature) form. We additionally demonstrate, by Western blotting and flow cytometry, that mature PRGP2 is predominantly located on the cell surface with the Gla domain exposed extracellularly. In a yeast two-hybrid screen that used the C-terminal cytoplasmic region of PRGP2 as bait, we identified the WW domain-containing transcriptional coactivator Yes-associated protein (YAP) as a binding partner for PRGP2. In GST pull-down experiments, both PRGP2 PY motifs and both YAP WW domains were essential for complex formation, as were residues proximal to the core sequence of the first PY motif. These findings suggest that PRGP2 may be involved in a signal transduction pathway, the impairment of which may be an unintended consequence of warfarin therapy.

  15. Detection of proline-rich proteins for the identification of saliva by enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Igoh, Akihisa; Tomotake, Sho; Doi, Yusuke

    2015-05-01

    Saliva is one of the most common body fluids found at a crime scene. Therefore, identifying saliva is important in forensic science. However, the current protein marker assays used to identify saliva are not sufficiently specific. Although proline-rich proteins (PRPs) are highly specific for saliva, their forensic potential has not yet been investigated. In this study, we developed enzyme-linked immunosorbent assays (ELISAs) to detect acidic salivary PRP HaeIII subfamily 1/2 (PRH1/2) and basic salivary PRP 2 (PRB2). The specificity, sensitivity, and efficiency of the ELISAs for PRH1/2 and PRB2 were compared with those of the ELISA for statherin (STATH), a known protein marker for saliva. The levels of PRH1/2 were significantly higher in saliva and saliva stains than in other body fluids (nasal secretions, urine, semen, vaginal fluid, blood, and sweat). PRB2 and STATH were detected in both nasal secretions and saliva. The PRH1/2 ELISA showed sensitivity similar to that of STATH ELISA. The detection rate of PRH1/2 ELISA was almost similar to that of STATH ELISA, followed by the ELISA for PRB2. The PRH1/2 ELISA had higher specificity for saliva than STATH ELISA. Therefore, the PRH1/2 ELISA has potential as a method to identify saliva for forensic investigation.

  16. RNA sequencing and pathway analysis identify tumor necrosis factor alpha driven small proline-rich protein dysregulation in chronic rhinosinusitis.

    Science.gov (United States)

    Ramakrishnan, Vijay R; Gonzalez, Joseph R; Cooper, Sarah E; Barham, Henry P; Anderson, Catherine B; Larson, Eric D; Cool, Carlyne D; Diller, John D; Jones, Kenneth; Kinnamon, Sue C

    2017-09-01

    Chronic rhinosinusitis (CRS) is a heterogeneous inflammatory disorder in which many pathways contribute to end-organ disease. Small proline-rich proteins (SPRR) are polypeptides that have recently been shown to contribute to epithelial biomechanical properties relevant in T-helper type 2 inflammation. There is evidence that genetic polymorphism in SPRR genes may predict the development of asthma in children with atopy and, correlatively, that expression of SPRRs is increased under allergic conditions, which leads to epithelial barrier dysfunction in atopic disease. RNAs from uncinate tissue specimens from patients with CRS and control subjects were compared by RNA sequencing by using Ingenuity Pathway Analysis (n = 4 each), and quantitative polymerase chain reaction (PCR) (n = 15). A separate cohort of archived sinus tissue was examined by immunohistochemistry (n = 19). A statistically significant increase of SPRR expression in CRS sinus tissue was identified that was not a result of atopic presence. SPRR1 and SPRR2A expressions were markedly increased in patients with CRS (p < 0.01) on RNA sequencing, with confirmation by using real-time PCR. Immunohistochemistry of archived surgical samples demonstrated staining of SPRR proteins within squamous epithelium of both groups. Pathway analysis indicated tumor necrosis factor (TNF) alpha as a master regulator of the SPRR gene products. Expression of SPRR1 and of SPRR2A is increased in mucosal samples from patients with CRS and appeared as a downstream result of TNF alpha modulation, which possibly resulted in epithelial barrier dysfunction.

  17. cDNA cloning and chromosomal mapping of a predicted coiled-coil proline-rich protein immunogenic in meningioma patients.

    Science.gov (United States)

    Heckel, D; Brass, N; Fischer, U; Blin, N; Steudel, I; Türeci, O; Fackler, O; Zang, K D; Meese, E

    1997-11-01

    There is increasing evidence that tumor expressed genes induce immune responses in cancer patients. To identify meningioma expressed antigens, we established a meningioma expression library which was screened with autologous serum. Out of 20 positive cDNA clones eight share high sequence homologies as determined by sequence analysis. These eight clones can be grouped into three classes which differ in length and which are characterized by specific sequence variations. The longest open reading frame was found to be 2412 bp encoding an immunoreactive antigen termed meningioma expressed antigen 6 (MEA6). Using five sequence specific primer pairs, somatic hybrid panel mapping revealed locations of the three classes on several human chromosomes including chromosomes 2, 3, 6, 7, 9, 13 and 14. The mapping results were confirmed by fluorescence in situ hybridization. RT-PCR showed consistent expression of all classes in several meningiomas and additional tissues using the same set of primer pairs as for chromosomal mapping. The expression data were confirmed by northern blot analysis. For the predicted amino acid sequence BLASTX revealed a homology to a human C219-reactive peptide which was previously isolated by an antibody directed against p-glycoprotein. Sequence properties of the MEA protein include an acidic activation domain, a proline-rich region and two coiled-coil domains indicating protein binding and activation functions.

  18. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it.

    Science.gov (United States)

    Bacon, J R; Rhodes, M J

    2000-03-01

    Proline-rich proteins (PRP) in human parotid saliva have a high affinity for dietary polyphenolic compounds (tannins), forming stable complexes that may modulate the biological and nutritional properties of the tannin. The formation of such complexes may also have an important role in the modulation or promotion of the sensation of oral astringency perceived when tannin-rich foods and beverages are consumed. The major classes of PRP (acidic, basic, and glycosylated) have been isolated from human saliva, and the relative binding affinities of a series of hydrolyzable tannins, which are found in a number of plant-derived foods and beverages, to these PRP classes have been determined using a competition assay. All of the classes of PRP have a high capacity for hydrolyzable tannins. Within the narrow range of binding affinities exhibited, structure/binding relationships with the levels of tannin galloylation, hexahydroxydiphenoyl esterification, and degree of polymerization were identified. No individual class of human salivary PRP appears to have an exclusive affinity for a particular type of hydrolyzable tannin.

  19. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization.

    Science.gov (United States)

    Freeman, N L; Lila, T; Mintzer, K A; Chen, Z; Pahk, A J; Ren, R; Drubin, D G; Field, J

    1996-02-01

    Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin.

  20. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules.

    Science.gov (United States)

    Chen, H I; Sudol, M

    1995-08-15

    The WW domain has previously been described as a motif of 38 semiconserved residues found in seemingly unrelated proteins, such as dystrophin, Yes-associated protein (YAP), and two transcriptional regulators, Rsp-5 and FE65. The molecular function of the WW domain has been unknown until this time. Using a functional screen of a cDNA expression library, we have identified two putative ligands of the WW domain of YAP, which we named WBP-1 and WBP-2. Peptide sequence comparison between the two partial clones revealed a homologous region consisting of a proline-rich domain followed by a tyrosine residue (with the shared sequence PPPPY), which we shall call the PY motif. Binding assays and site-specific mutagenesis have shown that the PY motif binds with relatively high affinity and specificity to the WW domain of YAP, with the preliminary consensus XPPXY being critical for binding. Herein, we have implicated the WW domain with a role in mediating protein-protein interactions, as a variant of the paradigm set by Src homology 3 domains and their proline-rich ligands.

  1. Molecular Basis of Interactions Between SH3 Domain-Containing Proteins and the Proline-Rich Region of the Ubiquitin Ligase Itch.

    Science.gov (United States)

    Desrochers, Guillaume; Cappadocia, Laurent; Lussier-Price, Mathieu; Ton, Anh-Tien; Ayoubi, Riham; Serohijos, Adrian; Omichinski, James G; Angers, Annie

    2017-02-24

    The ligase Itch plays major roles in signalling pathways by inducing ubiquitylation-dependent degradation of several substrates. Substrate recognition and binding is critical for the regulation of this reaction. Like closely related ligases, Itch can interact with proteins containing a PPxY motif via its WW domains. In addition to these WW domains, Itch possesses a proline-rich region (PRR) that has been shown to interact with several Src Homology 3 (SH3) domain-containing proteins. We have previously established that despite the apparent surface uniformity and conserved fold of SH3 domains, they display different binding mechanisms and affinities for their interaction with the PRR of Itch. Here, we attempt to determine the molecular bases underlying the wide range of binding properties of the Itch PRR. Using pull-down assays combined with mass spectrometry analysis, we show that the Itch PRR preferentially forms complexes with Endophilins, Amphyphisins and Pacsins, but can also target a variety of other SH3 domain-containing proteins. In addition, we map the binding sites of these proteins using a combination of PRR sub-sequences and mutants. We find that different SH3 domains target distinct proline-rich sequences overlapping significantly. We also structurally analyze these protein complexes using crystallography and molecular modelling. These structures depict the position of Itch PRR engaged in a 1:2 protein complex with β-PIX and a 1:1 complex with the other SH3 domain-containing proteins. Taken together, these results reveal the binding preferences of the Itch PRR towards its most common SH3 domain-containing partners, and demonstrate that the PRR region is sufficient for binding.

  2. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.

    Science.gov (United States)

    Cala, Olivier; Dufourc, Erick J; Fouquet, Eric; Manigand, Claude; Laguerre, Michel; Pianet, Isabelle

    2012-12-18

    While the definition of tannins has been historically associated with its propensity to bind proteins in a nonspecific way, it is now admitted that specific interaction also occurs. The case of the astringency perception is a good example to illustrate this phenomenon: astringency is commonly described as a tactile sensation induced by the precipitation of a complex composed of proline-rich proteins present in the human saliva and tannins present in beverages such as tea or red wines. In the present work, the interactions between a human saliva protein segment and three different procyanidins (B1, B3, and C2) were investigated at the atomic level by NMR and molecular dynamics. The data provided evidence for (i) an increase in affinity compared to shortest human saliva peptides, which is accounted for by protein "wraping around" the tannin, (ii) a specificity in the interaction below tannin critical micelle concentration (CMC) of ca. 10 mM, with an affinity scale such that C2 > B1 > B3, and (iii) a nonspecific binding above tannin CMC that conducts irremediably to the precipitation of the tannins/protein complex. Such physicochemical findings describe in accurate terms saliva protein-tannin interactions and provide support for a more subtle description by oenologists of wine astringency perception in the mouth.

  3. Association of elongation factor 1 alpha and ribosomal protein L3 with the proline-rich region of yeast adenylyl cyclase-associated protein CAP.

    Science.gov (United States)

    Yanagihara, C; Shinkai, M; Kariya, K; Yamawaki-Kataoka, Y; Hu, C D; Masuda, T; Kataoka, T

    1997-03-17

    CAP is a multifunctional protein; the N-terminal region binds adenylyl cyclase and controls its response to Ras while the C-terminal region is involved in cytoskeletal regulation. In between the two regions, CAP possesses two proline-rich segments, P1 and P2, resembling a consensus sequence for binding SH3 domains. We have identified two yeast proteins with molecular sizes of 48 and 46 kDa associated specifically with P2. Determination of partial protein sequences demonstrated that the 48-kDa and 46-kDa proteins correspond to EF1 alpha and rL3, respectively, neither of which contains any SH3-domain-like sequence. Deletion of P2 from CAP resulted in loss of the activity to bind the two proteins either in vivo or in vitro. Yeast cells whose chromosomal CAP was replaced by the P2-deletion mutant displayed an abnormal phenotype represented by dissociated localizations of CAP and F-actin, which were colocalized in wild-type cells. These results suggest that these associations may have functional significance.

  4. Effect of proline rich domain of an RNA-binding protein Sam68 in cell growth process, death and B cell signal transduction

    Institute of Scientific and Technical Information of China (English)

    LI Qing-hua; FAN Tian-xue; PANG Tian-xiang; YUAN Wen-su; HAN Zhong-chao

    2006-01-01

    Background Sam68 plays an important role as a multiple functional RNA binding nuclear protein in cell cycle progress, RNA usage, signal transduction, and tyrosine phosphorylation by Src during mitosis. However, its precise impact on these essential cellular functions remains unclear. The purpose of this study is to further elucidate Sam68 functions in RNA metabolism, signal transduction regulation of cell growth and cell proliferation in DT40 cell line.Methods By using gene targeting method, we isolated a mutation form of Sam68 in DT40 cells and described its effect on cell growth process and signal transduction. Southern, Northern, and Western blot, phosphorylation and flow-cytometfic analyses were performed to investigate the Sam68 functions.Results A slower growth rate (2.1 hours growth elongation) and longer S phase (1.7 hours elongation) was observed in the Sam68 mutant cells. Serum depletion resulted in increased amounts of dead cells, and expansion of S phase in mutant cells. Upon B cell cross-linking, the maximal level of tyrosine phosphorylation on BLNK was observed to be significantly lower in mutant cells.Conclusions The proline rich domain of Sam68 is involved in cell growth control by modulating the function of mRNAs in S phase or earlier and the functions as an adaptor molecule in B cell signal transduction pathways.

  5. Responsiveness to 6-n-propylthiouracil (PROP) is associated with salivary levels of two specific basic proline-rich proteins in humans.

    Science.gov (United States)

    Cabras, Tiziana; Melis, Melania; Castagnola, Massimo; Padiglia, Alessandra; Tepper, Beverly J; Messana, Irene; Tomassini Barbarossa, Iole

    2012-01-01

    Thiourea tasting can be predictive of individual differences in bitter taste responses, general food preferences and eating behavior, and could be correlated with saliva chemical composition. We investigated the possible relationship between PROP bitter taste responsiveness and the salivary proteome in subjects genotyped for TAS2R38 and gustin gene polymorphisms. Taste perception intensity evoked by PROP and NaCl solutions was measured in sixty-three volunteers (21 males, 42 females, age 25±3 y) to establish their PROP taster status, and 24 PROP super-tasters and 21 nontasters were selected to participate in the study. TAS2R38 and gustin gene molecular analysis were performed using PCR techniques. Qualitative and quantitative determination of salivary proteins was performed by HPLC-ESI-MS before and after PROP taste stimulation. PROP super-tastings was strongly associated with the 'taster' variant (PAV haplotype) of TAS2R38 and the A allele of rs2274333 polymorphism in the gustin gene and nontasting was associated with the minor alleles at both loci. ANOVA revealed that basal levels of II-2 and Ps-1 proteins, belonging to the basic proline-rich protein (bPRPs) family, were significantly higher in PROP super-taster than in nontaster un-stimulated saliva, and that PROP stimulation elicited a rapid increase in the levels of these same proteins only in PROP super-taster saliva. These data show for the first time that responsiveness to PROP is associated with salivary levels of II-2 peptide and Ps-1 protein, which are products of the PRB1 gene. These findings suggest that PRB1, in addition to TAS2R38 and gustin, could contribute to individual differences in thiourea sensitivity, and the expression of the PROP phenotype as a complex genetic trait.

  6. Responsiveness to 6-n-propylthiouracil (PROP is associated with salivary levels of two specific basic proline-rich proteins in humans.

    Directory of Open Access Journals (Sweden)

    Tiziana Cabras

    Full Text Available Thiourea tasting can be predictive of individual differences in bitter taste responses, general food preferences and eating behavior, and could be correlated with saliva chemical composition. We investigated the possible relationship between PROP bitter taste responsiveness and the salivary proteome in subjects genotyped for TAS2R38 and gustin gene polymorphisms. Taste perception intensity evoked by PROP and NaCl solutions was measured in sixty-three volunteers (21 males, 42 females, age 25±3 y to establish their PROP taster status, and 24 PROP super-tasters and 21 nontasters were selected to participate in the study. TAS2R38 and gustin gene molecular analysis were performed using PCR techniques. Qualitative and quantitative determination of salivary proteins was performed by HPLC-ESI-MS before and after PROP taste stimulation. PROP super-tastings was strongly associated with the 'taster' variant (PAV haplotype of TAS2R38 and the A allele of rs2274333 polymorphism in the gustin gene and nontasting was associated with the minor alleles at both loci. ANOVA revealed that basal levels of II-2 and Ps-1 proteins, belonging to the basic proline-rich protein (bPRPs family, were significantly higher in PROP super-taster than in nontaster un-stimulated saliva, and that PROP stimulation elicited a rapid increase in the levels of these same proteins only in PROP super-taster saliva. These data show for the first time that responsiveness to PROP is associated with salivary levels of II-2 peptide and Ps-1 protein, which are products of the PRB1 gene. These findings suggest that PRB1, in addition to TAS2R38 and gustin, could contribute to individual differences in thiourea sensitivity, and the expression of the PROP phenotype as a complex genetic trait.

  7. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.

    Science.gov (United States)

    Taniguchi, Masayuki; Ochiai, Akihito; Kondo, Hiroshi; Fukuda, Shun; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2016-05-01

    Previous studies have shown that pyrrhocoricin, a proline-rich antimicrobial peptide (PrAMP), killed sensitive species in a dose-dependent manner by specifically binding to DnaK. Here, on the basis of the finding that DnaK-deficient Escherichia coli strains are susceptible to PrAMPs, we used pyrrhocoricin to investigate internal targets other than DnaK. Using conventional antibiotics (bleomycin, streptomycin, and fosfomycin) that have known modes of action, first, we validated the availability of an assay using a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on E. coli lysate, for evaluating inhibition of protein synthesis. We found that, similarly to bleomycin and streptomycin, pyrrhocoricin inhibited GFP synthesis in RTS in a concentration-dependent manner. In addition, blockage of transcription and translation steps in RTS was individually estimated using RT-PCR after gene expression to determine mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that this inhibition of GFP synthesis by pyrrhocoricin did not occur at the transcription step but rather at the translation step, in a manner similar to that of GFP synthesis by streptomycin, an inhibitor of the translation step by causing misreading of tRNA. These results suggest that RTS is a powerful assay system for determining if antimicrobial peptides inhibit protein synthesis and its transcription and/or translation steps. This is the first study to have shown that pyrrhocoricin inhibited protein synthesis by specifically repressing the translation step.

  8. Folding machineries displayed on a cation-exchanger for the concerted refolding of cysteine- or proline-rich proteins

    Directory of Open Access Journals (Sweden)

    Lee Dae-Hee

    2009-03-01

    Full Text Available Abstract Background Escherichia coli has been most widely used for the production of valuable recombinant proteins. However, over-production of heterologous proteins in E. coli frequently leads to their misfolding and aggregation yielding inclusion bodies. Previous attempts to refold the inclusion bodies into bioactive forms usually result in poor recovery and account for the major cost in industrial production of desired proteins from recombinant E. coli. Here, we describe the successful use of the immobilized folding machineries for in vitro refolding with the examples of high yield refolding of a ribonuclease A (RNase A and cyclohexanone monooxygenase (CHMO. Results We have generated refolding-facilitating media immobilized with three folding machineries, mini-chaperone (a monomeric apical domain consisting of residues 191–345 of GroEL and two foldases (DsbA and human peptidyl-prolyl cis-trans isomerase by mimicking oxidative refolding chromatography. For efficient and simple purification and immobilization simultaneously, folding machineries were fused with the positively-charged consecutive 10-arginine tag at their C-terminal. The immobilized folding machineries were fully functional when assayed in a batch mode. When the refolding-facilitating matrices were applied to the refolding of denatured and reduced RNase A and CHMO, both of which contain many cysteine and proline residues, RNase A and CHMO were recovered in 73% and 53% yield of soluble protein with full enzyme activity, respectively. Conclusion The refolding-facilitating media presented here could be a cost-efficient platform and should be applicable to refold a wide range of E. coli inclusion bodies in high yield with biological function.

  9. Despite sequence homologies to gluten, salivary proline-rich proteins do not elicit immune responses central to the pathogenesis of celiac disease.

    Science.gov (United States)

    Tian, Na; Leffler, Daniel A; Kelly, Ciaran P; Hansen, Joshua; Marietta, Eric V; Murray, Joseph A; Schuppan, Detlef; Helmerhorst, Eva J

    2015-12-01

    Celiac disease (CD) is an inflammatory disorder triggered by ingested gluten, causing immune-mediated damage to the small-intestinal mucosa. Gluten proteins are strikingly similar in amino acid composition and sequence to proline-rich proteins (PRPs) in human saliva. On the basis of this feature and their shared destination in the gastrointestinal tract, we hypothesized that salivary PRPs may modulate gluten-mediated immune responses in CD. Parotid salivary secretions were collected from CD patients, refractory CD patients, non-CD patients with functional gastrointestinal complaints, and healthy controls. Structural similarities of PRPs with gluten were probed with anti-gliadin antibodies. Immune responses to PRPs were investigated toward CD patient-derived peripheral blood mononuclear cells and in a humanized transgenic HLA-DQ2/DQ8 mouse model for CD. Anti-gliadin antibodies weakly cross-reacted with the abundant salivary amylase but not with PRPs. Likewise, the R5 antibody, recognizing potential antigenic gluten epitopes, showed negligible reactivity to salivary proteins from all groups. Inflammatory responses in peripheral blood mononuclear cells were provoked by gliadins whereas responses to PRPs were similar to control levels, and PRPs did not compete with gliadins in immune stimulation. In vivo, PRP peptides were well tolerated and nonimmunogenic in the transgenic HLA-DQ2/DQ8 mouse model. Collectively, although structurally similar to dietary gluten, salivary PRPs were nonimmunogenic in CD patients and in a transgenic HLA-DQ2/DQ8 mouse model for CD. It is possible that salivary PRPs play a role in tolerance induction to gluten early in life. Deciphering the structural basis for the lack of immunogenicity of salivary PRPs may further our understanding of the toxicity of gluten.

  10. Inner membrane proteins YgdD and SbmA are required for the complete susceptibility of E. coli to the proline-rich antimicrobial peptide arasin 1(1-25).

    Science.gov (United States)

    Paulsen, Victoria S; Mardirossian, Mario; Blencke, Hans-Matti; Benincasa, Monica; Runti, Giulia; Nepa, Matteo; Haug, Tor; Stensvåg, Klara; Scocchi, Marco

    2016-02-08

    Arasin 1 from the spider crab Hyas araneus is a proline-rich antimicrobial peptide, which kills target bacteria by a non-membranolytic mechanism. By using a fluorescent derivative of the peptide, we showed that arasin 1 rapidly penetrates into Escherichia coli cells without membrane damage. To unravel its mode of action, a knock-out gene library of E. coli was screened and two types of mutants with a less susceptible phenotype to the arasin 1 fragment (1-23) were found. The first bore the mutation of sbmA, a gene coding for an inner membrane protein involved in the uptake of different antibiotic peptides. The second one was located in the ygdD gene, coding for a conserved inner membrane protein of unknown function. Functional studies showed that YgdD is required for the full susceptibility to arasin 1(1-25), possibly by supporting its uptake and/or intracellular action. These results indicate that different bacterial proteins are exploited by arasin 1(1-25) to exert its antibacterial activity and add new insights in the complex mode of action of proline-rich antimicrobial peptides.

  11. The adhesive protein of Choromytilus chorus (Molina, 1782) and Aulacomya ater (Molina, 1782): a proline-rich and a glycine-rich polyphenolic protein.

    Science.gov (United States)

    Burzio, L A; Saéz, C; Pardo, J; Waite, J H; Burzio, L O

    2000-06-15

    The adhesive polyphenolic proteins from Aulacomya ater and Choromytilus chorus with apparent molecular masses of 135000 and 105000, respectively, were digested with trypsin and the peptides produced resolved by reversed phase liquid chromatography. About 5 and 12 major peptides were obtained from the protein of A. ater and C. chorus, respectively. The major peptides were purified by reverse-phase chromatography and the amino acid sequence indicates that both polyphenolic proteins consisted of repeated sequence motifs in their primary structure. The major peptides of A. ater contain seven amino acids corresponding to the consensus sequence AGYGGXK, whereas the tyrosine was always found as 3, 4-dihydroxyphenylalanine (Dopa), the X residue in position 6 was either valine, leucine or isoleucine, and the carboxy terminal was either lysine or hydroxylysine. On the other hand, the major peptides of C. chorus ranged in size from 6 to 21 amino acids and the majority correspond to the consensus sequence AKPSKYPTGYKPPVK. Both proteins differ markedly in the sequence of their tryptic peptides, but they share the common characteristics of other adhesive proteins in having a tandem sequence repeat in their primary structure.

  12. High-resolution high-performance liquid chromatography with electrospray ionization mass spectrometry and tandem mass spectrometry characterization of a new isoform of human salivary acidic proline-rich proteins named Roma-Boston Ser22(Phos) → Phe variant

    Science.gov (United States)

    Iavarone, Federica; D’Alessandro, Alfredo; Tian, Na; Cabras, Tiziana; Messana, Irene; Helmerhorst, Eva J.; Oppenheim, Frank G.; Castagnola, Massimo

    2015-01-01

    During a survey of human saliva by a top-down reversed-phase high-performance liquid chromatography with electrospray ionization mass spectrometry approach, two proteins eluting at 27.4 and 28.4 min, with average masses of 15 494 ± 1 and 11 142 ± 1 Da, were detected in a subject from Boston. The Δmass value (4352 Da) of the two proteins was similar to the difference in mass values between intact (150 amino acids, [a.a.]) and truncated acidic proline-rich proteins (aPRPs; 106 a.a.) suggesting an a.a. substitution in the first 106 residues resulting in a strong reduction in polarity, since under the same experimental conditions aPRPs eluted at ~22.5 min (intact) and 23.5 min (truncated forms). Manual inspection of the high-resolution high-performance liquid chromatography with electrospray ionization tandem mass spectra of the truncated isoform showed the replacement of the phosphorylated Ser-22 in PRP-3 with a Phe residue. Inspection of the tandem mass spectra of the intact isoform confirmed the substitution, which is allowed by the code transition TCT→TTT and is in agreement with the dramatic increase in elution time. The isoform was also detected in two other subjects, one from Boston (unrelated to the previous) and one from Rome. For this reason we propose to name this variant PRP-1 (PRP-3) RB (Roma-Boston) Ser22(phos)→Phe. PMID:24771659

  13. HPLC-ESI-MS and MS/MS structural characterization of multifucosylated N-glycoforms of the basic proline-rich protein IB-8a CON1+ in human saliva.

    Science.gov (United States)

    Cabras, Tiziana; Boi, Roberto; Pisano, Elisabetta; Iavarone, Federica; Fanali, Chiara; Nemolato, Sonia; Faa, Gavino; Castagnola, Massimo; Messana, Irene

    2012-05-01

    This study describes the characterization of the glycan moieties and the peptide backbone of six glycoforms of IB-8a CON1(+), a basic proline-rich protein present in human saliva. MS analyses on the intact glycoproteins before and after N-deglycosylation with PNGase F and high-resolution MS/MS sequencing by LTQ Orbitrap XL of peptides and glycopeptides from tryptic digests allowed the structural characterization of the glycan moieties and the polypeptide backbone, as well as to establish the glycosylation site at the asparagine residue at 98th position. Five of the glycoforms carry a biantennary N-linked glycan fucosylated in the innermost N-acetylglucosamine of the core and showing from zero to four additional fucoses in the antennal region. The sixth glycoform carries a monoantennary monofucosylated oligosaccharide. The glycoform cluster was detected on 28 of 71 adult saliva specimens. Level of fucosylation showed interindividual variability with the major relative abundance for the trifucosylated glycoform. Nonglycosylated IB-8a CON1(+) and the variant IB-8a CON1(-), lacking of the glycosylation site, have been also detected in human saliva.

  14. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules.

    OpenAIRE

    Chen, H I; Sudol, M.

    1995-01-01

    The WW domain has previously been described as a motif of 38 semiconserved residues found in seemingly unrelated proteins, such as dystrophin, Yes-associated protein (YAP), and two transcriptional regulators, Rsp-5 and FE65. The molecular function of the WW domain has been unknown until this time. Using a functional screen of a cDNA expression library, we have identified two putative ligands of the WW domain of YAP, which we named WBP-1 and WBP-2. Peptide sequence comparison between the two p...

  15. Direct interaction between Tks proteins and the N-terminal proline-rich region (PRR) of NoxA1 mediates Nox1-dependent ROS generation.

    Science.gov (United States)

    Gianni, Davide; DerMardirossian, Céline; Bokoch, Gary M

    2011-01-01

    NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date seven members of this family have been reported, including Nox1-5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and requires two cytosolic regulators, the organizer subunit NoxO1 and the activator subunit NoxA1, as well as the binding of Rac1 GTPase, for its activity. Recently, we identified the c-Src substrate proteins Tks4 and Tks5 as functional members of a p47(phox)-related organizer superfamily. As a functional consequence of this interaction, Nox1 localizes to invadopodia, actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior. Here, we report that Tks4 and Tks5 directly bind to NoxA1. Moreover, the integrity of the N-terminal PRR of NoxA1 is essential for this direct interaction with the Tks proteins. When the PRR in NoxA1 is disrupted, Tks proteins cannot bind NoxA1 and lose their ability to support Nox1-dependent ROS generation. Consistent with this, Tks4 and Tks5 are unable to act as organizers for Nox2 because of their inability to interact with p67(phox), which lacks the N-terminal PRR, thus conferring a unique specificity to Tks4 and 5. Taken together, these results clarify the molecular basis for the interaction between NoxA1 and the Tks proteins and may provide new insights into the pharmacological design of a more effective anti-metastatic strategy.

  16. The mammalian profilin isoforms display complementary affinities for PIP2 and proline-rich sequences.

    Science.gov (United States)

    Lambrechts, A; Verschelde, J L; Jonckheere, V; Goethals, M; Vandekerckhove, J; Ampe, C

    1997-02-03

    We present a study on the binding properties of the bovine profilin isoforms to both phosphatidylinositol 4,5-bisphosphate (PIP2) and proline-rich peptides derived from vasodilator-stimulated phosphoprotein (VASP) and cyclase-associated protein (CAP). Using microfiltration, we show that compared with profilin II, profilin I has a higher affinity for PIP2. On the other hand, fluorescence spectroscopy reveals that proline-rich peptides bind better to profilin II. At micromolar concentrations, profilin II dimerizes upon binding to proline-rich peptides. Circular dichroism measurements of profilin II reveal a significant conformational change in this protein upon binding of the peptide. We show further that PIP2 effectively competes for binding of profilin I to poly-L-proline, since this isoform, but not profilin II, can be eluted from a poly-L-proline column with PIP2. Using affinity chromatography on either profilin isoform, we identified profilin II as the preferred ligand for VASP in bovine brain extracts. The complementary affinities of the profilin isoforms for PIP2 and the proline-rich peptides offer the cell an opportunity to direct actin assembly at different subcellular localizations through the same or different signal transduction pathways.

  17. A G-Box-Binding Protein from Soybean Binds to the E1 Auxin-Response Element in the Soybean GH3 Promoter and Contains a Proline-Rich Repression Domain.

    Science.gov (United States)

    Liu, Z. B.; Hagen, G.; Guilfoyle, T. J.

    1997-10-01

    The E1 promoter fragment (-249 to -203) is one of three auxin-response elements (AuxREs) in the soybean (Glycine max L.) GH3 promoter (Z.-B. Liu, T. Ulmasov, X. Shi, G. Hagen, T.J. Guilfoyle [1994] Plant Cell 6: 645-657). Results presented here further characterize and delimit the AuxRE within the E1 fragment. The E1 fragment functioned as an AuxRE in transgenic tobacco (Nicotiana tabacum L.) plants, as well as in transfected protoplasts. The AuxRE within E1 contains a G-box, and this G-box was used to clone a G-box-binding factor (GBF) from soybean (SGBF-2). This 45-kD GBF contains an N-terminal proline-rich domain and a C-terminal basic/leucine zipper DNA-binding domain. Gel-mobility shift assays were used to characterize the binding specificity of SGBF-2. Antiserum raised against recombinant SGBF-2 was used to further characterize SGBF-2 and antigenically related GBFs in soybean nuclear extracts. Co-transfection assays with effector and reporter plasmids in carrot (Daucus carota L.) protoplasts indicated that the N-terminal proline-rich domain of SGBF-2 functioned as a repression domain in both basal and auxin-inducible transcription.

  18. The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro.

    Science.gov (United States)

    De Avila, Miguel; Vassall, Kenrick A; Smith, Graham S T; Bamm, Vladimir V; Harauz, George

    2014-12-08

    The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92-R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP-Fyn-SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62-L68), and demonstrate further that residues (V83-P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn-SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex.

  19. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides.

    Science.gov (United States)

    Mattiuzzo, Maura; Bandiera, Antonella; Gennaro, Renato; Benincasa, Monica; Pacor, Sabrina; Antcheva, Nikolinka; Scocchi, Marco

    2007-10-01

    In contrast to many antimicrobial peptides, members of the proline-rich group of antimicrobial peptides inactivate Gram-negative bacteria by a non-lytic mechanism. Several lines of evidence indicate that they are internalized into bacteria and their activity mediated by interaction with unknown cellular components. With the aim of identifying such interactors, we selected mutagenized Escherichia coli clones resistant to the proline-rich Bac7(1-35) peptide and analysed genes responsible for conferring resistance, whose products may thus be involved in the peptide's mode of action. We isolated a number of genomic regions bearing such genes, and one in particular coding for SbmA, an inner membrane protein predicted to be part of an ABC transporter. An E. coli strain carrying a point mutation in sbmA, as well as other sbmA-null mutants, in fact showed resistance to several proline-rich peptides but not to representative membranolytic peptides. Use of fluorescently labelled Bac7(1-35) confirmed that resistance correlated with a decreased ability to internalize the peptide, suggesting that a bacterial protein, SbmA, is necessary for the transport of, and for susceptibility to, proline-rich antimicrobial peptides of eukaryotic origin.

  20. Characterization of the cell penetrating properties of a human salivary proline-rich peptide.

    Science.gov (United States)

    Radicioni, Giorgia; Stringaro, Annarita; Molinari, Agnese; Nocca, Giuseppina; Longhi, Renato; Pirolli, Davide; Scarano, Emanuele; Iavarone, Federica; Manconi, Barbara; Cabras, Tiziana; Messana, Irene; Castagnola, Massimo; Vitali, Alberto

    2015-11-01

    Saliva contains hundreds of small proline-rich peptides most of which derive from the post-translational and post-secretory processing of the acidic and basic salivary proline-rich proteins. Among these peptides we found that a 20 residue proline-rich peptide (p1932), commonly present in human saliva and patented for its antiviral activity, was internalized within cells of the oral mucosa. The cell-penetrating properties of p1932 have been studied in a primary gingival fibroblast cell line and in a squamous cancer cell line, and compared to its retro-inverso form. We observed by mass-spectrometry, flow cytometry and confocal microscopy that both peptides were internalized in the two cell lines on a time scale of minutes, being the natural form more efficient than the retro-inverso one. The cytosolic localization was dependent on the cell type: both peptide forms were able to localize within nuclei of tumoral cells, but not in the nuclei of gingival fibroblasts. The uptake was shown to be dependent on the culture conditions used: peptide internalization was indeed effective in a complete medium than in a serum-free one allowing the hypothesis that the internalization could be dependent on the cell cycle. Both peptides were internalized likely by a lipid raft-mediated endocytosis mechanism as suggested by the reduced uptake in the presence of methyl-ß-cyclodextrin. These results suggest that the natural peptide may play a role within the cells of the oral mucosa after its secretion and subsequent internalization. Furthermore, lack of cytotoxicity of both peptide forms highlights their possible application as novel drug delivery agents.

  1. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status

    Directory of Open Access Journals (Sweden)

    Wan-Yin Fang

    2016-10-01

    Full Text Available Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.

  2. Whole genome phage display selects for proline-rich Boi polypeptides against Bem1p.

    Science.gov (United States)

    Hertveldt, Kirsten; Robben, Johan; Volckaert, Guido

    2006-08-01

    Interaction selection by biopanning from a fragmented yeast proteome displayed on filamentous phage particles was successful in identifying proline-rich fragments of Boi1p and Boi2p. These proteins bind to the second "src homology region 3'' (SH3) domain of Bem1p, a protein of Saccharomyces cerevisiae involved in bud formation. Target Bem1p was a doubly-tagged recombinant, Bem1([Asn142-Ile551]), which strongly interacts in ELISA with a C-terminal 75 amino acids polypeptide from Cdc24p exposed on phage. The whole yeast genomic display library contained approximately 7.7 x 10(7) independent clones of sheared S. cerevisiae genomic DNA fused to a truncated M13 gene III. This study corroborates the value of fragmented-proteome display to identify strong and direct interacting protein modules.

  3. The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements.

    Science.gov (United States)

    Luo, Lin; Xue, Jing; Kwan, Ann; Gamsjaeger, Roland; Wielens, Jerome; von Kleist, Lisa; Cubeddu, Liza; Guo, Zhong; Stow, Jennifer L; Parker, Michael W; Mackay, Joel P; Robinson, Phillip J

    2016-04-29

    Dynamin is a GTPase that mediates vesicle fission during synaptic vesicle endocytosis. Its long C-terminal proline-rich domain contains 13 PXXP motifs, which orchestrate its interactions with multiple proteins. The SH3 domains of syndapin and endophilin bind the PXXP motifs called Site 2 and 3 (Pro-786-Pro-793) at the N-terminal end of the proline-rich domain, whereas the amphiphysin SH3 binds Site 9 (Pro-833-Pro-836) toward the C-terminal end. In some proteins, SH3/peptide interactions also involve short distance elements, which are 5-15 amino acid extensions flanking the central PXXP motif for high affinity binding. Here we found two previously unrecognized elements in the central and the C-terminal end of the dynamin proline-rich domain that account for a significant increase in syndapin binding affinity compared with a previously reported Site 2 and Site 3 PXXP peptide alone. The first new element (Gly-807-Gly-811) is short distance element on the C-terminal side of Site 2 PXXP, which might contact a groove identified under the RT loop of the SH3 domain. The second element (Arg-838-Pro-844) is located about 50 amino acids downstream of Site 2. These two elements provide additional specificity to the syndapin SH3 domain outside of the well described polyproline-binding groove. Thus, the dynamin/syndapin interaction is mediated via a network of multiple contacts outside the core PXXP motif over a previously unrecognized extended region of the proline-rich domain. To our knowledge this is the first example among known SH3 interactions to involve spatially separated and extended long-range elements that combine to provide a higher affinity interaction.

  4. Supramolecular properties of the proline-rich gamma-Zein N-terminal domain.

    Science.gov (United States)

    Kogan, Marcelo J; Dalcol, Ionara; Gorostiza, Pau; Lopez-Iglesias, Carmen; Pons, Ramon; Pons, Miquel; Sanz, Fausto; Giralt, Ernest

    2002-08-01

    Zeins are maize storages proteins that accumulate inside large vesicles called protein bodies. gamma-Zein lines the inner face of the protein body membrane, and its N-terminal proline-rich repetitive domain with the sequence (VHLPPP)(8) appears to be necessary for the accumulation of the protein within the organelle. Synthetic (VHLPPP)(8) adopts an amphipathic polyproline II conformation. In a preliminary recent work we used atomic force microscopy to study the surface organization of the octamer and transmission electron microscopy to visualize aggregates of the peptide from aqueous solution. We previously envisioned two self-assembly models (i.e., the geometric and the micellar) that take into account the observed features. In the present work we studied in detail the self-assembly of the peptide in solution and found that the peptide is able to form cylindrical micelles. Fibrils formed on graphite are generated by assembly of solution micelles. Based on the results of these studies, we focused exclusively on the micellar model. To our knowledge we have characterized for the first time supramolecular aggregates of polyproline structures other than collagen. The spontaneous arrangement of (VHLPPP)(8) suggests a role for the N-terminal domain of gamma-zein in the process of the whole protein deposition in protein bodies.

  5. The Role of Histidine-Proline-Rich Glycoprotein as Zinc Chaperone for Skeletal Muscle AMP Deaminase

    Directory of Open Access Journals (Sweden)

    Maria Ranieri-Raggi

    2014-05-01

    Full Text Available Metallochaperones function as intracellular shuttles for metal ions. At present, no evidence for the existence of any eukaryotic zinc-chaperone has been provided although metallochaperones could be critical for the physiological functions of Zn2+ metalloenzymes. We propose that the complex formed in skeletal muscle by the Zn2+ metalloenzyme AMP deaminase (AMPD and the metal binding protein histidine-proline-rich glycoprotein (HPRG acts in this manner. HPRG is a major plasma protein. Recent investigations have reported that skeletal muscle cells do not synthesize HPRG but instead actively internalize plasma HPRG. X-ray absorption spectroscopy (XAS performed on fresh preparations of rabbit skeletal muscle AMPD provided evidence for a dinuclear zinc site in the enzyme compatible with a (μ-aqua(μ-carboxylatodizinc(II core with two histidine residues at each metal site. XAS on HPRG isolated from the AMPD complex showed that zinc is bound to the protein in a dinuclear cluster where each Zn2+ ion is coordinated by three histidine and one heavier ligand, likely sulfur from cysteine. We describe the existence in mammalian HPRG of a specific zinc binding site distinct from the His-Pro-rich region. The participation of HPRG in the assembly and maintenance of skeletal muscle AMPD by acting as a zinc chaperone is also demonstrated.

  6. The designer proline-rich antibacterial peptide A3-APO prevents Bacillus anthracis mortality by deactivating bacterial toxins.

    Science.gov (United States)

    Otvos, Laszlo; Flick-Smith, Helen; Fox, Marc; Ostorhazi, Eszter; Dawson, Raymond M; Wade, John D

    2014-04-01

    Proline-rich antibacterial peptides protect experimental animals from bacterial challenge even if they are unable to kill the microorganisms in vitro. Their major in vivo modes of action are inhibition of bacterial protein folding and immunostimulation. Here we investigated whether the proline-rich antibacterial peptide dimer A3-APO was able to inhibit Bacillus cereus enterotoxin production in vitro and restrict the proliferation of lethal toxin-induced Bacillus anthracis replication in mouse macrophages. After 24 h incubation, peptide A3-APO and its single chain metabolite reduced the amount of properly folded B. cereus diarrhoeal enterotoxin production in a concentration-dependent manner leading to only 10-25% of the original amount of toxin detectable by a conformation-sensitive immunoassay. Likewise, after 4 h incubation, A3-APO restricted the proliferation of B. anthracis in infected macrophages by 40-45% compared to untreated cells both intracellularly and in the extracellular cell culture milieu. Although the peptide had a minimal inhibitory concentration of >512 mg/L against B. anthracis in vitro, in systemic mouse challenge models it improved survival by 20- 37%, exhibiting statistically significant cumulative efficacy when administered at 3x5 mg/kg intraperitoneally or intramuscularly. We hypothesize that the activity in isolated murine macrophages and in vivo is due to deactivation of bacterial toxins. Bacterial protein folding inhibition in synergy with other types of antimicrobial modes offers a remarkable novel strategy in combating resistant or life-threatening infections.

  7. Proline-rich polypeptides in Alzheimer's disease and neurodegenerative disorders - Therapeutic potential or a mirage?

    NARCIS (Netherlands)

    Gladkevich, A.; Bosker, F.; Korf, J.; Yenkoyan, K.; Vahradyan, H.; Aghajanov, M.

    2007-01-01

    The development of effective and safe drugs for a growing Alzheimer disease population is an increasing need at present. Both experimental and clinical evidence support a beneficial effect of proline-rich polypeptides in a number of neurodegenerative diseases, including Alzheimer disease. Experiment

  8. Tyrosine Nitration within the Proline-Rich Region of Tau in Alzheimer's Disease

    Science.gov (United States)

    Reyes, Juan F.; Fu, Yifan; Vana, Laurel; Kanaan, Nicholas M.; Binder, Lester I.

    2011-01-01

    A substantial body of evidence suggests that nitrative injury contributes to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. Previously, we showed in vitro that within the tau protein the N-terminal tyrosine residues (Y18 and Y29) are more susceptible to nitrative modifications than other tyrosine sites (Y197 and Y394). Using site-specific antibodies to nitrated tau at Y18 and Y29, we identified tau nitrated in both glial (Y18) and neuronal (Y29) tau pathologies. In this study, we report the characterization of two novel monoclonal antibodies, Tau-nY197 and Tau-nY394, recognizing tau nitrated at Y197 and Y394, respectively. By Western blot analysis, Tau-nY197 labeled soluble tau and insoluble paired helical filament proteins (PHF-tau) nitrated at Y197 from control and AD brain samples. Tau-nY394 failed to label soluble tau isolated from control or severe AD samples, but labeled insoluble PHF-tau to a limited extent. Immunohistochemical analysis using Tau-nY197 revealed the hallmark tau pathology associated with AD; Tau-nY394 did not detect any pathological lesions characteristic of the disorder. These data suggest that a subset of the hallmark pathological inclusions of AD contain tau nitrated at Y197. However, nitration at Y197 was also identified in soluble tau from all control samples, including those at Braak stage 0, suggesting that nitration at this site in the proline-rich region of tau may have normal biological functions in the human brain. PMID:21514440

  9. Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Bei HUANG; Gavin PORTER

    2005-01-01

    Aim: To study the expression of proline-rich Akt-substrate PRAS40 in the cell survival pathway and tumor progression. Methods: The effects of three key kinase inhibitors on PRAS40 activity in the cell survival pathway, serum withdrawal,H2O2 and overexpression of Akt were tested. The expression of PRAS40, Akt, Raf and 14-3-3 in normal cells and cancer cell lines was determined by Western blot.Results: The PI3K inhibitors worthmannin and Ly294002, but not rapamycin, completely inhibited the phosphorylation of Akt and PRAS40. The phosphorylation level of Akt decreased after serum withdrawal and treatment with the MEK inhibitor Uo126, but increased after treatment with H2O2 at low concentration, whereas none of these treatments changed PRAS40 activity. 14-3-3 is a PRAS40 binding protein, and the expression of 14-3-3, like that of PRAS40, was higher in HeLa cells than in HEK293 cells; PRAS40 had a stronger phosphorylation activity in A549 and HeLa cancer cells than in HEK293 normal cells. In the breast cancer model (MCF10A/MCF7) and lung cancer model (BEAS/H1198/H1170) we also found the same result: PRAS40 was constitutively active in H1198/H1170 and MCF7 premalignant and malignant cancer cells, but weakly expressed in MCF10A and BEAS normal cell. We also discussed PRAS40 activity in other NSCLC cell lines.Conclusion: The PI3K-Akt survival pathway is the main pathway that PRAS40 is involved in; PRAS40 is a substrate for Akt, but can also be activated by an Aktindependent mechanisms. PRAS40 activation is an early event during breast and lung carcinogenesis.

  10. Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands.

    Science.gov (United States)

    Feng, S; Kasahara, C; Rickles, R J; Schreiber, S L

    1995-01-01

    Two dodecapeptides belonging to distinct classes of Src homology 3 (SH3) ligands and selected from biased phage display libraries were used to investigate interactions between a specificity pocket in the Src SH3 domain and ligant residues flanking the proline-rich core. The solution structures of c-Src SH3 complexed with these peptides were solved by NMR. In addition to proline-rich, polyproline type II helix-forming core, the class I and II ligands each possesses a flanking sequence that occupies a large pocket between the RT and n-Src loops of the SH3 domain. Structural and mutational analyses illustrate how the two classes of SH3 ligands exploit a specificity pocket on the receptor differently to increase binding affinity and specificity. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8618911

  11. Thermodynamic contribution of backbone conformational entropy in the binding between SH3 domain and proline-rich motif.

    Science.gov (United States)

    Zeng, Danyun; Shen, Qingliang; Cho, Jae-Hyun

    2017-02-26

    Biological functions of intrinsically disordered proteins (IDPs), and proteins containing intrinsically disordered regions (IDRs) are often mediated by short linear motifs, like proline-rich motifs (PRMs). Upon binding to their target proteins, IDPs undergo a disorder-to-order transition which is accompanied by a large conformational entropy penalty. Hence, the molecular mechanisms underlying control of conformational entropy are critical for understanding the binding affinity and selectivity of IDPs-mediated protein-protein interactions (PPIs). Here, we investigated the backbone conformational entropy change accompanied by binding of the N-terminal SH3 domain (nSH3) of CrkII and PRM derived from guanine nucleotide exchange factor 1 (C3G). In particular, we focused on the estimation of conformational entropy change of disordered PRM upon binding to the nSH3 domain. Quantitative characterization of conformational dynamics of disordered peptides like PRMs is limited. Hence, we combined various methods, including NMR model-free analysis, δ2D, DynaMine, and structure-based calculation of entropy loss. This study demonstrates that the contribution of backbone conformational entropy change is significant in the PPIs mediated by IDPs/IDRs.

  12. Solution structure of the human BTK SH3 domain complexed with a proline-rich peptide from p120cbl

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, S.-R.; Lou, Y.-C.; Pai, M.-T.; Jain, Moti L.; Cheng, J.-W. [National Tsing Hua University, Division of Structural Biology and Biomedical Science, Department of Life Science (China)

    2000-04-15

    X-linked agammaglobulinemia (XLA), an inherited disease, is caused by mutations in the Bruton's tyrosine kinase (BTK). The absence of functional BTK leads to failure of B cell differentiation which incapacitates antibody production in XLA patients leading to, sometimes lethal, bacterial infections. Point mutation in the BTK gene that leads to deletion of C-terminal 14 aa residues of BTK SH3 domain was found in one patient family. To understand the role of BTK in B cell development, we have determined the solution structure of BTK SH3 domain complexed with a proline-rich peptide from the protein product of c-cbl protooncogene (p120{sup cbl}). Like other SH3 domains, BTK SH3 domain consists of five {beta}-strands packed in two {beta}-sheets forming a {beta}-barrel-like structure. The rmsd calculated from the averaged coordinates for the BTK SH3 domain residues 218-271 and the p120{sup cbl} peptide residues 6-12 of the complex was 0.87 A ({+-}0.16 A) for the backbone heavy atoms (N, C, and C{sub {alpha}}) and 1.64 A ({+-}0.16 A) for all heavy atoms. Based on chemical shift changes and inter-molecular NOEs, we have found that the residues located in the RT loop, n-Src loop and helix-like loop between {beta}4 and {beta}5 of BTK SH3 domain are involved in ligand binding. We have also determined that the proline-rich peptide from p120{sup cbl} binds to BTK SH3 domain in a class I orientation. These results correlate well with our earlier observation that the truncated BTK SH3 domain (deletion of {beta}4, {beta}5 and the helix-like loop) exhibits weaker affinity for the p120{sup cbl} peptide. It is likely that the truncated SH3 domain fails to present to the ligand the crucial residues in the correct context and hence the weaker binding. These results delineate the importance of the C-terminus in the binding of SH3 domains and also indicate that improper folding and the altered binding behavior of mutant BTK SH3 domain likely lead to XLA.

  13. A Linear Surface Epitope in a Proline-Rich Region of ORF3 Product of Genotype 1 Hepatitis E Virus

    Science.gov (United States)

    Yang, Yonglin; Lin, Shaoli; Nan, Yuchen; Ma, Zexu; Yang, Liping; Zhang, Yanjin

    2016-01-01

    Hepatitis E virus (HEV) is one of the viral pathogens causing hepatitis in humans. HEV open reading frame 3 (ORF3) encodes a small multifunctional protein (VP13), which is essential for HEV infection. In this study, a linear epitope was identified in a polyproline (PXXP) motif from VP13 of genotype 1 HEV by using a monoclonal antibody. The epitope was detected in enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunofluorescence assays. Epitope mapping showed that the epitope locates in a proline-rich region containing a PXXP motif in amino acid residues 66-75 of VP13. The epitope was also detected in HEV-infected liver cells and reacted with genotype 1-specific antibodies in an HEV-positive human serum sample. The results demonstrated that the epitope in the PXXP motif of the genotype 1 VP13 is linear and surface-oriented, which should facilitate in-depth studies on the viral protein and HEV biology. PMID:27548202

  14. A Linear Surface Epitope in a Proline-Rich Region of ORF3 Product of Genotype 1 Hepatitis E Virus

    Directory of Open Access Journals (Sweden)

    Yonglin Yang

    2016-08-01

    Full Text Available Hepatitis E virus (HEV is one of the viral pathogens causing hepatitis in humans. HEV open reading frame 3 (ORF3 encodes a small multifunctional protein (VP13, which is essential for HEV infection. In this study, a linear epitope was identified in a polyproline (PXXP motif from VP13 of genotype 1 HEV by using a monoclonal antibody. The epitope was detected in enzyme-linked immunosorbent assay (ELISA, immunoblotting and immunofluorescence assays. Epitope mapping showed that the epitope locates in a proline-rich region containing a PXXP motif in amino acid residues 66-75 of VP13. The epitope was also detected in HEV-infected liver cells and reacted with genotype 1-specific antibodies in an HEV-positive human serum sample. The results demonstrated that the epitope in the PXXP motif of the genotype 1 VP13 is linear and surface-oriented, which should facilitate in-depth studies on the viral protein and HEV biology.

  15. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium.

    Directory of Open Access Journals (Sweden)

    Daniel Dias Rufino Arcanjo

    Full Text Available Proline-rich oligopeptides (PROs are a large family which comprises the bradykinin-potentiating peptides (BPPs. They inhibit the activity of the angiotensin I-converting enzyme (ACE and have a typical pyroglutamyl (Pyr/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO. Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.

  16. New proline-rich oligopeptides from the venom of African adders: Insights into the hypotensive effect of the venoms.

    Science.gov (United States)

    Kodama, Roberto T; Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre K; Kitano, Eduardo S; Tashima, Alexandre K; Barna, Barbara F; Takakura, Ana Carolina; Serrano, Solange M T; Dias-Da-Silva, Wilmar; Tambourgi, Denise V; Portaro, Fernanda V

    2015-06-01

    The snakes from the Bitis genus are some of the most medically important venomous snakes in sub Saharan Africa, however little is known about the composition and effects of these snake venom peptides. Considering that the victims with Bitis genus snakes have exacerbate hypotension and cardiovascular disorders, we investigated here the presence of angiotensin-converting enzyme modulators on four different species of venoms. The peptide fractions from Bitis gabonica gabonica, Bitis nasicornis, Bitis gabonica rhinoceros and Bitis arietans which showed inhibitory activity on angiotensin-converting enzyme were subjected to mass spectrometry analysis. Eight proline-rich peptides were synthetized and their potencies were evaluated in vitro and in vivo. The MS analysis resulted in over 150 sequences, out of which 32 are new proline-rich oligopeptides, and eight were selected for syntheses. For some peptides, inhibition assays showed inhibitory potentials of cleavage of angiotensin I ten times greater when compared to bradykinin. In vivo tests showed that all peptides decreased mean arterial pressure, followed by tachycardia in 6 out of 8 of the tests. We describe here some new and already known proline-rich peptides, also known as bradykinin-potentiating peptides. Four synthetic peptides indicated a preferential inhibition of angiotensin-converting enzyme C-domain. In vivo studies show that the proline-rich oligopeptides are hypotensive molecules. Although proline-rich oligopeptides are known molecules, we present here 32 new sequences that are inhibitors of the angiotensin-converting enzyme and consistent with the symptoms of the victims of Bitis spp, who display severe hypotension. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus.

    Directory of Open Access Journals (Sweden)

    Huihui Cao

    Full Text Available Proline-rich antimicrobial peptides (PR-AMPs are a group of cationic host defense peptides that are characterized by a high content of proline residues. Up to now, they have been reported in some insects, vertebrate and invertebrate animals, but are not found in plants. In this study, we performed an in silico screening of antimicrobial peptides, which led to discovery of a Brassica napus gene encoding a novel PR-AMP. This gene encodes a 35-amino acid peptide with 13 proline residues, designated BnPRP1. BnPRP1 has 40.5% identity with a known proline-rich antimicrobial peptide SP-B from the pig. BnPRP1 was artificially synthetized and cloned into the prokaryotic expression vector pET30a/His-EDDIE-GFP. Recombinant BnPRP1 was produced in Escherichia coli and has a predicted molecular mass of 3.8 kDa. Analysis of its activity demonstrated that BnPRP1 exhibited strong antimicrobial activity against Gram-positive bacterium, Gram-negative bacterium, yeast and also had strong antifungal activity against several pathogenic fungi, such as Sclerotinia sclerotiorum, Mucor sp., Magnaporthe oryzae and Botrytis cinerea. Circular dichroism (CD revealed the main secondary structure of BnPRP1 was the random coil. BnPRP1 gene expression detected by qRT-PCR is responsive to pathogen inoculation. At 48 hours after S. sclerotiorum inoculation, the expression of BnPRP1 increased significantly in the susceptible lines while slight decrease occurred in resistant lines. These suggested that BnPRP1 might play a role in the plant defense response against S. sclerotiorum. BnPRP1 isolated from B. napus was the first PR-AMP member that was characterized in plants, and its homology sequences were found in some other Brassicaceae plants by the genome sequences analysis. Compared with the known PR-AMPs, BnPRP1 has the different primary sequences and antimicrobial activity. Above all, this study gives a chance to cast a new light on further understanding about the AMPs' mechanism

  18. S-Nitrosylation of proline-rich tyrosine kinase 2 involves its activation induced by oxygen-glucose deprivation.

    Science.gov (United States)

    Yan, Xian-Liang; Liu, Dong-Hai; Zhang, Gong-Liang; Hu, Shu-Qun; Chen, Yu-Guo; Xu, Tie

    2015-06-15

    Previous studies have demonstrated that activation of proline-rich tyrosine kinase 2 (PYK2) in cerebral ischemia is involved in the modulation of N-methyl-d-aspartate-type (NMDA) glutamate receptor activity and Ca(2+) dynamics, resulting in ischemic neuron death ultimately. A number of reports indicate that PYK2 is a redox sensitive kinase that must be activated by an estrogen-induced reactive oxygen species (ROS). However, the mechanism of PYK2 activation remains incompletely illustrated. Accumulating attention is focused on nitric oxide (NO, a free radical) which plays a critical role in cellular signal transduction through stimulus-coupled S-nitrosylation of cysteine residues. Here we reported that PYK2 over-expressed in human embryonic kidney (HEK293) cells was S-nitrosylated (forming SNO-PYK2) by reacting with GSNO, an exogenous NO donor, at one critical cysteine residue (Cys534) with a biotin switch assay. Moreover, our results showed that S-nitrosylation and phosphorylation of PYK2 over-expressed in SH-SY5Y cells was significantly increased after oxygen-glucose deprivation (OGD). We further investigated whether the activation (phosphorylation) of PYK2 was associated with S-nitrosylation following SH-SY5Y cells OGD. Our results showed that the cysteine534 residue (site of S-nitrosylation) mutant PYK2 over-expressed in SH-SY5Y cells diminished S-nitrosylation of PYK2 and inhibited its phosphorylation induced by OGD. In addition, overexpression of the mutant PYK2 protein could prevent nuclear accumulation and abrogate neuronal cell death compared to wild type PYK2 in SH-SY5Y cells induced by OGD. These data suggest that the activation of PYK2 following OGD may be modulated by S-nitrosylation, which provides a new avenue for stroke therapy by targeting the post-translational modification machinery.

  19. A proline-rich polypeptide from ovine colostrum: colostrinin with immunomodulatory activity.

    Science.gov (United States)

    Zimecki, Michal

    2008-01-01

    A proline-rich polypeptide (PRP), later called colostrinin (CLN), was originally found as a fraction accompanying sheep colostral immunoglobulins. Extensive in vitro and in vivo studies in mice revealed its interesting T cell-tropic activities. The polypeptide promoted T cell maturation from early thymic precursors that acquired the phenotype and function of mature, helper cells; on the other hand, it also affected the phenotype and function of mature T cells. In particular, PRP was shown to recruit suppressor T cells in a model of T cell-independent humoral immune response and suppressed autoimmune hemolytic anemia in New Zealand Black mice. Subsequent in vitro studies in the human model revealed that CLN regulated mitogen-induced cytokine production in whole blood cultures. A discovery that CLN promoted procognitive functions in experimental animal models, supported by other laboratory findings, indicating prevention of pathological processes in the central nervous system, led to application of CLN in multicenter clinical trials. The trials demonstrated the therapeutic benefit of CLN in Alzheimer's disease (AD) patients by delaying progress of the disease.

  20. The role of the interaction of the vinculin proline-rich linker region with vinexin α in sensing the stiffness of the extracellular matrix.

    Science.gov (United States)

    Yamashita, Hiroshi; Ichikawa, Takafumi; Matsuyama, Daisuke; Kimura, Yasuhisa; Ueda, Kazumitsu; Craig, Susan W; Harada, Ichiro; Kioka, Noriyuki

    2014-05-01

    Although extracellular matrix (ECM) stiffness is an important aspect of the extracellular microenvironment and is known to direct the lineage specification of stem cells and affect cancer progression, the molecular mechanisms that sense ECM stiffness have not yet been elucidated. In this study, we show that the proline-rich linker (PRL) region of vinculin and the PRL-region-binding protein vinexin are involved in sensing the stiffness of ECM substrates. A rigid substrate increases the level of cytoskeleton-associated vinculin, and the fraction of vinculin stably localizing at focal adhesions (FAs) is larger on rigid ECM than on soft ECM. Mutations in the PRL region or the depletion of vinexin expression impair these responses to ECM stiffness. Furthermore, vinexin depletion impairs the stiffness-dependent regulation of cell migration. These results suggest that the interaction of the PRL region of vinculin with vinexin α plays a crucial role in sensing ECM stiffness and in mechanotransduction.

  1. Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by ph and metals.

    Science.gov (United States)

    Borza, D B; Morgan, W T

    1998-03-06

    The middle domain of plasma histidine-proline-rich glycoprotein (HPRG) contains unusual tandem pentapeptide repeats (consensus G(H/P)(H/P)PH) and binds heparin and transition metals. Unlike other proteins that interact with heparin via lysine or arginine residues, HPRG relies exclusively on histidine residues for this interaction. To assess the consequences of this unusual requirement, we have studied the interaction between human plasma HPRG and immobilized glycosaminoglycans (GAGs) using resonant mirror biosensor techniques. HPRG binding to immobilized heparin was strikingly pH-sensitive, producing a titration curve with a midpoint at pH 6.8. There was little binding of HPRG to heparin at physiological pH in the absence of metals, but the interaction was promoted by nanomolar concentrations of free zinc and copper, and its pH dependence was shifted toward alkaline pH by zinc. The affinity of HPRG for various GAGs measured in a competition assay decreased in the following order: heparin > dermatan sulfate > heparan sulfate > chondroitin sulfate A. Binding of HPRG to immobilized dermatan sulfate had a midpoint at pH 6.5, was less influenced by zinc, and exhibited cooperativity. Importantly, plasminogen interacted specifically with GAG-bound HPRG. We propose that HPRG is a physiological pH sensor, interacting with negatively charged GAGs on cell surfaces only when it acquires a net positive charge by protonation and/or metal binding. This provides a mechanism to regulate the function of HPRG (the local pH) and rationalizes the role of its unique, conserved histidine-proline-rich domain. Thus, under conditions of local acidosis (e.g. ischemia or hypoxia), HPRG can co-immobilize plasminogen at the cell surface as well as compete for heparin with other proteins such as antithrombin.

  2. Deletion of the proline-rich region of TonB disrupts formation of a 2:1 complex with FhuA, an outer membrane receptor of Escherichia coli.

    Science.gov (United States)

    Khursigara, Cezar M; De Crescenzo, Gregory; Pawelek, Peter D; Coulton, James W

    2005-05-01

    TonB protein of Escherichia coli couples the electrochemical potential of the cytoplasmic membrane (CM) to active transport of iron-siderophores and vitamin B(12) across the outer membrane (OM). TonB interacts with OM receptors and transduces conformationally stored energy. Energy for transport is provided by the proton motive force through ExbB and ExbD, which form a ternary complex with TonB in the CM. TonB contains three distinct domains: an N-terminal signal/anchor sequence, a C-terminal domain, and a proline-rich region. The proline-rich region was proposed to extend TonB's structure across the periplasm, allowing it to contact spatially distant OM receptors. Having previously identified a 2:1 stoichiometry for the complex of full-length (FL) TonB and the OM receptor FhuA, we now demonstrate that deletion of the proline-rich region of TonB (TonBDelta66-100) prevents formation of the 2:1 complex. Sedimentation velocity analytical ultracentrifugation of TonBDelta66-100 with FhuA revealed that a 1:1 TonB-FhuA complex is formed. Interactions between TonBDelta66-100 and FhuA were assessed by surface plasmon resonance, and their affinities were determined to be similar to those of TonB (FL)-FhuA. Presence of the FhuA-specific siderophore ferricrocin altered neither stoichiometry nor affinity of interaction, leading to our conclusion that the proline-rich region in TonB is important in forming a 2:1 high-affinity TonB-FhuA complex in vitro. Furthermore, TonBDelta66-100-FhuADelta21-128 interactions demonstrated that the cork region of the OM receptor was also important in forming a complex. Together, these results demonstrate a novel function of the proline-rich region of TonB in mediating TonB-TonB interactions within the TonB-FhuA complex.

  3. Protein (Viridiplantae): 357448011 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :12299 3880:12299 Proline-rich protein Medicago truncatula MGLKGAASISIMLPLSFLFFSTLASAHSGRKPPPPPRFRTPPPPTLPSTKPPPHSMTPPKQTPMKAPPT...PTRLQPILSPSTQPPHPTIPPPKKPPTISPSTPTTPPQTLTPSKQPIRPMTPPPKNPPTTAPPTRYTPPTLPPSKQPPHSMTPPT...KQAPMKAPPTPTTLQPILSPTQPPRPTTPSPKITPITPPTPTKSQPPKTTPAKPPTLTTPPPTLTPSGQPPRPVTQQPRNPPTS...TLPTLRPSTPPPHSLTSPPKTAPTKAPPTPSTLPPRPMTPPPKKPPTISPSTPTTPPPTMFNSPPPRTIAPSPKMPPTTSPPTPITSPSKLPPTQPPRPTTSPPKITPITPPTPTTSQPPKTTLAKPPT...LTTPPPSLTPSGQPPRPVTQQPRNPPTSTPPTPSTLPTLRPSTPPPHSLTSPPKTAPTKAPPTPSTLPPRPMTPPPKKPPT

  4. Structural Characterization of Proline-rich Tyrosine Kinase 2 (PYK2) Reveals a Unique (DFG-out) Conformation and Enables Inhibitor Design

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seungil; Mistry, Anil; Chang, Jeanne S.; Cunningham, David; Griffor, Matt; Bonnette, Peter C.; Wang, Hong; Chrunyk, Boris A.; Aspnes, Gary E.; Walker, Daniel P.; Brosius, Arthur D.; Buckbinder, Leonard; Pfizer

    2009-05-21

    Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptor tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.

  5. Antagonistic Effect of a Salivary Proline-Rich Peptide on the Cytosolic Ca2+ Mobilization Induced by Progesterone in Oral Squamous Cancer Cells.

    Science.gov (United States)

    Palmerini, Carlo Alberto; Mazzoni, Michela; Radicioni, Giorgia; Marzano, Valeria; Granieri, Letizia; Iavarone, Federica; Longhi, Renato; Messana, Irene; Cabras, Tiziana; Sanna, Maria Teresa; Castagnola, Massimo; Vitali, Alberto

    2016-01-01

    A salivary proline-rich peptide of 1932 Da showed a dose-dependent antagonistic effect on the cytosolic Ca2+ mobilization induced by progesterone in a tongue squamous carcinoma cell line. Structure-activity studies showed that the activity of the peptide resides in the C-terminal region characterized by a proline stretch flanked by basic residues. Furthermore, lack of activity of the retro-inverso peptide analogue suggested the involvement of stereospecific recognition. Mass spectrometry-based shotgun analysis, combined with Western blotting tests and biochemical data obtained with the Progesterone Receptor Membrane Component 1 (PGRMC1) inhibitor AG205, showed strong evidence that p1932 performs its modulatory action through an interaction with the progesterone receptor PGRMC1, which is predominantly expressed in this cell line and, clearly, plays a role in progesterone induced Ca2+ response. Thus, our results point to p1932 as a modulator of the transduction signal pathway mediated by this protein and, given a well-established involvement of PGRMC1 in tumorigenesis, highlight a possible therapeutic potential of p1932 for the treatment of oral cancer.

  6. The proline-rich motif of the proDer p 3 allergen propeptide is crucial for protease-protease interaction.

    Directory of Open Access Journals (Sweden)

    Marie-Eve Dumez

    Full Text Available The majority of proteases are synthesized in an inactive form, termed zymogen, which consists of a propeptide and a protease domain. The propeptide is commonly involved in the correct folding and specific inhibition of the enzyme. The propeptide of the house dust mite allergen Der p 3, NPILPASPNAT, contains a proline-rich motif (PRM, which is unusual for a trypsin-like protease. By truncating the propeptide or replacing one or all of the prolines in the non-glycosylated zymogen with alanine(s, we demonstrated that the full-length propeptide is not required for correct folding and thermal stability and that the PRM is important for the resistance of proDer p 3 to undesired proteolysis when the protein is expressed in Pichia pastoris. Additionally, we followed the maturation time course of proDer p 3 by coupling a quenched-flow assay to mass spectrometry analysis. This approach allowed to monitor the evolution of the different species and to determine the steady-state kinetic parameters for activation of the zymogen by the major allergen Der p 1. This experiment demonstrated that prolines 5 and 8 are crucial for proDer p 3-Der p 1 interaction and for activation of the zymogen.

  7. Effect of size and N-terminal residue characteristics on bacterial cell penetration and antibacterial activity of the proline-rich peptide Bac7.

    Science.gov (United States)

    Guida, Filomena; Benincasa, Monica; Zahariev, Sotir; Scocchi, Marco; Berti, Federico; Gennaro, Renato; Tossi, Alessandro

    2015-02-12

    Bac7 is a proline-rich antimicrobial peptide, selective for Gram-negative bacteria, which acts intracellularly after membrane translocation. Progressively shortened fragments of Bac7 allowed determining the minimal sequence required for entry and antimicrobial activity as a 16-residue, N-terminal fragment, while further shortening led to a marked decrease in both functions. Furthermore, two N-terminal arginine residues were required for efficient translocation and activity. Analogues in which these residues were omitted, or where the side chain steric or physicochemical characteristics were systematically altered, were tested on different Escherichia coli strains, including a mutant with a destabilized outer membrane and one lacking the relevant SbmA membrane transport protein. H-bonding capacity, stereochemistry, and charge, in that order, played a determining role for efficient transit through both the outer and cytoplasmic membranes. Our studies allowed building a more detailed model for the mode-of-action of Bac7, and confirming its potential as an anti-infective agent, also suggesting it may be a vehicle for internalization of other antibiotic cargo.

  8. A proline-rich sequence unique to MEK1 and MEK2 is required for raf binding and regulates MEK function.

    Science.gov (United States)

    Catling, A D; Schaeffer, H J; Reuter, C W; Reddy, G R; Weber, M J

    1995-10-01

    Mammalian MEK1 and MEK2 contain a proline-rich (PR) sequence that is absent both from the yeast homologs Ste7 and Byr1 and from a recently cloned activator of the JNK/stress-activated protein kinases, SEK1/MKK4. Since this PR sequence occurs in MEKs that are regulated by Raf family enzymes but is missing from MEKs and SEKs activated independently of Raf, we sought to investigate the role of this sequence in MEK1 and MEK2 regulation and function. Deletion of the PR sequence from MEK1 blocked the ability of MEK1 to associate with members of the Raf family and markedly attenuated activation of the protein in vivo following growth factor stimulation. In addition, this sequence was necessary for efficient activation of MEK1 in vitro by B-Raf but dispensable for activation by a novel MEK1 activator which we have previously detected in fractionated fibroblast extracts. Furthermore, we found that a phosphorylation site within the PR sequence of MEK1 was required for sustained MEK1 activity in response to serum stimulation of quiescent fibroblasts. Consistent with this observation, we observed that MEK2, which lacks a phosphorylation site at the corresponding position, was activated only transiently following serum stimulation. Finally, we found that deletion of the PR sequence from a constitutively activated MEK1 mutant rendered the protein nontransforming in Rat1 fibroblasts. These observations indicate a critical role for the PR sequence in directing specific protein-protein interactions important for the activation, inactivation, and downstream functioning of the MEKs.

  9. Structural basis of Robo proline-rich motif recognition by the srGAP1 Src homology 3 domain in the Slit-Robo signaling pathway.

    Science.gov (United States)

    Li, Xiaofeng; Chen, Yushu; Liu, Yiwei; Gao, Jia; Gao, Feng; Bartlam, Mark; Wu, Jane Y; Rao, Zihe

    2006-09-22

    The Slit-Robo (sr) GTPase-activating protein (GAPs) are important components in the intracellular pathway mediating Slit-Robo signaling in axon guidance and cell migration. We report the first crystal structure of the srGAP1 SH3 domain at 1.8-A resolution. The unusual side chain conformation of the conserved Phe-13 in the P1 pocket renders the ligand binding pocket shallow and narrow, which contributes toward the low binding affinity. Moreover, the opposing electrostatic charge and the hydrophobic properties of the P3 specificity pocket are consistent with the observed binding characteristics of the srGAP1 SH3 domain to its ligand. Surface plasmon resonance experiments indicate that the srGAP1 SH3 domain interacts with its natural ligand inaCtoN orientation. The srGAP1 SH3 domain can bind to both the CC2 and CC3 motifs in vitro. The N-terminal two acidic residues in the CC3 motif recognition site are necessary for srGAP1 SH3 domain binding. A longer CC3 peptide (CC3-FL) binds with greater affinity than its shorter counterpart, suggesting that the residues surrounding the proline-rich core are important for protein-peptide interactions. Our study reveals previously unknown properties of the srGAP-Robo interaction. Our data provide a structural basis for the srGAP-Robo interaction, consistent with the role of the Robo intracellular domain in interacting with other downstream signaling molecules and mediating versatile and dynamic responses to axon guidance and cell migration cues.

  10. Copper(II) interaction with peptide fragments of histidine-proline-rich glycoprotein: Speciation, stability and binding details.

    Science.gov (United States)

    La Mendola, Diego; Magrì, Antonio; Santoro, Anna Maria; Nicoletti, Vincenzo G; Rizzarelli, Enrico

    2012-06-01

    GHHPH is the peptide repeat present in histidine-proline rich glycoprotein (HPRG), a plasma glycoprotein involved in angiogenesis process. The copper(II) ions interaction with mono (Ac-GHHPHG-NH(2)) and its bis-repeat (Ac-GHHPHGHHPHG-NH(2)) was investigated by means of potentiometric and spectroscopic techniques. To single out the copper(II) coordination environments of different species formed with Ac-GHHPHG-NH(2), three single point mutated peptides were also synthesized and their ability to coordinate Cu(2+) investigated. Ac-GHHPHG-NH(2) binds Cu(2+) by the imidazole side chain and the amide nitrogen deprotonation that takes place towards the N-terminus. The bis-repeat is able to bind Cu(2+) more efficiently than Ac-GHHPHG-NH(2). This difference is not only due to the number of His residues in the sequence but also to the different binding sites. In fact, the comparison of the potentiometric and spectroscopic data of the copper(II) complexes with a bis-repeatPeg construct Ac-(GHHPHG)-Peg-(GHHPHG)-NH(2) and those of the metal complexes with Ac-HGHH-NH(2), indicates that the central HGHH amino acid sequence is the main copper(II) binding site.

  11. Ginkgotides: Proline-Rich Hevein-Like Peptides from Gymnosperm Ginkgo biloba

    Science.gov (United States)

    Wong, Ka H.; Tan, Wei Liang; Serra, Aida; Xiao, Tianshu; Sze, Siu Kwan; Yang, Daiwen; Tam, James P.

    2016-01-01

    Hevein and hevein-like peptides belong to the family of chitin-binding cysteine-rich peptides. They are classified into three subfamilies, the prototypic 8C- and the 6C- and 10C-hevein-like peptides. Thus far, only five 8C-hevein-like peptides have been characterized from three angiosperms and none from gymnosperm. To determine their occurrence and distribution in the gymnosperm, Ginkgo biloba leaves were examined. Here, we report the discovery and characterization of 11 novel 8C-hevein-like peptides, namely ginkgotides gB1–gB11. Proteomic analysis showed that the ginkgotides contain 41–44 amino acids (aa), a chitin-binding domain and are Pro-rich, a distinguishing feature that differs from other hevein-like peptides. Solution NMR structure determination revealed that gB5 contains a three β-stranded structure shaped by a cystine knot with an additional disulfide bond at the C-terminus. Transcriptomic analysis showed that the ginkgotide precursors contain a three-domain architecture, comprised of a C-terminal tail (20 aa) that is significantly shorter than those of other 8C- and 10C-hevein-like peptides, which generally contain a protein cargo such as a Barwin-like protein (126 aa) or class I chitinase (254 aa). Transcriptomic data mining found an additional 48 ginkgotide homologs in 39 different gymnosperms. Phylogenetic analysis revealed that ginkgotides and their homologs belong to a new class of 8C-hevein-like peptides. Stability studies showed that ginkgotides are highly resistant to thermal, acidic and endopeptidase degradation. Ginkgotides flanked at both the N- and C-terminal ends by Pro were resistant to exopeptidase degradation by carboxypeptidase A and aminopeptidase. Antifungal assays showed that ginkgotides inhibit the hyphal growth of phyto-pathogenic fungi. Taken together, ginkgotides represent the first suite of hevein-like peptides isolated and characterized from gymnosperms. As a group, they represent a novel class of 8C-hevein-like peptides

  12. Ginkgotides: Proline-rich Hevein-like Peptides from Gymnosperm Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Ka Ho Wong

    2016-11-01

    Full Text Available Hevein and hevein-like peptides belong to the family of chitin-binding cysteine-rich peptides. They are classified into three subfamilies, the prototypic 8C- and the 6C- and 10C-hevein-like peptides. Thus far, only five 8C-hevein-like peptides have been characterized from three angiosperms and none from gymnosperm. To determine their occurrence and distribution in the gymnosperm, Ginkgo biloba leaves were examined. Here, we report the discovery and characterization of eleven novel 8C-hevein-like peptides, namely ginkgotides gB1–gB11. Proteomic analysis showed that the ginkgotides contain 41–44 amino acids (aa, a chitin-binding domain and are Pro-rich, a distinguishing feature that differs from other hevein-like peptides. Solution 1H-NMR structure determination revealed that gB5 contains a three β-stranded structure shaped by a cystine knot with an additional disulfide bond at the C-terminus. Transcriptomic analysis showed that the ginkgotide precursors contain a three-domain architecture, comprised of a C-terminal tail (20 aa that is significantly shorter than those of other 8C- and 10C-hevein-like peptides, which generally contain a protein cargo such as a Barwin-like protein (126 aa or class I chitinase (254 aa. Transcriptomic data mining found an additional 48 ginkgotide homologs in 39 different gymnosperms. Phylogenetic analysis revealed that ginkgotides and their homologs belong to a new class of 8C-hevein-like peptides. Stability studies showed that ginkgotides are highly resistant to thermal, acidic and endopeptidase degradation. Ginkgotides flanked at both the N- and C-terminal ends by Pro were resistant to exopeptidase degradation by carboxypeptidase A and aminopeptidase. Antifungal assays showed that ginkgotides inhibit the hyphal growth of phyto-pathogenic fungi. Taken together, ginkgotides represent the first suite of hevein-like peptides isolated and characterized from gymnosperms. As a group, they represent a novel class of 8C

  13. Epigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1.

    Science.gov (United States)

    Galoian, Karina; Qureshi, Amir; D'Ippolito, Gianluca; Schiller, Paul C; Molinari, Marco; Johnstone, Andrea L; Brothers, Shaun P; Paz, Ana C; Temple, H T

    2015-08-01

    Metastatic chondrosarcoma of mesenchymal origin is the second most common bone malignancy and does not respond either to chemotherapy or radiation; therefore, the search for new therapies is relevant and urgent. We described recently that tumor growth inhibiting cytostatic proline-rich polypeptide 1, (PRP-1) significantly upregulated tumor suppressor miRNAs, downregulated onco-miRNAs in human chondrosarcoma JJ012 cell line, compared to chondrocytes culture. In this study we hypothesized the existence and regulation of a functional marker in cancer stem cells, correlated to peptides antiproliferative activity. Experimental results indicated that among significantly downregulated miRNA after PRP-1treatment was miRNAs 302c*. This miRNA is a part of the cluster miR302‑367, which is stemness regulator in human embryonic stem cells and in certain tumors, but is not expressed in adult hMSCs and normal tissues. PRP-1 had strong inhibitory effect on viability of chondrosarcoma and multilineage induced multipotent adult cells (embryonic primitive cell type). Unlike chondrosarcoma, in glioblastoma, PRP-1 does not have any inhibitory activity on cell proliferation, because in glioblastoma miR-302-367 cluster plays an opposite role, its expression is sufficient to suppress the stemness inducing properties. The observed correlation between the antiproliferative activity of PRP-1 and its action on downregulation of miR302c explains the peptides opposite effects on the upregulation of proliferation of adult mesenchymal stem cells, and the inhibition of the proliferation of human bone giant-cell tumor stromal cells, reported earlier. PRP-1 substantially downregulated the miR302c targets, the stemness markers Nanog, c-Myc and polycomb protein Bmi-1. miR302c expression is induced by JMJD2-mediated H3K9me2 demethylase activity in its promoter region. JMJD2 was reported to be a positive regulator for Nanog. Our experimental results proved that PRP-1 strongly inhibited H3K9 activity

  14. Direct selection of expressed sequences on a YAC clone revealed proline-rich-like genes and BARE-1 sequences physically linked to the complex ¤Mla¤ powdery mildew resistance locus of barley (¤Hordeum vulgare¤ L.)

    DEFF Research Database (Denmark)

    Schwarz, G.; Michalek, W.; Jahoor, A.

    2002-01-01

    gene. Of 22 selected cDNA clones, six were re-located on the YAC by southern analysis. Two of these clones are predicted to encode members of the hydroxyproline-rich glycoprotein and proline-rich protein gene families which have been implicated in plant defense response. Four sequences showed high...... homology to the copia-like retroelement BA REI of barley, putatively involved in evolution of disease resistance loci. The high degree of clones representing barley rRNA sequences or false positives is a major disadvantage of direct selection of cDNAs in barley. (C) 2002 Elsevier Science Ireland Ltd. All...

  15. 牛初乳中富脯氨酸多肽的纯化与鉴定%Purification and Identification of Proline-rich Polypeptides from Bovine Colostrum

    Institute of Scientific and Technical Information of China (English)

    余芳; 李德龙; 张波; 高艳玲; 张少辉

    2012-01-01

    Bovine colostrum was extracted to obtain bioactive proline-rich polypeptides(PRP).The molecular weight and amino acid composition of PRP were analyzed by means of SDS-PAGE and an automated amino acid analyzer,respectively.Reversed-phase high performance liquid chromatography(RP-HPLC) was employed to purify PRP.The results showed that the proline content in PRP was as high as 20%.The molecular weights of principal components were in the range of 5-25 kD as determined by SDS-PAGE.RP-HPLC showed that major spectral peaks were eluted by 37%-45% acetonitrile.As a result,PRP with a purity of 96.7% was obtained.%以牛初乳为原料,提取分离具有生物活性的富脯氨酸多肽(proline-rich polypeptides,PRP),并从氨基酸组成、分子质量大小和反相色谱方面对其进行测定和分析。结果表明:分离所得多肽脯氨酸含量高达20%;SDS-PAGE显示主成分分子质量分布范围在5~25kD;反相色谱主要谱峰在乙腈体积分数37%~45%处洗脱,在这一体积分数范围内可得到纯度高达96.7%的富脯氨酸多肽。

  16. The Effect of Selective D- or Nα-Methyl Arginine Substitution on the Activity of the Proline-Rich Antimicrobial Peptide, Chex1-Arg20

    Science.gov (United States)

    Li, Wenyi; Sun, Zhe; O'Brien-Simpson, Neil M.; Otvos, Laszlo; Reynolds, Eric C.; Hossain, Mohammed A.; Separovic, Frances; Wade, John D.

    2017-01-01

    In vivo pharmacokinetics studies have shown that the proline-rich antimicrobial peptide, A3-APO, which is a discontinuous dimer of the peptide, Chex1-Arg20, undergoes degradation to small fragments at positions Pro6-Arg7 and Val19-Arg20. With the aim of minimizing or abolishing this degradation, a series of Chex1-Arg20 analogs were prepared via Fmoc/tBu solid phase peptide synthesis with D-arginine or, in some cases, peptide backbone Nα-methylated arginine, substitution at these sites. All the peptides were tested for antibacterial activity against the Gram-negative bacterium Klebsiella pneumoniae. The resulting activity of position-7 substitution of Chex1-Arg20 analogs showed that arginine-7 is a crucial residue for maintaining activity against K. pneumoniae. However, arginine-20 substitution had a much less deleterious effect on the antibacterial activity of the peptide. Moreover, none of these peptides displayed any cytotoxicity to HEK and H-4-II-E mammalian cells. These results will aid the development of more effective and stable PrAMPs via judicious amino acid substitutions. PMID:28154813

  17. The effect of selective D- or N(alpha)-methyl arginine substitution on the activity of the proline-rich antimicrobial peptide, Chex1-Arg20.

    Science.gov (United States)

    Li, Wenyi; Sun, Zhe; O'Brien-Simpson, Neil M.; Otvos, Laszlo; Reynolds, Eric C.; Hossain, Mohammed A.; Separovic, Frances; Wade, John D.

    2017-01-01

    In vivo pharmacokinetics studies have shown that the proline-rich antimicrobial peptide, A3-APO, which is a discontinuous dimer of the peptide, Chex1-Arg20, undergoes degradation to small fragments at positions Pro6-Arg7 and Val19-Arg20. With the aim of minimizing or abolishing this degradation, a series of Chex1-Arg20 analogues were prepared via Fmoc/tBu solid phase peptide synthesis with D-arginine or, in some cases, peptide backbone N-methylated arginine, substitution at these sites. All the peptides were tested for antibacterial activity against the Gram-negative bacterium Klebsiella pneumoniae. The resulting activity of position-7 substitution of Chex1-Arg20 analogues showed that arginine-7 is a crucial residue for maintaining activity against K. pneumoniae. However, arginine-20 substitution had a much less deleterious effect on the antibacterial activity of the peptide. Moreover, none of these peptides displayed any cytotoxicity to HEK and H-4-II-E mammalian cells. These results will aid the development of more effective and stable PrAMPs via judicious amino acid substitutions.

  18. Structure-Activity Relationships of the Antimicrobial Peptide Arasin 1 — And Mode of Action Studies of the N-Terminal, Proline-Rich Region

    Science.gov (United States)

    Paulsen, Victoria S.; Blencke, Hans-Matti; Benincasa, Monica; Haug, Tor; Eksteen, Jacobus J.; Styrvold, Olaf B.; Scocchi, Marco; Stensvåg, Klara

    2013-01-01

    Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH2 terminus of the peptide and the fragment arasin 1(1–23) was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1–23) were shown to be non-toxic to human red blood cells and arasin 1(1–23) was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1–23) was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC), arasin 1(1–23) was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1–23) has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1–23) involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC. PMID:23326415

  19. Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region.

    Directory of Open Access Journals (Sweden)

    Victoria S Paulsen

    Full Text Available Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH(2 terminus of the peptide and the fragment arasin 1(1-23 was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1-23 were shown to be non-toxic to human red blood cells and arasin 1(1-23 was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1-23 was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC, arasin 1(1-23 was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1-23 has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1-23 involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC.

  20. The proline-rich peptide Bac7(1-35 reduces mortality from Salmonella typhimurium in a mouse model of infection

    Directory of Open Access Journals (Sweden)

    Benincasa Monica

    2010-06-01

    Full Text Available Abstract Background Bac7 is a proline-rich peptide with a potent in vitro antimicrobial activity against Gram-negative bacteria. Here we investigated its activity in biological fluids and in vivo using a mouse model of S. typhimurium infection. Results The efficacy of the active 1-35 fragment of Bac7 was assayed in serum and plasma, and its stability in biological fluids analyzed by Western blot and mass spectrometry. The ability of the peptide to protect mice against Salmonella was assayed in a typhoid fever model of infection by determination of survival rates and bacterial load in liver and spleen of infected animals. In addition, the peptide's biodistribution was evaluated by using time-domain optical imaging. Bac7(1-35 retained a substantial in vivo activity showing a very low toxicity. The peptide increased significantly the number of survivors and the mean survival times of treated mice reducing the bacterial load in their organs despite its rapid clearance. Conclusions Our results provide a first indication for a potential development of Bac7-based drugs in the treatment of salmonellosis and, eventually, other Gram-negative infections. The in vivo activity for this peptide might be substantially enhanced by decreasing its excretion rate or modifying the treatment schedule.

  1. Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region.

    Science.gov (United States)

    Paulsen, Victoria S; Blencke, Hans-Matti; Benincasa, Monica; Haug, Tor; Eksteen, Jacobus J; Styrvold, Olaf B; Scocchi, Marco; Stensvåg, Klara

    2013-01-01

    Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH(2) terminus of the peptide and the fragment arasin 1(1-23) was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1-23) were shown to be non-toxic to human red blood cells and arasin 1(1-23) was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1-23) was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC), arasin 1(1-23) was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1-23) has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1-23) involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC.

  2. The proline-rich domain of TonB possesses an extended polyproline II-like conformation of sufficient length to span the periplasm of Gram-negative bacteria.

    Science.gov (United States)

    Köhler, Silvia Domingo; Weber, Annemarie; Howard, S Peter; Welte, Wolfram; Drescher, Malte

    2010-04-01

    TonB from Escherichia coli and its homologues are critical for the uptake of siderophores through the outer membrane of Gram-negative bacteria using chemiosmotic energy. When different models for the mechanism of TonB mediated energy transfer from the inner to the outer membrane are discussed, one of the key questions is whether TonB spans the periplasm. In this article, we use long range distance measurements by spin-label pulsed EPR (Double Electron-Electron Resonance, DEER) and CD spectroscopy to show that the proline-rich segment of TonB exists in a PPII-like conformation. The result implies that the proline-rich segment of TonB possesses a length of more than 15 nm, sufficient to span the periplasm of Gram-negative bacteria.

  3. Insight from TonB hybrid proteins into the mechanism of iron transport through the outer membrane.

    Science.gov (United States)

    Kaserer, Wallace A; Jiang, Xiaoxu; Xiao, Qiaobin; Scott, Daniel C; Bauler, Matthew; Copeland, Daniel; Newton, Salete M C; Klebba, Phillip E

    2008-06-01

    We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB(+) bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepADelta3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of

  4. Age-dependent modifications of the human salivary secretory protein complex.

    Science.gov (United States)

    Cabras, Tiziana; Pisano, Elisabetta; Boi, Roberto; Olianas, Alessandra; Manconi, Barbara; Inzitari, Rosanna; Fanali, Chiara; Giardina, Bruno; Castagnola, Massimo; Messana, Irene

    2009-08-01

    Physiological variability of the naturally occurring, human salivary secretory peptidome was studied as a function of age. The qualitative and quantitative changes occurring in the secretion of proteins/peptides specific to the oral cavity (i.e., basic salivary proline-rich proteins, salivary acidic proline-rich phosphoproteins, statherin, proline-rich peptide P-B, salivary cystatins, and histatins) were investigated by high-performance liquid chromatography-electrospray ionization-mass spectrometry in 67 subjects aged between 3 and 44 years. Subjects were divided into five age groups: group A, 8 donors, 3-5 years; group B, 11 donors, 6-9 years; group C, 20 donors, 10-12 years; group D, 15 donors, 13-17 years; group E, 13 donors, 24-44 years. Basic salivary proline-rich proteins, almost undetectable in the 3-5 and 6-9 years groups, reached salivary levels comparable to that of adults (24-44 years) around puberty. Levels of peptide P-D, basic peptide P-F, peptide P-H, peptide P-J (a new basic salivary proline-rich protein characterized in this study), and basic proline-rich peptide IB-1 were significantly higher in the 10-12-year-old group than in the 3-5-year-old group, whereas the increase of proline-rich peptide II-2 was significant only after the age of 12 years. The concentration of salivary acidic proline-rich phosphoproteins, histatin-3 1/24, histatin-3 1/25, and monophosphorylated and diphosphorylated cystatin S showed a minimum in the 6-9-year-old group. Finally, the histatin-1 concentration was significantly higher in the youngest subjects (3-5 years) than in the other groups.

  5. Protein-ECE MEtallopincer Hybrids

    NARCIS (Netherlands)

    Kruithof, C.A.

    2007-01-01

    Modification of proteins with metal complexes is a promising and a relatively new field which conceals many challenges and potential applications. The field is a balance of contributions from the biological (protein engineering, bioconjugation) and chemical sciences (organic, inorganic and organomet

  6. Hybrid system of semiconductor and photosynthetic protein.

    Science.gov (United States)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.

  7. Small proline-rich protein 2 family is a cluster of genes induced by estrogenic compounds through nuclear estrogen receptors in the mouse uterus.

    Science.gov (United States)

    Hong, Seok-Ho; Lee, Jae Eun; Jeong, Jin Ju; Hwang, Soo Jin; Bae, Se Na; Choi, Ji Young; Song, Haengseok

    2010-11-01

    We have investigated the potential actions of E(2) and endocrine disruptors (EDs) with estrogenic activity, such as bisphenol A, on the regulation of the Sprr2 family of genes in the mouse uterus using real-time RT-PCR, RT-PCR and Western blotting. Most members of Sprr2 genes that are induced by E(2), such as Sprr2a, 2b and 2e, showed E(2) dose-dependent increase at mRNA levels. Sprr2 expression was considerably reduced by pretreatment with ICI 182,780, an antagonist for nuclear estrogen receptors. Progesterone moderately dampened E(2)-induced Sprr2 expression. Furthermore, EDs comparably induced the expression of Sprr2 genes in a dose-dependent manner and EDs-induced Sprr2 expression was similarly modulated by ICI 182,780 and progesterone, strongly suggesting that they are, indeed, an estrogen-responsive gene family. Collectively, dose-dependent induction of Sprr2 genes by estrogen and EDs is primarily mediated via the genomic actions of estrogen signaling in the uterus, but not in other reproductive tracts, in mice.

  8. Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.

    Science.gov (United States)

    Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang

    2016-09-01

    Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity.

  9. Influence of the yjiL-mdtM Gene Cluster on the Antibacterial Activity of Proline-Rich Antimicrobial Peptides Overcoming Escherichia coli Resistance Induced by the Missing SbmA Transporter System.

    Science.gov (United States)

    Krizsan, Andor; Knappe, Daniel; Hoffmann, Ralf

    2015-10-01

    In view of increasing health threats from multiresistant pathogens, antimicrobial peptides (AMPs) and, specifically, proline-rich AMPs (PrAMPs) have been investigated in animal models. PrAMPs enter bacteria via the ABC transporter SbmA and inhibit intracellular targets. We used phage transduction (Tn10 insertion) to screen by random mutagenesis for alternative uptake mechanisms for analogs of apidaecin 1b, a honeybee-derived PrAMP. All 24 apidaecin-resistant mutants had the Tn10 insertion in the sbmA gene. These sbmA::Tn10 insertion mutants and the Escherichia coli BW25113 ΔsbmA (JW0368) strain were still susceptible to the bactenecin PrAMP Bac7(1-35) and oncocin PrAMPs Onc18 and Onc112, as well as to Chex1-Arg20, despite significantly reduced internalizations. In a second round of random mutagenesis, the remaining susceptibility was linked to the yjiL-mdtM gene cluster. E. coli BW25113 and its ΔyjiL null mutant (JW5785) were equally susceptible to all PrAMPs tested, whereas the BW25113 ΔmdtM mutant was less susceptible to oncocins. The JW0368 yjiL::Tn10 transposon mutant (BS2) was resistant to all short PrAMPs and susceptible only to full-length Bac7 and A3-APO. Interestingly, PrAMPs appear to enter bacteria via MdtM, a multidrug resistance transporter (drug/H(+) antiporter) of the major facilitator superfamily (MFS) that can efflux antibiotics, biocides, and bile salts. In conclusion, PrAMPs enter bacteria via ABC and MFS transporters that efflux antibiotics and cytotoxic compounds from the cytoplasm to the periplasm.

  10. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds.

    Science.gov (United States)

    Verma, Vikash; Mallik, Leena; Hariadi, Rizal F; Sivaramakrishnan, Sivaraj; Skiniotis, Georgios; Joglekar, Ajit P

    2015-01-01

    DNA origami provides a versatile platform for conducting 'architecture-function' analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis.

  11. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds.

    Directory of Open Access Journals (Sweden)

    Vikash Verma

    Full Text Available DNA origami provides a versatile platform for conducting 'architecture-function' analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis.

  12. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds

    Science.gov (United States)

    Verma, Vikash; Mallik, Leena; Hariadi, Rizal F.; Sivaramakrishnan, Sivaraj; Skiniotis, Georgios; Joglekar, Ajit P.

    2015-01-01

    DNA origami provides a versatile platform for conducting ‘architecture-function’ analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis. PMID:26348722

  13. The devil and holy water: protein and carbon nanotube hybrids.

    Science.gov (United States)

    Calvaresi, Matteo; Zerbetto, Francesco

    2013-11-19

    Integrating carbon nanotubes (CNTs) with biological systems to form hybrid functional assemblies is an innovative research area with great promise for medical, nanotechnology, and materials science applications. The specifics of molecular recognition and catalytic activity of proteins combined with the mechanical and electronic properties of CNTs provides opportunities for physicists, chemists, biologists, and materials scientists to understand and develop new nanomachines, sensors, or any of a number of other molecular assemblies. Researchers know relatively little about the structure, function, and spatial orientation of proteins noncovalently adsorbed on CNTs, yet because the interaction of CNTs with proteins depends strongly on the tridimensional structure of the proteins, many of these questions can be answered in simple terms. In this Account, we describe recent research investigating the properties of CNT/protein hybrids. Proteins act to solvate CNTs and may sort them according to diameter or chirality. In turn, CNTs can support and immobilize enzymes, creating functional materials. Additional applications include proteins that assemble ordered hierarchical objects containing CNTs, and CNTs that act as protein carriers for vaccines, for example. Protein/CNT hybrids can form bioscaffolds and can serve as therapeutic and imaging materials. Proteins can detect CNTs or coat them to make them biocompatible. One of the more challenging applications for protein/CNT hybrids is to make CNT substrates for cell growth and neural interfacing applications. The challenge arises from the structures' interactions with living cells, which poses questions surrounding the (nano)toxicology of CNTs and whether and how CNTs can detect biological processes or sense them as they occur. The surface chemistry of CNTs and proteins, including interactions such as π-π stacking interactions, hydrophobic interactions, surfactant-like interactions, and charge-π interactions, governs the

  14. Characterization of a novel protein-binding module--the WW domain.

    Science.gov (United States)

    Sudol, M; Chen, H I; Bougeret, C; Einbond, A; Bork, P

    1995-08-01

    We have identified, characterized and cloned human, mouse and chicken cDNA of a novel protein that binds to the Src homology domain 3 (SH3) of the Yes proto-oncogene product. We subsequently named it YAP for Yes-associated protein. Analysis of the YAP sequence revealed a protein module that was found in various structural, regulatory and signaling molecules. Because one of the prominent features of this sequence motif is the presence of two conserved tryptophans (W), we named it the WW domain. Using a functional screen of a cDNA expression library, we have identified two putative ligands of the WW domain of YAP which we named WBP-1 and WBP-2. Peptide sequence comparison between the two partial clones revealed a homologous proline-rich region. Binding assays and site-specific mutagenesis have shown that the proline-rich motif binds with relatively high affinity and specificity to the WW domain of YAP, with a preliminary consensus that is different from the SH3-binding PXXP motif. This suggests that the WW domain has a role in mediating protein-protein interactions via proline-rich regions, similar but distinct from Src homology 3 (SH3) domains. Based on this finding, we hypothesize that additional protein modules exist and that they could be isolated using proline-rich peptides as functional probes.

  15. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems.

  16. Diverse effects of the MalE-LacZ hybrid protein on Escherichia coli cell physiology.

    OpenAIRE

    Ito, K.; Akiyama, Y; Yura, T; Shiba, K

    1986-01-01

    The hybrid protein between the periplasmic maltose-binding protein and the cytoplasmic beta-galactosidase (the MalE-LacZ hybrid protein) was previously shown to block the export of envelope proteins when synthesized in large amounts. Now we show that the hybrid protein exerts another major effect on the cell, that is, induction of the heat shock proteins. This latter effect was dependent on the htpR gene product but independent of the function of the signal sequence on the hybrid protein. On ...

  17. Improved hybrid optimization algorithm for 3D protein structure prediction.

    Science.gov (United States)

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  18. HBV X protein interacts with cytoskeletal signaling proteins through SH3 binding.

    Science.gov (United States)

    Feng, Huixing; Tan, Tuan Lin; Niu, Dandan; Chen, Wei Ning

    2010-01-01

    The aim of this study was to investigate interactions between cellular SH3-containing proteins and the proline-rich domain in Hepatitis B Virus (HBV) X protein (HBx) The proline-rich domain of HBx (amino acids 19-58) as well as the relevant site-directed mutagenesis (proline to alanine residues) were cloned into pGEX-5X-1 and expressed as GST-PXXP and GST-AXXA probes. Panomics SH3 domain arrays were probed using both GST-PXXP and GST-AXXA to identify potential interacting SH3 domain containing proteins. The specific interactions were confirmed by the immunoprecipitation of the full-length SH3 domain-containing protein. We report here the binding assay which demonstrated interaction between PXXP domain in HBx and the SH3-domain containing proteins, in particular various signaling proteins involved in cytoskeletal reorganization. Our findings were consistent with similar virus-host interactions via SH3 binding for other viruses such as hepatitis C virus (HCV) and human immunodeficiency virus (HIV) Further characterization of the proline-rich binding to SH3 domains could yield important information for the design of novel therapeutic measures against downstream disease causative effects of HBx in the liver cells.

  19. Aligning multiple protein sequences by parallel hybrid genetic algorithm.

    Science.gov (United States)

    Nguyen, Hung Dinh; Yoshihara, Ikuo; Yamamori, Kunihito; Yasunaga, Moritoshi

    2002-01-01

    This paper presents a parallel hybrid genetic algorithm (GA) for solving the sum-of-pairs multiple protein sequence alignment. A new chromosome representation and its corresponding genetic operators are proposed. A multi-population GENITOR-type GA is combined with local search heuristics. It is then extended to run in parallel on a multiprocessor system for speeding up. Experimental results of benchmarks from the BAliBASE show that the proposed method is superior to MSA, OMA, and SAGA methods with regard to quality of solution and running time. It can be used for finding multiple sequence alignment as well as testing cost functions.

  20. Hybrid proteins between Pseudomonas exotoxin A and poliovirus protease 2Apro.

    Science.gov (United States)

    Novoa, I; Feduchi, E; Carrasco, L

    1994-11-21

    Two hybrid proteins between Pseudomonas aeruginosa exotoxin A (PE) and poliovirus protease 2Apro have been generated. One hybrid protein contains the poliovirus 2Apro sequence replacing the region of PE corresponding to amino acids 413-607. The other hybrid contains in addition the transforming growth factor sequence. The two hybrid proteins were efficiently synthesized in E. coli cells using the inducible pET vectors. Both hybrid toxins cleaved p220 (eIF-4 gamma) when the recombinant plasmids were transfected in COS cells infected with recombinant vaccinia virus bearing the T7 RNA polymerase gene.

  1. Functional and Structural Study of the Dimeric Inner Membrane Protein SbmA

    OpenAIRE

    Corbalan, Natalia; Runti, Giulia; Adler, Conrado; Covaceuszach, Sonia; Ford, Robert C.; Lamba, Doriano; Beis, Konstantinos; Scocchi, Marco; Vincent, Paula A.

    2013-01-01

    SbmA protein has been proposed as a dimeric secondary transporter. The protein is involved in the transport of microcins B17 and J25, bleomycin, proline-rich antimicrobial peptides, antisense peptide phosphorodiamidate morpholino oligomers, and peptide nucleic acids into the Escherichia coli cytoplasm. The sbmA homologue is found in a variety of bacteria, though the physiological role of the protein is hitherto unknown. In this work, we carried out a functional and structural analysis to dete...

  2. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    Directory of Open Access Journals (Sweden)

    Shibiao Wan

    Full Text Available Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  3. HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/. PMID:24647341

  4. Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime.

    Science.gov (United States)

    Inoue, Yusuke; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Kaneko, Akiko; Woo, Taeseong; Kobayashi, Shingo; Shibuya, Tomokazu; Tanaka, Masaru; Kosukegawa, Hiroyuki; Saito, Itsuro; Isoyama, Takashi; Abe, Yusuke; Yambe, Tomoyuki; Someya, Takao; Sekino, Masaki

    2017-05-01

    There are recent reports of hybrid tissue-fabric materials with good performance-high biocompatibility and high mechanical strength. In this study, we demonstrate the capability of a hybrid material as a long-term filter for blood proteins. Polyester fabrics were implanted into rats to fabricate hybrid tissue-fabric material sheets. The hybrid materials comprised biological tissue grown on the fabric. The materials were extracted from the rat's body, approximately 100 days post-implantation. The tissues were decellularized to prevent immunological rejection. An antithrombogenicity test was performed by dropping blood onto the hybrid material surface. The hybrid material showed lesser blood coagulation than polysulfone and cellulose. Blood plasma was filtered using the hybrid material to evaluate the protein removal percentage and the lifetime of the hybrid material in vitro. The hybrid material showed a comparable performance to conventional filters for protein removal. Moreover, the hybrid material could work as a protein filter for 1 month, which is six times the lifetime of polysulfone.

  5. Evidence for the robustness of protein complexes to inter-species hybridization.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Leducq

    Full Text Available Despite the tremendous efforts devoted to the identification of genetic incompatibilities underlying hybrid sterility and inviability, little is known about the effect of inter-species hybridization at the protein interactome level. Here, we develop a screening platform for the comparison of protein-protein interactions (PPIs among closely related species and their hybrids. We examine in vivo the architecture of protein complexes in two yeast species (Saccharomyces cerevisiae and Saccharomyces kudriavzevii that diverged 5-20 million years ago and in their F1 hybrids. We focus on 24 proteins of two large complexes: the RNA polymerase II and the nuclear pore complex (NPC, which show contrasting patterns of molecular evolution. We found that, with the exception of one PPI in the NPC sub-complex, PPIs were highly conserved between species, regardless of protein divergence. Unexpectedly, we found that the architecture of the complexes in F1 hybrids could not be distinguished from that of the parental species. Our results suggest that the conservation of PPIs in hybrids likely results from the slow evolution taking place on the very few protein residues involved in the interaction or that protein complexes are inherently robust and may accommodate protein divergence up to the level that is observed among closely related species.

  6. Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels.

    Science.gov (United States)

    Annabi, Nasim; Shin, Su Ryon; Tamayol, Ali; Miscuglio, Mario; Bakooshli, Mohsen Afshar; Assmann, Alexander; Mostafalu, Pooria; Sun, Jeong-Yun; Mithieux, Suzanne; Cheung, Louis; Tang, Xiaowu Shirley; Weiss, Anthony S; Khademhosseini, Ali

    2016-01-01

    A highly elastic hybrid hydrogel of methacryloyl-substituted recombinant human tropoelastin (MeTro) and graphene oxide (GO) nanoparticles are developed. The synergistic effect of these two materials significantly enhances both ultimate strain (250%), reversible rotation (9700°), and the fracture energy (38.8 ± 0.8 J m(-2) ) in the hybrid network. Furthermore, improved electrical signal propagation and subsequent contraction of the muscles connected by hybrid hydrogels are observed in ex vivo tests.

  7. Blind Evaluation of Hybrid Protein Structure Analysis Methods based on Cross-Linking.

    Science.gov (United States)

    Belsom, Adam; Schneider, Michael; Brock, Oliver; Rappsilber, Juri

    2016-07-01

    Hybrid methods combine experimental data and computational modeling to analyze protein structures that are elusive to structure determination. To spur the development of hybrid methods, we propose to test them in the context of the CASP experiment and would like to invite experimental groups to participate in this initiative.

  8. A New Hybrid Model of Amino Acid Substitution for Protein Functional Classification

    Institute of Scientific and Technical Information of China (English)

    Ke Long WANG; Zhi Ning WEN; Fu Sheng NIE; Meng Long LI

    2005-01-01

    In this paper, a new hybrid model of amino acid substitution is developed and compared with the others in previous works. The results show that the new hybrid model can characterize the protein sequences very well by calculating Fisher weights, which can denote how much the variants contribute to the classification.

  9. Genetic characterization of early maturing maize hybrids (Zea mays L.) obtained by protein and RAPD markers

    National Research Council Canada - National Science Library

    Bauer, Iva; Mladenovic-Drinic, Snezana; Filipovic, Milomir; Konstantinov, Kosana

    2005-01-01

    .... The objective of our study was to characterize set of early maturing maize hybrids with protein and RAPD markers and to compare this clasification with their pedigree information. RAPD markers gave significantly higher rate of polymorphism than protein markers. Better corelation was found among pedigree information and protein markers.

  10. Optical protein modulation via quantum dot coupling and use of a hybrid sensor protein.

    Science.gov (United States)

    Griep, Mark; Winder, Eric; Lueking, Donald; Friedrich, Craig; Mallick, Govind; Karna, Shashi

    2010-09-01

    Harnessing the energy transfer interactions between the optical protein bacteriorhodopsin (bR) and CdSe/ZnS quantum dots (QDs) could provide a novel bio-nano electronics substrate with a variety of applications. In the present study, a polydimethyldiallyammonium chloride based I-SAM technique has been utilized to produce bilayers, trilayers and multilayers of alternating monolayers of bR, PDAC and QD's on a conductive ITO substrate. The construction of multilayer systems was directly monitored by measuring the unique A570 nm absorbance of bR, as well as QD fluorescence emission. Both of these parameters displayed a linear relationship to the number of monolayers present on the ITO substrate. The photovoltaic response of bilayers of bR/PDAC was observed over a range of 3 to 12 bilayers and the ability to efficiently create an electrically active multilayered substrate composed of bR and QDs has been demonstrated for the first time. Evaluation of QD fluorescence emission in the multilayer system strongly suggests that FRET coupling is occurring and, since the I-SAM technique provide a means to control the bR/QD separation distance on the nanometer scale, this technique may prove highly valuable for optimizing the distance dependent energy transfer effects for maximum sensitivity to target molecule binding by a biosensor. Finally, preliminary studies on the production of a sensor protein/bR hybrid gene construct are presented. It is proposed that the energy associated with target molecule binding to a hybrid sensor protein would provide a means to directly modulate the electrical output from a sensor protein/bR biosensor platform.

  11. MLK-3: identification of a widely-expressed protein kinase bearing an SH3 domain and a leucine zipper-basic region domain.

    Science.gov (United States)

    Ing, Y L; Leung, I W; Heng, H H; Tsui, L C; Lassam, N J

    1994-06-01

    We have identified a novel protein kinase, designated MLK-3, from human thymus using RT-PCR and cDNA library screening. The deduced open reading frame, derived from sequencing a 3.5 kb MLK-3 cDNA, encodes a protein of 847 amino acids with several interesting structural features. These include an SH3 domain in the absence of an SH2 domain, a region containing two leucine zippers with an adjacent carboxy-terminal basic region, and a proline rich region. This kinase shows homology with the mixed-lineage family of protein kinases (MLK) and shares the unusual leucine zipper-basic motif found in previously identified MLK kinases. By northern analysis, MLK-3 mRNA was detected in a wide variety of normal and transformed human cell lines and tissue specimens. The gene encoding MLK-3 has been mapped using fluorescence in situ hybridization to human chromosome 11 q13.1-13.3, a region frequently altered in human malignancies.

  12. Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species.

    Science.gov (United States)

    Bayes, Joshua J; Malik, Harmit S

    2009-12-11

    Hybrid sterility of the heterogametic sex is one of the first postzygotic reproductive barriers to evolve during speciation, yet the molecular basis of hybrid sterility is poorly understood. We show that the hybrid male sterility gene Odysseus-site homeobox (OdsH) encodes a protein that localizes to evolutionarily dynamic loci within heterochromatin and leads to their decondensation. In Drosophila mauritiana x Drosophila simulans male hybrids, OdsH from D. mauritiana (OdsHmau) acts as a sterilizing factor by associating with the heterochromatic Y chromosome of D. simulans, whereas D. simulans OdsH (OdsHsim) does not. Characterization of sterile hybrid testes revealed that OdsH abundance and localization in the premeiotic phases of spermatogenesis differ between species. These results reveal that rapid heterochromatin evolution affects the onset of hybrid sterility.

  13. An improved yeast two-hybrid approach for detection of interacting proteins

    Institute of Scientific and Technical Information of China (English)

    Wan Bingbing; Shi Yan; Huo Keke

    2006-01-01

    Yeast two-hybrid approach is popularly used nowadays as an important technical method in the field of studying protein-protein interactions.Although yeast two-hybrid system is obviously advantageous in searching interacting proteins and setting up the network of proteins interaction.not all of proteins can use routine yeast two-hybrid method to search interacting proteins.Many important proteins,such as some nucleoprotein transcriptional factor,carry out the regular method and construct the bait-BD vector to screen the library containing AD vector.However,it usually results in failures because it contains the activate domain and can self-activate the reporter gene.In this study,we changed the research strategy,fused the bait gene(FOXA3)with the AD vector to screen the library containing BD vector,so that we constructed a two-hybrid library containing BD vector and Can bypass the interference of self-activation.And we used this two-hybrid library to screen FOXA3.a hepatocyte nuclear factor,and found out an interacting protein:complement component C3.

  14. Genetic characterization of early maturing maize hybrids (Zea mays L. obtained by protein and RAPD markers

    Directory of Open Access Journals (Sweden)

    Bauer Iva

    2005-01-01

    Full Text Available Knowledge of maize germplasm genetic diversity is important for planning breeding programmes, germplasm conservation per se etc. Genetic variability of maize hybrids grown in the fields is also very important because genetic uniformity implies risks of genetic vulnerability to stress factors and can cause great losts in yield. Early maturing maize hybrids are characterized by shorter vegetation period and they are grown in areas with shorter vegetation season. Because of different climatic conditions in these areas lines and hybrids are developed with different features in respect to drought resistance and disease resistance. The objective of our study was to characterize set of early maturing maize hybrids with protein and RAPD markers and to compare this clasification with their pedigree information. RAPD markers gave significantly higher rate of polymorphism than protein markers. Better corelation was found among pedigree information and protein markers.

  15. Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system

    DEFF Research Database (Denmark)

    Tchórzewski, M; Boldyreff, B; Issinger, O

    2000-01-01

    on the function of these proteins, we are the first to have precisely analyzed mutual interactions among human P-proteins, employing the two hybrid system. The human acidic ribosomal P-proteins, (P1 or P2,) were fused to the GAL4 binding domain (BD) as well as the activation domain (AD), and analyzed in yeast...

  16. Protein Adsorption on Hybrids of Thermoresponsive Polymers and Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Kazuo Umemura

    2016-01-01

    Full Text Available Poly(N-isopropylacrylamide (PNIPAAm is one of the most popular thermoresponsive polymers. Adsorption of RecA proteins onto hybrids of PNIPAAm and single-walled carbon nanotubes (SWNTs was observed in the presence and absence of DNA molecules. Although RecA molecules were adsorbed efficiently onto the hybrid surfaces at 37°C, even in the absence of DNA molecules, the adsorption of RecA was inhibited at 4°C. These results suggest that the thermoresponsive functions of PNIPAAm were effective, even on the SWNT surfaces, which supports the possibility of developing nanobiodevices using PNIPAAm-SWNT hybrids. However, although RecA is a DNA binding protein, there was no significant difference in the adsorption of RecA onto PNIPAAm-SWNT surfaces with and without DNA molecules. This study provides fundamental information for potential biological applications of PNIPAAm-SWNT hybrids.

  17. The SH3 domain of UNC-89 (obscurin) interacts with paramyosin, a coiled-coil protein, in Caenorhabditis elegans muscle

    Science.gov (United States)

    Qadota, Hiroshi; Mayans, Olga; Matsunaga, Yohei; McMurry, Jonathan L.; Wilson, Kristy J.; Kwon, Grace E.; Stanford, Rachel; Deehan, Kevin; Tinley, Tina L.; Ngwa, Verra M.; Benian, Guy M.

    2016-01-01

    UNC-89 is a giant polypeptide located at the sarcomeric M-line of Caenorhabditis elegans muscle. The human homologue is obscurin. To understand how UNC-89 is localized and functions, we have been identifying its binding partners. Screening a yeast two-hybrid library revealed that UNC-89 interacts with paramyosin. Paramyosin is an invertebrate-specific coiled-coil dimer protein that is homologous to the rod portion of myosin heavy chains and resides in thick filament cores. Minimally, this interaction requires UNC-89’s SH3 domain and residues 294–376 of paramyosin and has a KD of ∼1.1 μM. In unc-89 loss-of-function mutants that lack the SH3 domain, paramyosin is found in accumulations. When the SH3 domain is overexpressed, paramyosin is mislocalized. SH3 domains usually interact with a proline-rich consensus sequence, but the region of paramyosin that interacts with UNC-89’s SH3 is α-helical and lacks prolines. Homology modeling of UNC-89’s SH3 suggests structural features that might be responsible for this interaction. The SH3-binding region of paramyosin contains a “skip residue,” which is likely to locally unwind the coiled-coil and perhaps contributes to the binding specificity. PMID:27009202

  18. Characterization of soybean (hydroxy) proline-rich early nodulins

    NARCIS (Netherlands)

    Franssen, H.J.; Scheres, B.J.G.; Wiel, C. van der; Bisseling, T.

    1988-01-01

    Legume root nodule formation can be divided into three major stages denoted as "pre-infection", "infection and nodule formation" and "nodule function". During the formation of the root nodule the nodulin genes are differentially expressed and dependent on the time point of the induction of expressio

  19. Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model.

    Science.gov (United States)

    Zhou, Changjun; Hou, Caixia; Zhang, Qiang; Wei, Xiaopeng

    2013-09-01

    The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences.

  20. A hybrid clustering approach to recognition of protein families in 114 microbial genomes

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2004-04-01

    Full Text Available Abstract Background Grouping proteins into sequence-based clusters is a fundamental step in many bioinformatic analyses (e.g., homology-based prediction of structure or function. Standard clustering methods such as single-linkage clustering capture a history of cluster topologies as a function of threshold, but in practice their usefulness is limited because unrelated sequences join clusters before biologically meaningful families are fully constituted, e.g. as the result of matches to so-called promiscuous domains. Use of the Markov Cluster algorithm avoids this non-specificity, but does not preserve topological or threshold information about protein families. Results We describe a hybrid approach to sequence-based clustering of proteins that combines the advantages of standard and Markov clustering. We have implemented this hybrid approach over a relational database environment, and describe its application to clustering a large subset of PDB, and to 328577 proteins from 114 fully sequenced microbial genomes. To demonstrate utility with difficult problems, we show that hybrid clustering allows us to constitute the paralogous family of ATP synthase F1 rotary motor subunits into a single, biologically interpretable hierarchical grouping that was not accessible using either single-linkage or Markov clustering alone. We describe validation of this method by hybrid clustering of PDB and mapping SCOP families and domains onto the resulting clusters. Conclusion Hybrid (Markov followed by single-linkage clustering combines the advantages of the Markov Cluster algorithm (avoidance of non-specific clusters resulting from matches to promiscuous domains and single-linkage clustering (preservation of topological information as a function of threshold. Within the individual Markov clusters, single-linkage clustering is a more-precise instrument, discerning sub-clusters of biological relevance. Our hybrid approach thus provides a computationally efficient

  1. Protein self-assembly onto nanodots leads to formation of conductive bio-based hybrids

    Science.gov (United States)

    Hu, Xiao; Dong, Chenbo; Su, Rigu; Xu, Quan; Dinu, Cerasela Zoica

    2016-12-01

    The next generation of nanowires that could advance the integration of functional nanosystems into synthetic applications from photocatalysis to optical devices need to demonstrate increased ability to promote electron transfer at their interfaces while ensuring optimum quantum confinement. Herein we used the biological recognition and the self-assembly properties of tubulin, a protein involved in building the filaments of cellular microtubules, to create stable, free standing and conductive sulfur-doped carbon nanodots-based conductive bio-hybrids. The physical and chemical properties (e.g., composition, morphology, diameter etc.) of such user-synthesized hybrids were investigated using atomic and spectroscopic techniques, while the electron transfer rate was estimated using peak currents formed during voltammetry scanning. Our results demonstrate the ability to create individually hybrid nanowires capable to reduce energy losses; such hybrids could possibly be used in the future for the advancement and implementation into nanometer-scale functional devices.

  2. A method for combining RNAscope in situ hybridization with immunohistochemistry in thick free-floating brain sections and primary neuronal cultures.

    Science.gov (United States)

    Grabinski, Tessa M; Kneynsberg, Andrew; Manfredsson, Fredric P; Kanaan, Nicholas M

    2015-01-01

    In situ hybridization (ISH) is an extremely useful tool for localizing gene expression and changes in expression to specific cell populations in tissue samples across numerous research fields. Typically, a research group will put forth significant effort to design, generate, validate and then utilize in situ probes in thin or ultrathin paraffin embedded tissue sections. While combining ISH and IHC is an established technique, the combination of RNAscope ISH, a commercially available ISH assay with single transcript sensitivity, and IHC in thick free-floating tissue sections has not been described. Here, we provide a protocol that combines RNAscope ISH with IHC in thick free-floating tissue sections from the brain and allows simultaneous co-localization of genes and proteins in individual cells. This approach works well with a number of ISH probes (e.g. small proline-rich repeat 1a, βIII-tubulin, tau, and β-actin) and IHC antibody stains (e.g. tyrosine hydroxylase, βIII-tubulin, NeuN, and glial fibrillary acidic protein) in rat brain sections. In addition, we provide examples of combining ISH-IHC dual staining in primary neuron cultures and double-ISH labeling in thick free-floating tissue sections from the brain. Finally, we highlight the ability of RNAscope to detect ectopic DNA in neurons transduced with viral vectors. RNAscope ISH is a commercially available technology that utilizes a branched or "tree" in situ method to obtain ultrasensitive, single transcript detection. Immunohistochemistry is a tried and true method for identifying specific protein in cell populations. The combination of a sensitive and versatile oligonucleotide detection method with an established and versatile protein assay is a significant advancement in studies using free-floating tissue sections.

  3. Protein modularity, cooperative binding, and hybrid regulatory states underlie transcriptional network diversification.

    Science.gov (United States)

    Baker, Christopher R; Booth, Lauren N; Sorrells, Trevor R; Johnson, Alexander D

    2012-09-28

    We examine how different transcriptional network structures can evolve from an ancestral network. By characterizing how the ancestral mode of gene regulation for genes specific to a-type cells in yeast species evolved from an activating paradigm to a repressing one, we show that regulatory protein modularity, conversion of one cis-regulatory sequence to another, distribution of binding energy among protein-protein and protein-DNA interactions, and exploitation of ancestral network features all contribute to the evolution of a novel regulatory mode. The formation of this derived mode of regulation did not disrupt the ancestral mode and thereby created a hybrid regulatory state where both means of transcription regulation (ancestral and derived) contribute to the conserved expression pattern of the network. Finally, we show how this hybrid regulatory state has resolved in different ways in different lineages to generate the diversity of regulatory network structures observed in modern species.

  4. A three-hybrid system to probe in vivo protein-protein interactions: application to the essential proteins of the RD1 complex of M. tuberculosis.

    Directory of Open Access Journals (Sweden)

    Megha Tharad

    Full Text Available BACKGROUND: Protein-protein interactions play a crucial role in enabling a pathogen to survive within a host. In many cases the interactions involve a complex of proteins rather than just two given proteins. This is especially true for pathogens like M. tuberculosis that are able to successfully survive the inhospitable environment of the macrophage. Studying such interactions in detail may help in developing small molecules that either disrupt or augment the interactions. Here, we describe the development of an E. coli based bacterial three-hybrid system that can be used effectively to study ternary protein complexes. METHODOLOGY/PRINCIPAL FINDINGS: The protein-protein interactions involved in M. tuberculosis pathogenesis have been used as a model for the validation of the three-hybrid system. Using the M. tuberculosis RD1 encoded proteins CFP10, ESAT6 and Rv3871 for our proof-of-concept studies, we show that the interaction between the proteins CFP10 and Rv3871 is strengthened and stabilized in the presence of ESAT6, the known heterodimeric partner of CFP10. Isolating peptide candidates that can disrupt crucial protein-protein interactions is another application that the system offers. We demonstrate this by using CFP10 protein as a disruptor of a previously established interaction between ESAT6 and a small peptide HCL1; at the same time we also show that CFP10 is not able to disrupt the strong interaction between ESAT6 and another peptide SL3. CONCLUSIONS/SIGNIFICANCE: The validation of the three-hybrid system paves the way for finding new peptides that are stronger binders of ESAT6 compared even to its natural partner CFP10. Additionally, we believe that the system offers an opportunity to study tri-protein complexes and also perform a screening of protein/peptide binders to known interacting proteins so as to elucidate novel tri-protein complexes.

  5. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    Science.gov (United States)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  6. Screening of FOXP3-interacted proteins by yeast two-hybrid technique

    Institute of Scientific and Technical Information of China (English)

    Zhou Lina; Wu Jun; Luo Gaoxing; He Weifeng; Chen Xiwei; Bo Ganping; Yuan Shunzong; Zhang Xiaorong; Hu Xiaohong

    2008-01-01

    Objective: To screen the proteins interacting with the Treg specification factor forkhead box protein P3 (FOXP3) by yeast two-hybrid system. Methods: Human FOXP3 gene was amplified by nest RT-PCR from peripheral blood mononuclear cells (PBMC) and inserted into plasmid pGBKT7 to construct the bait vector, then the self-activation and toxicity of the bait vector in host yeast strain AH109 were observed. Thereafter, a human liver cDNA library was screened by the bait vector. The positive clones were selected out by nutrient-deficient culture and back-hybridizing. The sequences from the candidate positive clones were blasted and analyzed by bioinformatics methods. Results: The constructed bait vector encoding FOXP3 was found no self-activation and toxicity in yeast AH109. Three proteins which interacted with FOXP3, including tumor protein D52, splicing factor 3b subunit 1 and hypothetical protein, were identified. Conclusion: Three new candidate proteins interacting with FOXP3 are selected out by this yeast two-hybrid system and library, which may facilitate the further study of FOXP3 in Treg.

  7. CONSTRUCTION AND ANALYSIS OF IPBR/XYLS HYBRID REGULATORY PROTEINS

    Science.gov (United States)

    IpbR and XylS are related regulatory proteins (having 56% identity). IpbR responds to isopropylbenzene as well as to a variety of hydrophobic chemicals to activate expression of the isopropylbenzene catabolic pathway operon of pRE4 from ipbOP. XylS responds to substituted benzoic...

  8. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids.

    Science.gov (United States)

    Liénard, Marjorie A; Araripe, Luciana O; Hartl, Daniel L

    2016-07-19

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1 Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1 Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation.

  9. A hybrid toxin from bacteriophage f1 attachment protein and colicin E3 has altered cell receptor specificity.

    OpenAIRE

    Jakes, K S; Davis, N G; Zinder, N D

    1988-01-01

    A hybrid protein was constructed in vitro which consists of the first 372 amino acids of the attachment (gene III) protein of filamentous bacteriophage f1 fused, in frame, to the carboxy-terminal catalytic domain of colicin E3. The hybrid toxin killed cells that had the F-pilus receptor for phage f1 but not F- cells. The activity of the hybrid protein was not dependent upon the presence of the colicin E3 receptor, BtuB protein. The killing activity was colicin E3 specific, since F+ cells expr...

  10. Yeast Two-Hybrid Screening for Proteins that Interact with the Extracellular Domain of Amyloid Precursor Protein.

    Science.gov (United States)

    Yu, You; Li, Yinan; Zhang, Yan

    2016-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which amyloid β plaques are a pathological characteristic. Little is known about the physiological functions of amyloid β precursor protein (APP). Based on its structure as a type I transmembrane protein, it has been proposed that APP might be a receptor, but so far, no ligand has been reported. In the present study, 9 proteins binding to the extracellular domain of APP were identified using a yeast two-hybrid system. After confirming the interactions in the mammalian system, mutated PLP1, members of the FLRT protein family, and KCTD16 were shown to interact with APP. These proteins have been reported to be involved in Pelizaeus-Merzbacher disease (PMD) and axon guidance. Therefore, our results shed light on the mechanisms of physiological function of APP in AD, PMD, and axon guidance.

  11. Screening for cardiac HERG potassium channel interacting proteins using the yeast two-hybrid technique.

    Science.gov (United States)

    Ma, Qingyan; Yu, Hong; Lin, Jijin; Sun, Yifan; Shen, Xinyuan; Ren, Li

    2014-02-01

    The human ERG protein (HERG or Kv 11.1) encoded by the human ether-a-go-go-related gene (herg) is the pore-forming subunit of the cardiac delayed rectifier potassium current (IKr) responsible for action potential (AP) repolarization. Mutations in HERG lead to long-QT syndrome, a major cause of arrhythmias. Protein-protein interactions are fundamental for ion channel trafficking, membrane localization, and functional modulation. To identify proteins involved in the regulation of the HERG channel, we conducted a yeast two-hybrid screen of a human heart cDNA library using the C-terminus or N-terminus of HERG as bait. Fifteen proteins were identified as HERG amino terminal (HERG-NT)-interacting proteins, including Caveolin-1 (a membrane scaffold protein with multiple interacting partners, including G-proteins, kinases and NOS), the zinc finger protein, FHL2 and PTPN12 (a non-receptor tyrosine phosphatase). Eight HERG carboxylic terminal (HERG-CT)-interacting proteins were also identified, including the NF-κB-interacting protein myotrophin, We have identified multiple potential interacting proteins that may regulate cardiac IKr through cytoskeletal interactions, G-protein modulation, phosphorylation and downstream second messenger and transcription cascades. These findings provide further insight into dynamic modulation of HERG under physiological conditions and arrhythmogenesis.

  12. Functional analysis of Abp1p-interacting proteins involved in endocytosis of the MCC component in Aspergillus oryzae.

    Science.gov (United States)

    Matsuo, Kento; Higuchi, Yujiro; Kikuma, Takashi; Arioka, Manabu; Kitamoto, Katsuhiko

    2013-07-01

    We have investigated the functions of three endocytosis-related proteins in the filamentous fungus Aspergillus oryzae. Yeast two-hybrid screening using the endocytic marker protein AoAbp1 (A.oryzae homolog of Saccharomyces cerevisiae Abp1p) as a bait identified four interacting proteins named Aip (AoAbp1 interacting proteins). In mature hyphae, EGFP (enhanced green fluorescent protein) fused to Aips colocalized with AoAbp1 at the hyphal tip region and the plasma membrane, suggesting that Aips function in endocytosis. aipA is a putative AAA ATPase and its function has been dissected (Higuchi et al., 2011). aipB, the homolog of A. nidulans myoA, encodes an essential class I myosin and its conditional mutant showed a germination defect. aipC and aipD do not contain any recognizable domains except some proline-rich regions which may interact with two SH3 (Src homology 3) domains of AoAbp1. Neither aipC nor aipD disruptants showed any defects in their growth, but the aipC disruptant formed less conidia compared with the control strain. In addition, the aipC disruptant was resistant to the triazole antifungal drugs that inhibit ergosterol biosynthesis. Although no aip disruptants showed any defects in the uptake of the fluorescent dye FM4-64, the endocytosis of the arginine permease AoCan1, one of the MCC (membrane compartment of Can1p) components, was delayed in both aipC and aipD disruptants. In A. oryzae, AoCan1 localized mainly at the plasma membrane in the basal region of hyphae, suggesting that different endocytic mechanisms exist in apical and basal regions of highly polarized cells.

  13. Electronic Structure Rearrangements in Hybrid Ribozyme/Protein Catalysis

    Science.gov (United States)

    Kang, Jiyoung; Kino, Hiori; Field, Martin J.; Tateno, Masaru

    2017-04-01

    We analyzed the electronic structural changes that occur in the reaction cycle of a biological catalyst composed of RNA and protein, and elucidated the dynamical rearrangements of the electronic structure that was obtained from our previous study in which ab initio quantum mechanics/molecular mechanics molecular dynamics simulations were performed. Notable results that we obtained include the generation of a reactive HOMO that is responsible for bond formation in the initial stages of the reaction, and the appearance of a reactive LUMO that is involved in the bond rupture that leads to products. We denote these changes as dynamical induction of the reactive HOMO (DIRH) and LUMO (DIRL), respectively. Interestingly, we also find that the induction of the reactive HOMO is enhanced by the formation of a low-barrier hydrogen bond (LBHB), which, to the best of our knowledge, represents a novel role for LBHBs in enzymatic systems.

  14. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    Science.gov (United States)

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement.

  15. Interaction of HMG proteins and H1 with hybrid PNA-DNA junctions.

    Science.gov (United States)

    Totsingan, Filbert; Bell, Anthony J

    2013-11-01

    The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein-binding surface of an immobilized four-way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ-PNA1 and 4WJ-PNA3 ). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two-state equilibrium between: (i) an open-x state favored by absence of Mg(2+), low salt, and protein binding, and (ii) a compact stacked-x state favored by Mg(2+). 4WJ-PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg(+2), while 4WJ-PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ-PNA3 with nearly identical affinity (K(D)s) and 4WJ-PNA1 with two-fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.

  16. Protein-semiconductor quantum dot hybrids for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Herman; Mansur, Alexandra [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antonio Carlos, 6627 - Escola de Engenharia - Bloco 2/2233, Belo Horizonte 31.270-901 (Brazil); Gonzalez, Juan [Department of Physics, Federal University of Minas Gerais, Av. Antonio Carlos, 6627 - Instituto de Ciencias Exatas - Depto de Fisica, Belo Horizonte 31.270-901 (Brazil)

    2012-06-15

    The present work reports the bioconjugation of CdS quantum dots (QDs) with protein by means of an aqueous route at room temperature, applying colloidal chemistry methods. Essentially, the bioconjugates were developed based on albumin (BSA) used as capping ligands for the stabilization of CdS QDs produced using cadmium perchlorate and thioacetamide precursors. CdS QDs were directly capped with BSA or BSA bioconjugated to polyvinyl alcohol (PVA) polymer. UV-visible spectroscopy (UV-vis), TEM and photoluminescence spectroscopy (PL) were used to characterize the stability and morphology of CdS nanoparticles. The CdS nanocrystals were produced with estimated average particle size smaller than 4.0 nm, indicating that they were within the so-called ''quantum-size confinement range''. The results have clearly shown that both routes (BSA and BSA conjugates) were effective on stabilizing fluorescent QDs in aqueous dispersions to be potentially used in biomedical applications (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Electrochemical detection of protein based on hybridization chain reaction-assisted formation of copper nanoparticles.

    Science.gov (United States)

    Zhao, Jing; Hu, Suisui; Cao, Ya; Zhang, Bin; Li, Genxi

    2015-04-15

    In this paper, we report an electrochemical method for highly sensitive and specific detection of protein based on hybridization chain reaction (HCR)-assisted formation of copper nanoparticles by using small molecule such as folate-linked DNA as probe. In the presence of target protein, taking folate receptor (FR) as the model protein in this study, its binding with folate can protect the probe DNA from exonuclease I-catalyzed degradation, thus the probe DNA can be immobilized onto the electrode surface through the hybridization with capture DNA, triggering HCR on the electrode surface. Subsequently, copper nanoparticles can be formed on the electrode surface by using long duplex DNA oligomers from HCR as templates. Furthermore, copper ions released from acid-dissolution of copper nanoparticles can catalyze the oxidation of ο-phenylenediamine by dissolved oxygen, leading to significant electrochemical responses. As a result, our method can sensitively detect FR in the linear range from 0.01ng/mL to 100ng/mL with a detection limit of 3pg/mL. It can also specifically distinguish the target protein in both buffer and complex serum samples. Since many other proteins can be assayed by changing the corresponding small molecule, this method may be promising for the development of the technique for protein detections. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Sascha [Lehrstuhl fuer Lasertechnik, RWTH Aachen, Steinbachstrasse 15, Aachen (Germany); Hoch, Eva; Tovar, Guenter E M [Institut fuer Grenzflaechenverfahrenstechnik, Universitaet Stuttgart, Nobelstrasse 12, Stuttgart (Germany); Borchers, Kirsten [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik, Nobelstrasse 12, Stuttgart (Germany); Meyer, Wolfdietrich; Krueger, Hartmut [Fraunhofer-Institut fuer Angewandte Polymerforschung, Geiselbergstrasse 69, Potsdam (Germany); Gillner, Arnold, E-mail: sascha.engelhardt@ilt.fraunhofer.de [Fraunhofer-Institut fuer Lasertechnik, Steinbachstrasse 15, Aachen (Germany)

    2011-06-15

    Two-photon polymerization (TPP) offers the possibility of creating artificial cell scaffolds composed of micro- and nanostructures with spatial resolutions of less than 1 {mu}m. For use in tissue engineering, the identification of a TPP-processable polymer that provides biocompatibility, biofunctionality and appropriate mechanical properties is a difficult task. ECM proteins such as collagen or fibronectin, which could mimic native tissues best, often lack the mechanical stability. Hence, by generating polymer-protein hybrid structures, the beneficial properties of proteins can be combined with the advantageous characteristics of polymers, such as sufficient mechanical stability. This study describes three steps toward facilitated application of TPP for biomaterial generation. (1) The efficiency of a low-cost ps-laser source is compared to a fs-laser source by testing several materials. A novel photoinitiator for polymerization with a ps-laser source is synthesized and proved to enable increased fabrication throughput. (2) The fabrication of 3D-microstructures with both systems and the fabrication of polymer-protein hybrid structures are demonstrated. (3) The tissue engineering capabilities of TPP are demonstrated by creating cross-linked gelatin microstructures, which clearly forced porcine chondrocytes to adapt their cell morphology.

  19. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.

    Science.gov (United States)

    Wang, Lin; Liu, Zhi-Ping; Zhang, Xiang-Sun; Chen, Luonan

    2012-03-01

    Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the center of protein interface. With this in mind, we present a novel method to extract hybrid features which incorporate a wide range of information of the target residue and its spatially neighboring residues, i.e. the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). We provide a novel random forest (RF) model to effectively integrate these hybrid features for predicting hot spots in protein interfaces. Our method can achieve accuracy (ACC) of 82.4% and Matthew's correlation coefficient (MCC) of 0.482 in Alanine Scanning Energetics Database, and ACC of 77.6% and MCC of 0.429 in Binding Interface Database. In a comparison study, performance of our RF model exceeds other existing methods, such as Robetta, FOLDEF, KFC, KFC2, MINERVA and HotPoint. Of our hybrid features, three physicochemical features of target residues (mass, polarizability and isoelectric point), the relative side-chain accessible surface area and the average depth index of mirror-contact residues are found to be the main discriminative features in hot spots prediction. We also confirm that hot spots tend to form large contact surface areas between two interacting proteins. Source data and code are available at: http://www.aporc.org/doc/wiki/HotSpot.

  20. A new hybrid coding for protein secondary structure prediction based on primary structure similarity.

    Science.gov (United States)

    Li, Zhong; Wang, Jing; Zhang, Shunpu; Zhang, Qifeng; Wu, Wuming

    2017-03-16

    The coding pattern of protein can greatly affect the prediction accuracy of protein secondary structure. In this paper, a novel hybrid coding method based on the physicochemical properties of amino acids and tendency factors is proposed for the prediction of protein secondary structure. The principal component analysis (PCA) is first applied to the physicochemical properties of amino acids to construct a 3-bit-code, and then the 3 tendency factors of amino acids are calculated to generate another 3-bit-code. Two 3-bit-codes are fused to form a novel hybrid 6-bit-code. Furthermore, we make a geometry-based similarity comparison of the protein primary structure between the reference set and the test set before the secondary structure prediction. We finally use the support vector machine (SVM) to predict those amino acids which are not detected by the primary structure similarity comparison. Experimental results show that our method achieves a satisfactory improvement in accuracy in the prediction of protein secondary structure.

  1. Screening of BRD7 interacting proteins by yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    余鹰; 朱诗国; 张必成; 周鸣; 李小玲; 李桂源

    2002-01-01

    BRD7 gene is low or undetectably expressed in nasopharyngeal carcinoma tissue (NPC) and can obviously suppress the growth of NPC cell line HNE1. In this study, the proteins that interacted with BRD7 coding protein were screened by yeast two-hybrid system. The complete reading frame of BRD7 gene was subcloned into pAS2 vector (BRD7-BD). Then the human embryo brain cDNA library was screened by BRD7-BD bait. Eleven positive clones were obtained from 4.8×106 transformed clones. By sequencing directly, 6 interacting proteins of BRD7 coding protein were isolated (Bromodomain-containing 3 protein (BRD3), Bromodomain-containing 2 protein (BRD2), IκB kinase-beta, KIAA1375 protein, interleukin 7 and adaptor-related protein complex 3δ-1 subunit). These results suggest BRD7 protein might form heterogenous dimer or triplex polymer with BRD2 and/or BRD3 to participate in transcriptional regulation.

  2. Bayesian mixture modeling using a hybrid sampler with application to protein subfamily identification.

    Science.gov (United States)

    Fong, Youyi; Wakefield, Jon; Rice, Kenneth

    2010-01-01

    Predicting protein function is essential to advancing our knowledge of biological processes. This article is focused on discovering the functional diversification within a protein family. A Bayesian mixture approach is proposed to model a protein family as a mixture of profile hidden Markov models. For a given mixture size, a hybrid Markov chain Monte Carlo sampler comprising both Gibbs sampling steps and hierarchical clustering-based split/merge proposals is used to obtain posterior inference. Inference for mixture size concentrates on comparing the integrated likelihoods. The choice of priors is critical with respect to the performance of the procedure. Through simulation studies, we show that 2 priors that are based on independent data sets allow correct identification of the mixture size, both when the data are homogeneous and when the data are generated from a mixture. We illustrate our method using 2 sets of real protein sequences.

  3. Introgressive hybridization and evolution of a novel protein phenotype: glue protein profiles in the nasuta–albomicans complex of Drosophila

    Indian Academy of Sciences (India)

    S. Aruna; H. A. Ranganath

    2006-04-01

    Glue proteins are tissue-specific proteins synthesized by larval salivary gland cells of Drosophila. In Drosophila nasuta nasuta and D. n. albomicans of the nasuta subgroup, the genes that encode the major glue protein fractions are X-linked. In the present study, these X-linked markers have been employed to trace the pattern of introgression of D. n. nasuta and D. n. albomicans genomes with respect to the major glue protein fractions in their interracial hybrids, called cytoraces. These cytoraces have inherited the chromosomes of both parents and have been maintained in the laboratory for over 400–550 generations. The analysis has revealed that cytoraces with D. n. albomicans X chromosome show either D. n. nasuta pattern or a completely novel pattern of glue protein fractions. Further, quantitative analysis also shows lack of correlation between the chromosomal pattern of inheritance and overall quantity of the major glue protein fractions in the cytoraces. Thus, in cytoraces the parental chromosomes are not just differentially represented but there is evidence for introgression even at the gene level.

  4. Screening of hepatocyte proteins binding to NS5ABP37 protein by yeast-two hybrid system

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Qing-yong Ma; Xian-kui Meng; Kang Li; Jun Cheng

    2009-01-01

    Objective To investigate the biological function of NS5ABP37 and to look for proteins interacting with NS5ABP37 protein in hepatocytes. Methods We constructed bait plasmid expressing NS5ABP37 protein of hepatitis C virus (HCV) by cloning the gene of NS5ABP37 protein into pGBKT7, then the recombinant plasmid DNA was transformed into yeast AH109 (α type). The transformed yeast AH109 was mated with yeast Y187 (α type) containing liver cDNA library plasmid in 2×YPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) containing X-α-gal for selection and screening. After extracting and sequencing of plasmids from positive (blue) colonies, we made a sequence analysis by bioinformatics. Results We screened twenty-five proteins binding to NS5ABP37, including Homo sapiens cyclin Ⅰ (CCNI) gene, Homo sapiens matrix metallopeptidase 25 (MMP25) and Homo sapiens talin 1. Conclusion The yeast-two hybrid system is an effective method for identifying hepatocyte proteins interacting with NS5ABP37 of HCV. And the biological function of NS5ABP37 may be associated with glycometabolism, lipid metabolism and apoptosis.

  5. YIELD OF ENERGY AND PROTEIN FROM GRAIN MAIZE HYBRIDS USING AGROTECHNICAL SYSTEM, OPTIMAL FOR THE CONDITIONS IN THE PLOVDIV REGION

    Directory of Open Access Journals (Sweden)

    VANYA DELIBALTOVA

    2011-01-01

    Full Text Available The yields of metabolizable energy for ducks and protein, so as the multiplication effect by different varieties of maize have been investigated. For the conditions in the Plovdiv region the hybrid PR35P12 had the highest yield of crude protein - 1368 kg/ha, and metabolizable energy – AME- 171,5 GJ/ha and TME – 181,3 GJ/ha. The highest multiplication effect (protein yield/crude protein applied by seed material – showed hybrid PR35P12 - +403.3.

  6. An ensemble method with hybrid features to identify extracellular matrix proteins.

    Science.gov (United States)

    Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina

    2015-01-01

    The extracellular matrix (ECM) is a dynamic composite of secreted proteins that play important roles in numerous biological processes such as tissue morphogenesis, differentiation and homeostasis. Furthermore, various diseases are caused by the dysfunction of ECM proteins. Therefore, identifying these important ECM proteins may assist in understanding related biological processes and drug development. In view of the serious imbalance in the training dataset, a Random Forest-based ensemble method with hybrid features is developed in this paper to identify ECM proteins. Hybrid features are employed by incorporating sequence composition, physicochemical properties, evolutionary and structural information. The Information Gain Ratio and Incremental Feature Selection (IGR-IFS) methods are adopted to select the optimal features. Finally, the resulting predictor termed IECMP (Identify ECM Proteins) achieves an balanced accuracy of 86.4% using the 10-fold cross-validation on the training dataset, which is much higher than results obtained by other methods (ECMPRED: 71.0%, ECMPP: 77.8%). Moreover, when tested on a common independent dataset, our method also achieves significantly improved performance over ECMPP and ECMPRED. These results indicate that IECMP is an effective method for ECM protein prediction, which has a more balanced prediction capability for positive and negative samples. It is anticipated that the proposed method will provide significant information to fully decipher the molecular mechanisms of ECM-related biological processes and discover candidate drug targets. For public access, we develop a user-friendly web server for ECM protein identification that is freely accessible at http://iecmp.weka.cc.

  7. Screening of hepatocyte proteins binding to complete S protein of hepatitis B virus by yeast-two hybrid system

    Institute of Scientific and Technical Information of China (English)

    Gui-Qin Bai; Jun Cheng; Shu-Lin Zhang; Yan-Ping Huang; Lin Wang; Yan Liu; Shu-Mei Lin

    2005-01-01

    AIM: To investigate the biological function of complete S protein and to look for proteins interacting with complete S protein in hepatocytes.METHODS: We constructed bait plasmid expressing complete S protein of HBV by cloning the gene of complete S protein into pGBKT7, then the recombinant plasmid DNA was transformed into yeast AH109 (a type). The transformed yeast AH109 was mated with yeast Y187 (α type) containing liver cDNA library plasmid in 2xYPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/Trp-Leu-His-Ade) containing X-α-gal for selection and screening. After extracting and sequencing of plasmids from positive (blue) colonies, we underwent sequence analysis by bioinformatics.RESULTS: Nineteen colonies were selected and sequenced.Among them, five colonies were Homo sapiens solute carrier family 25, member 23 (SLC25A23), one was Homo sapiens calreticulin, one was human serum albumin (ALB)gene, one was Homo sapiens metallothionein 2A, two were Homo sapiens betaine-homocysteine methyltransferase,three were Homo sapiensNa+ and H+ coupled amino acid transport system N, one was Homo sapiens CD81 antigen (target of anti-proliferative antibody 1) (CD81), three were Homo sapiens diazepam binding inhibitor, two colonies were new genes with unknown function.CONCLUSION: The yeast-two hybrid system is an effective method for identifying hepatocyte proteins interacting with complete S protein of HBV. The complete S protein may bind to different proteins i.e., its multiple functions in vivo.

  8. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.

    Science.gov (United States)

    Badrossamay, Mohammad R; Balachandran, Kartik; Capulli, Andrew K; Golecki, Holly M; Agarwal, Ashutosh; Goss, Josue A; Kim, Hansu; Shin, Kwanwoo; Parker, Kevin Kit

    2014-03-01

    Cellular microenvironments are important in coaxing cells to behave collectively as functional, structured tissues. Important cues in this microenvironment are the chemical, mechanical and spatial arrangement of the supporting matrix in the extracellular space. In engineered tissues, synthetic scaffolding provides many of these microenvironmental cues. Key requirements are that synthetic scaffolds should recapitulate the native three-dimensional (3D) hierarchical fibrillar structure, possess biomimetic surface properties and demonstrate mechanical integrity, and in some tissues, anisotropy. Electrospinning is a popular technique used to fabricate anisotropic nanofiber scaffolds. However, it suffers from relatively low production rates and poor control of fiber alignment without substantial modifications to the fiber collector mechanism. Additionally, many biomaterials are not amenable for fabrication via high-voltage electrospinning methods. Hence, we reasoned that we could utilize rotary jet spinning (RJS) to fabricate highly aligned hybrid protein-polymer with tunable chemical and physical properties. In this study, we engineered highly aligned nanofiber constructs with robust fiber alignment from blends of the proteins collagen and gelatin, and the polymer poly-ε-caprolactone via RJS and electrospinning. RJS-spun fibers retain greater protein content on the surface and are also fabricated at a higher production rate compared to those fabricated via electrospinning. We measured increased fiber diameter and viscosity, and decreasing fiber alignment as protein content increased in RJS hybrid fibers. RJS nanofiber constructs also demonstrate highly anisotropic mechanical properties mimicking several biological tissue types. We demonstrate the bio-functionality of RJS scaffold fibers by testing their ability to support cell growth and maturation with a variety of cell types. Our highly anisotropic RJS fibers are therefore able to support cellular alignment

  9. Regulation of the Src kinase-associated phosphoprotein 55 homologue by the protein tyrosine phosphatase PTP-PEST in the control of cell motility.

    Science.gov (United States)

    Ayoub, Emily; Hall, Anita; Scott, Adam M; Chagnon, Mélanie J; Miquel, Géraldine; Hallé, Maxime; Noda, Masaharu; Bikfalvi, Andreas; Tremblay, Michel L

    2013-09-06

    PTP-PEST is a cytosolic ubiquitous protein tyrosine phosphatase (PTP) that contains, in addition to its catalytic domain, several protein-protein interaction domains that allow it to interface with several signaling pathways. Among others, PTP-PEST is a key regulator of cellular motility and cytoskeleton dynamics. The complexity of the PTP-PEST interactome underscores the necessity to identify its interacting partners and physiological substrates in order to further understand its role in focal adhesion complex turnover and actin organization. Using a modified yeast substrate trapping two-hybrid system, we identified a cytosolic adaptor protein named Src kinase-associated phosphoprotein 55 homologue (SKAP-Hom) as a novel substrate of PTP-PEST. To confirm PTP-PEST interaction with SKAP-Hom, in vitro pull down assays were performed demonstrating that the PTP catalytic domain and Proline-rich 1 (P1) domain are respectively binding to the SKAP-Hom Y260 and Y297 residues and its SH3 domain. Subsequently, we generated and rescued SKAP-Hom-deficient mouse embryonic fibroblasts (MEFs) with WT SKAP-Hom, SKAP-Hom tyrosine mutants (Y260F, Y260F/Y297F), or SKAP-Hom SH3 domain mutant (W335K). Given the role of PTP-PEST, wound-healing and trans-well migration assays were performed using the generated lines. Indeed, SKAP-Hom-deficient MEFs showed a defect in migration compared with WT-rescued MEFs. Interestingly, the SH3 domain mutant-rescued MEFs showed an enhanced cell migration corresponding potentially with higher tyrosine phosphorylation levels of SKAP-Hom. These findings suggest a novel role of SKAP-Hom and its phosphorylation in the regulation of cellular motility. Moreover, these results open new avenues by which PTP-PEST regulates cellular migration, a hallmark of metastasis.

  10. HMGA1a protein unfolds or refolds synthetic DNA-chromophore hybrid polymers: a chaperone-like behavior.

    Science.gov (United States)

    Wan, Wei; Wang, Wei; Li, Alexander D Q

    2008-01-25

    High group mobility protein, HMGA1a, was found to play a chaperone-like role in the folding or unfolding of hybrid polymers that contained well-defined synthetic chromophores and DNA sequences. The synthetic and biological hybrid polymers folded into hydrophobic chromophoric nanostructures in water, but existed as partially unfolded configurations in pH or salt buffers. The presence of HMGA1a induced unfolding of the hybrid DNA-chromophore polymer in pure water, whereas the protein promoted refolding of the same polymer in various pH or salt buffers. The origin of the chaperone-like properties probably comes from the ability of HMGA1a to reversibly bind both synthetic chromophores and single stranded DNA. The unfolding mechanisms and the binding stoichiometry of protein-hybrid polymers depended on the sequence of the synthetic polymers.

  11. [Identification of C(2)M interacting proteins by yeast two-hybrid screening].

    Science.gov (United States)

    Shanshan, Yue; Laixin, Xia

    2015-11-01

    The synaptonemal complex (SC) is a huge structure which assembles between the homologous chromosomes during meiotic prophase I. Drosophila germ cell-specific nucleoprotein C(2)M clustering at chromosomes can induce SC formation. To further study the molecular function and mechanism of C(2)M in meiosis, we constructed a bait vector for C(2)M and used the yeast two-hybrid system to identify C(2)M interacting proteins. Forty interacting proteins were obtained, including many DNA and histone binding proteins, ATP synthases and transcription factors. Gene silencing assays in Drosophila showed that two genes, wech and Psf1, may delay the disappearance of SC. These results indicate that Wech and Psf1 may form a complex with C(2)M to participate in the formation or stabilization of the SC complex.

  12. Fluorometric polyethyleneglycol-peptide hybrid substrates for quantitative assay of protein disulfide isomerase

    DEFF Research Database (Denmark)

    Christiansen, Camilla; St Hilaire, Phaedria M; Winther, Jakob R.

    2004-01-01

    In eukaryotic cells the enzyme protein disulfide isomerase (PDI) is responsible for the formation and reshuffling of disulfide bonds in secretory proteins. The reaction carried out by PDI involves interaction with a highly complex mixture of polypeptide molecules that are in the process of folding....... This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type...... of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation...

  13. Yeast one-hybrid gγ recruitment system for identification of protein lipidation motifs.

    Science.gov (United States)

    Fukuda, Nobuo; Doi, Motomichi; Honda, Shinya

    2013-01-01

    Fatty acids and isoprenoids can be covalently attached to a variety of proteins. These lipid modifications regulate protein structure, localization and function. Here, we describe a yeast one-hybrid approach based on the Gγ recruitment system that is useful for identifying sequence motifs those influence lipid modification to recruit proteins to the plasma membrane. Our approach facilitates the isolation of yeast cells expressing lipid-modified proteins via a simple and easy growth selection assay utilizing G-protein signaling that induces diploid formation. In the current study, we selected the N-terminal sequence of Gα subunits as a model case to investigate dual lipid modification, i.e., myristoylation and palmitoylation, a modification that is widely conserved from yeast to higher eukaryotes. Our results suggest that both lipid modifications are required for restoration of G-protein signaling. Although we could not differentiate between myristoylation and palmitoylation, N-terminal position 7 and 8 play some critical role. Moreover, we tested the preference for specific amino-acid residues at position 7 and 8 using library-based screening. This new approach will be useful to explore protein-lipid associations and to determine the corresponding sequence motifs.

  14. Yeast one-hybrid gγ recruitment system for identification of protein lipidation motifs.

    Directory of Open Access Journals (Sweden)

    Nobuo Fukuda

    Full Text Available Fatty acids and isoprenoids can be covalently attached to a variety of proteins. These lipid modifications regulate protein structure, localization and function. Here, we describe a yeast one-hybrid approach based on the Gγ recruitment system that is useful for identifying sequence motifs those influence lipid modification to recruit proteins to the plasma membrane. Our approach facilitates the isolation of yeast cells expressing lipid-modified proteins via a simple and easy growth selection assay utilizing G-protein signaling that induces diploid formation. In the current study, we selected the N-terminal sequence of Gα subunits as a model case to investigate dual lipid modification, i.e., myristoylation and palmitoylation, a modification that is widely conserved from yeast to higher eukaryotes. Our results suggest that both lipid modifications are required for restoration of G-protein signaling. Although we could not differentiate between myristoylation and palmitoylation, N-terminal position 7 and 8 play some critical role. Moreover, we tested the preference for specific amino-acid residues at position 7 and 8 using library-based screening. This new approach will be useful to explore protein-lipid associations and to determine the corresponding sequence motifs.

  15. Mineral proximity influences mechanical response of proteins in biological mineral-protein hybrid systems.

    Science.gov (United States)

    Ghosh, Pijush; Katti, Dinesh R; Katti, Kalpana S

    2007-03-01

    The organic phase of nacre, which is composed primarily of proteins, has an extremely high elastic modulus as compared to that of bulk proteins, and also undergoes large deformation before failure. One reason for this unusually high modulus could be the mineral-organic interactions. In this work, we elucidate the specific role of mineral proximity on the structural response of proteins in biological structural composites such as nacre through molecular modeling. The "glycine-serine" domain of a nacre protein Lustrin A has been used as a model system. It is found that the amount of work needed to unfold is significantly higher when the GS domain is pulled in the proximity of aragonite. These results indicate that the proximity of aragonite has a significant effect on the unfolding mechanisms of proteins when pulled. These results will provide very useful information in designing synthetic biocomposites, as well as further our understanding of mechanical response in structural composites in nature.

  16. Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules.

    Science.gov (United States)

    Okuhira, Keiichiro; Shoda, Takuji; Omura, Risa; Ohoka, Nobumichi; Hattori, Takayuki; Shibata, Norihito; Demizu, Yosuke; Sugihara, Ryo; Ichino, Asato; Kawahara, Haruka; Itoh, Yukihiro; Ishikawa, Minoru; Hashimoto, Yuichi; Kurihara, Masaaki; Itoh, Susumu; Saito, Hiroyuki; Naito, Mikihiko

    2017-03-01

    Development of novel small molecules that selectively degrade pathogenic proteins would provide an important advance in targeted therapy. Recently, we have devised a series of hybrid small molecules named SNIPER (specific and nongenetic IAP-dependent protein ERaser) that induces the degradation of target proteins via the ubiquitin-proteasome system. To understand the localization of proteins that can be targeted by this protein knockdown technology, we examined whether SNIPER molecules are able to induce degradation of cellular retinoic acid binding protein II (CRABP-II) proteins localized in subcellular compartments of cells. CRABP-II is genetically fused with subcellular localization signals, and they are expressed in the cells. SNIPER(CRABP) with different IAP-ligands, SNIPER(CRABP)-4 with bestatin and SNIPER(CRABP)-11 with MV1 compound, induce the proteasomal degradation of wild-type (WT), cytosolic, nuclear, and membrane-localized CRABP-II proteins, whereas only SNIPER(CRABP)-11 displayed degradation activity toward the mitochondrial CRABP-II protein. The small interfering RNA-mediated silencing of cIAP1 expression attenuated the knockdown activity of SNIPER(CRABP) against WT and cytosolic CRABP-II proteins, indicating that cIAP1 is the E3 ligase responsible for degradation of these proteins. Against membrane-localized CRABP-II protein, cIAP1 is also a primary E3 ligase in the cells, but another E3 ligase distinct from cIAP2 and X-linked inhibitor of apoptosis protein (XIAP) could also be involved in the SNIPER(CRABP)-11-induced degradation. However, for the degradation of nuclear and mitochondrial CRABP-II proteins, E3 ligases other than cIAP1, cIAP2, and XIAP play a role in the SNIPER-mediated protein knockdown. These results indicate that SNIPER can target cytosolic, nuclear, membrane-localized, and mitochondrial proteins for degradation, but the responsible E3 ligase is different, depending on the localization of the target protein. Copyright © 2017 by

  17. Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens.

    Science.gov (United States)

    Shen, X; Belcher, A M; Hansma, P K; Stucky, G D; Morse, D E

    1997-12-19

    A specialized extracellular matrix of proteins and polysaccharides controls the morphology and packing of calcium carbonate crystals and becomes occluded within the mineralized composite during formation of the molluscan shell and pearl. We have cloned and characterized the cDNA coding for Lustrin A, a newly described matrix protein from the nacreous layer of the shell and pearl produced by the abalone, Haliotis rufescens, a marine gastropod mollusc. The full-length cDNA is 4,439 base pairs (bp) long and contains an open reading frame coding for 1,428 amino acids. The deduced amino acid sequence reveals a highly modular structure with a high proportion of Ser (16%), Pro (14%), Gly (13%), and Cys (9%). The protein contains ten highly conserved cysteine-rich domains interspersed by eight proline-rich domains; a glycine- and serine-rich domain lies between the two cysteine-rich domains nearest the C terminus, and these are followed by a basic domain and a C-terminal domain that is highly similar to known protease inhibitors. The glycine- and serine-rich domain and at least one of the proline-rich domains show sequence similarity to proteins of two extracellular matrix superfamilies (one of which also is involved in the mineralized matrixes of bone, dentin, and avian eggshell). The arrangement of alternating cysteine-rich domains and proline-rich domains is strikingly similar to that found in frustulins, the proteins that are integral to the silicified cell wall of diatoms. Its modular structure suggests that Lustrin A is a multifunctional protein, whereas the occurrence of related sequences suggest it is a member of a multiprotein family.

  18. Smoothing potential energy surface of proteins by hybrid coarse grained approach

    Science.gov (United States)

    Lu, Yukun; Zhou, Xin; OuYang, ZhongCan

    2017-05-01

    Coarse-grained (CG) simulations can more efficiently study large conformational changes of biological polymers but usually lose accuracies in the details. Lots of different hybrid models involving multiple different resolutions have been developed to overcome the difficulty. Here we propose a novel effective hybrid CG (hyCG) approach which mixes the fine-grained interaction and its average in CG space to form a more smoothing potential energy surface. The hyCG approximately reproduces the potential of mean force in the CG space, and multiple mixed potentials can be further combined together to form a single effective force field for achieving both high efficiency and high accuracy. We illustrate the hyCG method in Trp-cage and Villin headpiece proteins to exhibit the folding of proteins. The topology of the folding landscape and thus the folding paths are preserved, while the folding is boosted nearly one order of magnitude faster. It indicates that the hyCG approach could be applied as an efficient force field in proteins. Project supported by the National Basic Research Program of China (Grant No. 2013CB932803), the National Natural Science Foundation of China (Grant No. 11574310), and the Joint NSFC-ISF Research Program, jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation (Grant No. 51561145002).

  19. Lipase active-site-directed anchoring of organometallics: metallopincer/protein hybrids.

    Science.gov (United States)

    Kruithof, Cornelis A; Casado, Miguel A; Guillena, Gabriela; Egmond, Maarten R; van der Kerk-van Hoof, Anca; Heck, Albert J R; Klein Gebbink, Robertus J M; van Koten, Gerard

    2005-11-18

    The work described herein presents a strategy for the regioselective introduction of organometallic complexes into the active site of the lipase cutinase. Nitrophenol phosphonate esters, well known for their lipase inhibitory activity, are used as anchor functionalities and were found to be ideal tools to develop a single-site-directed immobilization method. A small series of phosphonate esters, covalently attached to ECE "pincer"-type d8-metal complexes through a propyl tether (ECE=[C6H3(CH2E)(2)-2,6]-; E=NR2 or SR), were designed and synthesized. Cutinase was treated with these organometallic phosphonate esters and the new metal-complex/protein hybrids were identified as containing exactly one organometallic unit per protein. The organometallic proteins were purified by membrane dialysis and analyzed by ESI-mass spectrometry. The major advantages of this strategy are: 1) one transition metal can be introduced regioselectively and, hence, the metal environment can potentially be fine-tuned; 2) purification procedures are facile due to the use of pre-synthesized metal complexes; and, most importantly, 3) the covalent attachment of robust organometallic pincer complexes to an enzyme is achieved, which will prevent metal leaching from these hybrids. The approach presented herein can be regarded as a tool in the development of regio- and enantioselective catalyst as well as analytical probes for studying enzyme properties (e.g., structure) and, hence, is a "proof-of-principle design" study in enzyme chemistry.

  20. A Hybrid Ant Colony Optimization for the Prediction of Protein Secondary Structure

    Institute of Scientific and Technical Information of China (English)

    Chao CHEN; Yuan Xin TIAN; Xiao Yong ZOU; Pei Xiang CAI; Jin Yuan MO

    2005-01-01

    Based on the concept of ant colony optimization and the idea of population in genetic algorithm, a novel global optimization algorithm, called the hybrid ant colony optimization (HACO), is proposed in this paper to tackle continuous-space optimization problems. It was compared with other well-known stochastic methods in the optimization of the benchmark functions and was also used to solve the problem of selecting appropriate dilation efficiently by optimizing the wavelet power spectrum of the hydrophobic sequence of protein, which is thc key step on using continuous wavelet transform (CWT) to predict a-helices and connecting peptides.

  1. Characterization of the structural and protein recognition properties of hybrid PNA-DNA four-way junctions.

    Science.gov (United States)

    Iverson, Douglas; Serrano, Crystal; Brahan, Ann Marie; Shams, Arik; Totsingan, Filbert; Bell, Anthony J

    2015-12-01

    The objective of this study is to evaluate the structure and protein recognition properties of hybrid four-way junctions (4WJs) composed of DNA and peptide nucleic acid (PNA) strands. We compare a classic immobile DNA junction, J1, vs. six PNA-DNA junctions, including a number with blunt DNA ends and multiple PNA strands. Circular dichroism (CD) analysis reveals that hybrid 4WJs are composed of helices that possess structures intermediate between A- and B-form DNA, the apparent level of A-form structure correlates with the PNA content. The structure of hybrids that contain one PNA strand is sensitive to Mg(+2). For these constructs, the apparent B-form structure and conformational stability (Tm) increase in high Mg(+2). The blunt-ended junction, b4WJ-PNA3, possesses the highest B-form CD signals and Tm (40.1 °C) values vs. all hybrids and J1. Protein recognition studies are carried out using the recombinant DNA-binding protein, HMGB1b. HMGB1b binds the blunt ended single-PNA hybrids, b4WJ-PNA1 and b4WJ-PNA3, with high affinity. HMGB1b binds the multi-PNA hybrids, 4WJ-PNA1,3 and b4WJ-PNA1,3, but does not form stable protein-nucleic acid complexes. Protein interactions with hybrid 4WJs are influenced by the ratio of A- to B-form helices: hybrids with helices composed of higher levels of B-form structure preferentially associate with HMGB1b.

  2. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    Science.gov (United States)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.

  3. Hybridization of Metal Nanoparticles with Metal-Organic Frameworks Using Protein as Amphiphilic Stabilizer.

    Science.gov (United States)

    Mao, Hui; Zhang, Weina; Zhou, Weiqiang; Zou, Binghua; Zheng, Bing; Zhao, Shilin; Huo, Fengwei

    2017-07-26

    Here, a facile strategy is reported to efficiently hybridize metal nanoparticles (MNPs) with typical metal-organic frameworks (MOFs) of ZIF-8 (zeolitic imidazolate framework-8), which employs bovine serum albumin (BSA, a serum albumin protein derived from cows) as the amphiphilic stabilizer to increase the affinity of MNP toward MOFs. For instance, the as-synthesized PdNPs/ZIF-8 composites with diameter from 100 to 200 nm always maintain well-defined crystalline structure, and the PdNPs with small size of ∼2 nm are well-dispersed in the crystal of MOFs without serious aggregations due to the BSA stabilizer. In Suzuki cross-coupling reactions of aryl halide, the PdNPs/ZIF-8 as catalysts have exhibited high activity and satisfied reusability owing to the use of BSA stabilizer as well as the fixing of MOFs matrixes. In addition, the strategy also can be extended to synthesize other kinds of MNPs/MOFs hybrid composites with tunable particle size, which brings more opportunity for functional MOFs hybrid materials.

  4. Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

    Directory of Open Access Journals (Sweden)

    Tuan Anh Pham

    2016-03-01

    Full Text Available Hybrid nanoparticle (NP structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1 from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3. We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP, magnetite (Fe3O4 NP, and cobalt ferrite nanoparticles (CoFe2O4 NP. Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the

  5. The amphiphilic hydrophobin Vmh2 plays a key role in one step synthesis of hybrid protein-gold nanoparticles.

    Science.gov (United States)

    Politi, Jane; De Stefano, Luca; Longobardi, Sara; Giardina, Paola; Rea, Ilaria; Methivier, Christophe; Pradier, Claire-Marie; Casale, Sandra; Spadavecchia, Jolanda

    2015-12-01

    We report a simple and original method to synthesize gold nanoparticles in which a fungal protein, the hydrophobin Vmh2 from Pleurotus ostreatus and dicarboxylic acid-terminated polyethylene-glycol (PEG) has been used as additional components in a one step process, leading to hybrid protein-metal nanoparticles (NPs). The nanoparticles have been characterized by ultra-violet/visible, infrared and X-ray photoelectron spectroscopies, dynamic light scattering and also by electron microscopy imaging. The results of these analytical techniques highlight nanometric sized, stable, hybrid complexes of about 12 nm, with outer surface rich in functional chemical groups. Interaction with protein and antibodies has also been exploited.

  6. Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana

    Science.gov (United States)

    Ihsan, Muhammad Z.; Ahmad, Samina J. N.; Shah, Zahid Hussain; Rehman, Hafiz M.; Aslam, Zubair; Ahuja, Ishita; Bones, Atle M.; Ahmad, Jam N.

    2017-01-01

    The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana. PMID:28289422

  7. Hybrid Methods and Atomistic Models to Explore Free Energies, Rates and Pathways of Protein Shape Changes

    DEFF Research Database (Denmark)

    Wang, Yong

    biologist, I was proud and excited for the breaking news as this prize is not only to them, but also to the whole community of computational biology. There has been progress in the modeling of protein dynamics in recent years and it has also started to be clear that computer simulations play...... folding, conformational exchange and binding with ligands at long time scales. In Chapter 2, we benchmarked how well the current force elds and molecular dynamics (MD) simulations could model changes in structure, dynamics, free energy and kinetics for an extensively studied protein called T4 lysozyme (T4...... allows us to utilize the limited computational resources in a more reasonable way. In Chapter 5, we further illustrated the possibility to combine the free energy ooding potential obtained from the variational method with infrequent metadynamics to calculate the long timescale rate. This hybrid method...

  8. Prediction of protein secondary structure using probability based features and a hybrid system.

    Science.gov (United States)

    Ghanty, Pradip; Pal, Nikhil R; Mudi, Rajani K

    2013-10-01

    In this paper, we propose some co-occurrence probability-based features for prediction of protein secondary structure. The features are extracted using occurrence/nonoccurrence of secondary structures in the protein sequences. We explore two types of features: position-specific (based on position of amino acid on fragments of protein sequences) as well as position-independent (independent of amino acid position on fragments of protein sequences). We use a hybrid system, NEUROSVM, consisting of neural networks and support vector machines for classification of secondary structures. We propose two schemes NSVMps and NSVM for protein secondary structure prediction. The NSVMps uses position-specific probability-based features and NEUROSVM classifier whereas NSVM uses the same classifier with position-independent probability-based features. The proposed method falls in the single-sequence category of methods because it does not use any sequence profile information such as position specific scoring matrices (PSSM) derived from PSI-BLAST. Two widely used datasets RS126 and CB513 are used in the experiments. The results obtained using the proposed features and NEUROSVM classifier are better than most of the existing single-sequence prediction methods. Most importantly, the results using NSVMps that are obtained using lower dimensional features, are comparable to those by other existing methods. The NSVMps and NSVM are finally tested on target proteins of the critical assessment of protein structure prediction experiment-9 (CASP9). A larger dataset is used to compare the performance of the proposed methods with that of two recent single-sequence prediction methods. We also investigate the impact of presence of different amino acid residues (in protein sequences) that are responsible for the formation of different secondary structures.

  9. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Olson, Adam C; Carter, Clay J

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.

  10. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Adam C Olson

    Full Text Available The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4 was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4 followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.

  11. A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.

    Science.gov (United States)

    Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng

    2011-09-20

    We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein.

  12. Recombinant expression of TLR5 proteins by ligand supplementation and a leucine-rich repeat hybrid technique

    OpenAIRE

    Hong, Minsun; Yoon, Sung-il; Wilson, Ian A.

    2012-01-01

    Vertebrate TLR5 directly binds bacterial flagellin proteins and activates innate immune responses against pathogenic flagellated bacteria. Structural and biochemical studies on the TLR5/flagellin interaction have been challenging due to the technical difficulty in obtaining active recombinant proteins of TLR5 ectodomain (TLR5-ECD). We recently succeeded in production of the N-terminal leucine rich repeats (LRRs) of Danio rerio (dr) TLR5-ECD in a hybrid with another LRR protein, hagfish variab...

  13. Comparative Analysis of the Endosperm Proteins Separated by 2-D Electrophoresis for Two Cultivars of Hybrid Rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    Pingfang Yang; Shihua Shen; Tingyun Kuang

    2006-01-01

    Liangyoupeijiu is a two-parental-line, and Shanyou63 is a three-parental-line hybrid rice (Oryza sativa L.).Although both belong to the indica subspecies, they have obvious differences with respect to morphology,physiology and grain quality. Variations in endosperm protein compositions were studied by comparing the 2-D electrophoresis (2-DE) maps for these two cultivars of hybrid rice. After matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) analysis, a 21-kDa precursor of 19-kDa globulin was identified as the major storage protein for both cultivars. Some isoforms of peroxiredoxin and seed maturation protein were found to only exist in Shanyou63, whereas aldose reductase and starch granule-bound starch synthase were only detected in Liangyoupeijiu. These data might provide a foundation for further comparative studies of these two cultivars of hybrid rice.

  14. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn; Zhu, Weiliang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [ACS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203 (China); Shi, Jiye, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [UCB Pharma, 216 Bath Road, Slough SL1 4EN (United Kingdom)

    2015-03-28

    The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much less computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.

  15. Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices

    Science.gov (United States)

    Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.

    2017-04-01

    Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.

  16. New classes of mind bomb-interacting proteins identified from yeast two-hybrid screens.

    Science.gov (United States)

    Tseng, Li-Chuan; Zhang, Chengjin; Cheng, Chun-Mei; Xu, Haoying; Hsu, Chia-Hao; Jiang, Yun-Jin

    2014-01-01

    Notch signaling pathway defines an evolutionarily conserved mechanism in cell-fate determination in a broad spectrum of developmental processes through local cell interactions. mind bomb (mib) encodes an E3 ubiquitin ligase that is involved in Notch activation through Delta ubiquitylation and internalization. To further dissect the function of Mib, two yeast two-hybrid screens for zebrafish Mib/Mib2-binding proteins with different strategies have been performed. 81 putative interesting proteins were discovered and classified into six groups: ubiquitin proteasome pathway, cytoskeleton, trafficking, replication/transcription/translation factors, cell signaling and others. Confirmed by coimmunoprecipitation (Co-IP), Mib interacted with four tested proteins: ubiquitin specific protease 1 (Usp1), ubiquitin specific protease 9 (Usp9), tumor-necrosis-factor-receptor-associated factor (TRAF)-binding domain (Trabid)/zinc finger, RAN-binding domain containing 1 (Zranb1) and hypoxia-inducible factor 1, alpha subunit inhibitor (Hif1an)/factor inhibiting HIF 1 (Fih-1). Usp1, Usp9, Trabid and Fih-1 also bound to zebrafish Mib2, a Mib homolog with similar structural domains and functions. Both Mib and Mib2 can ubiquitylate Trabid and Fih-1, indicating a potential regulating role of Mib and Mib2 on Trabid and Fih-1 and, furthermore, the possible involvement of Notch signaling in hypoxia-regulated differentiation, tumorigenesis and NF-κB pathway. Finally, functions of confirmed Mib/Mib2-interacting proteins are collated, summarized and hypothesized, which depicts a regulating network beyond Notch signaling.

  17. Single Nanometric Memory Unit Based On a Protein-Nanoparticle Hybrid

    Science.gov (United States)

    Medalsy, Izhar; Heyman, Arnon; Shoseyov, Oded; Porath, Danny

    2009-03-01

    Proteins as an isolating template and nanoparticle (NP) as an electric storage component can form a single addressable unit cell isolated from the conductive surface and adjacent NPs. This setup gives rise to a wide range of nanoelectronic applications. Here we demonstrate, by Conductive AFM, a single nanometric memory unit using individual protein-NP hybrids. SP1 is a boiling-stable ring-shaped protein, 11 nm in diameter. Mutants of SP1 were synthesized allowing its selective attachment to gold surface and the formation of 2D arrays using methods such as phospholipids trough and Langmuir Blodgett. The SP1 inner pore was connected to Si NP forming a chargeable entity embedded in an isolating unit over a conductive surface. Each NP holds three charging states: natural, positive and negative. The charging life times are 10 min in ambient and days in vacuum. Using this setup, and the relative long charging time, we were able to apply a read and write operations on individual 5nm Si NP embedded in a stable protein.

  18. Ribosomal protein genes are highly enriched among genes with allele-specific expression in the interspecific F1 hybrid catfish.

    Science.gov (United States)

    Chen, Ailu; Wang, Ruijia; Liu, Shikai; Peatman, Eric; Sun, Luyang; Bao, Lisui; Jiang, Chen; Li, Chao; Li, Yun; Zeng, Qifan; Liu, Zhanjiang

    2016-06-01

    Interspecific hybrids provide a rich source for the analysis of allele-specific expression (ASE). In this work, we analyzed ASE in F1 hybrid catfish using RNA-Seq datasets. While the vast majority of genes were expressed with both alleles, 7-8 % SNPs exhibited significant differences in allele ratios of expression. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5420 (8.2 %) and 13,390 (7.5 %) SNPs were identified as significant ASE-SNPs, respectively. With these SNPs, a total of 1519 and 3075 ASE-genes were identified. Gene Ontology analysis revealed that genes encoding cytoplasmic ribosomal proteins (RP) were highly enriched among ASE genes. Parent-of-origin was determined for 27 and 30 ASE RP genes in the liver and gill, respectively. The results indicated that genes from both channel catfish and blue catfish were involved in ASE. However, each RP gene appeared to be almost exclusively expressed from only one parent, indicating that ribosomes in the hybrid catfish were in the "hybrid" form. Overall representation of RP transcripts among the transcriptome appeared lower in the F1 hybrid catfish than in channel catfish or blue catfish, suggesting that the "hybrid" ribosomes may work more efficiently for translation in the F1 hybrid catfish.

  19. Serum-stable quantum dot--protein hybrid nanocapsules for optical bio-imaging

    Science.gov (United States)

    Lee, Jeong Yu; Nam, Dong Heon; Oh, Mi Hwa; Kim, Youngsun; Choi, Hyung Seok; Jeon, Duk Young; Beum Park, Chan; Nam, Yoon Sung

    2014-05-01

    We introduce shell cross-linked protein/quantum dot (QD) hybrid nanocapsules as a serum-stable systemic delivery nanocarrier for tumor-targeted in vivo bio-imaging applications. Highly luminescent, heavy-metal-free Cu0.3InS2/ZnS (CIS/ZnS) core-shell QDs are synthesized and mixed with amine-reactive six-armed poly(ethylene glycol) (PEG) in dichloromethane. Emulsification in an aqueous solution containing human serum albumin (HSA) results in shell cross-linked nanocapsules incorporating CIS/ZnS QDs, exhibiting high luminescence and excellent dispersion stability in a serum-containing medium. Folic acid is introduced as a tumor-targeting ligand. The feasibility of tumor-targeted in vivo bio-imaging is demonstrated by measuring the fluorescence intensity of several major organs and tumor tissue after an intravenous tail vein injection of the nanocapsules into nude mice. The cytotoxicity of the QD-loaded HSA-PEG nanocapsules is also examined in several types of cells. Our results show that the cellular uptake of the QDs is critical for cytotoxicity. Moreover, a significantly lower level of cell death is observed in the CIS/ZnS QDs compared to nanocapsules loaded with cadmium-based QDs. This study suggests that the systemic tumor targeting of heavy-metal-free QDs using shell cross-linked HSA-PEG hybrid nanocapsules is a promising route for in vivo tumor diagnosis with reduced non-specific toxicity.

  20. Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available 2-Cys peroxiredoxins (Prxs play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C of thioredoxin reductase (TrxR in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D, which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD simulations on AtNTRC and AtNTRA-(Trx-D proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D because of following reasons: i unstable and unfavorable interaction of the linker region, ii shifted Trx domain, and iii different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

  1. Programmable Self-Assembly of DNA-Protein Hybrid Hydrogel for Enzyme Encapsulation with Enhanced Biological Stability.

    Science.gov (United States)

    Wan, Lan; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; Li, Li; Guo, Xi; Zhang, Jue; Wang, Kemin

    2016-04-11

    A DNA-protein hybrid hydrogel was constructed based on a programmable assembly approach, which served as a biomimetic physiologic matrix for efficient enzyme encapsulation. A dsDNA building block tailored with precise biotin residues was fabricated based on supersandwich hybridization, and then the addition of streptavidin triggered the formation of the DNA-protein hybrid hydrogel. The biocompatible hydrogel, which formed a flower-like porous structure that was 6.7 ± 2.1 μm in size, served as a reservoir system for enzyme encapsulation. Alcohol oxidase (AOx), which served as a representative enzyme, was encapsulated in the hybrid hydrogel using a synchronous assembly approach. The enzyme-encapsulated hydrogel was utilized to extend the duration time for ethanol removal in serum plasma and the enzyme retained 78% activity after incubation with human serum for 24 h. The DNA-protein hybrid hydrogel can mediate the intact immobilization on a streptavidin-modified and positively charged substrate, which is very beneficial to solid-phase biosensing applications. The hydrogel-encapsulated enzyme exhibited improved stability in the presence of various denaturants. For example, the encapsulated enzyme retained 60% activity after incubation at 55 °C for 30 min. The encapsulated enzyme also retains its total activity after five freeze-thaw cycles and even suspended in solution containing organic solvents.

  2. Epicocconone-Hemicyanine Hybrids: Near Infrared Fluorophores for Protein Staining and Cell Imaging.

    Science.gov (United States)

    Karuso, Peter; Loa Kum Cheung, Wendy; Peixoto, Philippe A; Boulangé, Agathe; Franck, Xavier

    2017-02-03

    The development of new near infrared (NIR) dyes is crucial for diverse applications and especially bioimaging, as they absorb and emit light in the "therapeutic window" (650-950 nm). We report here a new family of NIR fluorophores that has been obtained by hybridising hemicyanines with epicocconone. Emission wavelengths of these hybrid dyes is in the range 715-795 nm and is combined with large Stokes' shifts (75-95 nm). The absorption and emission wavelength can be modulated according to the hemicyanine moiety and adding sulfonic acid moieties enhances water solubility. We demonstrate their application in the sensitive detection of proteins in gel electrophoresis and the staining of specific cellular organelles in confocal microscopy. These results are particularly encouraging and bring forward a new fluorescent skeleton for chemical biology.

  3. Fluorescence labeling of carbon nanotubes and visualization of a nanotube-protein hybrid under fluorescence microscope.

    Science.gov (United States)

    Yoshimura, Shige H; Khan, Shahbaz; Maruyama, Hiroyuki; Nakayama, Yoshikazu; Takeyasu, Kunio

    2011-04-11

    Biological applications of carbon nanotubes have been hampered by the inability to visualize them using conventional optical microscope, which is the most common tool for the observation and measurement of biological processes. Recently, a number of fluorescence labeling methods for biomolecules and various fluorescence probes have been developed and widely utilized in biological fields. Therefore, labeling carbon nanotubes with such fluorophores under physiological conditions will be highly useful in their biological applications. In this Article, we present a method to fluorescently label nanotubes by combining a detergent and a fluorophore commonly used in biological experiments. Fluorophores carrying an amino group (Texas Red hydrazide or BODIPY FL-hydrazide) were covalently attached to the hydroxyl groups of Tween 20 using carbonyldiimidazole. Fluorescence microscopy demonstrated that nanotubes were efficiently solubilized and labeled by this fluorescently labeled detergent. By using this technique, we also demonstrated multicolor fluorescence imaging of a nanotube-protein hybrid.

  4. Cytochrome C oxidase Ⅲ interacts with hepatitis B virus X protein in vivo by yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    Dan Li; Xiao-Zhong Wang; Jie-Ping Yu; Zhi-Xin Chen; Yue-Hong Huang; Qi-Min Tao

    2004-01-01

    AIM: To screen and identify the proteins which interact with hepatitis B virus (HBV) X protein in hepatocytes by yeast two-hybrid system and to explore the effects of X protein in the development of hepatocellular carcinoma (HCC).METHODS: With HBV X gene amplified by polymerase chain reaction (PCR), HBV X bait plasmid, named pAS2-1-X, was constructed by yeast-two hybridization system3 and verified by auto-sequencing assay. pAS2-1-X was transformed into the yeast AH109, and X-BD fusion protein expressed in the yeast cells was detected by Western blotting. The yeast cells cotransformed with pAS2-1-X and normal human liver cDNA library were grown in selective SC/-trp-leu-his-ade medium. The second screen was performed with β-gal activity detection, and false positive clones were eliminated by segregation analysis, true positive clones were amplified,sequenced and analyzed with bioinformatics. Mating experiment was peformed to confirm the binding of putative proteins to X protein in the yeast cells.RESULTS: Bait plasmid pAS2-1-X was successfully constructed and pAS2-1-X correctly expressed BD-X fusion protein in yeast AH109. One hundred and three clones grew in the selective SC/-trp-leu-his-ade medium, and only one clone passed through β-gal activity detection and segregation analysis. The inserted cDNA fragment showed high homology with Homo sapiens cytochrome C oxidase Ⅲ(COXIII). Furthermore, mating experiment identified that the binding of COXIII to X protein was specific.CONCLUSION: COXIII protein is a novel protein that can interact with X protein in vivo by yeast two-hybrid system,and may contribute to the development of HCC through the interaction with X protein.

  5. Nitrogen metabolism enzymes, soluble protein and free proline content in soybean genotypes and their F1 hybrids

    Directory of Open Access Journals (Sweden)

    Kereši Sanja T.

    2008-01-01

    Full Text Available Nitrate reductase and glutamine synthetase activity, as well as free proline and soluble protein content were measured in eight soybean parent genotypes and six F1 hybrids. The aim of this study was to determine variability and the mode of inheritance for these parameters, and point out the genotypes of interest for future breeding programs. Analysed genotypes and their F1 hybrids expressed significant differences in activities of nitrate reductase and glutamine synthetase enzymes, as well as in soluble proteins and free proline contents. Since mode of inheritance for all investigated traits was in most cases dominance or heterosis, it can be concluded that these parameters are under control of dominant genes. The obtained results suggest that genotypes with favorable traits, such as variety Linda, line 1511, and F1 hybrids (Linda x LN92-7369 and (Balkan x BL-8, could be of interest as a good starting material for further breeding programs.

  6. NewGOA: predicting new GO annotations of proteins by bi-random walks on a hybrid graph.

    Science.gov (United States)

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhao, Yingwen

    2017-06-15

    A remaining key challenge of modern biology is annotating the functional roles of proteins. Various computational models have been proposed for this challenge. Most of them assume the annotations of annotated proteins are complete. But in fact, many of them are incomplete. We proposed a method called NewGOA to predict new Gene Ontology (GO) annotations for incompletely annotated proteins and for completely un-annotated ones. NewGOA employs a hybrid graph, composed of two types of nodes (proteins and GO terms), to encode interactions between proteins, hierarchical relationships between terms and available annotations of proteins. To account for structural difference between the terms subgraph and the proteins subgraph, NewGOA applies a bi-random walks algorithm, which executes asynchronous random walks on the hybrid graph, to predict new GO annotations of proteins. Experimental study on archived GO annotations of two model species (H. Sapiens and S. cerevisiae) shows that NewGOA can more accurately and efficiently predict new annotations of proteins than other related methods. Experimental results also indicate the bi-random walks can explore and further exploit the structural difference between terms subgraph and proteins subgraph. The supplementary files and codes of NewGOA are available at: http://mlda.swu.edu.cn/codes.php?name=NewGO.

  7. A set of host proteins interacting with papaya ringspot virus NIa-Pro protein identified in a yeast two-hybrid system.

    Science.gov (United States)

    Gao, L; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2012-01-01

    The protein-protein interactions between viral and host proteins play an essential role in plant virus infection and host defense. The potyviral nuclear inclusion protein a protease (NIa-Pro) is involved in various steps of viral infection. In this study, the host proteins interacting with papaya ringspot virus (PRSV) NIa-Pro were screened in a Carica papaya L. plant cDNA library using a Sos recruitment two-hybrid system (SRS). We confirmed that the full-length EIF3G, FBPA1, FK506BP, GTPBP, MSRB1, and MTL from papaya can interact specifically with PRSV NIa-Pro in yeast, respectively. These proteins fufill important functions in plant protein translation, biotic and abiotic stress, energy metabolism and signal transduction. In this paper, we discuss possible functions of interactions between these host proteins and NIa-Pro in PRSV infection and their role in host defense. Sos recruitment two-hybrid system; papaya ringspot virus; NIa-Pro; protein-protein interaction.

  8. HER-2 protein concentrations in breast cancer cells increase before immunohistochemical and fluorescence in situ hybridization analysis turn positive

    DEFF Research Database (Denmark)

    Olsen, Dorte A; Østergaard, Birthe; Bokmand, Susanne

    2007-01-01

    BACKGROUND: The level of HER-2/neu in breast cancer cells is normally measured by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH). It determines whether patients should be treated with trastuzumab (Herceptin). In this study, HER-2 protein in breast cancer tissue...

  9. Recombinant hybrid protein, Shiga toxin and granulocyte macrophage colony stimulating factor effectively induce apoptosis of colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Mehryar Habibi Roudkenar; Saeid Bouzari; Yoshikazu Kuwahara; Amaneh Mohammadi Roushandeh; Mana Oloomi; Manabu Fukumoto

    2006-01-01

    AIM: To investigate the selective cytotoxic effect of constructed hybrid protein on cells expressing granulocyte macrophage colony stimulating factor (GM-CSF) receptor.METHODS: HepG2 (human hepatoma) and LS174T (coIon carcinoma) were used in this study. The fused gene was induced with 0.02% of arabinose for 4 h and the expressed protein was detected by Western blotting. The chimeric protein expressed in E. coli was checked for its cytotoxic activity on these cells and apoptosis was measured by comet assay and nuclear staining. RESULTS: The chimeric protein was found to be cytotoxic to the colon cancer cell line expressing GM-CSFRs,but not to HepG2 lacking these receptors. Maximum activity was observed at the concentration of 40 ng/mL after 24 h incubation. The IC50 was 20±3.5 ng/mL.CONCLUSION: Selective cytotoxic effect of the hybrid protein on the colon cancer cell line expressing GMCSF receptors (GM-CSFRs) receptor and apoptosis can be observed in this cell line. The hybrid protein can be considered as a therapeutic agent.

  10. Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds

    Science.gov (United States)

    Zhang, Ying-Xue; Xu, Heng-Heng; Liu, Shu-Jun; Li, Ni; Wang, Wei-Qing; Møller, Ian M.; Song, Song-Quan

    2016-01-01

    Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice (Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold (P cell defense and rescue (28%), and with storage protein (18%). In endosperms, most of the identified proteins were involved in metabolism (37%), in energy (27%), and in protein synthesis and destination (11%). The most marked change was the increased abundance of many glycolytic enzymes together with the two fermentation enzymes pyruvate decarboxylase and alcohol dehydrogenase in the embryos during aging. We hypothesize that the decreased viability of hybrid rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation.

  11. The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5-kDa myelin basic protein.

    Directory of Open Access Journals (Sweden)

    Kenrick A Vassall

    Full Text Available The classic isoforms of myelin basic protein (MBP are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99- containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90 upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107 with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012. Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the

  12. The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5-kDa myelin basic protein.

    Science.gov (United States)

    Vassall, Kenrick A; Bessonov, Kyrylo; De Avila, Miguel; Polverini, Eugenia; Harauz, George

    2013-01-01

    The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99-) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global structure

  13. Sensory perception of and salivary protein response to astringency as a function of the 6-n-propylthioural (PROP) bitter-taste phenotype.

    Science.gov (United States)

    Melis, Melania; Yousaf, Neeta Y; Mattes, Mitchell Z; Cabras, Tiziana; Messana, Irene; Crnjar, Roberto; Tomassini Barbarossa, Iole; Tepper, Beverly J

    2017-01-24

    Individual differences in astringency perception are poorly understood. Astringency from tannins stimulates the release of specific classes of salivary proteins. These proteins form complexes with tannins, altering their perceived astringency and reducing their bioavailability. We studied the bitter compound, 6-n-propylthioural (PROP), as a phenotypic marker for variation in astringency perception and salivary protein responses. Seventy-nine subjects classified by PROP taster status rated cranberry juice cocktail (CJC; with added sugar) supplemented with 0, 1.5 or 2.0g/L tannic acid (TA). Saliva for protein analyses was collected at rest, or after stimulation with TA or cranberry juice (CJ; without added sugar). CJC with 1.5g/L tannic acid was found to be less astringent, and was liked more by PROP non-taster males than PROP taster males, consistent with the expectation that non-tasters are less sensitive to astringency. Levels of acidic Proline Rich Proteins (aPRPs) and basic Proline Rich Proteins (bPRPs) decreased after TA, while levels of aPRPs, bPRPs and Cystatins unexpectedly rose after CJ. Increases in bPRPs and Cystatins were only observed in PROP tasters. The PROP phenotype plays a gender-specific, but somewhat limited role in the perceived astringency of tannic-acid supplemented, cranberry juice cocktail. The PROP phenotype (regardless of gender) may also be involved in the release of salivary proteins previously implicated in oral health.

  14. Yeast two-hybrid screening for proteins that interact with α1-adrenergic receptors

    Institute of Scientific and Technical Information of China (English)

    TanZHANG; QiXU; Feng-rongCHEN; Qi-deHAN; You-yiZHANG

    2004-01-01

    AIM: To find novel proteins that may bind to α1A-adrenergic receptor (α1A-AR) and investigate their interactions with the other two α1-AR subtypes (α1B-AR and α1D-AR) with an expectation to provide new leads for the function study of the receptors. METHODS: Yeast two-hybrid assay was performed to screen a human brain cDNA library using the C terminus of α1A-AR (α1A-AR-CT) as bait. X-Gal assay and o-nitrophenyl-beta-D-galactopyranoside (ONPG) assay were subsequently conducted to further qualitatively or quantitatively confirm the interactions between receptors and the three identified proteins. RESULTS: (1) Selection medium screening identified segments of bone morphogenetic protein-1 (BMP-1), active Bcr-related protein (Abr), and filamin-C as binding partners of α1A-AR-CT in yeast cells respectively. Besides, protein segments of BMP-1 and Abr could only specifically interact with α1A-AR-CT while filamin-C segment interacted with all three α1-AR subtypes. (2) In X-Gal assay, the cotransformants of α1A-AR-CT and BMP-1 segments turned strong blue at about 30 min while other positive transformants only developed weak blue at about 5-6 h. (3) In ONPG assay, interaction (shown in β-galactosidase activity) between α1A-AR-CT and BMP-1 segments was about 30 times stronger than that of control (P<0.01), while other positive interactions were only about 2-5 times as strong as those of controls (P<0.05). CONCLUSION: In yeast cells BMP-1, Abr and/or filamin-C could interact with three α1-AR subtypes, among which, interaction between BMP-1 and α1A-AR was the strongest while other interactions between proteins and receptors were relatively weak.

  15. Yeast two-hybrid screening for proteins that interact with α1-adrenergic receptors

    Institute of Scientific and Technical Information of China (English)

    Tan ZHANG; Qi XU; Feng-rong CHEN; Qi-de HAN; You-yi ZHANG

    2004-01-01

    AIM: To find novel proteins that may bind to α1A-adrenergic receptor (α1A-AR) and investigate their interactions with the other two α1-AR subtypes (α1B-AR and α1D-AR) with an expectation to provide new leads for the function study of the receptors. METHODS: Yeast two-hybrid assay was performed to screen a human brain cDNA library using the C terminus of α1A-AR (α1A-AR-CT) as bait. X-Gal assay and o-nitrophenyl-beta-D-galactopyranoside(ONPG) assay were subsequently conducted to further qualitatively or quantitatively confirm the interactions between receptors and the three identified proteins. RESULTS: (1) Selection medium screening identified segments of bone morphogenetic protein-1 (BMP-1), active Bcr-related protein (Abr), and filamin-C as binding partners ofα1A-AR-CT in yeast cells respectively. Besides, protein segments of BMP-1 and Abr could only specifically interact with α1A-AR-CT while filamin-C segment interacted with all three α1-AR subtypes. (2) In X-Gal assay, the cotransformants of α1A-AR-CT and BMP-1 segments turned strong blue at about 30 min while other positive transformants only developed weak blue at about 5-6 h. (3) In ONPG assay, interaction (shown in β-galactosidase activity) between α1A-AR-CT and BMP-1 segments was about 30 times stronger than that of control (P<0.01),while other positive interactions were only about 2-5 times as strong as those of controls (P<0.05). CONCLUSION:In yeast cells BMP-1, Abr and/or filamin-C could interact with three α1-AR subtypes, among which, interaction between BMP-1 and α1A-AR was the strongest while other interactions between proteins and receptors were relatively weak.

  16. Hybrid phospholipid bilayer coatings for separations of cationic proteins in capillary zone electrophoresis.

    Science.gov (United States)

    Gallagher, Elyssia S; Adem, Seid M; Bright, Leonard K; Calderon, Isen A C; Mansfield, Elisabeth; Aspinwall, Craig A

    2014-04-01

    Protein separations in CZE suffer from nonspecific adsorption of analytes to the capillary surface. Semipermanent phospholipid bilayers have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m(-2) , respectively, compared to 17 ± 1 mJ m(-2) for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3-1.9 × 10(-4) cm(2) V(-1) s(-1) ) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , 4.8 ± 0.4 × 10(-4) cm(2) V(-1) s(-1) , and 6.0 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , respectively), with increased stability compared to phospholipid bilayer coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6%, n ≥ 6) with separation efficiencies as high as 200 000 plates/m.

  17. Synthesis and characterization of poly (vinyl alcohol hydrogels and hybrids for rMPB70 protein adsorption

    Directory of Open Access Journals (Sweden)

    Elizabeth Fonseca dos Reis

    2006-06-01

    Full Text Available Polyvinyl alcohol (PVA, PVA crosslinked with glutaraldehyde hydrogels (PVA/GA, PVA with tetraethylorthosilicate (PVA/TEOS and PVA/GA/TEOS hybrids with recombinant MPB70 protein (rMPB70 incorporated were chemically characterized by Fourier transform infrared spectroscopy (FTIR. FTIR spectra of PVA hydrogel samples showed the absorption regions of the specific chemical groups associated with poly(vinyl alcohol (-OH, -CO, -CH2 and PVA/GA confirming the formation of crosslinked hydrogel (duplet -CH. It was observed C-H broad alkyl stretching band (n = 2850-3000 cm-1 and typical strong hydroxyl bands for free alcohol (nonbonded -OH stretching band at n = 3600-3650 cm-1, and hydrogen bonded band (n = 3200-3570 cm-1. The most important vibration bands related to silane alcoxides have been verified on FTIR spectra of PVA/TEOS and PVA/GA/TEOS hybrids (Si-O-Si, n = 1080 and n = 450 cm-1; Si-OH, n = 950 cm-1. FTIR spectra of f PVA hydrogel with rMPB70 incorporated have indicated the specific groups usually found in protein structures, such as amides I, II and III, at 1680-1620 cm-1, 1580-1480 cm-1 and 1246 cm-1, respectively. These results have given strong evidence that recombinant protein rMPB70 was successfully adsorbed in the hydrogels and hybrids networks. These PVA based hydrogels and hybrids were further used in immunological assays (Enzyme-Linked Immunosorbent Assay - ELISA. Tests were performed to detect antibodies against rMPB70 protein in serum samples from bovines that were positive in the tuberculin test. Corresponding tests were carried out without PVA samples in microtiter plates as control. Similar results were found for commercially available microplates and PVA based hydrogels and hybrids developed in the present work regarding to immunoassay sensitivity and specificity response.

  18. VAMP-1: a synaptic vesicle-associated integral membrane protein.

    Science.gov (United States)

    Trimble, W S; Cowan, D M; Scheller, R H

    1988-01-01

    Several proteins are associated with, or are integral components of, the lipid bilayer that forms the delineating membrane of neuronal synaptic vesicles. To characterize these molecules, we used a polyclonal antiserum raised against purified cholinergic synaptic vesicles from Torpedo to screen a cDNA expression library constructed from mRNA of the electromotor nucleus. One clone encodes VAMP-1 (vesicle-associated membrane protein 1), a nervous-system-specific protein of 120 amino acids whose primary sequence can be divided into three domains: a proline-rich amino terminus, a highly charged internal region, and a hydrophobic carboxyl-terminal domain that is predicted to comprise a membrane anchor. Tryptic digestion of intact and lysed vesicles suggests that the protein faces the cytoplasm, where it may play a role in packaging, transport, or release of neurotransmitters. Images PMID:3380805

  19. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system.

    Directory of Open Access Journals (Sweden)

    Douglas P Gladue

    Full Text Available E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV and bovine viral diarrhea virus (BVDV. E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. However, there is no information regarding any host binding partners for the E2 proteins. Here, we utilized the yeast two-hybrid system and identified fifty-seven host proteins as positive binding partners which bound E2 from both CSFV and BVDV with the exception of two proteins that were found to be positive for binding only to CSFV E2. Alanine scanning of CSFV E2 demonstrated that the binding sites for these cellular proteins on E2 are likely non-linear binding sites. The possible roles of the identified host proteins are discussed as the results presented here will be important for future studies to elucidate mechanisms of host protein-virus interactions during pestivirus infection. However, due to the limitations of the yeast two hybrid system, the proteins identified is not exhaustive and each interaction identified needs to be confirmed by independent experimental approaches in the context of virus-infected cells before any definitive conclusion can be drawn on relevance for the virus life cycle.

  20. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and[2Fe-2S

    NARCIS (Netherlands)

    Berg, van den W.A.M.; Hagen, W.R.; Dongen, van W.M.A.M.

    2000-01-01

    Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state

  1. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and[2Fe-2S

    NARCIS (Netherlands)

    Berg, van den W.A.M.; Hagen, W.R.; Dongen, van W.M.A.M.

    2000-01-01

    Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state paramagnet

  2. Zeta potential, contact angles, and AFM imaging of protein conformation adsorbed on hybrid nanocomposite surfaces.

    Science.gov (United States)

    Pinho, Ana C; Piedade, Ana P

    2013-08-28

    The sputtering deposition of gold (Au) and poly(tetrafluoroethylene) (PTFE) was used to prepare a nanocomposite hybrid thin film suitable for protein adsorption while maintaining the native conformation of the biological material. The monolithic PTFE and the nanocomposite PTFE/Au thin films, with Au content up to 1 at %, were co-deposited by r.f. magnetron sputtering using argon as a discharge gas and deposited onto 316L stainless steel substrates, the most commonly used steel in biomaterials. The deposited thin films, before and after bovine serum albumin (BSA) adsorption, were thoroughly characterized with special emphasis on the surface properties/characteristics by atomic force microscopy (AFM), zeta potential, and static and dynamic contact angle measurements, in order to assess the relationship between structure and conformational changes. The influence of a pre-adsorbed peptide (RGD) was also evaluated. The nanotopographic and chemical changes induced by the presence of gold in the nanocomposite thin films enable RGD bonding, which is critical for the maintenance of the BSA native conformation after adsorption.

  3. Self-Assembled DNA Hydrogel Based on Enzymatically Polymerized DNA for Protein Encapsulation and Enzyme/DNAzyme Hybrid Cascade Reaction.

    Science.gov (United States)

    Xiang, Binbin; He, Kaiyu; Zhu, Rong; Liu, Zhuoliang; Zeng, Shu; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2016-09-07

    DNA hydrogel is a promising biomaterial for biological and medical applications due to its native biocompatibility and biodegradability. Herein, we provide a novel, versatile, and cost-effective approach for self-assembly of DNA hydrogel using the enzymatically polymerized DNA building blocks. The X-shaped DNA motif was elongated by terminal deoxynucleotidyl transferase (TdT) to form the building blocks, and hybridization between dual building blocks via their complementary TdT-polymerized DNA tails led to gel formation. TdT polymerization dramatically reduced the required amount of original DNA motifs, and the hybridization-mediated cross-linking of building blocks endows the gel with high mechanical strength. The DNA hydrogel can be applied for encapsulation and controllable release of protein cargos (for instance, green fluorescent protein) due to its enzymatic responsive properties. Moreover, this versatile strategy was extended to construct a functional DNAzyme hydrogel by integrating the peroxidase-mimicking DNAzyme into DNA motifs. Furthermore, a hybrid cascade enzymatic reaction system was constructed by coencapsulating glucose oxidase and β-galactosidase into DNAzyme hydrogel. This efficient cascade reaction provides not only a potential method for glucose/lactose detection by naked eye but also a promising modular platform for constructing a multiple enzyme or enzyme/DNAzyme hybrid system.

  4. Molecular epidemiological study on pre-X region of hepatitis B virus and identification of hepatocyte proteins interacting with whole-X protein by yeast two-hybrid

    Institute of Scientific and Technical Information of China (English)

    Qian Yang; Jun Cheng; Jing Dong; Jian Zhang; Shu-Lin Zhang

    2005-01-01

    AIM: To identify the pre-X region in hepatitis B virus (HBV)genome and to study the relationship between the genotype and the pre-X region. To investigate the biological function of whole-X (pre-X plus X) protein, we performed yeast two-hybrid to screen proteins in liver interacting with whole-X protein.METHODS: The pre-X region of HBV was amplified by polymerase chain reaction (PCR) method, and was cloned to pGEM Teasy vector. After the target region was sequenced, Vector 8.0 software was used to analyze the sequences. The whole-X bait plasmid was constructed by using yeast two-hybrid system 3. Yeast strain AH109 was transformed. After expression of the whole-X protein in AH109 yeast strains was proved, yeast two-hybrid screening was performed by mating AH109 with Y187 containing liver cDNA library plasmid. The mated yeast was plated on quadruple dropout medium and assayed for α-gal activity. The interaction between whole-X protein and the protein obtained from positive colonies was further confirmed by repeating yeast two-hybrid. After extracting and sequencing of plasmid from blue colonies, we carried out analysis by bioinformatics. RESULTS: After sequencing, 27 of 45 clones (60%) were found encoding the pre-X peptide. Eighteen of twenty-seven clones (66.7%) of pre-X coding sequences were found from genotype C. Five positive colonies that interacted with whole-X protein were obtained and sequenced; namely, fetuin B, UDP glycosyltransferase 1 family-polypeptide A9, mannose-P-dolichol utilization defect 1, fibrinogen-B beta polypeptide, transmembrane 4 superfamily member 4CD81 (TM4SF4).CONCLUSION: The pre-X gene exists in HBV genome.Genes of proteins interacting with whole-X protein in hepatocytes were successfully cloned. These results brought some new clues for studying the biological functions of whole-X protein.

  5. Using the yeast three-hybrid system to identify proteins that interact with a phloem-mobile mRNA

    Directory of Open Access Journals (Sweden)

    Sung Ki eCho

    2012-08-01

    Full Text Available Heterografting and RNA transport experiments have demonstrated the long-distance mobility of StBEL5 RNA, its role in controlling tuber formation, and the function of the 503-nt 3´ untranslated region (UTR of the RNA in mediating transport. Because the 3´ UTR of StBEL5 is a key element in regulating several aspects of RNA metabolism, a potato leaf cDNA library was screened using the 3´ UTR of StBEL5 as bait in the yeast three-hybrid system to identify putative partner RNA-binding proteins (RBPs. From this screen, 116 positive cDNA clones were isolated based on nutrient selection, HIS3 activation, and lacZ induction and were sequenced and classified. Thirty-five proteins that function in either RNA- or DNA-binding were selected from this pool. Seven were monitored for their expression profiles and further evaluated for their capacity to bind to the 3´ UTR of StBEL5 using β-galactosidase assays in the yeast three-hybrid system and RNA gel-shift assays. Among the final selections were two RNA-binding proteins, a zinc-finger protein, and one protein, StLSH10, from a family involved in light signaling. In this study, the yeast three-hybrid system is presented as a valuable tool to screen and verify interactions between target RNAs and putative RNA-binding proteins. These results can shed light on the dynamics and composition of plant RNA-protein complexes that function to regulate RNA metabolism.

  6. Screening of proteins that interact with human thrombopoietin receptor c-Mpl using yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    赵新燕[1; 冯丽冰[2; 周伟国[3; 戴卫列[4; 李昌本[5; 赵寿元[6

    2000-01-01

    Thrombopoietin (TPO) is the major cytokine involved in platelet production and exerts its effects via the receptor c-Mpl. The yeast two-hybrid system has been used to screen the proteins interacting with c-Mpl. First, the cDNA fragment of c-Mpl intracellular domain was cloned into two-hybrid vector pAS2, and the resulting plasmid is designated as pASMM. Then a human placenta cDNA library was screened using the pASMM as a target plasmid. Seven positive clones were isolated from 150 000 independent transformants. Sequence analysis of one of the positive clones demonstrates that a part of coding sequence of vimentin from 611 bp to 3’ end and flanking non-translation region was obtained. Therefore, there is an interaction between vimentin and TPO receptor. The results suggest that cytoskeletal protein may play an important role in TPO signal transduction pathway.

  7. Screening of proteins that interact with human thrombopoietin receptor c-Mpl using yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Thrombopoietin(TPO) is the major cytokine involved in platelet production and exerts its effects via the receptor c-Mpl.The yeast two-hybrid system has been used to screen the proteins interacting with c-Mpl.First,the cDNA fragment of c-Mpl intracellular domain was cloned into two-hybrid vector pAS2,and the resulting plasmid is designated as pASMM.Then a human placenta cDNA library was screened using the pASMM as a target plasmid.Seven positive clones were isolated from 150 000 independent transformants.Sequence analysis of one of the positive clones demonstrates that a part of coding sequence of vimentin from 611 bp to 3'end and flanking non-translation region was obtained.Therefore,there is an interaction between vimentin and TPO receptor.The results suggest that cytoskeletal protein may play an important role in TPO signal transduction pathway.

  8. Ne2 encodes protein(s) and the altered RuBisCO could be the proteomics leader of hybrid necrosis in wheat (Triticum aestivum L.)

    Indian Academy of Sciences (India)

    SI RUI PAN; XING LAI PAN; QIANYING PAN; YIN HONG SHI; LI ZHANG; YUN FAN; YAN RUI XUE

    2017-06-01

    Wheat hybrid necrosis is caused by the interaction of two dominant complementary genes, Ne1 and Ne2, located on chromosome arms 5BL and 2BS, respectively. The sequences of Ne1 or Ne2 have not yet been identified. It is also not known whether Ne1 and Ne2 are structural or regulatory genes. Understanding the proteomic pathways may provide a knowledge base for protecting or maximizing the photosynthesis capacity of wheat. Using DIGE and MALDITOF-TOF MS, the flag leaf protein patterns of the two unique F14 near-isogenic line siblings (NILs), the necrotic ShunMai 12Ah (Ne1Ne1Ne2Ne2) and the normal ShunMai 12Af (Ne1Ne1ne2ne2) were compared. Due to the presence or absence of Ne2, (i) three protein spots were expressed or disappeared, (ii) seven RuBisCO-related proteins were altered significantly, and (iii) 21 photosynthesis/glucose related proteins were changed significantly. Three hypotheses were deduced, (i) Ne1 may also encode protein(s), (ii) genetic maladjustment of RuBisCO could lead to early leaf death, and (iii) interactions between nuclear genes and chloroplast genes could determine photosynthetic traits. Our hypothetical model presents the RuBisCO pathway of hybrid necrosis in wheat and explains how Ne1 and Ne2 interact at molecular level.

  9. Identification of proteins involved in the functioning of Riftia pachyptila symbiosis by Subtractive Suppression Hybridization

    Directory of Open Access Journals (Sweden)

    Lallier François H

    2007-09-01

    Full Text Available Abstract Background Since its discovery around deep sea hydrothermal vents of the Galapagos Rift about 30 years ago, the chemoautotrophic symbiosis between the vestimentiferan tubeworm Riftia pachyptila and its symbiotic sulfide-oxidizing γ-proteobacteria has been extensively studied. However, studies on the tubeworm host were essentially targeted, biochemical approaches. We decided to use a global molecular approach to identify new proteins involved in metabolite exchanges and assimilation by the host. We used a Subtractive Suppression Hybridization approach (SSH in an unusual way, by comparing pairs of tissues from a single individual. We chose to identify the sequences preferentially expressed in the branchial plume tissue (the only organ in contact with the sea water and in the trophosome (the organ housing the symbiotic bacteria using the body wall as a reference tissue because it is supposedly not involved in metabolite exchanges in this species. Results We produced four cDNA libraries: i body wall-subtracted branchial plume library (BR-BW, ii and its reverse library, branchial plume-subtracted body wall library (BW-BR, iii body wall-subtracted trophosome library (TR-BW, iv and its reverse library, trophosome-subtracted body wall library (BW-TR. For each library, we sequenced about 200 clones resulting in 45 different sequences on average in each library (58 and 59 cDNAs for BR-BW and TR-BW libraries respectively. Overall, half of the contigs matched records found in the databases with good E-values. After quantitative PCR analysis, it resulted that 16S, Major Vault Protein, carbonic anhydrase (RpCAbr, cathepsin and chitinase precursor transcripts were highly represented in the branchial plume tissue compared to the trophosome and the body wall tissues, whereas carbonic anhydrase (RpCAtr, myohemerythrin, a putative T-Cell receptor and one non identified transcript were highly specific of the trophosome tissue. Conclusion Quantitative PCR

  10. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    Science.gov (United States)

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays.

  11. Structural analysis of a repetitive protein sequence motif in strepsirrhine primate amelogenin.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Lacruz

    Full Text Available Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL, the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates.

  12. Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin

    Science.gov (United States)

    Bromley, Keith M.; Hacia, Joseph G.; Bromage, Timothy G.; Snead, Malcolm L.; Moradian-Oldak, Janet; Paine, Michael L.

    2011-01-01

    Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates. PMID:21437261

  13. A Hybrid Approach to Structure and Function Modeling of G Protein-Coupled Receptors.

    Science.gov (United States)

    Latek, Dorota; Bajda, Marek; Filipek, Sławomir

    2016-04-25

    The recent GPCR Dock 2013 assessment of serotonin receptor 5-HT1B and 5-HT2B, and smoothened receptor SMO targets, exposed the strengths and weaknesses of the currently used computational approaches. The test cases of 5-HT1B and 5-HT2B demonstrated that both the receptor structure and the ligand binding mode can be predicted with the atomic-detail accuracy, as long as the target-template sequence similarity is relatively high. On the other hand, the observation of a low target-template sequence similarity, e.g., between SMO from the frizzled GPCR family and members of the rhodopsin family, hampers the GPCR structure prediction and ligand docking. Indeed, in GPCR Dock 2013, accurate prediction of the SMO target was still beyond the capabilities of most research groups. Another bottleneck in the current GPCR research, as demonstrated by the 5-HT2B target, is the reliable prediction of global conformational changes induced by activation of GPCRs. In this work, we report details of our protocol used during GPCR Dock 2013. Our structure prediction and ligand docking protocol was especially successful in the case of 5-HT1B and 5-HT2B-ergotamine complexes for which we provide one of the most accurate predictions. In addition to a description of the GPCR Dock 2013 results, we propose a novel hybrid computational methodology to improve GPCR structure and function prediction. This computational methodology employs two separate rankings for filtering GPCR models. The first ranking is ligand-based while the second is based on the scoring scheme of the recently published BCL method. In this work, we prove that the use of knowledge-based potentials implemented in BCL is an efficient way to cope with major bottlenecks in the GPCR structure prediction. Thereby, we also demonstrate that the knowledge-based potentials for membrane proteins were significantly improved, because of the recent surge in available experimental structures.

  14. Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein

    DEFF Research Database (Denmark)

    Jacobsen, Linda; Madsen, P; Moestrup, S K;

    1996-01-01

    the corresponding cDNA. The gene, designated SORL1, maps to chromosome 11q 23/24 and encodes a 2214-residue type 1 receptor containing a furin cleavage site immediately preceding the N terminus determined in the purified protein. The receptor, designated sorLA-1, has a short cytoplasmic tail containing a tyrosine......-based internalization signal and a large external part containing (from the N-terminal): 1) a segment homologous to domains in the yeast vacuolar protein sorting 10 protein, Vps10p, that binds carboxypeptidase Y, 2) five tandemly arranged YWTD repeats and a cluster of 11 class A repeats characteristic of the low...... density lipoprotein receptor gene family receptors, and 3) six tandemly arranged fibronectin type III repeats also found in certain neural adhesion proteins. sorLA-1 may therefore be classified as a hybrid receptor. Northern blotting revealed specific mRNA transcripts in brain, spinal cord, and testis...

  15. Proteome-Based Analysis of Colloidal Instability Enables the Detection of Haze-Active Proteins in Beer.

    Science.gov (United States)

    Schulte, Fabian; Flaschel, Erwin; Niehaus, Karsten

    2016-09-01

    Colloidal haze is a serious quality defect of bright beers that considerably reduces their shelf life and is thought to be triggered by hordeins, a class of proline-rich barley proteins. In this work, the proteomes of fresh and old beers were investigated in bottled pilsners and compared to the protein inventory of haze to identify specific haze-active proteins. Haze isolates dissolved in rehydration buffer contained high concentrations of proteins and sugars but provided protein gels with weak spot signals. Consequently, a treatment for the chemical deglycation with trifluoromethanesulfonic acid was applied, which resulted in the identification of protein Z4, LTP1, CMb, CMe, pUP13, 3a, and Bwiph as constituents of the haze proteome. Because only one hordein was detectable and the proline content in haze hydrolysates was lower than those of barley prolamins, our results suggest that this class of proteins is of minor importance for haze development.

  16. iTRAQ-coupled 2-D LC-MS/MS analysis of membrane protein profile in Escherichia coli incubated with apidaecin IB.

    Directory of Open Access Journals (Sweden)

    Yusi Zhou

    Full Text Available Apidaecins are a series of proline-rich, 18- to 20-residue antimicrobial peptides produced by insects. They are predominantly active against the gram-negative bacteria. Previous studies mainly focused on the identification of their internal macromolecular targets, few addressed on the action of apidaecins on the molecules, especially proteins, of bacterial cell membrane. In this study, iTRAQ-coupled 2-D LC-MS/MS technique was utilized to identify altered membrane proteins of Escherichia coli cells incubated with one isoform of apidaecins--apidaecin IB. Cell division protease ftsH, an essential regulator in maintenance of membrane lipid homeostasis, was found to be overproduced in cells incubated with apidaecin IB. Its over-expression intensified the degradation of cytoplasmic protein UDP-3-O-acyl-N- acetylglucosamine deacetylase, which catalyzes the first committed step in the biosynthesis of the lipid A moiety of LPS, and thus leaded to the further unbalanced biosynthesis of LPS and phospholipids. Our findings suggested a new antibacterial mechanism of apidaecins and perhaps, by extension, for other proline-rich antimicrobial peptides.

  17. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; Wolff, Jeremy J.; Somogyi, Árpád; Pedder, Randall E.; Quintyn, Royston S.; Morrison, Lindsay J.; Easterling, Michael L.; Paša-Tolić, Ljiljana; Wysocki, Vicki H.

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  18. Exploring Protein Interactions on a Minimal Type II Polyketide Synthase Using a Yeast Two-Hybrid System

    Directory of Open Access Journals (Sweden)

    Gaetano Castaldo

    2005-01-01

    Full Text Available Interactions between proteins that form the ’minimal’ type II polyketide synthase in the doxorubicin producing biosynthetic pathway from Streptomyces peucetius were investigated using a yeast two-hybrid system (Y2H. Proteins that function as the so called ’chain length factor’ (DpsB and putative transacylase (DpsD were found to interact with the ketosynthase subunit (DpsA, which can also interact with itself. On the basis of these results we propose a head-to-tail homodimeric structure, which is consistent with previously published in vivo mutagenesis studies. No interactions were found between the acyl-carrier protein (DpsG and any of the other constituents of the complex, however, transient interactions, not detectable using the Y2H system, cannot be discounted and warrant further investigation.

  19. Citrus psorosis virus: nucleotide sequencing of the coat protein gene and detection by hybridization and RT-PCR.

    Science.gov (United States)

    Barthe, G A; Ceccardi, T L; Manjunath, K L; Derrick, K S

    1998-06-01

    Citrus psorosis virus (CPV) is a multicomponent ssRNA virus with a coat protein of approximately 48 kDa. The viral genome is encapsidated in short and long particles that are readily separated by sucrose density-gradient centrifugation. CPV particles are spiral filaments that are referred to as spiroviruses (SV). A cDNA library of purified short particles from isolate CPV-4 was prepared in a Lambda vector and screened for expression of the coat protein gene (CPG) with a monoclonal antibody to the coat protein. Sequencing of immunopositive clones indicated a single ORF encoding a 49 kDa protein. This ORF, when expressed in E. coli, gave a protein identical in size and immunoreactivity to the CPV coat protein. A full-length clone of the CPG was transcribed and used in Northern hybridization assays to establish that short particle RNA of CPV is negative sense and contains the CPG. Moreover, the CPG was not found on RNA extracted from long particles or on the sedimentable dsRNA from CPV infected tissue. RT-PCR assays were developed for the amplification of a 600 bp fragment of CPG and for the complete CPG (1317 bp). The 600 bp fragment from a biologically and serologically different isolate, CPV-6, was cloned, sequenced and found to share 86% (nucleotide) and 96% (amino acid) identity with CPV-4. BLAST analysis of sequences from CPV-4 and CPV-6 detected no significant nucleic acid or protein similarity with any known viral sequences.

  20. Catalytic protein modification with dirhodium metallopeptides: specificity in designed and natural systems.

    Science.gov (United States)

    Chen, Zhen; Vohidov, Farrukh; Coughlin, Jane M; Stagg, Loren J; Arold, Stefan T; Ladbury, John E; Ball, Zachary T

    2012-06-20

    In this study, we present advances in the use of rhodium(II) metallopeptides for protein modification. Site-specific, proximity-driven modification is enabled by the unique combination of peptide-based molecular recognition and a rhodium catalyst capable of modifying a wide range of amino-acid side chains. We explore catalysis based on coiled-coil recognition in detail, providing an understanding of the determinants of specificity and culminating in the demonstration of orthogonal modification of separate proteins in cell lysate. In addition, the concepts of proximity-driven catalysis are extended to include modification of the natural Fyn SH3 domain with metallopeptides based on a known proline-rich peptide ligand. The development of orthogonal catalyst-substrate pairs for modification in lysate, and the extension of these methods to new natural protein domains, highlight the capabilities for new reaction design possible in chemical approaches to site-specific protein modification.

  1. Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-10-01

    Transfer of soybean seedlings to low-water-potential vermiculite (psi w = -0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205-214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealed that pGE23 has high homology with beta-tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of beta-tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.

  2. Two separate functions are encoded by the carboxyl-terminal domains of the yeast cyclase-associated protein and its mammalian homologs. Dimerization and actin binding.

    Science.gov (United States)

    Zelicof, A; Protopopov, V; David, D; Lin, X Y; Lustgarten, V; Gerst, J E

    1996-07-26

    The yeast adenylyl cyclase-associated protein, CAP, was identified as a component of the RAS-activated cyclase complex. CAP consists of two functional domains separated by a proline-rich region. One domain, which localizes to the amino terminus, mediates RAS signaling through adenylyl cyclase, while a domain at the carboxyl terminus is involved in the regulation of cell growth and morphogenesis. Recently, the carboxyl terminus of yeast CAP was shown to sequester actin, but whether this function has been conserved, and is the sole function of this domain, is unclear. Here, we demonstrate that the carboxyl-terminal domains of CAP and CAP homologs have two separate functions. We show that carboxyl-terminals of both yeast CAP and a mammalian CAP homolog, MCH1, bind to actin. We also show that this domain contains a signal for dimerization, allowing both CAP and MCH1 to form homodimers and heterodimers. The properties of actin binding and dimerization are mediated by separate regions on the carboxyl terminus; the last 27 amino acids of CAP being critical for actin binding. Finally, we present evidence that links a segment of the proline-rich region of CAP to its localization in yeast. Together, these results suggest that all three domains of CAP proteins are functional.

  3. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    Directory of Open Access Journals (Sweden)

    Hahnbeom Park

    Full Text Available Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  4. Screening of cellular proteins that interact with the classical swine fever virus non-structural protein 5A by yeast two-hybrid analysis

    Indian Academy of Sciences (India)

    Chengcheng Zhang; Lei He; Kai Kang; Heng Chen; Lei Xu; Yanming Zhang

    2014-03-01

    Classical swine fever virus (CSFV), the pathogen of classical swine fever (CSF), causes severe hemorrhagic fever and vascular necrosis in domestic pigs and wild boar. A large number of evidence has proven that non-structural 5A (NS5A) is not only a very important part of viral replication complex, but also can regulate host cell’s function; however, the underlying mechanisms remain poorly understood. In the current study, aiming to find more clues in understanding the molecular mechanisms of CSFV NS5A’s function, the yeast two-hybrid (Y2H) system was adopted to screen for CSFV NS5A interactive proteins in the cDNA library of the swine umbilical vein endothelial cell (SUVEC). Alignment with the NCBI database revealed 16 interactive proteins: DDX5, PSMC3, NAV1, PHF5A, GNB2L1, CSDE1, HSPA8, BRMS1, PPP2R3C, AIP, TMED10, POLR1C, TMEM70, METAP2, CHORDC1 and COPS6. These proteins are mostly related to gene transcription, protein folding, protein degradation and metabolism. The interactions detected by the Y2H system should be considered as preliminary results. Since identifying novel pathways and host targets, which play essential roles during infection, may provide potential targets for therapeutic development. The finding of proteins obtained from the SUVEC cDNA library that interact with the CSFV NS5A protein provide valuable information for better understanding the interactions between this viral protein and the host target proteins.

  5. Bone Formation in a Rat Tibial Defect Model Using Carboxymethyl Cellulose/BioC/Bone Morphogenic Protein-2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Sang-Heon Song

    2014-01-01

    Full Text Available The objective of this study was to assess whether carboxymethyl cellulose- (CMC- based hydrogel containing BioC (biphasic calcium phosphate (BCP; tricalcium phosphate (TCP : hydroxyapatite (Hap = 70 : 30 and bone morphogenic protein-2 (BMP-2 led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg. Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg. Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects.

  6. Screening of hepatocyte proteins binding to NS5ABP37 protein by yeast-two hybrid system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the biological function of NS5ABP37 and to look for proteins interacting with NS5ABP37 protein in hepatocytes.Methods We constructed bait plasmid expressing NS5ABP37 protein of hepatitis C virus(HCV)by cloning the gene of NS5ABP37 protein into pGBKT7,then the recombinant plasmid DNA was transformed into yeast AH109(α type).The transformed yeast AH109 was mated with yeast Y187(α type)containing liver cDNA library plasmid in 2×YPDA medium.Diploid yeast was plated on synthetic dropout ...

  7. Screening for proteins interacting with MCM7 in human lung cancer library using yeast two hybrid system

    Directory of Open Access Journals (Sweden)

    Yuchen HAN

    2008-08-01

    Full Text Available Background and objective MCM7 is a subunit of the MCM complex that plays a key role in DNA replication initiation. But little is known about its interaction proteins. In this study yeast two hybrid screening was used to identify the MCM7 interacting proteins. Methods Yeast expression vector containing human full length MCM7-pGBKT7 plasmid was constructed, and with a library of cDNAs from human lung cancer-pACT2 plasmid was transformed into yeast strain AH109, and was electively grew in X-a-gal auxotrophy medium SD/-Trp-Leu-His-Ade, and the blue colonies were picked up, the plasmid of the yeast colonies was extracted , and transformed into E. Coli to extract DNA and performed sequence analysis. Results Eleven proteins were identified which could specifically interact with MCM7 proteins, among these five were cytoskeleton proteins, six were enzymes, kinases and related receptors. Conclusion The investigation provides functional clues for further exploration of MCM7 gene.

  8. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    Directory of Open Access Journals (Sweden)

    Canard Bruno

    2011-10-01

    Full Text Available Abstract Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4. Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. Results We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. Conclusions We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.

  9. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.

    2013-07-12

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

  10. Differences in seminal plasma and spermatozoa antioxidative systems and seminal plasma lipid and protein levels among boar breeds and hybrid genetic traits.

    Science.gov (United States)

    Žura Žaja, Ivona; Samardžija, Marko; Vince, Silvijo; Vilić, Marinko; Majić-Balić, Ivanka; Đuričić, Dražen; Milinković-Tur, Suzana

    2016-07-01

    The objectives of this study were to determine the influence of breed and hybrid genetic traits of boars on lipid and protein concentrations and antioxidative system variables in seminal plasma (SP) and spermatozoa and their correlations with semen quality variables. Semen samples from 27 boars: Swedish Landraces (SL), German Landraces (GL), Large Whites (LW), Pietrains (P) and Pig Improvement Company hybrids (PIC-hybrid), aged from 1.5 to 3 years old, were collected. SP was spectrophotometrically analyzed to determine total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triacylglycerol (TAG), total protein (TP), albumin, and zinc concentrations. The antioxidative system in SP and spermatozoa was established spectrophotometrically by determining total antioxidative status (TAS), total superoxide dismutase (TSOD) and glutathione peroxidase (GSH-Px) parameters, as well as copper-zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) activity in spermatozoa. The hybrid boars had higher (Pspermatozoa of: TAS and CuZnSOD than SL; TSOD and GSH-Px than SL and P; and MnSOD than SL and LW. Differences in SP and spermatozoa antioxidative system variables and the significant differences in SP protein and lipid variables exist among boars of different breeds and hybrid. Novel data and observed differences in semen variables among boar breeds and hybrids and their correlations with semen quality parameters in this study could contribute to better assessment of boar semen quality.

  11. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber.

    Science.gov (United States)

    Hinman, M B; Lewis, R V

    1992-09-25

    Spider dragline silk is a unique protein fiber possessing both high tensile strength and high elasticity. A partial cDNA clone for one dragline silk protein (Spidroin 1) was previously isolated. However, the predicted amino acid sequence could not account for the amino acid composition of dragline silk. We have isolated a partial cDNA clone for another dragline silk protein (Spidroin 2), demonstrating that dragline silk is composed of multiple proteins. The amino acid sequence exhibits an entirely different repetitive motif than Spidroin 1. Spidroin 2 is predicted to consist of linked beta-turns in proline-rich regions which alternate with beta-sheet regions composed of polyalanine segments. This structure for Spidroin 2 provides a model for dragline silk structure and function.

  12. Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties.

    Science.gov (United States)

    Zaitsev, Sergei Yu; Solovyeva, Daria O; Nabiev, Igor

    2012-11-15

    The development and study of nano-bio hybrid materials engineered from membrane proteins (the key functional elements of various biomembranes) and nanoheterostructures (inorganic colloidal nanoparticles, transparent electrodes, and films) is a rapidly growing field at the interface of materials and life sciences. The mainspring of the development of bioinspired materials and devices is the fact that biological evolution has solved many problems similar to those that humans are attempting to solve in the field of light-harvesting and energy-transferring inorganic compounds. Along this way, bioelectronics and biophotonics have shown considerable promise. A number of proteins have been explored in terms of bioelectronic device applications, but bacteriorhodopsin (bR, a photosensitive membrane protein from purple membranes of the bacterium Halobacterium salinarum) and bacterial photosynthetic reaction centres have received the most attention. The energy harvesting in plants has a maximum efficiency of 5%, whereas bR, in the absence of a specific light-harvesting system, allows bacteria to utilize only 0.1-0.5% of the solar light. Recent nano-bioengineering approaches employing colloidal semiconductor and metal nanoparticles conjugated with biosystems permit the enhancement of the light-harvesting capacity of photosensitive proteins, thus providing a strong impetus to protein-based device optimisation. Fabrication of ultrathin and highly oriented films from biological membranes and photosensitive proteins is the key task for prospective bioelectronic and biophotonic applications. In this review, the main advances in techniques of preparation of such films are analyzed. Comparison of the techniques for obtaining thin films leads to the conclusion that the homogeneity and orientation of biomembrane fragments or proteins in these films depend on the method of their fabrication and increase in the following order: electrophoretic sedimentation advances in the techniques of

  13. Identification of interacting proteins with aryl hydrocarbon receptor in scallop Chlamys farreri by yeast two hybrid screening.

    Science.gov (United States)

    Cai, Yuefeng; Pan, Luqing; Miao, Jingjing; Liu, Tong

    2016-11-01

    The aryl hydrocarbon receptor (AhR) belongs to the basic-helix-loop helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors. AhR has been known primarily for its role in the regulation of several drug and xenobiotic metabolizing enzymes, as well as the mediation of the toxicity of certain xenobiotics, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Although the AhR is well-studied as a mediator of the toxicity of certain xenobiotics in marine bivalves, the normal physiological function remains unknown. In order to explore the function of the AhR, the bait protein expression plasmid pGBKT7-CfAhR and the cDNA library of gill from Chlamys farreri were constructed. By yeast two hybrid system, after multiple screening with the high screening rate medium, rotary verification, sequencing and bioinformatics analysis, the interactions of the CfAhR with receptor for activated protein kinase C 1 (RACK1), thyroid peroxidase-like protein (TPO), Toll-like receptor 4(TLR 4), androglobin-like, store-operated Ca(2+) entry (SocE), ADP/ATP carrier protein, cytochrome b, thioesterase, actin, ferritin subunit 1, poly-ubiquitin, short-chain collagen C4-like and one hypothetical protein in gill cells were identified. This study suggests that the CfAhR played fundamental roles in immune system homeostasis, oxidative stress response, and in grow and development of C. farreri. The elucidation of these protein interactions is of much importance both in understanding the normal physiological function of AhR, and as potential targets for further research on protein function in AhR interactions.

  14. Transactivating effect of complete S protein of hepatitis B virus and cloning of genes transactivated by complete S protein using suppression subtractive hybridization technique

    Institute of Scientific and Technical Information of China (English)

    Gui-Qin Bai; Yan Liu; Jun Cheng; Shu-Lin Zhang; Ya-Fei Yue; Yan-Ping Huang; Li-Ying Zhang

    2005-01-01

    AIM: To investigate the transactivating effect of complete S protein of hepatitis B virus (HBV) and to construct a subtractive cDNA library of genes transactivated by complete S protein of HBV by suppression subtractive hybridization (SSH) technique and to clone genes associated with its transactivation activity, and to pave the way for elucidating the pathogenesis of hepatitis B virus infection.METHODS: pcDNA3.1(-)-complete S containing full-length HBV S gene was constructed by insertion of HBV complete S gene into BarmH-I/Kpn I sites. HepG2 cells were cotransfected with pcDNA3.1(-)-complete S and pSV-lacZ.After 48 h, cells were collected and detected for the expression of β-galactosidase (β-gal). Suppression subtractive hybridization and bioinformatics techniques were used.The mRNA of HepG2 cells transfected with pcDNA3.1(-)-complete S and pcDNA3.1(-) empty vector was isolated,and detected for the expression of complete S protein by reverse transcription polymerase chain reaction (RT-PCR)method, and cDNA was synthesized. After digestion with restriction enzyme RcaI, cDNA fragments were obtained.Tester cDNA was then divided into two groups and ligated to the specific adaptors 1 and 2, respectively. After tester cDNA had been hybridized with driver cDNA twice and underwent nested PCR twice, amplified cDNA fragments were subcloned into pGEM-Teasy vectors to set up the subtractive library. Amplification of the library was carried out within E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with BLAST search after polymerase chain reaction (PCR) amplification.RESULTS: The complete S mRNA could be detected by RT-PCR in HepG2 cells transfected with the pcDNA3.1(-)-complete S. The activity of β-gal in HepG2 cells transfected with the pcDNA3.1(-)-complete S was 6.9 times higher than that of control plasmid. The subtractive library of genes transactivated by HBV complete S protein was constructed successfully. The amplified library contains 86

  15. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    Science.gov (United States)

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    Science.gov (United States)

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  17. [The determination of the genotype of natural reassortant influenza A viruses according to the core protein genes by the methods of competitive dot hybridization and sequencing].

    Science.gov (United States)

    Grinbaum, E B; Zolotarev, F N; Petrov, N A; Litvinova, O M; Konovalenko, I B; Luzianina, T Ia; Golubev, D B

    1992-01-01

    Simultaneous circulation of different subtypes of influenza A viruses provides conditions for reassortant strains formation. A comparative investigation of genome of 47 influenza A virus strains (H1N1, H2N2, and H3N2) was carried out by competitive dot hybridization technique and sequence analysis of some of cDNA-copies of the virus genes. All the genes of 43 strains encoding nonglycolysed proteins corresponded to the serum subtype of surface glycoproteins. The reassortant pattern of genome for some genes of core proteins was revealed in 4 viruses. All the dot hybridization data were completely confirmed by sequence analysis of the genes.

  18. Polymerization Degrees, Molecular Weights and Protein-Binding Affinities of Condensed Tannin Fractions from a Leucaena leucocephala Hybrid

    Directory of Open Access Journals (Sweden)

    Mookiah Saminathan

    2014-06-01

    Full Text Available Condensed tannins (CTs form insoluble complexes with proteins and are able to protect them from degradation, which could lead to rumen bypass proteins. Depending on their degrees of polymerization (DP and molecular weights, CT fractions vary in their capability to bind proteins. In this study, purified condensed tannins (CTs from a Leucaena leucocephala hybrid were fractionated into five different molecular weight fractions. The structures of the CT fractions were investigated using 13C-NMR. The DP of the CT fractions were determined using a modified vanillin assay and their molecular weights were determined using Q-TOF LC-MS. The protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay. The DP of the five CT fractions (fractions F1–F5 measured by the vanillin assay in acetic acid ranged from 4.86 to 1.56. The 13C-NMR results showed that the CT fractions possessed monomer unit structural heterogeneity. The number-average molecular weights (Mn of the different fractions were 1265.8, 1028.6, 652.2, 562.2, and 469.6 for fractions F1, F2, F3, F4, and F5, respectively. The b values representing the CT quantities needed to bind half of the maximum precipitable bovine serum albumin increased with decreasing molecular weight—from fraction F1 to fraction F5 with values of 0.216, 0.295, 0.359, 0.425, and 0.460, respectively. This indicated that higher molecular weight fractions of CTs from L. leucocephala have higher protein-binding affinities than those with lower molecular weights.

  19. Polymerization degrees, molecular weights and protein-binding affinities of condensed tannin fractions from a Leucaena leucocephala hybrid.

    Science.gov (United States)

    Saminathan, Mookiah; Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Wong, Clemente Michael Vui Ling; Abdulmalek, Emilia; Ho, Yin Wan

    2014-06-12

    Condensed tannins (CTs) form insoluble complexes with proteins and are able to protect them from degradation, which could lead to rumen bypass proteins. Depending on their degrees of polymerization (DP) and molecular weights, CT fractions vary in their capability to bind proteins. In this study, purified condensed tannins (CTs) from a Leucaena leucocephala hybrid were fractionated into five different molecular weight fractions. The structures of the CT fractions were investigated using 13C-NMR. The DP of the CT fractions were determined using a modified vanillin assay and their molecular weights were determined using Q-TOF LC-MS. The protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay. The DP of the five CT fractions (fractions F1-F5) measured by the vanillin assay in acetic acid ranged from 4.86 to 1.56. The 13C-NMR results showed that the CT fractions possessed monomer unit structural heterogeneity. The number-average molecular weights (Mn) of the different fractions were 1265.8, 1028.6, 652.2, 562.2, and 469.6 for fractions F1, F2, F3, F4, and F5, respectively. The b values representing the CT quantities needed to bind half of the maximum precipitable bovine serum albumin increased with decreasing molecular weight--from fraction F1 to fraction F5 with values of 0.216, 0.295, 0.359, 0.425, and 0.460, respectively. This indicated that higher molecular weight fractions of CTs from L. leucocephala have higher protein-binding affinities than those with lower molecular weights.

  20. A method for the separation of hybrids of chromatographically identical oligomeric proteins. Use of 3,4,5,6-tetrahydrophthaloyl groups as a reversible "chromatographic handle".

    Science.gov (United States)

    Gibbons, I; Schachman, H K

    1976-01-13

    Hybridization experiments with variants of an oligomeric protein often provide important information regarding subunit structure, function, and interactions. In some systems, however, the variants are so similar electrophoretically and chromatographically that purification of individual hybrids is not feasible. Therefore a method was developed for preparing hybrids by using 3,4,5,6-tetrahydrophthalic anhydride as a reversible acylating agent for protein amino groups. The technique involved acylating about 30% of the amino groups at pH 8 to give a derivative with a markedly altered net charge, formation of the hybrid set with unmodified and modified species, separation of the individual components by ion-exchange chromatography, and finally removal of the tetrahydrophthaloyl groups from the desired hybrid by incubation for about 1 day at pH 6 and room temperature. Experiments with model compounds and two enzymes showed that the anhydride was sepcific for amino groups. The extent of modification of proteins was measured by the spectral change at 250 nm, the loss of free amino groups, and the change in electrophoretic mobility of the polypeptide chains in polyacrylamide gels containing 8 M urea. Deacylation of modified, inactive aldolase and the catalytic subunit of aspartate transcarbamylase led to the restoration of the enzyme activity and electrophoretic mobility of the unmodified proteins. Both intra- and inter-subunit hybrids of aspartate transcarbamylase were prepared and isolated by using the tetrahydrophthaloyl groups as a reversible "chromatographic handle". Prior to deacylation the inter-subunit hybrid containing one acylated and one native catalytic subunit (and negative regulatory sub-units) exhibited no homotropic cooperativity and after deacylation the characteristic allosteric properties of the enzyme were regained. Similarly the ligand-promoted conformational changes associated with the allosteric transition were resotred upon deacylation of the intra

  1. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium

    DEFF Research Database (Denmark)

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel

    2015-01-01

    -domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover...

  2. Allotides: Proline-Rich Cystine Knot α-Amylase Inhibitors from Allamanda cathartica.

    Science.gov (United States)

    Nguyen, Phuong Q T; Luu, Thuy T; Bai, Yang; Nguyen, Giang K T; Pervushin, Konstantin; Tam, James P

    2015-04-24

    Cystine knot α-amylase inhibitors belong to a knottin family of peptidyl inhibitors of 30-32 residues and contain two to four prolines. Thus far, only four members of the group of cystine knot α-amylase inhibitors have been characterized. Herein, the discovery and characterization of five cystine knot α-amylase inhibitors, allotides C1-C5 (Ac1-Ac5) (1-5), from the medicinal plant Allamanda cathartica are reported using both proteomic and genomic methods. Proteomic analysis showed that 1-5 are 30 amino acids in length with three or four proline residues. NMR determination of 4 revealed that it has two cis- and one trans-proline residues and adopts two equally populated conformations in solution. Determination of disulfide connectivity of 2 by differential S-reduction and S-alkylation provided clues of its unfolding process. Genomic analysis showed that allotide precursors contain a three-domain arrangement commonly found in plant cystine knot peptides with conserved residues flanking the processing sites of the mature allotide domain. This work expands the number of known cystine knot α-amylase inhibitors and furthers the understanding of both the structural and biological diversity of this type of knottin family.

  3. Perturbation in protein expression of the sterile salmonid hybrids between female brook trout Salvelinus fontinalis and male masu salmon Oncorhynchus masou during early spermatogenesis.

    Science.gov (United States)

    Zheng, Liang; Senda, Yoshie; Abe, Syuiti

    2013-05-01

    Most males and females of intergeneric hybrid (BM) between female brook trout (Bt) Salvelinus fontinalis and male masu salmon (Ms) Oncorhynchus masou had undeveloped gonads, with abnormal germ cell development shown by histological examination. To understand the cause of this hybrid sterility, expression profiles of testicular proteins in the BM and parental species were examined with 2-DE coupled with MALDI-TOF/TOF MS. Compared with the parental species, more than 60% of differentially expressed protein spots were down-regulated in BM. A total of 16 up-regulated and 48 down-regulated proteins were identified in BM. Up-regulated were transferrin and other somatic cell-predominant proteins, whereas down-regulated were some germ cell-specific proteins such as DEAD box RNA helicase Vasa. Other pronouncedly down-regulated proteins included tubulins and heat shock proteins that are supposed to have roles in spermatogenesis. The present findings suggest direct association of the observed perturbation in protein expression with the failure of spermatogenesis and the sterility in the examined salmonid hybrids.

  4. Screening proteins that interact with mutant superoxide dismutase 1 from familial amyotrophic lateral sclerosis using a yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    Guisheng Chen; Xu Peng; Shugui Shi; Lusi Li; Kangning Chen; Ju Hu; Zhenhua Zhou; Jun Wu; Gaoxing Luo; Shunzong Yuan

    2011-01-01

    The present study screened a human fetal brain cDNA library to find the proteins that interact with mutant superoxide dismutase 1 (SOD1) using a yeast two-hybrid system. Using BLAST software, 15 real proteins which interacted with mutant SOD1 were obtained, including 8 known proteins (protein tyrosine-phosphatase non-receptor type 2, TBC1D4, protein kinase family, splicing factor, arginine/serine-rich 2, SRC protein tyrosine kinase Fyn, β-sarcoglycan; glycine receptor α2, microtubule associated protein/microtubule affinity-regulating kinase 1, ferritin H chain), and 7 unknown proteins. Results demonstrated interaction of mutant SOD1 with microtubule associated protein/microtubule affinity-regulating kinase 1 and β-sarcoglycan.

  5. DNA aptamer release from the DNA-SWNT hybrid by protein recognition.

    Science.gov (United States)

    Yoo, Chang-Hyuk; Jung, Seungwon; Bae, Jaehyun; Kim, Gunn; Ihm, Jisoon; Lee, Junghoon

    2016-02-14

    Here we show the formation of the complex between a DNA aptamer and a single-walled carbon nanotube (SWNT) and its reaction with its target protein. The aptamer, which is specifically bound with thrombin, the target protein in this study, easily wraps and disperses the SWNT by noncovalent π-π stacking.

  6. Larval salivary glue protein heterosis and dosage compensation among the interspecific F1 hybrids of Drosophila nasuta nasuta and Drosophila nasuta albomicans

    Directory of Open Access Journals (Sweden)

    Raghavan Prithi

    2016-01-01

    Full Text Available Reciprocal cross effects with respect to larval salivary secretory protein levels were studied in the interspecific fertile reciprocal hybrids by crossing Drosophila nasuta nasuta, and Drosophila nasuta albomicans. These proteins are produced copiously during the third larval instar stage and are believed to play a role in the attachment of pupa to the substratum prior to pupariation as well as in insect immunity. Quantitative variations were encountered among the reciprocal hybrids. Significant heterosis was observed between D. n. nasuta and the F1 hybrid female of a cross between D. n. albomicans female and D. n. nasuta male (21.39% while the F1 hybrids of a cross between D. n. nasuta female and D. n. albomicans male showed a marginal increase (4.24% from the mid parent level. The glue secretions were correlated to total cell number but independent of gland size. SDS PAGE revealed a considerable heterosis with respect to X-linked protein fractions. Here we report sex specific biochemical heterosis. However the X-linked fractions undergo dosage compensation in both parents and hybrids indicating strict regulatory control.

  7. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.

    Directory of Open Access Journals (Sweden)

    Marijn T J van Loenhout

    Full Text Available The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.

  8. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.

    2012-04-19

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein\\'s associated spectral peaks. However, typical MS-based proteomics datasets have substantial proportions of missing observations, due at least in part to censoring of low intensities. This complicates intensity-based differential expression analysis. RESULTS: We outline a statistical method for protein differential expression, based on a simple Binomial likelihood. By modeling peak intensities as binary, in terms of \\'presence/absence,\\' we enable the selection of proteins not typically amenable to quantitative analysis; e.g. \\'one-state\\' proteins that are present in one condition but absent in another. In addition, we present an analysis protocol that combines quantitative and presence/absence analysis of a given dataset in a principled way, resulting in a single list of selected proteins with a single-associated false discovery rate. AVAILABILITY: All R code available here: http://www.stat.tamu.edu/~adabney/share/xuan_code.zip.

  9. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.

    Science.gov (United States)

    van Loenhout, Marijn T J; De Vlaminck, Iwijn; Flebus, Benedetta; den Blanken, Johan F; Zweifel, Ludovit P; Hooning, Koen M; Kerssemakers, Jacob W J; Dekker, Cees

    2013-01-01

    The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.

  10. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles

    Science.gov (United States)

    Weidner, A.; Gräfe, C.; von der Lühe, M.; Remmer, H.; Clement, J. H.; Eberbeck, D.; Ludwig, F.; Müller, R.; Schacher, F. H.; Dutz, S.

    2015-07-01

    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on corona

  11. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles.

    Science.gov (United States)

    Weidner, A; Gräfe, C; von der Lühe, M; Remmer, H; Clement, J H; Eberbeck, D; Ludwig, F; Müller, R; Schacher, F H; Dutz, S

    2015-12-01

    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on

  12. Design and Construction of Generalizable RNA-Protein Hybrid Controllers by Level-Matched Genetic Signal Amplification.

    Science.gov (United States)

    Wang, Yen-Hsiang; McKeague, Maureen; Hsu, Tammy M; Smolke, Christina D

    2016-12-21

    For synthetic biology applications, protein-based transcriptional genetic controllers are limited in terms of orthogonality, modularity, and portability. Although ribozyme-based switches can address these issues, their current two-stage architectures and limited dynamic range hinder their broader incorporation into systems-level genetic controllers. Here, we address these challenges by implementing an RNA-protein hybrid controller with a three-stage architecture that introduces a transcription-based amplifier between an RNA sensor and a protein actuator. To facilitate the construction of these more complex circuits, we use a model-guided strategy to efficiently match the activities of stages. The presence of the amplifier enabled the three-stage controller to have up to 200-fold higher gene expression than its two-stage counterpart and made it possible to implement higher-order controllers, such as multilayer Boolean logic and feedback systems. The modularity inherent in the three-stage architecture along with the sensing flexibility of RNA devices presents a generalizable framework for designing and building sophisticated genetic control systems.

  13. The Yeast Split-Ubiquitin Membrane Protein Two-Hybrid Screen Identifies BAP31 as a Regulator of the Turnover of Endoplasmic Reticulum-Associated Protein Tyrosine Phosphatase-Like B

    OpenAIRE

    Wang, Bing; Pelletier, Jerry; Massaad, Michel J.; Herscovics, Annette; Shore, Gordon C

    2004-01-01

    In the past decade, traditional yeast two-hybrid techniques have identified a plethora of interactions among soluble proteins operating within diverse cellular pathways. The discovery of associations between membrane proteins by genetic approaches, on the other hand, is less well established due to technical limitations. Recently, a split-ubiquitin system was developed to overcome this barrier, but so far, this system has been limited to the analysis of known membrane protein interactions. He...

  14. Using the Yeast Three-Hybrid System to Identify Proteins that Interact with a Phloem-Mobile mRNA.

    Science.gov (United States)

    Cho, Sung Ki; Kang, Il-Ho; Carr, Tyrell; Hannapel, David J

    2012-01-01

    Heterografting and RNA transport experiments have demonstrated the long-distance mobility of StBEL5 RNA, its role in controlling tuber formation, and the function of the 503-nt 3' untranslated region (UTR) of the RNA in mediating transport. Because the 3' UTR of StBEL5 is a key element in regulating several aspects of RNA metabolism, a potato leaf cDNA library was screened using the 3' UTR of StBEL5 as bait in the yeast three-hybrid (Y3H) system to identify putative partner RNA-binding proteins (RBPs). From this screen, 116 positive cDNA clones were isolated based on nutrient selection, HIS3 activation, and lacZ induction and were sequenced and classified. Thirty-five proteins that were predicted to function in either RNA- or DNA-binding were selected from this pool. Seven were monitored for their expression profiles and further evaluated for their capacity to bind to the 3' UTR of StBEL5 using β-galactosidase assays in the Y3H system and RNA gel-shift assays. Among the final selections were two RBPs, a zinc finger protein, and one protein, StLSH10, from a family involved in light signaling. In this study, the Y3H system is presented as a valuable tool to screen and verify interactions between target RNAs and putative RBPs. These results can shed light on the dynamics and composition of plant RNA-protein complexes that function to regulate RNA metabolism.

  15. Hybrid metabolic flux analysis and recombinant protein prediction in Pichia pastoris X-33 cultures expressing a single-chain antibody fragment.

    Science.gov (United States)

    Isidro, Inês A; Portela, Rui M; Clemente, João J; Cunha, António E; Oliveira, Rui

    2016-09-01

    Despite the growing importance of the Pichia pastoris expression system as industrial workhorse, the literature is almost absent in systematic studies on how culture medium composition affects central carbon fluxes and heterologous protein expression. In this study we investigate how 26 variations of the BSM+PTM1 medium impact central carbon fluxes and protein expression in a P. pastoris X-33 strain expressing a single-chain antibody fragment. To achieve this goal, we adopted a hybrid metabolic flux analysis (MFA) methodology, which is a modification of standard MFA to predict the rate of synthesis of recombinant proteins. Hybrid MFA combines the traditional parametric estimation of central carbon fluxes with non-parametric statistical modeling of product-related quantitative or qualitative measurements as a function of central carbon fluxes. It was observed that protein yield variability was 53.6 % (relative standard deviation) among the different experiments. Protein yield is much more sensitive to medium composition than biomass growth, which is mainly determined by the carbon source availability and main salts. Hybrid MFA was able to describe accurately the protein yield with normalized RMSE of 6.3 % over 5 independent experiments. The metabolic state that promotes high protein yields is characterized by high overall metabolic rates through main central carbon pathways concomitantly with a relative shift of carbon flux from biosynthetic towards energy generating pathways.

  16. Non-uniform binding of single-stranded DNA binding proteins to hybrids of single-stranded DNA and single-walled carbon nanotubes observed by atomic force microscopy in air and in liquid

    Science.gov (United States)

    Umemura, Kazuo; Ishizaka, Kei; Nii, Daisuke; Izumi, Katsuki

    2016-12-01

    Using atomic force spectroscopy (AFM), we observed hybrids of single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWNTs) with or without protein molecules in air and in an aqueous solution. This is the first report of ssDNA-SWNT hybrids with proteins in solution analyzed by AFM. In the absence of protein, the height of the ssDNA-SWNT hybrids was 1.1 ± 0.3 nm and 2.4 ± 0.6 nm in air and liquid, respectively, suggesting that the ssDNA molecules adopted a flexible structure on the SWNT surface. In the presence of single-stranded DNA binding (SSB) proteins, the heights of the hybrids in air and liquid increased to 6.4 ± 3.1 nm and 10.0 ± 4.5 nm, respectively. The AFM images clearly showed binding of the SSB proteins to the ssDNA-SWNT hybrids. The morphology of the SSB-ssDNA-SWNT hybrids was non-uniform, particularly in aqueous solution. The variance of hybrid height was quantitatively estimated by cross-section analysis along the long-axis of each hybrid. The SSB-ssDNA-SWNT hybrids showed much larger variance than the ssDNA-SWNT hybrids.

  17. Glom Is a Novel Mitochondrial DNA Packaging Protein in Physarum polycephalum and Causes Intense Chromatin Condensation without Suppressing DNA Functions

    Science.gov (United States)

    Sasaki, Narie; Kuroiwa, Haruko; Nishitani, Chikako; Takano, Hiroyoshi; Higashiyama, Tetsuya; Kobayashi, Tamaki; Shirai, Yuki; Sakai, Atsushi; Kawano, Shigeyuki; Murakami-Murofushi, Kimiko; Kuroiwa, Tsuneyoshi

    2003-01-01

    Mitochondrial DNA (mtDNA) is packed into highly organized structures called mitochondrial nucleoids (mt-nucleoids). To understand the organization of mtDNA and the overall regulation of its genetic activity within the mt-nucleoids, we identified and characterized a novel mtDNA packaging protein, termed Glom (a protein inducing agglomeration of mitochondrial chromosome), from highly condensed mt-nucleoids of the true slime mold, Physarum polycephalum. This protein could bind to the entire mtDNA and package mtDNA into a highly condensed state in vitro. Immunostaining analysis showed that Glom specifically localized throughout the mt-nucleoid. Deduced amino acid sequence revealed that Glom has a lysine-rich region with proline-rich domain in the N-terminal half and two HMG boxes in C-terminal half. Deletion analysis of Glom revealed that the lysine-rich region was sufficient for the intense mtDNA condensation in vitro. When the recombinant Glom proteins containing the lysine-rich region were expressed in Escherichia coli, the condensed nucleoid structures were observed in E. coli. Such in vivo condensation did not interfere with transcription or replication of E. coli chromosome and the proline-rich domain was essential to keep those genetic activities. The expression of Glom also complemented the E. coli mutant lacking the bacterial histone-like protein HU and the HMG-boxes region of Glom was important for the complementation. Our results suggest that Glom is a new mitochondrial histone-like protein having a property to cause intense DNA condensation without suppressing DNA functions. PMID:12960433

  18. ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles.

    Science.gov (United States)

    Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G; Gelly, Jean-Christophe

    2016-06-20

    Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation -with Protein Blocks-, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the 'Hard' category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/.

  19. Overproduction, purification, crystallization and preliminary X-ray analysis of the peroxiredoxin domain of a larger natural hybrid protein from Thermotoga maritima

    Energy Technology Data Exchange (ETDEWEB)

    Barbey, Carole, E-mail: carole.barbey@smbh.univ-paris13.fr [Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR 7033, Université Paris 13, UFR SMBH, 74 Rue Marcel Cachin, 93017 Bobigny CEDEX (France); Rouhier, Nicolas [Unité Mixte de Recherches 1136 INRA UHP (Interaction Arbres Microorganismes), IFR 110, Nancy Université BP 239, 54506 Vandoeuvre-lès-Nancy CEDEX (France); Haouz, Ahmed [Plate-forme de Cristallogenèse et Diffraction des Rayons X, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris (France); Navaza, Alda [Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR 7033, Université Paris 13, UFR SMBH, 74 Rue Marcel Cachin, 93017 Bobigny CEDEX (France); Jacquot, Jean-Pierre [Unité Mixte de Recherches 1136 INRA UHP (Interaction Arbres Microorganismes), IFR 110, Nancy Université BP 239, 54506 Vandoeuvre-lès-Nancy CEDEX (France); Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR 7033, Université Paris 13, UFR SMBH, 74 Rue Marcel Cachin, 93017 Bobigny CEDEX (France)

    2008-01-01

    Crystals of the peroxiredoxin domain of a larger natural hybrid protein from T. maritima were obtained which diffracted to 2.9 Å resolution on a synchrotron source. Thermotoga maritima contains a natural hybrid protein constituted of two moieties: a peroxiredoxin domain at the N-terminus and a nitroreductase domain at the C-terminus. The peroxiredoxin (Prx) domain has been overproduced and purified from Escherichia coli cells. The recombinant Prx domain, which is homologous to bacterial Prx BCP and plant Prx Q, folds properly into a stable protein that possesses biological activity. The recombinant protein was crystallized and synchrotron data were collected to 2.9 Å resolution. The crystals belonged to the tetragonal space group I422, with unit-cell parameters a = b = 176.67, c = 141.20 Å.

  20. Preparation of protein-like silver-cysteine hybrid nanowires and application in ultrasensitive immunoassay of cancer biomarker.

    Science.gov (United States)

    Chen, Wenjuan; Zheng, Liyan; Wang, Meilan; Chi, Yuwu; Chen, Guonan

    2013-10-15

    Novel protein-like silver-cysteine hybrid nanowires (p-SCNWs) have been synthesized by a green, simple, nontemplate, seedless, and one-step aqueous-phase approach. AgNO3 and l-cysteine were dissolved in distilled water, forming Ag-cysteine precipitates and HNO3. Under vigorous stirring, the pH of the solution was rapidly adjusted to 9.0 by addition of concentrated sodium hydroxide solution, leading to quick dissolution of the Ag-cysteine precipitates and sudden appearance of white precipitates of p-SCNWs. The p-SCNWs are monodispersed nanowires with diameter of 100 nm and length of tens of micrometers, and have abundant carboxyl (-COOH) and amine (-NH2) groups at their surfaces, large amounts of peptide-linkages and S-bonding silver ions (Ag(+)) inside, making them look and act like Ag-hybrid protein nanostructures. The abundant -COOH and -NH2 groups at the surfaces of p-SCNWs have been found to facilitate the reactions between the p-SCNWs and proteins including antibodies. Furthermore, the fact that the p-SCNWs contain large amounts of silver ions enables biofunctionalized p-SCNWs to be excellent signal amplifying chemiluminescence labels for ultrasensitive and highly selective detection of important antigens, such as cancer biomarkers. In this work, the immunoassay of carcinoembryonic antigen (CEA) in human serum was taken as an example to demonstrate the immunoassay applications of antibody-functionalized p-SCNWs. By the novel p-SCNW labels, CEA can be detected in the linear range from 5 to 400 fg/mL with a limit of detection (LOD) of 2.2 fg/mL (at signal-to-noise ratio of 3), which is much lower than that obtained by commercially available enzyme-linked immunosorbent assay (ELISA). Therefore, the synthesized p-SCNWs are envisioned to be an excellent carrier for proteins and related immunoassay strategy would have promising applications in ultrasensitive clinical screening of cancer biomarkers for early diagnostics of cancers.

  1. Yeast Two-Hybrid Studies on Interaction of Proteins Involved in Regulation of Nitrogen Fixation in the Phototrophic Bacterium Rhodobacter capsulatus

    OpenAIRE

    Pawlowski, Alice; Riedel, Kai-Uwe; Klipp, Werner; Dreiskemper, Petra; Groß, Silke; Bierhoff, Holger; Drepper, Thomas; Masepohl, Bernd

    2003-01-01

    Rhodobacter capsulatus contains two PII-like proteins, GlnB and GlnK, which play central roles in controlling the synthesis and activity of nitrogenase in response to ammonium availability. Here we used the yeast two-hybrid system to probe interactions between these PII-like proteins and proteins known to be involved in regulating nitrogen fixation. Analysis of defined protein pairs demonstrated the following interactions: GlnB-NtrB, GlnB-NifA1, GlnB-NifA2, GlnB-DraT, GlnK-NifA1, GlnK-NifA2, ...

  2. Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction.

    Science.gov (United States)

    Zhou, Jun; Xu, Mingdi; Tang, Dianping; Gao, Zhuangqiang; Tang, Juan; Chen, Guonan

    2012-12-28

    A label-free, non-enzyme immunosensing strategy is designed for ultrasensitive electronic detection of disease-related proteins (carcinoembryonic antigen as a model) by using gold nanoparticle-based bio-bar codes and an in situ amplified DNA-based hybridization chain reaction.

  3. Screening of the interacting proteins with NifA in Azospirillum brasilense Sp7 by the yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    CHEN Sanfeng; GUAN Yu; TU Ran; SUN Wengai; LI Jilun

    2005-01-01

    NifA in Azospirillum brasilense plays a key role in regulating the synthesis and activity of nitrogenase in response to ammonia and oxygen available. In this work we used the yeast two-hybrid system to identify the proteins that interact with NifA. The nifA gene was fused to the yeast two-hybrid vector pGBD-C2, and three A. brasilense Sp7 genomic libraries for use in yeast two-hybrid studies were constructed. Screening of the libraries identified four clones encoding proteins that interact with NifA. The confirmation of the interactions of each gene product of the four clones and NifA were carried out by exchanging the vectors for nifA and the four clones and by mutageneses of the four clones with shift reading frame experiments in yeast two-hybrid studies. DNA sequence analyses showed that two clones encode proteins containing PAS domains that play an important role in signal transduction. One clone has high similarity with the fhuE gene of Escherichia coli, whose gene product is involved in iron uptake and transportation, and the other clone encodes an unknown protein.

  4. Titantium Dioxide Nanoparticles Assembled by DNA Molecules Hybridization and Loading of DNA Interacting Proteins.

    Science.gov (United States)

    Wu, Aiguo; Paunesku, Tatjana; Brown, Eric M B; Babbo, Angela; Cruz, Cecille; Aslam, Mohamed; Dravid, Vinayak; Woloschak, Gayle E

    2008-02-01

    This work demonstrates the assembly of TiO(2) nanoparticles with attached DNA oligonucleotides into a 3D mesh structure by allowing base pairing between oligonucleotides. A change of the ratio of DNA oligonucleotide molecules and TiO(2) nanoparticles regulates the size of the mesh as characterized by UV-visible light spectra, transmission electron microscopy and atomic force microscopy images. This type of 3D mesh, based on TiO(2)-DNA oligonucleotide nanoconjugates, can be used for studies of nanoparticle assemblies in material science, energy science related to dye-sensitized solar cells, environmental science as well as characterization of DNA interacting proteins in the field of molecular biology. As an example of one such assembly, proliferating cell nuclear antigen protein (PCNA) was cloned, its activity verified, and the protein was purified, loaded onto double strand DNA oligonucleotide-TiO(2) nanoconjugates, and imaged by atomic force microscopy. This type of approach may be used to sample and perhaps quantify and/or extract specific cellular proteins from complex cellular protein mixtures affinity based on their affinity for chosen DNA segments assembled into the 3D matrix.

  5. Identification of novel protein-protein interactions of Yersinia pestis type III secretion system by yeast two hybrid system.

    Directory of Open Access Journals (Sweden)

    Huiying Yang

    Full Text Available Type III secretion system (T3SS of the plague bacterium Y. pestis encodes a syringe-like structure consisting of more than 20 proteins, which can inject virulence effectors into host cells to modulate the cellular functions. Here in this report, interactions among the possible components in T3SS of Yersinia pestis were identified using yeast mating technique. A total of 57 genes, including all the pCD1-encoded genes except those involved in plasmid replication and partition, pseudogenes, and the putative transposase genes, were subjected to yeast mating analysis. 21 pairs of interaction proteins were identified, among which 9 pairs had been previously reported and 12 novel pairs were identified in this study. Six of them were tested by GST pull down assay, and interaction pairs of YscG-SycD, YscG-TyeA, YscI-YscF, and YopN-YpCD1.09c were successfully validated, suggesting that these interactions might play potential roles in function of Yersinia T3SS. Several potential new interactions among T3SS components could help to understand the assembly and regulation of Yersinia T3SS.

  6. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets.

    Science.gov (United States)

    Guzmán Prieto, Ana M; Urbanus, Rolf T; Zhang, Xinglin; Bierschenk, Damien; Koekman, C Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P; Pape, Marieke; Paganelli, Fernanda L; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P A; Bonten, Marc J M; Willems, Rob J L; van Schaik, Willem

    2015-12-17

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.

  7. Protein-precipitable tannin in wines from Vitis vinifera and interspecific hybrid grapes (Vitis ssp.): differences in concentration, extractability, and cell wall binding.

    Science.gov (United States)

    Springer, Lindsay F; Sacks, Gavin L

    2014-07-30

    Although they possess significant viticultural advantages, interspecific hybrid grapes (Vitis spp.) are reported to produce wine with lower tannin concentrations than European wine varieties (Vitis vinifera). However, extensive quantitative data on this phenomenon as well as mechanistic explanations for these differences are lacking. A survey of primarily commercial wines from the Finger Lakes American Viticultural Area (New York) using a protein precipitation method determined that hybrid-based wines had >4-fold lower tannin concentrations than vinifera wines. To elucidate factors responsible for differences in wine tannin, 24 wines were produced from both red hybrid and vinifera cultivars under identical conditions. Lower wine tannin in French-American hybrid- than vinifera-based wines could be partially explained by lower grape tannin. However, experiments in which cell wall material was incubated with tannin indicated that cell wall binding may be of equal or greater importance in explaining lower wine tannin concentrations in hybrid-based wines. Subsequent characterization of cell wall material revealed that protein in flesh cell walls and, to a lesser extent, pectin in skin cell walls were correlated with cell wall binding.

  8. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    Science.gov (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  9. A Hybrid Knowledge-Based and Empirical Scoring Function for Protein-Ligand Interaction: SMoG2016.

    Science.gov (United States)

    Debroise, Théau; Shakhnovich, Eugene I; Chéron, Nicolas

    2017-03-27

    We present the third generation of our scoring function for the prediction of protein-ligand binding free energy. This function is now a hybrid between a knowledge-based potential and an empirical function. We constructed a diversified set of ∼1000 complexes from the PDBBinding-CN database for the training of the function, and we show that this number of complexes generates enough data to build the potential. The occurrence of 420 different types of atomic pairwise interactions is computed in up to five different ranges of distances to derive the knowledge-based part. All of the parameters were optimized, and we were able to considerably improve the accuracy of the scoring function with a Pearson correlation coefficient against experimental binding free energies of up to 0.57, which ranks our new scoring function as one of the best currently available and the second-best in terms of standard deviation (SD = 1.68 kcal/mol). The function was then further improved by inclusion of different terms taking into account repulsion and loss of entropy upon binding, and we show that it is capable of recovering native binding poses up to 80% of the time. All of the programs, tools, and protein sets are released in the Supporting Information or as open-source programs.

  10. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  11. Electrochemical characterization of pore formation by bacterial protein toxins on hybrid supported membranes.

    Science.gov (United States)

    Wilkop, Thomas; Xu, Danke; Cheng, Quan

    2008-05-20

    The interaction of pore-forming streptolysin O (SLO) with biomimetic lipid membranes has been studied by electrochemical methods. Phosphatidylcholine lipid vesicles were deposited onto gold electrodes modified with supporting layers of hexyl thioctate (HT) or thioctic acid tri(ethylene glycol) ester (TA-TEGE), and integrity and permeability of the resulting membranes were characterized by cyclic voltammetry and impedance spectroscopy. Both positively and negatively charged electrochemical probes, potassium ferrocyanide, hexaammineruthenium(III) chloride, and ferrocene carboxylic acid (FCA), were employed to evaluate their suitability to probe the membrane permeability properties, with FCA exhibiting ideal behavior and thus employed throughout the work. Fusion of vesicles incubated with SLO on the electrodes yielded membranes that showed a distinctive response pattern for FCA as a function of SLO concentration. A direct dependence of both the currents and peak separation of FCA in the cyclic voltammograms was observed over a concentration range of 0-10 hemolytic units (HU)/microL of the toxin. The interaction of SLO with preformed supported lipid membranes was also investigated, and much lower response was observed, suggesting a different extent of membrane-toxin interactions on such an interface. Nonionic surfactant Triton was found to disrupt the vesicle structure but could not completely remove a preformed membrane to fully restore the electrode response. The information reported here offers some unique insight into toxin-surface interactions on a hybrid membrane, facilitating the development of electrochemically based sensing platforms for detecting trace amounts of bacterial toxins via the perforation process.

  12. Transactivating effect of hepatitis C virus core protein:A suppression subtractive hybridization study

    Institute of Scientific and Technical Information of China (English)

    Min Liu; Yan Liu; Jun Cheng; Shu-Lin Zhang; Lin Wang; Qing Shao; Jian Zhang; Qian Yang

    2004-01-01

    AIM: To investigate the transactivating effect of hepatitis C virus (HCV) core protein and to screen genes transactivated by HCV core protein.METHODS: pcDNA3.1(-)-core containing full-length HCV core gene was constructed by insertion of HCV core gene into EcoRI/BanHI site. HepG2 cells were cotransfected with pcDNA3.1(-)-core and pSV-lacZ. After 48 h, cells were collected and detected for the expression of β-gal by an enzyme-linked immunosorbent assay (ELISA) kit. HepG2 cells were transiently transfected with pcDNA3.1(-)-core using Lipofectamine reagent. Cells were collected and total mRNA was isolated. A subtracted cDNA library was generated and constructed into a pGEM-Teasy vector. The library was amplified with E. coli strain JM109. The cDNAs were sequenced and analyzed in GenBank with BLAST search after polymerase chain reaction (PCR).RESULTS: The core mRNA and protein could be detected in HepG2 cell lysate which was transfected by the pcDNA3.1(-)-core. The activity of β-galactosidase in HepG2 cells transfected by the pcDNA3.1(-)-core was 5.4 times higher than that of HepG2 cells transfected by control plasmid. The subtractive library of genes transactivated by HCV core protein was constructed successfully. The amplified library contained 233positive clones. Colony PCR showed that 2:13 clones contained 100-1 000 bp inserts. Sequence analysis was performed in 63 clones. Six of the sequences were unknown genes. The full length sequences were obtained with bioinformatics method, accepted by GenBank. It was suggested that six novel cDNA sequences might be target genes transactivated by HCV core protein.CONCLUSION: The core protein of HCV has transactivating effects on SV40 early promoter/enhancer. A total of 63 clones from cDNA library were randomly chosen and sequenced.Using the BLAST program at the National Center for Biotechnology Information, six of the sequences were unknown genes. The other 57 sequences were highly similar to known genes.

  13. Creating new functional biomaterials : construction and production of Bone Morphogenetic 2-ELP hybrid proteins

    OpenAIRE

    Silva, J. Azevedo; Machado, Raul; Reis, R.L.; Rodríguez-Cabello, José Carlos; Casal, Margarida

    2010-01-01

    Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive cytokine from the TGF-β superfamily that triggers the development of stem cells into osteoblasts. Its therapeutic interest has led to the development of various production systems for recombinant variables of BMP-2. Production has been achieved in expression systems ranging from animal cells to bacteria, but is always associated with three major drawbacks: low production rates (in animal cells), low activity (bacterial cells) and...

  14. THE EFFECT OF ENERGO – PROTEIC LEVEL ON CRUDE PROTEIN CONVERSION AT ARBOR ACRES HYBRID

    Directory of Open Access Journals (Sweden)

    DANIELA ALEXANDRESCU

    2013-12-01

    Full Text Available The present researches in broiler industry has been intensified in direction to obtained broiler chickens with a superior quality of carcass express through a big weight of value comercial cut-ups, like proportion with a small set-down of abdominal fat what represent a slaughtery loss. Permanent transformation of genetic potencial of broiler chickens impose continuous reevaluation of energy, protein, amino acids, trace minerals and vitamins requirements function of growth phases and sacrification age.

  15. Photoactivation Intermediates of a G-Protein Coupled Receptor Rhodopsin Investigated by a Hybrid Molecular Simulation.

    Science.gov (United States)

    Kamiya, Motoshi; Hayashi, Shigehiko

    2017-04-20

    Rhodopsin is a G-protein coupled receptor functioning as a photoreceptor for vision through photoactivation of a covalently bound ligand of a retinal protonated Schiff base chromophore. Despite the availability of structural information on the inactivated and activated forms of the receptor, the transition processes initiated by the photoabsorption have not been well understood. Here we theoretically examined the photoactivation processes by means of molecular dynamics (MD) simulations and ab initio quantum mechanical/molecular mechanical (QM/MM) free energy geometry optimizations which enabled accurate geometry determination of the ligand molecule in ample statistical conformational samples of the protein. Structures of the intermediate states of the activation process, blue-shifted intermediate and Lumi, as well as the dark state first generated by MD simulations and then refined by the QM/MM free energy geometry optimizations were characterized by large displacement of the β-ionone ring of retinal along with change in the hydrogen bond of the protonated Schiff base. The ab initio calculations of vibrational and electronic spectroscopic properties of those states well reproduced the experimental observations and successfully identified the molecular origins underlying the spectroscopic features. The structural evolution in the formation of the intermediates provides a molecular insight into the efficient activation processes of the receptor.

  16. Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis.

    Science.gov (United States)

    Zadeh-Vakili, Azita; Taheri, Tahere; Taslimi, Yasaman; Doustdari, Fatemeh; Salmanian, Ali-Hatef; Rafati, Sima

    2004-05-07

    Cysteine proteinases (CPs) are enzymes that belong to the papain superfamily, which are found in a number of organisms from prokaryotes to mammals. On the parasitic protozoan Leishmania, extensive studies have shown that CPs are involved in parasite survival, replication and the onset of disease, and have, therefore, been considered as attractive drugs and/or vaccine targets for the control of leishmaniasis. We have previously shown that cysteine proteinases, Type I (CPB) and Type II (CPA), in Leishmania major (L. major), delivered as recombinant proteins or in plasmid DNA, induce partial protection against infection with the parasite in BALB/c mice. We had shown that the level of protection was greater if a cocktail of cpa and cpb containing DNA constructs was used. Therefore, to reduce the costs associated with the production of these vaccine candidates, a construct was developed, whereby the cpa and cpb genes were fused together to give rise to a single hybrid protein. The genes were fused in tandem where the C-terminal extension (CTE), encoding region of CPB, was located at the 3' of the fused genes, and ultimately expressed in the bacterial expression construct pET-23a. The expression of the CPA/B hybrid protein (60 kDa) was verified using rabbit anti-CPA and anti-CPB antibodies by SDS-PAGE and immunoblotting. The protective potential of the CPA/B hybrid protein against the infection with Leishmania was then assessed in BALB/c mice. The animals were vaccinated with CPA/B, challenged with live L. major promastigotes, and the degree of protection was examined by measuring footpad lesion sizes. It was found that there was a delay in the expansion of lesions size compared to control groups. Furthermore, an immunological analysis of antibody isotypes, before and after infection, showed high levels of IgG2a compared to IgG1 (more than five-fold) in the CPA/B hybrid protein vaccinated group. In addition, a predominant Th1 immune response characterized by in vitro IFN

  17. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system

    Science.gov (United States)

    Inostroza-Brito, Karla E.; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H.; Monge-Marcet, Amàlia; Ferreira, Daniela S.; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L.; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S.; Mata, Alvaro

    2015-11-01

    Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.

  18. Abnormalities of Endocytosis, Phagocytosis, and Development Process in Dictyostelium Cells That Over-Express Acanthamoeba castellanii Metacaspase Protein.

    Directory of Open Access Journals (Sweden)

    Entsar Saheb

    2015-06-01

    Full Text Available Acanthamoeba castellanii forms a resistant cyst that protects the parasite against the host's immune response. Acanthamoeba Type-I metacaspase (Acmcp is a caspase-like protein that has been found to be expressed during the encystations. Dictyostelium discoideum is an organism closely related to Acanthamoeba useful for studying the molecular function of this protozoan caspase-like protein.The full length of Acmcp and a mutated version of the same gene, which lacks the proline rich N-terminal region (Acmcp-dpr, were cloned into the pDneo2a-GFP vector separately. The pDneo2a-GFP-Acmcp and pDneo2a-GFPAcmcp-dpr were electro-transfected into wild type D. discoideum cells to create cell lines that over-expressed Acmcp or Acmcp-dpr.Both cell lines that over-expressed Acmcp and Acmcp-dpr showed a significant increase in the fluid phase internalization and phagocytosis rate compared to the control cells. Additionally, the cells expressing the Acmcp-dpr mutant were unable to initiate early development and failed to aggregate or form fruiting bodies under starvation conditions, whereas Acmcp over-expressing cells showed the opposite phenomena. Quantitative cell death analysis provided additional support for these findings.Acmcp is involved in the processes of endocytosis and phagocytosis. In addition, the proline rich region in Acmcp is important for cellular development in Dictyostelium. Given its important role in the development process, metacaspase protein is proposed as a candidate drug target against infections caused by A. castellanii.

  19. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: Potential and limitations

    Directory of Open Access Journals (Sweden)

    Stéphanie eCottier

    2011-12-01

    Full Text Available Chemical genetics is a powerful scientific strategy that utilizes small bioactive molecules as experimental tools to unravel biological processes. Bioactive compounds occurring in nature represent an enormous diversity of structures that can be used to dissect functions of biological systems. Once the bioactivity of a natural or synthetic compound has been critically evaluated the challenge remains to identify its molecular target and mode of action, which usually is a time consuming and labor-intensive process. To facilitate this task, we decided to implement the yeast three-hybrid (Y3H technology as a general experimental platform to scan the whole Arabidopsis proteome for targets of small signaling molecules. The Y3H technology is based on the yeast two-hybrid system and allows direct cloning of proteins that interact in vivo with a synthetic hybrid ligand, which comprises the biologically active molecule of interest covalently linked to methotrexate (Mtx. In yeast nucleus the hybrid ligand connects two fusion proteins: the Mtx part binding to dihydrofolate reductase fused to a DNA binding domain (encoded in the yeast strain, and the bioactive molecule part binding to its potential protein target fused to a DNA activating domain (encoded on a cDNA expression vector. During cDNA library screening, the formation of this ternary, transcriptional activator complex leads to reporter gene activation in yeast cells, and thereby allows selection of the putative targets of small bioactive molecules of interest. Here we present the strategy and experimental details for construction and application of a Y3H platform, including chemical synthesis of different hybrid ligands, construction of suitable cDNA libraries, the choice of yeast strains, and appropriate screening conditions. Based on the results obtained and the current literature we discussed the perspectives and limitations of the Y3H approach for identifying targets of small bioactive molecules.

  20. A hybrid two-component system of Tannerella forsythia affects autoaggregation and post-translational modification of surface proteins.

    Science.gov (United States)

    Niwa, Daisuke; Nishikawa, Kiyoshi; Nakamura, Hiroshi

    2011-05-01

    Tannerella forsythia is a Gram-negative oral anaerobe closely associated with both periodontal and periapical diseases. The ORF TF0022 of strain ATCC 43037 encodes a hybrid two-component system consisting of an N-terminal histidine kinase and a C-terminal response regulator. Disruption of the TF0022 locus enhanced autoaggregation of the broth-cultured cells. Comparative proteome analyses revealed that two S-layer proteins in the TF0022 mutant exhibited decreased apparent masses by denaturing gel electrophoresis, suggesting a deficiency in post-translational modification. Furthermore, the mutant decreased the production of a glycosyltransferase encoded by TF1061 that is located in a putative glycosylation-related gene cluster. Quantitative real-time PCR revealed reduced transcription of TF1061 and the associated genes in the TF0022 mutant. These results indicate that TF0022 upregulates the expression of the glycosylation-related genes and suggest modulation of the autoaggregation of T. forsythia cells by a possible post-translational modification of cell-surface components.

  1. Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins.

    Science.gov (United States)

    Zhang, Xiaoqiong; Liang, Qionglin; Han, Qiang; Wan, Wei; Ding, Mingyu

    2016-06-20

    Graphene aerogel (GA)-supported metal-organic framework (MOF) particles with a three-dimensional (3D) architecture were fabricated for the first time via a facile template-free "sol-cryo" method. The prepared MOFs@graphene hybrid aerogels exhibit a 3D interconnected macroporous framework of graphene sheets with uniform dispersion of MOF particles. We also report the first attempt at using the hybrid aerogels as adsorbents for the solid-phase extraction (SPE) of non-steroidal anti-inflammatory drugs (NSAIDs) and the selective enrichment of proteins. The macroporous skeletons of GA provide both low backpressure and rapid mass transfer in SPE application, thus overcoming the obstacle of high backpressure caused by directly packing submicron or micron sized MOF particles into SPE cartridges. Excellent performances including satisfactory recoveries, high sensitivity and good reproducibility were achieved in the extraction of five NSAIDs. The hybrid aerogels also showed an interesting ability for selective enrichment of ribonuclease A (RNase A) and simultaneous exclusion of cytochrome C (Cyt C) and lysozyme (Lyz), which could be attributed to the electrostatic interactions between proteins and the positively charged coordinatively unsaturated metal sites (CUS) in MIL-101. We believe that this work will promote the application of MOFs in adsorption and separation, and our synthetic strategy could be further extended to develop other graphene-based hybrid aerogels.

  2. Eukaryotic protein production in designed storage organelles

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-01-01

    Full Text Available Abstract Background Protein bodies (PBs are natural endoplasmic reticulum (ER or vacuole plant-derived organelles that stably accumulate large amounts of storage proteins in seeds. The proline-rich N-terminal domain derived from the maize storage protein γ zein (Zera is sufficient to induce PBs in non-seed tissues of Arabidopsis and tobacco. This Zera property opens up new routes for high-level accumulation of recombinant proteins by fusion of Zera with proteins of interest. In this work we extend the advantageous properties of plant seed PBs to recombinant protein production in useful non-plant eukaryotic hosts including cultured fungal, mammalian and insect cells. Results Various Zera fusions with fluorescent and therapeutic proteins accumulate in induced PB-like organelles in all eukaryotic systems tested: tobacco leaves, Trichoderma reesei, several mammalian cultured cells and Sf9 insect cells. This accumulation in membranous organelles insulates both recombinant protein and host from undesirable activities of either. Recombinant protein encapsulation in these PBs facilitates stable accumulation of proteins in a protected sub-cellular compartment which results in an enhancement of protein production without affecting the viability and development of stably transformed hosts. The induced PBs also retain the high-density properties of native seed PBs which facilitate the recovery and purification of the recombinant proteins they contain. Conclusion The Zera sequence provides an efficient and universal means to produce recombinant proteins by accumulation in ER-derived organelles. The remarkable cross-kingdom conservation of PB formation and their biophysical properties should have broad application in the manufacture of non-secreted recombinant proteins and suggests the existence of universal ER pathways for protein insulation.

  3. Cell wall proteins in seedling cotyledons of Prosopis chilensis.

    Science.gov (United States)

    Rodríguez, J G; Cardemil, L

    1994-01-01

    Four cell wall proteins of cotyledons of Prosopis chilensis seedlings were characterized by PAGE and Western analyses using a polyclonal antibody, generated against soybean seed coat extensin. These proteins had M(r)s of 180,000, 126,000, 107,000 and 63,000, as determined by SDS-PAGE. The proteins exhibited a fluorescent positive reaction with dansylhydrazine suggesting that they are glycoproteins; they did not show peroxidase activity. The cell wall proteins were also characterized by their amino acid composition and by their amino-terminal sequence. These analyses revealed that there are two groups of related cell wall proteins in the cotyledons. The first group comprises the proteins of M(r)s 180,000, 126,000, 107,000 which are rich in glutamic acid/glutamine and aspartic acid/asparagine and they have almost identical NH2-terminal sequences. The second group comprises the M(r) 63,000 protein which is rich in proline, glycine, valine and tyrosine, with an NH2-terminal sequence which was very similar to that of soybean proline-rich proteins.

  4. LyGDI, a novel SHIP-interacting protein, is a negative regulator of FcγR-mediated phagocytosis.

    Science.gov (United States)

    Mehta, Payal; Wavreille, Anne-Sophie; Justiniano, Steven E; Marsh, Rachel L; Yu, Jianhua; Burry, Richard W; Jarjoura, David; Eubank, Timothy; Caligiuri, Michael A; Butchar, Jonathan P; Tridandapani, Susheela

    2011-01-01

    SHIP and SHIP-2 are inositol phosphatases that regulate FcγR-mediated phagocytosis through catalytic as well as non-catalytic mechanisms. In this study we have used two-dimensional fluorescence difference gel electrophoresis (DIGE) analysis to identify downstream signaling proteins that uniquely associate with SHIP or SHIP-2 upon FcγR clustering in human monocytes. We identified LyGDI as a binding partner of SHIP, associating inducibly with the SHIP/Grb2/Shc complex. Immunodepletion and competition experiments with recombinant SHIP domains revealed that Grb2 and the proline-rich domain of SHIP were necessary for SHIP-LyGDI association. Functional studies in primary human monocytes showed that LyGDI sequesters Rac in the cytosol, preventing it from localizing to the membrane. Consistent with this, suppression of LyGDI expression resulted in significantly enhanced FcγR-mediated phagocytosis.

  5. LyGDI, a novel SHIP-interacting protein, is a negative regulator of FcγR-mediated phagocytosis.

    Directory of Open Access Journals (Sweden)

    Payal Mehta

    Full Text Available SHIP and SHIP-2 are inositol phosphatases that regulate FcγR-mediated phagocytosis through catalytic as well as non-catalytic mechanisms. In this study we have used two-dimensional fluorescence difference gel electrophoresis (DIGE analysis to identify downstream signaling proteins that uniquely associate with SHIP or SHIP-2 upon FcγR clustering in human monocytes. We identified LyGDI as a binding partner of SHIP, associating inducibly with the SHIP/Grb2/Shc complex. Immunodepletion and competition experiments with recombinant SHIP domains revealed that Grb2 and the proline-rich domain of SHIP were necessary for SHIP-LyGDI association. Functional studies in primary human monocytes showed that LyGDI sequesters Rac in the cytosol, preventing it from localizing to the membrane. Consistent with this, suppression of LyGDI expression resulted in significantly enhanced FcγR-mediated phagocytosis.

  6. Non-Invasive Detection of Protein Content in Several Types of Plant Feed Materials Using a Hybrid Near Infrared Spectroscopy Model

    Science.gov (United States)

    Fan, Xia; Tang, Shichuan; Li, Guozhen; Zhou, Xingfan

    2016-01-01

    Near-infrared spectroscopy combined with chemometrics was applied to construct a hybrid model for the non-invasive detection of protein content in different types of plant feed materials. In total, 829 samples of plant feed materials, which included corn distillers’ dried grains with solubles (DDGS), corn germ meal, corn gluten meal, distillers’ dried grains (DDG) and rapeseed meal, were collected from markets in China. Based on the different preprocessed spectral data, specific models for each type of plant feed material and a hybrid model for all the materials were built. Performances of specific model and hybrid model constructed with full spectrum (full spectrum model) and selected wavenumbers with VIP (variable importance in the projection) scores value bigger than 1.00 (VIP scores model) were also compared. The best spectral preprocessing method for this study was found to be the standard normal variate transformation combined with the first derivative. For both full spectrum and VIP scores model, the prediction performance of the hybrid model was slightly worse than those of the specific models but was nevertheless satisfactory. Moreover, the VIP scores model obtained generally better performances than corresponding full spectrum model. Wavenumbers around 4500 cm-1, 4664 cm-1 and 4836 cm-1 were found to be the key wavenumbers in modeling protein content in these plant feed materials. The values for the root mean square error of prediction (RMSEP) and the relative prediction deviation (RPD) obtained with the VIP scores hybrid model were 1.05% and 2.53 for corn DDGS, 0.98% and 4.17 for corn germ meal, 0.75% and 6.99 for corn gluten meal, 1.54% and 4.59 for DDG, and 0.90% and 3.33 for rapeseed meal, respectively. The results of this study demonstrate that the protein content in several types of plant feed materials can be determined using a hybrid near-infrared spectroscopy model. And VIP scores method can be used to improve the general predictability of

  7. Acylated simian virus 40-specific proteins in the plasma membrane of HeLa cells infected with adenovirus 2-simian virus 40 hybrid virus Ad2+ND2

    Energy Technology Data Exchange (ETDEWEB)

    Klockmann, U.; Deppert, W.

    1983-04-30

    HeLa cells infected with the adenovirus 2-simian virus 40 (Ad2+SV40) hybrid virus Ad2+ND2 were labeled with either (/sup 35/S)methionine or (/sup 3/H)palmitate and fractionated into cytoplasmic, nuclear, and plasma membrane fractions. Analysis of these fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the SV40-specific proteins in the plasma membrane fraction were specificially acylated.

  8. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.

    Science.gov (United States)

    Pan, Xiaoyong; Shen, Hong-Bin

    2017-02-28

    RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins (RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the RBPs correctly recognize the target RNAs and why they bind specific positions is still far from clear. Machine learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing multi-resource data, e.g. sequence, structure, their domain specific features and formats have posed significant computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data across domains. The other difficulty is how to interpret the prediction results. Existing approaches tend to terminate after outputting the potential discrete binding sites on the sequences, but how to assemble them into the meaningful binding motifs is a topic worth of further investigation. In viewing of these challenges, we propose a deep learning-based framework (iDeep) by using a novel hybrid convolutional neural network and deep belief network to predict the RBP interaction sites and motifs on RNAs. This new protocol is featured by transforming the original observed data into a high-level abstraction feature space using multiple layers of learning blocks, where the shared representations across different domains are integrated. To validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that by integrating multiple sources of data, the average AUC can be improved by 8% compared to the best single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms the state-of-the-art predictors by 6

  9. Neuroanatomical localization and quantification of amyloid precursor protein mRNA by in situ hybridization in the brains of normal, aneuploid, and lesioned mice

    Energy Technology Data Exchange (ETDEWEB)

    Bendotti, C.; Forloni, G.L.; Morgan, R.A.; O' Hara, B.F.; Oster-Granite, M.L.; Reeves, R.H.; Gearhart, J.D.; Coyle, J.T. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1988-05-01

    Amyloid precursor protein mRNA was localized in frozen sections from normal and experimentally lesioned adult mouse brain and from normal and aneuploid fetal mouse brain by in situ hybridization with a {sup 35}S-labeled mouse cDNA probe. The highest levels of hybridization in adult brain were associated with neurons, primarily in telencephalic structures. The dense labeling associated with hippocampal pyramidal cells was reduced significantly when the cells were eliminated by injection of the neurotoxin ibotenic acid but was not affected when electrolytic lesions were placed in the medial septum. Since the gene encoding amyloid precursor protein has been localized to mouse chromosome 16, the authors also examined the expression of this gene in the brains of mouse embryos with trisomy 16 and trisomy 19 at 15 days of gestation. RNA gel blot analysis and in situ hybridization showed a marked increase in amyloid precursor protein mRNA in the trisomy 16 mouse head and brain when compared with euploid littermates or with trisomy 19 mice.

  10. Use of viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus) for the production of protein hydrolysate from toothed ponyfish (Gazza minuta) muscle.

    Science.gov (United States)

    Klomklao, Sappasith; Kishimura, Hideki; Benjakul, Soottawat

    2013-01-15

    Proteolytic activity of viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus) was studied. The optimal pH and temperature were 9.0 and 50°C, respectively, when toothed ponyfish (Gazza minuta) muscle was used as a substrate. When viscera extract from hybrid catfish was used for the production of protein hydrolysate from toothed ponyfish muscle, extract concentration, reaction time, and fish muscle/buffer ratio affected the hydrolysis and nitrogen recovery (NR) (p<0.05). Optimum conditions for toothed ponyfish muscle hydrolysis were 3.5% hybrid catfish viscera extract, 15 min reaction time and fish muscle/buffer ratio of 1:3 (w/v). High correlation between the degree of hydrolysis (DH) and NR (R(2)=0.974) was observed. Freeze-dried hydrolysate had a high protein content (89.02%, dry weight basis) and it was brownish yellow in colour (L(∗)=63.67, a(∗)=6.33, b(∗)=22.41). The protein hydrolysate contained a high amount of essential amino acids (48.22%) and had arginine and lysine as the dominant amino acids.

  11. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain.

    Science.gov (United States)

    Li, Ting; Huang, Sheng; Jiang, Wen Zhi; Wright, David; Spalding, Martin H; Weeks, Donald P; Yang, Bing

    2011-01-01

    DNA double-strand breaks enhance homologous recombination in cells and have been exploited for targeted genome editing through use of engineered endonucleases. Here we report the creation and initial characterization of a group of rare-cutting, site-specific DNA nucleases produced by fusion of the restriction enzyme FokI endonuclease domain (FN) with the high-specificity DNA-binding domains of AvrXa7 and PthXo1. AvrXa7 and PthXo1 are members of the transcription activator-like (TAL) effector family whose central repeat units dictate target DNA recognition and can be modularly constructed to create novel DNA specificity. The hybrid FN-AvrXa7, AvrXa7-FN and PthXo1-FN proteins retain both recognition specificity for their target DNA (a 26 bp sequence for AvrXa7 and 24 bp for PthXo1) and the double-stranded DNA cleaving activity of FokI and, thus, are called TAL nucleases (TALNs). With all three TALNs, DNA is cleaved adjacent to the TAL-binding site under optimal conditions in vitro. When expressed in yeast, the TALNs promote DNA homologous recombination of a LacZ gene containing paired AvrXa7 or asymmetric AvrXa7/PthXo1 target sequences. Our results demonstrate the feasibility of creating a tool box of novel TALNs with potential for targeted genome modification in organisms lacking facile mechanisms for targeted gene knockout and homologous recombination.

  12. Diversification of the plant-specific hybrid glycine-rich protein (HyGRP genes in cereals

    Directory of Open Access Journals (Sweden)

    Kenji eFujino

    2014-09-01

    Full Text Available Plant-specific hybrid proline- or glycine-rich proteins (HyP/GRPs are involved in diverse gene functions including plant development and responses to biotic and abiotic stresses. The quantitative trait locus, qLTG3-1, enhances seed germination in rice under low-temperature conditions and encodes a member with a glycine-rich motif of the HyP/GRP family. The function of this gene may be related to the weakening of tissue covering the embryo during seed germination. In the present study, the diversification of the HyP/GRP gene family was elucidated in rice based on phylogenetic relationships and gene expression levels. At least 21 members of the HyP/GRP family have been identified in the rice genome and clustered in five regions on four chromosomes by tandem and chromosomal duplications. Of these, OsHyPRP05 (qLTG3-1 and its paralogous gene, OsHyPRP21, had a glycine-rich motif. Furthermore, orthologous genes with a glycine-rich motif and the HyP/GRP gene family were detected in four genome-sequenced monocots: 12 in barley, 10 in Brachypodium, 20 in maize, and 28 in sorghum, using a BLAST search of qLTG3-1 as the query. All members of the HyP/GRP family in these five species were classified into seven main groups, which were clustered together in these species. These results suggested that the HyP/GRP gene family was formed in the ancestral genome before the divergence of these species. The collinearity of chromosomal regions around qLTG3-1 and its orthologous genes were conserved among rice, Brachypodium, sorghum, and maize, indicating that qLTG3-1 and orthologous genes conserve gene function during seed germination.

  13. Screening for Novel Binding Proteins Interacting with Human Papillomavirus Type 18 E6 Oncogene in the Hela cDNA Library by Yeast Two-Hybrid System

    Institute of Scientific and Technical Information of China (English)

    Shuang LI; Ping LIU; Ling XI; Xuefeng JIANG; Jianfeng ZHOU; Shixuan WANG; Li MENG; Yunping LU; Ding Ma

    2008-01-01

    To screen for novel binding proteins interacting with high-risk HPV 18 E6 oncogene, the strain AH109 was transformed with pGBKT7-HPV18 E6 plasmid, and subsequent transference was utilized to screen for interacting proteins with HPV 18 E6 in human Hela cDNA library. HPVl8 E6 mRNA was expressed in yeast and there was no self-activation and toxicity in AH109. Seven proteins that interacted with HPV18 E6, including transmembrane protein 87B, phosphonoformate im- muno-associated protein 5, vimentin, KM-HN-1 protein, dedicator of cytokinesis 7, vaccinia related kinase 2 and a hypothetical protein, were identified. It was suggested that yeast two-hybrid system is an efficient for screening interacting proteins. The high-risk HPV 18 E6 oncogene may interact with the proteins, which may be associated with signal transduction and transeriptional control, epithelial cell invasion and migration, as well as humoral and cellular immune etc. This investigation provides functional clues for further exploration of potential oncogenesis targets for cancer biotherapy.

  14. HOPS: a novel cAMP-dependent shuttling protein involved in protein synthesis regulation.

    Science.gov (United States)

    Della Fazia, Maria Agnese; Castelli, Marilena; Bartoli, Daniela; Pieroni, Stefania; Pettirossi, Valentina; Piobbico, Danilo; Viola-Magni, Mariapia; Servillo, Giuseppe

    2005-07-15

    The liver has the ability to autonomously regulate growth and mass. Following partial hepatectomy, hormones, growth factors, cytokines and their coupled signal transduction pathways have been implicated in hepatocyte proliferation. To understand the mechanisms responsible for the proliferative response, we studied liver regeneration by characterization of novel genes that are activated in residual hepatocytes. A regenerating liver cDNA library screening was performed with cDNA-subtracted probes derived from regenerating and normal liver. Here, we describe the biology of Hops (for hepatocyte odd protein shuttling). HOPS is a novel shuttling protein that contains an ubiquitin-like domain, a putative NES and a proline-rich region. HOPS is rapidly exported from the nucleus and is overexpressed during liver regeneration. Evidence shows that cAMP governs HOPS export in hepatocytes of normal and regenerating liver and is mediated via CRM-1. We demonstrate that HOPS binds to elongation factor eEF-1A and interferes in protein synthesis. HOPS overexpression in H-35-hepatoma and 3T3-NIH cells strongly reduces proliferation.

  15. Screening of genes for proteins interacting with the PS1TP5 protein of hepatitis B virus: probing a human leukocyte cDNA library using the yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-kang; ZHAO Long-feng; CHENG Jun; GUO Jiang; LUN Yong-zhi; HONG Yuan

    2006-01-01

    Background The hepatitis B virus (HBV) genome includes S, C, P and X regions. The S region is divided into four subregions of pre-pre-S, pre-S1, pre-S2 and S. PS1TP5 (human gene 5 transactivated by pre-S1 protein of HBV) is a novel target gene transactivated by the pre-S1 protein that has been screened with a suppression subtractive hybridization technique in our laboratory (GenBank accession: AY427953). In order to investigate the biological function of the PS1TP5 protein, we performed a yeast two-hybrid system 3 to screen proteins from a human leukocyte cDNA library interacting with the PS 1TP5 protein.Methods The reverse transcription polymerase chain reaction (RT-PCR) was performed to amplify the gene of PS1TP5 from the mRNA of HepG2 cells and the gene was then cloned into the pGEM-T vector. After being sequenced and analyzed with Vector NTI 9.1 and NCBI BLAST software, the target gene of PS1TP5 was cut from the pGEM-T vector and cloned into a yeast expression plasmid pGBKT7, then "bait" plasmid pGBKT7-PS 1TP5 was transformed into the yeast strain AH109. The yeast protein was isolated and analyzed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting hybridization.After expression of the pGBKT7-PS1TP5 fusion protein in the AH109 yeast strain was accomplished, a yeast two-hybrid screening was performed by mating AH 109 with Y 187 containing a leukocyte cDNA library plasmid.The mated yeast was plated on quadruple dropout medium and assayed for α-gal activity. The interaction between the PS1TP5 protein and the proteins obtained from positive colonies was further confirmed by repeating the yeast two-hybrid screen. After extracting and sequencing of plasmids from blue colonies we carried out a bioinformatic analysis.Results Forty true positive colonies were selected and sequenced, full length sequences were obtained and we searched for homologous DNA sequences from GenBank. Among the 40 positive colonies, 23 coding genes

  16. Salivary Defense Proteins: Their Network and Role in Innate and Acquired Oral Immunity

    Directory of Open Access Journals (Sweden)

    Gábor Fábián

    2012-04-01

    Full Text Available There are numerous defense proteins present in the saliva. Although some of these molecules are present in rather low concentrations, their effects are additive and/or synergistic, resulting in an efficient molecular defense network of the oral cavity. Moreover, local concentrations of these proteins near the mucosal surfaces (mucosal transudate, periodontal sulcus (gingival crevicular fluid and oral wounds and ulcers (transudate may be much greater, and in many cases reinforced by immune and/or inflammatory reactions of the oral mucosa. Some defense proteins, like salivary immunoglobulins and salivary chaperokine HSP70/HSPAs (70 kDa heat shock proteins, are involved in both innate and acquired immunity. Cationic peptides and other defense proteins like lysozyme, bactericidal/permeability increasing protein (BPI, BPI-like proteins, PLUNC (palate lung and nasal epithelial clone proteins, salivary amylase, cystatins, prolin-rich proteins, mucins, peroxidases, statherin and others are primarily responsible for innate immunity. In this paper, this complex system and function of the salivary defense proteins will be reviewed.

  17. Salivary protein polymorphisms and risk of dental caries: a systematic review.

    Science.gov (United States)

    Lips, Andrea; Antunes, Leonardo Santos; Antunes, Lívia Azeredo; Pintor, Andrea Vaz Braga; Santos, Diana Amado Baptista Dos; Bachinski, Rober; Küchler, Erika Calvano; Alves, Gutemberg Gomes

    2017-06-05

    Dental caries is an oral pathology associated with both lifestyle and genetic factors. The caries process can be influenced by salivary composition, which includes ions and proteins. Studies have described associations between salivary protein polymorphisms and dental caries experience, while others have shown no association with salivary proteins genetic variability. The aim of this study is to assess the influence of salivary protein polymorphisms on the risk of dental caries by means of a systematic review of the current literature. An electronic search was performed in PubMed, Scopus, and Virtual Health Library. The following search terms were used: "dental caries susceptibility," "dental caries," "polymorphism, genetics," "saliva," "proteins," and "peptides." Related MeSH headings and free terms were included. The inclusion criteria comprised clinical investigations of subjects with and without caries. After application of these eligibility criteria, the selected articles were qualified by assessing their methodological quality. Initially, 338 articles were identified from the electronic databases after exclusion of duplicates. Exclusion criteria eliminated 322 articles, and 16 remained for evaluation. Eleven articles found a consistent association between salivary protein polymorphisms and risk of dental caries, for proteins related to antimicrobial activity (beta defensin 1 and lysozyme-like protein), pH control (carbonic anhydrase VI), and bacterial colonization/adhesion (lactotransferrin, mucin, and proline-rich protein Db). This systematic review demonstrated an association between genetic polymorphisms and risk of dental caries for most of the salivary proteins.

  18. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhiyuan; Pardington-Purtymun, P.E.; Comeaux, J.C. [Los Alamos National Labs., NM (United States)] [and others

    1996-10-15

    The yeast RAD52-dependent pathway is involved in DNA recombination and double-strand break repair. Yeast ubiquitin-conjugating enzyme UBC9 participates in S- and M-phase cyclin degradation and mitotic control. Using the human RAD52 protein as the bait in a yeast two-hybrid system, we have identified a human homolog of yeast UBC9, designated UBE2I, that interacts with RAD52, RAD51, p53, and a ubiquitin-like protein UBL1. These interactions are UBE2I-specific, since another DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), does not interact with these proteins. The interaction of UBE2I with RAD52 is mediated by RAD52`s self-association region. These results suggest that the RAD52-dependent processes, cell cycle control, p53-mediated pathway(s), and ubiquitination interact through human UBE2I. 22 refs., 3 figs.

  19. Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

    Directory of Open Access Journals (Sweden)

    Srinivasan Narayanaswamy

    2010-06-01

    Full Text Available Abstract Background Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.

  20. Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2009-01-01

    Full Text Available Abstract Background The exported repetitive protein (erp gene encodes a secreted 36-kDa protein with a central domain containing several proline-glycine-leucine-threonine-serine (PGLTS repeats. It has been demonstrated that erp is a virulence-associated factor since the disruption of this gene impairs the growth of Mycobacterium bovis and Mycobacterium tuberculosis in mice. Results In order to elucidate the function of Erp we searched for Erp-binding proteins from M. tuberculosis by using a bacterial two-hybrid system. Our results indicate that Erp interacts specifically with two putative membrane proteins, Rv1417 and Rv2617c. Further analysis revealed that the latter two interact with each other, indicating that Rv1417, Rv2617c and Erp are connected through multiple interactions. While Rv1417 is disseminated in several Actinomycetales genera, orthologues of Rv2617c are exclusively present in members of the M. tuberculosis complex (MTC. The central and amino-terminal regions of Erp were determined to be involved in the interaction with Rv1417 and Rv2627c. Erp forms from Mycobacterium smegmatis and Mycobacterium leprae were not able to interact with Rv2617c in two-hybrid assays. Immunolocalization experiments showed that Rv1417 and Rv2617c are found on the cell membrane and Erp on the bacterial cell wall. Finally, comparative genomics and expression studies revealed a possible role of Rv1417 in riboflavin metabolism. Conclusion We identified interactive partners of Erp, an M. tuberculosis protein involved in virulence, which will be the focus of future investigation to decipher the function of the Erp family protein.

  1. Structure and interdomain interactions of a hybrid domain: a disulphide-rich module of the fibrillin/LTBP superfamily of matrix proteins.

    Science.gov (United States)

    Jensen, Sacha A; Iqbal, Sarah; Lowe, Edward D; Redfield, Christina; Handford, Penny A

    2009-05-13

    The fibrillins and latent transforming growth factor-beta binding proteins (LTBPs) form a superfamily of structurally-related proteins consisting of calcium-binding epidermal growth factor-like (cbEGF) domains interspersed with 8-cysteine-containing transforming growth factor beta-binding protein-like (TB) and hybrid (hyb) domains. Fibrillins are the major components of the extracellular 10-12 nm diameter microfibrils, which mediate a variety of cell-matrix interactions. Here we present the crystal structure of a fibrillin-1 cbEGF9-hyb2-cbEGF10 fragment, solved to 1.8 A resolution. The hybrid domain fold is similar, but not identical, to the TB domain fold seen in previous fibrillin-1 and LTBP-1 fragments. Pairwise interactions with neighboring cbEGF domains demonstrate extensive interfaces, with the hyb2-cbEGF10 interface dependent on Ca(2+) binding. These observations provide accurate constraints for models of fibrillin organization within the 10-12 nm microfibrils and provide further molecular insights into how Ca(2+) binding influences the intermolecular interactions and biomechanical properties of fibrillin-1.

  2. Screening and identification of dynamin-1 interacting proteins in rat brain synaptosomes.

    Science.gov (United States)

    Zhang, Ciliu; Omran, Ahmed Galal; He, Fang; Deng, Xiaolu; Wu, Lei; Peng, Jing; Yin, Fei

    2014-01-16

    Dynamin-1 is a multi-domain GTPase that is crucial for the fission stage of synaptic vesicle recycling and vesicle trafficking. In this study, we constructed prokaryotic expression plasmids for the four functional domains of dynamin-1, which are pGEX-4T-2-PH, pGEX-4T-2-PRD, pGEX-4T-2-GED and pGEX-4T-2-GTPase. Glutathione S-transferase pull-down, co-immunoprecipitation (co-IP), and liquid chromatography/mass spectrometry were used to screen and identify dynamin-1 interacting proteins in rat brain synaptosomes. We identified a set of 63 candidate protein interactions, including 36 proteins interacting with dynamin-1 C-terminal proline-rich domain (PRD), 14 with pleckstrin-homology domain (PH), 7 with GTPase effector domain (GED) and 6 with GTPase domain, consisting of synaptic vesicle-associated proteins, cytoskeletal proteins, metabolic enzymes and other proteins. We selected three previously unreported dynamin-1 interacting proteins to verify their interaction with dynamin-1 under native conditions. Using co-IP, we found that Rab GDP-dissociation inhibitor (Rab GDI) and chloride channel 3 (ClC-3) do interact with dynamin-1, but not with TUC-4b (the TOAD-64/Ulip/CRMP (TUC) family member). Those novel interactions detected in our study offer valuable insight into the protein-protein interacting network that could enhance our understanding of dynamin-1 mediated synaptic vesicle recycling.

  3. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.

  4. A yeast two-hybrid screen reveals a strong interaction between the Legionella chaperonin Hsp60 and the host cell small heat shock protein Hsp10.

    Science.gov (United States)

    Nasrallah, Gheyath K

    2015-06-01

    L. pneumophila is an intracellular bacterium that replicates inside a membrane-bound vacuole called Legionella-containing vacuole (LCV), where it plentifully liberates its HtpB chaperonin. From LCV, HtpB reaches the host cell cytoplasm, where it interacts with SAMDC, a cytoplasmic protein required for synthesis of host polyamines that are important for intracellular growth of L. pneumophila. Additionally, cytoplasmic expression of HtpB in S. cerevisiae induces pseudohyphal growth, and in mammalian cells recruits mitochondria to LCV, and modifies actin microfilaments organization. This led us to hypothesize here that HtpB recruits a protein(s) from eukaryotic cells that is involved in the emergence of the aforementioned phenotypes. To identify this protein, a commercially available HeLa cDNA library was screened using a yeast two-hybrid system. Approximately 5×10(6) yeast clones carrying HeLa cDNA library plasmid were screened. Twenty-one positive clones were identified. DNA sequence analysis revealed that all of these positive clones encoded the mammalian small heat shock protein Hsp10. Based on the fact that chaperonions are required to interact with co-chaperonins to function properly in protein folding, we believe that HtpB recruits the host cell Hsp10 to appropriately interact with SAMDC and to induce the multifunction phenotypes deemed important in L. pneumophila pathogenesis.

  5. The yeast split-ubiquitin membrane protein two-hybrid screen identifies BAP31 as a regulator of the turnover of endoplasmic reticulum-associated protein tyrosine phosphatase-like B.

    Science.gov (United States)

    Wang, Bing; Pelletier, Jerry; Massaad, Michel J; Herscovics, Annette; Shore, Gordon C

    2004-04-01

    In the past decade, traditional yeast two-hybrid techniques have identified a plethora of interactions among soluble proteins operating within diverse cellular pathways. The discovery of associations between membrane proteins by genetic approaches, on the other hand, is less well established due to technical limitations. Recently, a split-ubiquitin system was developed to overcome this barrier, but so far, this system has been limited to the analysis of known membrane protein interactions. Here, we constructed unique split-ubiquitin-linked cDNA libraries and provide details for implementing this system to screen for binding partners of a bait protein, in this case BAP31. BAP31 is a resident integral protein of the endoplasmic reticulum, where it operates as a chaperone or cargo receptor and regulator of apoptosis. Here we describe a novel human member of the protein tyrosine phosphatase-like B (PTPLB) family, an integral protein of the endoplasmic reticulum membrane with four membrane-spanning alpha helices, as a BAP31-interacting protein. PTPLB turns over rapidly through degradation by the proteasome system. Comparisons of mouse cells with a deletion of Bap31 or reconstituted with human BAP31 indicate that BAP31 is required to maintain PTPLB, consistent with a chaperone or quality control function for BAP31 in the endoplasmic reticulum membrane.

  6. Mapping the interactions of dengue virus NS1 protein with human liver proteins using a yeast two-hybrid system: identification of C1q as an interacting partner.

    Directory of Open Access Journals (Sweden)

    Emiliana M Silva

    Full Text Available Dengue constitutes a global health concern. The clinical manifestation of this disease varies from mild febrile illness to severe hemorrhage and/or fatal hypovolemic shock. Flavivirus nonstructural protein 1 (NS1 is a secreted glycoprotein that is displayed on the surface of infected cells but is absent in viral particles. NS1 accumulates at high levels in the plasma of dengue virus (DENV-infected patients, and previous reports highlight its involvement in immune evasion, dengue severity, liver dysfunction and pathogenesis. In the present study, we performed a yeast two-hybrid screen to search for DENV2 NS1-interacting partners using a human liver cDNA library. We identified fifty genes, including human complement component 1 (C1q, which was confirmed by coimmunoprecipitation, ELISA and immunofluorescence assays, revealing for the first time the direct binding of this protein to NS1. Furthermore, the majority of the identified genes encode proteins that are secreted into the plasma of patients, and most of these proteins are classified as acute-phase proteins (APPs, such as plasminogen, haptoglobin, hemopexin, α-2-HS-glycoprotein, retinol binding protein 4, transferrin, and C4. The results presented here confirm the direct interaction of DENV NS1 with a key protein of the complement system and suggest a role for this complement protein in the pathogenesis of DENV infection.

  7. One-step electrochemically co-assembled redox-active [Ru(bpy)2(tatp)]2+-BSA-SWCNTs hybrid film for non-redox protein biosensors.

    Science.gov (United States)

    Ji, Shi-Bo; Yan, Zhi-Hong; Wu, Jun-Wen; Chen, Lin-Lin; Li, Hong

    2013-01-15

    A redox-active [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs (bpy=2,2'-bipyridine, tatp=1,4,8,9-tetra-aza-triphenylene, BSA=bovine serum albumin, SWCNTs=single-walled carbon nanotubes) hybrid film is fabricated on an indium-tin oxide (ITO) electrode via one-step electrochemical co-assembly approach. BSA is inherently dispersive and therefore served as the linking mediator of SWCNTs, which facilitate the redox reactions of [Ru(bpy)(2)(tatp)](2+) employed as a reporter of BSA. The evidences from differential pulse voltammetry, cyclic voltammetry, scanning electron microscope, emission spectroscopy and fluorescence microscope reveal that the [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs hybrid can be electrochemically co-assembled on the ITO electrode, showing two pairs of well-defined Ru(II)-based redox waves. Furthermore, the electrochemical co-assembly of the [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs hybrid is found to be strongly dependent on the simultaneous presence of BSA and SWCNTs, indicating a good linear response to BSA in the range from 6 to 50mgL(-1). The results from this study provide an electrochemical co-assembly method for the development of non-redox protein biosensors.

  8. The yeast two hybrid system in a screen for proteins interacting with axolotl (Ambystoma mexicanum) Msx1 during early limb regeneration.

    Science.gov (United States)

    Abuqarn, Mehtap; Allmeling, Christina; Amshoff, Inga; Menger, Bjoern; Nasser, Inas; Vogt, Peter M; Reimers, Kerstin

    2011-07-01

    Urodele amphibians are exceptional in their ability to regenerate complex body structures such as limbs. Limb regeneration depends on a process called dedifferentiation. Under an inductive wound epidermis terminally differentiated cells transform to pluripotent progenitor cells that coordinately proliferate and eventually redifferentiate to form the new appendage. Recent studies have developed molecular models integrating a set of genes that might have important functions in the control of regenerative cellular plasticity. Among them is Msx1, which induced dedifferentiation in mammalian myotubes in vitro. Herein, we screened for interaction partners of axolotl Msx1 using a yeast two hybrid system. A two hybrid cDNA library of 5-day-old wound epidermis and underlying tissue containing more than 2×10⁶ cDNAs was constructed and used in the screen. 34 resulting cDNA clones were isolated and sequenced. We then compared sequences of the isolated clones to annotated EST contigs of the Salamander EST database (BLASTn) to identify presumptive orthologs. We subsequently searched all no-hit clone sequences against non redundant NCBI sequence databases using BLASTx. It is the first time, that the yeast two hybrid system was adapted to the axolotl animal model and successfully used in a screen for proteins interacting with Msx1 in the context of amphibian limb regeneration.

  9. Preliminary comparing the toxicities of the hybrid cry1Acs fused with different heterogenous genes provided guidance for the fusion expression of Cry proteins.

    Science.gov (United States)

    Tang, Ying; Tong, Jinying; Zhang, Yunlei; Wang, Lei; Hu, Shengbiao; Li, Wenping; Lv, Yuan

    2012-01-01

    In order to provide guidance for selecting suitable heterogenous gene that can efficiently enhance toxicity or broaden insecticidal spectrum of Cry1Ac through fusion expression, two hybrid cry1Acs fused with chitinase-encoding gene tchiB and neurotoxin gene hwtx-1 respectively were constructed and their toxicities were compared. A Bacillus thuringiensis strain harboring the cry1Ac gene in vector pHT315 was used as control. Bioassay revealed that LC(50) (after 72 h) of Cry1Ac protoxin was 41.01 μg mL(-1), while the hybrid cry1Acs fused with tchiB and hwtx-1 were 4.89 and 23.14 μg mL(-1), which were 8.23- and 1.77-fold higher than Cry1Ac protoxin in terms of relative toxicity respectively. Both fusion crystals had a higher toxicity than the original Cry1Ac protein and the toxicity of hybrid cry1Acs fused with hwtx-1 experienced a more significant increase than that fused with tchiB.

  10. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Science.gov (United States)

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105

  11. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Directory of Open Access Journals (Sweden)

    Daniel Bernardi

    Full Text Available Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda, the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507 represented most of the positive (resistance allele-containing (isofamilies found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A

  12. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle

    NARCIS (Netherlands)

    Naimov, S.; Weemen-Hendriks, M.; Dukiandjiev, S.; Maagd, de R.A.

    2001-01-01

    Cry1 delta-endotoxins of Bacillus thuringiensis are generally active against lepidopteran insects, but Cry1Ba and Cry1Ia have additional, though low, levels of activity against coleopterans such as the Colorado potato beetle. Here we report the construction of Cry1Ba/Cry1Ia hybrid toxins which have

  13. Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2010-12-01

    Full Text Available Abstract Background Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins. Results Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these techniques we identified a Fe/Mn superoxide dismutase (SOD, a glyceraldehyde-3-P dehydrogenase (GAPDH and two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS and a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein family as interacting with SSG-1. The cDNA's encoding these proteins were sequenced and bioinformatic macromolecular sequence analyses were used for the correct classification and functional assignment. Conclusions This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD, GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits. The association

  14. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis.

    Directory of Open Access Journals (Sweden)

    Kathrin Thedieck

    Full Text Available TOR (Target of Rapamycin is a highly conserved protein kinase and a central controller of cell growth. TOR is found in two functionally and structurally distinct multiprotein complexes termed TOR complex 1 (TORC1 and TOR complex 2 (TORC2. In the present study, we developed a two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS based proteomic strategy to identify new mammalian TOR (mTOR binding proteins. We report the identification of Proline-rich Akt substrate (PRAS40 and the hypothetical protein Q6MZQ0/FLJ14213/CAE45978 as new mTOR binding proteins. PRAS40 binds mTORC1 via Raptor, and is an mTOR phosphorylation substrate. PRAS40 inhibits mTORC1 autophosphorylation and mTORC1 kinase activity toward eIF-4E binding protein (4E-BP and PRAS40 itself. HeLa cells in which PRAS40 was knocked down were protected against induction of apoptosis by TNFalpha and cycloheximide. Rapamycin failed to mimic the pro-apoptotic effect of PRAS40, suggesting that PRAS40 mediates apoptosis independently of its inhibitory effect on mTORC1. Q6MZQ0 is structurally similar to proline rich protein 5 (PRR5 and was therefore named PRR5-Like (PRR5L. PRR5L binds specifically to mTORC2, via Rictor and/or SIN1. Unlike other mTORC2 members, PRR5L is not required for mTORC2 integrity or kinase activity, but dissociates from mTORC2 upon knock down of tuberous sclerosis complex 1 (TSC1 and TSC2. Hyperactivation of mTOR by TSC1/2 knock down enhanced apoptosis whereas PRR5L knock down reduced apoptosis. PRR5L knock down reduced apoptosis also in mTORC2 deficient cells. The above suggests that mTORC2-dissociated PRR5L may promote apoptosis when mTOR is hyperactive. Thus, PRAS40 and PRR5L are novel mTOR-associated proteins that control the balance between cell growth and cell death.

  15. Structural studies of the protein endostatin in fusion with BAX BH3 death domain, a hybrid that presents enhanced antitumoral activity.

    Science.gov (United States)

    Chura-Chambi, Rosa Maria; Arcuri, Helen Andrade; Lino, Felipe; Versati, Natan; Palma, Mario Sergio; Favaro, Denize C; Morganti, Ligia

    2017-05-01

    Endostatin (ES) is an antiangiogenic protein that exhibits antitumor activity in animal models. However, the activity observed in animals was not observed in human clinical trials. ES-BAX is a fusion protein composed of two functional domains: ES, which presents specificity and is internalized by activated endothelial cells and the proapoptotic BH3 domain of the protein BAX, a peptide inductor of cellular death when internalized. We have previously shown (Chura-Chambi et al., Cell Death Dis, 5, e1371, 2014) that ES-BAX presents improved antitumor activity in relation to wild-type ES. Secondary and tertiary structures of ES-BAX are similar to ES, as indicated by homology-modeling studies and molecular dynamics simulations. Tryptophan intrinsic fluorescence and circular dichroism spectroscopy corroborate these data. (15) N HSQC NMR indicates that ES-BAX is structured, but some ES residues have suffered chemical shift perturbations, suggesting that the BH3 peptide interacts with some parts of the ES protein. ES and ES-BAX present similar stability to thermal denaturation. The production of stable hybrid proteins can be a new approach to the development of therapeutic agents presenting specificity for tumoral endothelium and improved antitumor effect. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  16. GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome.

    Science.gov (United States)

    Zhang, Jian; Yang, Jianyi; Jang, Richard; Zhang, Yang

    2015-08-01

    Experimental structure determination remains difficult for G protein-coupled receptors (GPCRs). We propose a new hybrid protocol to construct GPCR structure models that integrates experimental mutagenesis data with ab initio transmembrane (TM) helix assembly simulations. The method was tested on 24 known GPCRs where the ab initio TM-helix assembly procedure constructed the correct fold for 20 cases. When combined with weak homology and sparse mutagenesis restraints, the method generated correct folds for all the tested cases with an average Cα root-mean-square deviation 2.4 Å in the TM regions. The new hybrid protocol was applied to model all 1,026 GPCRs in the human genome, where 923 have a high confidence score and are expected to have correct folds; these contain many pharmaceutically important families with no previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin, and Neuropeptide Y receptors. The results demonstrate new progress on genome-wide structure modeling of TM proteins.

  17. Murine leukemia virus (MLV replication monitored with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Bittner Alexandra

    2004-12-01

    Full Text Available Abstract Background Cancer gene therapy will benefit from vectors that are able to replicate in tumor tissue and cause a bystander effect. Replication-competent murine leukemia virus (MLV has been described to have potential as cancer therapeutics, however, MLV infection does not cause a cytopathic effect in the infected cell and viral replication can only be studied by immunostaining or measurement of reverse transcriptase activity. Results We inserted the coding sequences for green fluorescent protein (GFP into the proline-rich region (PRR of the ecotropic envelope protein (Env and were able to fluorescently label MLV. This allowed us to directly monitor viral replication and attachment to target cells by flow cytometry. We used this method to study viral replication of recombinant MLVs and split viral genomes, which were generated by replacement of the MLV env gene with the red fluorescent protein (RFP and separately cloning GFP-Env into a retroviral vector. Co-transfection of both plasmids into target cells resulted in the generation of semi-replicative vectors, and the two color labeling allowed to determine the distribution of the individual genomes in the target cells and was indicative for the occurrence of recombination events. Conclusions Fluorescently labeled MLVs are excellent tools for the study of factors that influence viral replication and can be used to optimize MLV-based replication-competent viruses or vectors for gene therapy.

  18. Interaction Network among Escherichia coli Membrane Proteins Involved in Cell Division as Revealed by Bacterial Two-Hybrid Analysis

    OpenAIRE

    Karimova, Gouzel; Dautin, Nathalie; Ladant, Daniel

    2005-01-01

    Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Several of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. Although these proteins appear to be recruited to the division site in a hierarchical order, the molecular interactions underlying the assembly of the cell division machinery remain mostly unspecified. In the prese...

  19. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    Science.gov (United States)

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society.

  20. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis.

    Science.gov (United States)

    Mardirossian, Mario; Grzela, Renata; Giglione, Carmela; Meinnel, Thierry; Gennaro, Renato; Mergaert, Peter; Scocchi, Marco

    2014-12-18

    Antimicrobial peptides (AMPs) are molecules from innate immunity with high potential as novel anti-infective agents. Most of them inactivate bacteria through pore formation or membrane barrier disruption, but others cross the membrane without damages and act inside the cells, affecting vital processes. However, little is known about their intracellular bacterial targets. Here we report that Bac71-35, a proline-rich AMP belonging to the cathelicidin family, can reach high concentrations (up to 340 μM) inside the E. coli cytoplasm. The peptide specifically and completely inhibits in vitro translation in the micromolar concentration range. Experiments of incorporation of radioactive precursors in macromolecules with E. coli cells confirmed that Bac71-35 affects specifically protein synthesis. Ribosome coprecipitation and crosslinking assays showed that the peptide interacts with ribosomes, binding to a limited subset of ribosomal proteins. Overall, these results indicate that the killing mechanism of Bac71-35 is based on a specific block of protein synthesis.

  1. Networking for proteins : A yeast two-hybrid and RNAi profiling approach to uncover C. elegans cell polarity regulators

    NARCIS (Netherlands)

    Koorman, T.|info:eu-repo/dai/nl/337456038

    2016-01-01

    Cell polarity is a near universal trait of life and guides many aspects of animal development. Although a number of key polarity proteins have been identified, many interactions with proteins acting downstream likely remain to be elucidated. Mutations in polarity proteins or deregulation of polarity

  2. Hybrids of the bHLH and bZIP protein motifs display different DNA-binding activities in vivo vs. in vitro.

    Directory of Open Access Journals (Sweden)

    Hiu-Kwan Chow

    Full Text Available Minimalist hybrids comprising the DNA-binding domain of bHLH/PAS (basic-helix-loop-helix/Per-Arnt-Sim protein Arnt fused to the leucine zipper (LZ dimerization domain from bZIP (basic region-leucine zipper protein C/EBP were designed to bind the E-box DNA site, CACGTG, targeted by bHLHZ (basic-helix-loop-helix-zipper proteins Myc and Max, as well as the Arnt homodimer. The bHLHZ-like structure of ArntbHLH-C/EBP comprises the Arnt bHLH domain fused to the C/EBP LZ: i.e. swap of the 330 aa PAS domain for the 29 aa LZ. In the yeast one-hybrid assay (Y1H, transcriptional activation from the E-box was strong by ArntbHLH-C/EBP, and undetectable for the truncated ArntbHLH (PAS removed, as detected via readout from the HIS3 and lacZ reporters. In contrast, fluorescence anisotropy titrations showed affinities for the E-box with ArntbHLH-C/EBP and ArntbHLH comparable to other transcription factors (K(d 148.9 nM and 40.2 nM, respectively, but only under select conditions that maintained folded protein. Although in vivo yeast results and in vitro spectroscopic studies for ArntbHLH-C/EBP targeting the E-box correlate well, the same does not hold for ArntbHLH. As circular dichroism confirms that ArntbHLH-C/EBP is a much more strongly alpha-helical structure than ArntbHLH, we conclude that the nonfunctional ArntbHLH in the Y1H must be due to misfolding, leading to the false negative that this protein is incapable of targeting the E-box. Many experiments, including protein design and selections from large libraries, depend on protein domains remaining well-behaved in the nonnative experimental environment, especially small motifs like the bHLH (60-70 aa. Interestingly, a short helical LZ can serve as a folding- and/or solubility-enhancing tag, an important device given the focus of current research on exploration of vast networks of biomolecular interactions.

  3. NCBI nr-aa BLAST: CBRC-TTRU-01-0317 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-0317 ref|YP_907135.1| proline rich membrane protein [Mycobacterium ulcera...ns Agy99] gb|ABL05664.1| conserved proline rich membrane protein [Mycobacterium ulcerans Agy99] YP_907135.1 0.047 27% ...

  4. Primary Sjögren's syndrome: Salivary gland function and clinical oral findings

    DEFF Research Database (Denmark)

    Pedersen, A.M.; Reibel, J.; Nordgarden, H.;

    1999-01-01

    primary Sjögren's syndrome, saliva, sodium, potassium, statherin, proline-rich proteins, salivary gland biopsy, dental and periodontal status, oral mucosa......primary Sjögren's syndrome, saliva, sodium, potassium, statherin, proline-rich proteins, salivary gland biopsy, dental and periodontal status, oral mucosa...

  5. NCBI nr-aa BLAST: CBRC-GGOR-01-0548 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGOR-01-0548 ref|ZP_04385008.1| putative proline rich protein [Rhodococcus ery...thropolis SK121] gb|EEN87711.1| putative proline rich protein [Rhodococcus erythropolis SK121] ZP_04385008.1 2e-06 37% ...

  6. Primary Sjögren's syndrome: Salivary gland function and clinical oral findings

    DEFF Research Database (Denmark)

    Pedersen, A.M.; Reibel, J.; Nordgarden, H.

    1999-01-01

    primary Sjögren's syndrome, saliva, sodium, potassium, statherin, proline-rich proteins, salivary gland biopsy, dental and periodontal status, oral mucosa......primary Sjögren's syndrome, saliva, sodium, potassium, statherin, proline-rich proteins, salivary gland biopsy, dental and periodontal status, oral mucosa...

  7. CARMIL is a bona fide capping protein interactant.

    Science.gov (United States)

    Remmert, Kirsten; Olszewski, Thomas E; Bowers, M Blair; Dimitrova, Mariana; Ginsburg, Ann; Hammer, John A

    2004-01-23

    CARMIL, also known as Acan 125, is a multidomain protein that was originally identified on the basis of its interaction with the Src homology 3 (SH3) domain of type I myosins from Acanthamoeba. In a subsequent study of CARMIL from Dictyostelium, pull-down assays indicated that the protein also bound capping protein and the Arp2/3 complex. Here we present biochemical evidence that Acanthamoeba CARMIL interacts tightly with capping protein. In biochemical preparations, CARMIL copurified extensively with two polypeptides that were shown by microsequencing to be the alpha- and beta-subunits of Acanthamoeba capping protein. The complex between CARMIL and capping protein, which is readily demonstratable by chemical cross-linking, can be completely dissociated by size exclusion chromatography at pH 5.4. Analytical ultracentrifugation, surface plasmon resonance and SH3 domain pull-down assays indicate that the dissociation constant of capping protein for CARMIL is approximately 0.4 microm or lower. Using CARMIL fusion proteins, the binding site for capping protein was shown to reside within the carboxyl-terminal, approximately 200 residue, proline-rich domain of CARMIL. Finally, chemical cross-linking, analytical ultracentrifugation, and rotary shadowed electron microscopy revealed that CARMIL is asymmetric and that it exists in a monomer dimer equilibrium with an association constant of 1.0 x 10(6) m(-1). Together, these results indicate that CARMIL self-associates and interacts with capping protein with affinities that, given the cellular concentrations of the proteins ( approximately 1 and 2 microm for capping protein and CARMIL, respectively), indicate that both activities should be physiologically relevant.

  8. Screening of genes of proteins interacting with p7 protein of hepatitis C virus from human liver cDNA library by yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    Yan-Ping Huang; Xue-Song Gao; Dong Ji; Shu-Mei Lin; Yan-Wei Zhong; Qing Shao; Shu-Lin Zhang; Jun Cheng; Lin Wang; Jiang Guo; Yan Liu; Yuan Yang; Li-Ying Zhang; Gui-Qin Bai

    2005-01-01

    AIM: To investigate the biological function of p7 protein and to look for proteins interacting with p7 protein in hepatocytes.METHODS: We constructed p7 protein bait plasmid by doning the gene of p7 protein into pGBKT7, then transformed it into yeast AH109 (a type). The transformed yeast was mated with yeast Y187 (α type) containing liver cDNA library plasmid, pACT2 in 2xYPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) containing x-α-gal for selection and screening. After extracting and sequencing of plasmids from blue colonies, we performed sequence analysis by bioinformatics.RESULTS: Fifty colonies were selected and sequenced.Among them, one colony was Homo sapiens signal sequence receptor, seven colonies were Homo sapiens H19, seven colonies were immunoglobulin superfamily containing leucine-rich repeat, three colonies were spermatid peri-nuclear RNA binding proteins, two colonies were membrane-spanning 4-domains, 24 colonies were cancer-associated antigens, four colonies were nucleoporin 214 ku and two colonies were CLL-associated antigens.CONCLUSION: The successful cloning of gene of protein interacting with p7 protein paves a way for the study of the physiological function of p7 protein and its associated protein.

  9. MOR is not enough: identification of novel mu-opioid receptor interacting proteins using traditional and modified membrane yeast two-hybrid screens.

    Science.gov (United States)

    Petko, Jessica; Justice-Bitner, Stephanie; Jin, Jay; Wong, Victoria; Kittanakom, Saranya; Ferraro, Thomas N; Stagljar, Igor; Levenson, Robert

    2013-01-01

    The mu-opioid receptor (MOR) is the G-protein coupled receptor primarily responsible for mediating the analgesic and rewarding properties of opioid agonist drugs such as morphine, fentanyl, and heroin. We have utilized a combination of traditional and modified membrane yeast two-hybrid screening methods to identify a cohort of novel MOR interacting proteins (MORIPs). The interaction between the MOR and a subset of MORIPs was validated in pulldown, co-immunoprecipitation, and co-localization studies using HEK293 cells stably expressing the MOR as well as rodent brain. Additionally, a subset of MORIPs was found capable of interaction with the delta and kappa opioid receptors, suggesting that they may represent general opioid receptor interacting proteins (ORIPS). Expression of several MORIPs was altered in specific mouse brain regions after chronic treatment with morphine, suggesting that these proteins may play a role in response to opioid agonist drugs. Based on the known function of these newly identified MORIPs, the interactions forming the MOR signalplex are hypothesized to be important for MOR signaling and intracellular trafficking. Understanding the molecular complexity of MOR/MORIP interactions provides a conceptual framework for defining the cellular mechanisms of MOR signaling in brain and may be critical for determining the physiological basis of opioid tolerance and addiction.

  10. Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field.

    Science.gov (United States)

    Xue, Kai; Serohijos, Raquel C; Devare, Medha; Thies, Janice E

    2011-02-01

    Despite the rapid adoption of crops expressing the insecticidal Cry protein(s) from Bacillus thuringiensis (Bt), public concern continues to mount over the potential environmental impacts. Reduced residue decomposition rates and increased tissue lignin concentrations reported for some Bt corn hybrids have been highlighted recently as they may influence soil carbon dynamics. We assessed the effects of MON863 Bt corn, producing the Cry3Bb protein against the corn rootworm complex, on these aspects and associated decomposer communities by terminal restriction fragment length polymorphism (T-RFLP) analysis. Litterbags containing cobs, roots, or stalks plus leaves from Bt and unmodified corn with (non-Bt+I) or without (non-Bt) insecticide applied were placed on the soil surface and at a 10-cm depth in field plots planted with these crop treatments. The litterbags were recovered and analyzed after 3.5, 15.5, and 25 months. No significant effect of treatment (Bt, non-Bt, and non-Bt+I) was observed on initial tissue lignin concentrations, litter decomposition rate, or bacterial decomposer communities. The effect of treatment on fungal decomposer communities was minor, with only 1 of 16 comparisons yielding separation by treatment. Environmental factors (litterbag recovery year, litterbag placement, and plot history) led to significant differences for most measured variables. Combined, these results indicate that the differences detected were driven primarily by environmental factors rather than by any differences between the corn hybrids or the use of tefluthrin. We conclude that the Cry3Bb corn tested in this study is unlikely to affect carbon residence time or turnover in soils receiving these crop residues.

  11. Phylogenetic characterization and promoter expression analysis of a novel hybrid protein disulfide isomerase/cargo receptor subfamily unique to plants and chromalveolates.

    Science.gov (United States)

    Yuen, Christen Y L; Wong, Katharine; Christopher, David A

    2016-02-01

    Protein disulfide isomerases (PDIs) play critical roles in protein folding by catalyzing the formation and rearrangement of disulfide bonds in nascent secretory proteins. There are six distinct PDI subfamilies in terrestrial plants. A unique feature of PDI-C subfamily members is their homology to the yeast retrograde (Golgi-to-endoplasmic reticulum) cargo receptor proteins, Erv41p and Erv46p. Here, we demonstrate that plant Erv41p/Erv46p-like proteins are divided into three subfamilies: ERV-A, ERV-B and PDI-C, which all possess the N-proximal and C-proximal conserved domains of yeast Erv41p and Erv46p. However, in PDI-C isoforms, these domains are separated by a thioredoxin domain. The distribution of PDI-C isoforms among eukaryotes indicates that the PDI-C subfamily likely arose through an ancient exon-shuffling event that occurred before the divergence of plants from stramenopiles and rhizarians. Arabidopsis has three PDI-C genes: PDI7, PDI12, and PDI13. PDI12- and PDI13-promoter: β-glucuronidase (GUS) gene fusions are co-expressed in pollen and stipules, while PDI7 is distinctly expressed in the style, hydathodes, and leaf vasculature. The PDI-C thioredoxin domain active site motif CxxS is evolutionarily conserved among land plants. Whereas PDI12 and PDI13 retain the CxxS motif, PDI7 has a CxxC motif similar to classical PDIs. We hypothesize that PDI12 and PDI13 maintain the ancestral roles of PDI-C in Arabidopsis, while PDI7 has undergone neofunctionalization. The unusual PDI/cargo receptor hybrid arrangement in PDI-C isoforms has no counterpart in animals or yeast, and predicts the need for pairing redox functions with cargo receptor processes during protein trafficking in plants and other PDI-C containing organisms.

  12. Plant Cell Wall Proteomics: Mass Spectrometry Data, a Trove for Research on Protein Structure/Function Relationships

    Institute of Scientific and Technical Information of China (English)

    Cécile Albenne; Hervé Canut; Georges Boudart; Yu Zhang; Héléne San Clemente; Rafael Pont-Lezica; Elisabeth Jamet

    2009-01-01

    Proteomics allows the large-scale study of protein expression either in whole organisms or in purified organ-elles. In particular, mass spectrometry (MS) analysis of gel-separated proteins produces data not only for protein identi-fication, but for protein structure, location, and processing as well. An in-depth analysis was performed on MS data from etiolated hypocotyl cell wall proteomics of Arabidopsis thaliana. These analyses show that highly homologous members of multigene families can be differentiated. Two lectins presenting 93% amino acid identity were identified using peptide mass fingerprinting. Although the identification of structural proteins such as extensins or hydroxyproline/proline-rich proteins (H/PRPs) is arduous, different types of MS spectra were exploited to identify and characterize an H/PRR Matu-ration events in a couple of cell wall proteins (CWPs) were analyzed using site mapping. N-glycosylation of CWPs as well as the hydroxylation or oxidation of amino acids were also explored, adding information to improve our understanding of CWP structure/function relationships. A bioinformatic tool was developed to locate by means of MS the N-terminus of mature secreted proteins and N-glycosylation.

  13. Plant cell wall proteomics: mass spectrometry data, a trove for research on protein structure/function relationships.

    Science.gov (United States)

    Albenne, Cécile; Canut, Hervé; Boudart, Georges; Zhang, Yu; San Clemente, Hélène; Pont-Lezica, Rafael; Jamet, Elisabeth

    2009-09-01

    Proteomics allows the large-scale study of protein expression either in whole organisms or in purified organelles. In particular, mass spectrometry (MS) analysis of gel-separated proteins produces data not only for protein identification, but for protein structure, location, and processing as well. An in-depth analysis was performed on MS data from etiolated hypocotyl cell wall proteomics of Arabidopsis thaliana. These analyses show that highly homologous members of multigene families can be differentiated. Two lectins presenting 93% amino acid identity were identified using peptide mass fingerprinting. Although the identification of structural proteins such as extensins or hydroxyproline/proline-rich proteins (H/PRPs) is arduous, different types of MS spectra were exploited to identify and characterize an H/PRP. Maturation events in a couple of cell wall proteins (CWPs) were analyzed using site mapping. N-glycosylation of CWPs as well as the hydroxylation or oxidation of amino acids were also explored, adding information to improve our understanding of CWP structure/function relationships. A bioinformatic tool was developed to locate by means of MS the N-terminus of mature secreted proteins and N-glycosylation.

  14. Identification and evaluation of potential forensic marker proteins in vaginal fluid by liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Igoh, Akihisa; Doi, Yusuke; Sakurada, Koichi

    2015-09-01

    Vaginal fluid is one of the most common body fluids found at crime scenes. Discriminating vaginal fluid from other body fluids is important in forensic science; however, few potential protein markers have been reported to date. Proteomic methods for identifying protein markers have gained attention, although few reports have applied this technology to forensic protein markers. Therefore, to identify characteristic vaginal proteins, we examined various body fluids (nasal secretions, saliva, urine, semen, vaginal fluids, and sweat) using liquid chromatography/electrospray ionization time-of-flight mass spectrometry and peptide mass fingerprinting. We identified three components (average molecular mass values 17,237 ± 2, 18,063 ± 2, and 15,075 ± 1) detectable only in vaginal samples: two human small proline-rich protein 3 (SPRR3) isoforms and a human fatty acid-binding protein 5 (FABP5) with an acetylated (+42) N-terminal region lacking the initiator methionine residue (-131). Using ELISA, these yielded markedly high average values in vaginal fluids. The mass spectra of these proteins were not detected in infant saliva but were detected in the vaginal fluid throughout the menstrual cycle. The results of forensic analysis (detection limit, mixed body fluid samples, casework samples, and blind samples) suggest that these proteins are potential forensic markers. In conclusion, high SPRR3 and FABP5 expression levels, which may be used as potential markers for vaginal fluid identification in forensic science, were detected in vaginal fluids from healthy adults.

  15. Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves

    Directory of Open Access Journals (Sweden)

    Joseph Minu

    2012-03-01

    Full Text Available Abstract Background The N-terminal proline-rich domain (Zera of the maize storage protein γ-zein, is able to induce the formation of endoplasmic reticulum (ER-derived protein bodies (PBs when fused to proteins of interest. This encapsulation enables a recombinant fused protein to escape from degradation and facilitates its recovery from plant biomass by gradient purification. The aim of the present work was to evaluate if induced PBs encapsulate additional proteins jointly with the recombinant protein. The exhaustive analysis of protein composition of PBs is expected to facilitate a better understanding of PB formation and the optimization of recombinant protein purification approaches from these organelles. Results We analysed the proteome of PBs induced in Nicotiana benthamiana leaves by transient transformation with Zera fused to a fluorescent marker protein (DsRed. Intact PBs with their surrounding ER-membrane were isolated on iodixanol based density gradients and their integrity verified by confocal and electron microscopy. SDS-PAGE analysis of isolated PBs showed that Zera-DsRed accounted for around 85% of PB proteins in term of abundance. Differential extraction of PBs was performed for in-depth analysis of their proteome and structure. Besides Zera-DsRed, 195 additional proteins were identified including a broad range of proteins resident or trafficking through the ER and recruited within the Zera-DsRed polymer. Conclusions This study indicates that Zera-protein fusion is still the major protein component of the new formed organelle in tobacco leaves. The analysis also reveals the presence of an unexpected diversity of proteins in PBs derived from both the insoluble Zera-DsRed polymer formation, including ER-resident and secretory proteins, and a secretory stress response induced most likely by the recombinant protein overloading. Knowledge of PBs protein composition is likely to be useful to optimize downstream purification of

  16. A Hybrid Dry and Aqueous Fractionation Method to Obtain Protein-Rich Fractions from Quinoa (Chenopodium quinoa Willd)

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Arts, Anke; Minor, Marcel; Schutyser, Maarten

    2016-01-01

    Combination of dry and aqueous fractionation is investigated to obtain protein-rich fractions from quinoa in a milder and more sustainable way compared to conventional wet fractionation. Dry fractionation of quinoa involved milling and subsequent air classification, generating a protein-enriched

  17. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  18. Screening of candidate genes encoding proteins expressed in pectoral fins of fugu Takifugu rubripes, in relation to habitat site of parasitic copepod Caligus fugu, using suppression subtractive hybridization.

    Science.gov (United States)

    Tasumi, Satoshi; Norshida, Ismail; Boxshall, Geoffrey A; Kikuchi, Kiyoshi; Suzuki, Yuzuru; Ohtsuka, Susumu

    2015-05-01

    Caligus fugu is a parasitic copepod specific to the tetraodontid genus Takifugu including the commercially important Takifugu rubripes. Despite the rapid accumulation of knowledge on other aspects of its biology, the host and settlement-site recognition mechanisms of this parasite are not yet well understood. Since the infective copepodid stage shows preferential site selection in attaching to the fins, we considered it likely that the copepodid recognizes chemical cues released or leaking from the fins, and/or transmembrane protein present on the fins. To isolate molecules potentially related to attachment site specificity, we applied suppression subtractive hybridization (SSH) PCR by identifying genes expressed more highly in pectoral fins of T. rubripes than in the body surface skin. We sequenced plasmid DNA from 392 clones in a SSH library. The number of non-redundant sequences was 276, which included 135 sequences located on 117 annotated genes and 141 located in positions where no genes had been annotated. We characterized those annotated genes on the basis of gene ontology terms, and found that 46 of the identified genes encode secreted proteins, enzymes or membrane proteins. Among them nine showed higher expression in the pectoral fins than in the skin. These could be candidate genes for involvement in behavioral mechanisms related to the site specificity shown by the infective copepodids of C. fugu.

  19. Yeast two-hybrid screen.

    Science.gov (United States)

    Makuch, Lauren

    2014-01-01

    Yeast two-hybrid is a method for screening large numbers of gene products (encoded by cDNA libraries) for their ability to interact with a protein of interest. This system can also be used for characterizing and manipulating candidate protein: protein interactions. Interactions between proteins are monitored by the growth of yeast plated on selective media.

  20. Yeast One-hybrid System Used to Identify the Binding Proteins for Rat Glutathione S-transferase P Enhancer I

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Methods Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI).Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. Results cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated, The binding of c-Jun and ANT to GPEI core sequence were confirmed. Conclusions Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.

  1. Protein-Metal Organic Framework Hybrid Composites with Intrinsic Peroxidase-like Activity as a Colorimetric Biosensing Platform.

    Science.gov (United States)

    Yin, Yuqing; Gao, Chen Ling; Xiao, Qi; Lin, Guo; Lin, Zian; Cai, Zongwei; Yang, Huang-Hao

    2016-10-04

    Artificial enzyme mimetics have received considerable attention because natural enzymes have some significant drawbacks, including enzyme autolysis, low catalytic activity, poor recovery and low stability to environmental changes. Herein, we demonstrated a facile approach for one-pot synthesis of hemeprotein-metal organic framework hybrid composites (H-MOFs) by using bovine hemoglobin (BHb) and zeolitic imidazolate framework-8 (ZIF-8) as a model reaction system. Surprisingly, the new hybrid composites exhibits 423% increase in peroxidase-like catalytic activity compared to free BHb. Taking advantages of the unique pore structure of H-MOFs with high catalytic property, a H-MOFs-based colorimetric biosensing platform was newly constructed and applied for the fast and sensitive detection of hydrogen peroxide (H2O2) and phenol. The corresponding detection limits as low as 1.0 μM for each analyte with wide linear ranges (0-800 μM for H2O2 and 0-200 μM for phenol) were obtained by naked-eye visualization. Significantly, sensitive and selective method for visual assay of trace H2O2 in cell and phenol in sewage was achieved with this platform. The stability of H-MOFs was also examined and excellent reproducibility and recyclability without losing in its activity were observed. In addition, the general applicability of H-MOFs was also investigated by using other hemeproteins (horseradish peroxidase, and myoglobin) and the corresponding catalytic activities were 291% and 273% enhancement, respectively. This present work not only expands the application of MOFs, but also provides an alternative technique for biological and environmental sample assay.

  2. Climbazole increases expression of cornified envelope proteins in primary keratinocytes.

    Science.gov (United States)

    Pople, J E; Moore, A E; Talbot, D C S; Barrett, K E; Jones, D A; Lim, F L

    2014-10-01

    Dandruff is a troubling consumer problem characterized by flaking and pruritus of the scalp and is considered a multifactorial condition with sebum, individual susceptibility and the fungus Malassezia all thought to play a part. The condition is commonly treated with shampoo products containing antifungal ingredients such as zinc pyrithione and climbazole. It is hypothesized that these ingredients may be delivering additional scalp skin benefits besides their antifungal activity helping to relieve dandruff effectively. The objective of this study was to evaluate the anti-dandruff ingredient climbazole for potential skin benefits using genomics and in vitro assays. Microarray analysis was performed to profile gene expression changes in climbazole-treated primary human keratinocyte cells. Results were independently validated using qPCR and analysis of protein expression using ELISA and immunocytochemistry. Microarray analysis of climbazole-treated keratinocytes showed statistically significant expression changes in genes associated with the gene ontology groups encompassing epidermal differentiation, keratinization, cholesterol biosynthesis and immune response. Upregulated genes included a number encoding cornified envelope proteins such as group 3 late-cornified envelope proteins, LCE3 and group 2 small-proline-rich proteins, SPRR2. Protein analysis studies of climbazole-treated primary keratinocytes using ELISA and immunocytochemistry were able to demonstrate that the increase in gene transcripts translated into increased protein expression of these cornified envelope markers. Climbazole treatment of primary keratinocytes results in an upregulation in expression of a number of genes including those encoding proteins involved in cornified envelope formation with further studies demonstrating this did translate into increased protein expression. A climbazole-driven increase in cornified envelope proteins may improve the scalp skin barrier, which is known to be weaker

  3. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  4. Skin cornification proteins provide global link between ROS detoxification and cell migration during wound healing.

    Science.gov (United States)

    Vermeij, Wilbert P; Backendorf, Claude

    2010-08-03

    Wound healing is a complex dynamic process characterised by a uniform flow of events in nearly all types of tissue damage, from a small skin scratch to myocardial infarction. Reactive oxygen species (ROS) are essential during the healing process at multiple stages, ranging from the initial signal that instigates the immune response, to the triggering of intracellular redox-dependent signalling pathways and the defence against invading bacteria. Excessive ROS in the wound milieu nevertheless impedes new tissue formation. Here we identify small proline-rich (SPRR) proteins as essential players in this latter process, as they directly link ROS detoxification with cell migration. A literature-based meta-analysis revealed their up-regulation in various forms of tissue injury, ranging from heart infarction and commensal-induced gut responses to nerve regeneration and burn injury. Apparently, SPRR proteins have a far more widespread role in wound healing and tissue remodelling than their established function in skin cornification. It is inferred that SPRR proteins provide injured tissue with an efficient, finely tuneable antioxidant barrier specifically adapted to the tissue involved and the damage inflicted. Their recognition as novel cell protective proteins combining ROS detoxification with cell migration will provide new venues to study and manage tissue repair and wound healing at a molecular level.

  5. Antibacterial and antifungal activity of a snakin-defensin hybrid protein expressed in tobacco and potato plants

    Science.gov (United States)

    In this study, for the first time, functionally active recombinant cysteine-rich plant proteins snakin-1 (SN1) and defensin (PTH1) were successfully expressed and purified using a prokaryotic (bacterial) expression system. The overall level of antimicrobial activities of SN1 and PTH1 produced in Esc...

  6. Hunting for Novel Protein Factors in G-protein Pathway with Yeast Two-hybrid System%应用酵母双杂交研究G蛋白通路中的蛋白因子

    Institute of Scientific and Technical Information of China (English)

    鲁宁; 李旌军; 黄秉仁

    2001-01-01

    Objective To explore the protein factors that could interact with Gβ subunit within the G protein sig nal transducing pathway. Methods The highly sensitive protein-protein interaction system——Yeast Two-hybrid System was applied to screen the human cDNA library with constructed “Bite plasmid” contain ing Gβ subunit gene fragment. And then the faulse positive test was adapted. Results Three positive gene fragments were obtained. One codes for “Actin bundling protein”. The other two are new ones and their GeneBank accession numbers are AF288405 and AF288406 respectively. Conclusions It is the first time to find that among human brain tissue, Gβ subunit becomes a structural or functional unit interacts with actin bundling protein and the other two unknown protein factors to activate the following pathway. This re sult may be important to understand the relationship between the actin cytoskeleton and G proteins.%目的探寻G蛋白信号传导途径中与Gβ亚基相互作用的下游蛋白因子,揭示G蛋白信号传导通路的机制。方法采用敏感性较高的酵母双杂交体系,构建含Gβ亚基基因的饵质粒筛选人脑cDNA文库。结果获得了肌动蛋白集束调控蛋白(actin bundling protein)的编码基因和两个新基因片段,GeneBank登录号分别为AF288405(427 bp)及AF288406(2832 bp)。结论提示在人脑组织中Gβ亚基作为结构和功能单位可能通过与actin bundling protein 及另两种未知的蛋白因子间的相互作用而介导了信号的传导,对于揭示G蛋白信号传递通路与actin细胞骨架之间的关系起重要的提示作用

  7. Construction and Identification of a Yeast Two-Hybrid Bait Vector and Its Effect on the Growth of Yeast Cells and the Self-Activating Function of Reporter Genes for Screening of HPV18 E6-Interacting Protein

    Institute of Scientific and Technical Information of China (English)

    梅泉; 李双; 刘萍; 奚玲; 王世宣; 孟玉菡; 刘杰; 杨欣慰; 卢运萍; 汪辉

    2010-01-01

    By using a yeast two-hybrid system,a yeast two-hybrid bait vector was constructed and identified for screening of the HPV18 E6-interacting proteins,and its effects on the growth of yeast cells and the activation of reporter genes were investigated.Total mRNA extracted from Hela cells was reversely transcribed into cDNA.Fragment of HPV18 E6 cDNA was amplified using RT-PCR and directly ligated to the pGBKT7 vector.The recombinant plasmid was confirmed by restriction endonuclease analysis and DNA sequencing.Th...

  8. A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones

    Science.gov (United States)

    Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till FM; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J

    2015-01-01

    Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes. DOI: http://dx.doi.org/10.7554/eLife.06935.001 PMID:26274777

  9. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  10. Quantitative analysis of low-abundance serological proteins with peptide affinity-based enrichment and pseudo-multiple reaction monitoring by hybrid quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Kim, Kwang Hoe; Ahn, Yeong Hee; Ji, Eun Sun; Lee, Ju Yeon; Kim, Jin Young; An, Hyun Joo; Yoo, Jong Shin

    2015-07-02

    Multiple reaction monitoring (MRM) is commonly used for the quantitative analysis of proteins during mass pectrometry (MS), and has excellent specificity and sensitivity for an analyte in a complex sample. In this study, a pseudo-MRM method for the quantitative analysis of low-abundance serological proteins was developed using hybrid quadrupole time-of-flight (hybrid Q-TOF) MS and peptide affinity-based enrichment. First, a pseudo-MRM-based analysis using hybrid Q-TOF MS was performed for synthetic peptides selected as targets and spiked into tryptic digests of human serum. By integrating multiple transition signals corresponding to fragment ions in the full scan MS/MS spectrum of a precursor ion of the target peptide, a pseudo-MRM MS analysis of the target peptide showed an increased signal-to-noise (S/N) ratio and sensitivity, as well as an improved reproducibility. The pseudo-MRM method was then used for the quantitative analysis of the tryptic peptides of two low-abundance serological proteins, tissue inhibitor of metalloproteinase 1 (TIMP1) and tissue-type protein tyrosine phosphatase kappa (PTPκ), which were prepared with peptide affinity-based enrichment from human serum. Finally, this method was used to detect femtomolar amounts of target peptides derived from TIMP1 and PTPκ, with good coefficients of variation (CV 2.7% and 9.8%, respectively), using a few microliters of human serum from colorectal cancer patients. The results suggest that pseudo-MRM using hybrid Q-TOF MS, combined with peptide affinity-based enrichment, could become a promising alternative for the quantitative analysis of low-abundance target proteins of interest in complex serum samples that avoids protein depletion.

  11. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

    Science.gov (United States)

    Pei, Jimin; Grishin, Nick V

    2012-03-01

    The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.

  12. Cry1Ab protein quantification in leaves, stems and grains, and effectiveness to control Spodoptera frugiperda and Helicoverpa zea on two hybrids of genetically modified corn

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2013-01-01

    Full Text Available A study was carried out to evaluate the infestation and associated damages to the presence of the Spodoptera frugiperda and Helicoverpa zea caterpillars, in two genetically modified (GM corn, Dekalb DKB390 and Agroceres AG8088, expressing the cry1Ab protein. For this objective, an split-splot design with two factors (hybrid x gene was carried out. Negative controls were made with the same corn hybrids without the gene cry1Ab (NoGM. The concentration of the protein Cry1Ab was determined by the ELISA (enzyme linked immuno sorbent assay technique in previously dehydrated stems, leaves and grains of GM corns. Caterpillars sampling of S. frugiperda and associated damage survey were accomplished at 15, 22, 29, 36 and 42 days after the sowing, according to a damage scale with 5 levels (0- pest absence to 5- dead plant. Countings of H. zea caterpillars and associated damage were assessed at 57, 71, 78 and 85 days after the sowing, according to a damage scale with 4 levels (0-pest absence curse to 4-gallery in the corn cob minor than 3cm. Sampled caterpillars were divided in two groups, smaller or equal to 15mm and bigger than 15mm. No insecticide application was accomplished in the GM blocks while NoGM blocks were sprayed with deltametrina (2,8%, 42 days after the sowing. The infestation level and associated damage due to S. frugiperda presence was significantly smaller (p < 0,05 in the GM corns in comparison to NoGM corns. Nevertheless, the number and associated damage of S. frugiperda caterpillars, smaller than 15 mm, were superior in the GM DKB390 corn when compared to the GM AG8088 corn. Differences were not observed in the S. frugiperda infestation and associated damage between GM corns and between NoGM corns. On average, the concentration of Cry1Ab protein was significantly superior in leaves and stems in comparison to the grain and, usually, superior in the GM AG8088 corn comparatively to GM DKB390 corn. No differences were found on level damages

  13. Study of transactivating effect of pre-S2 protein of hepatitis B virus and cloning of genes transactivated by pre-S2 protein with suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    Dong Ji; Jun Cheng; Guo-Feng Chen; Yan Liu; Lin Wang; Jiang Guo

    2005-01-01

    AIM: To investigate the transactivating effect of pre-S2 protein of hepatitis B virus (HBV) and construct a subtractive cDNA library of genes transactivated by pre-S2 protein with suppression subtractive hybridization (SSH)technique, and to pave the way for elucidating the pathogenesis of HBV infection.METHODS: pcDNA3.1(-)-pre-S2 containing pre-S2 region of HBV genome was constructed by routine molecular methods. HepG2 cells were cotransfected with pcDNA3.1 (-)-pre-S2/pSV-lacZ and empty pcDNA3.1(-)/pSV-lacZ.After 48 h, cells were collected and detected for the expression of β-galactosidase (β-gal). SSH and bioinformatics techniques were used, the mRNA of HepG2 cells transfected with pcDNA3.1(-)-pre-S2 and pcDNA3.1(-) empty vector was isolated, respectively, cDNA was synthesized. After digestion with restriction enzyme RsaI, cDNA fragments were obtained. Tester cDNA was then divided into two groups and ligated to the specific adaptor 1 and adaptor 2, respectively. After tester cDNA was hybridized with driver cDNA twice and underwent two times of nested PCR, amplified cDNA fragments were subcloned into pGEM-Teasy vectors to set up the subtractive library.Amplification of the library was carried out with E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with Blast search after PCR.RESULTS: The pre-S2 mRNA could be detected in HepG2 cells transfected with pcDNA3.1(-)-pre-S2 plasmid. The activity of β-gal in HepG2 cells transfected with pcDNA3.1 (-)-pre-S2/pSV-lacZ was 7.0 times higher than that of control plasmid (P<0.01). The subtractive library of genes transactivated by HBV pre-S2 protein was constructed successfully. The amplified library contains 96 positive clones. Colony PCR showed that 86 clones contained 200-1 000 bp inserts. Sequence analysis was performed in 50 clones randomly, and the full length sequences were obtained with bioinformatics method and searched for homologous DNA sequence from GenBank, altogether 25 coding sequences

  14. Salivary proteins and early childhood caries: A gel electrophoretic analysis

    Directory of Open Access Journals (Sweden)

    Sumati Bhalla

    2010-01-01

    Full Text Available Background: Early childhood caries (ECC is a common disease process that afflicts a large proportion of the child population worldwide. Extensive research in past indicates that it is the result of bacterial infection, also influenced by host and dietary factors. Current caries research seeks to identify risk factors as well as natural oral defenses that may protect against or prevent caries development. Saliva, in spite of being the strongest defense system, still has a wide array of properties and proteins whose role is yet not clearly known. Aim: To compare the resting human whole salivary characteristics in children with ECC and those who are caries free. Settings and Design: The study was conducted over a period of 9 months in 4- to 6-year-old 100 children comprising two groups - 50 with ECC and 50 caries free. Materials and Methods: The whole salivary flow rate, pH, mean protein concentration, and the electrophoretic profile of salivary proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE were compared among both groups. Statistical Analysis: The SPSS (version 11.0 software package was used to conduct the chi-square, Fisher′s exact and Pearson′s chi-square tests to compare the data. Results: On gel electrophoresis, there was a significant difference among both groups with caries-free subjects having a higher number of proline-rich protein bands, substantiating the protective role of this protein. A significantly higher number of glycoprotein bands were observed in the whole saliva of subjects with ECC. A significant inverse correlation between the mean protein concentration and the whole salivary flow rate was observed in both groups.

  15. Conformational choreography of a molecular switch region in myelin basic protein--molecular dynamics shows induced folding and secondary structure type conversion upon threonyl phosphorylation in both aqueous and membrane-associated environments.

    Science.gov (United States)

    Polverini, Eugenia; Coll, Eoin P; Tieleman, D Peter; Harauz, George

    2011-03-01

    The 18.5 kDa isoform of myelin basic protein is essential to maintaining the close apposition of myelin membranes in central nervous system myelin, but its intrinsic disorder (conformational dependence on environment), a variety of post-translational modifications, and a diversity of protein ligands (e.g., actin and tubulin) all indicate it to be multifunctional. We have performed molecular dynamics simulations of a conserved central segment of 18.5 kDa myelin basic protein (residues Glu80-Gly103, murine sequence numbering) in aqueous and membrane-associated environments to ascertain the stability of constituent secondary structure elements (α-helix from Glu80-Val91 and extended poly-proline type II from Thr92-Gly103) and the effects of phosphorylation of residues Thr92 and Thr95, individually and together. In aqueous solution, all four forms of the peptide bent in the middle to form a hydrophobic cluster. The phosphorylated variants were stabilized further by electrostatic interactions and formation of β-structures, in agreement with previous spectroscopic data. In simulations performed with the peptide in association with a dimyristoylphosphatidylcholine bilayer, the amphipathic α-helical segment remained stable and membrane-associated, although the degree of penetration was less in the phosphorylated variants, and the tilt of the α-helix with respect to the plane of the membrane also changed significantly with the modifications. The extended segment adjacent to this α-helix represents a putative SH3-ligand and remained exposed to the cytoplasm (and thus accessible to binding partners). The results of these simulations demonstrate how this segment of the protein can act as a molecular switch: an amphipathic α-helical segment of the protein is membrane-associated and presents a subsequent proline-rich segment to the cytoplasm for interaction with other proteins. Phosphorylation of threonyl residues alters the degree of membrane penetration of the

  16. A novel RNA-recognition-motif protein is required for premeiotic G1/S-phase transition in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Nonomura

    Full Text Available The molecular mechanism for meiotic entry remains largely elusive in flowering plants. Only Arabidopsis SWI1/DYAD and maize AM1, both of which are the coiled-coil protein, are known to be required for the initiation of plant meiosis. The mechanism underlying the synchrony of male meiosis, characteristic to flowering plants, has also been unclear in the plant kingdom. In other eukaryotes, RNA-recognition-motif (RRM proteins are known to play essential roles in germ-cell development and meiosis progression. Rice MEL2 protein discovered in this study shows partial similarity with human proline-rich RRM protein, deleted in Azoospermia-Associated Protein1 (DAZAP1, though MEL2 also possesses ankyrin repeats and a RING finger motif. Expression analyses of several cell-cycle markers revealed that, in mel2 mutant anthers, most germ cells failed to enter premeiotic S-phase and meiosis, and a part escaped from the defect and underwent meiosis with a significant delay or continued mitotic cycles. Immunofluorescent detection revealed that T7 peptide-tagged MEL2 localized at cytoplasmic perinuclear region of germ cells during premeiotic interphase in transgenic rice plants. This study is the first report of the plant RRM protein, which is required for regulating the premeiotic G1/S-phase transition of male and female germ cells and also establishing synchrony of male meiosis. This study will contribute to elucidation of similarities and diversities in reproduction system between plants and other species.

  17. Nuclear export signal-interacting protein forms complexes with lamin A/C-Nups to mediate the CRM1-independent nuclear export of large hepatitis delta antigen.

    Science.gov (United States)

    Huang, Cheng; Jiang, Jia-Yin; Chang, Shin C; Tsay, Yeou-Guang; Chen, Mei-Ru; Chang, Ming-Fu

    2013-02-01

    Nuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L.

  18. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43.

    Directory of Open Access Journals (Sweden)

    Jason M van Rooyen

    Full Text Available In Toxoplasma gondii, as in other eukaryotes, a subset of the amino-acyl-tRNA synthetases are arranged into an abundant cytoplasmic multi-aminoacyl-tRNA synthetase (MARS complex. Through a series of genetic pull-down assays, we have identified the enzymes of this complex as: methionyl-, glutaminyl-, glutamyl-, and tyrosyl-tRNA synthetases, and we show that the N-terminal GST-like domain of a partially disordered hybrid scaffold protein, Tg-p43, is sufficient for assembly of the intact complex. Our gel filtration studies revealed significant heterogeneity in the size and composition of isolated MARS complexes. By targeting the tyrosyl-tRNA synthetases subunit, which was found exclusively in the complete 1 MDa complex, we were able to directly visualize MARS particles in the electron microscope. Image analyses of the negative stain data revealed the observed heterogeneity and instability of these complexes to be driven by the intrinsic flexibility of the domain arrangements within the MARS complex. These studies provide unique insights into the assembly of these ubiquitous but poorly understood eukaryotic complexes.

  19. PRRT2 inhibits the proliferation of glioma cells by modulating unfolded protein response pathway.

    Science.gov (United States)

    Bi, Guanghui; Yan, Jingfeng; Sun, Shuzhen; Qu, Xinhua

    2017-02-10

    Accumulating studies reported mutations in the gene encoding the proline-rich transmembrane protein 2 (PRRT2) to be causative for several paroxysmal neurological disorders, including paroxysmal kinesigenic dyskinesia (PKD), PKD combined with infantile seizures (ICCA), and benign familial infantile seizures (BFIS). However, the impact of PRRT2 in tumorigenesis is not known. Based on a large-scale data analysis, we found that PRRT2 was down-regulated in glioma tumor tissues compared with normal brain tissue. Dysregulation of PRRT2 was not induced by mutation, copy number variation and epigenetic modification, but modulated by microRNA-30a-5p. Overexpression of PRRT2 strongly impaired the cell viability and promoted cell apoptosis and these anti-tumor effects could be largely reversed by microRNA-30a-5p. Mechanistically, PRRT2 expression was closely correlated genes involved in unfolded protein response (UPR) pathway and introduction of PRRT2 inhibited gene expression in the three branches of UPR, including PERK axis, IRE1 axis and ATF6 axis. Taken together, our findings identify PRRT2 as a tumor suppressor in glioma and provide a promising target for potential therapeutic intervention.

  20. Role of Yes-associated protein 1 in gliomas: pathologic and therapeutic aspects.

    Science.gov (United States)

    Liu, Yong-Chang; Wang, Yan-zhou

    2015-04-01

    The activation of proline-rich phosphoprotein Yes-associated protein 1 (YAP1) possesses a possible link between stem/progenitor cells, organ size, and cancer. YAP1 has been indicated as an oncoprotein, and overexpression of YAP1 is reported in many human brain tumors, including infiltrating gliomas. During normal brain development, the neurofibromatosis 2 (NF2) protein suppresses YAP1 activity in neural progenitor cells to promote guidepost cell differentiation, but loss of NF2 causes elevating YAP1 activity in midline neural progenitors, which disrupts guidepost formation. Overexpression of endogenous CD44 (cancer stem cell marker) promotes phosphorylation/inactivation of NF2, and upregulates YAP1 expression and leads to cancer cell resistance in glioblastoma. The hippo pathway is also related to the YAP1 action. However, the mechanism of YAP1 action in glioma is still far from clear understanding. Advances in clinical management based on an improved understanding of the function of YAP1 may help to serve as a molecular target in glioma therapeutics. Knockdown of YAP1 by shRNA technology has been shown to reduce glioma in vitro; however, clinical implications are still under investigation. YAP1 can be used as a diagnostic marker for gliomas to monitor the disease status and may help to evaluate its treatment effects. More functional experiments are needed to support the direct roles of YAP1 on gliomas at molecular and cellular levels.

  1. Cherry Valley ducks mitochondrial antiviral-signaling protein (MAVS mediated signaling pathway and antiviral activity research

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-09-01

    Full Text Available Mitochondrial antiviral-signaling protein (MAVS, an adaptor protein of retinoic acid-inducible gene I (RIG-I like receptors (RLRs-mediated signal pathway, is involved in innate immunity. In this study, Cherry Valley duck MAVS (duMAVS was cloned from the spleen and analyzed. duMAVS was determined to have a caspase activation and recruitment domain at N-terminal, followed by a proline rich domain and a transmembrane domain at C-terminal. Quantitative real time PCR indicated that duMAVS was expressed in all tissues tested across a broad expression spectrum. The expression of duMAVS was significantly up-regulated after infection with duck Tembusu virus. Overexpression of duMAVS could drive the activation of interferon-β, nuclear factor-κB, interferon regulatory factor 7, and many downstream factors (such as Mx, PKR, OAS, and IL-8 in duck embryo fibroblast cells. What’s more, RNA interference further confirmed that duMAVS was an important adaptor for IFN-β activation. The antiviral assay showed that duMAVS could suppress the various viral replications (duck Tembusu virus, novel reovirus, and duck plague virus at early stages of infection. Overall, these results showed that the main signal pathway mediated by duMAVS and it had a broad-spectrum antiviral ability. This research will be helpful to better understanding the innate immune system of ducks.

  2. Structure and function of a G-actin sequestering protein with a vital role in malaria oocyst development inside the mosquito vector.

    Science.gov (United States)

    Hliscs, Marion; Sattler, Julia M; Tempel, Wolfram; Artz, Jennifer D; Dong, Aiping; Hui, Raymond; Matuschewski, Kai; Schüler, Herwig

    2010-04-09

    Cyclase-associated proteins (CAPs) are evolutionary conserved G-actin-binding proteins that regulate microfilament turnover. CAPs have a modular structure consisting of an N-terminal adenylate cyclase binding domain, a central proline-rich segment, and a C-terminal actin binding domain. Protozoan parasites of the phylum Apicomplexa, such as Cryptosporidium and the malaria parasite Plasmodium, express small CAP orthologs with homology to the C-terminal actin binding domain (C-CAP). Here, we demonstrate by reverse genetics that C-CAP is dispensable for the pathogenic Plasmodium blood stages. However, c-cap(-) parasites display a complete defect in oocyst development in the insect vector. By trans-species complementation we show that the Cryptosporidium parvum ortholog complements the Plasmodium gene functions. Purified recombinant C. parvum C-CAP protein binds actin monomers and prevents actin polymerization. The crystal structure of C. parvum C-CAP shows two monomers with a right-handed beta-helical fold intercalated at their C termini to form the putative physiological dimer. Our results reveal a specific vital role for an apicomplexan G-actin-binding protein during sporogony, the parasite replication phase that precedes formation of malaria transmission stages. This study also exemplifies how Plasmodium reverse genetics combined with biochemical and structural analyses of orthologous proteins can offer a fast track toward systematic gene characterization in apicomplexan parasites.

  3. Evaluation of distiller’s dried grains with solubles (DDGS) from different grain sources as dietary protein for hybrid tilapia, Oreochromis niloticus x O. Aureus

    Science.gov (United States)

    The effects of distiller’s dried grains with solubles (DDGS) from different sources on growth performance, hematology, and immunity of hybrid tilapia, Oreochromis niloticus x O. aureus, were evaluated. Sex-reversed, all-male hybrid tilapia (3.72 ± 0.08 g initial weight) were fed diets in which 30% o...

  4. Metarhizium anisopliae host-pathogen interaction: differential immunoproteomics reveals proteins involved in the infection process of arthropods.

    Science.gov (United States)

    Santi, Lucélia; Silva, Walter O B; Pinto, Antônio F M; Schrank, Augusto; Vainstein, Marilene H

    2010-04-01

    Metarhizium anisopliae is an entomopathogenic fungus well characterized for the biocontrol of a wide range of plagues. Its pathogenicity depends on the secretion of hydrolytic enzymes that degrade the host cuticle. To identify proteins involved in the infection process and in host specify, immunoproteomic analysis was performed using antiserum produced against crude extract of M. anisopliae cultured in the presence of Rhipicephalus (Boophilus) microplus and Dysdercus peruvianus cuticles. Spots detected using antisera produced against M. anisopliae cultured in cuticles and spore surface proteins, but not with antiserum against M. anisopliae cultured in glucose, were identified so as to give insights about the infection process. An MS/MS allowed the identification of proteases, like elastase, trypsin, chymotrypsin, carboxypeptidase and subtilisin (Pr1A, Pr1I and PR1J), chitinases, DNase I and proline-rich protein. Chymotrypsin and Pr1I were inferred as host specific, being recognized in D. peruvianus infection only. This research represents an important contribution to the understanding the adaptation mechanisms of M. anisopliae to different hosts.

  5. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.

    Science.gov (United States)

    Cala, Olivier; Pinaud, Noël; Simon, Cécile; Fouquet, Eric; Laguerre, Michel; Dufourc, Erick J; Pianet, Isabelle

    2010-11-01

    In organoleptic science, the association of tannins to saliva proteins leads to the poorly understood phenomenon of astringency. To decipher this interaction at molecular and colloidal levels, the binding of 4 procyanidin dimers (B1-4) and 1 trimer (C2) to a human saliva proline-rich peptide, IB7(14), was studied. Interactions have been characterized by measuring dissociation constants, sizes of complexes, number, and nature of binding sites using NMR (chemical shift variations, diffusion-ordered spectroscopy, and saturation transfer diffusion). The binding sites were identified using molecular mechanics, and the hydrophilic/hydrophobic nature of the interactions was resolved by calculating the molecular lipophilicity potential within the complexes. The following comprehensive scheme can be proposed: 1) below the tannin critical micelle concentration (CMC), interaction is specific, and the procyanidin anchorage always occurs on the same three IB7(14) sites. The tannin 3-dimensional structure plays a key role in the binding force and in the tannin's ability to act as a bidentate ligand: tannins adopting an extended conformation exhibit higher affinity toward protein and initiate the formation of a network. 2) Above the CMC, after the first specific hydrophilic interaction has taken place, a random hydrophobic stacking occurs between tannins and proteins. The whole process is discussed in the general frame of wine tannins eliciting astringency.

  6. Systemic lupus erythematosus and increased risk to develop B cell malignancies: role of the p200-family proteins

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2010-01-01

    Systemic lupus erythematosus (SLE), an autoimmune disease, develops at a female-to-male ratio of 10:1. Increased serum levels of type I interferons (IFN-α/β) and induction of “IFN-signature” genes are associated with an active SLE disease in patients. Moreover, SLE patients exhibit three- to four-fold increase in the risk of developing malignancies involving B cells, including non-Hodgkin lymphoma (NHL) and Hodgkin's lymphoma (HL). Interestingly, homozygous mice expressing a deletion mutant (the proline-rich domain deleted) of the p53 develop various types of spontaneous tumors, particularly of B-cell origin upon aging. The deletion is associated with defects in transcriptional activation of genes by p53 and inhibition of DNA damage-induced apoptosis. Notably, increased levels of the p202 protein, which is encoded by the p53-repressible interferon-inducible Ifi202 gene, in B cells of female mice are associated with defects in B cell apoptosis, inhibition of the p53-mediated transcription of pro-apoptotic genes, and increased lupus susceptibility. In this review we discuss how increased levels of the p202 protein (and its human functional homologue IFI16 protein) in B cells increase lupus susceptibility and are likely to increase the risk of developing certain B cell malignancies. A complete understanding of the molecular mechanisms that regulate B cell homeostasis is necessary to identify SLE patients with an increased risk to develop B cell malignancies. PMID:20599558

  7. Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells

    Science.gov (United States)

    Sugiyama, Hayami; Takahashi, Kazutoshi; Yamamoto, Takuya; Iwasaki, Mio; Narita, Megumi; Nakamura, Masahiro; Rand, Tim A.; Nakagawa, Masato; Watanabe, Akira; Yamanaka, Shinya

    2017-01-01

    Novel APOBEC1 target 1 (Nat1) (also known as “p97,” “Dap5,” and “Eif4g2”) is a ubiquitously expressed cytoplasmic protein that is homologous to the C-terminal two thirds of eukaryotic translation initiation factor 4G (Eif4g1). We previously showed that Nat1-null mouse embryonic stem cells (mES cells) are resistant to differentiation. In the current study, we found that NAT1 and eIF4G1 share many binding proteins, such as the eukaryotic translation initiation factors eIF3 and eIF4A and ribosomal proteins. However, NAT1 did not bind to eIF4E or poly(A)-binding proteins, which are critical for cap-dependent translation initiation. In contrast, compared with eIF4G1, NAT1 preferentially interacted with eIF2, fragile X mental retardation proteins (FMR), and related proteins and especially with members of the proline-rich and coiled-coil–containing protein 2 (PRRC2) family. We also found that Nat1-null mES cells possess a transcriptional profile similar, although not identical, to the ground state, which is established in wild-type mES cells when treated with inhibitors of the ERK and glycogen synthase kinase 3 (GSK3) signaling pathways. In Nat1-null mES cells, the ERK pathway is suppressed even without inhibitors. Ribosome profiling revealed that translation of mitogen-activated protein kinase kinase kinase 3 (Map3k3) and son of sevenless homolog 1 (Sos1) is suppressed in the absence of Nat1. Forced expression of Map3k3 induced differentiation of Nat1-null mES cells. These data collectively show that Nat1 is involved in the translation of proteins that are required for cell differentiation. PMID:28003464

  8. A hybrid protein comprising ATF domain of pro-UK and VAS, an angiogenesis inhibitor, is a potent candidate for targeted cancer therapy.

    Science.gov (United States)

    Sun, Qiming; Xu, Qian; Dong, Xiangbai; Cao, Lin; Huang, Xiaofeng; Hu, Qingang; Hua, Zi-Chun

    2008-08-15

    Directional and controllable degradation of extracellular matrix mediated by the uPA-uPA receptor (uPAR) system is ubiquitously implicated in tumor establishment, invasion and metastasis. Targeting the excessive activation of this system as well as the proliferation of the tumor vascular endothelial cell would be expected to prevent tumor neovasculature and halt the tumor development. In this study, we created a fusion protein (ALV), comprising the aminoterminal fragment (ATF) of urokinase and VAS, the antiangiogenic functional domain of vasostatin. The antitumor activity of this hybrid molecule was evaluated with both in vitro and in vivo experiments. Cell adhesion and motility assays demonstrated that ALV, owing to its ATF moiety, could interact with uPAR on the tumor cell surface with high affinity and specificity, and thereby might competitively inhibit the plasmin activation by localized urokinase and contribute to the suppression of tumor invasion. These results and speculations were validated by zymography assay and Matrigel invasion assay. In addition, ALV exhibited an improved inhibitory efficacy against endothelial cell (EC) proliferation and capillary vessel formation in a 3D angiogenesis model, proving that ATF and VAS, when fused into a chimeric molecule, cooperatively inhibited angiogenesis by targeting both the interaction of uPA and uPAR on cell surface (by ATF) and EC proliferation (mainly by VAS). Animal model confirmed that, at the same molar dose, ALV produced significantly higher therapeutic benefit than VAS and ATF in terms of tumor growth delay and mice survival prolongation. Conclusively coupling VAS with the uPAR ligand ATF resulted in an improved antineoplastic activity, which may show a novel avenue for the design of tumor therapeutic drugs. (c) 2008 Wiley-Liss, Inc.

  9. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  10. Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton.

    Science.gov (United States)

    Chen, Xing Judy; Squarr, Anna Julia; Stephan, Raiko; Chen, Baoyu; Higgins, Theresa E; Barry, David J; Martin, Morag C; Rosen, Michael K; Bogdan, Sven; Way, Michael

    2014-09-01

    Ena/VASP proteins and the WAVE regulatory complex (WRC) regulate cell motility by virtue of their ability to independently promote actin polymerization. We demonstrate that Ena/VASP and the WRC control actin polymerization in a cooperative manner through the interaction of the Ena/VASP EVH1 domain with an extended proline rich motif in Abi. This interaction increases cell migration and enables VASP to cooperatively enhance WRC stimulation of Arp2/3 complex-mediated actin assembly in vitro in the presence of Rac. Loss of this interaction in Drosophila macrophages results in defects in lamellipodia formation, cell spreading, and redistribution of Ena to the tips of filopodia-like extensions. Rescue experiments of abi mutants also reveals a physiological requirement for the Abi:Ena interaction in photoreceptor axon targeting and oogenesis. Our data demonstrate that the activities of Ena/VASP and the WRC are intimately linked to ensure optimal control of actin polymerization during cell migration and development.

  11. [Therapeutic properties of proteins and peptides from colostrum and milk].

    Science.gov (United States)

    Zimecki, Michał; Artym, Jolanta

    2005-01-01

    Colostrum and milk are rich in proteins and peptides which play a crucial role in innate immunity when transferred to the offspring and may accelerate maturation of the immune system in neonates. The immunotropic properties of these proteins prompted investigators research their potential application in prevention and therapy. Lactoferrin (LF) exhibits antibacterial, antifungal, antiviral, antiparasitice, and antitumoral activities. It is protective with regard to intestinal epithelium, promotes bone growth, and accelerates the recovery of immune system function in immunocompromised animals. LF was tried in the treatment of hepatitis C infection and the intestinal form of graft-versus-host disease (GvHD). A proline-rich polypeptide (PRP) demonstrated a variety of immunotropic functions, including the promotion of T-cell maturation and inhibition of autoimmune disorders. PRP, in the form of chewable tablets (Colostrinin) was recently found to improve or stabilize the health status of Alzheimer's disease patients. Casein and casein-derived peptides showed protective activities in enamel demineralization and as caries-preventing agents. The protein hydrolyzates were also protective in diabetic animals, reduced tumor growth, had antihypertensive activity and diminished colicky symptoms in infants. Glycomacropeptide (GMP), a peptide derived from kappa-casein, exhibited various antibacterial and antithrombotic activities. Alpha-lactalbumin (LA) demonstrated antiviral, antitumoral and anti-stress properties. LA-enriched diets were anxiolytic, lowered blood pressure in rats, prevented diarrhea, and led to a better weight gain in malnourished children. HAMLET, a complex of LA and oleic acid, was effective in patients with cutaneous papillomas. Lysozyme found application in infant formulas, the treatment of periodentitis, and the prevention of tooth decay. Milk enriched in lysozyme was used in feeding premature infants suffering from concomitant diseases. Interesting

  12. Novel venom proteins produced by differential domain-expression strategies in beaded lizards and gila monsters (genus Heloderma).

    Science.gov (United States)

    Fry, Bryan G; Roelants, Kim; Winter, Kelly; Hodgson, Wayne C; Griesman, Laura; Kwok, Hang Fai; Scanlon, Denis; Karas, John; Shaw, Chris; Wong, Lily; Norman, Janette A

    2010-02-01

    The origin and evolution of venom proteins in helodermatid lizards were investigated by multidisciplinary techniques. Our analyses elucidated novel toxin types resultant from three unique domain-expression processes: 1) The first full-length sequences of lethal toxin isoforms (helofensins) revealed this toxin type to be constructed by an ancestral monodomain, monoproduct gene (beta-defensin) that underwent three tandem domain duplications to encode a tetradomain, monoproduct with a possible novel protein fold; 2) an ancestral monodomain gene (encoding a natriuretic peptide) was medially extended to become a pentadomain, pentaproduct through the additional encoding of four tandemly repeated proline-rich peptides (helokinestatins), with the five discrete peptides liberated from each other by posttranslational proteolysis; and 3) an ancestral multidomain, multiproduct gene belonging to the vasoactive intestinal peptide (VIP)/glucagon family being mutated to encode for a monodomain, monoproduct (exendins) followed by duplication and diversification into two variant classes (exendins 1 and 2 and exendins 3 and 4). Bioactivity characterization of exendin and helokinestatin elucidated variable cardioactivity between isoforms within each class. These results highlight the importance of utilizing evolutionary-based search strategies for biodiscovery and the virtually unexplored potential of lizard venoms in drug design and discovery.

  13. Comparative adherence of Candida albicans and Candida dubliniensis to human buccal epithelial cells and extracellular matrix proteins.

    Science.gov (United States)

    Jordan, Rachael P C; Williams, David W; Moran, Gary P; Coleman, David C; Sullivan, Derek J

    2014-04-01

    Candida albicans and Candida dubliniensis are very closely related pathogenic yeast species. Despite their close relationship, C. albicans is a far more successful colonizer and pathogen of humans. The purpose of this study was to determine if the disparity in the virulence of the two species is attributed to differences in their ability to adhere to human buccal epithelial cells (BECs) and/or extracellular matrix proteins. When grown overnight at 30°C in yeast extract peptone dextrose, genotype 1 C. dubliniensis isolates were found to be significantly more adherent to human BECs than C. albicans or C. dubliniensis genotypes 2-4 (P albicans to human BECs was observed, and C. dubliniensis genotype 1 and C. albicans adhered to BECs in significantly greater numbers than the other C. dubliniensis genotypes (P albicans to type I and IV collagen, fibronectin, laminin, vitronectin, and proline-rich peptides. These data suggest that C. albicans is not more adherent to epithelial cells or matrix proteins than C. dubliniensis and therefore other factors must contribute to the greater levels of virulence exhibited by C. albicans.

  14. Protein-protein interactions

    DEFF Research Database (Denmark)

    Byron, Olwyn; Vestergaard, Bente

    2015-01-01

    Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers....... The biophysical and structural investigations of PPIs consequently demand hybrid approaches, implementing orthogonal methods and strategies for global data analysis. Currently, impressive developments in hardware and software within several methodologies define a new era for the biostructural community. Data can...

  15. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  16. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...

  17. 杂交小麦不同发育时期叶绿素蛋白复合体的变化%Change in chlorophyll-protein complexes of hybrid wheat in different developmental periods

    Institute of Scientific and Technical Information of China (English)

    李妮亚; 高培元; 等

    2001-01-01

    杂交小麦“901”在不同发育时期及不同叶位,叶片色素蛋白复合体含量均高于对照品种陕229,尤其表现在“901”的旗叶;而陕229的倒二叶在籽粒形成后期、灌浆期,略高于“901”。倒三叶在籽粒发育后期至成熟期“901”的含量要高于陕229。叶绿素蛋白复合体分析结果说明,在不同发育时期、不同叶位,“901”杂交小麦的捕光色素蛋白复合体含量均高于陕229,并且其捕光叶绿素a/b—蛋白复合体的cha/b值均低于陕229的相应复合体,表明“901”叶片色素蛋白复合体中含有较高的叶绿素b,尤其表现在籽粒形成后期的旗叶上。2个品种在不同发育时期,不同叶位之间,色素蛋白复合体组分上没有差异,仅表现在成熟期,陕229的倒三叶各色素带含量减少,并且消失1条叶绿素蛋白复合体带,初步认为此带是LHCP的寡聚体之一,而“901”比陕229晚7 d,倒二叶上表现出同样的现象,表明“901”叶片色素蛋白复合体抗衰老能力很强。%This study was showed that the amount of chlorophyll-protein complexes of hybrid wheat “901” was more than the contrast variety (Shaan 229) in the developmental period and leaves with different ages,especially flag leaf of hybrid wheat.However,the amount of chlorophyll-protein complexes of second leaf of Shaan 229 was more than the hybrid wheat at the late stage of grain filling period,however,third leaf of “901” was more than the Shaan 229 from the late stage of grain developmental to mature period.The amount of light harvesting chlorophyll-protein complexes (LHCP) of hybrid wheat was higher than Shaan 229 and chla/b ratio of hybrid wheat was lower than that of corresponding band of Shaan 229,it shown that the amount of chlorophyll b was higher than its contrast variety (Shaan 229),especially,flag leaf of “901”.There was no differences in the chl-protein complexes from hybrid wheat and

  18. MBNL142 and MBNL143 gene isoforms, overexpressed in DM1-patient muscle, encode for nuclear proteins interacting with Src family kinases.

    Science.gov (United States)

    Botta, A; Malena, A; Tibaldi, E; Rocchi, L; Loro, E; Pena, E; Cenci, L; Ambrosi, E; Bellocchi, M C; Pagano, M A; Novelli, G; Rossi, G; Monaco, H L; Gianazza, E; Pantic, B; Romeo, V; Marin, O; Brunati, A M; Vergani, L

    2013-08-15

    Myotonic dystrophy type-1 (DM1) is the most prevalent form of muscular dystrophy in adults. This disorder is an RNA-dominant disease, caused by expansion of a CTG repeat in the DMPK gene that leads to a misregulation in the alternative splicing of pre-mRNAs. The longer muscleblind-like-1 (MBNL1) transcripts containing exon 5 and the respective protein isoforms (MBNL142-43) were found to be overexpressed in DM1 muscle and localized exclusively in the nuclei. In vitro assays showed that MBNL142-43 bind the Src-homology 3 domain of Src family kinases (SFKs) via their proline-rich motifs, enhancing the SFK activity. Notably, this association was also confirmed in DM1 muscle and myotubes. The recovery, mediated by an siRNA target to Ex5-MBNL142-43, succeeded in reducing the nuclear localization of both Lyn and MBNL142-43 proteins and in decreasing the level of tyrosine phosphorylated proteins. Our results suggest an additional molecular mechanism in the DM1 pathogenesis, based on an altered phosphotyrosine signalling pathway.

  19. Contribution of interspecific and intergeneric hybridization to sunflower breeding

    OpenAIRE

    Christov M.

    2013-01-01

    This investigation was directed to sunflower improvement using hybrid forms resulted from wide hybridization. The aim was to create new B/A and R lines from interspecific and intergeneric hybrids resistant to diseases, parasite broomrape, herbicides, other stress factors and with high combining ability in highly productive oil-type sunflower hybrids with varied fatty acid contents. The confectionary hybrids should have a high kernel protein content and amin...

  20. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.

    Science.gov (United States)

    Zanforlin, Tamiris; Bayer-Santos, Ethel; Cortez, Cristian; Almeida, Igor C; Yoshida, Nobuko; da Silveira, José Franco

    2013-01-01

    To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP

  1. Preliminary Studies on Isozymes and Protein of Hybrid from Brassica napus × Brassica oleracea%甘蓝型油菜(Eru CMS)与甘蓝种间杂种的同工酶和蛋白质分析

    Institute of Scientific and Technical Information of China (English)

    吴红美; 徐跃进; 万正杰

    2011-01-01

    经胚抢救获得甘蓝型油菜(Brassica napus L.)(Eru CMS)与甘蓝(Brassica oleracea L.var.capitata L.)种间杂种,前期经过流式细胞仪、柱头染色体数目、花粉活力等分析获得一些真杂种.利用电泳法,对真杂种植株的3种同工酶(SOD、EST、COD)和蛋白质进行详细分析,了解了杂种与亲本的同工酶和蛋白质的特性差异.结果表明,杂种与亲本之间的同工酶和蛋白质存在较明显的差异:杂种的SOD、COD的酶带表现为偏父本甘蓝型;杂种的EST的酶带表现为偏母本油菜型;杂种的蛋白质电泳表现为不仅具有双亲的特征蛋白带,也有其自身特征蛋白带.%Brassica napus x Brassica oleracea hybrids were obtained by embryo rescue technology and identified by flow cytometry analysis, chromosome count of stigma cells, and pollen viability tests. Patterns of isozyme and protein of the real hybrids were studied by polyacrylamide gel electrophoresis. In addition, isozyme (SOD, EST, and COD) and protein patterns were compared with those of the parents, with obvious variations observed. Results also showed that the SOD and COD patterns of the hybrids were similar to Brassica oleracea, while the EST pattern was similar to the female parent. The protein pattern mainly showed parental complements, with new bonds also possessing their own characters.

  2. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. (National Institutes of Health, Bethesda, MD (USA))

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  3. 蛋白质组学技术在鉴定啤酒浑浊蛋白中的初步研究%Preliminary Study of the Identification of Beer Turbidity Causing Proteins by Proteomics Technology

    Institute of Scientific and Technical Information of China (English)

    贾娟; 王德良

    2011-01-01

    there are varieties of barley proteins in beer,modified by chemical or enzymatic process during malting and brewing which affect the stability of beer.Turbidity causing proteins isolated from beer are mainly storage proteins or gliadin from barley(Hordeum vulgare L.).These proteins are proline rich,composed of many different molecular weight fragments.Although the history of turbidity study is comparatively long,the characteristics of turbidity need to be further confirmed.%啤酒中包含多种大麦蛋白,制麦和酿造过程中受到化学方式或酶的修饰,影响最终的啤酒浑浊稳定性。从啤酒中分离出的浑浊活性蛋白主要来自大麦储藏蛋白或大麦醇溶蛋白(Hordeum vulgare L.),这些蛋白有富含脯氨酸,由许多不同分子量的片段组成。尽管对啤酒浑浊的研究时间较长,但是对于其特性方面的有待进一步确认。

  4. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded {sup 15}N/{sup 19}F-labeled unnatural amino acid

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Pan [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xi, Zhaoyong; Wang, Hu [School of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Chaowei [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xiong, Ying, E-mail: yxiong73@ustc.edu.cn [School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tian, Changlin, E-mail: cltian@ustc.edu.cn [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-11-19

    Research highlights: {yields} Chemical synthesis of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine. {yields} Site-specific incorporation of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine to SH3. {yields} Site-specific backbone and side chain chemical shift and relaxation analysis. {yields} Different internal motions at different sites of SH3 domain upon ligand binding. -- Abstract: SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for {sup 15}N/{sup 19}F-trifluoromethyl-phenylalanine ({sup 15}N/{sup 19}F-tfmF) has been applied to achieve site-specific labeling of SH3 at three different sites. One-dimensional solution NMR spectra of backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.

  5. Assignment of the human gene for pregnancy-associated plasma protein A (PAPPA) to 9q33.1 by fluorescence in situ hybridization to mitotic and meiotic chromosomes

    DEFF Research Database (Denmark)

    Silahtaroglu, A N; Tümer, Z; Kristensen, Torsten;

    1993-01-01

    Low levels of pregnancy-associated plasma protein A (PAPPA) during the first trimester has been suggested as a biochemical indicator of pregnancies with aneuploid fetuses. Furthermore, the complete absence of PAPPA in pregnancies associated with Cornelia de Lange syndrome (CL) has suggested a cau...... a causal connection between PAPPA and the development of CL. We have assigned the locus for PAPPA to chromosome region 9q33.1 on mitotic and meiotic chromosomes by fluorescence in situ hybridization, using a 3.7-kb partial PAPPA cDNA probe...

  6. Assignment of the human gene for pregnancy-associated plasma protein A (PAPPA) to 9q33.1 by fluorescence in situ hybridization to mitotic and meiotic chromosomes

    DEFF Research Database (Denmark)

    Silahtaroglu, A N; Tümer, Z; Kristensen, Torsten

    1993-01-01

    Low levels of pregnancy-associated plasma protein A (PAPPA) during the first trimester has been suggested as a biochemical indicator of pregnancies with aneuploid fetuses. Furthermore, the complete absence of PAPPA in pregnancies associated with Cornelia de Lange syndrome (CL) has suggested a cau...... a causal connection between PAPPA and the development of CL. We have assigned the locus for PAPPA to chromosome region 9q33.1 on mitotic and meiotic chromosomes by fluorescence in situ hybridization, using a 3.7-kb partial PAPPA cDNA probe...

  7. The screening of functional proteins interacting with IrrE by the yeast two-hybrid system%利用酵母双杂交系统筛选IrrE相互作用蛋白

    Institute of Scientific and Technical Information of China (English)

    田霞; 代其林; 龚元亚; 孙英坤; 谢琳; 杨娟; 王劲

    2012-01-01

    IrrE was constructed as the bait protein and then interacted with functional proteins from the Arabidopsis cDNA library by yeast two-hybrid system. The result showed that there was one interacting protein from all the positive clones which had high identity (as high identical to 98%) with the LEA14 protein (Late Embryogenesis Abundant protein 14) encoded by Arabidopsis thaliana gene Atlg01470. It was inferred that IrrE protein may play an important role in improving the tolerance to salt stress in trans-gene plants.%本研究通过酵母双杂交技术,构建了IrrE蛋白为诱饵载体,从拟南芥cDNA文库中筛选与IrrE诱饵蛋白相互作用的功能蛋白.研究结果表明,在所获得的阳性克隆中,发现了一个与拟南芥基因Atlg01470所编码的蛋白有较高同源性的蛋白,即LEA14蛋白(晚期胚胎发育富集蛋白),同源性高达98%.推测IrrE转录因子在提高植物耐盐性的过程中起了重要作用.

  8. NCBI nr-aa BLAST: CBRC-GGOR-01-1097 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGOR-01-1097 sp|Q95JC9|PRP_PIG RecName: Full=Basic proline-rich protein; Contains: RecName: Full...=Proline-rich peptide SP-A; Short=PRP-SP-A; Contains: RecName: Full=Proline-rich peptide S...P-B; Short=PRP-SP-B; Contains: RecName: Full=Parotid hormone; AltName: Full=PH-Ab; Flags: Precursor Q95JC9 1e-157 45% ...

  9. Production of H5N1 influenza virus matrix protein 2 ectodomain protein bodies in tobacco plants and in insect cells as a candidate universal influenza vaccine

    Directory of Open Access Journals (Sweden)

    Sandiswa Mbewana

    2015-12-01

    Full Text Available The spread of influenza A viruses is partially controlled and prevented by vaccination. The matrix protein 2 ectodomain (M2e is the most conserved sequence in influenza A viruses, and is therefore a good potential target for a vaccine to protect against multiple virus subtypes. We explored the feasibility of a M2e-based universal influenza A vaccine candidate based on the highly pathogenic avian influenza A virus, H5N1. A synthetic M2e gene was human and plant codon optimised and fused in-frame with a sequence encoding the N-terminal proline-rich domain (Zera® of the γ-zein protein of maize. Zera®M2e was expressed transiently in Nicotiana benthamiana and Sf21 baculovirus / insect cell expression systems, and Zera®M2e protein bodies (PBs were successfully produced in both expression systems. The plant-produced Zera®M2e PBs were purified and injected into Balb/c mice. Western blot analysis using insect cell-produced Zera®M2e PBs and multiple tandem M2e sequences (5xM2e fused with the avian influenza H5N1 transmembrane and cytosolic tail (5xM2e_tHA confirmed the presence of M2e-specific antibodies in immunised mice sera. The immunogenicity of the Zera®M2e indicates that our plant-produced protein has potential as an inexpensive universal influenza A vaccine.

  10. 蛋白质相互作用的分析:利用酵母两性杂交系统探索蛋白质功能%Analysis of Protein Interactions:Probing the Function of Proteins with Yeast Two-Hybrid System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    酵母两性杂交系统是近年来发展起来的广泛应用于蛋白质相互作用研究的分子遗传学方法.它的研究过程包括诱捕质粒的构建,融合蛋白质粒文库的筛选,假阳性的消除和真阳性的探测.这个实验方法有利于利用已知蛋白去探测和它相互作用的未知蛋白及编码未知蛋白的cDNA.越来越多的研究证明酵母两性杂交系统是探索动植物蛋白质功能的有用技术.这一技术正被广泛应用于世界上许多重要的实验室.该文综述了酵母两性杂交技术在蛋白质相互作用研究中的最新进展.%The yeast two-hybrid system is a molecular genetic approach for protein interaction and it is widely used to screen for proteins that interact with a protein of interest in recent years. This process includes, construction and testing of the bait plasmid, screening a plasmid library for interacting fusion protein, elimination of false positives and delection analysis of true positives. This procedure is designed to allow investigators to identify proteins and their encoding cDNAs that have a biologically significant interaction with a protein of interest. More and more studies have demonstrated that the two-hybrid system is a powerful and sensitive technique for the identification of genes that code for proteins that interact in a biologically significant fashion with a protein of interest in higher plants. This method has been used to identify new interaction protein in many laboratories. The recently reported yeast tri-brid system, should allow the investigation of more complex protein-protein interactions. The aim of this review is to outline the recent progress made in protein interactions by using yeast two-hybrid system.

  11. AChE and the amyloid precursor protein (APP) - Cross-talk in Alzheimer's disease.

    Science.gov (United States)

    Nalivaeva, Natalia N; Turner, Anthony J

    2016-11-25

    The amyloid precursor protein (APP) and acetylcholinesterase (AChE) are multi-faceted proteins with a wide range of vital functions, both crucially linked with the pathogenesis of Alzheimer's disease (AD). APP is the precursor of the Aβ peptide, the pathological agent in AD, while AChE is linked to its pathogenesis either by increasing cholinergic deficit or exacerbating Aβ fibril formation and toxicity. As such, both proteins are the main targets in AD therapeutics with AChE inhibitors being currently the only clinically available AD drugs. In our studies we have demonstrated an important inter-relation in functioning of these proteins. Both can be released from the cell membrane and we have shown that AChE shedding involves a metalloproteinase-mediated mechanism which, like the α-secretase dependent cleavage of APP, is stimulated by cholinergic agonists. Overexpression of the neuronal specific isoform APP695 in neuronal cells substantially decreased levels of the AChE mRNA, protein and catalytic activity accompanied by a similar decrease in mRNA levels of the AChE membrane anchor, PRiMA (proline rich membrane anchor). We further established that this regulation does not involve APP processing and its intracellular domain (AICD) but requires the E1 region of APP, specifically its copper-binding domain. On the contrary, siRNA knock-down of APP in cholinergic SN56 cells resulted in a significant upregulation of AChE mRNA levels. Hence APP may influence AChE physiology while released AChE may regulate amyloidogenesis through multiple mechanisms suggesting novel therapeutic targets.

  12. Identification of mycoplasma membrane proteins by systematic Tn phoA mutagenesis of a recombinant library.

    Science.gov (United States)

    Cleavinger, C M; Kim, M F; Im, J H; Wise, K S

    1995-10-01

    Wall-less prokaryotes in the genus Mycoplasma include over 90 species of infectious agents whose pathogenicity for humans and other animals is currently being assessed. Molecular characterization of surface proteins is critical in this regard but is hampered by the lack of genetic systems in these organisms. We used TnphoA transposition to systematically mutagenize, in Escherichia coli, a genomic plasmid library constructed from Mycoplasma fermentans, a potential human pathogen. The strategy circumvented problems of expressing mycoplasma genes containing UGA (Trp) codons and relied on the construction of the vector pG7ZCW, designed to reduce TnphoA transposition into vector sequences. Functional phoA gene fusions directly identified genes encoding 19 putative membrane-associated proteins of M. fermentans. Sequences of fusion constructs defined three types of export sequence: (1) non-cleavable, membrane-spanning sequences, (2) signal peptides with signal peptidase (SPase) I-like cleavage sites, and (3) signal peptides with SPase II-like lipoprotein-cleavage sites which, like most other mycoplasmal lipoprotein signals analysed to date, differed from those in several Gram-negative and Gram-positive eubacteria in their lack of a Leu residue at the -3 position. Antibodies to synthetic peptides that were deduced from two fusions to predicted lipoproteins, identified corresponding amphiphilic membrane proteins of 57 kDa and 78 kDa expressed in the mycoplasma. The P57 sequence contained a proline-rich N-terminal region analogous to an adhesin of Mycoplasma gallisepticum. The P78 protein was identical to a serologically defined phase-variant surface lipoprotein. TnphoA mutagenesis provides an efficient means of systematically characterizing functionally diverse lipoproteins and other exported proteins in mycoplasmas.

  13. Activation of ERK, JNK, Akt, and G-protein coupled signaling by hybrid angiotensin II AT1/bradykinin B2 receptors expressed in HEK-293 cells

    DEFF Research Database (Denmark)

    Yu, Jun; Lubinsky, David; Tsomaia, Natia;

    2007-01-01

    Bradykinin (BK) and angiotensin II (AngII) often have opposite roles in cardiovascular diseases. Our aim here was to construct hybrid receptors which bind AngII but signal as BK. Various sequences of the intracellular face of the AngII type I receptor, AT1R, were replaced with corresponding...

  14. Involvement of Grb2 adaptor protein in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated signaling and anaplastic large cell lymphoma growth.

    Science.gov (United States)

    Riera, Ludovica; Lasorsa, Elena; Ambrogio, Chiara; Surrenti, Nadia; Voena, Claudia; Chiarle, Roberto

    2010-08-20

    Most anaplastic large cell lymphomas (ALCL) express oncogenic fusion proteins derived from chromosomal translocations or inversions of the anaplastic lymphoma kinase (ALK) gene. Frequently ALCL carry the t(2;5) translocation, which fuses the ALK gene to the nucleophosmin (NPM1) gene. The transforming activity mediated by NPM-ALK fusion induces different pathways that control proliferation and survival of lymphoma cells. Grb2 is an adaptor protein thought to play an important role in ALK-mediated transformation, but its interaction with NPM-ALK, as well as its function in regulating ALCL signaling pathways and cell growth, has never been elucidated. Here we show that active NPM-ALK, but not a kinase-dead mutant, bound and induced Grb2 phosphorylation in tyrosine 160. An intact SH3 domain at the C terminus of Grb2 was required for Tyr(160) phosphorylation. Furthermore, Grb2 did not bind to a single region but rather to different regions of NPM-ALK, mainly Tyr(152-156), Tyr(567), and a proline-rich region, Pro(415-417). Finally, shRNA knockdown experiments showed that Grb2 regulates primarily the NPM-ALK-mediated phosphorylation of SHP2 and plays a key role in ALCL cell growth.

  15. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein.

    Science.gov (United States)

    Takahashi, K; Nakanishi, H; Miyahara, M; Mandai, K; Satoh, K; Satoh, A; Nishioka, H; Aoki, J; Nomoto, A; Mizoguchi, A; Takai, Y

    1999-05-03

    We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").

  16. Structure and function analysis of the CMS/CIN85 protein family identifies actin-bundling properties and heterotypic-complex formation.

    Science.gov (United States)

    Gaidos, Gabriel; Soni, Shefali; Oswald, Duane J; Toselli, Paul A; Kirsch, Kathrin H

    2007-07-15

    Members of the CMS/CIN85 protein family participate in clathrin-mediated endocytosis and play a crucial role in maintaining the kidney filtration barrier. The CMS protein structure includes three Src homology 3 (SH3) domains and a proline-rich (PR) region that is connected by a 'linker' sequence to a coiled-coil (CC) domain. We show that CMS is a component of special actin-rich adhesion structures--podosomes--and demonstrate specific actin-binding properties of CMS. We have found that the entire C-terminal half of CMS is necessary for efficient binding to filamentous actin (F-actin). CMS and CIN85 can crosslink F-actin into bundles, a function that depends on the PR region and the CC domain. Removal of these domains reduces migration. CMS can also form heterotypic complexes with CIN85. CIN85 is expressed as multiple isoforms that share the CC domain, suggesting that heterotypic interactions with CMS provides a mechanism to regulate CMS binding to F-actin and thus for modulating dynamic rearrangements of the cytoskeleton.

  17. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation

    DEFF Research Database (Denmark)

    Gardella, Elena; Becker, Felicitas; Møller, Rikke S

    2015-01-01

    Objective: Benign familial infantile seizures (BFIS), paroxysmal kinesigenic dyskinesia (PKD), and their combination-known as infantile convulsions and paroxysmal choreoathetosis (ICCA)-are related autosomal dominant diseases. PRRT2 (proline-rich transmembrane protein 2 gene) has been identified...

  18. Milk-derived proteins and peptides in clinical trials

    Directory of Open Access Journals (Sweden)

    Jolanta Artym

    2013-08-01

    Full Text Available Clinical trials are reviewed, involving proteins and peptides derived from milk (predominantly bovine, with the exception of lactoferrin, which will be the subject of another article. The most explored milk fraction is α-lactalbumin (LA, which is often applied with glycomacropeptide (GMP – a casein degradation product. These milk constituents are used in health-promoting infant and adult formulae as well as in a modified form (HAMLET to treat cancer. Lactoperoxidase (LCP is used as an additive to mouth hygiene products and as a salivary substitute. Casein derivatives are applied, in addition, in the dry mouth syndrome. On the other hand, casein hydrolysates, containing active tripeptides, found application in hypertension and in type 2 diabetes. Lysozyme is routinely used for food conservation and in pharmaceutical products. It was successfully used in premature infants with concomitant diseases to improve health parameters. When used as prophylaxis in patients with scheduled surgery, it significantly reduced the incidence of hepatitis resulting from blood transfusion. Lysozyme was also used in infected children as an antimicrobial agent showing synergistic effects in combination with different antibiotics. Proline-rich polypeptide (PRP was introduced to therapy of Alzheimer’s disease patients. The therapeutic value of PRP was proved in several clinical trials and supported by studies on its mechanism of action. Concentrated immunoglobulin preparations from colostrum and milk of hyperimmunized cows showed efficacy in prevention of infections by bacteria, viruses and protozoa. A nutrition formula with milk-derived TGF-β2 (Modulen IBD® found application in treatment of pediatric Crohn’s disease. In conclusion, the preparations containing milk-derived products are safe and effective measures in prevention and treatment of infections as well as autoimmune and neoplastic diseases.

  19. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Du, Yuhong; Horton, John R.; Upadhyay, Anup K.; Lou, Bin; Bai, Yan; Zhang, Xing; Du, Lupei; Li, Minyong; Wang, Binghe; Zhang, Lixin; Barbieri, Joseph T.; Khuri, Fadlo R.; Cheng, Xiaodong; Fu, Haian (Emory-MED); (GSU); (MCW); (Chinese Aca. Sci.)

    2013-02-14

    The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD{sub a} and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3{zeta} in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.

  20. Functional and structural study of the dimeric inner membrane protein SbmA.

    Science.gov (United States)

    Corbalan, Natalia; Runti, Giulia; Adler, Conrado; Covaceuszach, Sonia; Ford, Robert C; Lamba, Doriano; Beis, Konstantinos; Scocchi, Marco; Vincent, Paula A

    2013-12-01

    SbmA protein has been proposed as a dimeric secondary transporter. The protein is involved in the transport of microcins B17 and J25, bleomycin, proline-rich antimicrobial peptides, antisense peptide phosphorodiamidate morpholino oligomers, and peptide nucleic acids into the Escherichia coli cytoplasm. The sbmA homologue is found in a variety of bacteria, though the physiological role of the protein is hitherto unknown. In this work, we carried out a functional and structural analysis to determine which amino acids are critical for the transport properties of SbmA. We created a set of 15 site-directed sbmA mutants in which single conserved amino acids were replaced by glycine residues. Our work demonstrated that strains carrying the site-directed mutants V102G, F219G, and E276G had a null phenotype for SbmA transport functions. In contrast, strains carrying the single point mutants W19G, W53G, F60G, S69G, N155G, R190, L233G, A344G, T255G, N308G, and R385G showed transport capacities indistinguishable from those of strains harboring a wild-type sbmA. The strain carrying the Y116G mutant exhibited mixed phenotypic characteristics. We also demonstrated that those sbmA mutants with severely impaired transport capacity showed a dominant negative phenotype. Electron microscopy data and in silico three-dimensional (3D) homology modeling support the idea that SbmA forms a homodimeric complex, closely resembling the membrane-spanning region of the ATP-binding cassette transporter family. Direct mapping of the sbmA single point mutants on the protein surface allowed us to explain the observed phenotypic differences in transport ability.

  1. Super-Resolution Imaging and Quantitative Analysis of Membrane Protein/Lipid Raft Clustering Mediated by Cell-Surface Self-Assembly of Hybrid Nanoconjugates.

    Science.gov (United States)

    Hartley, Jonathan M; Chu, Te-Wei; Peterson, Eric M; Zhang, Rui; Yang, Jiyuan; Harris, Joel; Kopeček, Jindřich

    2015-08-17

    Super-resolution imaging was used to quantify organizational changes in the plasma membrane after treatment with hybrid nanoconjugates. The nanoconjugates crosslinked CD20 on the surface of malignant B cells, thereby inducing apoptosis. Super-resolution images were analyzed by using pair-correlation analysis to determine cluster size and to count the average number of molecules in the clusters. The role of lipid rafts was investigated by pre-treating cells with a cholesterol chelator and actin destabilizer to prevent lipid raft formation. Lipid raft cluster size correlated with apoptosis induction after treatment with the nanoconjugates. Lipid raft clusters had radii of ∼ 200 nm in cells treated with the hybrid nanoconjugates. Super-resolution images provided precise molecule location coordinates that could be used to determine density of bound conjugates, cluster size, and number of molecules per cluster.

  2. Fast decision tree-based method to index large DNA-protein sequence databases using hybrid distributed-shared memory programming model.

    Science.gov (United States)

    Jaber, Khalid Mohammad; Abdullah, Rosni; Rashid, Nur'Aini Abdul

    2014-01-01

    In recent times, the size of biological databases has increased significantly, with the continuous growth in the number of users and rate of queries; such that some databases have reached the terabyte size. There is therefore, the increasing need to access databases at the fastest rates possible. In this paper, the decision tree indexing model (PDTIM) was parallelised, using a hybrid of distributed and shared memory on resident database; with horizontal and vertical growth through Message Passing Interface (MPI) and POSIX Thread (PThread), to accelerate the index building time. The PDTIM was implemented using 1, 2, 4 and 5 processors on 1, 2, 3 and 4 threads respectively. The results show that the hybrid technique improved the speedup, compared to a sequential version. It could be concluded from results that the proposed PDTIM is appropriate for large data sets, in terms of index building time.

  3. Fishing TaSC Interacting Protein in Wheat Using Split Ubiquitin Yeast Two Hybrid System%利用分裂泛素酵母双杂交技术钓取小麦TaSC互作蛋白质

    Institute of Scientific and Technical Information of China (English)

    蔺芳芳; 杨旭; 武小翠; 刘晓梅; 葛荣朝; 赵宝存

    2013-01-01

      TaSC (Triticum asetivum L. salt-tolerance related gene, GenBank 登录号为 AY956330)是从小麦耐盐突变体RH8706-49中克隆的高盐诱导表达的耐盐相关基因.以该基因编码的蛋白质TaSC为诱饵,运用分裂泛素酵母双杂交技术从小麦 cDNA 表达文库中钓取互作蛋白质,筛选到一个编码小麦未知功能蛋白质的基因(GenBank 登录号为AK336035),命名为TaSCIP1(TaSC interaction protein 1).双分子荧光互补(BiFC)实验证实TaSCIP1与TaSC存在互作.该互作蛋白的分离有利于进一步研究TaSC基因的耐盐机制.%The TaSC (Triticum asetivum L. salt-tolerance related gene, GenBank accession number AY956330) has been cloned from wheat salt tolerant mutant RH 8706-49, which is induced by high salinity. To fish interacting proteins of this gene, we used TaSC protein as bait to hybrid with the wheat cDNA expression library using the split ubiquitin yeast two hybrid system in this experiment. A novel wheat gene (GenBank accession number AK336035) encoding a protein with unknown function was isolated, which was designated TaSCIP1 (TaSC interaction protein 1). Bimolecular fluorescence complementation (BiFC) experiment con-firmed the interaction between proteins TaSCIP1 and TaSC. The separation of TaSC-interacting protein is beneficial to disclose the mechanism of salt tolerance gene TaSC.

  4. Marked Increase in PROP Taste Responsiveness Following Oral Supplementation with Selected Salivary Proteins or Their Related Free Amino Acids

    Science.gov (United States)

    Melis, Melania; Aragoni, Maria Carla; Arca, Massimiliano; Cabras, Tiziana; Caltagirone, Claudia; Castagnola, Massimo; Crnjar, Roberto; Messana, Irene; Tepper, Beverly J.; Barbarossa, Iole Tomassini

    2013-01-01

    The genetic predisposition to taste 6-n-propylthiouracil (PROP) varies among individuals and is associated with salivary levels of Ps-1 and II-2 peptides, belonging to the basic proline-rich protein family (bPRP). We evaluated the role of these proteins and free amino acids that selectively interact with the PROP molecule, in modulating bitter taste responsiveness. Subjects were classified by their PROP taster status based on ratings of perceived taste intensity for PROP and NaCl solutions. Quantitative and qualitative determinations of Ps-1 and II-2 proteins in unstimulated saliva were performed by HPLC-ESI-MS analysis. Subjects rated PROP bitterness after supplementation with Ps-1 and II-2, and two amino acids (L-Arg and L-Lys) whose interaction with PROP was demonstrated by 1H-NMR spectroscopy. ANOVA showed that salivary levels of II-2 and Ps-1 proteins were higher in unstimulated saliva of PROP super-tasters and medium tasters than in non-tasters. Supplementation of Ps-1 protein in individuals lacking it in saliva enhanced their PROP bitter taste responsiveness, and this effect was specific to the non-taster group.1H-NMR results showed that the interaction between PROP and L-Arg is stronger than that involving L-Lys, and taste experiments confirmed that oral supplementation with these two amino acids increased PROP bitterness intensity, more for L-Arg than for L-Lys. These data suggest that Ps-1 protein facilitates PROP bitter taste perception and identifies a role for free L-Arg and L-Lys in PROP tasting. PMID:23555788

  5. In cellulo examination of a beta-alpha hybrid construct of beta-hexosaminidase A subunits, reported to interact with the GM2 activator protein and hydrolyze GM2 ganglioside.

    Directory of Open Access Journals (Sweden)

    Incilay Sinici

    Full Text Available The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively, and the GM2-activator protein (GM2AP, encoded by the GM2A gene. Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750. Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1 and a new more extensive hybrid (H2, with our documented in cellulo (live cell- based assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.

  6. Hybrid microelectronic technology

    Science.gov (United States)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  7. Understanding the effect of locked nucleic acid and 2'-O-methyl modification on the hybridization thermodynamics of a miRNA-mRNA pair in the presence and absence of AfPiwi protein.

    Science.gov (United States)

    Kumar, Santosh; Mapa, Koyeli; Maiti, Souvik

    2014-03-18

    miRNAs are some of the key epigenetic regulators of gene expression. They act through hybridization with their target mRNA and modulate the level of respective proteins via different mechanisms. Various cancer conditions are known to be associated with up- and downregulation of the oncogenic and tumor suppressor miRNAs, respectively. The levels of aberrantly expressed oncogenic miRNAs can be downregulated in different ways. Similarly, restoration of tumor suppressor miRNAs to their normal levels can be achieved using miRNA mimics. However, the use of miRNA mimics is limited by their reduced biostability and function. We have studied the hybridization thermodynamics of the miRNA 26a (11-mer, including the seed sequence) guide strand with the mRNA (11-mer) target strand in the absence and presence of AfPiwi protein. We have also inserted locked nucleic acids (LNAs) and 2'-O-methyl-modified nucleotides into the guide strand, in a walk-through manner, to assess their effect on the binding efficiency between guide and target RNA. Insertion of LNA and 2'-O-methyl-modified nucleotides into the guide strand helped to strengthen the binding affinity irrespective of the position of insertion. However, in the presence of AfPiwi protein, these modifications reduced the binding affinity to different extents depending on the position of insertion. Insertion of a modification leads to an increase in the enthalpic contribution with an increased unfavorable entropic contribution, which negatively compensates for the higher favorable enthalpy.

  8. A cytoskeletal localizing domain in the cyclase-associated protein, CAP/Srv2p, regulates access to a distant SH3-binding site.

    Science.gov (United States)

    Yu, J; Wang, C; Palmieri, S J; Haarer, B K; Field, J

    1999-07-09

    In the yeast, Saccharomyces cerevisiae, adenylyl cyclase consists of a 200-kDa catalytic subunit (CYR1) and a 70-kDa subunit (CAP/SRV2). CAP/Srv2p assists the small G protein Ras to activate adenylyl cyclase. CAP also regulates the cytoskeleton through an actin sequestering activity and is directed to cortical actin patches by a proline-rich SH3-binding site (P2). In this report we analyze the role of the actin cytoskeleton in Ras/cAMP signaling. Two alleles of CAP, L16P(Srv2) and R19T (SupC), first isolated in genetic screens for mutants that attenuate cAMP levels, reduced adenylyl cyclase binding, and cortical actin patch localization. A third mutation, L27F, also failed to localize but showed no loss of either cAMP signaling or adenylyl cyclase binding. However, all three N-terminal mutations reduced CAP-CAP multimer formation and SH3 domain binding, although the SH3-binding site is about 350 amino acids away. Finally, disruption of the actin cytoskeleton with latrunculin-A did not affect the cAMP phenotypes of the hyperactive Ras2(Val19) allele. These data identify a novel region of CAP that controls access to the SH3-binding site and demonstrate that cytoskeletal localization of CAP or an intact cytoskeleton per se is not necessary for cAMP signaling.

  9. Molecular characterization of OsPRP1 from rice, which is expressed preferentially in anthers

    Institute of Scientific and Technical Information of China (English)

    WU Xiaohuai; MAO Aijun; WANG Rong; WANG Tai; SONG Yanru; TONG Zhe

    2003-01-01

    A proline-rich protein-encoding cDNA encoded by a rice gene, OsPRP1, was isolated by PCR-mediated RNA subtraction hybridization strategy and rapid amplification of cDNA ends. The deduced protein consists of 224 amino acids with the highest level of proline residue (14.29%). Following the putative signal peptide, OsPRP1 contains two structural domains, of which the N-terminal domain lacks Pro-rich repetitive sequences, and the C-terminal domain has two repetitive proline-rich sequences of 18 amino acid residues with PEPK motifs. Southern blot and sequence analysis show that OsPRP1 exists as four copies in rice genome and is localized in rice chromosome 10. RT-PCR experiments reveal that OsPRP1 is expressed preferentially in spikelets and buds with lower levels in roots and leaves. In situ hybridization indicates that OsPRP1 transcripts are present at high levels in pollen mother cells (PMCs), meiotic PMCs, tapetal cells and vascular bundle cells of flower organs. The expression of OsPRP1 in anthers has temporal specificity. The transcripts are accumulated at high levels in PMCs, at the highest levels in meiotic PMCs and at undetectable levels in uninucleate pollen. In buds the transcripts are only detected in the epidermal cells of coleoptiles and leaf primordial.

  10. The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants.

    Directory of Open Access Journals (Sweden)

    Immaculada Llop-Tous

    Full Text Available BACKGROUND: Xylanases deserve particular attention due to their potential application in the feed, pulp bleaching and paper industries. We have developed here an efficient system for the production of an active xylanase in tobacco plants fused to a proline-rich domain (Zera of the maize storage protein γ-zein. Zera is a self-assembling domain able to form protein aggregates in vivo packed in newly formed endoplasmic reticulum-derived organelles known as protein bodies (PBs. METHODOLOGY/PRINCIPAL FINDINGS: Tobacco leaves were transiently transformed with a binary vector containing the Zera-xylanase coding region, which was optimized for plant expression, under the control of the 35S CaMV promoter. The fusion protein was efficiently expressed and stored in dense PBs, resulting in yields of up to 9% of total protein. Zera-xylanase was post-translationally modified with high-mannose-type glycans. Xylanase fused to Zera was biologically active not only when solubilized from PBs but also in its insoluble form. The resistance of insoluble Zera-xylanase to trypsin digestion demonstrated that the correct folding of xylanase in PBs was not impaired by Zera oligomerization. The activity of insoluble Zera-xylanase was enhanced when substrate accessibility was facilitated by physical treatments such as ultrasound. Moreover, we found that the thermostability of the enzyme was improved when Zera was fused to the C-terminus of xylanase. CONCLUSION/SIGNIFICANCE: In the present work we have successfully produced an active insoluble aggregate of xylanase fused to Zera in plants. Zera-xylanase chimeric protein accumulates within ER-derived protein bodies as active aggregates that can easily be recovered by a simple density-based downstream process. The production of insoluble active Zera-xylanase protein in tobacco outlines the potential of Zera as a fusion partner for producing enzymes of biotechnological relevance. Zera-PBs could thus become efficient and low

  11. 水稻籽粒蛋白质含量选择对杂交后代蛋白质含量及氮代谢关键酶活性的影响%Effects of Grain Protein Content Selection on Protein Content and Key Enzymes Activities for Nitrogen Metabolism in Rice Hybrid Progenies

    Institute of Scientific and Technical Information of China (English)

    黄星; 李晓光; 刘洪亮; 徐美兰; 张丰转; 张忠臣; 金正勋

    2009-01-01

    The japonica parents (Tong 769 and Xixuan 1) and their hybrid progenies, significantly differed in protein content in grains, were investigated to reveal the activities of protease in leaves and glutamine synthetase in grains and the dynamic alteration of soluble protein content in grains during grain filling. The results showed that the protein content in rice of the parents was near to each other, however, hybrid progenies with different contents of protein in grains and higher or lower activities of protease in leaves and glutamine synthetase in grains were acquired by consecutively directed selection of the grain protein content in their hybrid progenies. Moreover, the enzyme activity and protein content in grains exceled their parents during grain filling. The content of protein in rice and the activitiy of protease in leaves were positively related, and the content of soluble protein and activity of glutamine synthetase in grains were negatively related to some extent.%以籽粒蛋白质含量有显著差异的杂交后代及亲本为材料,分析了灌浆成熟过程中叶片蛋白水解酶和籽粒谷氨酰胺合成酶活性以及籽粒可溶性蛋白质含量的变化动态.结果表明,在籽粒蛋白质含量相近的亲本衍生的杂交后代中,通过籽粒蛋白质含量的连续定向选择不仅可以获得籽粒蛋白质含量和叶片蛋白水解酶活性及籽粒谷氨酰胺合成酶活性明显变高或变低的杂种后代,而且可获得蛋白质含量和酶活性超亲的后代;稻米蛋白质含量与灌浆过程中的叶片蛋白水解酶活性呈正相关, 籽粒可溶性蛋白质含量与籽粒谷氨酰胺合成酶活性呈显著负相关.

  12. In phyllodes tumors of the breast expression of SPARC (osteonectin/BM40) mRNA by in situ hybridization correlates with protein expression by immunohistochemistry and is associated with tumor progression.

    Science.gov (United States)

    Kim, Nah Ihm; Kim, Ga-Eon; Lee, Ji Shin; Park, Min Ho

    2017-01-01

    Secreted protein acidic and rich in cysteine (SPARC) plays an essential role in tumor invasion and metastasis. The present work was undertaken to detect expression of SPARC mRNA in phyllodes tumors (PTs) and its association with SPARC protein expression. This study also evaluated expression of SPARC mRNA and its correlation between grade and clinical behavior of PTs. In addition, we assessed in PTs the association of expression of SPARC with that of matrix metalloproteinase (MMP)-2 and of MMP-9. SPARC mRNA expression was determined by RNAscope in situ hybridization (ISH) in 50 benign, 22 borderline, and 10 malignant PTs using a tissue microarray. Furthermore, we applied immunohistochemistry (IHC) to examine expression of SPARC, MMP-2, and MMP-9. SPARC mRNA appeared to be concentrated mainly in the stromal compartment of PTs. IHC staining patterns of SPARC protein showed concordance with SPARC mRNA ISH results. Stromal SPARC expression increased continuously as PTs progress from benign through borderline to malignant PTs, both at mRNA (using ISH) (P = 0.044) and protein level (using IHC) (P = 0.000). The recurrence percentage was higher in the stromal SPARC mRNA or protein-positive group than in the SPARC-negative group but this difference was not statistically significant. Stromal SPARC mRNA and protein expression was associated with PT grade and correlated with MMP-2 expression. These results indicate that SPARC-mediated degradation of the extracellular matrix, and its possible association with MMPs, might contribute to progression of PTs.

  13. Death associated protein 1 (DAP 1) positively regulates virus replication and apoptosis of hemocytes in shrimp Marsupenaeus japonicus.

    Science.gov (United States)

    Xia, Wen-Li; Kang, Li-Hua; Liu, Chang-Bin; Kang, Cui-Jie

    2017-04-01

    Death-associated protein 1 (DAP1) is a small proline-rich cytoplasmic protein that functions both in the apoptosis and autophage process of mammalian and in the clinical cancer of human. However, little knowledge is known about the homologue gene of DAP1 and its roles in the physiological process of invertebrates. In this paper, we report a novel function of DAP1 in the antivirus immunity of shrimp. A homologue gene of DAP1 was cloned from Marsupenaeus japonicus and named as Mjdap-1. The full-length of Mjdap-1 was 1761 bp with a 309 bp open reading frame that encoded 102 amino acids. Reverse transcription-PCR results showed that Mjdap-1 was expressed in all tested tissues, including hemocytes, gills, intestines, stomach, heart, hepatopancreas, testes, and ovaries. In shrimp, Mjdap-1 transcripts were up-regulated by white spot syndrome virus (WSSV) infection; Mjdap-1 knockdown decreased the virus copy in vivo and the mortality of M. japonicus to WSSV challenge. Conversely, injecting the purified recombinant MjDAP1 protein promoted the amplification of virus in shrimp. Flow cytometric assay showed, the virus infection-induced apoptosis of hemocytes was enhanced by MjDAP1 protein injection and inhibited in MjDAP1 knockdown shrimp. Furthermore, the expression of apoptosis-inducing factor (AIF) was regulated by Mjdap-1, but the caspase transcripts were not affected. Our results suggested that MjDAP1 facilitated the amplification of virus in shrimp, which may be attributed to the promotion of hemocyte apoptosis in an AIF-dependent manner. These results provided a new insight into the function of this protein that may be used for virus disease control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  15. Hybrid Qualifications

    DEFF Research Database (Denmark)

    has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...... masters», i.e. by producing skills for the labour market and enabling individuals to progress more or less directly to higher education. The specific focus of this book is placed on conditions, structures and processes which help to combine VET with qualifications leading into higher education...

  16. Screening for the Interaction Proteins of SOC1 from Phyllostachys violascens Using Yeast Two-Hybrid System%利用酵母双杂交系统筛选雷竹 SOC1相互作用蛋白

    Institute of Scientific and Technical Information of China (English)

    潘现飞; 施泉; 林新春; 徐英武; 曹友志

    2016-01-01

    This work aims to study the target proteins of suppressor of overexpression of constans1(SOC1)in flowering way of Phyllostachys violaceus and to explore the action mechanism of SOC1. The pGBKT7-PvSOC1 vector was constructed as the bait protein,then the cDNA library of P. violascens flowering was established using SMART technology,and the interaction proteins with SOC1 were screened by yeast two-hybrid system as well as analyzed and identified. The results showed that the cDNA library for yeast two-hybrid was constructed successfully,the conversion rate of the library was about 3.0×106 converters per μg pGADT7-Rec,and the capacity of the library was up to 7.5×106 cfu/mL and the insert fragments were distributed from 0.25 kb to 2 kb. The protein interacted with the bait protein PvSOC1 was screened through the yeast two-hybrid technology. The screened target protein was identified as a protein kinase containing plentiful leucine which amino acid sequence was very conservative in different species,and had the highest affinity with rice.%在雷竹(Phyllostachys violascens)中找到 SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1(SOC1)在开花途径中的作用靶标,进一步探索 SOC1的作用机制。构建 pGBKT7-PvSOC1诱饵表达载体,通过 SMART 技术构建开花时期的雷竹 cDNA文库,酵母双杂交筛选与 SOC1互作的蛋白,并对其进行分析鉴定。结果显示,成功构建了可用于酵母双杂交的 cDNA 文库,文库的转化率为每微克 pGADT7-Rec 3.0×106转化子,文库滴度为7.5×106 cfu/mL,插入片段主要在250-2000 bp 之间。通过酵母双杂交实验得到与诱饵蛋白 PvSOC1相互作用的蛋白,筛选到的靶标蛋白经鉴定是一个富含亮氨酸的蛋白激酶,特征氨基酸序列在不同物种中非常保守,与水稻中的同源蛋白亲缘性最高。

  17. Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix x marschlinsii).

    Science.gov (United States)

    Guillaumot, Damien; Lelu-Walter, Marie-Anne; Germot, Agnès; Meytraud, Fanny; Gastinel, Louis; Riou-Khamlichi, Catherine

    2008-06-16

    Two APETALA2 domain transcription factors were characterized first in angiosperms, and, recently, in several gymnosperms. These proteins are involved in several processes, from flowering to embryogenesis in Arabidopsis thaliana. We extrapolated this result to hybrid larch (Larixxmarschlinsii Coaz) resulting from a cross between European (Larix decidua) and Japanese (Larix kaempferi) larches. Somatic embryogenesis is well described and controlled for this Pinaceae. We characterized two-AP2 domain genes: LmAP2L1 and LmAP2L2. Phylogenetic analysis confirmed that LmAP2L1 and LmAP2L2 were orthologous to Norway spruce PaAP2L1 and PaAP2L2 and that L1 forms appeared to be specific to Pinaceae. RT-PCR analysis showed that larch APETALA2 was differentially expressed during late somatic embryogenesis and during the first steps of germination. Whereas LmAP2L2 was constitutively expressed during this process, LmAP2L1 expression appeared only during late somatic embryogenesis, when embryos were able to germinate. Further, LmAP2L1 appeared to be the preferentially expressed form during embryo germination. Thus, LmAP2L1 seems to be a valuable molecular marker for hybrid larch late somatic embryogenesis and could play a role during post-embryonic development.

  18. Construction of Yeast One-Hybrid Library for Screening of G-box Binding Proteins%筛选G-box结合蛋白的酵母单杂交文库的构建

    Institute of Scientific and Technical Information of China (English)

    杨鹏程; 周波; 李玉花

    2012-01-01

    目的:筛选花青素合成中的关键基因查尔酮合成酶基因CHS启动子中G-box的结合蛋白,从而找到调节CHS表达的转录因子.方法:采用Matchmaker Gold Yeast One-Hybrid Library Screening System,将CHS启动子G-box序列串联后整合入酵母染色体,构建诱饵菌株;采用SMART技术合成芜菁幼苗下胚轴cDNA,将该cDNA与pGA DT7-Rec表达载体共同转化诱饵菌株,通过同源重组在酵母细胞内同步进行cDNA文库的构建和筛选;用酵母菌落PCR法获得阳性克隆中的cDNA插入片段,测序后在NCBI网站进行Blast分析.结果:共筛选了2.52×106个酵母克隆,得到94个阳性克隆,菌落PCR获得了长度为0.4~2.0 kb的cDNA插入片段,并通过Blast推测了其编码蛋白.结论:实验结果证明酵母单杂交文库构建成功,初步筛选获得了G-box结合蛋白的候选蛋白,为研究CHS的表达调控奠定了基础.%Objective: In order to screen binding proteins of G-box, an important element in chalcone synthase (CHS) promoter region, and find transcriptional regulators of CHS gene. Methods: Matchmaker Gold Yeast One-Hybrid Library Screening System was employed in this study. Bait yeast strain was constructed by synthesizing oligonucleotides containing three tandem copies of G-box core sequences and integrating it into the genome of yeast. The cDNA for hypocotyls of turnip(Brassica rapa L. subsp. rapa Tsuda) was synthesized via SMART technology and co-transformed into bait yeast strain with pGADT7-Rec vector, one-hybrid cDNA library was simultaneously constructed and screened directly in yeast as a result of in vivo plasmid recombination. cDNA inserts in positive clones was amplified by yeast colony PCR and analyzed through NCBI Blast after sequencing. Results: Based on the experiments, we screened 2.52×106 yeast clones and got 94 positive clones. Colony PCR amplification products were 0.4~2.0 kb in length and proteins encoded by them were inferred by NCBI Blast analysis

  19. Assignment of the human stress-activated protein kinase-3 gene (SAPK3) to chromosome 22q13.3 by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Goedert, M.; Hasegawa, J.; Craxton, M. [MRC Lab. of Molecular Biology, Cambridge, MA (United States)] [and others

    1997-05-01

    Three mitogen-activated protein (MAP) kinase family members have been identified in mammalian cells that are activated by cellular stresses, by bacterial lipopolysaccharide, and by the cytokines interleukin-1 and tumor necrosis factor and have therefore been called stress-activated protein kinases (SAPKs). SAPK1, SAPK2A (also known as p38, RK, and CSBP), and SAPK2B are activated by upstream kinases and in turn phosphorylate downstream substrates, such as other protein kinases and a number of transcription factors. 12 refs., 1 fig.

  20. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  1. Continuity Controlled Hybrid Automata

    OpenAIRE

    Bergstra, J. A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of hybrid automata as timed transition systems. We also relate the synchronized product operator on hybrid automata to the parallel composition operator of the process algebra. It turns out that the f...

  2. 不同杂交水稻籽粒灌浆期叶片蛋白的差异表达分析%Analysis of differential expression of leaf proteins in different hybrid rice during grain-filling

    Institute of Scientific and Technical Information of China (English)

    黄锦文; 李忠; 陈军; 张志兴; 李奇松; 郑家团; 林文雄

    2011-01-01

    为明确超级杂交水稻高产形成的分子机理,以超级杂交水稻"Ⅱ优航2号"为试验材料,杂交水稻"汕优63"为对照,运用双向电泳结合质谱技术,比较分析了籽粒灌浆过程中两种不同"源"类型杂交水稻叶片蛋白的差异表达情况.结果显示,两种不同类型水稻叶片蛋白中共有22个蛋白点出现显著差异表达,其中有20个蛋白功能得到鉴定.通过对差异蛋白功能及表达丰度的分析,相对于"汕优63","Ⅱ优航2号"在灌浆期光合代谢、抗逆反应、基因转录表达、细胞生长、能量代谢等生理活动过程中表现出较大优势,是其叶片在籽粒灌浆期"源"优势的主要体现.本研究从差异蛋白水平明确了航天超级杂交稻高产形成的"源"特征,丰富了籽粒灌浆的"源、库、流"理论,为超级杂交水稻育种提供理论依据.%To further clarify molecular metabolism of high yield super-hybrid rice, this paper studied differential expression patterns of leaf proteins in super-hybrid combinations “Ⅱ Youhang No. 2” and hybrid combinations “Shanyou 63” during grain-filling. The proteomic approach, which was based on two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) was used in the study.A total of 22 differentially expressed proteins (at a significant level) were noted, and 20 of which were eventually identified. Further analysis of relative functions and expression abundances showed advantages of “Ⅱ Youhang No. 2” in photosynthetic metabolism,defense, gene-transcript regulation, cell growth, energy metabolism, compared with “Xianyou 63”. The advantages maybe the internal agents of “source” property of “Ⅱ Youhang No. 2” leaf in grain-filling stage. The study revealed the source properties of high yield super-hybrid “Ⅱ Youhang No. 2” at differential proteomic levels. This, to some extent, enriched the source-sink-flow theory and provided a theoretical basis for super-hybrid rice

  3. Milk-derived proteins and peptides of potential therapeutic and nutritive value.

    Science.gov (United States)

    Zimecki, Michal; Kruzel, Marian L

    2007-01-01

    Milk and colostrum are rich in proteins and peptides which play a crucial role in development of the immune system in mammalian offspring. Immunotropic properties of these compounds prompted investigators to search for their utility in prevention and therapy of various disorders in humans. The following constituents of milk are of particular interest: 1) Lactoferrin (LF)--exhibits antibacterial, antifungal, antiviral, antiparasite and antitumor activities. It is protective with regard to intestinal epithelium, promotes bone growth and accelerates recovery of the immune system function in immunocompromised animal; 2) A Proline-Rich Polypeptide (PRP) shows a variety of immunotropic functions, including promotion of T-cell maturation and inhibition'of autoimmune disorders. PRP was recently found to improve or stabilize the Instrumental Activity of Daily Living status in Alzheimer's disease patients. 3) Casein--has been protective in experimental bacteremia by eliciting myelopoiesis. Casein hydrolyzates were also protective in diabetic animals, reduced the tumor growth and diminished colicky symptoms in infants. Casein-derived peptides have been found to have antihypertensive effects. Glycomacropeptide (GMP)--a peptide derived from kappa casein, exhibits antibacterial and antithrombotic activities. 4) Alpha lactalbumin (LA)--demonstrates antiviral, antitumor and anti-stress properties. LA-enriched diets were anxiolytic, lowered blood pressure in rats, prevented diarrhea and led to a better weight gain in malnourished children. 5) Lysozyme--is effective in treatment of periodentitis and prevention of tooth decay. Milk enriched in lysozyme was used in feeding premature infants suffering from concomitant diseases. 6) Lactoperoxidase--shows antibacterial properties. In conclusion, milk-derived proteins and peptides are bio-accessible and safe for the prevention and treatment of numerous disorders in humans.

  4. Transient ectopic overexpression of agouti-signalling protein 1 (asip1 induces pigment anomalies in flatfish.

    Directory of Open Access Journals (Sweden)

    Raúl Guillot

    Full Text Available While flatfish in the wild exhibit a pronounced countershading of the dorso-ventral pigment pattern, malpigmentation is commonly observed in reared animals. In fish, the dorso-ventral pigment polarity is achieved because a melanization inhibition factor (MIF inhibits melanoblast differentiation and encourages iridophore proliferation in the ventrum. A previous work of our group suggested that asip1 is the uncharacterized MIF concerned. In order to further support this hypothesis, we have characterized asip1 mRNAs in both turbot and sole and used deduced peptide alignments to analyze the evolutionary history of the agouti-family of peptides. The putative asip precursors have the characteristics of a secreted protein, displaying a putative hydrophobic signal. Processing of the potential signal peptide produces mature proteins that include an N-terminal region, a basic central domain with a high proportion of lysine residues as well as a proline-rich region that immediately precedes the C-terminal poly-cysteine domain. The expression of asip1 mRNA in the ventral area was significantly higher than in the dorsal region. Similarly, the expression of asip1 within the unpigmented patches in the dorsal skin of pseudoalbino fish was higher than in the pigmented dorsal regions but similar to those levels observed in the ventral skin. In addition, the injection/electroporation of asip1 capped mRNA in both species induced long term dorsal skin paling, suggesting the inhibition of the melanogenic pathways. The data suggest that fish asip1 is involved in the dorsal-ventral pigment patterning in adult fish, where it induces the regulatory asymmetry involved in precursor differentiation into mature chromatophore. Adult dorsal pseudoalbinism seems to be the consequence of the expression of normal developmental pathways in an inaccurate position that results in unbalanced asip1 production levels. This, in turn, generates a ventral-like differentiation environment

  5. Homer proteins mediate the interaction between STIM1 and Cav1.2 channels.

    Science.gov (United States)

    Dionisio, Natalia; Smani, Tarik; Woodard, Geoffrey E; Castellano, Antonio; Salido, Gines M; Rosado, Juan A

    2015-05-01

    STIM1 is a ubiquitous Ca2+ sensor of the intracellular, agonist-sensitive, Ca2+ stores that communicates the filling state of the Ca2+ compartments to plasma membrane store-operated Ca2+ (SOC) channels. STIM1 has been presented as a point of convergence between store-operated and voltage-operated Ca2+ influx, both inducing activation of SOC channels while suppressing Cav1.2 channels. Here we report that Homer proteins play a relevant role in the communication between STIM1 and Cav1.2 channels. HEK-293 cells transiently expressing Cav1.2 channel subunits α1, β2 and α2δ-1 exhibited a significant Ca2+ entry upon treatment with a high concentration of KCl. In Cav1.2-expressing cells, treatment with thapsigargin (TG), to induce passive discharge of the intracellular Ca2+ stores, resulted in Ca2+ influx that was significantly greater than in cells not expressing Cav1.2 channels, a difference that was abolished by nifedipine and diltiazem. Treatment with TG induces co-immunoprecipitation of Homer1 with STIM1 and the Cav1.2 α1 subunit. Impairment of Homer function by introduction of the synthetic PPKKFR peptide into cells, which emulates the proline-rich sequences of the PPXXF motif, or using siRNA Homer1, reduced the association of STIM1 and the Cav1.2 α1 subunit. These findings indicate that Homer is important for the association between both proteins. Finally, treatment with siRNA Homer1 or the PPKKFR peptide enhanced the nifedipine-sensitive component of TG response in Cav1.2-expressing cells. Altogether, these findings provide evidence for a new role of Homer1 supporting the regulation of Cav1.2 channels by STIM1. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part B: ChIP-chip data analysis.

    Science.gov (United States)

    Göbel, Ulrike; Reimer, Julia; Turck, Franziska

    2010-01-01

    Genome-wide targets of chromatin-associated factors can be identified by a combination of chromatin-immunoprecipitation and oligonucleotide microarray hybridization. Genome-wide mircoarray data analysis represents a major challenge for the experimental biologist. This chapter introduces ChIPR, a package written in the R statistical programming language that facilitates the analysis of two-color microarrays from Roche-Nimblegen. The workflow of ChIPR is illustrated with sample data from Arabidopsis thaliana. However, ChIPR supports ChIP-chip data preprocessing, target identification, and cross-annotation of any species for which genome annotation data is available in GFF format. This chapter describes how to use ChIPR as a software tool without the requirement for programming skills in the R language.

  7. Hybridized tetraquarks

    Directory of Open Access Journals (Sweden)

    A. Esposito

    2016-07-01

    Full Text Available We propose a new interpretation of the neutral and charged X,Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules but rather a manifestation of the interplay between the two. While meson molecules need a negative or zero binding energy, its counterpart for h-tetraquarks is required to be positive. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs0π± channel by the D0 Collaboration and the negative result presented subsequently by the LHCb Collaboration are understood in this scheme, together with a considerable portion of available data on X,Z particles. Considerations on a state with the same quantum numbers as the X(5568 are also made.

  8. Hybridized Tetraquarks

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.

  9. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    Science.gov (United States)

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  10. PERK–KIPK–KCBP signalling negatively regulates root growth in Arabidopsis thaliana

    Science.gov (United States)

    Humphrey, Tania V.; Haasen, Katrina E.; Aldea-Brydges, May Grace; Sun, He; Zayed, Yara; Indriolo, Emily; Goring, Daphne R.

    2015-01-01

    The Arabidopsis proline-rich, extensin-like receptor-like kinases (PERKs) are a small group of receptor-like kinases that are thought to act as sensors at the cell wall through their predicted proline-rich extracellular domains. In this study, we focused on the characterization of a subclade of three Arabidopsis predicted PERK genes, PERK8, -9, and -10, for which no functions were known. Yeast two-hybrid interaction studies were conducted with the PERK8,- 9, and -10 cytosolic kinase domains, and two members of the Arabidopsis AGC VIII kinase family were identified as interacting proteins: AGC1-9 and the closely related kinesin-like calmodulin-binding protein (KCBP)-interacting protein kinase (KIPK). As KIPK has been identified previously as an interactor of KCBP, these interactions were also examined further and confirmed in this study. Finally, T-DNA mutants for each gene were screened for altered phenotypes under different conditions, and from these screens, a role for the PERK, KIPK, and KCBP genes in negatively regulating root growth was uncovered. PMID:25262228

  11. Identification of protein-coding sequences using the hybridization of 18S rRNA and mRNA during translation.

    Science.gov (United States)

    Xing, Chuanhua; Bitzer, Donald L; Alexander, Winser E; Vouk, Mladen A; Stomp, Anne-Marie

    2009-02-01

    We introduce a new approach in this article to distinguish protein-coding sequences from non-coding sequences utilizing a period-3, free energy signal that arises from the interactions of the 3'-terminal nucleotides of the 18S rRNA with mRNA. We extracted the special features of the amplitude and the phase of the period-3 signal in protein-coding regions, which is not found in non-coding regions, and used them to distinguish protein-coding sequences from non-coding sequences. We tested on all the experimental genes from Saccharomyces cerevisiae and Schizosaccharomyces pombe. The identification was consistent with the corresponding information from GenBank, and produced better performance compared to existing methods that use a period-3 signal. The primary tests on some fly, mouse and human genes suggests that our method is applicable to higher eukaryotic genes. The tests on pseudogenes indicated that most pseudogenes have no period-3 signal. Some exploration of the 3'-tail of 18S rRNA and pattern analysis of protein-coding sequences supported further our assumption that the 3'-tail of 18S rRNA has a role of synchronization throughout translation elongation process. This, in turn, can be utilized for the identification of protein-coding sequences.

  12. Cellular internalization and cytotoxicity of the antimicrobial proline-rich peptide Bac7(1-35) in monocytes/macrophages, and its activity against phagocytosed Salmonella typhimurium.

    Science.gov (United States)

    Pelillo, Chiara; Benincasa, Monica; Scocchi, Marco; Gennaro, Renato; Tossi, Alessandro; Pacor, Sabrina

    2014-04-01

    Bac7(1-35) is an active fragment of the bovine cathelicidin antimicrobial peptide Bac7, which selectively inactivates Gram-negative bacteria both in vitro and in mice infected with Salmonella typhimurium. It has a non-lytic mechanism of action, is rapidly internalized by susceptible bacteria and mammalian cells and likely acts by binding to internal targets. In this study we show that Bac7(1-35) accumulates selectively within primed macrophages with respect to resting monocytes. Confocal microscopy analysis showed that the peptide mainly distributes in the cytoplasm and perinuclear region of macrophages within 3 hours of incubation, without affecting cell viability. Cytotoxicity studies showed that the peptide does not induce necrotic or apoptotic damage up to concentrations 50-100-fold higher than minimal inhibitory concentrations (MIC). Moreover, Bac7(1-35) did not affect the ability of macrophages to engulf S. typhimurium, a species that may proliferate within this cell type. Conversely, when added to macrophages after phagocytosis, Bac7(1-35) caused a significant reduction in the number of recovered bacteria, indicating that it can kill the engulfed microorganisms directly and/or indirectly, via activation of the defense response of the cells.

  13. Absence of in vitro innate immunomodulation by insect-derived short proline-rich antimicrobial peptides points to direct antibacterial action in vivo.

    Science.gov (United States)

    Fritsche, Stefanie; Knappe, Daniel; Berthold, Nicole; von Buttlar, Heiner; Hoffmann, Ralf; Alber, Gottfried

    2012-10-01

    Some antimicrobial peptides (AMPs) have been described to exert immunomodulatory effects, which may contribute to their in vivo antibacterial activity. Very recently, we could show that novel oncocin and apidaecin derivatives are potently antibacterially active in vivo. Therefore, we studied oncocin and apidaecin derivatives for their effects on murine dendritic cells (DC) and macrophages and compared them with well-known immunomodulatory activities of murine cathelicidin-related antimicrobial peptide (CRAMP). To characterize the immunomodulatory activity of the peptides on key cells of the innate immune system, we stimulated murine DC and macrophages with the oncocin and apidaecin derivatives alone, or in combination with lipopolysaccharide (LPS). We analyzed the secretion of pro-inflammatory cytokines, the expression of surface activation markers, and the chemotactic activity of the AMPs. In contrast to LPS, none of the oncocin and apidaecin derivatives alone has an influence on cytokine or surface marker expression by DC and macrophages. Furthermore, the tested oncocin and apidaecin derivatives do not modulate the immune response after LPS stimulation, whereas CRAMP shows a reduction of the LPS-mediated immune response as expected. All peptides tested are not chemotactic for DC. Together, lack of in vitro immunomodulatory effects by oncocin and apidaecin derivatives on key cells of the innate murine immune system suggests that their potent in vivo antibacterial activity relies on a direct antibacterial effect. This will simplify further pharmaceutical investigation and development of insect peptides as therapeutic compounds against bacterial infections.

  14. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation.

    Science.gov (United States)

    Shimizu, Katsuhiko; Amano, Taro; Bari, Md Rezaul; Weaver, James C; Arima, Jiro; Mori, Nobuhiro

    2015-09-15

    The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure-function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named "glassin," the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6-8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges.

  15. NMR determines transient structure and dynamics in the disordered C-terminal domain of WASp interacting protein.

    Science.gov (United States)

    Haba, Noam Y; Gross, Renana; Novacek, Jiri; Shaked, Hadassa; Zidek, Lukas; Barda-Saad, Mira; Chill, Jordan H

    2013-07-16

    WASp-interacting protein (WIP) is a 503-residue proline-rich polypeptide expressed in human T cells. The WIP C-terminal domain binds to Wiskott-Aldrich syndrome protein (WASp) and regulates its activation and degradation, and the WIP-WASp interaction has been shown to be critical for actin polymerization and implicated in the onset of WAS and X-linked thrombocytopenia. WIP is predicted to be an intrinsically disordered protein, a class of polypeptides that are of great interest because they violate the traditional structure-function paradigm. In this first (to our knowledge) study of WIP in its unbound state, we used NMR to investigate the biophysical behavior of WIP(C), a C-terminal domain fragment of WIP that includes residues 407-503 and contains the WASp-binding site. In light of the poor spectral dispersion exhibited by WIP(C) and the high occurrence (25%) of proline residues, we employed 5D-NMR(13)C-detected NMR experiments with nonuniform sampling to accomplish full resonance assignment. Secondary chemical-shift analysis, (15)N relaxation rates, and protection from solvent exchange all concurred in detecting transient structure located in motifs that span the WASp-binding site. Residues 446-456 exhibited a propensity for helical conformation, and an extended conformation followed by a short, capped helix was observed for residues 468-478. The (13)C-detected approach allows chemical-shift assignment in the WIP(C) polyproline stretches and thus sheds light on their conformation and dynamics. The effects of temperature on chemical shifts referenced to a denatured sample of the polypeptide demonstrate that heating reduces the structural character of WIP(C). Thus, we conclude that the disordered WIP(C) fragment is comprised of regions with latent structure connected by flexible loops, an architecture with implications for binding affinity and function.

  16. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  17. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  18. The establishment of a library screening method based on yeast two-hybrid system and its use to determine the potential interactions of liver proteins in ayu, Plecoglossus altivelis.

    Science.gov (United States)

    Shi, Y H; Chen, J; Li, C H; Yang, H Y; Lu, X J

    2011-01-01

    Knowledge of specific protein-protein interaction (PPI) is an important component in understanding biological processes and regulatory mechanisms. A library to library screening method (LLS) was established based on yeast two-hybrid (YTH) system in this research, and applied to study the PPIs in ayu liver. In total, 23 out of 55 interaction pairs were found positive through phenotypic identification, with a positive rate of 41.8%. Of the 11 unique PPIs, 9 interactions including FGB/FGG, CaM/Spna2, C9/Apo-AI-1, α₂M/Ft, RPL10/RPL5, C8α/C9, FGG/Apo-AI-1, LECT2/Tf, and Apo-AI-2/C9 were previously reported. The other two PPIs including FGG/CLR and Wap65/C3 are novel, and in vitro co-immunoprecipitation (co-IP) experiments further confirmed these interactions. FGG/CLR interaction might play a role in regulating the inflammatory response. The interaction between Wap65 and C3 hints that Wap65 might function through the complement activation pathways when microbial infection occurs.

  19. Design and selection of a camelid single-chain antibody yeast two-hybrid library produced de novo for the cap protein of porcine circovirus type 2 (PCV2.

    Directory of Open Access Journals (Sweden)

    Xiangjing Fu

    Full Text Available Nanobodies (or variable domain of the heavy chain of the heavy-chain antibodies, VHHs are single-domain antigen-binding fragments derived from camelid heavy chain antibodies. Their comparatively small size, monomeric behavior, high stability, high solubility, and ability to bind epitopes inaccessible to conventional antibodies make them especially suitable for many therapeutic and biotechnological applications. In this paper, for the first time, we created the immunized Camelus Bactrianus VHH yeast two-hybrid (Y2H library according to the Clontech Mate & Plate library construction system. The transformation efficiency and titer of the VHH Y2H library were 7.26×10(6 cfu/3 µg and 2×10(9 cfu/ml, which met the demand for Y2H library screening. Using as an example the porcine circovirus type 2 (PCV2 Cap protein as bait, we screened 21 positive Cap-specific VHH sequences. Among these sequences, 7 of 9 randomly selected clones were strongly positive as indicated by enzyme-linked immunosorbent assay, either using PCV2 viral lysis or purified Cap protein as coated antigen. Additionally, the immunocytochemistry results further indicated that the screened VHHs could specifically detected PCV2 in the infected cells. All this suggests the feasibility of in vivo VHH throughput screening based on Y2H strategy.

  20. Determination of the three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, P.C.; Gronenborn, A.M.; Beress, L.; Clore, G.M. (National Institutes of Health, Bethesda, MD (USA))

    1989-03-07

    The three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata has been determined on the basis of 489 interproton and 24 hydrogen-bonding distance restraints supplemented by 23 {phi} backbone and 21 {sub {chi}1} side-chain torsion angle restraints derived from nuclear magnetic resonance (NMR) measurements. A total of 42 structures is calculated by a hybrid metric matrix distance geometry-dynamical simulated annealing approach. Both the backbone and side-chain atom positions are well defined. The average atomic rms difference between the 42 individual SA structures and the mean structure obtained by averaging their coordinates is 0.67 {plus minus} 0.12 {angstrom} for the backbone atoms and 0.90 {plus minus} 0.17 {angstrom} for all atoms. The core of the protein is formed by a triple-stranded antiparallel {beta}-sheet composed of residues 14-16 (strand 1), 30-34 (strand 2), and 37-41 (strand 3) with an additional mini-antiparallel {beta}-sheet at the N-terminus (residues 6-9). The first and second strands of the triple-stranded antiparallel {beta}-sheet are connected by a long exposed loop. A number of side-chain interactions are discussed in light of the structure.

  1. Development of hybrid organic-inorganic surface imprinted Mn-doped ZnS QDs and their application as a sensing material for target proteins.

    Science.gov (United States)

    Tan, Lei; Huang, Cong; Peng, Rongfei; Tang, Youwen; Li, Weiming

    2014-11-15

    Applying molecular imprinting techniques to the surface of functionalized quantum dots (QDs) allows the preparation of molecularly imprinted polymers (MIPs) with accessible, surface exposed binding sites and excellent optical properties. This paper demonstrates a new strategy for producing such hybrid organic-inorganic imprinted Mn-doped ZnS QDs for specific recognition of bovine hemoglobin. The technique provides surface grafting imprinting in aqueous solutions using amino modified Mn-doped ZnS QDs as supports, acrylamide and methacrylic acid as functional monomers, γ-methacryloxypropyl trimethoxy silane as the grafting agent, and bovine hemoglobin as a template. The amino propyl functional monomer layer directs the selective occurrence of imprinting polymerization at the QDs surface through copolymerization of grafting agents with functional monomers, but also acts as an assistive monomer to drive the template into the formed polymer shells to create effective recognition sites. Using MIP-QDs composites as a fluorescence sensing material, trace amounts of bovine hemoglobin are signaled with high selectivity by emission intensity changes of Mn-doped ZnS QDs, which is embedded into the imprinted polymers.

  2. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains.

    Science.gov (United States)

    Zeng, Xiao-Li; Tang, Kun; Zhou, Nan; Zhou, Ming; Hou, Harvey J M; Scheer, Hugo; Zhao, Kai-Hong; Noy, Dror

    2013-09-11

    The phycobilisomes of cyanobacteria and red-algae are highly efficient peripheral light-harvesting complexes that capture and transfer light energy in a cascade of excitation energy transfer steps through multiple phycobilin chromophores to the chlorophylls of core photosystems. In this work, we focus on the last step of this process by constructing simple functional analogs of natural phycobilisome-photosystem complexes that are based on bichromophoric protein complexes comprising a phycobilin- and a chlorophyll- or porphyrin-binding domain. The former is based on ApcE(1-240), the N-terminal chromophore-binding domain of the phycobilisome's L(CM) core-membrane linker, and the latter on HP7, a de novo designed four-helix bundle protein that was originally planned as a high-affinity heme-binding protein, analogous to b-type cytochromes. We fused a modified HP7 protein sequence to ApcEΔ, a water-soluble fragment of ApcE(1-240) obtained by excising a putative hydrophobic loop sequence of residues 77-153. HP7 was fused either to the N- or the C-terminus of ApcEΔ or inserted between residues 76 and 78, thereby replacing the native hydrophobic loop domain. We describe the assembly, spectral characteristics, and intramolecular excitation energy transfer of two unique systems: in the first, the short-wavelength absorbing zinc-mesoporphyrin is bound to the HP7 domain and serves as an excitation-energy donor to the long-wavelength absorbing phycocyanobilin bound to the ApcE domain; in the second, the short-wavelength absorbing phycoerythrobilin is bound to the ApcE domain and serves as an excitation energy donor to the long-wavelength absorbing zinc-bacteriochlorophyllide bound to the HP7 domain. All the systems that were constructed and tested exhibited significant intramolecular fluorescence resonance energy transfer with yields ranging from 21% to 50%. This confirms that our modular, covalent approach for studying EET between the cyclic and open chain tetrapyrroles is

  3. Identification of calcium/calmodulin-binding receptor-like kinase GsCBRLK-interactive proteins using yeast two-hybrid system%酵母双杂交筛选与GsCBRLK相互作用的蛋白质

    Institute of Scientific and Technical Information of China (English)

    杨姗姗; 孙晓丽; 于洋; 才华; 纪巍; 柏锡; 朱延明

    2013-01-01

    GsCBRLK(calcium/calmodulin-binding receptor-like kinase from Glycine soja)在ABA及盐胁迫诱导的钙离子信号通路中起到关键的调节作用.为深入研究GsCBRLK蛋白的作用机制,文章采用膜酵母双杂交系统,以GsCBRLK为诱饵蛋白,筛选与其相互作用的蛋白质.通过构建野生大豆盐胁迫条件下的cDNA文库、膜酵母双杂交系统筛选、复筛、回转验证、生物信息学分析以及酵母体内互作验证等手段,最终获得2个(SNARE和14-3-3蛋白)与GsCBRLK诱饵蛋白相互作用的蛋白质.%GsCBRLK (calcium/calmodulin-binding receptor-like kinase from Glycine soja) links ABA (abscisic acid)-and salt-induced calcium/calmodulin signal in plant cells. In order to study the molecular mechanismes of GsCBLRK, the salt-treated Glycine soja cDNA library was screened with pB73-STE-CBRLK as bait plasmid using yeast two hybrid system. Two positive clones (SNARE and 14-3-3 protein) were identified by constructing cDNA library of wild soybean under salt treatment, membrane system yeast two hybrid screening, multiple screen, rotary validation, bioinformatic analysis and interaction identification in yeast.

  4. 肝细胞生成素在睾丸组织中的相互作用蛋白%Identification of Hepatopoietin Interacting Proteins in Human Testis by Yeast Two-hybrid System

    Institute of Scientific and Technical Information of China (English)

    陈筱潇; 李勇; 邱宗荫; 贺福初

    2004-01-01

    Hepatopoietin (HPO) has diverse functions in the regulation of cell growth and differentiation. Its high level expression in testis suggests that HPO may have important role for testicular physiological functions. Using HPO as "bait", a yeast two-hybrid library screen of human testis was performed. By screening and selecting the positive colonies, retesting interactions in yeast, amplifying the AD/library inserts, sequencing and sequence comparing, four HPO-interacting proteins were identified: NADH dehydrogenase 1, Na+/K+ ATPase beta-3 subunit (ATP1β3), phospholipase C delta 1 and epididymal secretory protein. The significance of identification of these proteins may provide mechanistic insight into the biologic role of HPO in testis.%肝细胞生成素(HPO)具有复杂的生理功能,在睾丸中的高表达提示其在生殖活动中的重要性,而不仅局限于肝再生.构建了酵母表达载体pGBKT7-HPO,采用酵母双杂交系统,以HPO为诱饵蛋白,从人睾丸cDNA文库中寻找能够与HPO相互作用的蛋白质.经过筛选、验证阳性克隆,并进行PCR、测序和序列比对,得到4种相互作用蛋白质:NADH脱氢酶1、钠/钾ATP酶β3亚基、磷脂酶C δ1以及附睾分泌蛋白.提示HPO可能参与了细胞的蛋白质合成,能量代谢等.通过对候选蛋白的研究,为探讨HPO对睾丸组织细胞功能的调节机制提供了重要的线索.

  5. Analysis of Five Differentially Expressed Gene Familiesin Fast Elongating Cotton Fiber

    Institute of Scientific and Technical Information of China (English)

    Jian-XunFENG; Sheng-JianJI; Yong-HuiSHI; YuXU; GangWEI; Yu-XianZHU

    2004-01-01

    Using the suppression subtractive hybridization method, we isolated five gene families,including proline-rich proteins (PRPs), arabinogalactan proteins (AGPs), expansins, tubulins and lipid transfer proteins (LTPs), from fast elongating cotton fiber cells. Expression profile analysis using cDNA array technology showed that most of these gene families were highly expressed during early cotton fiber developmental stages (0-20 days post anthesis, DPA). Many transcripts accumulated over 50 fold in 10 DPA fiber cells than in 0 DPA samples. The entire gene family-AGP, together with 20 individual members in other 4 gene families, are reported in cotton for the first time. Accumulation of cell wall proteins, wall loosening enzymes, microtubules and lipid transfer proteins may contribute directly to the elongation and development of fiber cells.

  6. Analysis of Five Differentially Expressed Gene Families in Fast Elongating Cotton Fiber

    Institute of Scientific and Technical Information of China (English)

    Jian-Xun FENG; Sheng-Jian JI; Yong-Hui SHI; Yu XU; Gang WEI; Yu-Xian ZHU

    2004-01-01

    Using the suppression subtractive hybridization method, we isolated five gene families,including proline-rich proteins (PRPs), arabinogalactan proteins (AGPs), expansins, tubulins and lipid transfer proteins (LTPs), from fast elongating cotton fiber cells. Expression profile analysis using cDNA array technology showed that most of these gene families were highly expressed during early cotton fiber developmental stages (0-20 days post anthesis, DPA). Many transcripts accumulated over 50-fold in 10 DPA fiber cells than in 0 DPA samples. The entire gene family-AGP, together with 20 individual members in other 4 gene families, are reported in cotton for the first time. Accumulation of cell wall proteins, wall loosening enzymes, microtubules and lipid transfer proteins may contribute directly to the elongation and development of fiber cells.

  7. Neuronal RING finger protein 11 (RNF11 regulates canonical NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Pranski Elaine L

    2012-04-01

    Full Text Available Abstract Background The RING domain-containing protein RING finger protein 11 (RNF11 is a member of the A20 ubiquitin-editing protein complex and modulates peripheral NF-κB signaling. RNF11 is robustly expressed in neurons and colocalizes with a population of α-synuclein-positive Lewy bodies and neurites in Parkinson disease patients. The NF-κB pathway has an important role in the vertebrate nervous system, where the absence of NF-κB activity during development can result in learning and memory deficits, whereas chronic NF-κB activation is associated with persistent neuroinflammation. We examined the functional role of RNF11 with respect to canonical NF-κB signaling in neurons to gain understanding of the tight association of inflammatory pathways, including NF-κB, with the pathogenesis of neurodegenerative diseases. Methods and results Luciferase assays were employed to assess NF-κB activity under targeted short hairpin RNA (shRNA knockdown of RNF11 in human neuroblastoma cells and murine primary neurons, which suggested that RNF11 acts as a negative regulator of canonical neuronal NF-κB signaling. These results were further supported by analyses of p65 translocation to the nucleus following depletion of RNF11. Coimmunoprecipitation experiments indicated that RNF11 associates with members of the A20 ubiquitin-editing protein complex in neurons. Site-directed mutagenesis of the myristoylation domain, which is necessary for endosomal targeting of RNF11, altered the impact of RNF11 on NF-κB signaling and abrogated RNF11’s association with the A20 ubiquitin-editing protein complex. A partial effect on canonical NF-κB signaling and an association with the A20 ubiquitin-editing protein complex was observed with mutagenesis of the PPxY motif, a proline-rich region involved in Nedd4-like protein interactions. Last, shRNA-mediated reduction of RNF11 in neurons and neuronal cell lines elevated levels of monocyte chemoattractant protein 1 and

  8. Allelic Variation in Outer Membrane Protein A and Its Influence on Attachment of Escherichia coli to Corn Stover

    Directory of Open Access Journals (Sweden)

    Chunyu Liao

    2017-05-01

    Full Text Available Understanding the genetic factors that govern microbe-sediment interactions in aquatic environments is important for water quality management and reduction of waterborne disease outbreaks. Although chemical properties of bacteria have been identified that contribute to initiation of attachment, the outer membrane proteins that contribute to these chemical properties still remain unclear. In this study we explored the attachment of 78 Escherichia coli environmental isolates to corn stover, a representative agricultural residue. Outer membrane proteome analysis led to the observation of amino acid variations, some of which had not been previously described, in outer membrane protein A (OmpA at 10 distinct locations, including each of the four extracellular loops, three of the eight transmembrane segments, the proline-rich linker and the dimerization domain. Some of the polymorphisms within loops 1, 2, and 3 were found to significantly co-occur. Grouping of sequences according to the outer loop polymorphisms revealed five distinct patterns that each occur in at least 5% of our isolates. The two most common patterns, I and II, are encoded by 33.3 and 20.5% of these isolates and differ at each of the four loops. Statistically significant differences in attachment to corn stover were observed among isolates expressing different versions of OmpA and when different versions of OmpA were expressed in the same genetic background. Most notable was the increased corn stover attachment associated with a loop 3 sequence of SNFDGKN relative to the standard SNVYGKN sequence. These results provide further insight into the allelic variation of OmpA and implicate OmpA in contributing to attachment to corn stover.

  9. A novel role of protein tyrosine kinase2 in mediating chloride secretion in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lihua Liang

    Full Text Available Ca(2+ activated Cl(- channels (CaCC are up-regulated in cystic fibrosis (CF airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl(- secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca(2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na(+ hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl(- secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca(2+ and Cl(- secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.

  10. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein.

    Science.gov (United States)

    Lundgren, A; Leach, S; Tobias, J; Carlin, N; Gustafsson, B; Jertborn, M; Bourgeois, L; Walker, R; Holmgren, J; Svennerholm, A-M

    2013-02-06

    We have developed a new oral vaccine against enterotoxigenic Escherichia coli (ETEC) diarrhea containing killed recombinant E. coli bacteria expressing increased levels of ETEC colonization factors (CFs) and a recombinant protein (LCTBA), i.e. a hybrid between the binding subunits of E. coli heat labile toxin (LTB) and cholera toxin (CTB). We describe a randomized, comparator controlled, double-blind phase I trial in 60 adult Swedish volunteers of a prototype of this vaccine. The safety and immunogenicity of the prototype vaccine, containing LCTBA and an E. coli strain overexpressing the colonization factor CFA/I, was compared to a previously developed oral ETEC vaccine, consisting of CTB and inactivated wild type ETEC bacteria expressing CFA/I (reference vaccine). Groups of volunteers were given two oral doses of either the prototype or the reference vaccine; the prototype vaccine was administered at the same or a fourfold higher dosage than the reference vaccine. The prototype vaccine was found to be safe and equally well-tolerated as the reference vaccine at either dosage tested. The prototype vaccine induced mucosal IgA (fecal secretory IgA and intestine-derived IgA antibody secreting cell) responses to both LTB and CFA/I, as well as serum IgA and IgG antibody responses to LTB. Immunization with LCTBA resulted in about twofold higher mucosal and systemic IgA responses against LTB than a comparable dose of CTB. The higher dose of the prototype vaccine induced significantly higher fecal and systemic IgA responses to LTB and fecal IgA responses to CFA/I than the reference vaccine. These results demonstrate that CF over-expression and inclusion of the LCTBA hybrid protein in an oral inactivated ETEC vaccine does not change the safety profile when compared to a previous generation of such a vaccine and that the prototype vaccine induces significant dose dependent mucosal immune responses against CFA/I and LTB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Screening of proteins interacting with HSPC016 by yeast two-hybridization technique%用酵母双杂交技术筛选与HSPC016相互作用的蛋白

    Institute of Scientific and Technical Information of China (English)

    宋志强; 孙丽华; 郝飞

    2011-01-01

    目的 采用酵母双杂交技术筛选毛乳头细胞中与造血干细胞(hematopoietic stem/progenitor cells,HSPC)分化相关基因HSPC016相互作用的蛋白,了解其参与调控毛乳头细胞凝集性生长的分子机制.方法 应用酵母双杂交系统,将构建的pGBKT7-HSPC016诱饵质粒与含原代人毛乳头细胞cDNA文库质粒的酵母Y187进行配合,筛选与HSPC016相互作用的蛋白,通过回复性杂交试验验证其可靠性,并对阳性克隆进行测序和生物信息学分析.结果 筛选出4个与HSPC016有相互作用的蛋白,包括转录因子叉头框蛋白O1(forkhead box O1,FOXO1)、丝裂原活化蛋白激酶11、磷酸次黄苷酸激酶3调节亚单位3(PIK3R3)、肝X受体,它们均与细胞内能量代谢、转录调节相关.结论 HSPC016可能通过参与细胞内活性氧水平调节,并与细胞内参与能量和转录调节的相关信号分子相互作用,调节毛乳头细胞的凝集性生长状态.%Objective To screen and identify proteins interacting with hematopoietic stem/progenitor cell differentiation-related gene HSPC016, and to explore the molecular mechanism involved in the regulation by HSPC016 on the aggregative behavior of dermal papilla cells. Methods By using yeast two-hybridization,HSPC016 gene was sub-cloned into pGBKT7 to construct the bait plasmid (named as pGBKT7-HSPC016) in yeast AH109. The cDNA yeast expression library of human dermal papillae cells in yeast Y187 was screened with the bait plasmid and the proteins interacting with HSPC016 were identified. Yeast two-hybridization retransformation experiment was conducted to exclude the false positive clones and verify the interactions, then,the positive clones were sequenced and analyzed by using bioinformatic methods. Results The bait plasmid pGBKT7-HSPC016 was constructed successfully and there was no self-activation in or toxicity against yeast AH 109. Four proteins,including forkhead family of transcription factors (FOXO 1 ), mitogen

  12. Hybrid microspheres

    Science.gov (United States)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1985-01-01

    Substrates, particularly inert synthetic organic resin beads (10) or sheet (12) such as polystyrene are coated with a covalently bound layer (24) of polyacrolein by irradiation a solution (14) of acrolein or other aldehyde with high intensity radiation. Individual microspheres (22) are formed which attach to the surface to form the aldehyde containing layer (24). The aldehyde groups can be converted to other functional groups by reaction with materials such as hydroxylamine. Adducts of proteins such as antibodies or enzymes can be formed by direct reaction with the surface aldehyde groups.

  13. ELISA-PLA: A novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications.

    Science.gov (United States)

    Tong, Qing-He; Tao, Tao; Xie, Li-Qi; Lu, Hao-Jie

    2016-06-15

    Detection of low-abundance proteins and their post-translational modifications (PTMs) remains a great challenge. A conventional enzyme-linked immunosorbent assay (ELISA) is not sensitive enough to detect low-abundance PTMs and suffers from nonspecific detection. Herein, a rapid, highly sensitive and specific platform integrating ELISA with a proximity ligation assay (PLA), termed ELISA-PLA, was developed. Using ELISA-PLA, the specificity was improved by the simultaneous and proximate recognition of targets through multiple probes, and the sensitivity was significantly improved by rolling circle amplification (RCA). For GFP, the limit of detection (LOD) was decreased by two orders of magnitude compared to that of ELISA. Using site-specific phospho-antibody and pan-specific phospho-antibody, ELISA-PLA was successfully applied to quantify the phosphorylation dynamics of ERK1/2 and the overall tyrosine phosphorylation level of ERK1/2, respectively. ELISA-PLA was also used to quantify the O-GlcNAcylation of AKT, c-Fos, CREB and STAT3, which is faster and more sensitive than the conventional immunoprecipitation and western blotting (IP-WB) method. As a result, the sample consumption of ELISA-PLA was reduced 40-fold compared to IP-WB. Therefore, ELISA-PLA could be a promising platform for the rapid, sensitive and specific detection of proteins and PTMs.

  14. Plasiatine, an Unprecedented Indole-Phenylpropanoid Hybrid from Plantago asiatica as a Potent Activator of the Nonreceptor Protein Tyrosine Phosphatase Shp2

    Science.gov (United States)

    Gao, Zhong-Hua; Shi, Yi-Ming; Qiang, Zhe; Wang, Xia; Shang, Shan-Zhai; Yang, Yan; Du, Bao-Wen; Peng, Hui-Pan; Ji, Xu; Li, Honglin; Wang, Fei; Xiao, Wei-Lie

    2016-04-01

    Plasiatine (1), isolated from the seeds of Plantago asiatica, is an unprecedented indole analogue linked to a phenylpropanoid moiety via a carbon bond that builds up a novel heteromeric construction with a C19N2 scaffold. Its structure was determined by spectroscopic data and computational evidence. Notably, experimental assay demonstrated that 1 significantly enhanced the activity of the nonreceptor protein tyrosine phosphatase Shp2 in vitro in a concentration-dependent manner with an EC50 value of 0.97 μM, and activated phosphorylation of ERK, a known target of Shp2. Moreover, plasiatine (1) promoted hepatocellular HepG2 cells migration. Molecular docking suggested that plasiatine (1) binds to the catalytic cleft of Shp2. These results identified plasiatine (1) as the first small molecule Shp2 activator, and it warrants further investigation as a novel pharmaceutical tool to study the function of Shp2 in tumorigenesis.

  15. The association of BAG6 with SGTA and tail-anchored proteins.

    Directory of Open Access Journals (Sweden)

    Pawel Leznicki

    Full Text Available BACKGROUND: The BAG6 protein is a subunit of a heterotrimeric complex that binds a range of membrane and secretory protein precursors localized to the cytosol, enforcing quality control and influencing their subsequent fate. METHODOLOGY AND PRINCIPAL FINDINGS: BAG6 has an N-terminal ubiquitin-like domain, and a C-terminal Bcl-2-associated athanogene domain, separated by a large central proline-rich region. We have used in vitro binding approaches to identify regions of BAG6 important for its interactions with: i the small-glutamine rich tetratricopeptide repeat-containing protein alpha (SGTA and ii two model tail-anchored membrane proteins as a paradigm for its hydrophobic substrates. We show that the BAG6-UBL is essential for binding to SGTA, and find that the UBL of a second subunit of the BAG6-complex, ubiquitin-like protein 4A (UBL4A, competes for SGTA binding. Our data show that this binding is selective, and suggest that SGTA can bind either BAG6, or UBL4A, but not both at the same time. We adapted our in vitro binding assay to study the association of BAG6 with an immobilized tail-anchored protein, Sec61β, and find both the UBL and BAG domains are dispensable for binding this substrate. This conclusion was further supported using a heterologous subcellular localization assay in yeast, where the BAG6-dependent nuclear relocalization of a second tail-anchored protein, GFP-Sed5, also required neither the UBL, nor the BAG domain of BAG6. SIGNIFICANCE: On the basis of these findings, we propose a working model where the large central region of the BAG6 protein provides a binding site for a diverse group of substrates, many of which expose a hydrophobic stretch of polypeptide. This arrangement would enable the BAG6 complex to bring together its substrates with potential effectors including those recruited via its N-terminal UBL. Such effectors may include SGTA, and the resulting assemblies influence the subsequent fate of the hydrophobic BAG6

  16. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  17. The Hybrid Museum: Hybrid Economies of Meaning

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2013-01-01

    this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both....... Such a museum is referred to as a hybrid museum....

  18. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  19. Hybrid Management in Hospitals

    DEFF Research Database (Denmark)

    Byrkjeflot, Haldor; Jespersen, Peter Kragh

    2010-01-01

    Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer......Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer...

  20. WW 结构域及相关蛋白在肿瘤发生中的作用%Function of WW domain-containing proteins in Tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    孟刚; 代方银; 陈聪; 童晓玲; 鲁成

    2013-01-01

    WW结构域由35~40个氨基酸残基组成,存在两个高度保守的色氨酸残基,能特异地与富含脯氨酸的蛋白基序结合。WW结构域存在于多种蛋白中,广泛参与细胞内各种生化过程和信号通路。WW结构域及其参与构成的蛋白与包括癌症在内的多种人类疾病存在密切联系,成为疾病诊断、治疗和药物开发的新靶标。本论文中,我们综述了WW结构域及其参与构成的蛋白在肿瘤和癌症发生中的重要作用和研究进展。%WW domain is a compact domain generally composed of 35~40 amino acid residues ,con-taining two highly conserved tryptophan residues ,and interacts specifically with proline-rich motif .WW domains are found in many different proteins w hich are involved in a variety of biological processes and signaling pathway .WW domain-containing proteins and complexes have been implicated in major human diseases including cancer as well as in major signaling cascades such as the Hippo tumor suppressor pathway ,making them targets for new diag-nostics and therapeutics .In this review ,we discuss the WW domain and the indispensable role of WW domain-containing proteins in tumorogenesis .

  1. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  2. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  3. Exploring the Association of Surface Plasmon Resonance with Recombinant MHC:Ig Hybrid Protein as a Tool for Detecting T Lymphocytes in Mice Infected with Leishmania (Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    Lenilton Silva da Silveira-Júnior

    2017-01-01

    Full Text Available A surface plasmon resonance- (SPR- based recognition method applying H-2 Ld:Ig/peptides complexes for ex vivo monitoring cellular immune responses during murine infection with Leishmania (Leishmania amazonensis is described. Lymphocytes from lesion-draining popliteal lymph nodes were captured on a carboxylated sensor chip surface previously functionalized with H-2 Ld:Ig (DimerX protein bound to synthetic peptides derived from the COOH-terminal region of cysteine proteinase B of L. (L. amazonensis. In computational analysis, these peptides presented values of kinetic constants favorable to form complexes with H-2 Ld at neutral pH, with a Gibbs free energy ΔG°<0. The assayed DimerX:peptide complexes presented the property of attaching to distinct T lymphocytes subsets, obtained from experimentally infected BALB/c mice, in each week of infection, thus indicating a temporal variation in specific T lymphocytes populations, each directed to a different COOH-terminal region-derived peptide. The experimental design proposed herein is an innovative approach for cellular immunology studies of a neglected disease, providing a useful tool for the analysis of specific T lymphocytes subsets.

  4. Realizing the Hybrid Library.

    Science.gov (United States)

    Pinfield, Stephen; Eaton, Jonathan; Edwards, Catherine; Russell, Rosemary; Wissenburg, Astrid; Wynne, Peter

    1998-01-01

    Outlines five projects currently funded by the United Kingdom's Electronic Libraries Program (eLib): HyLiFe (Hybrid Library of the Future), MALIBU (MAnaging the hybrid Library for the Benefit of Users), HeadLine (Hybrid Electronic Access and Delivery in the Library Networked Environment), ATHENS (authentication scheme), and BUILDER (Birmingham…

  5. Homoploid hybrid expectations

    Science.gov (United States)

    Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...

  6. Hybrid armature projectile

    Science.gov (United States)

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  7. Intraply Hybrid Composite Design

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  8. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  9. The application of a photon-counting camera in very sensitive, bioluminescence-enhanced detection systems for protein blotting. Ultrasensitive detection systems for protein blotting and DNA hybridization, II.

    Science.gov (United States)

    Hauber, R; Miska, W; Schleinkofer, L; Geiger, R

    1988-03-01

    A relatively simple, very sensitive bioluminescence-enhanced detection system for protein blots was described recently. This method utilizes antibodies conjugated with alkaline phosphatase. Alkaline phosphatase releases D-luciferin (Photinus pyralis) from D-luciferin-O-phosphate. Liberated D-luciferin reacts with luciferase, ATP and oxygen with light emission. The light produced is measured with a very sensitive photon counting camera (Argus 100), permitting visualization and localization of the alkaline phosphatase-conjugated antibodies on nitrocellulose sheets. Under non-optimized conditions the limit of detection is at present 5 to 500 fg of protein (rabbit immunoglobulin G), corresponding to 30 to 3 amol. The method is therefore 10(5) times more sensitive than other used at present.

  10. The hydrogen hybrid option

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  11. LA PROTEÍNA PTHB DE Xanthomonas axonopodis pv. Manihotis ES AUTOACTIVA EN ENSAYOS DE DOBLE HÍBRIDO The PthB Protein from Xanthomonas axonopodis pv. Manihotis is an Autoactive in Yeast Two-Hybrid Assays

    Directory of Open Access Journals (Sweden)

    JULIANA GIL

    the yeast two hybrid expression vector pLAW10, generating a fusion protein with the Binding Domain (BD of the transcription factor GAL4. In this work, PthB was cloned in a translational fusion with Gal4-BD (DNA Binding Domain. After transforming this construct into a yeast strain, autoactivation of the reporter genes was observed, even at the highest concentrations of 3-AT. The deletion of the first, second or both NLS and the AAD did not eliminate the ability of autoactivation of PthB. These results show the impossibility of using PthB to screen a cassava cDNA library to identify the proteins interacting with PthB.

  12. Hybridization characteristics of biomolecular adaptors, covalent DNA streptavidin conjugates

    NARCIS (Netherlands)

    Niemeyer, CM; Burger, W; Hoedemakers, RMJ

    1998-01-01

    Semisynthetic, covalent streptavidin-DNA adducts are versatile molecular connectors for the fabrication of both nano-and microstructured protein arrays by use of DNA hybridization. In this study, the hybridization characteristics of six adduct species, each containing a different DNA sequence of 21

  13. Hybridization and extinction.

    Science.gov (United States)

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than