WorldWideScience

Sample records for hybrid process research

  1. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  2. Membrane/distillation hybrid process research and development. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    Mazanec, T.J.

    1997-07-01

    This report covers work conducted under the grant awarded to BP by DOE in late 1991 entitled {open_quotes}Membrane/Distillation Hybrid Process Research and Development.{close_quotes} The program was directed towards development and commercialization of the BP process for separation of vapor phase olefins from non-olefins via facilitated transport using an aqueous facilitator. The program has come to a very successful conclusion, with formation of a partnership between BP and Stone and Webster Engineering Corporation (SWEC) to market and commercialize the technology. The focus of this report is the final portion of the program, during which engineering re-design, facilitator optimization, economic analysis, and marketing have been the primary activities. At the end of Phase II BP was looking to partner with an engineering firm to advance the selective olefin recovery (SOR) technology from the lab/demo stage to full commercialization. In August 1995 BP and SWEC reached an agreement to advance the technology by completing additional Phase III work with DOE and beginning marketing activities.

  3. Behavioural Hybrid Process Calculus

    NARCIS (Netherlands)

    Brinksma, Hendrik; Krilavicius, T.

    2005-01-01

    Process algebra is a theoretical framework for the modelling and analysis of the behaviour of concurrent discrete event systems that has been developed within computer science in past quarter century. It has generated a deeper nderstanding of the nature of concepts such as observable behaviour in

  4. Research on Gear Shifting Process without Disengaging Clutch for a Parallel Hybrid Electric Vehicle Equipped with AMT

    Directory of Open Access Journals (Sweden)

    Hui-Long Yu

    2014-01-01

    Full Text Available Dynamic models of a single-shaft parallel hybrid electric vehicle (HEV equipped with automated mechanical transmission (AMT were described in different working stages during a gear shifting process without disengaging clutch. Parameters affecting the gear shifting time, components life, and gear shifting jerk in different transient states during a gear shifting process were deeply analyzed. The mathematical models considering the detailed synchronizer working process which can explain the gear shifting failure, long time gear shifting, and frequent synchronizer failure phenomenon in HEV were derived. Dynamic coordinated control strategy of the engine, motor, and actuators in different transient states considering the detailed working stages of synchronizer in a gear shifting process of a HEV is for the first time innovatively proposed according to the state of art references. Bench test and real road test results show that the proposed control strategy can improve the gear shifting quality in all its evaluation indexes significantly.

  5. Process algebras for hybrid systems : comparison and development

    NARCIS (Netherlands)

    Khadim, U.

    2008-01-01

    Our research is about formal speci¯cation and analysis of hybrid systems. The formalism used is process algebra. Hybrid systems are systems that exhibit both discrete and continuous behaviour. An example of a hybrid system is a digital controller controlling a physical device such as present in

  6. Hybrid machining processes perspectives on machining and finishing

    CERN Document Server

    Gupta, Kapil; Laubscher, R F

    2016-01-01

    This book describes various hybrid machining and finishing processes. It gives a critical review of the past work based on them as well as the current trends and research directions. For each hybrid machining process presented, the authors list the method of material removal, machining system, process variables and applications. This book provides a deep understanding of the need, application and mechanism of hybrid machining processes.

  7. Hybrid Thermochemical/Biological Processing

    Science.gov (United States)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  8. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  9. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  10. Research of a hybrid undulator

    International Nuclear Information System (INIS)

    Ma Youwu; Wu Bing; Liu Bo

    1995-12-01

    A 1.5 m tapered hybrid undulator has been designed and built for mid-infrared free electron laser experiments at CIAE. The undulator utilizes the REC-steel hybrid configuration. The magnetic gap and magnetic field taper can be continuously adjusted. The rms error of the peak field is less than 0.53%. The electron trajectory deviation is around 0.03 mm. The design of undulator, sorting of magnets in hybrid undulator using simulated annealing technique, the motion of electron beam in the ideal and measured magnetic field, magnetic field measurement technique and magnetic field adjustment are described. (6 refs., 10 figs., 1 tab)

  11. New hybrid systems: strategy and research programs

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2001-01-01

    This short article gives a status of research and experimental programs concerning new hybrid systems. A hybrid system is made up of a subcritical core, a spallation target and of a particle accelerator that delivers a proton beam. The main asset of hybrid systems is to provide a large reactivity margin that would be very valuable to transmute actinide nuclei efficiently. As a consequence hybrid systems could be considered as actinide burner reactors integrated to a large population of classical nuclear reactors dedicated to electricity production. (A.C.)

  12. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  13. Process synthesis and intensification of hybrid separations

    DEFF Research Database (Denmark)

    Errico, Massimiliano

    2017-01-01

    Hybrid flowsheets are defined, in the context of process intensification, as alternatives suitable for replacing energy-intensive separation methods through the combination of more than one unit operation. Distillation is one of the first options considered for achieving a required separation...... and commented on. The corresponding distillation-based processes are considered for comparison. Synthesis of the possible hybrid flowsheets appears to be important, especially when multicomponent mixtures are considered. This aspect is discussed for the combination of liquid-liquid extraction and distillation...... as applied to the separation of biobutanol from its fermentation broth. The synthesis of alternative hybrid flowsheets is reported, showing that one configuration can realize a 43% reduction in the total annual cost. Bioalcohol production by fermentation perfectly represents the casewhere distillation alone...

  14. Hybrid imaging: Instrumentation and Data Processing

    Science.gov (United States)

    Cal-Gonzalez, Jacobo; Rausch, Ivo; Shiyam Sundar, Lalith K.; Lassen, Martin L.; Muzik, Otto; Moser, Ewald; Papp, Laszlo; Beyer, Thomas

    2018-05-01

    State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing "anato-metabolic" information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.

  15. Hybrid Imaging: Instrumentation and Data Processing

    Directory of Open Access Journals (Sweden)

    Jacobo Cal-Gonzalez

    2018-05-01

    Full Text Available State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing “anato-metabolic” information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.

  16. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  17. Hybrid processes in electrotechnology; Hybrid-Verfahren in der Elektroprozesstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Neumeyer, Joerg; Schuelbe, Holger; Nacke, Bernard [Leibniz Univ. Hannover (Germany). Inst. fuer Elektroprozesstechnik

    2012-09-15

    Industrial process heat makes up the third largest sector of total German consumption of final energy, after mechanical energy in the field of transport and domestic space heating. An increasing percentage of the energy required to generate process heat is now supplied using electrothermal systems. The benefits of these methods over conventional fuel-based technology can be found in their universal usability, relatively simply handling and use, high transmissible output density, superior efficiency, and lower ecological impact. Electrical energy nowadays continues mainly to be generated in power-generating plants based on fuels such as coal and gas, but such large-scale facilities also include systems which keep pollutant emissions low, such as flue-gas desulphurisation and dedusting installations. This large bandwidth of benefits possessed by electrothermal systems can also be enlarged and adapted for other applications by means of rational and appropriate combination in the context of so-called hybrid processes. (orig.)

  18. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  19. Hydraulic Hybrid Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hydraulic Hybrid Vehicle Publications Hydraulic Hybrid Vehicle Publications The following technical papers and fact sheets provide information about NREL's hydraulic hybrid fleet vehicle evaluations . Refuse Trucks Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles. Bob

  20. Direction and Policies Needed to Support Hybrid Electric Car Research

    Directory of Open Access Journals (Sweden)

    Ridwan Arief Subekti

    2012-07-01

    Full Text Available The rising number of vehicles over the years has driven the increase of air pollution and fuel consumption. One of the solutions to overcome this problem is using hybrid electric car because it is environmentally friendly and efficient in fuel consumption. LIPI has conducted electric car research since 1997, but there were so many problems in its development that electric car can not be developed into a national industry scale. Therefore, it is important to conduct a study that maps the problems and finds the solutions to prevent the same failure of electric car commercialization process from happening to hybrid electric car . This study was done by collecting and analyzing the primary and secondary data through interviews, discussing electric hybrid car with stakeholders, and examining earlier study results and regulations. Based on this study, several policies to support sustainability research of hybrid electric car were proposed. Some recommendations were the making of national roadmap and regulation for the usage of hybrid electric car on the road. For policy makers at LIPI, a research focus, research coordination, and pre-commercialization program were recommended.

  1. Sustainable process design & analysis of hybrid separations

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Befort, Bridgette; Garg, Nipun

    2016-01-01

    Distillation is an energy intensive operation in chemical process industries. There are around 40,000 distillation columns in operation in the US, requiring approximately 40% of the total energy consumption in US chemical process industries. However, analysis of separations by distillation has...... shown that more than 50% of energy is spent in purifying the last 5-10% of the distillate product. Membrane modules on the other hand can achieve high purity separations at lower energy costs, but if the flux is high, it requires large membrane area. A hybrid scheme where distillation and membrane...... modules are combined such that each operates at its highest efficiency, has the potential for significant energy reduction without significant increase of capital costs. This paper presents a method for sustainable design of hybrid distillation-membrane schemes with guaranteed reduction of energy...

  2. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng

    2015-09-08

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications.

  3. Hybrid scatterometry measurement for BEOL process control

    Science.gov (United States)

    Timoney, Padraig; Vaid, Alok; Kang, Byeong Cheol; Liu, Haibo; Isbester, Paul; Cheng, Marjorie; Ng-Emans, Susan; Yellai, Naren; Sendelbach, Matt; Koret, Roy; Gedalia, Oram

    2017-03-01

    Scaling of interconnect design rules in advanced nodes has been accompanied by a reducing metrology budget for BEOL process control. Traditional inline optical metrology measurements of BEOL processes rely on 1-dimensional (1D) film pads to characterize film thickness. Such pads are designed on the assumption that solid copper blocks from previous metallization layers prevent any light from penetrating through the copper, thus simplifying the effective film stack for the 1D optical model. However, the reduction of the copper thickness in each metallization layer and CMP dishing effects within the pad, have introduced undesired noise in the measurement. To resolve this challenge and to measure structures that are more representative of product, scatterometry has been proposed as an alternative measurement. Scatterometry is a diffraction based optical measurement technique using Rigorous Coupled Wave Analysis (RCWA), where light diffracted from a periodic structure is used to characterize the profile. Scatterometry measurements on 3D structures have been shown to demonstrate strong correlation to electrical resistance parameters for BEOL Etch and CMP processes. However, there is significant modeling complexity in such 3D scatterometry models, in particlar due to complexity of front-end-of-line (FEOL) and middle-of-line (MOL) structures. The accompanying measurement noise associated with such structures can contribute significant measurement error. To address the measurement noise of the 3D structures and the impact of incoming process variation, a hybrid scatterometry technique is proposed that utilizes key information from the structure to significantly reduce the measurement uncertainty of the scatterometry measurement. Hybrid metrology combines measurements from two or more metrology techniques to enable or improve the measurement of a critical parameter. In this work, the hybrid scatterometry technique is evaluated for 7nm and 14nm node BEOL measurements of

  4. Hybrid Electric Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Evaluations Hybrid Electric Vehicle Evaluations How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an is used to propel the vehicle during normal drive cycles. The batteries supply additional power for

  5. Hybrid Electric Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Publications Hybrid Electric Vehicle Publications The following technical papers, conference papers, and fact sheets provide information about NREL's hybrid electric fleet vehicle Class 8 Hybrid Electric Delivery Trucks. Mike Lammert. (2011) FedEx Delivery Trucks In-Use and Vehicle

  6. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    International Nuclear Information System (INIS)

    Kim, Seonbyeong; Lee, Woosung; Won, Huijun; Moon, Jeikwon; Choi, Wangkyu

    2014-01-01

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future

  7. Research on the innovative hybrid impact hydroforming

    Science.gov (United States)

    Lang, Lihui; Wang, Shaohua; Yang, Chunlei

    2013-12-01

    The innovative hybrid impact hydro-forming (IHF) technology is a kind of high strain rate forming technique which can be used for forming complex parts with small features, such as convex tables, bars etc. The present work investigates IHF using a numerical /experimental approach. In this paper, the theory of IHF is presented and finite element simulation was carried out by using MSC. The pressure distribution changes in the depth direction, but not in the width direction. However, the pressure is uniform everywhere in traditional hydro-forming. Using this shock wave loading conditions, forming experiments were carried out. Punching occurred as a result of combined tensile and shear stress effects. Furthermore, results show that using IHF technology, the design constraint to make precise die may be considerably reduced. The need to accurately control punch-die clearance may also be eliminated. Therefore, the research is very useful for forming complicated products.

  8. Research in Stochastic Processes.

    Science.gov (United States)

    1982-10-31

    Office of Scientific Research Grant AFOSR F49620 82 C 0009 Period: 1 Noveber 1981 through 31 October 1982 Title: Research in Stochastic Processes Co...STA4ATIS CAMBANIS The work briefly described here was developed in connection with problems arising from and related to the statistical comunication

  9. Research Planning Process

    Science.gov (United States)

    Lofton, Rodney

    2010-01-01

    This presentation describes the process used to collect, review, integrate, and assess research requirements desired to be a part of research and payload activities conducted on the ISS. The presentation provides a description of: where the requirements originate, to whom they are submitted, how they are integrated into a requirements plan, and how that integrated plan is formulated and approved. It is hoped that from completing the review of this presentation, one will get an understanding of the planning process that formulates payload requirements into an integrated plan used for specifying research activities to take place on the ISS.

  10. Hybrid soft computing approaches research and applications

    CERN Document Server

    Dutta, Paramartha; Chakraborty, Susanta

    2016-01-01

    The book provides a platform for dealing with the flaws and failings of the soft computing paradigm through different manifestations. The different chapters highlight the necessity of the hybrid soft computing methodology in general with emphasis on several application perspectives in particular. Typical examples include (a) Study of Economic Load Dispatch by Various Hybrid Optimization Techniques, (b) An Application of Color Magnetic Resonance Brain Image Segmentation by ParaOptiMUSIG activation Function, (c) Hybrid Rough-PSO Approach in Remote Sensing Imagery Analysis,  (d) A Study and Analysis of Hybrid Intelligent Techniques for Breast Cancer Detection using Breast Thermograms, and (e) Hybridization of 2D-3D Images for Human Face Recognition. The elaborate findings of the chapters enhance the exhibition of the hybrid soft computing paradigm in the field of intelligent computing.

  11. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-01-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(trademark) (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described

  12. Research overview : design specifications for hybrid vehicles

    NARCIS (Netherlands)

    Hofman, T.; Druten, van R.M.

    2004-01-01

    In this paper a method is proposed for determination of the design specifications regarding the energy exchange systems for different chargesustaining hybrid vehicles of different vehicle classes. Hybrid drivetrains for vehicles combine multiple power sources in order to increase the driving

  13. The Serendipitous Research Process

    Science.gov (United States)

    Nutefall, Jennifer E.; Ryder, Phyllis Mentzell

    2010-01-01

    This article presents the results of an exploratory study asking faculty in the first-year writing program and instruction librarians about their research process focusing on results specifically related to serendipity. Steps to prepare for serendipity are highlighted as well as a model for incorporating serendipity into a first-year writing…

  14. Comparing pervaporation and vapor permeation hybrid distillation processes

    NARCIS (Netherlands)

    Fontalvo, J.; Cuellar, P.; Timmer, J.M.K.; Vorstman, M.A.G.; Wijers, J.G.; Keurentjes, J.T.F.

    2005-01-01

    Previous studies have shown that hybrid distillation processes using either pervaporation or vapor permeation can be very attractive for the separation of mixtures. In this paper, a comparison between these two hybrid processes has been made. A tool has been presented that can assist designers and

  15. Research on minimum sound specifications for hybrid and electric vehicles

    Science.gov (United States)

    2012-06-30

    This report documents research by the National Highway Traffic Safety Administration (NHTSA) to identify ways : to develop sound specifications for electric and hybrid vehicles. The research was conducted to support activities : related to the implem...

  16. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng; Ma, Chun; Wang, Hong; Hu, Weijin; Yu, Weili; Sheikh, Arif D.; Wu, Tao

    2015-01-01

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors

  17. Atmospheric Pressure Plasma-Electrospin Hybrid Process for Protective Applications

    Science.gov (United States)

    Vitchuli Gangadharan, Narendiran

    2011-12-01

    Chemical and biological (C-B) warfare agents like sarin, sulfur mustard, anthrax are usually dispersed into atmosphere in the form of micro aerosols. They are considered to be dangerous weapon of mass destruction next to nuclear weapons. The airtight protective clothing materials currently available are able to stop the diffusion of threat agents but not good enough to detoxify them, which endangers the wearers. Extensive research efforts are being made to prepare advanced protective clothing materials that not only prevent the diffusion of C-B agents, but also detoxify them into harmless products thus ensuring the safety and comfort of the wearer. Electrospun nanofiber mats are considered to have effective filtration characteristics to stop the diffusion of submicron level particulates without sacrificing air permeability characteristics and could be used in protective application as barrier material. In addition, functional nanofibers could be potentially developed to detoxify the C-B warfare threats into harmless products. In this research, electrospun nanofibers were deposited on fabric surface to improve barrier efficiency without sacrificing comfort-related properties of the fabrics. Multi-functional nanofibers were fabricated through an electrospinning-electrospraying hybrid process and their ability to detoxify simulants of C-B agents was evaluated. Nanofibers were also deposited onto plasma-pretreated woven fabric substrate through a newly developed plasma-electrospinning hybrid process, to improve the adhesive properties of nanofibers on the fabric surface. The nanofiber adhesion and durability properties were evaluated by peel test, flex and abrasion resistance tests. In this research work, following tasks have been carried out: i) Controlled deposition of nanofiber mat onto woven fabric substrate Electrospun Nylon 6 fiber mats were deposited onto woven 50/50 Nylon/Cotton fabric with the motive of making them into protective material against submicron

  18. Polemological Paradigm of Hybrid War Research

    Directory of Open Access Journals (Sweden)

    Roman Dodonov

    2017-09-01

    Full Text Available This article is devoted to the methodological problems and manipulative mechanisms of hybrid warfare. Owing to the polemological (from πολέμιος — war and λόγος — study approach the authors managed to systematize and summarize the theories of war and peace, clarify contemporary western concepts of warfare, outline the specifi cs of the Russian view on the hybrid war concept, assess the signifi cance of information and manipulation technologies for hybrid wars, analyze a number of geopolitical and socio-cultural dimensions of modern hybrid wars. The polemology is a branch of science, which studies the nature of armed confl icts and wars, their role in time and space, cycles, intensity, scope, scale, and causative relations and their classifi cation. Polemology deals with the wars and armed confl icts of the past, present and future. Novel hybrid wars take a respective place among them. They involve using all available warfare, regular and irregular, cyber and those allowing for the use of weapons of mass destruction, and also information, psychological and propaganda war using the latest information and media technologies. According to the classical approach, the state is the only subject of military actions, but today its role has changed dramatically under the infl uence of other political and economic supranational and trans-border factors. For the purpose of studying wars and armed confl icts from the polemological perspective it means the need to focus on social changes in all the areas of human life, on considering various elements of the political, economic or even technological context, which infl uence the war as a social phenomenon.

  19. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  20. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    CERN Document Server

    Licari, James J

    1998-01-01

    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  1. Process research and development

    Science.gov (United States)

    Bickler, D. B.

    1986-01-01

    The following major processes involved in the production of crystalline-silicon solar cells were discussed: surface preparation, junction formation, metallization, and assembly. The status of each of these processes, and the sequence in which these processes are applied, were described as they were in 1975, as they were in 1985, and what they might be in the future.

  2. Mapping the Collaborative Research Process

    Science.gov (United States)

    Kochanek, Julie Reed; Scholz, Carrie; Garcia, Alicia N.

    2015-01-01

    Despite significant federal investments in the production of high-quality education research, the direct use of that research in policy and practice is not evident. Some education researchers are increasingly employing collaborative research models that use structures and processes to integrate practitioners into the research process in an effort…

  3. [Super sweet corn hybrids adaptability for industrial processing. I freezing].

    Science.gov (United States)

    Alfonzo, Braunnier; Camacho, Candelario; Ortiz de Bertorelli, Ligia; De Venanzi, Frank

    2002-09-01

    With the purpose of evaluating adaptability to the freezing process of super sweet corn sh2 hybrids Krispy King, Victor and 324, 100 cobs of each type were frozen at -18 degrees C. After 120 days of storage, their chemical, microbiological and sensorial characteristics were compared with a sweet corn su. Industrial quality of the process of freezing and length and number of rows in cobs were also determined. Results revealed yields above 60% in frozen corns. Length and number of rows in cobs were acceptable. Most of the chemical characteristics of super sweet hybrids were not different from the sweet corn assayed at the 5% significance level. Moisture content and soluble solids of hybrid Victor, as well as total sugars of hybrid 324 were statistically different. All sh2 corns had higher pH values. During freezing, soluble solids concentration, sugars and acids decreased whereas pH increased. Frozen cobs exhibited acceptable microbiological rank, with low activities of mesophiles and total coliforms, absence of psychrophiles and fecal coliforms, and an appreciable amount of molds. In conclusion, sh2 hybrids adapted with no problems to the freezing process, they had lower contents of soluble solids and higher contents of total sugars, which almost doubled the amount of su corn; flavor, texture, sweetness and appearance of kernels were also better. Hybrid Victor was preferred by the evaluating panel and had an outstanding performance due to its yield and sensorial characteristics.

  4. Quantum-Classical Hybrid for Information Processing

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source

  5. The Automated Discovery of Hybrid Processes

    DEFF Research Database (Denmark)

    Slaats, Tijs; Reijers, Hajo; Maggi, Fabrizio Maria

    2014-01-01

    The declarative-procedural dichotomy is highly relevant when choosing the most suitable process modeling language to represent a discovered process. Less-structured processes with a high level of variability can be described in a more compact way using a declarative language. By contrast, procedu...

  6. The automated discovery of hybrid processes

    NARCIS (Netherlands)

    Maggi, F.M.; Slaats, T.; Reijers, H.A.

    2014-01-01

    The declarative-procedural dichotomy is highly relevant when choosing the most suitable process modeling language to represent a discovered process. Less-structured processes with a high level of variability can be described in a more compact way using a declarative language. By contrast, procedural

  7. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor II of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  8. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While, the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor 2 of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  9. Research on the Interior Sound Quality in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Liao Lian Ying

    2016-01-01

    Full Text Available Even the overall level of vehicle interior noise of hybrid electric vehicle (HEV reduced to a certain degree, the vibration and noise generated by the engine, motor, generator and power split have made greater effect on the vehicle interior sound quality in HEV. In order to research the feature of vehicle interior sound quality in HEV, the HEV is used to be the research object, the binaural noise sample of the driver when playing different kinds of music in the vehicle with the speed of sixty kilometers per hour is collected. ArtemiS is used to conduct frequency division processing, so as to obtain the relative weight of each frequency band and the overall noise. The tone, roughness and sharpness of sound quality subjective evaluation parameters are quantified, the SPSS is used to establish the linear regression model of the sample, and the best masking music tracks are found out. Then, the sound samples that contains the best music tracks and the simple vehicle interior noise are re-collected, the regression model and ArtemiS are used to predict the subjective evaluation value. The research results show that when adding the music, the tone degree rises and the lowering degree decreases, thus the disturbing degree reduces, which significantly improves the sound quality in the HEV.

  10. Hybrid Tooling: A Review of Process Chains for Tooling Microfabrication within 4M

    DEFF Research Database (Denmark)

    Azcarate, Sabino; Uriarte, Luis; Bigot, Samuel

    2006-01-01

    is introduced. Several examples of ‘hybrid tooling’ within 4M partners are presented. Considered materials are nickel for electroforming, stainless steel for ECF, and tool steel for the other processes. The paper results provide a global comparison between the previously mentioned processes, the current...... limitations of these technologies concerning feature sizes, surface finish, aspect ratios, etc. have been identified. The main conclusion drawn is the imperative requirement to combine individual processes (‘hybrid tooling’) to produce mould inserts required outside research laboratories....

  11. Telecommunication market research processing

    Science.gov (United States)

    Dupont, J. F.

    1983-06-01

    The data processing in two telecommunication market investigations is described. One of the studies concerns the office applications of communication and the other the experiences with a videotex terminal. Statistical factorial analysis was performed on a large mass of data. A comparison between utilization intentions and effective utilization is made. Extensive rewriting of statistical analysis computer programs was required.

  12. Hybrid process technologies in the financial sector

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Marquard, Morten

    2015-01-01

    Danish mortgage credit institutes deal with highly variable and knowledgeintensive processes. At the same time these processes are required to be strictly conformant to current regulations and laws. In addition different divisions of the business are interested in different views on the same...

  13. Stages in the research process.

    Science.gov (United States)

    Gelling, Leslie

    2015-03-04

    Research should be conducted in a systematic manner, allowing the researcher to progress from a general idea or clinical problem to scientifically rigorous research findings that enable new developments to improve clinical practice. Using a research process helps guide this process. This article is the first in a 26-part series on nursing research. It examines the process that is common to all research, and provides insights into ten different stages of this process: developing the research question, searching and evaluating the literature, selecting the research approach, selecting research methods, gaining access to the research site and data, pilot study, sampling and recruitment, data collection, data analysis, and dissemination of results and implementation of findings.

  14. Process development and tooling design for intrinsic hybrid composites

    Science.gov (United States)

    Riemer, M.; Müller, R.; Drossel, W. G.; Landgrebe, D.

    2017-09-01

    Hybrid parts, which combine the advantages of different material classes, are moving into the focus of lightweight applications. This development is amplified by their high potential for usage in the field of crash relevant structures. By the current state of the art, hybrid parts are mainly made in separate, subsequent forming and joining processes. By using the concept of an intrinsic hybrid, the shaping of the part and the joining of the different materials are performed in a single process step for shortening the overall processing time and thereby the manufacturing costs. The investigated hybrid part is made from continuous fibre reinforced plastic (FRP), in which a metallic reinforcement structure is integrated. The connection between these layered components is realized by a combination of adhesive bonding and a geometrical form fit. The form fit elements are intrinsically generated during the forming process. This contribution regards the development of the forming process and the design of the forming tool for the single step production of a hybrid part. To this end a forming tool, which combines the thermo-forming and the metal forming process, is developed. The main challenge by designing the tool is the temperature management of the tool elements for the variothermal forming process. The process parameters are determined in basic tests and finite element (FE) simulation studies. On the basis of these investigations a control concept for the steering of the motion axes and the tool temperature is developed. Forming tests are carried out with the developed tool and the manufactured parts are analysed by computer assisted tomography (CT) scans.

  15. Selection processes in a citrus hybrid population using RAPD markers

    Directory of Open Access Journals (Sweden)

    Oliveira Roberto Pedroso de

    2003-01-01

    Full Text Available The objective of this work was to evaluate the processes of selection in a citrus hybrid population using segregation analysis of RAPD markers. The segregation of 123 RAPD markers between 'Cravo' mandarin (Citrus reticulata Blanco and 'Pêra' sweet orange (C. sinensis (L. Osbeck was analysed in a F1 progeny of 94 hybrids. Genetic composition, diversity, heterozygosity, differences in chromosomal structure and the presence of deleterious recessive genes are discussed based on the segregation ratios obtained. A high percentage of markers had a skeweness of the 1:1 expected segregation ratio in the F1 population. Many markers showed a 3:1 segregation ratio in both varieties and 1:3 in 'Pêra' sweet orange, probably due to directional selection processes. The distribution analysis of the frequencies of the segregant markers in a hybrid population is a simple method which allows a better understanding of the genetics of citrus group.

  16. Hybrid Tandem Solar Cells | Photovoltaic Research | NREL

    Science.gov (United States)

    expensive techniques, such as electron-beam lithography or deep-ultraviolet lithography. Then, a mold is defects form only shallow states that do not reduce performance significantly. Current work is focused on they are compatible with textured Si, enabling enhanced light trapping and lower processing costs. We

  17. The semantics of hybrid process models

    NARCIS (Netherlands)

    Slaats, T.; Schunselaar, D.M.M.; Maggi, F.M.; Reijers, H.A.; Debruyne, C.; Panetto, H.; Meersman, R.; Dillon, T.; Kuhn, E.; O'Sullivan, D.; Agostino Ardagna, C.

    2016-01-01

    In the area of business process modelling, declarative notations have been proposed as alternatives to notations that follow the dominant, imperative paradigm. Yet, the choice between an imperative or declarative style of modelling is not always easy to make. Instead, a mixture of these styles is

  18. Carbon capture by hybrid separation processes

    NARCIS (Netherlands)

    van Benthum, R.J.; van Kemenade, H.P.; Brouwers, J.J.H.

    2014-01-01

    Even though there is an increasing development of carbon capture technology over the last decade, large-scale implementation is still far from common practice, mainly caused by the energy intensiveness of carbon capture processes and the lack of regulation. In absence of strict regulation, less

  19. FERMENTATION PROCESS CHARACTERISTICS OF DIFFERENT MAIZE SILAGE HYBRIDS

    Directory of Open Access Journals (Sweden)

    Daniel Bíro

    2009-03-01

    Full Text Available The aim of this study was to detect the fermentation process differences in different hybrid maize silage. We conserved in laboratory conditions hybrids of whole maize plants with different length of the vegetative period (FAO number. Maize hybrids for silage were harvested in the vegetation stage of the milk-wax maturity of corn and the content of dry matter was from 377.7 to 422.8 g.kg-1. The highest content of dry matter was typical for silages made from the hybrids with FAO number 310 (400.0 g.kg-1 and FAO 300a (400.4 g.kg-1. The content of desirable lactic acid ranged from 23.7 g.kg-1 of dry matter (FAO 350 to 58.9 g.kg-1 of dry matter (FAO 420. We detected the occurrence of undesirable butyric acid in silages from hybrids FAO 250, 300b, 310 and 380. The highest content of total alcohols we found in silages made from hybrid with FAO number 240 (25.2 g.kg-1 of dry matter. Ammonia contents were in tested silages from 0.153 (FAO 270 to 0.223 g.kg-1 of dry matter (FAO 240. The lowest value of silage titration acidity we analyzed in silage made from hybrid FAO 420 (3.66. We observed in maize silages with different length of plant maturity tested in the experiment differences in content of lactic acid, total alcohols, titration acidity, pH and content of fermentation products.

  20. Optimising the Efficacy of Hybrid Academic Teams: Lessons from a Systematic Review Process

    Science.gov (United States)

    Lake, Warren; Wallin, Margie; Boyd, Bill; Woolcott, Geoff; Markopoulos, Christos; Boyd, Wendy; Foster, Alan

    2018-01-01

    Undertaking a systematic review can have many benefits, beyond any theoretical or conceptual discoveries pertaining to the underlying research question. This paper explores the value of utilising a hybrid academic team when undertaking the systematic review process, and shares a range of practical strategies. The paper also comments on how such a…

  1. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  2. Treatment of sharp mandibular alveolar process with hybrid prosthesis

    OpenAIRE

    Sukaedi, Sukaedi; Djulaeha, Eha

    2010-01-01

    Background: Losing posterior teeth for a long time would occasionally lead to the sharpening of alveolar process. The removable partial denture usually have problems when used during mastication, because of the pressure on the mucosa under the alveolar ridge. Purpose: The purpose of this case report was to manage patients with sharp mandibular alveolar process by wearing hybrid prosthesis with extra coronal precision attachment retention and soft liner on the surface base beneath the removabl...

  3. Hybrid process for nitrogen oxides reduction

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  4. High mobility solution-processed hybrid light emitting transistors

    International Nuclear Information System (INIS)

    Walker, Bright; Kim, Jin Young; Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B.; Chae, Gil Jo; Cho, Shinuk; Seo, Jung Hwa

    2014-01-01

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm 2 /V s, current on/off ratios of >10 7 , and external quantum efficiency of 10 −2 % at 2100 cd/m 2 . These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective

  5. Direction and Policies Needed to Support Hybrid Electric Car Research

    OpenAIRE

    Subekti, Ridwan Arief; Hartanto, Agus; Susanti, Vita

    2012-01-01

    The rising number of vehicles over the years has driven the increase of air pollution and fuel consumption. One of the solutions to overcome this problem is using hybrid electric car because it is environmentally friendly and efficient in fuel consumption. LIPI has conducted electric car research since 1997, but there were so many problems in its development that electric car can not be developed into a national industry scale. Therefore, it is important to conduct a study that maps the probl...

  6. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    International Nuclear Information System (INIS)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong

    2012-01-01

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced

  7. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced.

  8. Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes

    International Nuclear Information System (INIS)

    Scheibe, T D; Tartakovsky, A M; Tartakovsky, D M; Redden, G D; Meakin, P

    2007-01-01

    Many subsurface flow and transport problems of importance today involve coupled non-linear flow, transport, and reaction in media exhibiting complex heterogeneity. In particular, problems involving biological mediation of reactions fall into this class of problems. Recent experimental research has revealed important details about the physical, chemical, and biological mechanisms involved in these processes at a variety of scales ranging from molecular to laboratory scales. However, it has not been practical or possible to translate detailed knowledge at small scales into reliable predictions of field-scale phenomena important for environmental management applications. A large assortment of numerical simulation tools have been developed, each with its own characteristic scale. Important examples include 1. molecular simulations (e.g., molecular dynamics); 2. simulation of microbial processes at the cell level (e.g., cellular automata or particle individual-based models); 3. pore-scale simulations (e.g., lattice-Boltzmann, pore network models, and discrete particle methods such as smoothed particle hydrodynamics); and 4. macroscopic continuum-scale simulations (e.g., traditional partial differential equations solved by finite difference or finite element methods). While many problems can be effectively addressed by one of these models at a single scale, some problems may require explicit integration of models across multiple scales. We are developing a hybrid multi-scale subsurface reactive transport modeling framework that integrates models with diverse representations of physics, chemistry and biology at different scales (sub-pore, pore and continuum). The modeling framework is being designed to take advantage of advanced computational technologies including parallel code components using the Common Component Architecture, parallel solvers, gridding, data and workflow management, and visualization. This paper describes the specific methods/codes being used at each

  9. Epoxy-silica hybrids by nonaqueous sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Kobera, Libor; Brus, Jiří; Matějka, Libor

    2013-01-01

    Roč. 54, č. 23 (2013), s. 6271-6282 ISSN 0032-3861 R&D Projects: GA ČR GAP108/12/1459 Grant - others:AV ČR(CZ) M200500903 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid * nonaqueous sol-gel process * gelation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.766, year: 2013

  10. Hybrid Control and Verification of a Pulsed Welding Process

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Larsen, Jesper Abildgaard; Izadi-Zamanabadi, Roozbeh

    Currently systems, which are desired to control, are becoming more and more complex and classical control theory objectives, such as stability or sensitivity, are often not sufficient to cover the control objectives of the systems. In this paper it is shown how the dynamics of a pulsed welding...... process can be reformulated into a timed automaton hybrid setting and subsequently properties such as reachability and deadlock absence is verified by the simulation and verification tool UPPAAL....

  11. Hybrid 3D printing by bridging micro/nano processes

    International Nuclear Information System (INIS)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-01-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques. (paper)

  12. Hybrid 3D printing by bridging micro/nano processes

    Science.gov (United States)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-06-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques.

  13. Treatment of sharp mandibular alveolar process with hybrid prosthesis

    Directory of Open Access Journals (Sweden)

    Sukaedi Sukaedi

    2010-09-01

    Full Text Available Background: Losing posterior teeth for a long time would occasionally lead to the sharpening of alveolar process. The removable partial denture usually have problems when used during mastication, because of the pressure on the mucosa under the alveolar ridge. Purpose: The purpose of this case report was to manage patients with sharp mandibular alveolar process by wearing hybrid prosthesis with extra coronal precision attachment retention and soft liner on the surface base beneath the removable partial denture. Case: A 76 years old woman visited the Prosthodontic Clinic Faculty of Dentistry Airlangga University. The patient had a long span bridge on the upper jaw and a free end acrylic removable partial denture on the lower jaw. She was having problems with mastication. The patient did not wear her lower denture because of the discomfort with it during mastication. Hence, she would like to replace it with a new removable partial denture. Case management: The patient was treated by wearing a hybrid prosthesis with extra coronal precision attachment on the lower jaw. Soft liner was applied on the surface of the removable partial denture. Hybrid prosthesis is a complex denture consisting of removable partial denture and fixed bridge. Conclusion: It concluded that after restoration, the patient had no problems with sharp alveolar process with her new denture, and she was able to masticate well.Latar belakang: Kehilangan geligi posterior dapat menimbulkan processus alveolaris tajam. Gigi tiruan sebagian lepasan mempunyai masalah selama pengunyahan karena adanya tekanan di mukosa di bawah alveolar ridge. Tujuan: Tujuan laporan kasus ini adalah untuk menjelaskan cara menangani pasien yang mempunyai prosesus alveolaris yang tajam di rahang bawah dengan dibuatkan protesis hybrid dengan daya tahan extra coronal precision attachment dan soft liner di permukaan bawah basis gigi tiruan sebagian lepasan. Kasus: Pasien wanita berumur 76 tahun datang di klinik

  14. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.

    Science.gov (United States)

    Kim, Hyunjun; Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu; Sim, Sung-Han

    2017-09-07

    Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.

  15. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.

    Science.gov (United States)

    Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui

    2014-04-01

    Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. Engaged Research in Process Improvement

    DEFF Research Database (Denmark)

    Pries-Heje, Jan

    2010-01-01

    This keynote initiates from an example of engaged research; a Danish software house that made it from maturity level 1 to 5 in eight years. The organizational change implied at each step is discussed and a design theory of process improvement and change derived.......This keynote initiates from an example of engaged research; a Danish software house that made it from maturity level 1 to 5 in eight years. The organizational change implied at each step is discussed and a design theory of process improvement and change derived....

  17. Hydraulic Hybrid Fleet Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hydraulic Hybrid Fleet Vehicle Evaluations Hydraulic Hybrid Fleet Vehicle Evaluations How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would -pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure

  18. Micro-Processes of Employees in a Hybrid Organization

    DEFF Research Database (Denmark)

    Svenningsen, Virginie; Boxenbaum, Eva; Ravasi, Davide

    actors engaged in the energy transition. We draw on the literature on institutional logics and hybrid organizations to examine how employees of this French energy corporation deal with this institutionally complex environment. Our findings point to three strategies that individuals use to cope......The present article examines how employees cope with an organizational setting that is institutionally complex. The empirical setting is a French energy corporation that simultaneously pursues a logic of science and a logic of market through multiple research partnerships with public and private...

  19. Improved signal processing approaches in an offline simulation of a hybrid brain–computer interface

    Science.gov (United States)

    Brunner, Clemens; Allison, Brendan Z.; Krusienski, Dean J.; Kaiser, Vera; Müller-Putz, Gernot R.; Pfurtscheller, Gert; Neuper, Christa

    2012-01-01

    In a conventional brain–computer interface (BCI) system, users perform mental tasks that yield specific patterns of brain activity. A pattern recognition system determines which brain activity pattern a user is producing and thereby infers the user’s mental task, allowing users to send messages or commands through brain activity alone. Unfortunately, despite extensive research to improve classification accuracy, BCIs almost always exhibit errors, which are sometimes so severe that effective communication is impossible. We recently introduced a new idea to improve accuracy, especially for users with poor performance. In an offline simulation of a “hybrid” BCI, subjects performed two mental tasks independently and then simultaneously. This hybrid BCI could use two different types of brain signals common in BCIs – event-related desynchronization (ERD) and steady-state evoked potentials (SSEPs). This study suggested that such a hybrid BCI is feasible. Here, we re-analyzed the data from our initial study. We explored eight different signal processing methods that aimed to improve classification and further assess both the causes and the extent of the benefits of the hybrid condition. Most analyses showed that the improved methods described here yielded a statistically significant improvement over our initial study. Some of these improvements could be relevant to conventional BCIs as well. Moreover, the number of illiterates could be reduced with the hybrid condition. Results are also discussed in terms of dual task interference and relevance to protocol design in hybrid BCIs. PMID:20153371

  20. Correlation Study of Magnetite Dissolution in Hybrid Decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon-Byeong; Won, Hui-Jun; Park, Jung-Sun; Park, Sang-Yoon; Moon, Jei-Kwon; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the operating plants, the localized corrosion on SG tubes which are transporters of thermal energy to the secondary side lowers the reduction heat transfer efficiency as well as degrades the lifetime of SG. Magnetite, Fe3O4, is a commonly found corrosion product on the inner surface of reactor coolant system. Simply magnetite can be reduced to hematite, Fe{sub 2}O{sub 3}, and further to iron when oxygen is limited or ample reducing agents are supplied. Along this line, number of decontamination processes has been developed since 1970s and most of them contain organic acid and additive chelating agents. However, many reports have pointed out the negative environmental effect of those chemicals, and currently there are new approaches to overcome the limited decontamination efficiency and large volume of secondary waste from other alternate processes without using such those organic chemicals. In present study, we investigated the magnetite dissolution in HyBRID solution as newly developing decontamination process. As a preliminary study for empirical modeling of decontamination by HyBRID solution, simply correlation study between variable and magnetite dissolution was introduced with studied mechanism and experimental results.

  1. Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment.

    Science.gov (United States)

    Dia, Oumar; Drogui, Patrick; Buelna, Gerardo; Dubé, Rino

    2018-05-01

    Landfill leachates are known for their high and complex composition of organic, inorganic and microbial pollutants. As a result, it is quite challenging to treat these effluents by using only one treatment process. A combining approach is generally required to treat efficiently these wastewaters and comply with the discharge standards. In this present study, electrocoagulation (EC) and biofiltration (BF) processes were sequentially used to treat landfill leachate. EC process has been able to remove 37 ± 2% of the initial total COD. A fractionation of organic compounds showed that EC was particularly efficient to remove insoluble COD and humic acids. In addition, other pollutants such as turbidity, true color, Zn and phosphorus were significantly reduced by EC with 82 ± 2.7%, 60 ± 13%, 95 ± 2.6% and 82 ± 5.5% of removal respectively. The subsequent treatment by BF process led to completely removal of ammonia pollution (>99% of NH 4 removal) and a partial removal of dissolved organic compounds (42 ± 7% of COD removal). The hybrid process EC/BF could form the basis of a process capable of removing organic and inorganic pollutants from many refractory wastewaters (mature landfill leachates, industrial and municipal wastewaters). Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Hybrid Quantum Information Processing with Superconductors and Neutral Atoms

    Science.gov (United States)

    McDermott, Robert

    Hybrid approaches to quantum information processing (QIP) aim to capitalize on the strengths of disparate quantum technologies to realize a system whose capabilities exceed those of any single experimental platform. At the University of Wisconsin, we are working toward integration of a fast superconducting quantum processor with a stable, long-lived quantum memory based on trapped neutral atoms. Here we describe the development of a quantum interface between superconducting thin-film cavity circuits and trapped Rydberg atoms, the key technological obstacle to realization of superconductor-atom hybrid QIP. Specific accomplishments to date include development of a theoretical protocol for high-fidelity state transfer between the atom and the cavity; fabrication and characterization of high- Q superconducting cavities with integrated trapping electrodes to enhance zero-point microwave fields at a location remote from the chip surface; and trapping and Rydberg excitation of single atoms within 1 mm of the cavity. We discuss the status of experiments to probe the strong coherent coupling of single Rydberg atoms and the superconducting cavity. Supported by ARO under contract W911NF-16-1-0133.

  3. Design of Hybrid Steam-In Situ Combustion Bitumen Recovery Processes

    International Nuclear Information System (INIS)

    Yang Xiaomeng; Gates, Ian D.

    2009-01-01

    Given enormous capital costs, operating expenses, flue gas emissions, water treatment and handling costs of thermal in situ bitumen recovery processes, improving the overall efficiency by lowering energy requirements, environmental impact, and costs of these production techniques is a priority. Steam-assisted gravity drainage (SAGD) is the most widely used in situ recovery technique in Athabasca reservoirs. Steam generation is done on surface and consequently, because of heat losses, the energy efficiency of SAGD can never be ideal with respect to the energy delivered to the sandface. An alternative to surface steam generation is in situ combustion (ISC) where heat is generated within the formation through injection of oxygen at a sufficiently high pressure to initiate combustion of bitumen. In this manner, the heat from the combustion reactions can be used directly to mobilize the bitumen. As an alternative, the heat can be used to generate steam within the formation which then is the agent to move heat in the reservoir. In this research, alternative hybrid techniques with simultaneous and sequential steam-oxygen injection processes are examined to maximize the thermal efficiency of the recovery process. These hybrid processes have the advantage that during ISC, steam is generated within the reservoir from injected and formation water and as a product of oxidation. This implies that ex situ steam generation requirements are reduced and if there is in situ storage of combustion gases, that overall gas emissions are reduced. In this research, detailed reservoir simulations are done to examine the dynamics of hybrid processes to enable design of these processes. The results reveal that hybrid processes can lower emitted carbon dioxide-to-oil ratio by about 46%, decrease the consumed natural gas-to-oil ratio by about 73%, reduce the cumulative energy-to-oil ratio by between 40% and 70% compared to conventional SAGD, and drop water consumption per unit oil produced

  4. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-01-01

    This first quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(sup SM) (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. In a previous reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H(sub 2)S present. The experiments showed that hexane oxidation is suppressed when H(sub 2)S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H(sub 2)S oxidation conditions, and more importantly, does not change

  5. Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents

    Science.gov (United States)

    Cho, Y. S.; Lee, J. S.; Herrmann, H. J.; Kahng, B.

    2016-01-01

    Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2 power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks.

  6. Development of hybrid fluid jet/float polishing process

    Science.gov (United States)

    Beaucamp, Anthony T. H.; Namba, Yoshiharu; Freeman, Richard R.

    2013-09-01

    On one hand, the "float polishing" process consists of a tin lap having many concentric grooves, cut from a flat by single point diamond turning. This lap is rotated above a hydrostatic bearing spindle of high rigidity, damping and rotational accuracy. The optical surface thus floats above a thin layer of abrasive particles. But whilst surface texture can be smoothed to ~0.1nm rms (as measured by atomic force microscopy), this process can only be used on flat surfaces. On the other hand, the CNC "fluid jet polishing" process consists of pumping a mixture of water and abrasive particles to a converging nozzle, thus generating a polishing spot that can be moved along a tool path with tight track spacing. But whilst tool path feed can be moderated to ultra-precisely correct form error on freeform optical surfaces, surface finish improvement is generally limited to ~1.5nm rms (with fine abrasives). This paper reports on the development of a novel finishing method, that combines the advantages of "fluid jet polishing" (i.e. freeform corrective capability) with "float polishing" (i.e. super-smooth surface finish of 0.1nm rms or less). To come up with this new "hybrid" method, computational fluid dynamic modeling of both processes in COMSOL is being used to characterize abrasion conditions and adapt the process parameters of experimental fluid jet polishing equipment, including: (1) geometrical shape of nozzle, (2) position relative to the surface, (3) control of inlet pressure. This new process is aimed at finishing of next generation X-Ray / Gamma Ray focusing optics.

  7. Research on Energy Management Strategy of Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Deng Tao

    2015-01-01

    Full Text Available To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  8. Social entrepreneurship in the Czech Republic: Current trends in research on hybridity

    OpenAIRE

    Vaceková, Gabriela; Soukopová, Jana; Křenková, Tereza

    2015-01-01

    The hybridity phenomenon has received increasing attention in the scientific literature worldwide. However, this is largely western literature, which is not perfectly suited to the transitional context of Central and Eastern Europe, respecting its specific features. The lack of relevant research on hybridity in the post-communist countries shows a considerable research gap that strongly indicates the need for deeper insight. The paper contributes to the conversation by rethinking hybridity in...

  9. Applications of a Hybrid Manufacturing Process for Fabrication and Repair of Metallic Structures (Preprint)

    National Research Council Canada - National Science Library

    Liou, Frank; Slattery, Kevin; Kinsella, Mary; Newkirk, Joseph; Chou, Hsin-Nan; Landers, Robert

    2006-01-01

    .... Coupled between the additive and the subtractive processes into a single workstation, the integrated process, or hybrid process, can produce a metal part with machining accuracy and surface finish...

  10. Infrared temperature measurement and interference analysis of magnesium alloys in hybrid laser-TIG welding process

    International Nuclear Information System (INIS)

    Huang, R.-S.; Liu, L.-M.; Song, G.

    2007-01-01

    Infrared (IR) temperature measurement, as a convenient, non-contact method for making temperature field measurements, has been widely used in the fields of welding, but the problem of interference from radiant reflection is a complicating factor in applying IR temperature sensing to welding. The object of this research is to make a deep understand about the formation of interference, explore a new method to eliminate the interfering radiation during laser-TIG hybrid welding of magnesium alloys and to obtain the distribution of temperature field accurately. The experimental results showed that the interferences caused by radiant specular reflection of arc light, ceramic nozzle, electrode and laser nozzle were transferred out of welding seam while the IR thermography system was placed perpendicularly to welding seam. And the welding temperature distribution captured by IR termography system which had been calibrated by thermocouple was reliable by using this method in hybrid laser-TIG welding process of AZ31B magnesium alloy

  11. Traditional machining processes research advances

    CERN Document Server

    2015-01-01

    This book collects several examples of research in machining processes. Chapter 1 provides information on polycrystalline diamond tool material and its emerging applications. Chapter 2 is dedicated to the analysis of orthogonal cutting experiments using diamond-coated tools with force and temperature measurements. Chapter 3 describes the estimation of cutting forces and tool wear using modified mechanistic models in high performance turning. Chapter 4 contains information on cutting under gas shields for industrial applications. Chapter 5 is dedicated to the machinability of magnesium and its alloys. Chapter 6 provides information on grinding science. Finally, chapter 7 is dedicated to flexible integration of shape and functional modelling of machine tool spindles in a design framework.    

  12. Hybrid Processing of Measurable and Subjective Data; TOPICAL

    International Nuclear Information System (INIS)

    COOPER, J. ARLIN; ROGINSKI, ROBERT J.

    2001-01-01

    Conventional systems surety analysis is basically restricted to measurable or physical-model-derived data. However, most analyses, including high-consequence system surety analysis, must also utilize subjective information. In order to address this need, there has been considerable effort on analytically incorporating engineering judgment. For example, Dempster-Shafer theory establishes a framework in which frequentist probability and Bayesian incorporation of new data are subsets. Although Bayesian and Dempster-Shafer methodology both allow judgment, neither derives results that can indicate the relative amounts of subjective judgment and measurable data in the results. The methodology described in this report addresses these problems through a hybrid-mathematics-based process that allows tracking of the degree of subjective information in the output, thereby providing more informative (as well as more appropriate) results. In addition, most high consequence systems offer difficult-to-analyze situations. For example, in the Sandia National Laboratories nuclear weapons program, the probability that a weapon responds safely when exposed to an abnormal environment (e.g., lightning, crush, metal-melting temperatures) must be assured to meet a specific requirement. There are also non-probabilistic DOE and DoD requirements (e.g., for determining the adequacy of positive measures). The type of processing required for these and similar situations transcends conventional probabilistic and human factors methodology. The results described herein address these situations by efficiently utilizing subjective and objective information in a hybrid mathematical structure in order to directly apply to the surety assessment of high consequence systems. The results can also improve the quality of the information currently provided to decision-makers. To this end, objective inputs are processed in a conventional manner; while subjective inputs are derived from the combined engineering

  13. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  14. Adsorption desalination—Principles, process design, and its hybrids for future sustainable desalination

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ang, Li; Ng, Kim Choon

    2018-01-01

    The energy, water, and environment nexus is a crucial factor when considering the future development of desalination plants or industry in water-stressed economies. The new generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increases around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available heat-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as an increase in water production can be expected. The advent of MED with AD cycles, or simply called the MED-AD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-stream at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60°C and 80°C. In this chapter, the authors have reported their pioneered research on aspects of AD and related hybrid MED-AD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concepts, the authors examine the cost apportionment of fuel cost by the quality or exergy of the working steam for such cogeneration configurations.

  15. Adsorption desalination—Principles, process design, and its hybrids for future sustainable desalination

    KAUST Repository

    Shahzad, Muhammad Wakil

    2018-05-03

    The energy, water, and environment nexus is a crucial factor when considering the future development of desalination plants or industry in water-stressed economies. The new generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increases around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available heat-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as an increase in water production can be expected. The advent of MED with AD cycles, or simply called the MED-AD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-stream at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60°C and 80°C. In this chapter, the authors have reported their pioneered research on aspects of AD and related hybrid MED-AD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concepts, the authors examine the cost apportionment of fuel cost by the quality or exergy of the working steam for such cogeneration configurations.

  16. Access to global health research. Prevalence and cost of gold and hybrid open access

    Energy Technology Data Exchange (ETDEWEB)

    Haustein, S.; Smith, E.; Mongeon, P.; Shu, F.; Lariviere, V.

    2016-07-01

    As it is a priority of global health research (GHR) to achieve equity in health worldwide, there is an increased demand and expectation that knowledge be shared freely and without barriers. Making research findings available for free to readers by publishing open access (OA) is thus central to GHR. Several studies have assessed the extent to which different forms of OA prevail but despite the importance of free access to knowledge in GHR, particular empirical evidence is missing. This paper aims to fill this gap by analyzing the extent to which GHR papers indexed in PubMed are published OA and how much it costs to publish in gold and hybrid OA journals. Findings show that between 2010 and 2014 as few as 18% of papers were published in gold OA journals, 7% published as hybrid OA (i.e., OA papers in subscription journals), while more than 60% were behind paywalls. Costs for gold OA amounted to $990,619 for 404 papers, whereas $722,631 were spent on article processing charges (APCs) of 223 hybrid papers. The majority of APCs were obtained by large commercial publishing houses known for exorbitant profit margins. (Author)

  17. Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuanhua; Luo, Xuan; Liang, Junling; Zhao, Peng; Di, Sheng; He, Bingsheng; Jin, Hai

    2018-01-01

    GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and

  18. The actor set-up of TV advertising. A new process for hybrid formats

    OpenAIRE

    von Rimscha, M Bjørn; Rademacher, Patrick

    2008-01-01

    The paper introduces a basic description of the advertising process in TV advertising and discusses how this process might be altered when 30 second spots are replaced by hybrid advertising formats such as sponsoring and placements. For each actor in the process the potential benefit of hybrid advertising is identified and the respective interest in changing the process is deduced. A qualitative interview study with representatives from each actor in the process is used to illustrate that con...

  19. Importance of material and friction characterisation for FE-aided process design of hybrid bevel gears

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Matthias, T.

    2017-10-01

    Solid-forming components are often used in areas where they are subjected to very high loads. For most solid components locally divergent and sometimes contradictory requirements exist. Despite these contradictory requirements, almost exclusively monomaterials are nowadays used for the production of solid components. These components often reach their material-specific limits because of increasing demands on the products. Thus a significant increase in product quality and profitability would result from combining different materials in order to create tailored properties. In the Collaborative Research Center (CRC) 1153 "Tailored Forming" at the Leibniz Universität Hannover, this topic is investigated. The primary objective of the CRC 1153 is to develop and investigate new tailored manufacturing processes to produce reliable hybrid solid semi-finished components. In contrast to existing production processes of hybrid solid components, semi-finished workpieces in the CRC 1153 are joined before the forming phase. Thus, it will be possible to produce complex and highly stressable solid components made of different metals, which cannot be produced yet with the current used technologies. In this work the material and friction characteristics are investigated and the forming tool for the production of hybrid bevel gears made of different steel alloys (C22 and 41Cr4) is designed by numerical simulations. For this purpose, flow curves of both materials are determined by means of upsetting tests at process-related forming temperatures and strain rates. The temperature range for the forming process of the semi-finished product is determined by comparing the respective flow curves regarding similar flow stresses. Furthermore, the friction between the tool and the joining materials is investigated by means of ring upsetting tests at a process-relevant temperature. Finally, a stress analysis of the forming tools is carried out.

  20. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  1. Advances on research epigenetic change of hybrid and polyploidy ...

    African Journals Online (AJOL)

    MERCY

    2011-09-07

    Sep 7, 2011 ... evolution is speculated as a simulation of the evolutionary steps that .... Molecular studies indicate that epigenetic events are important in ...... Patterns of hybrid loss of imprinting reveal tissue- and cluster-specific regulation.

  2. Hybridization of crime fiction genre forms as a representation of contemporary cultural process

    Directory of Open Access Journals (Sweden)

    G. O. Krapivnyk

    2014-05-01

    Full Text Available The research is devoted to the consideration of hybridization of crime fiction forms in the contemporary cultural process. The work showed that, from the point of view of the culture development, sophistication of the classical crime fiction formula, hybridization of detective fiction with other fiction genres is a natural process of the strive to vary і diversify, combine genres, styles and means of text presentation (from a hard copy or audio book to video and computer games, which is related to the crisis of the Modernity project epoch, where fiction genres were quite self­sufficient, and the transition to the postmodern (or updated Modern, where the human consciousness is dominated by the processes of simultaneous specialization and combination of various industries, in other words, divergence and convergence. It may be claimed that a detective text as one of the most popular genres in the contemporary information culture, in particular, because it reveals secrets, clarifies vague things and assists in discovering the truth, transforms so that there is a process of detectivization of different text products of the cultural industry. At the same time the very detective formula as a component of various genres becomes a tool for playing and influencing the consciousness of a contemporary person.

  3. Insecticide use in hybrid onion seed production affects pre- and postpollination processes.

    Science.gov (United States)

    Gillespie, Sandra; Long, Rachael; Seitz, Nicola; Williams, Neal

    2014-02-01

    Research on threats to pollination service in agro-ecosystems has focused primarily on the negative impacts of land use change and agricultural practices such as insecticide use on pollinator populations. Insecticide use could also affect the pollination process, through nonlethal impacts on pollinator attraction and postpollination processes such as pollen viability or pollen tube growth. Hybrid onion seed (Allium cepa L., Alliaceae) is an important pollinator-dependent crop that has suffered yield declines in California, concurrent with increased insecticide use. Field studies suggest that insecticide use reduces pollination service in this system. We conducted a field experiment manipulating insecticide use to examine the impacts of insecticides on 1) pollinator attraction, 2) pollen/stigma interactions, and 3) seed set and seed quality. Select insecticides had negative impacts on pollinator attraction and pollen/stigma interactions, with certain products dramatically reducing pollen germination and pollen tube growth. Decreased pollen germination was not associated with reduced seed set; however, reduced pollinator attraction was associated with lower seed set and seed quality, for one of the two female lines examined. Our results highlight the importance of pesticide effects on the pollination process. Overuse may lead to yield reductions through impacts on pollinator behavior and postpollination processes. Overall, in hybrid onion seed production, moderation in insecticide use is advised when controlling onion thrips, Thrips tabaci, on commercial fields.

  4. Experimental research on thermal characteristics of a hybrid thermocline heat storage system

    International Nuclear Information System (INIS)

    Yin, Huibin; Ding, Jing; Yang, Xiaoxi

    2014-01-01

    Considering the high-temperature thermal utilization of solar energy as the research background in this paper and focussing on the heat storage process, a kind of hybrid thermocline heat storage method in multi-scale structure and relevant experimental systems are designed by using the mixed molten nitrate salt as the heat storage medium and two representative porous materials, i.e. zirconium ball and silicon carbide (SiC) foam, as the heat storage fillers. The fluid flow and heat storage performance of molten salt in multi-scale structure are experimentally investigated. The results show that the theoretical heat storage efficiencies amongst the three experimental heat storage manners are less than 80% because of the existence of thermocline layers. Comparing to the single-phase molten salt heat storage, the two hybrid thermocline heat storage manners with porous fillers lead to a certain decrease in the effective heat storage capacity. The presence of porous fillers can also help to maintain the molten salt fluid as ideal gravity flow or piston flow and partially replace expensive molten salt. Therefore, it requires a combination of heat storage capacity and economical consideration for optimization design when similar spherical particles or foam ceramics are employed as the porous fillers. -- Highlights: • A hybrid thermocline heat storage method in multi-scale structure is developed. • The fluid flow and heat storage performance are experimentally investigated. • Stable thermocline can form in single tank for the experimental cases. • The hybrid thermocline heat storage with porous filler is promising

  5. Pedagogy and Process: A Case Study of Writing in a Hybrid Learning Model

    Science.gov (United States)

    Keiner, Jason F.

    2017-01-01

    This qualitative case study explored the perceived experiences and outcomes of writing in a hybrid model of instruction in a large suburban high school. In particular, the impact of a hybrid model on the writing process and on future writing performance were examined. In addition, teacher expectation and teacher attitude and their impact upon…

  6. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  7. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  8. Uranium alloy forming process research

    International Nuclear Information System (INIS)

    Chow, T.S.; Biesiada, T.A.; Sunwoo, A.; Long, J.; Anklam, T.; Kang, S.W.

    1997-01-01

    The study of modern U-6Nb processes is motivated by the needs to reduce fabrication costs and to improve efficiency in material usage. We have studied two potential options: physical vapor deposition (PVD) for manufacturing near-net-shape U-6Nb, and kinetic-energy metallization (KEM) as a supplemental process for refurbishing recycled parts. In FY 1996, we completed two series of PVD runs and heat treatment analyses, the characterization of the microstructure and mechanical properties, a comparison of the results to data for wrought-processed material, and experimental demonstration of the KEM feasibility process with a wide range of variables (particle materials and sizes, gases and gas pressures, and substrate materials), and computer modeling calculations

  9. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  10. Research Education: Perspectives and subjective processes involved in educational research

    Directory of Open Access Journals (Sweden)

    Harm H. Tillema

    2009-10-01

    Full Text Available Educational research acknowledges that researcher’s beliefs and training play a role in framing the outcomes of any study. Research not only consists of defining objectives and following certain methods (search but also of making decisions over the steps taking during the inquiry process (research.Establishing a conceptual framework to guide actions on the subjective processes in research is then crucial to control them. With that purpose in mind we offer researchers and Teacher Educators a heuristic tool to be conscious on the risks that can be taken when immersed in research interpretative process. This instrument could be utilised in PhD programs, masters and research projects.

  11. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  12. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  13. Materials Processing Research and Development

    Science.gov (United States)

    2010-08-01

    2 2.1.4 The Origins of Microstexture in Duplex Ti Alloys...Controlled Growth and Coarsening ....... 14 2.11 PUBLISHED RESEARCH ON FRICTION STIR WELDING OF SC-MODIFIED AL-ZN-MG-CU EXTRUDED PLATES...14 2.11.1 Friction Stir Welding of Sc

  14. Hybrid SN/Monte Carlo research and results

    International Nuclear Information System (INIS)

    Baker, R.S.

    1993-01-01

    The neutral particle transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S N ) and stochastic (Monte Carlo) methods are applied. The Monte Carlo and S N regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid Monte Carlo/S N method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S N is well suited for by themselves. The hybrid method has been successfully applied to realistic shielding problems. The vectorized Monte Carlo algorithm in the hybrid method has been ported to the massively parallel architecture of the Connection Machine. Comparisons of performance on a vector machine (Cray Y-MP) and the Connection Machine (CM-2) show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when realistic problems requiring variance reduction are considered. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well

  15. Research and Innovation Processes revisited

    DEFF Research Database (Denmark)

    Timmermans, Job; Yaghmaei, Emad; Carsten Stahl, Bernd

    2017-01-01

    Purpose: The purpose of this paper is to explore how relationships between different actors are being shaped to allow industry to come to acceptable and desirable uses of research and innovation (R&I) that address societal challenges. Design/methodology/approach: Building on existing notions...... of responsibility proposed in the literature, the paper develops a theoretical account of “networks of responsibility” which capture the interlinked nature of responsibility relationships. The usefulness of the approach is evaluated by exploring two cases of R&I in industry deploying a qualitative research approach...... supports translating RRI principles into everyday organisational practices. Social implications: RRI sets an ambitious agenda to ensure a more social and ethical R&I. Much work is still needed to bridge the gap between these theoretical and political aspirations and daily R&I practice, especially in non...

  16. Tracer research in process engineering

    International Nuclear Information System (INIS)

    Iller, E.

    1992-01-01

    The book is a review of modern applications of tracer techniques in chemical and process engineering studies. The next topics have been extensively presented: 1) media flow through apparatus; 2) the tracers in the study of media flow dynamics through apparatus; 3) mathematical interpretation of experimental data from impulse-response method; 4) the models of media flow through chemical reactors and apparatus; 5) radiotracers in mass transport study; 6) examples of practical applications of tracer methods in industrial objects. 84 refs, 96 figs, 31 tabs

  17. Techno-economic assessment of hybrid extraction and distillation processes for furfural production from lignocellulosic biomass.

    Science.gov (United States)

    Nhien, Le Cao; Long, Nguyen Van Duc; Kim, Sangyong; Lee, Moonyong

    2017-01-01

    Lignocellulosic biomass is one of the most promising alternatives for replacing mineral resources to overcome global warming, which has become the most important environmental issue in recent years. Furfural was listed by the National Renewable Energy Laboratory as one of the top 30 potential chemicals arising from biomass. However, the current production of furfural is energy intensive and uses inefficient technology. Thus, a hybrid purification process that combines extraction and distillation to produce furfural from lignocellulosic biomass was considered and investigated in detail to improve the process efficiency. This effective hybrid process depends on the extracting solvent, which was selected based on a comprehensive procedure that ranged from solvent screening to complete process design. Various solvents were first evaluated in terms of their extraction ability. Then, the most promising solvents were selected to study the separation feasibility. Eventually, processes that used the three best solvents (toluene, benzene, and butyl chloride) were designed and optimized in detail using Aspen Plus. Sustainability analysis was performed to evaluate these processes in terms of their energy requirements, total annual costs (TAC), and carbon dioxide (CO 2 ) emissions. The results showed that butyl chloride was the most suitable solvent for the hybrid furfural process because it could save 44.7% of the TAC while reducing the CO 2 emissions by 45.5% compared to the toluene process. In comparison with the traditional purification process using distillation, this suggested hybrid extraction/distillation process can save up to 19.2% of the TAC and reduce 58.3% total annual CO 2 emissions. Furthermore, a sensitivity analysis of the feed composition and its effect on the performance of the proposed hybrid system was conducted. Butyl chloride was found to be the most suitable solvent for the hybrid extraction/distillation process of furfural production. The proposed

  18. The Hybrid Treatment Process for treatment of mixed radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-04-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process

  19. Numerical Research on Hybrid Fuel Locking Device for Upward Flow Core-Research Reactor

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong-Garp; Yoo, Yeon-Sik; Ryu, Jeong-Soo

    2016-01-01

    The assembly must be held firmly against these forces, but cannot be permanently attached to the support stand because periodic refueling of the reactor requires removal or relocation of each assembly. There are so many kinds of fuel locking device, but they are operated manually. As a part of a new project, we have investigated a hybrid fuel locking device (HFLD) for research reactor which is operated automatically. Prior method of holding down the fuel assembly includes a hybrid zero electromagnet consisting of an electromagnet and a permanent magnet. The role of an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by controlling the coil current. At this time, a HFLD is an unlocking state. On the contrary, it is locking state that only a permanent magnet works when the power of an electromagnet is off. The results of a FEM in this work lead to the following conclusions: (1) It is possible that an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by remote controlling the coil current. (2) At this time, it is able to detect remotely using proximity sensor whether a HFLD is latched or not

  20. Organic Micropollutants Removal from Water by Oxidation and Other Processes:QSAR Models, Decision Support System and Hybrids of Processes

    KAUST Repository

    Sudhakaran, Sairam

    2013-08-01

    The presence of organic micropollutants (OMPs) in water is of great environmental concern. OMPs such as endocrine disruptors and certain pharmaceuticals have shown alarming effects on aquatic life. OMPs are included in the priority list of contaminants in several government directorate frameworks. The low levels of OMPs concentration (ng/L to μg/L) force the use of sophisticated analytical instruments. Although, the techniques to detect OMPs are progressing, the focus of current research is only on limited, important OMPs due to the high amount of time, cost and effort involved in analyzing them. Alternatively, quantitative structure activity relationship (QSAR) models help to screen processes and propose appropriate options without considerable experimental effort. QSAR models are well-established in regulatory bodies as a method to screen toxic chemicals. The goal of the present thesis was to develop QSAR models for OMPs removal by oxidation. Apart from the QSAR models, a decision support system (DSS) based on multi-criteria analysis (MCA) involving socio-economic-technical and sustainability aspects was developed. Also, hybrids of different water treatment processes were studied to propose a sustainable water treatment train for OMPs removal. In order to build the QSAR models, the ozone/hydroxyl radical rate constants or percent removals of the OMPs were compiled. Several software packages were used to 5 compute the chemical properties of OMPs and perform statistical analyses. For DSS, MCA was used since it allows the comparison of qualitative (non-monetary, non-metric) and quantitative criteria (e.g., costs). Quadrant plots were developed to study the hybrid of natural and advanced water treatment processes. The QSAR models satisfied both chemical and statistical criteria. The DSS resulted in natural treatment and ozonation as the preferred processes for OMPs removal. The QSAR models can be used as a screening tool for OMPs removal by oxidation. Moreover, the

  1. Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions.

    Science.gov (United States)

    Pérez-Través, Laura; Lopes, Christian A; Barrio, Eladio; Querol, Amparo

    2014-12-01

    We evaluated the genetic stabilization of artificial intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae × S. kudriavzevii) hybrids under wine fermentative conditions. Large-scale transitions in genome size and genome reorganizations were observed during this process. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns recovered among the derived clones was observed for intraspecific hybrids, particularly for those obtained by rare-mating. Molecular marker analyses revealed that unstable clones could change during the industrial process to obtain active dry yeast. When no changes in molecular markers and ploidy were observed after this process, no changes in genetic composition were confirmed by comparative genome hybridization, considering the clone as a stable hybrid. According to our results, under these conditions, fermentation steps 3 and 5 (30-50 generations) would suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  2. In Pursuit of Ethical Research: Studying Hybrid Communities Using Online and Face-to-Face Communications

    Science.gov (United States)

    Busher, Hugh; James, Nalita

    2015-01-01

    Hybrid communities using online and face-to-face communications to construct their practices are increasingly part of everyday life amongst people who have easy access to the internet. Researching these communities raises a number of challenges for researchers in the pursuit of ethical research. The paper begins by exploring what is understood by…

  3. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  4. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications.

    Science.gov (United States)

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH

  5. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications

    Directory of Open Access Journals (Sweden)

    Chenghua Cui

    2016-09-01

    Full Text Available Fluorescence in situ hybridization (FISH is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbials and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells

  6. Solution processable organic/inorganic hybrid ultraviolet photovoltaic detector

    Directory of Open Access Journals (Sweden)

    Xiaopeng Guo

    2016-05-01

    Full Text Available Ultraviolet (UV photodetector is a kind of important optoelectronic device which can be widely used in scientific and engineering fields including astronomical research, environmental monitoring, forest-fire prevention, medical analysis, and missile approach warning etc. The development of UV detector is hindered by the acquirement of stable p-type materials, which makes it difficult to realize large array, low-power consumption UV focal plane array (FPA detector. Here, we provide a novel structure (Al/Poly(9,9-di-n-octylfuorenyl-2,7-diyl(PFO/ZnO/ITO to demonstrate the UV photovoltaic (PV response. A rather smooth surface (RMS roughness: 0.28 nm may be reached by solution process, which sheds light on the development of large-array, light-weight and low-cost UV FPA detectors.

  7. Process-Product Research: A Cornerstone in Educational Effectiveness Research

    Science.gov (United States)

    Creemers, Bert; Kyriakides, Leonidas

    2015-01-01

    This article links the contribution of process-product studies in developing the theoretical framework of educational effectiveness by pointing out the importance of teacher behavior in the classroom. The role that Jere Brophy played in this evolving research is described within the various phases of teacher effectiveness research. Process-product…

  8. Process Improvement for Interinstitutional Research Contracting.

    Science.gov (United States)

    Varner, Michael; Logan, Jennifer; Bjorklund, Todd; Whitfield, Jesse; Reed, Peggy; Lesher, Laurie; Sikalis, Amy; Brown, Brent; Drollinger, Sandy; Larrabee, Kristine; Thompson, Kristie; Clark, Erin; Workman, Michael; Boi, Luca

    2015-08-01

    Sponsored research increasingly requires multiinstitutional collaboration. However, research contracting procedures have become more complicated and time consuming. The perinatal research units of two colocated healthcare systems sought to improve their research contracting processes. The Lean Process, a management practice that iteratively involves team members in root cause analyses and process improvement, was applied to the research contracting process, initially using Process Mapping and then developing Problem Solving Reports. Root cause analyses revealed that the longest delays were the individual contract legal negotiations. In addition, the "business entity" was the research support personnel of both healthcare systems whose "customers" were investigators attempting to conduct interinstitutional research. Development of mutually acceptable research contract templates and language, chain of custody templates, and process development and refinement formats decreased the Notice of Grant Award to Purchase Order time from a mean of 103.5 days in the year prior to Lean Process implementation to 45.8 days in the year after implementation (p = 0.004). The Lean Process can be applied to interinstitutional research contracting with significant improvement in contract implementation. © 2015 Wiley Periodicals, Inc.

  9. Analysis the parameters of seed quality in ns sunflower hybrid after processing in gravity separator

    Directory of Open Access Journals (Sweden)

    Jokić Goran

    2016-01-01

    Full Text Available This paper analyzed the processed seed of five sunflower hybrid seed developed at the Institute of Field and Vegetable Crops in Novi Sad before and after processing in gravity separator. The cultivars were Pegaz, Duško, NS Fantazija, Sumo 1 PR and NS Oskar. The analysis was conducted on seed lots processed in 2015 and involved the following parameters: seed purity percentage, 1.000-seed weight, germination energy, germination, seed moisture, number of sclerotinia per 1.000. The results showed that all the parameters of seed quality of sunflower hybrids were better after processing seeds in the gravity separator.

  10. Development and characterisation of hybrid polysaccharide membranes for dehydration processes.

    Science.gov (United States)

    Meireles, Inês T; Huertas, Rosa M; Torres, Cristiana A V; Coelhoso, Isabel M; Crespo, João G

    2018-07-01

    The purpose of this work is the development and characterisation of new hybrid polysaccharide (FucoPol) membranes. These membranes were prepared by incorporation of a SiO 2 network homogeneously dispersed by using a sol-gel method with GPTMS as a crosslinker silica precursor. They were further crosslinked with CaCl 2 for reinforcement of mechanical properties and improvement of their permeation performance. They were characterised in terms of their structural, mechanical and thermal properties. They presented a dense and homogeneous structure, resistant to deformation, with a Tg of 43 °C and a thermal decomposition between 240 and 251 °C. The hybrid FucoPol membranes were tested for ethanol dehydration by pervaporation and also for nitrogen dehydration. They exhibited high water selectivity values, similar to PERVAP ® 4101, however they lost their stability when exposed to solutions of 10.0 wt.% water in ethanol. In contrast, these membranes were stable when applied in N 2 dehydration, leading to reproducible performance and very high water selectivities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  12. Teacher Research as Continuous Process Improvement

    Science.gov (United States)

    Ellis, Charles; Castle, Kathryn

    2010-01-01

    Purpose: Teacher research (inquiry) has been characterized as practice improvement, professional development and action research, among numerous names and descriptions. The purpose of this paper is to support the case that teacher research is also a form of quality improvement known as continuous process improvement (CPI).…

  13. Video Recording and the Research Process

    Science.gov (United States)

    Leung, Constant; Hawkins, Margaret R.

    2011-01-01

    This is a two-part discussion. Part 1 is entitled "English Language Learning in Subject Lessons", and Part 2 is titled "Video as a Research Tool/Counterpoint". Working with different research concerns, the authors attempt to draw attention to a set of methodological and theoretical issues that have emerged in the research process using video data.…

  14. "Emancipatory Disability Research": Project or Process?

    Science.gov (United States)

    Barnes, Colin

    2002-01-01

    This article provides an overview of the core principles and implications of emancipatory disability research. It suggests the emancipatory research paradigm has begun to transform the material and social relations of research production and concludes by suggesting that emancipatory disability should be perceived as a process rather than a…

  15. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Ryu, Sung Hun

    2012-01-01

    Highlights: ► A simple synthesis route is explored in preparing graphene-metal nanoparticle hybrids using cost effective microwave radiation process. ► Electrochemical performance of the synthesized graphene-silver nanoparticle hybrids have been compared with graphite and silver nanoparticle based anode materials. ► Graphene-silver nanoparticle hybrid exhibits stable charge/discharge characteristics of 714 mAh g −1 and it is significantly higher compared to natural graphite and silver based electrodes. - Abstract: A simple method is described for the synthesis of graphene-silver nanoparticle hybrids from graphite and silver precursors using microwave spark ignition process. Adding ecofriendly free radical initiators, in the presence of hydrogen peroxide solution leads to the expansion of graphite to graphene nanosheets. Simultaneously, silver ions intercalated between the graphene layers are reduced to silver nanocrystals leading to the development of graphene-silver nanoparticle hybrids. Transmission electron microscopic (TEM) studies reveal the successful formation of graphene-silver nanoparticle hybrids. X-ray diffraction (XRD) shows that the silver nanoparticles formed on the graphene surfaces are face centered cubic crystals. The surface composition and functional groups present on the graphene-silver nanoparticle hybrids are corroborated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The lithium storage capacity of the synthesized material, when used as an anode material for rechargeable lithium secondary batteries is investigated. Its first specific discharge capacity is observed to be 580 mAh g −1 and this has been increased to 827 mAh g −1 , by incorporating the silver nanoparticles between the graphene platelets. The reversible capacity of the graphene-silver nanoparticle hybrids is observed to be 714 mAh g −1 , which is significantly higher compared to that of graphene (420 mAh g −1

  16. Thermodynamic and chemical engineering problems arising with hybride processes

    International Nuclear Information System (INIS)

    Hunsaenger, K.

    1981-01-01

    Marginal parameters and definitions are set up for the NaK-NaKH cyclic process, the vapour-phase electrolysis on the basis of carbonates, high-temperature electrolysis using borax, the HCl/NaLiNO 3 cyclic process and the methane/methanol cyclic process. Such parameters and definitions are to create uniform conditions for the process design. (DG) [de

  17. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  18. A Hybrid FPGA/Coarse Parallel Processing Architecture for Multi-modal Visual Feature Descriptors

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Alonso, Javier Díaz

    2008-01-01

    This paper describes the hybrid architecture developed for speeding up the processing of so-called multi-modal visual primitives which are sparse image descriptors extracted along contours. In the system, the first stages of visual processing are implemented on FPGAs due to their highly parallel...

  19. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    Science.gov (United States)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  20. Experimental investigations on the state of the friction-welded joint zone in steel hybrid components after process-relevant thermo-mechanical loadings

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Peshekhodov, I.; Matthias, T.; Kolbasnikov, N.; Sokolov, S.; Ganin, S.

    2016-10-01

    As a part of the newly established Collaborative Research Center 1153 (SFB 1153) "Process chain for the manufacturing of hybrid high-performance components by tailored forming" at the Leibniz Universität Hannover, the Institute of Forming Technology and Machines (IFUM) examines the influence of thermo-mechanical stresses on the reduced Young's modulus as well as the hardness of hybrid (steel-steel compound) joined semi-finished products. Currently the expertise in the production of bulk metal formed parts is limited to mono-materials. For manufacturing parts of hybrid materials and also for the methods of the new process routes, practical experience has to be gained. The subproject C1 within the collaborative research center 1153 with the short title "Failure Prediction" deals with the question, if the hybrid semi-finished products fulfill the thermo-mechanical demands or if they fail at the joining zone (JZ) during forging. For this purpose, stresses similar to those in the process were imposed on hybrid semi-finished products by torsion tests by using the thermo-mechanical test system Gleeble 3800. Afterwards, the specimens were examined metallographically and by nanoindentations with the help of a TriboIndenter TI950. Thus, first knowledge on the behaviour of thermo-mechanical stresses on the reduced Young's modulus and the hardness of hybrid joined semi-finished parts was gained.

  1. Hybrid rocket engine research program at Ryerson University

    Energy Technology Data Exchange (ETDEWEB)

    Karpynczyk, J.; Greatrix, D.R. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Aerospace Engineering

    2007-07-01

    Hybrid rocket engines (HREs) are a combination of solid and liquid propellant rocket engine designs. A solid fuel grain is located in the main combustion chamber and nozzle aft, while a stored liquid or gaseous oxidizer source supplies the required oxygen content through a throttle valve, for combustion downstream in the main chamber. HREs have drawn significant interest in certain flight applications, as they can be advantageous in terms of cost, ease and safety in storage, controllability in flight, and availability of propellant constituents. Key factors that will lead to further practical usage of HREs for flight applications are their predictability and reproducibility of operational performance. This paper presented information on studies being conducted at Ryerson University aimed at analyzing and testing the performance of HREs. It discussed and illustrated the conventional HRE and analyzed engine performance considerations such as the fuel regression rate, mass flux about the fuel surface, burning rate, and zero transformation parameter. Other factors relating to HRE performance that were presented included induced forward and aft oxidizer flow swirl effects as a means for augmenting the fuel regression rate, stoichiometric grain length issues, and feed system stability. Last, the paper presented a simplified schematic diagram of a proposed thrust/test stand for HRE test firings. 2 refs., 3 figs.

  2. Hybrid Pluggable Processing Pipeline (HyP3): Programmatic Access to Cloud-Based Processing of SAR Data

    Science.gov (United States)

    Weeden, R.; Horn, W. B.; Dimarchi, H.; Arko, S. A.; Hogenson, K.

    2017-12-01

    A problem often faced by Earth science researchers is the question of how to scale algorithms that were developed against few datasets and take them to regional or global scales. This problem only gets worse as we look to a future with larger and larger datasets becoming available. One significant hurdle can be having the processing and storage resources available for such a task, not to mention the administration of those resources. As a processing environment, the cloud offers nearly unlimited potential for compute and storage, with limited administration required. The goal of the Hybrid Pluggable Processing Pipeline (HyP3) project was to demonstrate the utility of the Amazon cloud to process large amounts of data quickly and cost effectively. Principally built by three undergraduate students at the ASF DAAC, the HyP3 system relies on core Amazon cloud services such as Lambda, Relational Database Service (RDS), Elastic Compute Cloud (EC2), Simple Storage Service (S3), and Elastic Beanstalk. HyP3 provides an Application Programming Interface (API) through which users can programmatically interface with the HyP3 system; allowing them to monitor and control processing jobs running in HyP3, and retrieve the generated HyP3 products when completed. This presentation will focus on the development techniques and enabling technologies that were used in developing the HyP3 system. Data and process flow, from new subscription through to order completion will be shown, highlighting the benefits of the cloud for each step. Because the HyP3 system can be accessed directly from a user's Python scripts, powerful applications leveraging SAR products can be put together fairly easily. This is the true power of HyP3; allowing people to programmatically leverage the power of the cloud.

  3. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)

    Science.gov (United States)

    Sim, Victor S.T.; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y.; Fane, Anthony G.; Krantz, William B.

    2013-01-01

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination. PMID:24956940

  4. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO

    Directory of Open Access Journals (Sweden)

    William B. Krantz

    2013-07-01

    Full Text Available This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.

  5. Data Mining: A Hybrid Methodology for Complex and Dynamic Research

    Science.gov (United States)

    Lang, Susan; Baehr, Craig

    2012-01-01

    This article provides an overview of the ways in which data and text mining have potential as research methodologies in composition studies. It introduces data mining in the context of the field of composition studies and discusses ways in which this methodology can complement and extend our existing research practices by blending the best of what…

  6. Hybridization of Practices in Teacher-Researcher Collaboration

    Science.gov (United States)

    Hamza, Karim; Palm, Ola; Palmqvist, Jenny; Piqueras, Jesús; Wickman, Per-Olof

    2018-01-01

    In this paper we present experiences from a joint collaborative research project which may be described as an encounter between a school science teaching practice and a university science didactics research practice. We provide narratives which demonstrate how the encounter between these two communities of practice interacted to produce…

  7. Application of Hybrid Genetic Algorithm Routine in Optimizing Food and Bioengineering Processes

    Directory of Open Access Journals (Sweden)

    Jaya Shankar Tumuluru

    2016-11-01

    Full Text Available Optimization is a crucial step in the analysis of experimental results. Deterministic methods only converge on local optimums and require exponentially more time as dimensionality increases. Stochastic algorithms are capable of efficiently searching the domain space; however convergence is not guaranteed. This article demonstrates the novelty of the hybrid genetic algorithm (HGA, which combines both stochastic and deterministic routines for improved optimization results. The new hybrid genetic algorithm developed is applied to the Ackley benchmark function as well as case studies in food, biofuel, and biotechnology processes. For each case study, the hybrid genetic algorithm found a better optimum candidate than reported by the sources. In the case of food processing, the hybrid genetic algorithm improved the anthocyanin yield by 6.44%. Optimization of bio-oil production using HGA resulted in a 5.06% higher yield. In the enzyme production process, HGA predicted a 0.39% higher xylanase yield. Hybridization of the genetic algorithm with a deterministic algorithm resulted in an improved optimum compared to statistical methods.

  8. GREEN BUSINESS PROCESS MANAGEMENT: A RESEARCH AGENDA

    Directory of Open Access Journals (Sweden)

    Aditya Ghose

    2010-01-01

    Full Text Available There is a global consensus on the need to reduce our collective carbon footprint. While much research attention has focused on developing alternative energy sources, automotive technologies or waste disposal techniques, we often ignore the fact that the ability to optimize (existing operations to reduce their emissions impact is fundamental to this exercise. Business process management (BPM technology, with its focus on understanding, modelling and improving/optimizing business processes, is a key starting point. Process modelling technology has applications beyond what we would traditionally describe as business processes - we can also model and improve manufacturing and other "physical" processes. This paper describes the contours of the emerging research landscape in green business process management and presents some early results in this area.

  9. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process

    Energy Technology Data Exchange (ETDEWEB)

    Rashti, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Firoozi, Saman [Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ramezani, Sara [Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahiminejad, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Karimi, Roya [Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Farzaneh, Khadijeh [Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein, E-mail: hghanbari@tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. - Highlights: • Nanocomposites based on polyurethane and nanosilica prepared by sol-gel method fabricated • Addition of inorganic phase improved mechanical properties. • Nanosilica prepared by sol-gel method increased hydrophilicity. • By adding nanosilica to polyurethane biocompatibility increased significantly.

  10. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju

    2017-11-15

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  11. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung Gil; Jeong, Sanghyun; Jang, Am

    2017-01-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  12. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation.

    Science.gov (United States)

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung-Gil; Jeong, Sanghyun; Jang, Am

    2018-03-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL -1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Summary of process research analysis efforts

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    A summary of solar-cell process research analysis efforts was presented. Process design and cell design are interactive efforts where technology from integrated circuit processes and other processes are blended. The primary factors that control cell efficiency are: (1) the bulk parameters of the available sheet material, (2) the retention and enhancement of these bulk parameters, and (3) the cell design and the cost to produce versus the finished cells performance. The process sequences need to be tailored to be compatible with the sheet form, the cell shape form, and the processing equipment. New process options that require further evaluation and utilization are lasers, robotics, thermal pulse techniques, and new materials. There are numerous process control techniques that can be adapted and used that will improve product uniformity and reduced costs. Two factors that can lead to longer life modules are the use of solar cell diffusion barriers and improved encapsulation.

  14. Hybrid digital signal processing and neural networks applications in PWRs

    International Nuclear Information System (INIS)

    Eryurek, E.; Upadhyaya, B.R.; Kavaklioglu, K.

    1991-01-01

    Signal validation and plant subsystem tracking in power and process industries require the prediction of one or more state variables. Both heteroassociative and auotassociative neural networks were applied for characterizing relationships among sets of signals. A multi-layer neural network paradigm was applied for sensor and process monitoring in a Pressurized Water Reactor (PWR). This nonlinear interpolation technique was found to be very effective for these applications

  15. Coagulation-Adsorption Hybrid Process for the Treatment of Dyes and Pigments Wastewater

    Directory of Open Access Journals (Sweden)

    Abdul Karim Shah

    2013-10-01

    Full Text Available The study aimed to improve the effectiveness of dyes and pigments wastewater treatment. Hybrid system of adsorption and coagulation was applied for the reduction of COD, color, turbidity and TSS. Activated carbon adsorbent was prepared from a waste of sugar industry boiler. It was processed through physicochemical treatment with sulfuric acid following grinding, sieving, washing and drying unit operations. Combined wastewater of dyes and pigments manufacturing plant was treated with a hybrid process of coagulation and adsorption. FeCl 3, FeSO 4and Alum coagulants were tested individually and found them less effective. It was revealed that FeCl 3 coagulation, adsorption and hybrid process reduced COD (41, 51 and 54%, Color (67, 70 and 89%, turbidity (69, 71 and 90% and TSS (82, 93 and 97% respectively. Combination of FeCl3 -SBFA (Sugarcane Bagasse Fly Ash proved 90% efficient in removal than coagulation as an individual process. 4g adsorbent dose was optimized for this hybrid process

  16. Status analysis of keyhole bottom in laser-MAG hybrid welding process.

    Science.gov (United States)

    Wang, Lin; Gao, Xiangdong; Chen, Ziqin

    2018-01-08

    The keyhole status is a determining factor of weld quality in laser-metal active gas arc (MAG) hybrid welding process. For a better evaluation of the hybrid welding process, three different penetration welding experiments: partial penetration, normal penetration (or full penetration), and excessive penetration were conducted in this work. The instantaneous visual phenomena including metallic vapor, spatters and keyhole of bottom surface were used to evaluate the keyhole status by a double high-speed camera system. The Fourier transform was applied on the bottom weld pool image for removing the image noise around the keyhole, and then the bottom weld pool image was reconstructed through the inverse Fourier transform. Lastly, the keyhole bottom was extracted from the de-noised bottom weld pool image. By analyzing the visual features of the laser-MAG hybrid welding process, mechanism of the closed and opened keyhole bottom were revealed. The results show that the stable opened or closed status of keyhole bottom is directly affected by the MAG droplet transition in the normal penetration welding process, and the unstable opened or closed status of keyhole bottom would appear in excessive penetration welding and partial penetration welding. The analysis method proposed in this paper could be used to monitor the keyhole stability in laser-MAG hybrid welding process.

  17. Integrating deep and shallow natural language processing components : representations and hybrid architectures

    OpenAIRE

    Schäfer, Ulrich

    2006-01-01

    We describe basic concepts and software architectures for the integration of shallow and deep (linguistics-based, semantics-oriented) natural language processing (NLP) components. The main goal of this novel, hybrid integration paradigm is improving robustness of deep processing. After an introduction to constraint-based natural language parsing, we give an overview of typical shallow processing tasks. We introduce XML standoff markup as an additional abstraction layer that eases integration ...

  18. Design and implementation of a hybrid circuit system for micro sensor signal processing

    International Nuclear Information System (INIS)

    Wang Zhuping; Chen Jing; Liu Ruqing

    2011-01-01

    This paper covers a micro sensor analog signal processing circuit system (MASPS) chip with low power and a digital signal processing circuit board implementation including hardware connection and software design. Attention has been paid to incorporate the MASPS chip into the digital circuit board. The ultimate aim is to form a hybrid circuit used for mixed-signal processing, which can be applied to a micro sensor flow monitoring system. (semiconductor integrated circuits)

  19. Research on the productive performance of young rabbit hybrid bred in a household system (II

    Directory of Open Access Journals (Sweden)

    Marian Bura

    2015-10-01

    Full Text Available To ease the shock of weaning, the young hybrid rabbits were held between the ages of 30 days and 37 days in a farrowing cage and than they were transfered inside growing pens (148/123 cm, where they remained until slaughter. Before slaughter, youth has undergone a finishing process. Youth received treatment with vitamins, coccidiostatics and specific vaccinations. The finishing process began when youth Hybrid reached a body mass of 1700-1900 g and consisted of removal of the ration of grain and vitamins. Youth hybrid was sacrificed to a body weight of 2500 g, weight being achieved between the ages of 107-142 days. Youth consumed between 140.86 to 663.50 g / day juicy fodder, from 806.14 to 1225.82 g / day bulky and concentrated feed. Carcasses of youth hybrid weighed between 1596.70 to 1886.40 g. Slaughter yield ranged from 50.25 to 68.67%. The average price on housing in young hybrid rabbits, calculated at a price of 17 lei/kg carcass, ranged from 27.10 to 33.40 lei / housing.

  20. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    International Nuclear Information System (INIS)

    Hedayat, Afshin; Davilu, Hadi; Barfrosh, Ahmad Abdollahzadeh; Sepanloo, Kamran

    2009-01-01

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  1. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aut.ac.i [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of); Davilu, Hadi [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Barfrosh, Ahmad Abdollahzadeh [Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of)

    2009-12-15

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  2. The materials processing research base of the Materials Processing Center

    Science.gov (United States)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  3. Plasmachemical Oxidation Processes in Hybrid Gas-Liquid Electrical Discharge Reactor

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Locke, B.R.

    2005-01-01

    Roč. 38, č. 22 (2005), s. 4074-4081 ISSN 0022-3727 Institutional research plan: CEZ:AV0Z20430508 Keywords : Corona discharge * hybrid reactor * hydroxyl radical * ozone * phenol * water treatment Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005

  4. Optimal hybrid separations for intensified downstream processing of biobutanol

    NARCIS (Netherlands)

    Sánchez-Ramírez, Eduardo; Quiroz-Ramírez, Juan José; Hernández, Salvador; Segovia-Hernández, Juan Gabriel; Kiss, Anton A.

    2017-01-01

    Current research focuses on new energy alternatives which could compete with the traditional energy sources based on fossil fuels, and eventually diminish the consequences on climate. Recently, butanol produced by ABE fermentation attracted more attention since its energy power is comparable to that

  5. Hybrid Pluggable Processing Pipeline (HyP3): A cloud-based infrastructure for generic processing of SAR data

    Science.gov (United States)

    Hogenson, K.; Arko, S. A.; Buechler, B.; Hogenson, R.; Herrmann, J.; Geiger, A.

    2016-12-01

    A problem often faced by Earth science researchers is how to scale algorithms that were developed against few datasets and take them to regional or global scales. One significant hurdle can be the processing and storage resources available for such a task, not to mention the administration of those resources. As a processing environment, the cloud offers nearly unlimited potential for compute and storage, with limited administration required. The goal of the Hybrid Pluggable Processing Pipeline (HyP3) project was to demonstrate the utility of the Amazon cloud to process large amounts of data quickly and cost effectively, while remaining generic enough to incorporate new algorithms with limited administration time or expense. Principally built by three undergraduate students at the ASF DAAC, the HyP3 system relies on core Amazon services such as Lambda, the Simple Notification Service (SNS), Relational Database Service (RDS), Elastic Compute Cloud (EC2), Simple Storage Service (S3), and Elastic Beanstalk. The HyP3 user interface was written using elastic beanstalk, and the system uses SNS and Lamdba to handle creating, instantiating, executing, and terminating EC2 instances automatically. Data are sent to S3 for delivery to customers and removed using standard data lifecycle management rules. In HyP3 all data processing is ephemeral; there are no persistent processes taking compute and storage resources or generating added cost. When complete, HyP3 will leverage the automatic scaling up and down of EC2 compute power to respond to event-driven demand surges correlated with natural disaster or reprocessing efforts. Massive simultaneous processing within EC2 will be able match the demand spike in ways conventional physical computing power never could, and then tail off incurring no costs when not needed. This presentation will focus on the development techniques and technologies that were used in developing the HyP3 system. Data and process flow will be shown

  6. High Efficiency and Long Life Hybrid Photovoltaic Research for Space Applications

    National Research Council Canada - National Science Library

    Su, Wei-Fang

    2007-01-01

    ...)/metal oxide hybrid materials by solution processes at low temperature. An array of large ZnO nanorods with a larger size of 50 nm in diameter and 150 nm in length are grown to act as tree trunks for efficient charge collection...

  7. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  8. A Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems

    KAUST Repository

    Harshvardhan,; West, Brandon; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence

    2015-01-01

    that sacrifice performance. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into sub graphs that fit in RAM

  9. Research on key technology of planning and design for AC/DC hybrid distribution network

    Science.gov (United States)

    Shen, Yu; Wu, Guilian; Zheng, Huan; Deng, Junpeng; Shi, Pengjia

    2018-04-01

    With the increasing demand of DC generation and DC load, the development of DC technology, AC and DC distribution network integrating will become an important form of future distribution network. In this paper, the key technology of planning and design for AC/DC hybrid distribution network is proposed, including the selection of AC and DC voltage series, the design of typical grid structure and the comprehensive evaluation method of planning scheme. The research results provide some ideas and directions for the future development of AC/DC hybrid distribution network.

  10. Hybrid colored noise process with space-dependent switching rates

    Science.gov (United States)

    Bressloff, Paul C.; Lawley, Sean D.

    2017-07-01

    A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular biology, we considered a Brownian particle that randomly switches between two distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the effective multiplicative noise process obtained by taking both the white-noise limit (κ →0 ) and fast switching limit (ɛ →0 ) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we show that yet another form of multiplicative noise is obtained in the simultaneous limit ɛ ,κ →0 with ɛ /κ2 fixed.

  11. Research in adaptive management: working relations and the research process.

    Science.gov (United States)

    Amanda C. Graham; Linda E. Kruger

    2002-01-01

    This report analyzes how a small group of Forest Service scientists participating in efforts to implement adaptive management approach working relations, and how they understand and apply the research process. Nine scientists completed a questionnaire to assess their preferred mode of thinking (the Herrmann Brain Dominance Instrument), engaged in a facilitated...

  12. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    Science.gov (United States)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  13. Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs

    Science.gov (United States)

    Bano, N.; Hussain, I.; Soomro, M. Y.; EL-Naggar, A. M.; Albassam, A. A.

    2018-05-01

    Improving luminance efficiency and colour purity are the most important challenges for zinc oxide (ZnO)-organic hybrid heterojunction light emitting diodes (LEDs), affecting their large area applications. If ZnO-organic hybrid heterojunction white LEDs are fabricated by a hydrothermal method, it is difficult to obtain pure and stable blue emission from PFO due to the presence of an undesirable green emission. In this paper, we present an inverted-structure ZnO-organic hybrid heterojunction LED to avoid green emission from PFO, which mainly originates during device processing. With this configuration, each ZnO nanorod (NR) forms a discrete p-n junction; therefore, large-area white LEDs can be designed without compromising the junction area. The configuration used for this novel structure is glass/ZnO NRs/PFO/PEDOT:PSS/L-ITO, which enables the development of efficient, large-area and low-cost hybrid heterojunction LEDs. Inverted-structure ZnO-organic hybrid heterojunction white LEDs offer several improvements in terms of brightness, size, colour, external quantum efficiency and a wider applicability as compared to normal architecture LEDs.

  14. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    International Nuclear Information System (INIS)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao; Song, Yenan; Li, Zhenhua; Zhao, Pei; Shang, Xuefu

    2015-01-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm 2 , and field enhancement factor of ∼1.3 × 10 4 . The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport

  15. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  16. Micro tooling technologies for polymer micro replication: direct, indirect and hybrid process chains

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard

    2009-01-01

    The increasing employment of micro products, of products containing micro parts and of products with micro-structured surfaces calls for mass fabrication technologies based on replication processes. In many cases, a suitable solution is given by the use of polymer micro products, whose production...... and performance of the corresponding micro mould. Traditional methods of micro tooling, such as various machining processes (e.g. micro milling, micro electrical discharge machining) have already reached their limitations with decreasing dimensions of mould inserts and cavities. To this respect, tooling process...... chains based on combination of micro manufacturing processes (defined as hybrid tooling) have been established in order to obtain further features miniaturization and increased accuracy. In this paper, examples and performance of different hybrid tooling approaches as well as challenges, opportunities...

  17. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties

    International Nuclear Information System (INIS)

    Zhang Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu Yaqin

    2009-01-01

    In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3 O 4 ) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3 O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C=O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3 O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3 O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3 O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3 O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3 O 4 hybrids was discussed.

  18. The Dark Snow Project: a hybrid research communication program

    Science.gov (United States)

    Box, J. E.; Sinclair, P.

    2015-12-01

    The Dark Snow Project, to crowd fund and communicate Greenland ice-climate interactions expedition research, was a baptism by fire climate communications venture. We did it without a guide book and ran on pure inspiration. Along the way, we acquired quite some of the communication skill set: marketing; social psychology; crowd funding; conventional media; video production; social media.The aim of this presentation is to inventory lessons learned, experience, and resolve recommendations how to do it better for those adventurous enough to do a crowd funded actvity. Key themes are amplifying basic research, engagement in citizen science, outreach, communication.Quickly, one begins thinking of success tactics, like launching news on a Monday instead of a Saturday or keeping the conversation going by telling the story from different and evolving perspectives. The experience taught that unconventional funding is harder won than conventional funding. Yet, because the support came from unconventional sources, the public, we began tapping a large resource in citizen science engagement. If having a compelling call to action such a campaign can be a significant source of sustain. What had also proven difficult was doing it with a small team when each of the following skills demands a larger group; running a media campaign; logistics; video recording and editing; social media promotion; conventional media engagement. The issue and brand awareness grows in a snowball effect encouraging us to run successive annual campaigns.Now in third year, the project can be more effective if upscaling from a single to a multi-cell organization.

  19. Improved hybridization of Fuzzy Analytic Hierarchy Process (FAHP) algorithm with Fuzzy Multiple Attribute Decision Making - Simple Additive Weighting (FMADM-SAW)

    Science.gov (United States)

    Zaiwani, B. E.; Zarlis, M.; Efendi, S.

    2018-03-01

    In this research, the improvement of hybridization algorithm of Fuzzy Analytic Hierarchy Process (FAHP) with Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS) in selecting the best bank chief inspector based on several qualitative and quantitative criteria with various priorities. To improve the performance of the above research, FAHP algorithm hybridization with Fuzzy Multiple Attribute Decision Making - Simple Additive Weighting (FMADM-SAW) algorithm was adopted, which applied FAHP algorithm to the weighting process and SAW for the ranking process to determine the promotion of employee at a government institution. The result of improvement of the average value of Efficiency Rate (ER) is 85.24%, which means that this research has succeeded in improving the previous research that is equal to 77.82%. Keywords: Ranking and Selection, Fuzzy AHP, Fuzzy TOPSIS, FMADM-SAW.

  20. The Future of Nearshore Processes Research

    Science.gov (United States)

    Elko, N.; Feddersen, F.; Foster, D. L.; Holman, R. A.; McNinch, J.; Ozkan-Haller, H. T.; Plant, N. G.; Raubenheimer, B.; Elgar, S.; Hay, A. E.; Holland, K. T.; Kirby, J. T., Jr.; Lippmann, T. C.; Miller, J. K.; Stockdon, H. F.; Ashton, A. D.; Boehm, A. B.; Clark, D.; Cowen, E.; Dalyander, S.; Gelfenbaum, G. R.; Hapke, C. J.; MacMahan, J.; McNamara, D.; Mulligan, R. P.; Palmsten, M. L.; Ruggiero, P.; Sherwood, C. R.; Hsu, T. J.

    2014-12-01

    Over 70 members of the nearshore coastal processes research community convened in April 2014 to discuss a vision for the future of nearshore science while celebrating the memories and contributions of our recently departed colleague, Abby Sallenger. The participants reviewed community accomplishments over the past four decades. Federal agencies, including FEMA, NOAA, NPS, USGS, USACE, and NRL discussed the most pressing societal needs within the coastal zone. The group engaged in a retrospective of the last four decades of progress, assessed the current status and limitations of nearshore processes research, and developed a vision for the future that focuses on societally relevant problems. The top research topics identified included: Long-term Coastal Impacts: Meaningfully improve our understanding and prediction of the long-term coastal effects of sea level rise and changes in storminess patterns and associated efforts to protect coastal infrastructure. Extreme Events: Coastal flooding, overland flow, and concurrent morphological evolution during extreme events including the subsequent process of coastal recovery. Human and Ecosystem Health: Linkages between physical coastal processes (transport and mixing) and land-based pollution (pathogens, nutrients, toxic contaminants). Critical for addressing these research questions is enabling infrastructure, such as new observational tools and data sets, models, and nearshore-community communication and collaboration. Idea and concepts developed during the meeting (to be published in Shore and Beach) will be presented to foster collaboration and advocacy amongst the wider nearshore community. Meeting materials are available at: https://scripps.ucsd.edu/centers/nearshorefuture/.

  1. Dynamic wavefront creation for processing units using a hybrid compactor

    Energy Technology Data Exchange (ETDEWEB)

    Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri

    2018-02-20

    A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment to be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.

  2. Hybrid indirect/direct contactor for thermal management of counter-current processes

    Science.gov (United States)

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  3. Research Update: Hybrid organic-inorganic perovskite (HOIP thin films and solar cells by vapor phase reaction

    Directory of Open Access Journals (Sweden)

    Po-Shen Shen

    2016-09-01

    Full Text Available With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP thin films, this new class of photovoltaic (PV technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  4. Processes of international collaboration in management research

    DEFF Research Database (Denmark)

    Jonsen, Karsten; Butler, Christina; Mäkelä, Kristiina

    2013-01-01

    Scientists and academics increasingly work on collaborative projects and write papers in international research teams. This trend is driven by greater publishing demands in terms of the quality and breadth of data and analysis methods, which tend to be difficult to achieve without collaborating...... across institutional and national boundaries. Yet, our understanding of the collaborative processes in an academic setting and the potential tensions associated with them remains limited. We use a reflexive, autoethnographic approach to explicitly investigate our own experiences of international...... collaborative research. We offer systematic insights into the social and intellectual processes of academic collaborative writing, identifying six lessons and two key tensions that influence the success of international research teams. Our findings may benefit the formation of future coauthor teams...

  5. Simple process of hybrid white quantum dot/organic light-emitting diodes by using quantum dot plate and fluorescence

    Science.gov (United States)

    Lee, Ho Won; Lee, Ki-Heon; Lee, Jae Woo; Kim, Jong-Hoon; Yang, Heesun; Kim, Young Kwan

    2015-02-01

    In this work, the simple process of hybrid quantum dot (QD)/organic light-emitting diode (OLED) was proposed to apply a white illumination light by using QD plate and organic fluorescence. Conventional blue fluorescent OLEDs were firstly fabricated and then QD plates of various concentrations, which can be controlled of UV-vis absorption and photoluminescence spectrum, were attached under glass substrate of completed blue devices. The suggested process indicates that we could fabricate the white device through very simple process without any deposition of orange or red organic emitters. Therefore, this work would be demonstrated that the potential simple process for white applications can be applied and also can be extended to additional research on light applications.

  6. Feed process studies: Research-Scale Melter

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ``channeling`` which allowed the top section to cool, reducing production rates.

  7. Feed process studies: Research-Scale Melter

    International Nuclear Information System (INIS)

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ''channeling'' which allowed the top section to cool, reducing production rates

  8. A Hybrid Approach for Reliability Analysis Based on Analytic Hierarchy Process and Bayesian Network

    International Nuclear Information System (INIS)

    Zubair, Muhammad

    2014-01-01

    By using analytic hierarchy process (AHP) and Bayesian Network (BN) the present research signifies the technical and non-technical issues of nuclear accidents. The study exposed that the technical faults was one major reason of these accidents. Keep an eye on other point of view it becomes clearer that human behavior like dishonesty, insufficient training, and selfishness are also play a key role to cause these accidents. In this study, a hybrid approach for reliability analysis based on AHP and BN to increase nuclear power plant (NPP) safety has been developed. By using AHP, best alternative to improve safety, design, operation, and to allocate budget for all technical and non-technical factors related with nuclear safety has been investigated. We use a special structure of BN based on the method AHP. The graphs of the BN and the probabilities associated with nodes are designed to translate the knowledge of experts on the selection of best alternative. The results show that the improvement in regulatory authorities will decrease failure probabilities and increase safety and reliability in industrial area.

  9. Lateralized hybrid faces: evidence of a valence-specific bias in the processing of implicit emotions.

    Science.gov (United States)

    Prete, Giulia; Laeng, Bruno; Tommasi, Luca

    2014-01-01

    It is well known that hemispheric asymmetries exist for both the analyses of low-level visual information (such as spatial frequency) and high-level visual information (such as emotional expressions). In this study, we assessed which of the above factors underlies perceptual laterality effects with "hybrid faces": a type of stimulus that allows testing for unaware processing of emotional expressions, when the emotion is displayed in the low-frequency information while an image of the same face with a neutral expression is superimposed to it. Despite hybrid faces being perceived as neutral, the emotional information modulates observers' social judgements. In the present study, participants were asked to assess friendliness of hybrid faces displayed tachistoscopically, either centrally or laterally to fixation. We found a clear influence of the hidden emotions also with lateral presentations. Happy faces were rated as more friendly and angry faces as less friendly with respect to neutral faces. In general, hybrid faces were evaluated as less friendly when they were presented in the left visual field/right hemisphere than in the right visual field/left hemisphere. The results extend the validity of the valence hypothesis in the specific domain of unaware (subcortical) emotion processing.

  10. Hybrid Process Technologies in the Financial Sector: The Case of BRFkredit

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Marquard, Morten

    2017-01-01

    hybrid process-modelling approach with which models are defined declaratively, but the possible behavior of the model can be viewed and investigated using flow-based notions. The prototype was then presented to BRFkredit for feedback. (c)Results achieved: Our investigation helped to clarify...... the requirements for making declarative process models understandable to end users at BRFkredit and showed how a hybrid approach could be used to satisfy these requirements. Based on these insights, we developed tools to enhance our existing declarative modelling framework with flow-based visualizations. (d......)Lessons learned: Different stakeholders have different needs and preferred levels of abstraction when process models are used as tools for communication. However, one model that seems to fit most situations is a simple no-branches sequential swimlane diagram that was extracted automatically from a more detailed...

  11. Research Regarding the Hybrids Resulted from the Domestic Pig and the Wild Boar

    Directory of Open Access Journals (Sweden)

    Marcel Matiuti

    2010-05-01

    Full Text Available Research was conducted between 2005-2009 in Barzava, Arad county. The villagers breed pigs traditionally, the animals having the freedom to roam the outskirts of the villages. Over the years the domestic sows (Sus scrofa domesticus which had been let by their owners to roam the forests for mast and acorn, have mated with wild boars (Sus scrofa ferus, thus obtaining crossbreeds in various colours – either resembling the female or the male. In Bazava the total number of swine is 1820 specimens out of which 546 is formed by hybrids or crossbreeds in 2009. In the case of these hybrids the length of the head together with that of the trunk can reach 150-170 cm. An adult male can have a weight of 150-200 kg and the female 100-150 kg. These specimens are easily recognizable by the fact that they have the trunk covered in thick, long, spiky hairs. There are also other external characteristics of these crossbreeds. Data has been gathered on what concerns the colour and the length of the hair, external features, maintenance and feeding. Behavioural observations have been made also. The local people appreciate a lot these hybrids because of their qualitative meat, out of which they obtain traditional dishes, combining this meat with that from domestic pigs and veal. Moreover, the maintenance of these hybrids is very low-cost, the only conditions which have to be met being simple shelters during the night and during the winter. The demand for such animals is great. These hybrids are being bought by the Zoos or are used for repopulating the areas in which the wild boars are on the verge of extinction because of excessive poaching. Foreign buyers are also interested in these hybrids, wanting to breed them in special parks and then to organize hunting outings.

  12. HYBRID CONTINUUM-DISCONTINUUM MODELLING OF ROCK FRACUTRE PROCESS IN BRAZILIAN TENSILE STRENGTH TEST

    Directory of Open Access Journals (Sweden)

    Huaming An

    2017-10-01

    Full Text Available A hybrid continuum-discontinuum method is introduced to model the rock failure process in Brazilian tensile strength (BTS test. The key component of the hybrid continuum-discontinuum method, i.e. transition from continuum to discontinuum through fracture and fragmentation, is introduced in detail. A laboratory test is conducted first to capture the rock fracture pattern in the BTS test while the tensile strength is calculated according to the peak value of the loading forces. Then the proposed method is used to model the rock behaviour during BTS test. The stress propagation is modelled and compared with those modelled by finite element method in literatures. In addition, the crack initiation and propagation are captured and compared with the facture patter in laboratory test. Moreover, the force-loading displacement curve is obtained which represents a typical brittle material failure process. Furthermore, the stress distributions along the vertical direction are compared with the theoretical solution. It is concluded that the hybrid continuum-discontinuum method can model the stress propagation process and the entire rock failure process in BTS test. The proposed method is a valuable numerical tool for studying the rock behaviour involving the fracture and fragmentation processes.

  13. Understanding Combustion Processes Through Microgravity Research

    Science.gov (United States)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  14. Evaluating Translational Research: A Process Marker Model

    Science.gov (United States)

    Trochim, William; Kane, Cathleen; Graham, Mark J.; Pincus, Harold A.

    2011-01-01

    Abstract Objective: We examine the concept of translational research from the perspective of evaluators charged with assessing translational efforts. One of the major tasks for evaluators involved in translational research is to help assess efforts that aim to reduce the time it takes to move research to practice and health impacts. Another is to assess efforts that are intended to increase the rate and volume of translation. Methods: We offer an alternative to the dominant contemporary tendency to define translational research in terms of a series of discrete “phases.”Results: We contend that this phased approach has been confusing and that it is insufficient as a basis for evaluation. Instead, we argue for the identification of key operational and measurable markers along a generalized process pathway from research to practice. Conclusions: This model provides a foundation for the evaluation of interventions designed to improve translational research and the integration of these findings into a field of translational studies. Clin Trans Sci 2011; Volume 4: 153–162 PMID:21707944

  15. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  16. Research Update: The electronic structure of hybrid perovskite layers and their energetic alignment in devices

    Directory of Open Access Journals (Sweden)

    Selina Olthof

    2016-09-01

    Full Text Available In recent years, the interest in hybrid organic–inorganic perovskites has increased at a rapid pace due to their tremendous success in the field of thin film solar cells. This area closely ties together fundamental solid state research and device application, as it is necessary to understand the basic material properties to optimize the performances and open up new areas of application. In this regard, the energy levels and their respective alignment with adjacent charge transport layers play a crucial role. Currently, we are lacking a detailed understanding about the electronic structure and are struggling to understand what influences the alignment, how it varies, or how it can be intentionally modified. This research update aims at giving an overview over recent results regarding measurements of the electronic structure of hybrid perovskites using photoelectron spectroscopy to summarize the present status.

  17. Characteristics of the consumer preferences research process

    Directory of Open Access Journals (Sweden)

    Mirela-Cristina Voicu

    2013-05-01

    Full Text Available Information is one of the most important resources that a company must possess. Some information is hidden deep in the black box - the mind of the consumer, as in the case of information about consumer preferences. Although it seems a concept difficult to grasp, it was shown that consumer preferences can be effectively measured and their research may provide a deeper understanding of the choices that consumers make when deciding to select an offer against another and when deciding to continue in time the relationship with one supplier. The following paper reveals some important aspects regarding the use of information regarding consumer preferences, the fundamentals behind consumer preferences research and the milestones in the consumer preferences research process.

  18. CHARACTERISTICS OF THE CONSUMER PREFERENCES RESEARCH PROCESS

    Directory of Open Access Journals (Sweden)

    MIRELA-CRISTINA VOICU

    2013-05-01

    Full Text Available Information is one of the most important resources that a company must possess. Some information is hidden deep in the black box - the mind of the consumer, as in the case of information about consumer preferences. Although it seems a concept difficult to grasp, it was shown that consumer preferences can be effectively measured and their research may provide a deeper understanding of the choices that consumers make when deciding to select an offer against another and when deciding to continue in time the relationship with one supplier. The following paper reveals some important aspects regarding the use of information regarding consumer preferences, the fundamentals behind consumer preferences research and the milestones in the consumer preferences research process.

  19. The future of nearshore processes research

    Science.gov (United States)

    Elko, Nicole A.; Feddersen, Falk; Foster, Diane; Hapke, Cheryl J.; McNinch, Jesse E.; Mulligan, Ryan P.; Tuba Ӧzkan-Haller, H.; Plant, Nathaniel G.; Raubenheimer, Britt

    2014-01-01

    The nearshore is the transition region between land and the continental shelf including (from onshore to offshore) coastal plains, wetlands, estuaries, coastal cliffs, dunes, beaches, surf zones (regions of wave breaking), and the inner shelf (Figure ES-1). Nearshore regions are vital to the national economy, security, commerce, and recreation. The nearshore is dynamically evolving, is often densely populated, and is under increasing threat from sea level rise, long-term erosion, extreme storms, and anthropogenic influences. Worldwide, almost one billion people live at elevations within 10 m of present sea level. Long-term erosion threatens communities, infrastructure, ecosystems, and habitat. Extreme storms can cause billions of dollars of damage. Degraded water quality impacts ecosystem and human health. Nearshore processes, the complex interactions between water, sediment, biota, and humans, must be understood and predicted to manage this often highly developed yet vulnerable nearshore environment. Over the past three decades, the understanding of nearshore processes has improved. However, societal needs are growing with increased coastal urbanization and threats of future climate change, and significant scientific challenges remain. To address these challenges, members of academia, industry, and federal agencies (USGS, USACE, NPS, NOAA, FEMA, ONR) met at the “The Past and Future of Nearshore Processes Research: Reflections on the Sallenger Years and a New Vision for the Future” workshop to develop a nearshore processes research vision where societal needs and science challenges intersect. The resulting vision is comprised of three broad research themes: Long-term coastal evolution due to natural and anthropogenic processes: As global climate change alters the rates of sea level rise and potentially storm patterns and coastal urbanization increases over the coming decades, an understanding of coastal evolution is critical. Improved knowledge of long

  20. RESEARCH ON THE INTERNATIONAL ACCOUNTING HARMONIZATION PROCESS

    Directory of Open Access Journals (Sweden)

    Tatiana Danescu

    2016-12-01

    Full Text Available During the last decades, the need of harmonization of the financial reporting frameworks has become more acute, mostly because the capital markets are not restricted anymore by country borders and capital movement has outlined the phenomenon of globalization and internationalism. A significant step in harmonizing the financial reporting was done in the process of normalization through different sets of rules and principles, recognized and applied in many states are the International Financial Reporting Standards (IFRS. The process of international recognition of these standards continues along with conceptual development which is based on epistemological research on specific markets, industries, economies open to international capital flows. In this context it becomes of interest to identify and understand generally accepted and applied accounting elements which carry forward the accounting harmonization process along with factors and circumstances that create diversity in nationally applied financial reporting frameworks.

  1. MULTICRITERIA HYBRID FLOW SHOP SCHEDULING PROBLEM: LITERATURE REVIEW, ANALYSIS, AND FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Marcia de Fatima Morais

    2014-12-01

    Full Text Available This research focuses on the Hybrid Flow Shop production scheduling problem, which is one of the most difficult problems to solve. The literature points to several studies that focus the Hybrid Flow Shop scheduling problem with monocriteria functions. Despite of the fact that, many real world problems involve several objective functions, they can often compete and conflict, leading researchers to concentrate direct their efforts on the development of methods that take consider this variant into consideration. The goal of the study is to review and analyze the methods in order to solve the Hybrid Flow Shop production scheduling problem with multicriteria functions in the literature. The analyses were performed using several papers that have been published over the years, also the parallel machines types, the approach used to develop solution methods, the type of method develop, the objective function, the performance criterion adopted, and the additional constraints considered. The results of the reviewing and analysis of 46 papers showed opportunities for future research on this topic, including the following: (i use uniform and dedicated parallel machines, (ii use exact and metaheuristics approaches, (iv develop lower and uppers bounds, relations of dominance and different search strategies to improve the computational time of the exact methods,  (v develop  other types of metaheuristic, (vi work with anticipatory setups, and (vii add constraints faced by the production systems itself.

  2. Solar-Biomass hybrid system for process heat supply in medium scale hotels in Sri Lanka

    OpenAIRE

    Abeywardana, Asela M.A.J.

    2016-01-01

    This study aimed at evaluating and demonstrating the feasibility of using Concentrated Solar Thermal technology combined with biomass energy technology as a hybrid renewable energy system to supply the process heat requirements in small scale industries in Sri Lanka. Particularly, the focus was to apply the concept to the expanding hotel industry, for covering the thermal energy demand of a medium scale hotel. Solar modules utilize the rooftop area of the building to a valuable application. L...

  3. Investigation of mixing and diffusion processes in hybrid spot laser-MIG keyhole welding

    International Nuclear Information System (INIS)

    Zhou, J; Tsai, H L

    2009-01-01

    In hybrid laser-MIG keyhole welding, anti-crack elements can be added into the weld pool through a filler metal in anticipation of compensating mass loss, preventing porosity formation and improving compositional and mechanical properties of the welds. Understanding the mixing and diffusion of the filler metal in the molten pool is vital to achieve these desired objectives. In this study, mathematical models and associated numerical techniques have been developed to investigate the mixing and diffusion processes in hybrid laser-MIG keyhole welding. The transient interactions between droplets and weld pool and dynamics of the melt flow are studied. The effects of key process parameters, such as droplet size (wire diameter), droplet generation frequency (wire feed speed) and droplet impinging speed, on mixing/diffusion are systematically investigated. It was found that compositional homogeneity of the weld pool is determined by the competition between the mixing rate and the solidification rate. A small-size filler droplet together with high generation frequency can increase the latitudinal diffusion of the filler metal into the weld pool, while the large-size droplet along with the low generation frequency helps to get more uniform longitudinal diffusion. Increasing the impinging velocity of the filler droplet can improve the latitudinal diffusion of the filler metal. However, a high impinging velocity can cause a lower diffusion zone in the upper part of the welds. This study provides a good foundation for optimizing the hybrid laser-MIG keyhole welding process to achieve quality welds with desired properties.

  4. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez-Rivera, Efrain [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Madison, Jonathan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holm, Elizabeth Ann [Carnegie Mellon Univ., Pittsburgh, PA (United States); Patterson, Burton R. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Homer, Eric R. [Brigham Young Univ., Provo, UT (United States). Dept. of Mechanical Engineering

    2013-09-01

    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  5. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  6. Mathematical Modeling and a Hybrid NSGA-II Algorithm for Process Planning Problem Considering Machining Cost and Carbon Emission

    Directory of Open Access Journals (Sweden)

    Jin Huang

    2017-09-01

    Full Text Available Process planning is an important function in a manufacturing system; it specifies the manufacturing requirements and details for the shop floor to convert a part from raw material to the finished form. However, considering only economical criterion with technological constraints is not enough in sustainable manufacturing practice; formerly, criteria about low carbon emission awareness have seldom been taken into account in process planning optimization. In this paper, a mathematical model that considers both machining costs reduction as well as carbon emission reduction is established for the process planning problem. However, due to various flexibilities together with complex precedence constraints between operations, the process planning problem is a non-deterministic polynomial-time (NP hard problem. Aiming at the distinctive feature of the multi-objectives process planning optimization, we then developed a hybrid non-dominated sorting genetic algorithm (NSGA-II to tackle this problem. A local search method that considers both the total cost criterion and the carbon emission criterion are introduced into the proposed algorithm to avoid being trapped into local optima. Moreover, the technique for order preference by similarity to an ideal solution (TOPSIS method is also adopted to determine the best solution from the Pareto front. Experiments have been conducted using Kim’s benchmark. Computational results show that process plan schemes with low carbon emission can be captured, and, more importantly, the proposed hybrid NSGA-II algorithm can obtain more promising optimal Pareto front than the plain NSGA-II algorithm. Meanwhile, according to the computational results of Kim’s benchmark, we find that both of the total machining cost and carbon emission are roughly proportional to the number of operations, and a process plan with less operation may be more satisfactory. This study will draw references for the further research on green

  7. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process

    International Nuclear Information System (INIS)

    Mohammadkazemi, Faranak; Faria, Marisa; Cordeiro, Nereida

    2016-01-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO 3 ) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO 3 was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO 3 hybrid bionanocomposites production, structure and properties. The BNC/CaCO 3 biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO 3 content incorporation. The CaCO 3 was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO 3 hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. - Graphical Abstract: Display Omitted - Highlights: • BNC/CaCO 3 hybrid bionanocomposites were produced using in situ biosynthesis process. • Ethanol and culture medium play an important role in the production and properties. • Z-BNC/CaCO 3 bionanocomposites revealed higher O/C ratio and amphoteric surface character. • CaCO 3 incorporated into the BNC decreased crystallinity.

  8. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. R., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br; Passador, F. R., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br; Pessan, L. A., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br [Dep. de Engenharia de Materiais, Federal University of São Carlos (Brazil)

    2014-05-15

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH{sub 4}) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Büchi, Switzerland) with 115°C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  9. Summary of research on microbiological processes

    International Nuclear Information System (INIS)

    Winters, A.L.

    1992-09-01

    Storage of thermal energy in aquifers has obvious benefits of saving energy and decreasing the consumption of fossil fuels. However, aquifer thermal energy storage (ATES), which involves groundwater aquifers as the storage medium for heat or chill, impinges on the environment. A literature review of pertinent microbiology publications (Hicks and Stewart, 1988) identified the potential for the interaction of ATES systems and microbiological processes to create a source of infectious diseases and the potential for damage to the environment. In addition, the review identified a potential for microbiological processes to develop conditions that would interfere with the operation of an ATES system. As a result of this research effort, investigators from Finland, Germany, Switzerland, and the United States have examined several ATES systems in operation and have observed that the ATES systems studied do not contribute to infectious disease transmission, do not adversely affect the environment, and do not contribute significantly to biofouling or biocorrosion

  10. Summary of research on microbiological processes

    Energy Technology Data Exchange (ETDEWEB)

    Winters, A.L.

    1992-09-01

    Storage of thermal energy in aquifers has obvious benefits of saving energy and decreasing the consumption of fossil fuels. However, aquifer thermal energy storage (ATES), which involves groundwater aquifers as the storage medium for heat or chill, impinges on the environment. A literature review of pertinent microbiology publications (Hicks and Stewart, 1988) identified the potential for the interaction of ATES systems and microbiological processes to create a source of infectious diseases and the potential for damage to the environment. In addition, the review identified a potential for microbiological processes to develop conditions that would interfere with the operation of an ATES system. As a result of this research effort, investigators from Finland, Germany, Switzerland, and the United States have examined several ATES systems in operation and have observed that the ATES systems studied do not contribute to infectious disease transmission, do not adversely affect the environment, and do not contribute significantly to biofouling or biocorrosion.

  11. Evaluation of Manufacturing Process Performance by CONWIP Hybridization of Pull Controlled Production Systems

    Directory of Open Access Journals (Sweden)

    Srikanth O.

    2018-01-01

    Full Text Available The main objective of this paper is pioneering an innovative tactic for the synchronization of multi-stage, multi-line, production system. This tactic is mainly depends on the optimization policy, by means of distinct event simulation process for modeling, analysis and distinction of the execution of two alternatives of Kanban control mechanism namely SEKCS (Simultaneous Extended Kanban Control System and IEKCS (Independent Extended Kanban Control System. At this juncture the authors putting forward the two variants of Extended Kanban control system with the hybridization of CONWIP control policy to incite HSEKCS (Hybrid Simultaneous Extended Kanban Control System and HIEKCS (Hybrid Independent Extended Kanban Control System to make use of pooled benefits of a representative production situation in addition to improve the outcome. Therefore in this study the comparison in between different systems of proposed HEKCS specifically are HSEKCS and HIEKCS compared with the Extended Kanban Control Systems variants SEKCS and IEKCS. Simulation studies were conducted for all the five control policies considered and modeled on a multi-line, multi-stage assembly production control system. The relative performance parameters like Throughput or Production rate, Average Waiting Time and Average Work-in-Process, were assessed by means of exponentially varying demands.

  12. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    International Nuclear Information System (INIS)

    Manera, M G; Spadavecchia, J; Taurino, A; Rella, R

    2010-01-01

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV–vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA–Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA–DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T) 15 ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality

  13. Process stability during fiber laser-arc hybrid welding of thick steel plates

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.

    2018-03-01

    Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.

  14. Process planning optimization on turning machine tool using a hybrid genetic algorithm with local search approach

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-04-01

    Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.

  15. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  16. Complementary Self-Biased Logics Based on Single-Electron Transistor (SET)/CMOS Hybrid Process

    Science.gov (United States)

    Song, Ki-Whan; Lee, Yong Kyu; Sim, Jae Sung; Kim, Kyung Rok; Lee, Jong Duk; Park, Byung-Gook; You, Young Sub; Park, Joo-On; Jin, You Seung; Kim, Young-Wug

    2005-04-01

    We propose a complementary self-biasing method which enables the single-electron transistor (SET)/complementary metal-oxide semiconductor (CMOS) hybrid multi-valued logics (MVLs) to operate well at high temperatures, where the peak-to-valley current ratio (PVCR) of the Coulomb oscillation markedly decreases. The new architecture is implemented with a few transistors by utilizing the phase control capability of the sidewall depletion gates in dual-gate single-electron transistors (DGSETs). The suggested scheme is evaluated by a SPICE simulation with an analytical DGSET model. Furthermore, we have developed a new process technology for the SET/CMOS hybrid systems. We have confirmed that both of the fabricated devices, namely, SET and CMOS transistors, exhibit the ideal characteristics for the complementary self-biasing scheme: the SET shows clear Coulomb oscillations with a 100 mV period and the CMOS transistors show a high voltage gain.

  17. Process combinations for the manufacturing of metal-plastic hybrid parts

    International Nuclear Information System (INIS)

    Drossel, W-G; Lies, C; Albert, A; Haase, R; Müller, R; Scholz, P

    2016-01-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts. (paper)

  18. Low-Voltage Solution-Processed Hybrid Light-Emitting Transistors.

    Science.gov (United States)

    Chaudhry, Mujeeb Ullah; Tetzner, Kornelius; Lin, Yen-Hung; Nam, Sungho; Pearson, Christopher; Groves, Chris; Petty, Michael C; Anthopoulos, Thomas D; Bradley, Donal D C

    2018-05-21

    We report the development of low operating voltages in inorganic-organic hybrid light-emitting transistors (HLETs) based on a solution-processed ZrO x gate dielectric and a hybrid multilayer channel consisting of the heterojunction In 2 O 3 /ZnO and the organic polymer "Super Yellow" acting as n- and p-channel/emissive layers, respectively. Resulting HLETs operate at the lowest voltages reported to-date (<10 V) and combine high electron mobility (22 cm 2 /(V s)) with appreciable current on/off ratios (≈10 3 ) and an external quantum efficiency of 2 × 10 -2 % at 700 cd/m 2 . The charge injection, transport, and recombination mechanisms within this HLET architecture are discussed, and prospects for further performance enhancement are considered.

  19. Computer processing techniques in digital radiography research

    International Nuclear Information System (INIS)

    Pickens, D.R.; Kugel, J.A.; Waddill, W.B.; Smith, G.D.; Martin, V.N.; Price, R.R.; James, A.E. Jr.

    1985-01-01

    In the Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, and the Center for Medical Imaging Research, Nashville, TN, there are several activities which are designed to increase the information available from film-screen acquisition as well as from direct digital acquisition of radiographic information. Two of the projects involve altering the display of images after acquisition, either to remove artifacts present as a result of the acquisition process or to change the manner in which the image is displayed to improve the perception of details in the image. These two projects use methods which can be applied to any type of digital image, but are being implemented with images digitized from conventional x-ray film. One of these research endeavors involves mathematical alteration of the image to correct for motion artifacts or registration errors between images that will be subtracted. Another applies well-known image processing methods to digital radiographic images to improve the image contrast and enhance subtle details in the image. A third project involves the use of dual energy imaging with a digital radiography system to reconstruct images which demonstrate either soft tissue details or the osseous structures. These projects are discussed in greater detail in the following sections of this communication

  20. Heterogeneous Biomedical Database Integration Using a Hybrid Strategy: A p53 Cancer Research Database

    Directory of Open Access Journals (Sweden)

    Vadim Y. Bichutskiy

    2006-01-01

    Full Text Available Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.

  1. A Hybrid Model Ranking Search Result for Research Paper Searching on Social Bookmarking

    Directory of Open Access Journals (Sweden)

    pijitra jomsri

    2015-11-01

    Full Text Available Social bookmarking and publication sharing systems are essential tools for web resource discovery. The performance and capabilities of search results from research paper bookmarking system are vital. Many researchers use social bookmarking for searching papers related to their topics of interest. This paper proposes a combination of similarity based indexing “tag title and abstract” and static ranking to improve search results. In this particular study, the year of the published paper and type of research paper publication are combined with similarity ranking called (HybridRank. Different weighting scores are employed. The retrieval performance of these weighted combination rankings are evaluated using mean values of NDCG. The results suggest that HybridRank and similarity rank with weight 75:25 has the highest NDCG scores. From the preliminary result of experiment, the combination ranking technique provide more relevant research paper search results. Furthermore the chosen heuristic ranking can improve the efficiency of research paper searching on social bookmarking websites.

  2. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang; Zuo, Jian; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic

  3. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  4. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  5. Thoughts and Practice on Some Problems about Research and Application of Two-Line Hybrid Rice

    Directory of Open Access Journals (Sweden)

    Li-yun CHEN

    2011-06-01

    Full Text Available The main problems about research and application of two-line hybrid rice were reviewed, including the confusing nomenclature and male sterile lines classification, the unclear characteristics of photoperiod and temperature responses and the unsuitable site selection for male sterile line and hybrid rice seed production. In order to efficiently and accurately use dual-purpose genic male sterile lines, four types, including PTGMS (photo-thermo-sensitive genic male sterile rice, TGMS (thermo-sensitive genic male sterile rice, reverse PTGMS and reverse TGMS, were proposed. A new idea for explaining the mechanism of sterility in dual-purpose hybrid rice was proposed. The transition from sterile to fertile was involved in the cooperative regulation of major-effect sterile genes and photoperiod and/or temperature sensitive ones. The minor-effect genes with accumulative effect on sterility were important factors that affected the critical temperature of sterility transfer. In order to make better use of dual-purpose lines, the characterization of responses to photoperiod and temperature of PTGMS should be made and the identification method for the characterization of photoperiod and temperature responses of PTGMS should also be put forward. The optimal ecological site for seed production could be determined according to the historical climate data and the requirements for the meteorological conditions during the different periods of seed production.

  6. A hybrid twin screw extrusion/electrospinning method to process nanoparticle-incorporated electrospun nanofibres

    International Nuclear Information System (INIS)

    Erisken, Cevat; Kalyon, Dilhan M; Wang Hongjun

    2008-01-01

    A new hybrid methodology that fully integrates the processing capabilities of the twin screw extrusion process (conveying solids, melting, dispersive and distributive mixing, pressurization, temperature profiling, devolatilization) with electrospinning is described. The hybrid process is especially suited to the dispersion of nanoparticles into polymeric binders and the generation of nanoparticle-incorporated fibres and nanofibres. The new technology base is demonstrated with the dispersion of β-tricalcium phosphate (β-TCP) nanoparticles into poly(ε-caprolactone) (PCL) to generate biodegradable non-woven meshes that can be targeted as scaffolds for tissue engineering applications. The new hybrid method yielded fibre diameters in the range of 200-2000 nm for both PCL and β-TCP/PCL (35% by weight) composite scaffolds. The degree of crystallinity of polycaprolactone meshes could be manipulated in the 35.1-41% range, using the voltage strength as a parameter. The electrospinning process, integrated with dispersive kneading disc elements, facilitated the decrease of the cluster sizes and allowed the continuous compounding of the nanoparticles into the biodegradable polymer prior to electrospinning. Thermogravimetric analysis (TGA) of the non-woven meshes validated the continuous incorporation of 35 ± 1.5% (by weight) β-TCP nanoparticles for a targeted concentration of 35%. Uniaxial tensile testing of the meshes with and without the nanoparticles indicated that the ultimate tensile strength at break of the meshes increased from 0.47 ± 0.04 to 0.79 ± 0.08 MPa upon the incorporation of the β-TCP nanoparticles. This demonstration study suggests that the new technology base is particularly suitable for the concomitant dispersion and electrospinning of nanoparticles in the generation of myriad types of functional nanofibres

  7. Improving Defense Health Program Medical Research Processes

    Science.gov (United States)

    2017-08-08

    research , including a Business Cell; 87 Research Development, 88 Research Oversight, 89 and Research Compliance offices;90 and the Center...needed for DHP medical research , such as the Army’s Clinical and Translational Research Program Office, 38 the Navy’s Research Methods Training Program... research stated, “key infrastructure for a learning health system will encompass three core elements: data networks, methods , and workforce.” 221

  8. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: New concepts in multi-barrier treatment

    KAUST Repository

    Sudhakaran, Sairam

    2013-07-01

    In the past, emphasis has been on individual treatment processes comprising conventional treatment (coagulation, sedimentation, and filtration) followed by advanced treatment processes (adsorption, ion-exchange, oxidation, and membrane separation). With the depletion of water resources and high demand for power and chemical usage, efforts need to be made to judiciously use advanced treatment processes. There is a new interest in multiple barriers with synergies in which two coupled processes can function as a hybrid process. Within the context of this paper, the hybrid processes include a natural treatment process coupled with an advanced process. Pilot/full-scale studies have shown efficient removal of OMPs by these hybrid processes. With this hybridization, the usage of resources such as power and chemicals can be reduced. In this study, coupling/hybridization of aquifer recharge and recovery (ARR) with oxidation (O3), advanced oxidation process which involves OH radicals (AOP), nanofiltration (NF), reverse osmosis (RO) and granular activated carbon (GAC) adsorption for OMP removal was studied. O3 or AOP as a pre-treatment and GAC, NF, RO, or UV/chlorination as a post-treatment to ARR was studied. NF can be replaced by RO for removal of OMPs since studies have shown similar performance of NF to RO for removal of many OMPs, thereby reducing costs and providing a more sustainable approach. © 2013 Elsevier Ltd.

  9. Statistical process control in nursing research.

    Science.gov (United States)

    Polit, Denise F; Chaboyer, Wendy

    2012-02-01

    In intervention studies in which randomization to groups is not possible, researchers typically use quasi-experimental designs. Time series designs are strong quasi-experimental designs but are seldom used, perhaps because of technical and analytic hurdles. Statistical process control (SPC) is an alternative analytic approach to testing hypotheses about intervention effects using data collected over time. SPC, like traditional statistical methods, is a tool for understanding variation and involves the construction of control charts that distinguish between normal, random fluctuations (common cause variation), and statistically significant special cause variation that can result from an innovation. The purpose of this article is to provide an overview of SPC and to illustrate its use in a study of a nursing practice improvement intervention. Copyright © 2011 Wiley Periodicals, Inc.

  10. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    Science.gov (United States)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  11. A Gaussian process regression based hybrid approach for short-term wind speed prediction

    International Nuclear Information System (INIS)

    Zhang, Chi; Wei, Haikun; Zhao, Xin; Liu, Tianhong; Zhang, Kanjian

    2016-01-01

    Highlights: • A novel hybrid approach is proposed for short-term wind speed prediction. • This method combines the parametric AR model with the non-parametric GPR model. • The relative importance of different inputs is considered. • Different types of covariance functions are considered and combined. • It can provide both accurate point forecasts and satisfactory prediction intervals. - Abstract: This paper proposes a hybrid model based on autoregressive (AR) model and Gaussian process regression (GPR) for probabilistic wind speed forecasting. In the proposed approach, the AR model is employed to capture the overall structure from wind speed series, and the GPR is adopted to extract the local structure. Additionally, automatic relevance determination (ARD) is used to take into account the relative importance of different inputs, and different types of covariance functions are combined to capture the characteristics of the data. The proposed hybrid model is compared with the persistence model, artificial neural network (ANN), and support vector machine (SVM) for one-step ahead forecasting, using wind speed data collected from three wind farms in China. The forecasting results indicate that the proposed method can not only improve point forecasts compared with other methods, but also generate satisfactory prediction intervals.

  12. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  13. Switching and optimizing control for coal flotation process based on a hybrid model

    Science.gov (United States)

    Dong, Zhiyong; Wang, Ranfeng; Fan, Minqiang; Fu, Xiang

    2017-01-01

    Flotation is an important part of coal preparation, and the flotation column is widely applied as efficient flotation equipment. This process is complex and affected by many factors, with the froth depth and reagent dosage being two of the most important and frequently manipulated variables. This paper proposes a new method of switching and optimizing control for the coal flotation process. A hybrid model is built and evaluated using industrial data. First, wavelet analysis and principal component analysis (PCA) are applied for signal pre-processing. Second, a control model for optimizing the set point of the froth depth is constructed based on fuzzy control, and a control model is designed to optimize the reagent dosages based on expert system. Finally, the least squares-support vector machine (LS-SVM) is used to identify the operating conditions of the flotation process and to select one of the two models (froth depth or reagent dosage) for subsequent operation according to the condition parameters. The hybrid model is developed and evaluated on an industrial coal flotation column and exhibits satisfactory performance. PMID:29040305

  14. Hybrid flotation--membrane filtration process for the removal of heavy metal ions from wastewater.

    Science.gov (United States)

    Blöcher, C; Dorda, J; Mavrov, V; Chmiel, H; Lazaridis, N K; Matis, K A

    2003-09-01

    A promising process for the removal of heavy metal ions from aqueous solutions involves bonding the metals firstly to a special bonding agent and then separating the loaded bonding agents from the wastewater stream by separation processes. For the separation stage, a new hybrid process of flotation and membrane separation has been developed in this work by integrating specially designed submerged microfiltration modules directly into a flotation reactor. This made it possible to combine the advantages of both flotation and membrane separation while overcoming the limitations. The feasibility of this hybrid process was proven using powdered synthetic zeolites as bonding agents. Stable fluxes of up to 80l m(-2)h(-1) were achieved with the ceramic flat-sheet multi-channel membranes applied at low transmembrane pressure (copper, nickel and zinc, were reduced from initial concentrations of 474, 3.3 and 167mg x l(-1), respectively, to below 0.05 mg x l(-1), consistently meeting the discharge limits.

  15. The Action Research Process and Matrix Marketing

    Directory of Open Access Journals (Sweden)

    Claudio Vignali

    2001-01-01

    Full Text Available There has been extensive and long-lasting debate in the UK about the purpose and scope of appropriate management research. Many authors elucidate that it is widely agreed that management research does not operate a single agreed scientific paradigm and can be seen as a soft, applied area of study, showing features of both, ‘engineering’ and ‘craft’ orientations. Nevertheless, the need for management theory to be made more relevant to the work of practice by explaining that it will be necessary to identify new ways of formulating and employing scientific knowledge to practical ends is the basis of this work. However, some authors argue that the process of managerial decision-making, a major aspect of the strategic planning procedure, has become more problematic because modern management, more than ever before, is faced with an immense complexity of tasks and an increasingly volatile business environment. For many years writers have been suggesting that organisations should focus and rely on the fundamental formal models and techniques of strategic planning.

  16. Selected Parameters of Micro-Jet Cooling Gases in Hybrid Spraying Process

    Directory of Open Access Journals (Sweden)

    Szczucka-Lasota B.

    2016-06-01

    Full Text Available The innovative technology, like thermal spraying with a micro-jet cooling is one of the important modification of classical ultrasonic spraying methods. Using of micro-stream with gases like argon or nitrogen allows to cool the coating immediately after spraying, and thereby reduce the time of transition during the injection of each layer. As a result of the process, the fine dispersive structure of coatings is obtained during the shorter time in comparable to the classical high velocity oxygen fuel process (HVOF. The parameter of process and the type of stream equipment determine the quality of the obtained structure and thermal stress in the coating. The article presents the relationship between selected parameters of hybrid process and properties of the coatings. The presented technology should be adapted to the actual production of protective coating for machines and construction working in wear conditions.

  17. PLANNING QUALITY ASSURANCE PROCESSES IN A LARGE SCALE GEOGRAPHICALLY SPREAD HYBRID SOFTWARE DEVELOPMENT PROJECT

    Directory of Open Access Journals (Sweden)

    Святослав Аркадійович МУРАВЕЦЬКИЙ

    2016-02-01

    Full Text Available There have been discussed key points of operational activates in a large scale geographically spread software development projects. A look taken at required QA processes structure in such project. There have been given up to date methods of integration quality assurance processes into software development processes. There have been reviewed existing groups of software development methodologies. Such as sequential, agile and based on RPINCE2. There have been given a condensed overview of quality assurance processes in each group. There have been given a review of common challenges that sequential and agile models are having in case of large geographically spread hybrid software development project. Recommendations were given in order to tackle those challenges.  The conclusions about the best methodology choice and appliance to the particular project have been made.

  18. A Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems

    KAUST Repository

    Harshvardhan,

    2015-05-01

    With the advent of big-data, processing large graphs quickly has become increasingly important. Most existing approaches either utilize in-memory processing techniques that can only process graphs that fit completely in RAM, or disk-based techniques that sacrifice performance. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into sub graphs that fit in RAM and uses a paging-like technique to load sub graphs. We show that without modifying the algorithms, this approach can scale from small memory-constrained systems (such as tablets) to large-scale distributed machines with 16, 000+ cores.

  19. Rowing upstream: Contextualising indigenous research processes ...

    African Journals Online (AJOL)

    The use of indigenous research ethics has a possibility of contextualising indigenous research. Orthodox research is guided by ethical principles which are meant to protect the institution or researcher and the participants. Despite the existence of the ethical pronouncements, literature has shown that research has proven to ...

  20. High-strength bolt-forming of fine-grained aluminum alloy 6061 with a continuous hybrid process

    International Nuclear Information System (INIS)

    Kim, Ji Hun; Hwang, Sun Kwang; Im, Yong-Taek; Son, Il-Heon; Bae, Chul Min

    2012-01-01

    Highlights: ► Fine-grained AA6061-O was produced by a continuous hybrid process. ► It consists of rolling, ECAP, and drawing. ► High-strength bolt was manufactured with the fine-grained AA6061-O. ► The UTS and micro-hardness of the bolt was increased by 50%. ► The route C was better in making a uniform micro-hardness distribution in the bolt. - Abstract: It is well known that the development of a continuous manufacturing process to apply severe plastic deformation (SPD) is a major challenge for industrial usages to improve the mechanical properties of the material through grain refinement. In this study, fine-grained AA6061-O wire was manufactured by a two-pass hybrid process consisting of drawing, equal channel angular pressing and rolling in a continuous manner to investigate the effects of processing routes for two different routes, A and C, on the variation of ultimate tensile strength (UTS) and micro-hardness distribution. The UTS value (185 MPa) of the specimen processed by the two-pass hybrid process with route A was higher than that of 171 MPa obtained from the two-pass wire-drawing process and was equivalent to the level of 184 MPa processed by the three-pass wire-drawing process. The average micro-hardness value (Hv 58.0) obtained from the two-pass hybrid process through route C was the highest among all the cases. According to transmission electron microscopy, the original grain was subdivided and elongated owing to deformation during the processes. The specimen processed by the two-pass hybrid process through route C showed smaller deformation bands and had potentially higher angle grain boundaries compared to the specimen processed by the two-pass wire-drawing process. Finally, the high-strength bolt was manufactured using the fine-grained AA6061-O wire prepared by the continuous hybrid process to check its formability. A ductile fracture at the first thread right above the jaw was observed in the bolt tension test of the manufactured bolt

  1. ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process

    Directory of Open Access Journals (Sweden)

    E. K. Boukas

    2004-01-01

    Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.

  2. Control properties of hybrid distillation processes for the separation of biobutanol

    DEFF Research Database (Denmark)

    Sánchez-Ramírez, Eduardo; Alcocer-García, Heriberto; Quiroz-Ramírez, Juan José

    2017-01-01

    value decomposition technique and a closed-loop dynamic analysis was performed on several hybrid distillation processes including conventional, thermally coupled, thermodynamically equivalent and intensified designs. The results indicated that under the closed-loop control policy, an intensified design...... which is integrated for only two distillation columns instead of three distillation columns, showed good dynamic properties. In addition, thermally coupled sequence A showed better control properties under open-loop analysis. CONCLUSIONS: Using both SVD analysis and closed-loop tests the dynamics...

  3. Research Notes ~ Selecting Research Areas and Research Design Approaches in Distance Education: Process Issues

    Directory of Open Access Journals (Sweden)

    Sudarshan Mishra

    2004-11-01

    Full Text Available The purpose of this paper is to study the process used for selecting research areas and methodological approaches in distance education in India. Experts from the field of distance education in India were interviewed at length, with the aim of collecting qualitative data on opinions on process-issues for selecting areas for research, research design, and appropriate methodological approaches in distance education. Data collected from these interviews were subjected to content analysis; triangulation and peer consultation techniques were used for cross-checking and data verification. While the findings and recommendations of this study have limited application in that they can only be used in the specific context outlined in this paper, respondents in this study nonetheless revealed the pressing need for more process-oriented research in examining media and technology, learners and learning, and distance learning evaluation processes. Our research, which yielded interesting empirical findings, also determined that a mixed approach – one that involves both quantitative and qualitative methods – is more appropriate for conducting research in distance education in India. Qualitative evidence from our research also indicates that respondents interviewed felt that emphasis should be placed on interdisciplinary and systemic research, over that of traditional disciplinary research. Research methods such as student self-reporting, extensive and highly targeted interviews, conversation and discourse analysis, were determined to as useful for data collection for this study.

  4. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Science.gov (United States)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  5. HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS

    Directory of Open Access Journals (Sweden)

    M.K. Tan

    2011-07-01

    Full Text Available In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL and genetic algorithm (GA to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.

  6. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  7. Fire Process Research Natural Areas: Managing research and restoration of dynamic ecosystem processes

    Science.gov (United States)

    Timothy Ingalsbee

    2001-01-01

    Since 1992 a collaborative group of fire scientists, forest conservationists, and Federal resource specialists have been developing proposals for a Research Natural Area (RNA) in the Warner Creek Fire area on the Willamette National Forest in Oregon. Inspired by these proposals, the Oregon Natural Heritage Plan created the new category of "Fire Process RNAs"...

  8. Researching the Parallel Process in Supervision and Psychotherapy

    DEFF Research Database (Denmark)

    Jacobsen, Claus Haugaard

    Reflects upon how to do process research in supervision and in the parallel process. A single case study is presented illustrating how a study on parallel process can be carried out.......Reflects upon how to do process research in supervision and in the parallel process. A single case study is presented illustrating how a study on parallel process can be carried out....

  9. The effect of microstructure and texture evolution on mechanical properties of low-carbon steel processed by the continuous hybrid process

    International Nuclear Information System (INIS)

    Hwang, Sun Kwang; Baek, Hyun Moo; Son, Il-Heon; Im, Yong-Taek; Bae, Chul Min

    2013-01-01

    In this paper, the continuous hybrid process is newly designed and applied for producing grain-refined long and large cross-section wires of low-carbon steel at high speed at room temperature. The initial specimen, with a diameter of 13 mm, continuously passes through the rolls, equal channel angular pressing (ECAP) dies, and wire-drawing dies in sequence during the process. The specimens deformed by the continuous hybrid process without and with the wire-drawing dies were obtained to investigate the role in the deformation separately. Their microstructures, textures, and mechanical properties were investigated by optical microscopy (OM), electron backscattering diffraction (EBSD), X-ray diffraction (XRD), tension, and Vickers micro-hardness tests and were compared with those for the case processed by the conventional wire-drawing process. According to the present investigation, the continuous hybrid process can more efficiently manufacture fine-grained wires with a strong shear texture in a continuous way than the conventional wire-drawing process can. In addition, the ultimate tensile strength value of the specimen processed by the continuous hybrid process was 23.9% higher, although the elongation was slightly lower than the one produced by the conventional wire-drawing process. The plastic deformation was mainly imposed by the ECAP dies, and the wire-drawing dies improve the dimensional accuracy and increase the local strain homogeneity in the continuous hybrid process. It is demonstrated that the continuous hybrid process might be beneficial in commercializing a continuous application of the severe plastic deformation process for producing grain-refined wires for industrial applications

  10. A Novel Application of a Hybrid Delphi-Analytic Hierarchy Process (AHP) Technique: Identifying Key Success Factors in the Strategic Alignment of Collaborative Heterarchical Transportation Networks for Supply Chains

    OpenAIRE

    Yasanur Kayikci; Volker Stix; Larry J. LeBlanc; Michael R. Bartolacci

    2014-01-01

    This research studies heterarchical collaboration in logistical transport. Specifically, it utilizes a hybrid Delphi-Analytic Hierarchy Process (AHP) approach to explore the relevant criteria for the formation and maintenance of a strategic alignment for heterarchical transport collaboration. The importance of this work is that it applies a novel hybrid approach for identifying criteria for success to a little-studied form of supply chain collaboration: heterarchical collaborative transport. ...

  11. Design optimization of single mixed refrigerant LNG process using a hybrid modified coordinate descent algorithm

    Science.gov (United States)

    Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong

    2018-01-01

    Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.

  12. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Science.gov (United States)

    Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol

    2014-09-01

    Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties

  13. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Directory of Open Access Journals (Sweden)

    Kim Sang-Young

    2014-09-01

    Full Text Available Glass Fiber Reinforced Plastic (GFRP structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties

  14. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Directory of Open Access Journals (Sweden)

    Sang-Young Kim

    2014-09-01

    Full Text Available Glass Fiber Reinforced Plastic (GFRP structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties.

  15. Fuel consumption optimization for smart hybrid electric vehicle during a car-following process

    Science.gov (United States)

    Li, Liang; Wang, Xiangyu; Song, Jian

    2017-03-01

    Hybrid electric vehicles (HEVs) provide large potential to save energy and reduce emission, and smart vehicles bring out great convenience and safety for drivers. By combining these two technologies, vehicles may achieve excellent performances in terms of dynamic, economy, environmental friendliness, safety, and comfort. Hence, a smart hybrid electric vehicle (s-HEV) is selected as a platform in this paper to study a car-following process with optimizing the fuel consumption. The whole process is a multi-objective optimal problem, whose optimal solution is not just adding an energy management strategy (EMS) to an adaptive cruise control (ACC), but a deep fusion of these two methods. The problem has more restricted conditions, optimal objectives, and system states, which may result in larger computing burden. Therefore, a novel fuel consumption optimization algorithm based on model predictive control (MPC) is proposed and some search skills are adopted in receding horizon optimization to reduce computing burden. Simulations are carried out and the results indicate that the fuel consumption of proposed method is lower than that of the ACC+EMS method on the condition of ensuring car-following performances.

  16. Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study

    Science.gov (United States)

    Riadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E.

    2016-11-01

    Reactive dyes contain a significant portion of colorants used in yarn dying process and also in textile industry. Since the COD content is usually high in such wastewater,we conducted a hybrid electrocoagulation-fenton method to treat the wastewater. This work describes the application of the hybrid system to the removal of chemical oxygen demand and color from the wastewater in a batch reactor. Having worked with initial pH of 3,0; temperature at 30°C, molar ratio of Fe2+/H2O2 =1/10 and the mol ratio H2O2/COD = 4, we got 88.3% COD conversion and 88.5% color removal. The COD degradation process can be explained in two phases, the first phase is instantaneous reaction and the second phase is first order reaction. The kinetic constant was 0.0053 minute-1 and the rate of COD degradation was 0.0053[COD] mg/L minute.

  17. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems: Summary of Research

    Science.gov (United States)

    Manna, Zohar

    1998-01-01

    This research is directed towards the implementation of a comprehensive deductive-algorithmic environment (toolkit) for the development and verification of high assurance reactive systems, especially concurrent, real-time, and hybrid systems. For this, we have designed and implemented the STCP (Stanford Temporal Prover) verification system. Reactive systems have an ongoing interaction with their environment, and their computations are infinite sequences of states. A large number of systems can be seen as reactive systems, including hardware, concurrent programs, network protocols, and embedded systems. Temporal logic provides a convenient language for expressing properties of reactive systems. A temporal verification methodology provides procedures for proving that a given system satisfies a given temporal property. The research covered necessary theoretical foundations as well as implementation and application issues.

  18. Software process improvement in a research environment

    NARCIS (Netherlands)

    Velden, van der M.J.; Hendriks, P.R.H.; Udink ten Cate, A.J.

    1995-01-01

    Research organizations pay much attention to the quality of their work, but not always to the quality of the software they produce within research projects. This is not a healthy situation since research organizations are becoming more and more dependent on software development. This paper describes

  19. Springback prediction in sheet metal forming process based on the hybrid SA

    International Nuclear Information System (INIS)

    Guo Yuqin; Jiang Hong; Wang Xiaochun; Li Fuzhu

    2005-01-01

    In terms of the intensive similarity between the sheet metal forming-springback process and that of the annealing of metals, it is suggested that the simulation of the sheet metal forming process is performed with the Nonlinear FEM and the springback prediction is implemented by solving the large-scale combinational optimum problem established on the base of the energy descending and balancing in deformed part. The BFGS-SA hybrid SA approach is proposed to solve this problem and improve the computing efficiency of the traditional SA and its capability of obtaining the global optimum solution. At the same time, the correlative annealing strategies for the SA algorithm are determined in here. By comparing the calculation results of sample part with those of experiment measurement at the specified sections, the rationality of the schedule of springback prediction used and the validity of the BFGS-SA algorithm proposed are verified

  20. Analysis of seed quality in NS sunflower hybrid seed processed between 2010 and 2014

    Directory of Open Access Journals (Sweden)

    Jokić Goran

    2015-01-01

    Full Text Available This paper analyzed the processed seed of five sunflower hybrid seed developed at the Institute of Field and Vegetable Crops in Novi Sad. The cultivars were Rimi PR, Duško, NS Dukat, Sumo 1 PR and Sremac. The analysis was conducted on seed lots processed between 2010 and 2014 and involved the following parameters: seed purity percentage, 1000-seed weight, germination energy, germination, seed moisture, number of weed seeds per 1000 grams of seed. The results of the study produced the following average values: seed purity - 99.72%, 1000-seed weight - 67.59g, germination energy - 88.2%, germination - 91.8%, seed moisture - 8.3%. There were not found weeds seeds as well as pathogens on the seed samples, these values are all within the legally prescribed limits.

  1. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  2. Optimization of process parameters in drilling of fibre hybrid composite using Taguchi and grey relational analysis

    Science.gov (United States)

    Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.

    2017-03-01

    Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.

  3. All-optical quantum computing with a hybrid solid-state processing unit

    International Nuclear Information System (INIS)

    Pei Pei; Zhang Fengyang; Li Chong; Song Heshan

    2011-01-01

    We develop an architecture of a hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have a prominent advantage of the insensitivity to dissipation process benefiting from the virtual excitation of subsystems. Moreover, the quantum nondemolition measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid-state systems can merge and be integrated into one quantum processor afterward.

  4. Difficulties Encountered by Academicians in Academic Research Processes in Universities

    Science.gov (United States)

    Yalçin, Sinan; Altun Yalçin, Sema

    2017-01-01

    This present research, aimed to determine the occasions, which the academicians encountered during the academic research process and how these affect the research process, was prepared as a case study pattern among the qualitative research methods. 34 academicians, who were working in a university in Turkey, participated in the research. The data…

  5. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    Science.gov (United States)

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  7. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    Science.gov (United States)

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  8. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    Science.gov (United States)

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  9. Light-induced magnetoresistance in solution-processed planar hybrid devices measured under ambient conditions

    Directory of Open Access Journals (Sweden)

    Sreetama Banerjee

    2017-07-01

    Full Text Available We report light-induced negative organic magnetoresistance (OMAR measured in ambient atmosphere in solution-processed 6,13-bis(triisopropylsilylethynylpentacene (TIPS-pentacene planar hybrid devices with two different device architectures. Hybrid electronic devices with trench-isolated electrodes (HED-TIE having a channel length of ca. 100 nm fabricated in this work and, for comparison, commercially available pre-structured organic field-effect transistor (OFET substrates with a channel length of 20 µm were used. The magnitude of the photocurrent as well as the magnetoresistance was found to be higher for the HED-TIE devices because of the much smaller channel length of these devices compared to the OFETs. We attribute the observed light-induced negative magnetoresistance in TIPS-pentacene to the presence of electron–hole pairs under illumination as the magnetoresistive effect scales with the photocurrent. The magnetoresistance effect was found to diminish over time under ambient conditions compared to a freshly prepared sample. We propose that the much faster degradation of the magnetoresistance effect as compared to the photocurrent was due to the incorporation of water molecules in the TIPS-pentacene film.

  10. Light-induced magnetoresistance in solution-processed planar hybrid devices measured under ambient conditions.

    Science.gov (United States)

    Banerjee, Sreetama; Bülz, Daniel; Reuter, Danny; Hiller, Karla; Zahn, Dietrich R T; Salvan, Georgeta

    2017-01-01

    We report light-induced negative organic magnetoresistance (OMAR) measured in ambient atmosphere in solution-processed 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) planar hybrid devices with two different device architectures. Hybrid electronic devices with trench-isolated electrodes (HED-TIE) having a channel length of ca. 100 nm fabricated in this work and, for comparison, commercially available pre-structured organic field-effect transistor (OFET) substrates with a channel length of 20 µm were used. The magnitude of the photocurrent as well as the magnetoresistance was found to be higher for the HED-TIE devices because of the much smaller channel length of these devices compared to the OFETs. We attribute the observed light-induced negative magnetoresistance in TIPS-pentacene to the presence of electron-hole pairs under illumination as the magnetoresistive effect scales with the photocurrent. The magnetoresistance effect was found to diminish over time under ambient conditions compared to a freshly prepared sample. We propose that the much faster degradation of the magnetoresistance effect as compared to the photocurrent was due to the incorporation of water molecules in the TIPS-pentacene film.

  11. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact.

    Science.gov (United States)

    Curran, Geoffrey M; Bauer, Mark; Mittman, Brian; Pyne, Jeffrey M; Stetler, Cheryl

    2012-03-01

    This study proposes methods for blending design components of clinical effectiveness and implementation research. Such blending can provide benefits over pursuing these lines of research independently; for example, more rapid translational gains, more effective implementation strategies, and more useful information for decision makers. This study proposes a "hybrid effectiveness-implementation" typology, describes a rationale for their use, outlines the design decisions that must be faced, and provides several real-world examples. An effectiveness-implementation hybrid design is one that takes a dual focus a priori in assessing clinical effectiveness and implementation. We propose 3 hybrid types: (1) testing effects of a clinical intervention on relevant outcomes while observing and gathering information on implementation; (2) dual testing of clinical and implementation interventions/strategies; and (3) testing of an implementation strategy while observing and gathering information on the clinical intervention's impact on relevant outcomes. The hybrid typology proposed herein must be considered a construct still in evolution. Although traditional clinical effectiveness and implementation trials are likely to remain the most common approach to moving a clinical intervention through from efficacy research to public health impact, judicious use of the proposed hybrid designs could speed the translation of research findings into routine practice.

  12. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    Science.gov (United States)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  13. Transient simulation of regression rate on thrust regulation process in hybrid rocket motor

    Directory of Open Access Journals (Sweden)

    Tian Hui

    2014-12-01

    Full Text Available The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.

  14. Material Behavior Based Hybrid Process for Sheet Draw-Forging Thin Walled Magnesium Alloys

    International Nuclear Information System (INIS)

    Sheng, Z.Q.; Shivpuri, R.

    2005-01-01

    Magnesium alloys are conventionally formed at the elevated temperatures. The thermally improved formability is sensitive to the temperature and strain rate. Due to limitations in forming speeds, tooling strength and narrow processing windows, complex thin walled parts cannot be made by traditional warm drawing or hot forging processes. A hybrid process, which is based on the deformation mechanism of magnesium alloys at the elevated temperature, is proposed that combines warm drawing and hot forging modes to produce an aggressive geometry at acceptable forming speed. The process parameters, such as temperatures, forming speeds etc. are determined by the FEM modeling and simulation. Sensitivity analysis under the constraint of forming limits of Mg alloy sheet material and strength of tooling material is carried out. The proposed approach is demonstrated on a conical geometry with thin walls and with bottom features. Results show that designed geometry can be formed in about 8 seconds, this cannot be formed by conventional forging while around 1000s is required for warm drawing. This process is being further investigated through controlled experiments

  15. Routes to Chaos Induced by a Discontinuous Resetting Process in a Hybrid Spiking Neuron Model.

    Science.gov (United States)

    Nobukawa, Sou; Nishimura, Haruhiko; Yamanishi, Teruya

    2018-01-10

    Several hybrid spiking neuron models combining continuous spike generation mechanisms and discontinuous resetting processes following spiking have been proposed. The Izhikevich neuron model, for example, can reproduce many spiking patterns. This model clearly possesses various types of bifurcations and routes to chaos under the effect of a state-dependent jump in the resetting process. In this study, we focus further on the relation between chaotic behaviour and the state-dependent jump, approaching the subject by comparing spiking neuron model versions with and without the resetting process. We first adopt a continuous two-dimensional spiking neuron model in which the orbit in the spiking state does not exhibit divergent behaviour. We then insert the resetting process into the model. An evaluation using the Lyapunov exponent with a saltation matrix and a characteristic multiplier of the Poincar'e map reveals that two types of chaotic behaviour (i.e. bursting chaotic spikes and near-period-two chaotic spikes) are induced by the resetting process. In addition, we confirm that this chaotic bursting state is generated from the periodic spiking state because of the slow- and fast-scale dynamics that arise when jumping to the hyperpolarization and depolarization regions, respectively.

  16. Biomolecular hybrid material and process for preparing same and uses for same

    Science.gov (United States)

    Kim, Jungbae [Richland, WA

    2010-11-23

    Disclosed is a composition and method for fabricating novel hybrid materials comprised of, e.g., carbon nanotubes (CNTs) and crosslinked enzyme clusters (CECs). In one method, enzyme-CNT hybrids are prepared by precipitation of enzymes which are subsequently crosslinked, yielding crosslinked enzyme clusters (CECs) on the surface of the CNTs. The CEC-enzyme-CNT hybrids exhibit high activity per unit area or mass as well as improved enzyme stability and longevity over hybrid materials known in the art. The CECs in the disclosed materials permit multilayer biocatalytic coatings to be applied to surfaces providing hybrid materials suitable for use in, e.g., biocatalytic applications and devices as described herein.

  17. Effect of membrane properties on the performance of a hybrid GAC and ultrafiltration process for water treatment.

    Science.gov (United States)

    Qiao, Tiejun; Wu, Guangxue; Zhang, Xihui; Au, Doris W T; Zhang, Jinsong

    2012-06-01

    The performance of a hybrid granular activated carbon (GAC) and ultrafiltration (UF) process for water treatment was investigated using five types of UF membranes. The removal percentages for chemical oxygen demand (COD(Mn)), particles (> or = 2 microm) and total bacteria by the hybrid process were 30-40%, 98-99% and 76-92%, respectively. No invertebrates were detected in the hybrid process effluent. Transmembrane pressure and specific permeate flux (SPF) of the five types of membranes varied. With decreasing membrane pore sizes, removal of COD(Mn) and particles increased, whereas SPF firstly decreased and then increased. Hydrophilic membranes had a relatively high COD(Mn) removal potential, but did not obviously affect particle removal or SPF.

  18. Sentinel-1 Archive and Processing in the Cloud using the Hybrid Pluggable Processing Pipeline (HyP3) at the ASF DAAC

    Science.gov (United States)

    Arko, S. A.; Hogenson, R.; Geiger, A.; Herrmann, J.; Buechler, B.; Hogenson, K.

    2016-12-01

    In the coming years there will be an unprecedented amount of SAR data available on a free and open basis to research and operational users around the globe. The Alaska Satellite Facility (ASF) DAAC hosts, through an international agreement, data from the Sentinel-1 spacecraft and will be hosting data from the upcoming NASA ISRO SAR (NISAR) mission. To more effectively manage and exploit these vast datasets, ASF DAAC has begun moving portions of the archive to the cloud and utilizing cloud services to provide higher-level processing on the data. The Hybrid Pluggable Processing Pipeline (HyP3) project is designed to support higher-level data processing in the cloud and extend the capabilities of researchers to larger scales. Built upon a set of core Amazon cloud services, the HyP3 system allows users to request data processing using a number of canned algorithms or their own algorithms once they have been uploaded to the cloud. The HyP3 system automatically accesses the ASF cloud-based archive through the DAAC RESTful application programming interface and processes the data on Amazon's elastic compute cluster (EC2). Final products are distributed through Amazon's simple storage service (S3) and are available for user download. This presentation will provide an overview of ASF DAAC's activities moving the Sentinel-1 archive into the cloud and developing the integrated HyP3 system, covering both the benefits and difficulties of working in the cloud. Additionally, we will focus on the utilization of HyP3 for higher-level processing of SAR data. Two example algorithms, for sea-ice tracking and change detection, will be discussed as well as the mechanism for integrating new algorithms into the pipeline for community use.

  19. Research on Business Process Outsourcing | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The business process outsourcing (BPO) sector, worth over $130 billion ... Call for new OWSD Fellowships for Early Career Women Scientists now open ... Addressing Africa's unmet need for family planning by intensifying sexual and ...

  20. FCS Undergrads at Mississippi State Learn Research Process

    Science.gov (United States)

    Worthy, Sheri L.

    2009-01-01

    Understanding the research process is a vital part of the undergraduate experience. Conducting research helps students see the value of the scientific process and various research methods, and encourages inquisitiveness about family and consumer sciences (FCS) issues. Research experiences augment students' professional development, increase their…

  1. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    Directory of Open Access Journals (Sweden)

    S. Molla-Alizadeh-Zavardehi

    2014-01-01

    Full Text Available This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA, variable neighborhood search (VNS, and simulated annealing (SA frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms.

  2. Hybrid image and signal processing III; Proceedings of the Meeting, Orlando, FL, Apr. 23, 24, 1992

    Science.gov (United States)

    Casasent, David P.; Tescher, Andrew G.

    1992-07-01

    The present conference discusses the optical Gabor and wavelet transforms for image analysis, image segmentation via optical wavelets, semidifferential invariants, object labeling via convolution, tactile pattern recognition with complex linear morphology, a hybrid six-degree-of-freedom tracking system, and a hazard detection/avoidance sensor for NASA planetary landers. Also discussed are layered optical processing architectures, optoelectronic wide-world personality ROMs for high-speed control, a GaAs-based photorefractive time-integrating correlator, multispectral lossy data compression using vector quantization, broad vector quantization for transform image coding, and a mixed vendor computer architecture for precision image analysis. (For individual items see A93-27933 to A93-27940)

  3. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lukes, Petr; Locke, Bruce R [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida (United States)

    2005-11-21

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH{center_dot} radicals produced by the liquid phase discharge directly in water and OH{center_dot} radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH{center_dot} radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH{center_dot} radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon.

  4. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    International Nuclear Information System (INIS)

    Lukes, Petr; Locke, Bruce R

    2005-01-01

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH· radicals produced by the liquid phase discharge directly in water and OH· radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH· radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH· radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon

  5. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  6. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2013-11-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  7. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2016-06-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  8. Advances in process research by radionuclide techniques

    International Nuclear Information System (INIS)

    Merz, A.; Vogg, H.

    1978-01-01

    Modifications and transformations of materials and their technical implementation in process systems require movement of materials. Radionuclide techniques can greatly help in understanding and describing these mechanisms. The specialized measuring technique is demonstrated by three examples selected from various fields of process technology. Radioactive tracer studies performed on a rotary kiln helped, inter alia, to establish a subdivision into process zones and to pinpoint areas of dust generation. Mixing and feeding actions were studied in a twin screw extruder equipped with a special screw and mixer disk arrangement. Tracer experiments conducted in two secondary settling basins indicate the differences in the mechanisms of movement of the aqueous phase if the mean residence time and the residence time distribution may be influenced not only by hydraulic loads, but also by design variants of the overflow flumes. (orig./HP) [de

  9. Process Research ON Semix Silicon Materials (PROSSM)

    Science.gov (United States)

    Wohlgemuth, J. H.; Warfield, D. B.

    1982-01-01

    A cost effective process sequence was identified, equipment was designed to implement a 6.6 MW per year automated production line, and a cost analysis projected a $0.56 per watt cell add-on cost for this line. Four process steps were developed for this program: glass beads back clean-up, hot spray antireflective coating, wave soldering of fronts, and ion milling for edging. While spray dopants were advertised as an off the shelf developed product, they were unreliable with shorter than advertised shelf life.

  10. Low power signal processing research at Stanford

    Science.gov (United States)

    Burr, J.; Williamson, P. R.; Peterson, A.

    1991-01-01

    This paper gives an overview of the research being conducted at Stanford University's Space, Telecommunications, and Radioscience Laboratory in the area of low energy computation. It discusses the work we are doing in large scale digital VLSI neural networks, interleaved processor and pipelined memory architectures, energy estimation and optimization, multichip module packaging, and low voltage digital logic.

  11. Process Research on Polycrystalline Silicon Material (PROPSM)

    Science.gov (United States)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  12. Process Systems Engineering Education: Learning by Research

    Science.gov (United States)

    Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.

    2009-01-01

    In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…

  13. Soft Sensing of Key State Variables in Fermentation Process Based on Relevance Vector Machine with Hybrid Kernel Function

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available To resolve the online detection difficulty of some important state variables in fermentation process with traditional instruments, a soft sensing modeling method based on relevance vector machine (RVM with a hybrid kernel function is presented. Based on the characteristic analysis of two commonly-used kernel functions, that is, local Gaussian kernel function and global polynomial kernel function, a hybrid kernel function combing merits of Gaussian kernel function and polynomial kernel function is constructed. To design optimal parameters of this kernel function, the particle swarm optimization (PSO algorithm is applied. The proposed modeling method is used to predict the value of cell concentration in the Lysine fermentation process. Simulation results show that the presented hybrid-kernel RVM model has a better accuracy and performance than the single kernel RVM model.

  14. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jung, Yong Hun

    2010-02-01

    Humanity has been facing major energy challenges such as the severe climate change, threat of energy security and global energy shortage especially for the developing world. Particularly, growing awareness of the global warming has led to efforts to develop the sustainable energy technologies for the harmony of the economy, social welfare and environment. Water-splitting nuclear hydrogen production is expected to help to resolve those challenges, when high energy efficiency and low cost for hydrogen production become possible. Once-through Hybrid Sulfur process (Ot-HyS), proposed in this work, produces hydrogen using the same SO 2 Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS) proposed by Westinghouse, which has the sulfuric acid decomposition (SAD) process using high temperature heat source in order to recover sulfur dioxide for the SDE process. But Ot-HyS eliminated this technical hurdle by replacing it with well-established sulfur combustion process to feed sulfur dioxide to the SDE process. Because Ot-HyS has less technical challenges, Ot-HyS is expected to advance the realization of the large-scale nuclear hydrogen production by feeding an initial nuclear hydrogen stock. Most of the elemental sulfur, at present, is supplied by desulfurization process for environmental reasons during the processing of natural gas and petroleum refining and expected to increase significantly. This recovered sulfur will be burned with oxygen in the sulfur combustion process so that produced sulfur dioxide could be supplied to the SDE process to produce hydrogen. Because the sulfur combustion is a highly exothermic reaction releasing 297 kJ/mol of combustion heat resulting in a large temperature rise, efficiency of the Ot-HyS is expected to be high by recovering this great amount of high grade excess heat with nuclear energy. Sulfuric acid, which is a byproduct of the SDE process, could be sent to the neighboring consumers with or even

  15. Research on Hybrid Isolation System for Micro-Nano-Fabrication Platform

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2014-06-01

    Full Text Available In order to obtain better vibration suppression effect, this paper designs a semiactive/fully active hybrid isolator by using magnetorheological elastomer (MRE and piezoelectric material. Combined with multimode control scheme, full frequency vibration suppression is achieved. Firstly, series type structure is determined for the hybrid isolator, and the structure of hybrid isolator is designed. Next, the dynamic model of hybrid isolator is derived, the dynamic characteristics measurement for MRE isolator and piezoelectric stack actuator (PSA is established, and parameters such as voltage-displacement coefficient, stiffness and damping constant are identified from the experimental results, respectively. Meanwhile, the switch frequency is determined by experimental results of PSA and MRE isolator. Lastly, influence of the stiffness of MRE, control voltage of PSA, and intermediate mass on hybrid isolator system is analyzed by simulations, and the results show that the hybrid isolator proposed is effective.

  16. The Two Faces of Security in Hybrid Political Orders: A Framework for Analysis and Research

    Directory of Open Access Journals (Sweden)

    Robin Luckham

    2013-09-01

    authority and capacity to deliver security are weak, disputed or compromised by special interests; and (iii “securitised policy spaces” in which international actors collaborate to ensure peace and fulfil their responsibility to protect vulnerable end-users in unsecured regions. In making these distinctions we argue that similar analytical lenses can be turned upon international actors in securitised policy spaces as well as upon state and non-state security actors. The concluding section argues that such a reframing of the security and development debate demands not just new modes of analysis but also fresh approaches to research designed both to provide insights into the vernacular understandings, coping strategies and potential agency of end-users and to uncover the informal networks, alliances and covert strategies of the multiple actors determining their security in hybrid political orders. This paper builds upon a systematic literature search undertaken by the Justice and Security Research Programme (JSRP at the London School of Economics (LSE funded by the UK’s Department for International Development (DFID. The search itself and its main findings are discussed in Luckham and Kirk (2012 and Luckham and Kirk (2013.

  17. Process modeling of a HLA research lab

    Science.gov (United States)

    Ribeiro, Bruna G. C.; Sena, Alexandre C.; Silva, Dilson; Marzulo, Leandro A. J.

    2017-11-01

    Bioinformatics has provided tremendous breakthroughs in the field of molecular biology. All this evolution has generated a large volume of biological data that increasingly require the use of computing for analysis and storage of this information. The identification of the human leukocyte antigen (HLA) genotypes is critical to the success of organ transplants in humans. HLA typing involves not only laboratory tests but also DNA sequencing, with the participation of several professionals responsible for different stages of the process. Thus, the objective of this paper is to map the main steps in HLA typing in a laboratory specialized in performing such procedures, analyzing each process and proposing solutions to speed up the these steps, avoiding mistakes.

  18. Actinide L-line ED-XRF and Hybrid K-edge Densitometer Spectra Processing

    International Nuclear Information System (INIS)

    Esbelin, E.

    2015-01-01

    The analysis laboratory in the CEA Atalante complex at Marcoule (France) performs numerous R and D studies carried out in glove-boxes or in hot cells. Most of the samples are measured in liquid phase, aqueous or organic. The concentration of the main actinides of interest (U, Np, Pu, Am and Cm) are determined by XRF in a hot cell via their L-line X-ray between 13 and 15 keV. In order to limit the counting rate of many radioactive emitters (X-ray and gamma emitters) in the analysis solution and the continuous spectrum, a graphite monochromator is placed between the sample and detector. Commercial or free, the software packages available for processing X-ray spectra are designed and dedicated to a specific instrument and/or do not take into account the specific feature of our system, in other words, the presence of a monochromator. Therefore, a new X-ray analysis software programme was developed for this particular system which takes into account matrix effects corrections. For sample with U and/or Pu in high concentrations, the hybrid K-edge densitometer is used. A new software programme was also developed. For K-edge densitometry spectra processing, no calibration process is used. Spectra processing is based on theoretical equation and uses XCOM database for mass attenuation coefficients. Measured spectra on K-edge densitometer of Rokkasho Safeguards Analytical Laboratory were processed with this software and a very good agreement was found with IDTIMS results. The new graphical user interface allows to manually correct the defined edge. For the XRF spectra processing, new algorithms are used to define the base line and to find/integrate peaks. With these two analytical devices in laboratory, U and Pu concentrations can be measured from 0.5 mg/l to several hundred of g/l. (author)

  19. Study on Power Switching Process of a Hybrid Electric Vehicle with In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-01-01

    Full Text Available Hybrid electric vehicles with in-wheel motors (IWM achieve a variety of driving modes by two power sources—the engine and the IWM. One of the critical problems that exists in such vehicle is the different transient characteristics between the engine and the IWM. Therefore, switching processes between the power sources have noteworthy impacts on vehicle dynamics and driving performance. For the particular switching process of the pure electric mode to the engine driving mode, a specific control strategy coordinating clutch torque, motor torque, and engine torque was proposed to solve drivability issues caused by inconsistent responses of different power sources during the mode transition. The specific switching process could be described as follows: the engine was started by IWM with the clutch serving as a key enabling actuator, dynamic torque compensation through IWM was implemented after engine started, and, meanwhile, engine speed was controlled to track the target speed through the closed loop PID control strategy. The bench tests results showed that the vehicle jerk caused during mode switching was reduced and fast and smooth mode switching was realized, which leads to the improvement of vehicle’s riding comfort.

  20. Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor K.

    2013-10-09

    Emerging Big Data applications in areas like e-commerce and energy industry require both online and on-demand queries to be performed over vast and fast data arriving as streams. These present novel challenges to Big Data management systems. Complex Event Processing (CEP) is recognized as a high performance online query scheme which in particular deals with the velocity aspect of the 3-V’s of Big Data. However, traditional CEP systems do not consider data variety and lack the capability to embed ad hoc queries over the volume of data streams. In this paper, we propose H2O, a stateful complex event processing framework, to support hybrid online and on-demand queries over realtime data. We propose a semantically enriched event and query model to address data variety. A formal query algebra is developed to precisely capture the stateful and containment semantics of online and on-demand queries. We describe techniques to achieve the interactive query processing over realtime data featured by efficient online querying, dynamic stream data persistence and on-demand access. The system architecture is presented and the current implementation status reported.

  1. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater.

    Science.gov (United States)

    Couto, Carolina Fonseca; Marques, Larissa Silva; Balmant, Janine; de Oliveira Maia, Andreza Penido; Moravia, Wagner Guadagnin; Santos Amaral, Miriam Cristina

    2018-03-01

    This work investigates the application of a microfiltration (MF)-membrane bioreactor (MBR) hybrid process for textile dyeing process wastewater reclamation. The indigo blue dye was efficiently retained by the MF membrane (100%), which allows its recovery from the concentrate stream. MF promotes 100% of colour removal, and reduces the chemical oxygen demand (COD) and conductivity by about 65% and 25%, respectively, and improves the wastewater biodegradability. MF flux decline was mostly attributed to concentration polarization and the chemical cleaning was efficient enough to recover initial hydraulic resistance. The MBR provides to be a stable process maintaining its COD and ammonia removal efficiency (73% and 100%, respectively) mostly constant throughout and producing a permeate that meets the reuse criteria for some industry activities, such as washing-off and equipment washdown. The use of an MF or ultrafiltration (UF) membrane in the MBR does not impact the MBR performance in terms of COD removal. Although the membrane of MBR-UF shows permeability lower than MBR-MF membrane, the UF membrane contributes to a more stable operation in terms of permeability.

  2. Inherent Safety Feature of Hybrid Low Power Research Reactor during Reactivity Induced Accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, DongHyun; Yum, Soo Been; Hong, Sung Teak; Lim, In-Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hybrid low power research reactor(H-LPRR) is the new design concept of low power research reactor for critical facility as well as education and training. In the case of typical low power research reactor, the purposes of utilization are the experiments for education of nuclear engineering students, Neutron Activation Analysis(NAA) and radio-isotope production for research purpose. H-LPRR is a light-water cooled and moderated research reactor that uses rod-type LEU UO{sub 2} fuels same as those for commercial power plants. The maximum core thermal power is 70kW and, the core is placed in the bottom of open pool. There are 1 control rod and 2 shutdown rods in the core. It is designed to cool the core by natural convection, retain negative feedback coefficient for entire fuel periods and operate for 20 years without refueling. Inherent safety in H-LPRR is achieved by passive design features such as negative temperature feedback coefficient and core cooling by natural convection during normal and emergency conditions. The purpose of this study is to find out that the inherent safety characteristics of H-LPRR is able to control the power and protect the reactor from the RIA(Reactivity induced accident). RIA analysis was performed to investigate the inherent safety feature of H-LPRR. As a result, it was found that the reactor controls its power without fuel damage in the event and that the reactor remains safe states inherently. Therefore, it is believed that high degree of safety inheres in H-LPRR.

  3. 42 CFR 93.316 - Completing the research misconduct process.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Completing the research misconduct process. 93.316... POLICIES ON RESEARCH MISCONDUCT Responsibilities of Institutions The Institutional Investigation § 93.316 Completing the research misconduct process. (a) ORI expects institutions to carry inquiries and...

  4. The Process of Divorce Recovery: A Review of the Research.

    Science.gov (United States)

    Gastil, Richard W.

    Many researchers have speculated over the nature of the divorce recovery process. Is the process similar to Kubler-Ross's stages of grief or does divorce recovery follow a unique process? This paper examines the current body of empirical research in an attempt to answer these questions. From the 91 sources analyzed, it was discovered that most of…

  5. Latest results and developments from the Hybrid Illinois Device for Research and Applications

    Science.gov (United States)

    Rizkallah, Rabel; Andruczyk, Daniel; Jeckell, Zachary Jon; Shone, Andrew John; Johnson, Daniel Scott; Allain, Jean Paul; Curreli, Davide; Ruzic, David N.; The Hidra Team

    2017-10-01

    The Hybrid Illinois Device for Research and Applications (HIDRA) is a five-period, l = 2, m = 5, toroidal fusion device operated at the University of Illinois at Urbana-Champaign (UIUC). It has a major radius R0 = 0.72 m and minor radius a = 0.19 m. Initial heating is achieved with 2.45 GHz electron cyclotron resonance heating (ECRH) at an on-axis magnetic field of B0 = 0.087 T which can go as high as B0 = 0.5 T. HIDRA will mainly be used as a classical stellarator, but can also run as a tokamak. This allows for both steady-state and transient regime operations. Experiments on HIDRA will primarily tackle the issue of plasma-material interactions (PMI) in fusion, and focus on developing innovative plasma facing component (PFC) technologies. Currently, research on flowing liquid lithium PFCs meant to be tested inside the machine in real-time operation, is being carried on. The first experiments run on HIDRA started in early 2016 in the low field region. Now, HIDRA is also capable of running in the high field zone, allowing for more interesting experiments and meaningful outcomes. Here, we present some of the initial results coming from the machine.

  6. A Hybrid MPC-PID Control System Design for the Continuous Purification and Processing of Active Pharmaceutical Ingredients

    Directory of Open Access Journals (Sweden)

    Maitraye Sen

    2014-05-01

    Full Text Available In this work, a hybrid MPC (model predictive control-PID (proportional-integral-derivative control system has been designed for the continuous purification and processing framework of active pharmaceutical ingredients (APIs. The specific unit operations associated with the purification and processing of API have been developed from first-principles and connected in a continuous framework in the form of a flowsheet model. These integrated unit operations are highly interactive along with the presence of process delays. Therefore, a hybrid MPC-PID is a promising alternative to achieve the desired control loop performance as mandated by the regulatory authorities. The integrated flowsheet model has been simulated in gPROMSTM (Process System Enterprise, London, UK. This flowsheet model has been linearized in order to design the control scheme. The ability to track the set point and reject disturbances has been evaluated. A comparative study between the performance of the hybrid MPC-PID and a PID-only control scheme has been presented. The results show that an enhanced control loop performance can be obtained under the hybrid control scheme and demonstrate that such a scheme has high potential in improving the efficiency of pharmaceutical manufacturing operations.

  7. Fertilization effects on forest carbon storage and exchange, and net primary production: A new hybrid process model for stand management

    Science.gov (United States)

    D. A. Sampson; R. H. Waring; C. A. Maier; C. M. Gough; M. J. Ducey; K. H. Johnsen

    2006-01-01

    A critical ecological question in plantation management is whether fertilization, which generally increases yield, results in enhanced C sequestration over short rotations. We present a rotation-length hybrid process model (SECRETS-3PG) that was calibrated (using control treatments; CW) and verified (using fertilized treatments; FW) using daily estimates of H

  8. Promising sour cherry hybrids (Prunus cerasus L. developed at Fruit Research Institute Čačak

    Directory of Open Access Journals (Sweden)

    Radičević Sanja

    2010-01-01

    Full Text Available At Fruit Research Institute in Čačak, major objectives of the work on breeding new sour cherry (Prunus cerasus L. cultivars are high cropping, large, high-quality fruits and resistance to causal agents of diseases and pests. As a result of the planned hybridization, more than 10,000 hybrid seedlings have been developed from about 40 cultivars within more than 110 parental combinations, among which are 'Čačanski rubin' ('Shasse Morello' x 'Köröser Weichsel' and 'Šumadinka' ('Köröser Weichsel' x 'Heimanns Konserven Weichsel' which have been named and released. Ten-year study of 11 hybrids, selected from the population of about 3,000 hybrid seedlings, gave four hybrids which have been singled out as elite (III/23, III/31, II/40 i XII/57. These hybrids are currently under procedure of being released as new cultivars. The paper presents two-year results of the study of ripening time, pomological properties, biochemical composition of fruits, and field resistance to causal agents of diseases and pests attacking the above named genotypes which were compared to standard cultivar 'Heimanns Konserven Weichsel'. In the studied hybrids, fruit weight, soluble solids content and sugars content were higher than in standard cultivar. In addition, they exhibit substantial field resistance to causal agents of brown rot (Monilinia laxa /Ader et Ruhl./ Honey ex Whetz., cherry leaf spot (Blumeriella jaapii (Rehm. v. Arx., shot-hole (Clasterosporium carpophilum (Lév. Aderh. and cherry fruit fly (Rhagoletis cerasi L. attack.

  9. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment.

    Science.gov (United States)

    Krayzelova, Lucie; Lynn, Thomas J; Banihani, Qais; Bartacek, Jan; Jenicek, Pavel; Ergas, Sarina J

    2014-09-15

    Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process.

    Science.gov (United States)

    Smitha, S; Shajesh, P; Mukundan, P; Nair, T D R; Warrier, K G K

    2007-03-15

    Silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica and gelatin as the biopolymer counterpart. The surface modification of the hybrid material has been done with methyltrimethoxysilane leading to the formation of biocompatible hydrophobic silica-gelatin hybrid. Here we are reporting hydrophobic silica-gelatin hybrid and coating precursor for the first time. The hybrid gel has been evaluated for chemical modification, thermal degradation, hydrophobicity, particle size, transparency under the UV-visible region and morphology. FTIR spectroscopy has been used to verify the presence of CH(3) groups which introduce hydrophobicity to the SiO2-MTMS-gelatin hybrids. The hydrophobic property has also been tailored by varying the concentration of methyltrimethoxysilane. Contact angle by Wilhelmy plate method of transparent hydrophobic silica-gelatin coatings has been found to be as high as approximately 95 degrees . Oxidation of the organic group which induces the hydrophobic character occurs at 530 degrees C which indicates that the surface hydrophobicity is retained up to that temperature. Optical transmittance of SiO2-MTMS-gelatin hybrid coatings on glass substrates has been found to be close to 100% which will enable the hybrid for possible optical applications and also for preparation of transparent biocompatible hydrophobic coatings on biological substrates such as leather.

  12. A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows.

    Science.gov (United States)

    Blattner, Timothy; Keyrouz, Walid; Bhattacharyya, Shuvra S; Halem, Milton; Brady, Mary

    2017-12-01

    Designing applications for scalability is key to improving their performance in hybrid and cluster computing. Scheduling code to utilize parallelism is difficult, particularly when dealing with data dependencies, memory management, data motion, and processor occupancy. The Hybrid Task Graph Scheduler (HTGS) improves programmer productivity when implementing hybrid workflows for multi-core and multi-GPU systems. The Hybrid Task Graph Scheduler (HTGS) is an abstract execution model, framework, and API that increases programmer productivity when implementing hybrid workflows for such systems. HTGS manages dependencies between tasks, represents CPU and GPU memories independently, overlaps computations with disk I/O and memory transfers, keeps multiple GPUs occupied, and uses all available compute resources. Through these abstractions, data motion and memory are explicit; this makes data locality decisions more accessible. To demonstrate the HTGS application program interface (API), we present implementations of two example algorithms: (1) a matrix multiplication that shows how easily task graphs can be used; and (2) a hybrid implementation of microscopy image stitching that reduces code size by ≈ 43% compared to a manually coded hybrid workflow implementation and showcases the minimal overhead of task graphs in HTGS. Both of the HTGS-based implementations show good performance. In image stitching the HTGS implementation achieves similar performance to the hybrid workflow implementation. Matrix multiplication with HTGS achieves 1.3× and 1.8× speedup over the multi-threaded OpenBLAS library for 16k × 16k and 32k × 32k size matrices, respectively.

  13. COMPARATIVE RESEARCHE REGARDING METABOLIC PROFILE OF THE CALIFORNIAN, NEW ZEALAND WHITE, GRAND CHINCHILLA MEAT RABIT BREEDS AND THE F1 NZCH HYBRIDS

    Directory of Open Access Journals (Sweden)

    DANIELA-MARCELA TOBĂ (GOINA

    2008-10-01

    Full Text Available Precious biological characteristics of rabbits make their breeding a very profitable occupation. The rabbit meat, organoleptically same to the white meat, is rich in proteins, but low in fats. Biological researched done in direction to elucidate the biochemical systems that are the basis for organism physiological processes, have revealed that the level in which this process are develop directly influence the rabbits productivity capacity. 60 rabbit’s heads was used as biological material, distributed in: 15 Californian, 15 New Zeeland White, 15 Grand Chinchilla and 15 F1NZCH hybrids obtained from cross-breeding the New Zeeland White as maternal form and Grand Chinchilla as paternal form. Blood was sampled from the rabbit and was biochemical analyzed. The studied indices were: total protein, albumin, urea, uric acid, creatinine, total bilirubine, cholesterol, triglyceride and glucose. The experimental lot formed from F1 NZCH hybrids registered a concentration of 2.1 mg/dl uric acid, and in the other three lots the concentration was under 2 mg/dl. In all four lots, uric acid value was in normal limits. The determined creatinine registered very low values, under 1 mg/dl, at the low limit of reference values. At hybrids from New Zeeland White as maternal form and Grand Chinchilla as paternal form, in equal environmental conditions, the serum biochemical analysis haven’t registered significant differences compared to pure breeds individuals.

  14. User guide : process for quantifying the benefits of research.

    Science.gov (United States)

    2017-07-01

    The Minnesota Department of Transportation Research Services has adopted a process for quantifying the monetary benefits of research projects, such as the dollar value of particular ideas when implemented across the states transportation system. T...

  15. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  16. The Hybrid Public Research University: A Comparative Case Study of Two Self-Sustaining Degree Programs in Public Health

    OpenAIRE

    Hagigi, Farhad A

    2014-01-01

    Abstract of the DissertationThe Hybrid Public Research University: A Comparative Case Study of Two Self‐Sustaining Degree Programs in Public HealthByFarhad Abas HagigiDoctor of Philosophy in EducationUniversity of California, Los Angeles, 2014Professor Walter R. Allen, Co-ChairProfessor Jos� Luis Santos, Co-ChairDecreased public funding, diminishing political and societal support, and increased competition from private institutions have led public research universities (PRUs) to under...

  17. Comparison of Plasma, Metal Inactive Gas (MIG) and Tungsten Inactive Gas (TIG) Processes for Laser Hybrid Welding (302)

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    enables a more stable ignition and running process than both TIG and MIG hybrid welding. Because of the delivery of extra material from a hot wire, the MIG hybrid process is well suited for bridging gaps of up to 0.6 mm in butt-welding of 2 mm steel. But because of the constant delivery of new material......, the MIG process is more difficult to control than laser/plasma and laser/TIG processes. All three types of secondary heat sources enable an increased ductility of the weld as compared to pure laser welding when welding 1.8 mm GA 260 with a TIG torch and 2.13 mm CMn steel with a plasma arc or MIG...

  18. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  19. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process.

    Science.gov (United States)

    Choi, D J; Park, H

    2001-11-01

    For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.

  20. "Intelligent" tools for workflow process redesign : a research agenda

    NARCIS (Netherlands)

    Netjes, M.; Vanderfeesten, I.T.P.; Reijers, H.A.; Bussler, C.; Haller, A.

    2006-01-01

    Although much attention is being paid to business processes during the past decades, the design of business processes and particularly workflow processes is still more art than science. In this workshop paper, we present our view on modeling methods for workflow processes and introduce our research

  1. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation

  2. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  3. Continuity controlled hybrid automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  4. Continuity controlled hybrid automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2006-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  5. Research on the productive performance of hybrid offspring of rabbits reared in household system (I

    Directory of Open Access Journals (Sweden)

    Marian Bura

    2015-10-01

    Full Text Available In the experiment consisted in using 5 females hybrid which have been mated with 3 male pure-bred. Each couple was monitored for pup and mother body weight and also the consumption of succulent feed, bulky and concentrated. Both parents and offspring were kept in cages made of wood and wire mesh. Under the cages there was a tray of galvanized steel sheet for collecting manure. During the experiment, female New Zealand and the Californian Red hybrid have given birth 4 times, producing 43 cubs (pups 10.75/birth and 31 pups (pups 7.75/birth. The other 3 females gave birth only once a year. All pups survived until weaning (30 days. Weaned pups from female New Zealand Red hybrid at time of weaning had a mean body mass of between 341.20 to 602.20 g/pups, and those from female Californian hybrid were between 374.00 to 803.33 g/pup. At weaning, pups from female Chinchilla Mare hybrid weighed on average 546.75 g/pup, the ones from the French hybrid female Great Silver weighed 433.00 g/pup, and those from the New Zealand Red primiparous female hybrid weighed784.00 g/weaned puppies. Between the 11th and the 30th day of lactation, most females have lost body weight, the highest being 489.00 g/lactating female.

  6. Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method

    International Nuclear Information System (INIS)

    Mostafapour Asl, A.; Khandani, S.T.

    2013-01-01

    Hybrid ratio of each reinforcement phase in hybrid composite can be defined as proportion of its volume to total reinforcement volume of the composite. The hybrid ratio is an important factor which controls the participation extent of each reinforcement phase in overall properties of hybrid composites. Hence, in the present work, surface hybrid nanocomposites of Al5083/Graphite p /Al 2 O 3p with different hybrid ratios were fabricated by friction stir processing method. Subsequently, effect of hybrid ratio on microstructural, mechanical and tribological properties of the nanocomposite was investigated. Optical microscopy and scanning electron microscopy were utilized to perform microstructural observation on the samples. Hardness value measurements, tensile and pin on disk dry sliding wear tests were carried out to investigate effect of hybrid ratio on mechanical and tribological properties of the nanocomposites. Microstructural investigations displayed better distribution with less agglomeration of reinforcement for lower volume fraction of reinforcement for both alumina and graphite particles. Hardness value, yield strength, ultimate tensile strength and wear rate of the nanocomposites revealed a two stage form along with hybrid ratio variation. The results are discussed based on microstructural observations of the nanocomposites and worn surface analyses.

  7. MYRRHA a multi-purpose hybrid research reactor for high-tech applications

    International Nuclear Information System (INIS)

    Abderrahim, H. A.; Baeten, P.

    2012-01-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental accelerator driven system (ADS) in development at SCK-CEN. MYRRHA is able to work both in subcritical (ADS) as in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for generation IV (GEN IV) systems, material developments for fusion reactors, radioisotope production and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. MYRRHA is based on the heavy liquid metal technology and so it will contribute to the development of lead fast reactor (LFR) technology and in critical mode, MYRRHA will play the role of European technology pilot plant in the roadmap for LFR. In this paper the historical evolution of MYRRHA and the rationale behind the design choices is presented and the latest configuration of the reactor core and primary system is described. (authors)

  8. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    Science.gov (United States)

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  9. Charge transfer processes in hybrid solar cells composed of amorphous silicon and organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Sebastian; Neher, Dieter [Universitaet Potsdam, Inst. Physik u. Astronomie, Karl-Liebknecht-Strasse 24/25, 14467 Potsdam-Golm (Germany); Schulze, Tim; Korte, Lars [Helmholtz Zentrum Berlin, Inst. fuer Silizium Photovoltaik, Kekulestrasse 5, 12489 Berlin (Germany)

    2011-07-01

    The efficiency of hybrid solar cells composed of organic materials and amorphous hydrogenated silicon (a-Si:H) strongly depends upon the efficiency of charge transfer processes at the inorganic-organic interface. We investigated the performance of devices comprising an ITO/a-Si:H(n-type)/a-Si:H(intrinsic)/organic/metal multilayer structure and using two different organic components: zinc phthalocyanine (ZnPc) and poly(3-hexylthiophene) (P3HT). The results show higher power conversion- and quantum efficiencies for the P3HT based cells, compared to ZnPc. This can be explained by larger energy-level offset at the interface between the organic layer and a-Si:H, which facilitates hole transfer from occupied states in the valence band tail to the HOMO of the organic material and additionally promotes exciton splitting. The performance of the a-Si:H/P3HT cells can be further improved by treatment of the amorphous silicon surface with hydrofluoric acid (HF) and p-type doping of P3HT with F4TCNQ. The improved cells reached maximum power conversion efficiencies of 1%.

  10. Flavor changing processes in supersymmetric models with hybrid gauge- and gravity-mediation

    International Nuclear Information System (INIS)

    Hiller, Gudrun; Hochberg, Yonit; Nir, Yosef

    2009-01-01

    We consider supersymmetric models where gauge mediation provides the dominant contributions to the soft supersymmetry breaking terms while gravity mediation provides sub-dominant yet non-negligible contributions. We further assume that the gravity-mediated contributions are subject to selection rules that follow from a Froggatt-Nielsen symmetry. This class of models constitutes an example of viable and natural non-minimally flavor violating models. The constraints from K 0 -K-bar 0 mixing imply that the modifications to the Standard Model predictions for B d -B-bar d and B s - B-bar s mixing are generically at most at the percent level, but can be of order ten percent for large tan β. The modifications for D 0 -D-bar 0 mixing are generically at most of order a few percent, but in a special subclass of models they can be of order one. We point out ΔB = 1 processes relevant for flavor violation in hybrid mediation.

  11. Therapeutic Process and Outcome: The Interplay of Research

    Science.gov (United States)

    Campbel, Holly

    2008-01-01

    From Freud through to modern times researchers have aimed to develop a clearer understanding of therapeutic processes and outcomes. Despite this continued interest in the field, the representation of psychotherapy processes and the applicability of research findings and recommendations to the therapeutic field continue to prove difficult.…

  12. Process models as tools in forestry research and management

    Science.gov (United States)

    Kurt Johnsen; Lisa Samuelson; Robert Teskey; Steve McNulty; Tom Fox

    2001-01-01

    Forest process models are mathematical representations of biological systems that incorporate our understanding of physiological and ecological mechanisms into predictive algorithms. These models were originally designed and used for research purposes, but are being developed for use in practical forest management. Process models designed for research...

  13. Using Vignette Methodology to research the process of breach comparatively

    NARCIS (Netherlands)

    Boone, M.M.; Beyens, K.; Maguire, N.; Laurinavicius, A.; Persson, A.

    2015-01-01

    Comparative research related to any aspect of the process of breach in either the pre-trial, sentencing or release phases is relatively rare. Comparative studies of decision making in the specific context of breach process are particularly lacking. One reason for the dearth of research in this area

  14. Development of an innovative polygeneration process in hybrid solar-biomass system for combined power, cooling and desalination

    International Nuclear Information System (INIS)

    Sahoo, U.; Kumar, R.; Pant, P.C.; Chaudhary, R.

    2017-01-01

    Highlights: • Heat utilization from solar and biomass resources are considered for hybridization. • Modeling of polygeneration process in hybrid solar-biomass power plant is considered. • Thermodynamic evaluation are performed to identify the effect of various parameters. • Primary Energy Saving of polygeneration process is determined. - Abstract: In the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiency take place. It is one of the solutions to fulfill energy requirements from renewable sources and also helps in the reduction of carbon dioxide emissions. The VAR cooling system operates using the extracted heat taken from turbine and condenser heat of the VAR cooling system is used in desalination system for production of drinking water as per demand requirement. Though the production of electricity decreases due to extraction of heat from turbine for VAR cooling and desalination, the complete system meets the energy requirements & increases the primary energy savings (PES). The thermodynamic evaluation and optimization of HSB system in polygeneration process for combined power, cooling and desalination is investigated to identify the effects of various operating parameters. Primary energy savings (PES) of polygeneration process in HSB system is achieved to 50.5%. The energy output is increased to 78.12% from this system as compared to simple power plant.

  15. Research on Braking Stability of Electro-mechanical Hybrid Braking System in Electric Vehicles

    OpenAIRE

    Ji, Fenzhu; Tian, Mi

    2010-01-01

    For the electro-mechanical hybrid braking system, which is composed of electric brake and general friction brake, the models of electric braking force, total braking force and the utilization adhesion coefficient for front and rear axles were established based on the analysis of braking torque distribution. The variation relationship between electric braking force and friction braking force in different braking intensity was calculated and analyzed with the paralleled-hybridized braking contr...

  16. Robust Unconventional Interaction Design and Hybrid Tool Environments for Design and Engineering Processes

    NARCIS (Netherlands)

    Wendrich, Robert E.; Kruiper, Ruben

    2017-01-01

    This paper investigates how and whether existing or current design tools, assist and support designers and engineers in the early-phases of ideation and conceptualization stages of design and engineering processes. The research explores how fluidly and/or congruously technology affords cognitive,

  17. High performance adaptive image processing on multi-scale hybrid architectures

    NARCIS (Netherlands)

    Liu, Fangbin

    2015-01-01

    In such an exciting age of information explosion, huge amount of visual data are produced continuously 24 hours, 7 days in both daily life and scientific research. Processing and storage of such a huge amount of data forms big challenges. Use of supercomputers tackles the need-for-speed challenge

  18. Thoughts about the research process. A proposal from decolonial feminism

    Directory of Open Access Journals (Sweden)

    Javiera Cubillos Almendra

    2014-12-01

    Full Text Available In this paper, I share some concerns and decisions arisen during my doctoral research process which seeks to integrate decolonial feminist theory as epistemic key for analysis on sexual and reproductive health public policy in Chile, between years 2000 and 2015, based on Coloniality of Gender concept proposed by Maria Lugones. Here I present the most significant aspects in the research process —including theoretical framework and methodological design— that led to the approach of my current research project.

  19. The effect of concentration ratio and type of functional group on synthesis of CNT-ZnO hybrid nanomaterial by an in situ sol-gel process

    Science.gov (United States)

    Hosseini Largani, Sekineh; Akbarzadeh Pasha, Mohammad

    2017-12-01

    In this research, MWCNT-ZnO hybrid nanomaterials were synthesized by a simple sol-gel process using Zn(CH3COO)2·2H2O and functionalized MWCNT with carboxyl(COOH) and hydroxyl(OH) groups. Three different mass ratios of MWCNT:ZnO = 3:1, 1:1 and 1:3 were examined. The prepared nanomaterials were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). Successful growth of MWCNT-ZnO hybrids for both COOH and OH functional groups and all the three mass ratios were obtained. The ZnO nanoparticles attached on the surfaces of CNTs have rather spherical shapes and hexagonal crystal structure. By increasing the concentration of ZnO, the number and average size of ZnO nanoparticles decorated the body of CNTs in hybrid structures increase. By increasing the ZnO precursor, the distribution of ZnO nanoparticles that appeared on the surface of CNTs becomes more uniform. The SEM observation beside EDX analysis revealed that at the same concentration ratio the amount of ZnO loading on the surface of MWCNT-COOH is more than MWCNT-OH. Moreover, the average size of ZnO nanoparticles attached on the surface of COOH functionalized CNTs is relatively smaller than that of OH functionalized ones.

  20. Process error rates in general research applications to the Human ...

    African Journals Online (AJOL)

    Objective. To examine process error rates in applications for ethics clearance of health research. Methods. Minutes of 586 general research applications made to a human health research ethics committee (HREC) from April 2008 to March 2009 were examined. Rates of approval were calculated and reasons for requiring ...

  1. Climate Action Planning Process | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Action Planning Process Climate Action Planning Process For research campuses, NREL has developed a five-step process to develop and implement climate action plans: Determine baseline energy consumption Analyze technology options Prepare a plan and set priorities Implement the climate action plan Measure and

  2. SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2014-01-01

    This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications. The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences. This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of an Engineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x 100mm in size The typical power draw of the processor card is 8 to 10W and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor

  3. Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples.

    Science.gov (United States)

    Zeppa, Pio; Sosa Fernandez, Laura Virginia; Cozzolino, Immacolata; Ronga, Valentina; Genesio, Rita; Salatiello, Maria; Picardi, Marco; Malapelle, Umberto; Troncone, Giancarlo; Vigliar, Elena

    2012-12-25

    The human immunoglobulin heavy-chain (IGH) locus at chromosome 14q32 is frequently involved in different translocations of non-Hodgkin lymphoma (NHL), and the detection of any breakage involving the IGH locus should identify a B-cell NHL. The split-signal IGH fluorescence in situ hybridization-chromogenic in situ hybridization (FISH-CISH) DNA probe is a mixture of 2 fluorochrome-labeled DNAs: a green one that binds the telomeric segment and a red one that binds the centromeric segment, both on the IGH breakpoint. In the current study, the authors tested the capability of the IGH FISH-CISH DNA probe to detect IGH translocations and diagnose B-cell lymphoproliferative processes on cytological samples. Fifty cytological specimens from cases of lymphoproliferative processes were tested using the split-signal IGH FISH-CISH DNA probe and the results were compared with light-chain assessment by flow cytometry (FC), IGH status was tested by polymerase chain reaction (PCR), and clinicohistological data. The signal score produced comparable results on FISH and CISH analysis and detected 29 positive, 15 negative, and 6 inadequate cases; there were 29 true-positive cases (66%), 9 true-negative cases (20%), 6 false-negative cases (14%), and no false-positive cases (0%). Comparing the sensitivity of the IGH FISH-CISH DNA split probe with FC and PCR, the highest sensitivity was obtained by FC, followed by FISH-CISH and PCR. The split-signal IGH FISH-CISH DNA probe is effective in detecting any translocation involving the IGH locus. This probe can be used on different samples from different B-cell lymphoproliferative processes, although it is not useful for classifying specific entities. Cancer (Cancer Cytopathol) 2012;. © 2012 American Cancer Society. Copyright © 2012 American Cancer Society.

  4. Carbon dioxide conversion to fuels and chemicals using a hybrid green process

    International Nuclear Information System (INIS)

    Ramachandriya, Karthikeyan D.; Kundiyana, Dimple K.; Wilkins, Mark R.; Terrill, Jennine B.; Atiyeh, Hasan K.; Huhnke, Raymond L.

    2013-01-01

    Highlights: • A unique CO 2 conversion technology using microorganisms was demonstrated. • Corn steep liquor medium enhanced production of n-butanol and n-hexanol. • Cotton seed extract (CSE) medium promoted ethanol formation. • CSE medium without morpholinoethanesulfonic acid buffer reduced the cost by 99%. - Abstract: A unique hybrid technology that uses renewable hydrogen (H 2 ) and carbon dioxide (CO 2 ) sequestered from large point sources, to produce fuels and chemicals has been proposed and tested. The primary objective of this research was to determine the feasibility of using two acetogenic bacteria to metabolize H 2 and CO 2 for the production of ethanol. Three experiments were conducted in small scale reactors to select a bacterium, feed gas composition and nutrient medium source to produce ethanol. The results indicated that Clostridium carboxidivorans produced 33% more ethanol and 66% less acetic acid compared to Clostridium ragsdalei, making C. carboxidivorans the better candidate for ethanol production. Furthermore, the removal of morpholinoethanesulfonic acid (MES) buffer from cotton seed extract (CSE) medium offered a low-cost medium for fermentations. Additionally, we observed that corn steep liquor (CSL) in the medium diversified the product range with both bacteria. Maximum concentrations of ethanol, n-butanol, n-hexanol, acetic acid, butyric acid, and hexanoic acid from different fermentation treatments were 2.78 g L −1 , 0.70 g L −1 , 0.52 g L −1 , 4.06 g L −1 , 0.13 g L −1 and 0.42 g L −1 , respectively. This study highlights the important role that acetogenic microbes can offer for CO 2 conversion into valuable fuels and chemicals

  5. Neural and hybrid modeling: an alternative route to efficiently predict the behavior of biotechnological processes aimed at biofuels obtainment.

    Science.gov (United States)

    Curcio, Stefano; Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele

    2014-01-01

    The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.

  6. Neural and Hybrid Modeling: An Alternative Route to Efficiently Predict the Behavior of Biotechnological Processes Aimed at Biofuels Obtainment

    Directory of Open Access Journals (Sweden)

    Stefano Curcio

    2014-01-01

    Full Text Available The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.

  7. Hybrid performance measurement of a business process outsourcing - A Malaysian company perspective

    Science.gov (United States)

    Oluyinka, Oludapo Samson; Tamyez, Puteri Fadzline; Kie, Cheng Jack; Freida, Ayodele Ozavize

    2017-05-01

    It's no longer new that customer perceived value for product and services are now greatly influenced by its psychological and social advantages. In order to meet up with the increasing operational cost, response time, quality and innovative capabilities many companies turned their fixed operational cost to a variable cost through outsourcing. Hence, the researcher explored different underlying outsourcing theories and infer that these theories are essential to performance improvement. In this study, the researcher evaluates the performance of a business process outsource company by a combination of lean and agile method. To test the hypotheses, we analyze different variability that a business process company faces, how lean and agile have been used in other industry to address such variability and discuss the result using a predictive multiple regression analysis on data collected from companies in Malaysia. The findings from this study revealed that while each method has its own advantage, a business process outsource company could achieve more (up to 87%) increase in performance level by developing a strategy which focuses on a perfect mixture of lean and agile improvement methods. Secondly, this study shows that performance indicator could be better evaluated with non-metrics variables of the agile method. Thirdly, this study also shows that business process outsourcing company could perform better when they concentrate more on strengthening internal process integration of employees.

  8. FPGA implementation of a hybrid on-line process monitoring in PC based real-time systems

    Directory of Open Access Journals (Sweden)

    Jovanović Bojan

    2011-01-01

    Full Text Available This paper presents one way of FPGA implementation of hybrid (hardware-software based on-line process monitoring in Real-Time systems (RTS. The reasons for RTS monitoring are presented at the beginning. The summary of different RTS monitoring approaches along with its advantages and drawbacks are also exposed. Finally, monitoring module is described in details. Also, FPGA implementation results and some useful monitoring system applications are mentioned.

  9. Design and optimization of hybrid ex situ/in situ steam generation recovery processes for heavy oil and bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Gates, I.D. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R. [Calgary Univ., AB (Canada). Dept. of Geoscience]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    Hybrid steam-air based oil recovery techniques were investigated using advanced 3-D reactive thermal reservoir simulations. The hybrid techniques combined ex situ steam and in situ steam generation processes in order to raise efficiency, lower natural gas consumption, and reduce gas emissions. The steam-air based processes used 70 per cent of the energy of conventional steam assisted gravity drainage (SAGD) techniques to recover the same amount of oil. The process used an SAGD wellpair arrangement, where steam and air were injected through the top injection well. The kinetic parameters used in the study were developed by history matching a combustion tube experiments with Athabasca bitumen conducted to predict cumulative bitumen and gas production volumes and compositions. A total of 6 SAGD and 6 in situ combustion simulations were conducted with steam oxygen volume ratios set at 50 per cent steam and 50 per cent oxygen. Various case studies were considered over a 5 year period. Carbon dioxide (CO{sub 2}) emissions were also measured as well as cumulative water and methane consumption rates. Results of the study were used to develop an optimized hybrid operation that consisted of a SAGD well pair arrangement operating with cyclic steam-oxygen injection at high pressures. It was concluded that the high pressure operation increased the steam partial pressure within the reservoir and enhanced combustion performance. A 29 per cent improvement in the cumulative energy to oil ratio was obtained. 23 refs., 2 tabs., 9 figs.

  10. Hybrid robust deep and shallow semantic processing for creativity support in document production

    OpenAIRE

    Uszkoreit, Hans; Callmeier, Ulrich; Eisele, Andreas; Schäfer, Ulrich; Siegel, Melanie

    2004-01-01

    The research performed in the DeepThought project (http://www.project-deepthought.net) aims at demonstrating the potential of deep linguistic processing if added to existing shallow methods that ensure robustness. Classical information retrieval is extended by high precision concept indexing and relation detection. We use this approach to demonstrate the feasibility of three ambitious applications, one of which is a tool for creativity support in document production and collective brainstormi...

  11. Aligning Web-Based Tools to the Research Process Cycle: A Resource for Collaborative Research Projects

    Science.gov (United States)

    Price, Geoffrey P.; Wright, Vivian H.

    2012-01-01

    Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…

  12. Degradability of dry matter and crude protein of dry grains and wet grain silages from different processing corn hybrids (Zea mays)

    OpenAIRE

    Wagner dos Reis; Ciniro Costa; Paulo Roberto de Lima Meirelles; Marina Gabriela Berchiol da Silva; Marco Aurélio Factori; Janaína Conte Hadlich; Kátia de Oliveira; Erikelly Aline Ribeiro de Santana; Cristiano Magalhães Pariz; Josineudson Augusto II de Vasconcelos Silva

    2013-01-01

    The objective of this work was to evaluate the effect of processing two corn hybrids conserved, dry and humid grains, the dry matter (DM) and crude protein (CP) degradability in situ. The particle size was determined and difference was verified in MGD (Medium Geometric Diameter) of processed ingredients. Three sheep were used with rumen canulated, in a completely randomized design, using a factorial outline 2 x 2 x 3, being two corn hybrid, two conservation methods and three processing forms ...

  13. Hybrid computing - Generalities and bibliography

    International Nuclear Information System (INIS)

    Neel, Daniele

    1970-01-01

    This note presents the content of a research thesis. It describes the evolution of hybrid computing systems, discusses the benefits and shortcomings of analogue or hybrid systems, discusses the building up of an hybrid system (requires properties), comments different possible uses, addresses the issues of language and programming, discusses analysis methods and scopes of application. An appendix proposes a bibliography on these issues and notably the different scopes of application (simulation, fluid dynamics, biology, chemistry, electronics, energy, errors, space, programming languages, hardware, mechanics, and optimisation of equations or processes, physics) [fr

  14. Design Process-System and Methodology of Design Research

    Science.gov (United States)

    Bashier, Fathi

    2017-10-01

    Studies have recognized the failure of the traditional design approach both in practice and in the studio. They showed that design problems today are too complex for the traditional approach to cope with and reflected a new interest in a better quality design services in order to meet the challenges of our time. In the mid-1970s and early 1980s, there has been a significant shift in focus within the field of design research towards the aim of creating a ‘design discipline’. The problem, as will be discussed, is the lack of an integrated theory of design knowledge that can explicitly describe the design process in a coherent way. As a consequence, the traditional approach fails to operate systematically, in a disciplinary manner. Addressing this problem is the primary goal of the research study in the design process currently being conducted in the research-based master studio at Wollega University, Ethiopia. The research study seeks to make a contribution towards a disciplinary approach, through proper understanding the mechanism of knowledge development within design process systems. This is the task of the ‘theory of design knowledge’. In this article the research project is introduced, and a model of the design process-system is developed in the studio as a research plan and a tool of design research at the same time. Based on data drawn from students’ research projects, the theory of design knowledge is developed and empirically verified through the research project.

  15. In situ biosynthesis of bacterial nanocellulose-CaCO{sub 3} hybrid bionanocomposite: One-step process

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadkazemi, Faranak, E-mail: f_mkazemi@sbu.ac.ir [Department of Cellulose and Paper Technology, Faculty of New Technologies Engineering, Shahid Beheshti University, Science and Research Campus, Zirab, Savadkooh, Mazandaran (Iran, Islamic Republic of); Faria, Marisa; Cordeiro, Nereida [Faculty of Exact Science and Engineering, University of Madeira, Funchal (Portugal)

    2016-08-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO{sub 3}) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO{sub 3} was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO{sub 3} hybrid bionanocomposites production, structure and properties. The BNC/CaCO{sub 3} biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO{sub 3} content incorporation. The CaCO{sub 3} was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO{sub 3} hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. - Graphical Abstract: Display Omitted - Highlights: • BNC/CaCO{sub 3} hybrid bionanocomposites were produced using in situ biosynthesis process. • Ethanol and culture medium play an important role in the production and properties. • Z-BNC/CaCO{sub 3} bionanocomposites revealed higher O/C ratio and amphoteric surface character. • CaCO{sub 3} incorporated into the BNC decreased crystallinity.

  16. Research on Fuel Consumption of Hybrid Bulldozer under Typical Duty Cycle

    Science.gov (United States)

    Song, Qiang; Wang, Wen-Jun; Jia, Chao; Yao, You-Liang; Wang, Sheng-Bo

    The hybrid drive bulldozer adopts a dual-motor independent drive system with engine-generator assembly as its power source. The mathematical model of the whole system is constructed on the software platform of MATLAB/Simulink. And then according to the velocity data gained from a real test experiment, a typical duty cycle is build up. Finally the fuel consumption of the bulldozer is calculated under this duty-cycle. Simulation results show that, compared with the traditional mechanical one, the hybrid electric drive system can save fuel up to 16% and therefore indicates great potential for lifting up fuel economy.

  17. Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study.

    Science.gov (United States)

    von Stosch, Moritz; Hamelink, Jan-Martijn; Oliveira, Rui

    2016-05-01

    Process understanding is emphasized in the process analytical technology initiative and the quality by design paradigm to be essential for manufacturing of biopharmaceutical products with consistent high quality. A typical approach to developing a process understanding is applying a combination of design of experiments with statistical data analysis. Hybrid semi-parametric modeling is investigated as an alternative method to pure statistical data analysis. The hybrid model framework provides flexibility to select model complexity based on available data and knowledge. Here, a parametric dynamic bioreactor model is integrated with a nonparametric artificial neural network that describes biomass and product formation rates as function of varied fed-batch fermentation conditions for high cell density heterologous protein production with E. coli. Our model can accurately describe biomass growth and product formation across variations in induction temperature, pH and feed rates. The model indicates that while product expression rate is a function of early induction phase conditions, it is negatively impacted as productivity increases. This could correspond with physiological changes due to cytoplasmic product accumulation. Due to the dynamic nature of the model, rational process timing decisions can be made and the impact of temporal variations in process parameters on product formation and process performance can be assessed, which is central for process understanding.

  18. Measuring methods, registration and signal processing for magnetic field research

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1981-01-01

    Some measuring methods and signal processing systems based on analogue and digital technics, which have been applied in magnetic field research using magnetometers with ferromagnetic transducers, are presented. (author)

  19. Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems

    Science.gov (United States)

    Hunter, Jason M.; Maier, Holger R.; Gibbs, Matthew S.; Foale, Eloise R.; Grosvenor, Naomi A.; Harders, Nathan P.; Kikuchi-Miller, Tahali C.

    2018-05-01

    Salinity modelling in river systems is complicated by a number of processes, including in-stream salt transport and various mechanisms of saline accession that vary dynamically as a function of water level and flow, often at different temporal scales. Traditionally, salinity models in rivers have either been process- or data-driven. The primary problem with process-based models is that in many instances, not all of the underlying processes are fully understood or able to be represented mathematically. There are also often insufficient historical data to support model development. The major limitation of data-driven models, such as artificial neural networks (ANNs) in comparison, is that they provide limited system understanding and are generally not able to be used to inform management decisions targeting specific processes, as different processes are generally modelled implicitly. In order to overcome these limitations, a generic framework for developing hybrid process and data-driven models of salinity in river systems is introduced and applied in this paper. As part of the approach, the most suitable sub-models are developed for each sub-process affecting salinity at the location of interest based on consideration of model purpose, the degree of process understanding and data availability, which are then combined to form the hybrid model. The approach is applied to a 46 km reach of the Murray River in South Australia, which is affected by high levels of salinity. In this reach, the major processes affecting salinity include in-stream salt transport, accession of saline groundwater along the length of the reach and the flushing of three waterbodies in the floodplain during overbank flows of various magnitudes. Based on trade-offs between the degree of process understanding and data availability, a process-driven model is developed for in-stream salt transport, an ANN model is used to model saline groundwater accession and three linear regression models are used

  20. Prodiag--a hybrid artificial intelligence based reactor diagnostic system for process faults

    International Nuclear Information System (INIS)

    Reifman, J.; Wei, T.Y.C.; Vitela, J.E.; Applequist, C. A.; Chasensky, T.M.

    1996-01-01

    Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL) are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA), project to perform feasibility studies on a novel approach to Artificial Intelligence (Al) based diagnostics for component faults in nuclear power plants. Investigations are being performed in the construction of a first-principles physics-based plant level process diagnostic expert system (ES) and the identification of component-level fault patterns through operating component characteristics using artificial neural networks (ANNs). The purpose of the proof-of-concept project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use thermal hydraulic (T-H) signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance.To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. A full-scope operator training simulator representing the Commonwealth Edison Braidwood nuclear power plant is being used both as the source of development data and as the means to evaluate the advantages of the proposed diagnostic system. This is an ongoing multi-year project and this paper presents the results to date of the CRADA phase

  1. The Development and Current State of Translation Process Research

    DEFF Research Database (Denmark)

    Lykke Jakobsen, Arnt

    2014-01-01

    The development and current state of translation process research ch Arnt Lykke Jakobsen Copenhagen Business School lInterest in process-oriented translation studies has been intense for the past almost half a century. Translation process research (TPR) is the label we have used to refer to a spe...... itself, into regions like cognitive psychology, psycho- and neurolinguistics, and neuroscience, where the interest in what goes on in our heads is also very strong.......The development and current state of translation process research ch Arnt Lykke Jakobsen Copenhagen Business School lInterest in process-oriented translation studies has been intense for the past almost half a century. Translation process research (TPR) is the label we have used to refer...... which simultaneously tracks the translator’s eye movements across a screen displaying both a source text and the translator’s emerging translation. This research method was developed as a means of qualifying and strengthening translation process hypotheses based on verbal reports by providing additional...

  2. Coupled processes in NRC high-level waste research

    International Nuclear Information System (INIS)

    Costanzi, F.A.

    1987-01-01

    The author discusses NRC research effort in support of evaluating license applications for disposal of nuclear waste and for promulgating regulations and issuing guidance documents on nuclear waste management. In order to do this they fund research activities at a number of laboratories, academic institutions, and commercial organizations. One of our research efforts is the coupled processes study. This paper discusses interest in coupled processes and describes the target areas of research efforts over the next few years. The specific research activities relate to the performance objectives of NRC's high-level waste (HLW) regulation and the U.S. Environmental Protection Agency (EPA) HLW standard. The general objective of the research program is to ensure the NRC has a sufficient independent technical base to make sound regulatory decisions

  3. Complexity, Methodology and Method: Crafting a Critical Process of Research

    Science.gov (United States)

    Alhadeff-Jones, Michel

    2013-01-01

    This paper defines a theoretical framework aiming to support the actions and reflections of researchers looking for a "method" in order to critically conceive the complexity of a scientific process of research. First, it starts with a brief overview of the core assumptions framing Morin's "paradigm of complexity" and Le…

  4. Processing of LLRW arising from AECL nuclear research centres

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; Beamer, N.V.; Brown, W.P.; Helbrecht, R.A.

    1988-11-01

    Operation of nuclear research reactors and laboratories results in the generation of a wide variety of solid and liquid radioactive wastes. This paper describes practical experience with processing of low-level radioactive wastes at two major nuclear research centres in Canada

  5. Understanding the selection processes of public research projects

    NARCIS (Netherlands)

    Materia, V.C.; Pascucci, S.; Kolympiris, C.

    2015-01-01

    This paper analyses factors that affect the funding of agricultural research projects by regional governments and other regional public authorities. We study the selection process of agricultural research projects funded by the emilia Romagna regional government in Italy, which follows funding

  6. Urban forestry research needs: a participatory assessment process

    Science.gov (United States)

    Kathleen L. Wolf; Linda E. Kruger

    2010-01-01

    New research initiatives focusing on urban ecology and natural resources are underway. Such programs coincide with increased local government action in urban forest planning and management, activities that are enhanced by scientific knowledge. This project used a participatory stakeholder process to explore and understand urban forestry research and technology transfer...

  7. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    Science.gov (United States)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  8. Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time.

    Science.gov (United States)

    Das, Saptarshi; Pan, Indranil; Das, Shantanu

    2013-07-01

    Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Solution processeable organic-inorganic hybrids based on pyrene functionalized mixed cubic silsesquioxanes as emitters in OLEDs

    KAUST Repository

    Yang, Xiaohui

    2012-01-01

    Traditional materials for application in organic light emitting diodes (OLEDs) are primarily based on small molecules and polymers, with much fewer examples of intermediate molecular weight materials. Our interest lies in this intermediate molecular weight range, specifically in hybrids based on 3-dimensional silsesquioxane (SSQ) cores that represents a new class of versatile materials for application in solution processable OLEDs. We report here various SSQ based hybrids that are easily prepared in one high-yield step from the Heck coupling of commercially available 1-bromopyrene, and 1-bromo-4-heptylbenzene with octavinyl-T8-SSQ, and a mixture of octavinyl-T8-, decavinyl-T10- and dodecavinyl-T12-SSQ. The resulting materials offer numerous advantages for OLEDs including amorphous properties, high-glass-transition temperatures (T g), low polydispersity, solubility in common solvents, and high purity via column chromatography. Solution processed OLEDs prepared from the SSQ hybrids provide sky-blue emission with external quantum efficiencies and current efficiencies of 3.64% and 9.56 cd A -1 respectively. © 2012 The Royal Society of Chemistry.

  10. Diseases of intensively cultured hybrid poplars: a summary of recent research in the north central region

    Science.gov (United States)

    M. E. Ostry; H. S. McNabb

    1983-01-01

    Several potentially damaging diseases of hybrid poplars hue been identified in the north-central United States. Among the most serious are leaf and stem diseases caused by Melampsora, Marssonina, and Septoria. Short-term chemical controls are of limited usefulness. The most practical control strategy appears to be the use of resistant clones obtained through local...

  11. Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT System

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2017-04-01

    Full Text Available In recent years, with the development of photovoltaic system and photo-thermal system technology, hybrid photovoltaic-thermal (PVT technology has been a breakthrough in many aspects. This paper describes the movable hybrid PVT system from the aspects of appearance structure, energy flow, and control circuit. The system is equipped with rolling wheels and the simulated light sources also can be removed so that the system can be used in the outdoor conditions. The movable system is also suitable for the PVT system and its related applications without any external power supply. This system combines two technologies: photovoltaic power generation and photo-thermal utilization. The first part of the power supply is for the systems own output power supply, and the second part is for generating thermal energy. The two separate parts can be controlled and monitored respectively through the control circuits and the touch screens. The experimental results show that the system can generate 691 kWh electric energy and 3047.8 kWh thermal energy each year under normal working conditions. The efficiency of the proposed movable hybrid PVT system is calculated to be approximately 42.82% using the revised equations that are proposed in this paper. Therefore, the movable hybrid PVT system can meet the daily demands of hot water and electricity power in remote areas or islands and other non-grid areas. It also can be used to conduct experiment tests for the PVT system.

  12. Web-based hybrid mobile apps: state of the practice and research opportunities

    NARCIS (Netherlands)

    Malavolta, Ivano

    2016-01-01

    This paper describes the contents of a tutorial on web-based hybrid mobile apps. Nowadays millions of mobile apps are downloaded and used all over the world. Mobile apps are distributed via different app stores like Google Play Store, the Apple App Store, the Windows Phone Store. One of the most

  13. Central Processing Dysfunctions in Children: A Review of Research.

    Science.gov (United States)

    Chalfant, James C.; Scheffelin, Margaret A.

    Research on central processing dysfunctions in children is reviewed in three major areas. The first, dysfunctions in the analysis of sensory information, includes auditory, visual, and haptic processing. The second, dysfunction in the synthesis of sensory information, covers multiple stimulus integration and short-term memory. The third area of…

  14. Exploring the intricacies of contemporary Phd research process ...

    African Journals Online (AJOL)

    The process leading to a PhD degree award has evolved over a period of many years to become what it is today. There are important considerations and emphasis continually being placed by the degree awarding authorities on the PhD research process leading to this award. The authors of this communication wish to ...

  15. A Hybrid ICA-SVM Approach for Determining the Quality Variables at Fault in a Multivariate Process

    Directory of Open Access Journals (Sweden)

    Yuehjen E. Shao

    2012-01-01

    Full Text Available The monitoring of a multivariate process with the use of multivariate statistical process control (MSPC charts has received considerable attention. However, in practice, the use of MSPC chart typically encounters a difficulty. This difficult involves which quality variable or which set of the quality variables is responsible for the generation of the signal. This study proposes a hybrid scheme which is composed of independent component analysis (ICA and support vector machine (SVM to determine the fault quality variables when a step-change disturbance existed in a multivariate process. The proposed hybrid ICA-SVM scheme initially applies ICA to the Hotelling T2 MSPC chart to generate independent components (ICs. The hidden information of the fault quality variables can be identified in these ICs. The ICs are then served as the input variables of the classifier SVM for performing the classification process. The performance of various process designs is investigated and compared with the typical classification method. Using the proposed approach, the fault quality variables for a multivariate process can be accurately and reliably determined.

  16. iMAGE cloud: medical image processing as a service for regional healthcare in a hybrid cloud environment.

    Science.gov (United States)

    Liu, Li; Chen, Weiping; Nie, Min; Zhang, Fengjuan; Wang, Yu; He, Ailing; Wang, Xiaonan; Yan, Gen

    2016-11-01

    To handle the emergence of the regional healthcare ecosystem, physicians and surgeons in various departments and healthcare institutions must process medical images securely, conveniently, and efficiently, and must integrate them with electronic medical records (EMRs). In this manuscript, we propose a software as a service (SaaS) cloud called the iMAGE cloud. A three-layer hybrid cloud was created to provide medical image processing services in the smart city of Wuxi, China, in April 2015. In the first step, medical images and EMR data were received and integrated via the hybrid regional healthcare network. Then, traditional and advanced image processing functions were proposed and computed in a unified manner in the high-performance cloud units. Finally, the image processing results were delivered to regional users using the virtual desktop infrastructure (VDI) technology. Security infrastructure was also taken into consideration. Integrated information query and many advanced medical image processing functions-such as coronary extraction, pulmonary reconstruction, vascular extraction, intelligent detection of pulmonary nodules, image fusion, and 3D printing-were available to local physicians and surgeons in various departments and healthcare institutions. Implementation results indicate that the iMAGE cloud can provide convenient, efficient, compatible, and secure medical image processing services in regional healthcare networks. The iMAGE cloud has been proven to be valuable in applications in the regional healthcare system, and it could have a promising future in the healthcare system worldwide.

  17. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    NARCIS (Netherlands)

    Kehayas, E.; Tsiokos, D.; Bakapoulos, P.; Apostolopoulos, D.; Petrantonakis, D.; Stampoulidis, L.; Poustie, A.; McDougall, R.; Maxwell, G.D.; Liu, Y.; Zhang, S.; Dorren, H.J.S.; Seoane, J.; Van Holm-Nielsen, P.; Jeppesen, P.; Avramopoulos, H.

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can be

  18. Growth performance, survival, and processing characteristics of hybrid catfish fed pre And probiotics

    Science.gov (United States)

    There has been a lot of interest in the use of pre and probiotics to increase growth and improve disease resistance in the catfish industry. This study aimed to evaluate a commercially available prebiotic and probiotic under conditions simulating commercial production in hybrid catfish. The dietar...

  19. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.

    Science.gov (United States)

    Mohammadkazemi, Faranak; Faria, Marisa; Cordeiro, Nereida

    2016-08-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO3) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO3 was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO3 hybrid bionanocomposites production, structure and properties. The BNC/CaCO3 biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO3 content incorporation. The CaCO3 was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO3 hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Research ethics and approval process: A guide for new GP researchers.

    Science.gov (United States)

    Liaw, Siaw-Teng; Tam, Chun Wah Michael

    2015-06-01

    The underlying moral principles and values, and the virtues held as desirable for a researcher, should be reflected upon and embedded in the research. The foundation step is to download the National Health and Medical Research Council's (NHMRC's) National Statement on Ethical Conduct in Human Research and the NHMRC's Guidelines for Ethical Conduct in Aboriginal and Torres Strait Islander Health Research to use as references. This paper draws on the experience of The Royal Australian College of General Practitioners' (RACGP's) National Research and Evaluation Ethics Committee to provide an eight-step approach to the research ethics process. The researcher should use the research ethics process as an opportunity to foster and guide the development and conduct of ethical research.

  1. Application of a hybrid multiscale approach to simulate hydrologic and biogeochemical processes in the river-groundwater interaction zone.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang; Song, Hyun-Seob; Hou, Zhangshuan; Chen, Xingyuan; Liu, Yuanyuan; Scheibe, Tim

    2017-03-01

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scales of interest.

  2. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  3. The Role of Hybrid Make-to-Stock (MTS) - Make-to-Order (MTO) and Economic Order Quantity (EOQ) Inventory Control Models in Food and Beverage Processing Industry

    Science.gov (United States)

    Najhan Mohd Nagib, Ahmad; Naufal Adnan, Ahmad; Ismail, Azianti; Halim, Nurul Hayati Abdul; Syuhadah Khusaini, Nurul

    2016-11-01

    The inventory model had been utilized since the early 1900s. The implementation of the inventory management model is generally to ensure that an organisation is able to fulfil customer's demand at the lowest possible cost to improve profitability. This paper focuses on reviewing previous published papers regarding inventory control model mainly in the food and beverage processing industry. The author discusses four inventory models, which are the make-to-stock (MTS), make-to-order (MTO), economic order quantity (EOQ), and hybrid of MTS-MTO models. The issues raised by the researchers on the above techniques as well as the elements need to be considered upon selection have been discussed in this paper. The main objective of the study is to highlight the important role played by these inventory control models in the food and beverage processing industry.

  4. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  5. Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation

    Science.gov (United States)

    Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.

    2004-01-01

    A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.

  6. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  7. Design and Statistics in Quantitative Translation (Process) Research

    DEFF Research Database (Denmark)

    Balling, Laura Winther; Hvelplund, Kristian Tangsgaard

    2015-01-01

    Traditionally, translation research has been qualitative, but quantitative research is becoming increasingly important, especially in translation process research but also in other areas of translation studies. This poses problems to many translation scholars since this way of thinking...... is unfamiliar. In this article, we attempt to mitigate these problems by outlining our approach to good quantitative research, all the way from research questions and study design to data preparation and statistics. We concentrate especially on the nature of the variables involved, both in terms of their scale...... and their role in the design; this has implications for both design and choice of statistics. Although we focus on quantitative research, we also argue that such research should be supplemented with qualitative analyses and considerations of the translation product....

  8. Using cooperatives ontologies for the customization of hybrid mediator interrogation process

    Directory of Open Access Journals (Sweden)

    Cherrat LOUBNA

    2011-06-01

    Full Text Available The explosion of information sources accessible via the Web created the need for mediation tools between users and heterogeneous information sources on the Web. However, the interface design of these mediators, with taking into account the wide variety of skills and knowledge of users, and the need for them to share their preferences, requires systems able to guide the user through the interrogation process. In this paper, we try to raise this challenge  by proposing, on one hand, the use of a cooperative ontology’s models, which adapt with the evolution of user’s profiles and the dynamic change of integrated sources, and secondly ensure sharing the knowledge between users which will facilitate analysis of information and improve the data quality research process in space  and time.

  9. Autoethnography and Psychodynamics in Interrelational Spaces of the Research Process

    DEFF Research Database (Denmark)

    Dybbroe, Betina; Hansson, Birgitte

    2012-01-01

    This article takes the stance that the subjectivity of the researcher is an integral part of the research process. It should be studied as a key to understanding the interrelational processes of meaning in an interview situation. The article demonstrates how the subjectivity of the researcher can...... be made accessible methodologically and methodically by combining a psychodynamic approach with an autoethnographic approach. The methodical question is therefore how the researcher can conduct introspection and at the same time reflect upon and analyse the central object of investigation. The approach...... is psychoanalytically informed, but autoethnography became the actual vehicle for moving beyond reflections on the psychodynamics represented in the texts. The researcher ventured into an introspection of not only the texts, but also her own feelings, fantasies, and bodily experiences at the time of the interview...

  10. Novel hybridized drying methods for processing of apple fruit: Energy conservation approach

    International Nuclear Information System (INIS)

    Hazervazifeh, Amin; Nikbakht, Ali M.; Moghaddam, Parviz A.

    2016-01-01

    Strategic outlook of apple cultivation and its significant post-processing challenges have been the leading factors for energy and time saving research approaches in apple processing. In this research, apple slices were subjected to hot air flow, microwave radiation and combined microwave-hot air flow drying. Drying time, energy consumption and thermal efficiency at different microwave power levels (500 W, 1000 W, 1500 W and 2000 W), hot air temperatures (40 °C, 50 °C, 60 °C and 70 °C) and inlet air velocities (0.5 ms"−"1, 1 ms"−"1, 1.5 ms"−"1 and 2 ms"−"1) were studied and compared. The minimum time of processing was 17 min when integrated hot air flow and microwave radiation was applied with 2000 W power at the temperature of 70 °C and air velocity of 2 ms"−"1. Furthermore, the minimum value of total energy consumption during entire process of apple slices drying was 2684 kJ which belonged to microwave drying with 2000 W power. - Highlights: • Microwave radiation is implemented to reduce the energy demand for drying. • Simultaneous impact of microwave and hot air on energy and time consumption was analyzed. • Minimum drying time occurs with combined utilization of microwave and hot air. • Thermal efficiency was desirable in low air velocities and high temperatures. • Thermal efficiency of microwave radiation increased by 200% compared to single hot air method.

  11. Box: Natural Language Processing Research Using Amazon Web Services

    Directory of Open Access Journals (Sweden)

    Axelrod Amittai

    2015-10-01

    Full Text Available We present a publicly-available state-of-the-art research and development platform for Machine Translation and Natural Language Processing that runs on the Amazon Elastic Compute Cloud. This provides a standardized research environment for all users, and enables perfect reproducibility and compatibility. Box also enables users to use their hardware budget to avoid the management and logistical overhead of maintaining a research lab, yet still participate in global research community with the same state-of-the-art tools.

  12. Using Computers in Educational and Psychological Research: Using Information Technolgies to Support the Research Process

    Science.gov (United States)

    Willis, Jerry; Kim, Seung H.

    2006-01-01

    This book has been designed to assist researchers in the social sciences and education fields who are interested in learning how information technologies can help them successfully navigate the research process. Most researchers are familiar with the use of programs like SPSS to analyze data, but many are not aware of other ways information…

  13. Problem-centric Process for Research-based Learning

    Directory of Open Access Journals (Sweden)

    Khaled Shaban

    2015-05-01

    Full Text Available Research-based Learning (RbL extends Inquiry and Project-based Learning by facilitating an early stage exposure and training for future scientists through authentic research activities. In this paper, an iterative problem-centric RbL process is introduced, and its activities and management aspects are described. The process helps implement course-integrated research systematically and practically. Furthermore, the novel process follows constructivist methods in incorporating inquiry, scaffolding, open-ended projects, as well as a goal oriented learning approach. The RbL process is adopted in two advanced computing courses, at two different universities: a leading comprehensive Western university and a new university in a developing country. The paper summarizes new lessons learned in these rewarding experiences. In particular, the instructor should help students start their projects, by providing them with previous work or data and pre-approving the papers to review by students. He should also maintain a continuous feedback to and from students to keep the students motivated and help the instructor refine and adapt the RBL process. We note that research collaborators can help students in identifying the research topics early. The paper also shows how to alleviate difficulties that may be encountered by students who find the novel approach demanding, and consequently it also helps the instructors better manage the course contents.

  14. Reclaiming Queerness: Self, Identity, and the Research Process

    Directory of Open Access Journals (Sweden)

    Janna Marie Jackson

    2007-01-01

    Full Text Available This article explores some of the challenges and benefits of doing a dissertation with participants from a population to which I belong and on a topic some consider controversial, that of gay and lesbian educators. I describe the homophobia I experienced and how that homophobia affected my choice of topic, the research process, and my job prospects. Each step of this research journey presented me with a variety of delicate decisions. I discuss my thought processes in resolving these dilemmas and some of the practical solutions I used to address a variety of difficulties. Although written specifically about doing research with gay and lesbian teachers, many of the lessons I learned throughout this process can be applied to a range of research situations. For example, many researchers share cultural backgrounds with their participants. This presents both the opportunity to establish rapport with participants quickly but also the danger of the researcher reading his or her own experiences into the data. I describe some of the ways I addressed this issue as well as others commonly faced by those doing dissertations. I conclude that doing a dissertation on a topic I feel passionately about sustained me throughout the dissertation process.

  15. Evaluation of hybrid neutralization/biosorption process for zinc ions removal from automotive battery effluent by dolomite and fish scales.

    Science.gov (United States)

    Ribeiro, C; Scheufele, F B; Alves, H J; Kroumov, A D; Espinoza-Quiñones, F R; Módenes, A N; Borba, C E

    2018-02-26

    This work focused in the evaluation of Oreochromis niloticus fish scales (FS) as biosorbent material in the removal of Zn from a synthetic effluent based on automotive battery industry effluent and, further, a hybrid neutralization/biosorption process, aiming at a high-quality treated effluent, by a cooperative use of dolomite and FS. For this, a physicochemical and morphological characterization (i.e. SEM-EDX, FTIR, XRD, and TXRF) was performed, which helped to clarify a great heterogeneity of active sites (phosphate, carbonate, amide, and hydroxyl) on the biosorbent; also the inorganic constituents (apatites) leaching from the FS was identified. Biosorption results pointed out to a pH-dependent process due to changes in the functional group's anionic character (i.e. electrostatic interactions), where an initial pH = 3 favored the Zn uptake. Kinetic and equilibrium studies confirmed the heterogeneous surface and cooperative sorption, wherein experimental data were described by Generalized Elovich kinetic model and the favorable isotherm profile by Langmuir-Freundlich isotherm ([Formula: see text] = 15.38 mg g -1 and [Formula: see text]). Speciation diagram of Zn species along with the leached species demonstrated that, for the studied pH range, the biosorption was the most likely phenomena rather than precipitation. Finally, the hybrid neutralization/biosorption process showed great potential since both the Zn concentration levels and the pH reached the legislation standards (C Zn  = 4 mg L -1 ; pH = 5). Hence, based on the characterization and biosorption results, a comprehensive evaluation of the involved mechanisms in such complex system helped to verify the prospective of FS biosorbent for the Zn treatment from solution, in both individual and hybrid processes.

  16. Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Directory of Open Access Journals (Sweden)

    Liu Zhong-Shu

    2017-01-01

    Full Text Available Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully.

  17. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    Science.gov (United States)

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  18. Hybrid ion-exchange membranes for fuel cells and separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Carretero, F.J.; Compan, V. [Departamento de Termodinamica Aplicada, ETSII, Universidad Politecnica de Valencia, 46020 Valencia (Spain); Riande, E. [Instituto de Ciencia y Tecnologia de Polimeros (CSIC), 28006 Madrid (Spain)

    2007-11-08

    This work reports the preparation and characterization of hybrid membranes cast from dispersions of inorganic fillers in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene solutions. Silica gel, SBA-15 and sepiolite, all of them functionalized with phenylsulfonic acid groups, were used as fillers. For comparative purposes, the performance of composite membranes cast from dispersions of functionalized inorganic fillers in Nafion {sup registered} solutions was investigated. Inspection of the texture of the membranes by using SEM techniques shows that the fillers are better dispersed in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene than in Nafion {sup registered}. The value of the water uptake for the membranes prepared from the former polyelectrolyte is in most cases at least three times that measured for hybrid Nafion {sup registered} membranes. The conductivity of the membranes was measured at 80 C by impedance spectroscopy obtaining values of 3.44, 6.90 and 3.54 S m{sup -1} for the hybrid membranes based on the triblock copolymer containing functionalized silica gel, SBA-15 and sepiolite fillers, respectively. These results compare very favourably with those obtained at 80 C for Nafion {sup registered} hybrid membranes containing silica gel, SBA-15 and sepiolite, all of them fuctionalized with phenylsulfonic acid groups, whose conductivities are, 2.84, 6.75 and 3.31 S m{sup -1}, respectively. Resistance measurements carried out under controlled humidity conditions show that the conductivity of sulfonated triblock copolymer membranes containing functionalized SBA-15 filler undergoes a rather sharp increase when they are conditioned under an atmosphere of 75%, or larger, relative humidity. (author)

  19. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering.

    Science.gov (United States)

    Lee, Junghoon; Han, A-Reum; Yu, Hojeong; Shin, Tae Joo; Yang, Changduk; Oh, Joon Hak

    2013-06-26

    Ambipolar polymer semiconductors are highly suited for use in flexible, printable, and large-area electronics as they exhibit both n-type (electron-transporting) and p-type (hole-transporting) operations within a single layer. This allows for cost-effective fabrication of complementary circuits with high noise immunity and operational stability. Currently, the performance of ambipolar polymer semiconductors lags behind that of their unipolar counterparts. Here, we report on the side-chain engineering of conjugated, alternating electron donor-acceptor (D-A) polymers using diketopyrrolopyrrole-selenophene copolymers with hybrid siloxane-solubilizing groups (PTDPPSe-Si) to enhance ambipolar performance. The alkyl spacer length of the hybrid side chains was systematically tuned to boost ambipolar performance. The optimized three-dimensional (3-D) charge transport of PTDPPSe-Si with pentyl spacers yielded unprecedentedly high hole and electron mobilities of 8.84 and 4.34 cm(2) V(-1) s(-1), respectively. These results provide guidelines for the molecular design of semiconducting polymers with hybrid side chains.

  20. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    Science.gov (United States)

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fate of bulk and trace organics during a simulated aquifer recharge and recovery (ARR)-ozone hybrid process

    KAUST Repository

    Yoon, Min

    2013-11-01

    The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC=1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5ngL-1) both during ARR treatment alone and the ARR-ozone hybrid. © 2013 Elsevier Ltd.

  2. Automated processing of fluorescence in-situ hybridization slides for HER2 testing in breast and gastro-esophageal carcinomas.

    Science.gov (United States)

    Tafe, Laura J; Allen, Samantha F; Steinmetz, Heather B; Dokus, Betty A; Cook, Leanne J; Marotti, Jonathan D; Tsongalis, Gregory J

    2014-08-01

    HER2 fluorescence in-situ hybridization (FISH) is used in breast and gastro-esophageal carcinoma for determining HER2 gene amplification and patients' eligibility for HER2 targeted therapeutics. Traditional manual processing of the FISH slides is labor intensive because of multiple steps that require hands on manipulation of the slides and specifically timed intervals between steps. This highly manual processing also introduces inter-run and inter-operator variability that may affect the quality of the FISH result. Therefore, we sought to incorporate an automated processing instrument into our FISH workflow. Twenty-six cases including breast (20) and gastro-esophageal (6) cancer comprising 23 biopsies and three excision specimens were tested for HER2 FISH (Pathvysion, Abbott) using the Thermobrite Elite (TBE) system (Leica). Up to 12 slides can be run simultaneously. All cases were previously tested by the Pathvysion HER2 FISH assay with manual preparation. Twenty cells were counted by two observers for each case; five cases were tested on three separate runs by different operators to evaluate the precision and inter-operator variability. There was 100% concordance in the scoring between the manual and TBE methods as well as among the five cases that were tested on three runs. Only one case failed due to poor probe hybridization. In total, seven cases were positive for HER2 amplification (HER2:CEP17 ratio >2.2) and the remaining 19 were negative (HER2:CEP17 ratio <1.8) utilizing the 2007 ASCO/CAP scoring criteria. Due to the automated denaturation and hybridization, for each run, there was a reduction in labor of 3.5h which could then be dedicated to other lab functions. The TBE is a walk away pre- and post-hybridization system that automates FISH slide processing, improves work flow and consistency and saves approximately 3.5h of technologist time. The instrument has a small footprint thus occupying minimal counter space. TBE processed slides performed

  3. Researching on the process of remote sensing video imagery

    Science.gov (United States)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  4. APPLICATION OF FUZZY ANALYTIC HIERARCHY PROCESS TO BUILDING RESEARCH TEAMS

    Directory of Open Access Journals (Sweden)

    Karol DĄBROWSKI

    2016-01-01

    Full Text Available Building teams has a fundamental impact for execution of research and development projects. The teams appointed for the needs of given projects are based on individuals from both inside and outside of the organization. Knowledge is not only a product available on the market but also an intangible resource affecting their internal and external processes. Thus it is vitally important for businesses and scientific research facilities to effectively manage knowledge within project teams. The article presents a proposal to use Fuzzy AHP (Analytic Hierarchy Process and ANFIS (Adaptive Neuro Fuzzy Inference System methods in working groups building for R&D projects on the basis of employees skills.

  5. Application of Fuzzy Analytic Hierarchy Process to Building Research Teams

    Science.gov (United States)

    Dąbrowski, Karol; Skrzypek, Katarzyna

    2016-03-01

    Building teams has a fundamental impact for execution of research and development projects. The teams appointed for the needs of given projects are based on individuals from both inside and outside of the organization. Knowledge is not only a product available on the market but also an intangible resource affecting their internal and external processes. Thus it is vitally important for businesses and scientific research facilities to effectively manage knowledge within project teams. The article presents a proposal to use Fuzzy AHP (Analytic Hierarchy Process) and ANFIS (Adaptive Neuro Fuzzy Inference System) methods in working groups building for R&D projects on the basis of employees skills.

  6. Automatic processing of radioimmunological research data on a computer

    International Nuclear Information System (INIS)

    Korolyuk, I.P.; Gorodenko, A.N.; Gorodenko, S.I.

    1979-01-01

    A program ''CRITEST'' in the language PL/1 for the EC computer intended for automatic processing of the results of radioimmunological research has been elaborated. The program works in the operation system of the OC EC computer and is performed in the section OC 60 kb. When compiling the program Eitken's modified algorithm was used. The program was clinically approved when determining a number of hormones: CTH, T 4 , T 3 , TSH. The automatic processing of the radioimmunological research data on the computer makes it possible to simplify the labour-consuming analysis and to raise its accuracy

  7. Relevance as process: judgements in the context of scholarly research

    Directory of Open Access Journals (Sweden)

    Theresa D. Anderson

    2005-01-01

    Full Text Available Introduction. This paper discusses how exploring the research process in-depth and over time contributes to a fuller understanding of interactions with various representations of information. Method. A longitudinal ethnographic study explored decisions made by two informants involved in scholarly research. Relevance assessment and information seeking were observed as part of informants' own ongoing research projects. Fieldwork used methods of discovery that allowed informants to shape the exploration of the practices surrounding the evolving understandings of their topics. Analysis. Inductive analysis was carried out on the qualitative data collected over a two-year period of judgements observed on a document-by-document basis. The paper introduces broad categories that point to the variability and richness of the ways that informants used representations of information resources to make relevance judgements. Results. Relevance judgements appear to be drivers of the search and research processes informants moved through during the observations. Focusing on research goals rather than on retrieval tasks brings us to a fuller understanding of the relationship between ultimate research goals and the articulation of those goals in interactions with information systems. Conclusion. Relevance assessment is a process that unfolds in the doing of a search, the making of judgements and the using of texts and representations of information.

  8. The Future of Nearshore Processes Research: U.S. Integrated Coastal Research Program

    Science.gov (United States)

    Elko, N.; Feddersen, F.; Foster, D. L.; Hapke, C. J.; Holman, R. A.; McNinch, J.; Mulligan, R. P.; Ozkan-Haller, H. T.; Plant, N. G.; Raubenheimer, B.

    2016-02-01

    The authors, representing the acting Nearshore Advisory Council, have developed an implementation plan for a U.S. Nearshore Research Program based on the 2015 Future of Nearshore Processes report that was authored by the nearshore community. The objectives of the plan are to link research programs across federal agencies, NGOs, industry, and academia into an integrated national program and to increase academic and NGO participation in federal agency nearshore processes research. A primary recommendation is interagency collaboration to build a research program that will coordinate and fund U.S. nearshore processes research across three broad research themes: 1) long-term coastal evolution due to natural and anthropogenic processes; 2) extreme events; and 3) physical, biological and chemical processes impacting human and ecosystem health. The plan calls for a new program to be developed by an executive committee of federal agency leaders, NGOs, and an academic representative, created similarly to the existing NOPP program. This leadership will be established prior to the 2016 Ocean Sciences meeting and will have agreed on responsibilities and a schedule for development of the research program. To begin to understand the scope of today's U.S. coastal research investment, a survey was distributed to ten federal agency R&D program heads. Six of the ten agencies indicated that they fund coastal research, with a combined annual coastal research budget of nearly 100 million (NSF has not responded). The priority of the three research themes were ranked nearly equally and potential research support ranged from 15-19 million for each theme, with approximately 12 million as direct contribution to academic research. Beyond addressing our fundamental science questions, it is critical that the nearshore community stay organized to represent academic interests on the new executive committee. The program goal is the integration of academic, NGO, and federal agencies.

  9. Youth researching youth: benefits, limitations and ethical considerations within a participatory research process

    Directory of Open Access Journals (Sweden)

    Cynthia G. Jardine

    2012-05-01

    Full Text Available Objectives. To examine the benefits, limitations and ethical issues associated with conducting participatory research on tobacco use using youth to research other youth. Study design. Community-based participatory research. Methods. Research on tobacco use was conducted with students in the K’àlemì Dene School and Kaw Tay Whee School in the Northwest Territories, Canada, using PhotoVoice. The Grade 9–12 students acted as researchers. Researcher reflections and observations were assessed using “member checking,” whereby students, teachers and community partners could agree or disagree with the researcher's interpretation. The students and teachers were further asked informally to share their own reflections and observations on this process. Results and conclusions. Using youth to research other youth within a participatory research framework had many benefits for the quality of the research, the youth researchers and the community. The research was perceived by the researchers and participants to be more valid and credible. The approach was more appropriate for the students, and the youth researchers gained valuable research experience and a sense of ownership of both the research process and results. Viewing smoking through their children's eyes was seen by the community to be a powerful and effective means of creating awareness of the community environment. Limitations of the approach were residual response bias of participants, the short period of time to conduct the research and failure to fully explore student motivations to smoke or not to smoke. Ethical considerations included conducting research with minors, difficulties in obtaining written parental consent, decisions on cameras (disposable versus digital and representation of all participants in the final research product.

  10. Refining the Enrolment Process in Emergency Medicine Research.

    Science.gov (United States)

    Sahan, Kate M; Channon, Keith M; Choudhury, Robin P; Kharbanda, Rajesh K; Lee, Regent; Sheehan, Mark

    2016-04-01

    Research in the emergency setting involving patients with acute clinical conditions is needed if there are to be advances in diagnosis and treatment. But research in these areas poses ethical and practical challenges. One of these is the general inability to obtain informed consent due to the patient's lack of mental capacity and insufficient time to contact legal representatives. Regulatory frameworks which allow this research to proceed with a consent 'waiver', provided patients lack mental capacity, miss important ethical subtleties. One of these is the varying nature of mental capacity among emergency medicine patients. Not only is their capacity variable and often unclear, but some patients are also likely to be able to engage with the researcher and the context to varying degrees. In this paper we describe the key elements of a novel enrolment process for emergency medicine research that refines the consent waiver and fully engages with the ethical rationale for consent and, in this context, its waiver. The process is verbal but independently documented during the 'emergent' stages of the research. It provides appropriate engagement with the patient, is context-sensitive and better addresses ethical subtleties. In line with regulation, full written consent for on-going participation in the research is obtained once the emergency is passed.

  11. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-30

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison

  12. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.

  13. Towards ideal NOx control technology for bio-oils and a gas multi-fuel boiler system using a plasma-chemical hybrid process

    International Nuclear Information System (INIS)

    Fujishima, Hidekatsu; Takekoshi, Kenichi; Kuroki, Tomoyuki; Tanaka, Atsushi; Otsuka, Keiichi; Okubo, Masaaki

    2013-01-01

    Highlights: • A multi-fuel boiler system combined with NO x aftertreatment is developed. • NO x is removed from flue gas by a plasma-chemical hybrid process. • Waste bio-oils are utilized as renewable energy source and for CO 2 reduction. • Ultra low NO x emission less than 2 ppm is achieved. • The boiler system is applicable for industrial use. - Abstract: A super-clean boiler system comprising a multi-fuel boiler and a reactor for plasma-chemical hybrid NO x aftertreatment is developed, and its industrial applications are examined. The purpose of this research is to optimally reduce NO x emission and utilize waste bio-oil as a renewable energy source. First, NO oxidation using indirect plasma at elevated flue gas temperatures is investigated. It is clarified that more than 98% of NO is oxidized when the temperature of the flue gas is less than 130 °C. Three types of waste bio-oils (waste vegetable oil, rice bran oil, and fish oil) are burned in the boiler as fuels with a rotary-type burner for CO 2 reduction considering carbon neutrality. NO x in the flue gases of these bio-oils is effectively reduced by the indirect plasma-chemical hybrid treatment. Ultralow NO x emission less than 2 ppm is achieved for 450 min in the firing of city natural gas fuel. The boiler system can be successfully operated automatically according to unsteady steam demand and using an empirical equation for Na 2 SO 3 supply rate, and can be used in industries as an ideal NO x control technology

  14. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    International Nuclear Information System (INIS)

    Bloch, Donald B.; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-01-01

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: → A two-hybrid assay was developed to study interactions in macromolecular complexes. → The assay was applied to interactions between components of mRNA P-bodies. → The assay effectively and efficiently identified protein interaction domains. → P-body assembly in mammalian cells differs from that in other species.

  15. Partnering with Indigenous student co-researchers: improving research processes and outcomes.

    Science.gov (United States)

    Genuis, Shelagh K; Willows, Noreen; Jardine, Cindy G

    2015-01-01

    To examine the contribution of student co-researchers to a community-based participatory Photovoice investigation of Indigenous children's food-related lived experience. We examine co-researchers' contributions to the research process, their role in knowledge co-generation and dissemination, and factors that fostered research partnership with the teenage co-researchers. High school students attending a First Nation community school in Canada were trained as research partners. They contributed to aspects of research design, conducted interviews with grades 3 and 4 Photovoice participants, and participated in data analysis and the development of a culturally relevant photobook. The study was initiated by the community's research committee. It is informed by critical consciousness theory and the positive youth development framework. Student co-researchers incorporated culturally appropriate strategies as they interviewed participants. Co-researchers adopted conversational approaches, built rapport by articulating personal and cultural connections, and engaged in mentoring and health promotion as they interviewed participants. They made critical contributions to dissemination by developing photobook content that promoted the importance of traditional foods and the vital role of family and community in healthy eating practices. Relationships and "dialogic" space were important to building partnership with and promoting capacity development among youth co-researchers. Partnership between university researchers and Indigenous student co-researchers holds great promise for health promotion in communities. Co-researchers developed research and leadership skills, gained understanding of health challenges facing their community, and initiated health and cultural promotion through the project's Photobook. This investigation supports the powerful potential of student co-researchers to meaningfully contribute to research processes and to build knowledge that is relevant and

  16. Research on low-frequency band gap property of a hybrid phononic crystal

    Science.gov (United States)

    Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Chao, Ding; Wang, Benchi

    2018-05-01

    A hybrid phononic crystal has been investigated. The characteristic frequency of XY mode, transmission loss and displacement vector have been calculated by the finite element method. There are Bragg scattering band gap and local resonance band gap in the band structures. We studied the influence factors of band gap. There are many flat bands in the eigenfrequencies curve. There are many flat bands in the curve. The band gap covers a large range in low frequency. The band gaps cover more than 95% below 3000 Hz.

  17. Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Yan, W.

    1993-11-01

    The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods

  18. Arts-Based Research: Trojan Horses and Shibboleths. The Liabilities of a Hybrid Research Approach. "What Hath Eisner Wrought?"

    Science.gov (United States)

    Pariser, David

    2009-01-01

    The term "arts-based research" has been debated for some time now. In an article strongly in favor of this approach Bean (2007) identifies three species: "Research on the arts (italics in the original) (art history, visual and cultural studies, media studies etc.)...Research for the arts, refers to research into applied techniques, materials and…

  19. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint

    Directory of Open Access Journals (Sweden)

    Su Ding

    2015-05-01

    Full Text Available The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area.

  20. Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model

    Science.gov (United States)

    Berman, Jeanette; Smyth, Robyn

    2015-01-01

    This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…

  1. The Effect and Importance of Technology in the Research Process

    Science.gov (United States)

    Cuff, Ed

    2014-01-01

    From elementary schooling to doctoral-level education, technology has become an integral part of the learning process in and out of the classroom. With the implementation of the Common Core Learning Standards, the skills required for research are more valuable than ever, for they are required to succeed in a college setting, as well as in the…

  2. External Influences on an Internal Process: Supporting Preservice Teacher Research

    Science.gov (United States)

    Schulte, Ann; Klipfel, Lyndsay Halpin

    2016-01-01

    In an effort to better understand how participating in teacher research as a student teacher compares to conducting it as a practicing teacher, a teacher educator and her former teacher education student engaged in a collaborative dialogue. They focus their reflections in this article on the impact of external forces on the process of teacher…

  3. A hybrid electromagnetic-acoustic levitator for the containerless processing of undercooled melts

    Science.gov (United States)

    Hmelo, Anthony B.; Banerjee, Sharbari; Wang, Taylor G.

    1992-01-01

    The hybrid, acoustic-EM levitator discussed provides a small lifting force independently of its EM component by exciting an acoustic resonance that serves as a pressure node at the position of the EM-levitated specimen. The system also stabilizes and damps chaotic oscillations during specimen positioning, and can excite forced oscillations of levitated molten metals for drop-physics and thermophysical property measurements. Attention is given to the character and function of the atmosphere in the levitator. Noncontact temperature measurement is via single-color optical pyrometer.

  4. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Jin, Pengkang, E-mail: pkjin@hotmail.com [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Hou, Rui [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Yang, Lei [Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800 (Australia); Wang, Xiaochang C., E-mail: xcwang@xauat.edu.cn [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China)

    2017-04-05

    Highlights: • A novel HOC process was firstly put forward to apply in wastewater reclamation. • Interactions between ozone and Al-based coagulants was found in the HOC process. • Ozonation can be catalyzed and enhanced by Al-based coagulants in the HOC process. • HOC process showed better organics removal than pre-ozonation-coagulation process. - Abstract: A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1 mgO{sub 3}/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O{sub 3}-resistant hydroxyl radical (·OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of ·OH compared with pre-ozonation process. This indicates that the ·OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency.

  5. Development of a Highly Efficient Hybrid White Organic-Light-Emitting Diode with a Single Emission Layer by Solution Processing.

    Science.gov (United States)

    Wu, Jun-Yi; Chen, Show-An

    2018-02-07

    We use a mixed host, 2,6-bis[3-(carbazol-9-yl)phenyl]pyridine blended with 20 wt % tris(4-carbazoyl-9-ylphenyl)amine, to lower the hole-injection barrier, along with the bipolar and high-photoluminescence-quantum-yield (Φ p = 84%), blue thermally activated delay fluorescence (TADF) material of 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) as a blue dopant to compose the emission layer for the fabrication of a TADF blue organic-light-emitting diode (BOLED). The device is highly efficient with the following performance parameters: maximum brightness (B max ) = 57586 cd/m 2 , maximum current efficiency (CE max ) = 35.3 cd/A, maximum power efficiency (PE max ) = 21.4 lm/W, maximum external quantum efficiency (EQE max ) = 14.1%, and CIE coordinates (0.18, 0.42). This device has the best performance recorded among the reported solution-processed TADF BOLEDs and has a low efficiency roll-off: at brightness values of 1000 and 5000 cd/m 2 , its CEs are close, being 35.1 and 30.1 cd/A, respectively. Upon further doping of the red phosphor Ir(dpm)PQ 2 (emission peak λ max = 595 nm) into the blue emission layer, we obtained a TADF-phosphor hybrid white organic-light-emitting diode (T-P hybrid WOLED) with high performance: B max = 43594 cd/m 2 , CE max = 28.8 cd/A, PE max = 18.1 lm/W, and CIE coordinates (0.38, 0.44). This B max = 43594 cd/m 2 is better than that of the vacuum-deposited WOLED with a blue TADF emitter, 10000 cd/m 2 . This is also the first report on a T-P hybrid WOLED with a solution-processed emitting layer.

  6. Improving industrial designers work process by involving user research

    DEFF Research Database (Denmark)

    Dai, Zheng; Ómarsson, Ólafur

    2011-01-01

    With changing times, new technologies and more opinionated consumers, the modern industrial designer has found himself in need of fresher and more up to date approaches in his daily work. In a fast moving industry, the designer needs to keep a thinking process of dynamic and subjective attitude...... will give the grounding for believing that the industrial designer needs to adopt user research methods to a level where he can still continue to work under the very nature of industrial design that has made it a successful practice for the last century. The combing of the approaches and attitude will help....... User research is part of user centered design (UCD). UCD has a reputation for subjective and reflective practice. In this paper there are two example cases. One is conducted by a classical industrial design process, and another is costing half of energy and time in user research. These examples...

  7. Partnering with Indigenous student co-researchers: improving research processes and outcomes

    Directory of Open Access Journals (Sweden)

    Shelagh K. Genuis

    2015-07-01

    Full Text Available Objective: To examine the contribution of student co-researchers to a community-based participatory Photovoice investigation of Indigenous children's food-related lived experience. We examine co-researchers’ contributions to the research process, their role in knowledge co-generation and dissemination, and factors that fostered research partnership with the teenage co-researchers. Methods: High school students attending a First Nation community school in Canada were trained as research partners. They contributed to aspects of research design, conducted interviews with grades 3 and 4 Photovoice participants, and participated in data analysis and the development of a culturally relevant photobook. The study was initiated by the community's research committee. It is informed by critical consciousness theory and the positive youth development framework. Results: Student co-researchers incorporated culturally appropriate strategies as they interviewed participants. Co-researchers adopted conversational approaches, built rapport by articulating personal and cultural connections, and engaged in mentoring and health promotion as they interviewed participants. They made critical contributions to dissemination by developing photobook content that promoted the importance of traditional foods and the vital role of family and community in healthy eating practices. Relationships and “dialogic” space were important to building partnership with and promoting capacity development among youth co-researchers. Conclusions: Partnership between university researchers and Indigenous student co-researchers holds great promise for health promotion in communities. Co-researchers developed research and leadership skills, gained understanding of health challenges facing their community, and initiated health and cultural promotion through the project's Photobook. This investigation supports the powerful potential of student co-researchers to meaningfully contribute to

  8. Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yuqi Dong

    2016-12-01

    Full Text Available Accurate short-term electrical load forecasting plays a pivotal role in the national economy and people’s livelihood through providing effective future plans and ensuring a reliable supply of sustainable electricity. Although considerable work has been done to select suitable models and optimize the model parameters to forecast the short-term electrical load, few models are built based on the characteristics of time series, which will have a great impact on the forecasting accuracy. For that reason, this paper proposes a hybrid model based on data decomposition considering periodicity, trend and randomness of the original electrical load time series data. Through preprocessing and analyzing the original time series, the generalized regression neural network optimized by genetic algorithm is used to forecast the short-term electrical load. The experimental results demonstrate that the proposed hybrid model can not only achieve a good fitting ability, but it can also approximate the actual values when dealing with non-linear time series data with periodicity, trend and randomness.

  9. Design and Preparation of RF System for the Lower Hybrid Fast Wave Heating and Current Drive Research on VEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ho; Jeong, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyun Woo; Lee, Byung Je [Kwang Woon University, Chuncheon (Korea, Republic of); Jo, Jong Gab; Lee, Hyun Young; Hwang, Yong Seok [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    Continuous current drive is one of the key issues for tokamak to be a commercial fusion reactor. As a part of new and efficient current drive concept research by using a Lower Hybrid Fast Wave (LHFW), the experimental study is planned on Versatile Experiment Spherical Torus (VEST) and a RF system is being developed in collaboration with Kwang Woon University (KWU), Korea Accelerator Plasma Research Association (KAPRA) and Seoul National University (SNU). The LHFW RF system includes UHF band klystron, inter-digital antenna, RF diagnostics and power transmission sub components such as circulator, DC breaker, vacuum feed-thru. The design and preparation status of the RF system will be presented in the meeting in detail. A RF system has been designed and prepared for the experimental study of efficient current drive by using Lower Hybrid Fast Wave. Overall LHFW RF system including diagnostics is designed to deliver about 10 kW in UHF band. And the key hardware components including klystron and antenna are being prepared and designed through the collaboration with KWU, KAPRA and SNU.

  10. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    Directory of Open Access Journals (Sweden)

    Lili Song

    2016-03-01

    Full Text Available This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC, and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  11. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  12. Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process

    Energy Technology Data Exchange (ETDEWEB)

    Mezni, Amine [Unité de recherche “Synthèse et Structure de Nanomatériaux” UR11ES30, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna (Tunisia); Centre d' Elaboration de Matériaux et d' Etudes Structurales, CNRS, UPR 8011, Université de Toulouse, 29 Rue Jeanne Marvig, 31055 Toulouse (France); Mlayah, Adnen; Serin, Virginie [Centre d' Elaboration de Matériaux et d' Etudes Structurales, CNRS, UPR 8011, Université de Toulouse, 29 Rue Jeanne Marvig, 31055 Toulouse (France); Smiri, Leila Samia, E-mail: lsmiri@gmail.com [Unité de recherche “Synthèse et Structure de Nanomatériaux” UR11ES30, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna (Tunisia)

    2014-10-15

    In this work, we report on the synthesis of hybrid Au–ZnO nanoparticles using a one-pot chemical method that makes use of 1,3-propanediol as a solvent, a reducing agent and a stabilizing layer. The produced nanoparticles consisted of Au cores decorated with ZnO nanoparticles. The structure and morphology of the nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX) and Raman spectroscopy. Optical extinction measurements, combined with numerical simulations, showed that the Au–ZnO nanoparticles exhibit a localized surface plasmon resonance (SPR) clearly red-shifted with respect to that of bare Au nanoparticles (AuNPs). This work contributes to the emergence of multi-functional nanomaterials with possible applications in surface plasmon resonance based biosensors, energy-conversion devices, and in water-splitting hydrogen production. - Highlights: • Hybrid Au–ZnO nanoparticles were synthesized by a novel one-pot synthesis method that makes use of 1,3-propanediol. • The polyol solvent 1,3-propanediol plays the roles of the reducing agent and the stabilizer layer. • The Au–ZnO nanoparticles exhibit a strong localized surface plasmon resonance.

  13. Aeroacoustic analysis of the human phonation process based on a hybrid acoustic PIV approach

    Science.gov (United States)

    Lodermeyer, Alexander; Tautz, Matthias; Becker, Stefan; Döllinger, Michael; Birk, Veronika; Kniesburges, Stefan

    2018-01-01

    The detailed analysis of sound generation in human phonation is severely limited as the accessibility to the laryngeal flow region is highly restricted. Consequently, the physical basis of the underlying fluid-structure-acoustic interaction that describes the primary mechanism of sound production is not yet fully understood. Therefore, we propose the implementation of a hybrid acoustic PIV procedure to evaluate aeroacoustic sound generation during voice production within a synthetic larynx model. Focusing on the flow field downstream of synthetic, aerodynamically driven vocal folds, we calculated acoustic source terms based on the velocity fields obtained by time-resolved high-speed PIV applied to the mid-coronal plane. The radiation of these sources into the acoustic far field was numerically simulated and the resulting acoustic pressure was finally compared with experimental microphone measurements. We identified the tonal sound to be generated downstream in a small region close to the vocal folds. The simulation of the sound propagation underestimated the tonal components, whereas the broadband sound was well reproduced. Our results demonstrate the feasibility to locate aeroacoustic sound sources inside a synthetic larynx using a hybrid acoustic PIV approach. Although the technique employs a 2D-limited flow field, it accurately reproduces the basic characteristics of the aeroacoustic field in our larynx model. In future studies, not only the aeroacoustic mechanisms of normal phonation will be assessable, but also the sound generation of voice disorders can be investigated more profoundly.

  14. Electroless Sliver-Plating Process in the Preparation of 103Pd-125I Hybrid Brachytherapy Seed Cores

    Directory of Open Access Journals (Sweden)

    LI Zhong-yong1,2;CHEN Bin-da1;Lv Xiao-zhou1;LU Jin-hui1;CUI Hai-ping1,2

    2014-02-01

    Full Text Available Electroless 103Pd plating and electroless Ag plating and chemical 125I depositing were took place on the surface of carbon rods in turn, which was a reliable method for the preparation of 103Pd-125I hybrid brachytherapy seed cores. 103Pd and 125I were deposited on the same substrate effectively through silver coating as a bridge. The process of electroless Ag plating was a novel and important step in the preparation of 103Pd-125I hybrid seed. In this work, the process of electroless Ag plating was studied using 0.5×3.0 mm carbon rods with palladium coating as substrate, silver-ammino complex as precursor, 110mAg as radioactive tracer, and hydrazine as reductant. The optimum conditions were AgNO3 2g/L,Na2EDTA 40 g/L,NH3•H2O 16.25%,H4N2•H2O 5‰,pH=10,t=60 min,and T=35 ℃. Sliver deposited on each carbon rod was uniform, and sliver-coating was white and smooth.

  15. Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning-electrospraying hybrid process for use in protective applications

    Energy Technology Data Exchange (ETDEWEB)

    Vitchuli, Narendiran; Shi Quan; McCord, Marian; Zhang Xiangwu [Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301 (United States); Nowak, Joshua; Bourham, Mohamed [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695-7909 (United States); Kay, Kathryn [Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7610 (United States); Caldwell, Jane M; Breidt, Frederick, E-mail: bourham@ncsu.edu, E-mail: mmccord@ncsu.edu, E-mail: xiangwu_zhang@ncsu.edu [Department of Food Science, North Carolina Agricultural Research Service, North Carolina State University, Raleigh, NC 27695-7624 (United States)

    2011-10-15

    ZnO/Nylon 6 nanofiber mats were prepared by an electrospinning-electrospraying hybrid process in which ZnO nanoparticles were dispersed on the surface of Nylon 6 nanofibers without becoming completely embedded. The prepared ZnO/Nylon 6 nanofiber mats were evaluated for their abilities to kill bacteria or inhibit their growth and to catalytically detoxify chemicals. Results showed that these ZnO/Nylon 6 nanofiber mats had excellent antibacterial efficiency (99.99%) against both the Gram-negative Escherichia coli and Gram-positive Bacillus cereus bacteria. In addition, they exhibited good detoxifying efficiency (95%) against paraoxon, a simulant of highly toxic chemicals. ZnO/Nylon 6 nanofiber mats were also deposited onto nylon/cotton woven fabrics and the nanofiber mats did not significantly affect the moisture vapor transmission rates and air permeability values of the fabrics. Therefore, ZnO/Nylon 6 nanofiber mats prepared by the electrospinning-electrospraying hybrid process are promising material candidates for protective applications.

  16. Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications

    Directory of Open Access Journals (Sweden)

    Narendiran Vitchuli, Quan Shi, Joshua Nowak, Kathryn Kay, Jane M Caldwell, Frederick Breidt, Mohamed Bourham, Marian McCord and Xiangwu Zhang

    2011-01-01

    Full Text Available ZnO/Nylon 6 nanofiber mats were prepared by an electrospinning–electrospraying hybrid process in which ZnO nanoparticles were dispersed on the surface of Nylon 6 nanofibers without becoming completely embedded. The prepared ZnO/Nylon 6 nanofiber mats were evaluated for their abilities to kill bacteria or inhibit their growth and to catalytically detoxify chemicals. Results showed that these ZnO/Nylon 6 nanofiber mats had excellent antibacterial efficiency (99.99% against both the Gram-negative Escherichia coli and Gram-positive Bacillus cereus bacteria. In addition, they exhibited good detoxifying efficiency (95% against paraoxon, a simulant of highly toxic chemicals. ZnO/Nylon 6 nanofiber mats were also deposited onto nylon/cotton woven fabrics and the nanofiber mats did not significantly affect the moisture vapor transmission rates and air permeability values of the fabrics. Therefore, ZnO/Nylon 6 nanofiber mats prepared by the electrospinning–electrospraying hybrid process are promising material candidates for protective applications.

  17. Production of Biodiesel from High Acid Value Waste Cooking Oil Using an Optimized Lipase Enzyme/Acid-Catalyzed Hybrid Process

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.

  18. Semantic processing of EHR data for clinical research.

    Science.gov (United States)

    Sun, Hong; Depraetere, Kristof; De Roo, Jos; Mels, Giovanni; De Vloed, Boris; Twagirumukiza, Marc; Colaert, Dirk

    2015-12-01

    There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The systematic review as a research process in music therapy.

    Science.gov (United States)

    Hanson-Abromeit, Deanna; Sena Moore, Kimberly

    2014-01-01

    Music therapists are challenged to present evidence on the efficacy of music therapy treatment and incorporate the best available research evidence to make informed healthcare and treatment decisions. Higher standards of evidence can come from a variety of sources including systematic reviews. To define and describe a range of research review methods using examples from music therapy and related literature, with emphasis on the systematic review. In addition, the authors provide a detailed overview of methodological processes for conducting and reporting systematic reviews in music therapy. The systematic review process is described in five steps. Step 1 identifies the research plan and operationalized research question(s). Step 2 illustrates the identification and organization of the existing literature related to the question(s). Step 3 details coding of data extracted from the literature. Step 4 explains the synthesis of coded findings and analysis to answer the research question(s). Step 5 describes the strength of evidence evaluation and results presentation for practice recommendations. Music therapists are encouraged to develop and conduct systematic reviews. This methodology contributes to review outcome credibility and can determine how information is interpreted and used by clinicians, clients or patients, and policy makers. A systematic review is a methodologically rigorous research method used to organize and evaluate extant literature related to a clinical problem. Systematic reviews can assist music therapists in managing the ever-increasing literature, making well-informed evidence based practice and research decisions, and translating existing music-based and nonmusic based literature to clinical practice and research development. © the American Music Therapy Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The role of atomic and molecular processes in fusion research

    International Nuclear Information System (INIS)

    Harrison, M.F.A.

    1977-01-01

    This paper considers the relevance of atomic and molecular processes to research into controlled nuclear fusion and in particular their effects upon the magnetically confined plasma in Tokamak experiments and conceptual Tokamak reactors. The relative significance of collective phenomena and of single particle collisions to both plasma heating and loss processes are discussed and the pertinent principles of plasma refuelling and plasma diagnostics are outlined. The methods by which atomic and molecular data are applied to these problems, the contributing effects of surface interactions and the consequent implications upon the accuracy and the type of data needed are described in a qualitative manner. Whilst particular atomic and molecular processes are not discussed in detail, sufficient information is given of the physical environments of Tokamak devices for significant processes to be self evident. (author)

  1. An introduction to statistical process control in research proteomics.

    Science.gov (United States)

    Bramwell, David

    2013-12-16

    Statistical process control is a well-established and respected method which provides a general purpose, and consistent framework for monitoring and improving the quality of a process. It is routinely used in many industries where the quality of final products is critical and is often required in clinical diagnostic laboratories [1,2]. To date, the methodology has been little utilised in research proteomics. It has been shown to be capable of delivering quantitative QC procedures for qualitative clinical assays [3] making it an ideal methodology to apply to this area of biological research. To introduce statistical process control as an objective strategy for quality control and show how it could be used to benefit proteomics researchers and enhance the quality of the results they generate. We demonstrate that rules which provide basic quality control are easy to derive and implement and could have a major impact on data quality for many studies. Statistical process control is a powerful tool for investigating and improving proteomics research work-flows. The process of characterising measurement systems and defining control rules forces the exploration of key questions that can lead to significant improvements in performance. This work asserts that QC is essential to proteomics discovery experiments. Every experimenter must know the current capabilities of their measurement system and have an objective means for tracking and ensuring that performance. Proteomic analysis work-flows are complicated and multi-variate. QC is critical for clinical chemistry measurements and huge strides have been made in ensuring the quality and validity of results in clinical biochemistry labs. This work introduces some of these QC concepts and works to bridge their use from single analyte QC to applications in multi-analyte systems. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. Copyright © 2013 The Author. Published by Elsevier

  2. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  3. EPRI/Alberta Research Council Clean Soil Process

    International Nuclear Information System (INIS)

    Spear, C.E.

    1992-12-01

    The EPRI/Alberta Research Council Clean Soil Process can remove hydrocarbon contamination from waste material from manufactured gas plants. The process uses coal as an absorbent to remove hydrocarbons. For petroleum contaminated soils, the process can bring residual concentration of petroleum below 0.1 percent and polycyclic aromatic hydrocarbon (PAH) concentration to 1--5 ppM. For coal tar contaminated soils, the process can reduce tar concentrations to about 0.05-0.5 percent and the PAH concentration to about 10--60 ppM. Additional post-treatment may be required for some precleaned soils. The process yields by-product agglomerates suitable for combustion in industrial boilers. Light hydrocarbons such as benzene are vaporized from the soil, condensed and collected in the Process and disposed of off-site. The Clean Soil Process has been tested at pilot-plant scale. A conceptual design for a 200-tons-per-day plant yielded a capital cost estimated at $3.1 million with a per-ton operating cost of $40

  4. Practical process research and development a guide for organic chemists

    CERN Document Server

    Anderson, Neal G

    2014-01-01

    Designed to provide a comprehensive, step-by-step approach to organic process research and development in the pharmaceutical, fine chemical, and agricultural chemical industries, this book describes the steps taken, following synthesis and evaluation, to bring key compounds to market in a cost-effective manner. It describes hands-on, step-by-step, approaches to solving process development problems, including route, reagent, and solvent selection; optimising catalytic reactions; chiral syntheses; and ""green chemistry."" Second Edition highlights:  Reflects the current thinking in chemical p

  5. Online persuasion process: a critical literature review of prior research

    OpenAIRE

    Poorrezaei, M

    2013-01-01

    In this paper, some of the limitations of prior research in terms of online persuasion process are\\ud highlighted. To do this, two main approaches which have been considered to study online persuasion\\ud process in context of social media are identified. Then, this study discusses the limitations and gaps\\ud of each approach. This paper is a part of author’s PhD dissertation which is being conducted to\\ud examine how different online behaviours are persuaded in online brand communities. The r...

  6. Research on hybrid transmission mode for HVDC with optimal thermal power and renewable energy combination

    Science.gov (United States)

    Zhang, Jinfang; Yan, Xiaoqing; Wang, Hongfu

    2018-02-01

    With the rapid development of renewable energy in Northwest China, curtailment phenomena is becoming more and more serve owing to lack of adjustment ability and enough transmission capacity. Based on the existing HVDC projects, exploring the hybrid transmission mode associated with thermal power and renewable power will be necessary and important. This paper has proposed a method on optimal thermal power and renewable energy combination for HVDC lines, based on multi-scheme comparison. Having established the mathematic model for electric power balance in time series mode, ten different schemes have been picked for figuring out the suitable one by test simulation. By the proposed related discriminated principle, including generation device utilization hours, renewable energy electricity proportion and curtailment level, the recommendation scheme has been found. The result has also validated the efficiency of the method.

  7. Research on Control Strategy of the Micro Grid’s Hybrid Energy System

    Science.gov (United States)

    Gao, Zi-jun; Li, Yang; Wang, Yan-ping; Zong, Ke-yong; Zhang, Jing

    2018-03-01

    This paper study the structure and operating characteristic of the hybrid energy system which is made of super-capacitor and battery. The system is controlled by strategy of bus voltage following. The bus voltage can change the state from swings to stable quickly when load mutation occurs in the micro grid. The transient impact also can be reduced by this way. The passage set up the model of energy system and make an analysis by the software named MATLAB/Simulink. At last, the passage proves the correctness and the effectiveness of the control strategy and draws a conclusion that the transient impact can be inhibited which occurs in the bus voltage of energy system.

  8. Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Pooya Azarhoosh

    2016-09-01

    Full Text Available The hybrid perovskite CH3NH3PbI3 (MAPI exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe, and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.

  9. Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells

    Science.gov (United States)

    Azarhoosh, Pooya; McKechnie, Scott; Frost, Jarvist M.; Walsh, Aron; van Schilfgaarde, Mark

    2016-09-01

    The hybrid perovskite CH3NH3PbI3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe, and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.

  10. The Research of Super Capacitor and Battery Hybrid Energy Storage System with the THIPWM

    Directory of Open Access Journals (Sweden)

    Jianwei Ma

    2014-02-01

    Full Text Available It has to be considered that dynamic performance of Super Capacitor and Battery hybrid energy storage system is poor and the output waveform of AC voltage distorted seriously. The Third Harmonic Injection PWM (THIPWM with the three-level inverter, which has a excellent performance to improve the dynamic performance of the super capacitor and battery, gathers information from ends of the DC output voltage or current and the total current of the DC side to solve the problem of unbalanced neutral line voltage of three-level inverter .It also keeps super capacitor and battery controlled smoothly during the operation, and reduces the final output waveform distortion index. The simulation results verify the practicality and correctness of the three-level inverter topology and its control algorithm.

  11. Protocol for the mixed-methods process and context evaluation of the TB & Tobacco randomised controlled trial in Bangladesh and Pakistan: a hybrid effectiveness–implementation study

    Science.gov (United States)

    Nohavova, Iveta; Dogar, Omara; Kralikova, Eva; Pankova, Alexandra; Zvolska, Kamila; Huque, Rumana; Fatima, Razia; Noor, Maryam; Elsey, Helen; Sheikh, Aziz; Siddiqi, Kamran; Kotz, Daniel

    2018-01-01

    Introduction Tuberculosis (TB) remains a significant public health problem in South Asia. Tobacco use increases the risks of TB infection and TB progression. The TB& Tobacco placebo-controlled randomised trial aims to (1) assess the effectiveness of the tobacco cessation medication cytisine versus placebo when combined with behavioural support and (2) implement tobacco cessation medication and behavioural support as part of general TB care in Bangladesh and Pakistan. This paper summarises the process and context evaluation protocol embedded in the effectiveness–implementation hybrid design. Methods and analysis We are conducting a mixed-methods process and context evaluation informed by an intervention logic model that draws on the UK Medical Research Council’s Process Evaluation Guidance. Our approach includes quantitative and qualitative data collection on context, recruitment, reach, dose delivered, dose received and fidelity. Quantitative data include patient characteristics, reach of recruitment among eligible patients, routine trial data on dose delivered and dose received, and a COM-B (‘capability’, ‘opportunity’, ‘motivation’ and ‘behaviour’) questionnaire filled in by participating health workers. Qualitative data include semistructured interviews with TB health workers and patients, and with policy-makers at district and central levels in each country. Interviews will be analysed using the framework approach. The behavioural intervention delivery is audio recorded and assessed using a predefined fidelity coding index based on behavioural change technique taxonomy. Ethics and dissemination The study complies with the guidelines of the Declaration of Helsinki. Ethics approval for the study and process evaluation was granted by the University of Leeds (qualitative components), University of York (trial data and fidelity assessment), Bangladesh Medical Research Council and Bangladesh Drug Administration (trial data and qualitative

  12. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2015-10-01

    Full Text Available Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO1, (PPy/ErGO1, (PAni/GO1 and (PPy/GO1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g−1 as compared with constituents (∼70 F g−1 at discharge current density of 0.3 A g−1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting and conducting polymers (semiconducting backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (reactivity of surface ion

  13. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sanju, E-mail: sanju.gupta@wku.edu; Price, Carson [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101-3576 (United States)

    2015-10-15

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO){sub 1}, (PPy/ErGO){sub 1}, (PAni/GO){sub 1} and (PPy/GO){sub 1}. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, C{sub s}, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent C{sub s} of ≥350 F g{sup −1} as compared with constituents (∼70 F g{sup −1}) at discharge current density of 0.3 A g{sup −1} that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine

  14. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Science.gov (United States)

    Gupta, Sanju; Price, Carson

    2015-10-01

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO)1, (PPy/ErGO)1, (PAni/GO)1 and (PPy/GO)1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g-1 as compared with constituents (˜70 F g-1) at discharge current density of 0.3 A g-1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites

  15. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  16. Evaluation of PHI Hunter in Natural Language Processing Research.

    Science.gov (United States)

    Redd, Andrew; Pickard, Steve; Meystre, Stephane; Scehnet, Jeffrey; Bolton, Dan; Heavirland, Julia; Weaver, Allison Lynn; Hope, Carol; Garvin, Jennifer Hornung

    2015-01-01

    We introduce and evaluate a new, easily accessible tool using a common statistical analysis and business analytics software suite, SAS, which can be programmed to remove specific protected health information (PHI) from a text document. Removal of PHI is important because the quantity of text documents used for research with natural language processing (NLP) is increasing. When using existing data for research, an investigator must remove all PHI not needed for the research to comply with human subjects' right to privacy. This process is similar, but not identical, to de-identification of a given set of documents. PHI Hunter removes PHI from free-form text. It is a set of rules to identify and remove patterns in text. PHI Hunter was applied to 473 Department of Veterans Affairs (VA) text documents randomly drawn from a research corpus stored as unstructured text in VA files. PHI Hunter performed well with PHI in the form of identification numbers such as Social Security numbers, phone numbers, and medical record numbers. The most commonly missed PHI items were names and locations. Incorrect removal of information occurred with text that looked like identification numbers. PHI Hunter fills a niche role that is related to but not equal to the role of de-identification tools. It gives research staff a tool to reasonably increase patient privacy. It performs well for highly sensitive PHI categories that are rarely used in research, but still shows possible areas for improvement. More development for patterns of text and linked demographic tables from electronic health records (EHRs) would improve the program so that more precise identifiable information can be removed. PHI Hunter is an accessible tool that can flexibly remove PHI not needed for research. If it can be tailored to the specific data set via linked demographic tables, its performance will improve in each new document set.

  17. Surgery and Research: A Practical Approach to Managing the Research Process

    Science.gov (United States)

    Swiatek, Peter R.; Chung, Kevin C.; Mahmoudi, Elham

    2016-01-01

    Following a practical project management method is essential in completing a research project on time and within budget. Although this concept is well developed in the business world, it has yet to be explored in academic surgical research. Defining and adhering to a suitable workflow would increase portability, reusability, and therefore, efficiency of the research process. In this article, we briefly review project management techniques. We specifically underline four main steps of project management: (1) definition and organization, (2) planning, (3) execution, and (4) evaluation, using practical examples from our own multidisciplinary plastic surgery research team. PMID:26710037

  18. Religiosity and parenting: recent directions in process-oriented research.

    Science.gov (United States)

    Goeke-Morey, Marcie C; Cummings, E Mark

    2017-06-01

    Most faith traditions, in principle, promote family life and positive parent-child relationships. In recent years, research has moved beyond questions of whether religion supports positive parenting towards addressing more nuanced process-oriented questions, including how, why, and when religion is linked with adaptive or maladaptive parenting. Relations between religion and multiple specific parenting behaviors (e.g., involvement, warmth, authoritative parenting, communication) are identified, including contexts for when and why relations between religion and parenting are adaptive or maladaptive. A next step for research is the development and testing of theoretical models to more comprehensively account for process relations between religion and parenting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Product- and Process Units in the CRITT Translation Process Research Database

    DEFF Research Database (Denmark)

    Carl, Michael

    than 300 hours of text production. The database provides the raw logging data, as well as Tables of pre-processed product- and processing units. The TPR-DB includes various types of simple and composed product and process units that are intended to support the analysis and modelling of human text......The first version of the "Translation Process Research Database" (TPR DB v1.0) was released In August 2012, containing logging data of more than 400 translation and text production sessions. The current version of the TPR DB, (v1.4), contains data from more than 940 sessions, which represents more...

  20. ISS and Shuttle Payload Research Development and Processing

    Science.gov (United States)

    Calhoun, Kyle A.

    2010-01-01

    NASA's ISS and Spacecraft Processing Directorate (UB) is charged with the performance of payload development for research originating through NASA, ISS international partners, and the National Laboratory. The Payload Development sector of the Directorate takes biological research approved for on orbit experimentation from its infancy stage and finds a way to integrate and implement that research into a payload on either a Shuttle sortie or Space Station increment. From solicitation and selection, to definition, to verification, to integration and finally to operations and analysis, Payload Development is there every step of the way. My specific work as an intern this summer has consisted of investigating data received by separate flight and ground control Advanced Biological Research Systems (ABRS) units for Advanced Plant Experiments (APEX) and Cambium research. By correlation and analysis of this data and specific logbook information I have been working to explain changes in environmental conditions on both the flight and ground control unit. I have then, compiled all of that information into a form that can be presentable to the Principal Investigator (PI). This compilation allows that PI scientist to support their findings and add merit to their research. It also allows us, as the Payload Developers, to further inspect the ABRS unit and its performance

  1. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  2. The process research of drying UF4 by microwave

    International Nuclear Information System (INIS)

    Wen Guo; Wang Yunbo; Liu Long

    2010-01-01

    This paper make use of microwave to dry UF 4 filter cake, the aim is desorbed adsorption water. The research focus on such process conditions, boat material, thickness of filter cake, drying time, setting temperature, heating power and so on. the research of desorption crystal water of UF 4 that dried by microwave in fixed bed .When UF 4 drying by microwave and claiming by fixed bed, the qualified UF 4 powder is prepared. The research is shown that microwave can desorbs adsorption water which contain in UF 4 filter cake. There is a stable water contents in UF 4 after drying, and the sum of two members is less. After drying by microwave and claiming by fixed bed, the contents of water, UO 2 and UO 2 F 2 are all according to the quality standard. (authors)

  3. Integration of Distributed Services and Hybrid Models Based on Process Choreography to Predict and Detect Type 2 Diabetes.

    Science.gov (United States)

    Martinez-Millana, Antonio; Bayo-Monton, Jose-Luis; Argente-Pla, María; Fernandez-Llatas, Carlos; Merino-Torres, Juan Francisco; Traver-Salcedo, Vicente

    2017-12-29

    Life expectancy is increasing and, so, the years that patients have to live with chronic diseases and co-morbidities. Type 2 diabetes is one of the most prevalent chronic diseases, specifically linked to being overweight and ages over sixty. Recent studies have demonstrated the effectiveness of new strategies to delay and even prevent the onset of type 2 diabetes by a combination of active and healthy lifestyle on cohorts of mid to high risk subjects. Prospective research has been driven on large groups of the population to build risk scores that aim to obtain a rule for the classification of patients according to the odds for developing the disease. Currently, there are more than two hundred models and risk scores for doing this, but a few have been properly evaluated in external groups and integrated into a clinical application for decision support. In this paper, we present a novel system architecture based on service choreography and hybrid modeling, which enables a distributed integration of clinical databases, statistical and mathematical engines and web interfaces to be deployed in a clinical setting. The system was assessed during an eight-week continuous period with eight endocrinologists of a hospital who evaluated up to 8080 patients with seven different type 2 diabetes risk models implemented in two mathematical engines. Throughput was assessed as a matter of technical key performance indicators, confirming the reliability and efficiency of the proposed architecture to integrate hybrid artificial intelligence tools into daily clinical routine to identify high risk subjects.

  4. Fluorescent silica hybrid materials containing benzimidazole dyes obtained by sol-gel method and high pressure processing

    International Nuclear Information System (INIS)

    Hoffmann, Helena Sofia; Stefani, Valter; Benvenutti, Edilson Valmir; Costa, Tania Maria Haas; Gallas, Marcia Russman

    2011-01-01

    Research highlights: → Sol-gel technique was used to obtain silica based hybrid materials containing benzimidazole dyes. → The sol-gel catalysts, HF and NaF, produce xerogels with different optical and textural characteristics. → High pressure technique (6.0 GPa) was used to produce fluorescent and transparent silica compacts with the dyes entrapped in closed pores, maintaining their optical properties. → The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. - Abstract: New silica hybrid materials were obtained by incorporation of two benzimidazole dyes in the silica network by sol-gel technique, using tetraethylorthosilicate (TEOS) as inorganic precursor. Several syntheses were performed with two catalysts (HF and NaF) producing powders and monoliths with different characteristics. The dye 2-(2'-hydroxy-5'-aminophenyl)benzimidazole was dispersed and physically adsorbed in the matrix, and the dye 2'(5'-N-(3-triethoxysilyl)propylurea-2'-hydroxyphenyl)benzimidazole was silylated, becoming chemically bonded to the silica network. High pressure technique was used to produce fluorescent and transparent silica compacts with the silylated and incorporated dye, at 6.0 GPa and room temperature. The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. The influence of the syntheses conditions was investigated by textural analysis using nitrogen adsorption isotherms.

  5. Perspectives on sensory processing disorder: a call for translational research

    Directory of Open Access Journals (Sweden)

    Lucy J Miller

    2009-09-01

    Full Text Available This article explores the convergence of two fields, which have similar theoretical origins: a clinical field originally known as sensory integration and a branch of neuroscience that conducts research in an area also called sensory integration. Clinically, the term was used to identify a pattern of dysfunction in children and adults, as well as a related theory, assessment, and treatment method for children who have atypical responses to ordinary sensory stimulation. Currently the term for the disorder is Sensory Processing Disorder (SPD. In neuroscience, the term sensory integration refers to converging information in the brain from one or more sensory domains. A recent subspecialty in neuroscience labeled multisensory integration (MSI refers to the neural process that occurs when sensory input from two or more different sensory modalities converge. Understanding the specific meanings of the term sensory integration intended by the clinical and neuroscience fields and the term multisensory integration in neuroscience is critical. A translational research approach would improve exploration of crucial research questions in both the basic science and clinical science. Refinement of the conceptual model of the disorder and the related treatment approach would help prioritize which specific hypotheses should be studied in both the clinical and neuroscience fields. The issue is how we can facilitate a translational approach between researchers in the two fields. Multidisciplinary, collaborative studies would increase knowledge of brain function and could make a significant contribution to alleviating the impairments of individuals with SPD and their families.

  6. Cognitive processes, models and metaphors in decision research

    Directory of Open Access Journals (Sweden)

    Ben Newell

    2008-03-01

    Full Text Available Decision research in psychology has traditionally been influenced by the extit{homo oeconomicus} metaphor with its emphasis on normative models and deviations from the predictions of those models. In contrast, the principal metaphor of cognitive psychology conceptualizes humans as `information processors', employing processes of perception, memory, categorization, problem solving and so on. Many of the processes described in cognitive theories are similar to those involved in decision making, and thus increasing cross-fertilization between the two areas is an important endeavour. A wide range of models and metaphors has been proposed to explain and describe `information processing' and many models have been applied to decision making in ingenious ways. This special issue encourages cross-fertilization between cognitive psychology and decision research by providing an overview of current perspectives in one area that continues to highlight the benefits of the synergistic approach: cognitive modeling of multi-attribute decision making. In this introduction we discuss aspects of the cognitive system that need to be considered when modeling multi-attribute decision making (e.g., automatic versus controlled processing, learning and memory constraints, metacognition and illustrate how such aspects are incorporated into the approaches proposed by contributors to the special issue. We end by discussing the challenges posed by the contrasting and sometimes incompatible assumptions of the models and metaphors.

  7. Research and development on radiation processing in Sri Lanka

    International Nuclear Information System (INIS)

    Kulatunge, S.S.; Motha, L.; Sultanbawa, Y.; Malavipathirana, S.; Silva, A de; Nanayakkara, S.; Hewajulige, I.G.N.; Silva, K.R.C de

    2008-01-01

    Research on radiation processing of natural polymer such as polysaccharides of chitosan, cellulose, carrageenan has been carried out in Sri Lanka since the year 2004. The research group have been involving in development activities on application of chitin and chitosan for wound dressing, irradiated chitosan on shelf life extension of fruits such as papaya, banana, mangoes, radiation crosslinked super-absorbent hydrogel from sodium carboxymethyl cellulose by radiation processing. Hydrogels prepared with PVA/Carrageenan/Agar has been studied on guinea pigs to determine the wound healing effect. Irradiated chitosan powder and chitosan solution was studied in vitro and found chitosan solution (1%) directly subjected to irradiation dosages even at 5 kGy was highly effective in control of anthracnose causing organism of papaya. In vivo studies with irradiated 1% chitosan solution on Rathana and red lady variety of papaya shows better control of spoilage of papaya to a considerable extent. The government of Sri Lanka (Ministry of Science and Technology and Atomic Energy Authority) is in the process of establishing the first government owned Multipurpose Gamma Irradiation Facility and it will be helpful to transfer the output of R and D in radiation processing. (author)

  8. The NCAR Research Data Archive's Hybrid Approach for Data Discovery and Access

    Science.gov (United States)

    Schuster, D.; Worley, S. J.

    2013-12-01

    The NCAR Research Data Archive (RDA http://rda.ucar.edu) maintains a variety of data discovery and access capabilities for it's 600+ dataset collections to support the varying needs of a diverse user community. In-house developed and standards-based community tools offer services to more than 10,000 users annually. By number of users the largest group is external and access the RDA through web based protocols; the internal NCAR HPC users are fewer in number, but typically access more data volume. This paper will detail the data discovery and access services maintained by the RDA to support both user groups, and show metrics that illustrate how the community is using the services. The distributed search capability enabled by standards-based community tools, such as Geoportal and an OAI-PMH access point that serves multiple metadata standards, provide pathways for external users to initially discover RDA holdings. From here, in-house developed web interfaces leverage primary discovery level metadata databases that support keyword and faceted searches. Internal NCAR HPC users, or those familiar with the RDA, may go directly to the dataset collection of interest and refine their search based on rich file collection metadata. Multiple levels of metadata have proven to be invaluable for discovery within terabyte-sized archives composed of many atmospheric or oceanic levels, hundreds of parameters, and often numerous grid and time resolutions. Once users find the data they want, their access needs may vary as well. A THREDDS data server running on targeted dataset collections enables remote file access through OPENDAP and other web based protocols primarily for external users. In-house developed tools give all users the capability to submit data subset extraction and format conversion requests through scalable, HPC based delayed mode batch processing. Users can monitor their RDA-based data processing progress and receive instructions on how to access the data when it is

  9. Research on pre-processing of QR Code

    Science.gov (United States)

    Sun, Haixing; Xia, Haojie; Dong, Ning

    2013-10-01

    QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.

  10. Bridging the clinician/researcher gap with systemic research: the case for process research, dyadic, and sequential analysis.

    Science.gov (United States)

    Oka, Megan; Whiting, Jason

    2013-01-01

    In Marriage and Family Therapy (MFT), as in many clinical disciplines, concern surfaces about the clinician/researcher gap. This gap includes a lack of accessible, practical research for clinicians. MFT clinical research often borrows from the medical tradition of randomized control trials, which typically use linear methods, or follow procedures distanced from "real-world" therapy. We review traditional research methods and their use in MFT and propose increased use of methods that are more systemic in nature and more applicable to MFTs: process research, dyadic data analysis, and sequential analysis. We will review current research employing these methods, as well as suggestions and directions for further research. © 2013 American Association for Marriage and Family Therapy.

  11. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali; Lai, Zhiping

    2014-01-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions

  12. Determination of grafting conversion degree in PS/PS-graft-POSS/POSS hybrid nanocomposites obtained through reactive processing

    International Nuclear Information System (INIS)

    Bianchi, Otavio; Repenning, Gustavo B.; Mauler, Raquel S.; Oliveira, Ricardo V.B.; Canto, Leonardo B.

    2011-01-01

    Hybrid nanocomposites of polystyrene (PS) and polyhedral oligomeric silsesquioxanes (POSS) - PS/PS-graft-POSS/POSS - with different grafting degrees were prepared by reactive melt processing using dicumyl peroxide (DCP) as initiator in the presence or absence of styrene monomer as radical transfer agent. Gel permeation chromatography (GPC) using triple-detector and proton nuclear magnetic resonance (NMR 1 H) analyses were used together to determine the conversion degree of PS-graft-POSS as a function of the reactive processing conditions adopted. GPC was employed to evaluate the effects of grafting (PS-graft-POSS) and PS chains degradation (β scission) that occur simultaneously during processing on the variation of average molecular masses and distributions for each PS/POSS sample. PS/POSS systems processed with styrene showed higher weight average molecular weights (M w ) and lower polydispersity indexes (M w /M n ), as a result of higher grafting (PS-graft-POSS) conversion (28-40%) and lower PS chain degradation level, as compared to PS/POSS systems processed without styrene in which the degree of grafting conversion was around 25-28%. (author)

  13. European research and development on HTGR process heat applications

    International Nuclear Information System (INIS)

    Verfondern, Karl; Lensa, Werner von

    2003-01-01

    The High-Temperature Gas-Cooled Reactor represents a suitable and safe concept of a future nuclear power plant with the potential to produce process heat to be utilized in many industrial processes such as reforming of natural gas, coal gasification and liquefaction, heavy oil recovery to serve for the production of the storable commodities hydrogen or energy alcohols as future transportation fuels. The paper will include a description of the broad range of applications for HTGR process heat and describe the results of the German long-term projects ''Prototype Nuclear Process Heat Reactor Project'' (PNP), in which the technical feasibility of an HTGR in combination with a chemical facility for coal gasification processes has been proven, and ''Nuclear Long-Distance Energy Transportation'' (NFE), which was the demonstration and verification of the closed-cycle, long-distance energy transmission system EVA/ADAM. Furthermore, new European research initiatives are shortly described. A particular concern is the safety of a combined nuclear/chemical facility requiring a concept against potential fire and explosion hazards. (author)

  14. Preliminary Research on Possibilities of Drilling Process Robotization

    Science.gov (United States)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.

  15. Mapping the Asthma Care Process: Implications for Research and Practice.

    Science.gov (United States)

    Dima, Alexandra Lelia; de Bruin, Marijn; Van Ganse, Eric

    2016-01-01

    Whether people with asthma gain and maintain control over their condition depends not only on the availability of effective drugs, but also on multiple patient and health care professional (HCP) behaviors. Research in asthma rarely considers how these behaviors interact with each other and drug effectiveness to determine health outcomes, which may limit real-life applicability of findings. The objective of this study was to develop a logic process model (Asthma Care Model; ACM) that explains how patient and HCP behaviors impact on the asthma care process. Within a European research project on asthma (ASTRO-LAB), we reviewed asthma care guidelines and empirical literature, and conducted qualitative interviews with patients and HCPs. Findings were discussed with the project team and respiratory care experts and integrated in a causal model. The model outlines a causal sequence of treatment events, from diagnosis and assessment to treatment prescription, drug exposure, and health outcomes. The relationships between these components are moderated by patient behaviors (medication adherence, symptom monitoring, managing triggers, and exacerbations) and HCP behaviors (medical care and self-management support). Modifiable and nonmodifiable behavioral determinants influence the behaviors of patients and HCPs. The model is dynamic as it includes feedback loops of behavioral and clinical outcomes, which influence future patient and HCP decision making. Key evidence for each relationship is summarized to derive research priorities and clinical recommendations. The ACM model is of interest to both researchers and practitioners, and intended as a first version (ACM-v1) of a common framework for generating and translating research evidence in asthma care. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Research of Ant Colony Optimized Adaptive Control Strategy for Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Linhui Li

    2014-01-01

    Full Text Available Energy management control strategy of hybrid electric vehicle has a great influence on the vehicle fuel consumption with electric motors adding to the traditional vehicle power system. As vehicle real driving cycles seem to be uncertain, the dynamic driving cycles will have an impact on control strategy’s energy-saving effect. In order to better adapt the dynamic driving cycles, control strategy should have the ability to recognize the real-time driving cycle and adaptively adjust to the corresponding off-line optimal control parameters. In this paper, four types of representative driving cycles are constructed based on the actual vehicle operating data, and a fuzzy driving cycle recognition algorithm is proposed for online recognizing the type of actual driving cycle. Then, based on the equivalent fuel consumption minimization strategy, an ant colony optimization algorithm is utilized to search the optimal control parameters “charge and discharge equivalent factors” for each type of representative driving cycle. At last, the simulation experiments are conducted to verify the accuracy of the proposed fuzzy recognition algorithm and the validity of the designed control strategy optimization method.

  17. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  18. The Research on Modeling and Simulation of TFE Polymerization Process

    Directory of Open Access Journals (Sweden)

    Jing Gao Sun

    2014-01-01

    Full Text Available PTFE (polytetrafluoroethylene is the fluorinated straight-chain polymer, made by the polymerization of tetrafluoroethylene monomer; it is used widely because of its excellent performance and can be obtained by the polymerization of body, solutions, suspensions, and emulsions. But only the last two are the main ways. This research paper makes simulation based on Polymer Plus. It uses the emulsion polymerization method at background to carry out a semibatch reactor system. Upon the actual production conditions, simulation process under the steady state conditions is used to analyze the effects of the changes on operating conditions; the corresponding dynamic model is created to analyze the impact of the changes of conditions on the entire system. Moreover, the amount of APS which plays an important part in this reaction is discussed for getting the most suitable amount of initiator. Because of less research work on this job, it is so difficult to find the related data from the literature. Therefore, this research will have a great significance for the process of the tetrafluoroethylene emulsion polymerization in the future.

  19. Development of a hybrid sputtering/evaporation process for Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, M.; Binetti, S.; Le Donne, A.; Lorenzi, B.; Caccamo, L.; Miglio, L. [Dipartimento di Scienza dei Materiali e Solar Energy Research Center MIB-SOLAR, Universita di Milano Bicocca, Milan (Italy); Moneta, R.; Marchionna, S.; Meschia, M. [Voltasolar s.r.l, Turate (Italy)

    2011-08-15

    In this paper we report a new method for Cu(In,Ga)Se{sub 2} deposition for solar cell application. Differently from the common co-evaporation process, an alterative approach for thin film Cu(In,Ga)Se{sub 2} has been tested: the sputtering deposition of metal elements combined with the selenium evaporation. We have studied the relationships between the growth parameters of our hybrid sputtering/evaporation method and the chemical-physical properties of the CIGS films. The cells are completed with a CdS buffer layer deposited by chemical bath deposition and ZnO + ITO deposited by RF sputtering. Test solar cells of 0.5 cm{sup 2} have shown an efficiency of 10% and 2.5% on glass and stainless steel substrate respectively. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    Science.gov (United States)

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  1. A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake

    Energy Technology Data Exchange (ETDEWEB)

    Daikopoulos, Chris [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, Athanasios B. [Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, Athens 15310 (Greece); Georgiou, Yiannis [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Deligiannakis, Yiannis, E-mail: ideligia@cc.uoi.gr [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University, Olomouc 77146 (Czech Republic); Karakassides, Michael A. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece)

    2014-04-01

    Highlights: • Novel phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild xerogel process. • Surface Complexation Modeling reveals that PSLM bears 2 types of functional groups able to bind heavy metal. • Maximum metal uptake capacities were found 2.72 mmol g{sup −1} for Cu{sup 2+}, 1.67 mmol g{sup −1} for Pb{sup 2+} and 1.00 mmol g{sup −1} for Cd{sup 2+} at pH 7. • EPR spectroscopy reveals local coordination environment for Cu{sup 2+} ions. - Abstract: A phosphonate-rich organosilica layered hybrid material (PSLM) made of 3-(trihydroxysilyl)propyl methylphosphonate, monosodium salt, as the single silica source, has been obtained from its aqueous solution through a xerogel process and mild thermal aging. The method is simple, affording bulk quantities of powdered PSLM in a single-step. The hybrid is stable in water and possesses a high content of phosphonate groups fixed on the solid matrix. In addition, PSLM shows good thermal stability, which exceeds 300 °C in air. The material was characterized using SEM, TEM, XRD, FT-IR and TGA techniques. Potentiometric titrations show that PSLM bears high-surface density of phosphonate groups (3 mmol g{sup −1}). As a result, the material displays high metal uptake capacity for heavy metal ions such as Cu{sup 2+} (2.72 mmol g{sup −1}), Pb{sup 2+} (1.67 mmol g{sup −1}) and Cd{sup 2+} (1.00 mmol g{sup −1}) at neutral pH values e.g. the pH of natural waters. Detailed theoretical modeling using a Surface Complexation Model combined with Electron Paramagnetic Resonance (EPR) spectroscopy shows that the surface distribution of surface bound Cu{sup 2+} ions is rather homogeneous e.g. copper-binding phosphonate sites are arranged in average distances 5–8 Å.

  2. Hybrid Integrated Si/SiN Platforms for Wideband Optical Processing

    Science.gov (United States)

    2017-05-08

    annealing process, makes the process prone to dopant redistribution, that hinderers the SiN deposition after full Si device fabrication. To resolve...with 220 nm of crystalline Si. In parallel, a Si die goes through a wet oxidation process to grow 5 μm of thermal oxide. In the next step, 400 nm of... annealing methods. As a figure of merit in hydrophilic bonding, we monitored the surface roughness and bonding strength of a thin oxide layer to

  3. Isobutane Alkylation Process Synthesis by means of Hybrid Simulation-Multiobjective Optimization

    OpenAIRE

    Fernandez-Torres, Maria J.; García, Norberto; Caballero, José A.

    2014-01-01

    Multiobjective Generalized Disjunctive Programming (MO-GDP) optimization has been used for the synthesis of an important industrial process, isobutane alkylation. The two objective functions to be simultaneously optimized are the environmental impact, determined by means of LCA (Life Cycle Assessment), and the economic potential of the process. The main reason for including the minimization of the environmental impact in the optimization process is the widespread environmental concern by the ...

  4. Effect of temperature downshifts on a bench-scale hybrid A/O system: Process performance and microbial community dynamics.

    Science.gov (United States)

    Zhou, Hexi; Li, Xiangkun; Chu, Zhaorui; Zhang, Jie

    2016-06-01

    Effect of temperature downshifts on process performance and bacterial community dynamics was investigated in a bench-scale hybrid A/O system treating real domestic wastewater. Results showed that the average COD removal in this system reached 90.5%, 89.1% and 90.3% for Run 1 (25 °C), Run 2 (15 °C) and Run 3 (10 °C), respectively, and variations in temperature barely affected the effluent COD concentration. The average removal efficiencies of NH4(+)-N were 98.4%, 97.8%, 95.7%, and that of TN were 77.1%, 61.8%, 72% at 25 °C, 15 °C and 10 °C, respectively. Although the hybrid system was subjected to low temperature, this process effectively removed NH4(+)-N and TN even at 10 °C with the average effluent concentrations of 2.4 mg/L and 14.3 mg/L, respectively. Results from high-throughput sequencing analysis revealed that when the operation temperature decreased from 25 °C to 10 °C, the richness and diversity indexes of the system decreased in the sludge samples, while underwent an increase in the biofilm samples. Furthermore, the major heterotrophic bacteria consisted of Lewinella, Lutimonas, Chitinophaga and Fluviicola at 10 °C, which could be central to effective COD removal at low temperature. Additionally, Azospira, one denitrifying-related genus increased from 0.4% to 4.45% in the biofilm samples, with a stable TN removal in response to temperature downshifts. Nitrosomonas and Nitrospira increased significantly in the biofilm samples, implying that the attached biofilm contributed to more nitrification at low temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Free-Standing and Self-Crosslinkable Hybrid Films by Core–Shell Particle Design and Processing

    Directory of Open Access Journals (Sweden)

    Steffen Vowinkel

    2017-11-01

    Full Text Available The utilization and preparation of functional hybrid films for optical sensing applications and membranes is of utmost importance. In this work, we report the convenient and scalable preparation of self-crosslinking particle-based films derived by directed self-assembly of alkoxysilane-based cross-linkers as part of a core-shell particle architecture. The synthesis of well-designed monodisperse core-shell particles by emulsion polymerization is the basic prerequisite for subsequent particle processing via the melt-shear organization technique. In more detail, the core particles consist of polystyrene (PS or poly(methyl methacrylate (PMMA, while the comparably soft particle shell consists of poly(ethyl acrylate (PEA and different alkoxysilane-based poly(methacrylates. For hybrid film formation and convenient self-cross-linking, different alkyl groups at the siloxane moieties were investigated in detail by solid-state Magic-Angle Spinning Nuclear Magnetic Resonance (MAS, NMR spectroscopy revealing different crosslinking capabilities, which strongly influence the properties of the core or shell particle films with respect to transparency and iridescent reflection colors. Furthermore, solid-state NMR spectroscopy and investigation of the thermal properties by differential scanning calorimetry (DSC measurements allow for insights into the cross-linking capabilities prior to and after synthesis, as well as after the thermally and pressure-induced processing steps. Subsequently, free-standing and self-crosslinked particle-based films featuring excellent particle order are obtained by application of the melt-shear organization technique, as shown by microscopy (TEM, SEM.

  6. Metals, heavy metals and microorganism removal from spent filter backwash water by hybrid coagulation-UF processes

    Directory of Open Access Journals (Sweden)

    Mokhtar Mahdavi

    2018-04-01

    Full Text Available Spent filter backwash water (SFBW reuse has attracted particular attention, especially in countries that experience water scarcity. It can act as a permanent water source until the water treatment plant is working. In this study, the concentrations of Fe, Al, Pb, As, and Cd with total and fecal coliform (TC/FC were investigated in raw and treated SFBW by hybrid coagulation-UF processes. The pilot plant consisted of pre-sedimentation, coagulation, flocculation, clarification, and ultrafiltration (UF units. Poly-aluminum ferric chloride (PAFCL and ferric chloride (FeCl3 were used as pretreatment. The results showed that, at the optimum dose of PAFCl, the average removal of TC and FC was 88 and 79% and with PAFCl-UF process, it reached 100 and 100%, respectively. For FeCl3, removal efficiency of TC and FC were 81 and 72% and by applying FeCl3-UF process, it reached 100 and 100%, respectively. In comparison with FeCl3, PAFCl showed better removal efficiency for Fe, Pb, As, and Cd, except residual Al concentration. Coagulation-UF process could treat SFBW efficiently and treated SFBW could meet the US-EPA drinking water standard. Health risk index values of Fe, AL, Pb, AS, and Cd in treated SFBW indicate no risk of exposure to the use of this water.

  7. Psychological research in the process of creating artistic works

    Directory of Open Access Journals (Sweden)

    Milićević Nebojša

    2016-01-01

    Full Text Available This text is the review of previous attempt to research creative process in art. Neumann's and Weisberg's classification has been supplemented by the original research by the author of this text. On the example of Picasso's drawing of Guernica it was fulfilled the genesis of this monumental art piece in the light of the theory of aesthetic decision making (Ognjenović, 1980, 1991 and the theory of aesthetic evolution (Martindale, 1990. Based on the evaluation of the students of psychology (N = 32 on the scales of semantic differential, the trends of aesthetic modus in various phases in creating details of the picture (bull head, female had, horse head were analyzed. On the example of bull head details the hypothesis is mainly confirmed. The dimension of harmony (H during the phase of creation shows a soft fall of this detail (F = 3,02, p < 0.05. Decorative, redundant and richness in details (R during phases rapidly grows, while in finishing line falls (F = 13,88, p < 0.01. It is the same with the dimension of distance (D that rises during the period of creation of preliminary sketch bull head (F = 6,74, p < 0.05. Trend arousal potential is beside some oscillations, according with earlier Martindale's findings, shows a slow linear rise (F = 11,12, p < 0.05. Primordial content (PS changes from faze showing alternating oscillatory movement that can be hardly described by more simple regression equation. That is the main point of Picasso's sudden transformation in style of drawing. The results confirm the theoretical hypotheses. Finally, it can be concluded that beside the complexity of creative process, contemporary psychological research explain some of the aspects of creative process.

  8. Hybrid FOSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...

  9. Effects of thermal treatment on the structure and luminescent properties of Eu3+ doped SiO2–PMMA hybrid nanocomposites prepared by a sol–gel process

    International Nuclear Information System (INIS)

    Jesus, Filipe Augusto de; Tarse Sobrinho Santos, Simei; Caiut, José Maurício Almeida; Sarmento, Victor Hugo Vitorino

    2016-01-01

    Hybrid nanocomposites are multifunctional materials and their properties are the consequence of molecular interaction between inorganic and organic phases. These materials are interesting hosts for lanthanide ions, such as Eu 3+ . The purpose of this research was to synthesize Eu 3+ doped SiO 2 –PMMA hybrid nanocomposites by a sol–gel process and to study the effects of thermal treatment on the structure and luminescent properties of the material. Structural characterization was carried out using the FTIR, TG and 29 Si NMR techniques, however, the luminescence studies were more sensitive to detect the slight structural changes resulting from the thermal treatment. The Eu 3+ ions inserted into the matrix behaved as a structural probe and make it possible to notice the symmetry change from Eu 3+ site, the decrease in the number of hydroxyl coordinated groups and the improvement in quantum efficiency as a result of the thermal treatment. In addition, the Judd–Ofelt intensity parameters were obtained and supported the interaction between the rare earth and hybrid material. The hybrid was obtained as a stable material until 200 °C and the high sensitivity of the Eu 3+ ions in the system may be used in future applications as thermal sensors, for example. - Highlights: • Eu 3+ -doped SiO 2 –PMMA hybrid nanocomposites were synthesized through a sol–gel process. • FTIR, NMR and TG techniques were used to structural characterization of the material. • Luminescence analysis showed changes in Eu 3+ coordination sphere caused by thermal treatments. • Thermal treatments increase the interaction between the lanthanide ions and the host. • There was a huge improvement in the quantum efficiency of Eu 3+ in heat treated sample.

  10. Effects of thermal treatment on the structure and luminescent properties of Eu{sup 3+} doped SiO{sub 2}–PMMA hybrid nanocomposites prepared by a sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Filipe Augusto de; Tarse Sobrinho Santos, Simei [Departamento de Química, Universidade Federal de Sergipe, Av. Vereador Olímpio Grande s/n, Centro, Itabaiana, SE (Brazil); Caiut, José Maurício Almeida [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP (Brazil); Sarmento, Victor Hugo Vitorino, E-mail: vhsarmento@ufs.br [Departamento de Química, Universidade Federal de Sergipe, Av. Vereador Olímpio Grande s/n, Centro, Itabaiana, SE (Brazil)

    2016-02-15

    Hybrid nanocomposites are multifunctional materials and their properties are the consequence of molecular interaction between inorganic and organic phases. These materials are interesting hosts for lanthanide ions, such as Eu{sup 3+}. The purpose of this research was to synthesize Eu{sup 3+} doped SiO{sub 2}–PMMA hybrid nanocomposites by a sol–gel process and to study the effects of thermal treatment on the structure and luminescent properties of the material. Structural characterization was carried out using the FTIR, TG and {sup 29}Si NMR techniques, however, the luminescence studies were more sensitive to detect the slight structural changes resulting from the thermal treatment. The Eu{sup 3+} ions inserted into the matrix behaved as a structural probe and make it possible to notice the symmetry change from Eu{sup 3+} site, the decrease in the number of hydroxyl coordinated groups and the improvement in quantum efficiency as a result of the thermal treatment. In addition, the Judd–Ofelt intensity parameters were obtained and supported the interaction between the rare earth and hybrid material. The hybrid was obtained as a stable material until 200 °C and the high sensitivity of the Eu{sup 3+} ions in the system may be used in future applications as thermal sensors, for example. - Highlights: • Eu{sup 3+}-doped SiO{sub 2}–PMMA hybrid nanocomposites were synthesized through a sol–gel process. • FTIR, NMR and TG techniques were used to structural characterization of the material. • Luminescence analysis showed changes in Eu{sup 3+} coordination sphere caused by thermal treatments. • Thermal treatments increase the interaction between the lanthanide ions and the host. • There was a huge improvement in the quantum efficiency of Eu{sup 3+} in heat treated sample.

  11. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  12. Research progress on trifluoromethyl-based radical reaction process

    Science.gov (United States)

    Song, Hao

    2017-12-01

    Due to the unique properties imparted by the trifluoromethyl group, such as high electron density and strong lipotropy, which effectively improve acidity, lipophilicity and metabolic stability of the molecule itself, trifluoromethyl-substituted organic compounds are becoming increasingly important as structural motifs in pharmaceuticals, agrochemicals and organic materials. In this review, we present several methods developed for the direct introduction of a trifluoromethyl group, beginning with its rich and storied history. Then the present article addresses mechanism and process in carbon-carbon bond forming reaction based on radical process which is divided into three parts according to the way of CF3 radical generation. Finally, challenges and opportunities of researches on trifluoromethylation reactions facing are prospected.

  13. Using of Natural Language Processing Techniques in Suicide Research

    Directory of Open Access Journals (Sweden)

    Azam Orooji

    2017-09-01

    Full Text Available It is estimated that each year many people, most of whom are teenagers and young adults die by suicide worldwide. Suicide receives special attention with many countries developing national strategies for prevention. Since, more medical information is available in text, Preventing the growing trend of suicide in communities requires analyzing various textual resources, such as patient records, information on the web or questionnaires. For this purpose, this study systematically reviews recent studies related to the use of natural language processing techniques in the area of people’s health who have completed suicide or are at risk. After electronically searching for the PubMed and ScienceDirect databases and studying articles by two reviewers, 21 articles matched the inclusion criteria. This study revealed that, if a suitable data set is available, natural language processing techniques are well suited for various types of suicide related research.

  14. Process research on non-CZ silicon material

    Science.gov (United States)

    1982-01-01

    High risk, high payoff research areas associated with he process for producing photovoltaic modules using non-CZ sheet material are investigated. All investigations are being performed using dendritic web silicon, but all processes are directly applicable to other ribbon forms of sheet material. The technical feasibility of forming front and back junctions in non-CZ silicon using liquid dopant techniques was determined. Numerous commercially available liquid phosphorus and boron dopant solutions are investigated. Temperature-time profiles to achieve N(+) and P(+) sheet resistivities of 60 + or - 10 and 40 + or - s10 ohms per square centimeter respectively are established. A study of the optimal method of liquid dopant application is performed. The technical feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask was also determined.

  15. ANALYTIC HIERARCHY PROCESS: AN APPLICATION IN GREEN BUILDING MARKET RESEARCH

    Directory of Open Access Journals (Sweden)

    Sharmin Attaran

    2013-01-01

    Full Text Available Sustainability has become a necessity in the building industry. In recent years, as the general public is more informed and aware of sustainability related issues, they are becoming major players in the decision making process regarding their built environment. However, there are still challenges with how sustainability is communicated to occupants and owners of buildings. As the global economic crisis is continuing, the marketing of green buildings needs to be refined to communicate the lifetime benefits of sustainability. One of the ways to develop effective marketing strategies, is to understand what the occupants value the most among many aspects of green buildings thus develop focused marketing solutions. Authors present a conceptual methodology using Analytic Hierarchy Process toward identifying consumer ranking and weights of a major green building rating system’s categories. Authors use sample non-representative data to illustrate the proposed methodology, while sharing preliminary qualitative data from the research in progress.

  16. Process research of non-CZ silicon material

    Science.gov (United States)

    Campbell, R. B.

    1984-01-01

    Advanced processing techniques for non-CZ silicon sheet material that might improve the cost effectiveness of photovoltaic module production were investigated. Specifically, the simultaneous diffusion of liquid boron and liquid phosphorus organometallic precursors into n-type dendritic silicon web was examined. The simultaneous junction formation method for solar cells was compared with the sequential junction formation method. The electrical resistivity of the n-n and p-n junctions was discussed. Further research activities for this program along with a program documentation schedule are given.

  17. Magnetohydrodynamic research in fusion blanket engineering and metallurgical processing

    International Nuclear Information System (INIS)

    Tokuhiro, A.

    1991-11-01

    A review of recent research activities in liquid metal magnetohydrodynamics (LM-MHDs) is presented in this article. Two major reserach areas are discussed. The first topic involves the thermomechanical design issues in a proposed tokamak fusion reactor. The primary concerns are in the magneto-thermal-hydraulic performance of a self-cooled liquid metal blanket. The second topic involves the application of MHD in material processing in the metallurgical and semiconductor industries. The two representative applications are electromagnetic stirring (EMS) of continuously cast steel and the Czochralski (CZ) method of crystal growth in the presence of a magnetic field. (author) 24 figs., 10 tabs., 136 refs

  18. Research Experiences for Undergraduates in Estuarine and Atmospheric Processes

    Science.gov (United States)

    Aller, J. Y.

    2009-12-01

    Our program in the School of Marine and Atmospheric Sciences at Stony Brook University is unique in emphasizing the interdisciplinary study of coastal ocean and atmospheric processes. We attract a large number of both male and female undergraduate applicants representing diverse ethnic groups from across the country. Many are multi-discipline majors merging geology, biology, chemistry, or physics with engineering, and/or mathematics and welcome the opportunity to combine their academic training to examine environmental problems. Our goal is a program reflective of today’s world and environmental challenges, one that provides a ‘hands-on’ research experience which illustrates the usefulness of scientific research for understanding real-world problems or phenomena, and one in which students are challenged to apply their academic backgrounds to develop intuition about natural systems and processes. Projects this past summer focused on assessing climate change and its effects on coastal environments and processes. Projects addressed the implications of a changing global climate over the next 50 years on hydrologic cycles and coastal environments like barrier islands and beaches, on seasonal weather conditions and extreme events, on aerosols and the Earth’s radiative balance, and on aquatic habitats and biota. Collaborative field and laboratory or computer-based projects involving two or three REU students, graduate students, and several mentors, enable undergraduate students appreciate the importance of teamwork in addressing specific scientific questions or gaining maximum insight into a particular phenomenon or process. We believe that our approach allows students to understand what their role will be as scientists in the next phase of our earth’s evolution.

  19. Supporting conceptual product design by hybrid simulation of use processes with scenario structures

    NARCIS (Netherlands)

    Van der Vegte, W.F.; Horváth, I.

    2007-01-01

    The approach described in this paper aims to offer designers a new way to investigate use processes of products by integrating scenarios of expected user behaviour with simulations of physical artefact behaviour. Use is considered a key process in the life cycle of a product, being the phase in

  20. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.