WorldWideScience

Sample records for hybrid process research

  1. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  2. Membrane/distillation hybrid process research and development. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    Mazanec, T.J.

    1997-07-01

    This report covers work conducted under the grant awarded to BP by DOE in late 1991 entitled {open_quotes}Membrane/Distillation Hybrid Process Research and Development.{close_quotes} The program was directed towards development and commercialization of the BP process for separation of vapor phase olefins from non-olefins via facilitated transport using an aqueous facilitator. The program has come to a very successful conclusion, with formation of a partnership between BP and Stone and Webster Engineering Corporation (SWEC) to market and commercialize the technology. The focus of this report is the final portion of the program, during which engineering re-design, facilitator optimization, economic analysis, and marketing have been the primary activities. At the end of Phase II BP was looking to partner with an engineering firm to advance the selective olefin recovery (SOR) technology from the lab/demo stage to full commercialization. In August 1995 BP and SWEC reached an agreement to advance the technology by completing additional Phase III work with DOE and beginning marketing activities.

  3. Advanced Digital Signal Processing for Hybrid Lidar

    Science.gov (United States)

    2014-10-30

    Technical 4. TITLE AND SUBTITLE Advance Digital Signal Processing for Hybrid Lidar 6. AUTHOR(S) William D. Jemison 7. PERFORMING ORGANIZATION NAME(S...development of signed processing algorithms for hybrid lidar - radar designed to improve detection performance. 15. SUBJECT TERMS Hybrid Lidar - Radar 16...Award Number N000141110371 Title of Research Advanced Digital Signal Processing for Hybrid Lidar Principal Investigator William D. Jemison

  4. Arabidopsis hybrid speciation processes.

    Science.gov (United States)

    Schmickl, Roswitha; Koch, Marcus A

    2011-08-23

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation.

  5. A Research on Airborne Squint Hybrid SAR

    Institute of Scientific and Technical Information of China (English)

    BIANYong; ZHOUYinqing; LIChunsheng

    2004-01-01

    In this paper, we establish the squint mode hybrid SAR (Synthetic aperture radar) geometry. Based on the squint mode SAR geometry, the hybrid SAR signal model in squint case is derived. Based on this signal model, the hybrid SAR imaging process parameter is discussed. Aimed at the squint case, we analyze not only the relationship between the resolution and SAR system parameters, but also the relation between the time extension of the maximum azimuth signal and SAR system parameters. This research establishes the theoretical foundation for the design of squint hybrid SAR and serves as a good guide for the future work of improving the resolution of squint hybrid SAR. Based on the two-step algorithm, by considering the squint angle and cubic phase term, we are going to use the deramp SC-Chirp Scaling algorithm for squint hybrid SAR imaging. This algorithm uses the deramp method for the first step processing, and the SC-Chirp Scaling algorithm for the second step processing. The process procedure of this algorithm includes the squint angle, has the explicit physical meaning, therefore is convenient for analysis. The computer simulation result proves the validity of the analysis.

  6. Research on Gear Shifting Process without Disengaging Clutch for a Parallel Hybrid Electric Vehicle Equipped with AMT

    Directory of Open Access Journals (Sweden)

    Hui-Long Yu

    2014-01-01

    Full Text Available Dynamic models of a single-shaft parallel hybrid electric vehicle (HEV equipped with automated mechanical transmission (AMT were described in different working stages during a gear shifting process without disengaging clutch. Parameters affecting the gear shifting time, components life, and gear shifting jerk in different transient states during a gear shifting process were deeply analyzed. The mathematical models considering the detailed synchronizer working process which can explain the gear shifting failure, long time gear shifting, and frequent synchronizer failure phenomenon in HEV were derived. Dynamic coordinated control strategy of the engine, motor, and actuators in different transient states considering the detailed working stages of synchronizer in a gear shifting process of a HEV is for the first time innovatively proposed according to the state of art references. Bench test and real road test results show that the proposed control strategy can improve the gear shifting quality in all its evaluation indexes significantly.

  7. Hybrid machining processes perspectives on machining and finishing

    CERN Document Server

    Gupta, Kapil; Laubscher, R F

    2016-01-01

    This book describes various hybrid machining and finishing processes. It gives a critical review of the past work based on them as well as the current trends and research directions. For each hybrid machining process presented, the authors list the method of material removal, machining system, process variables and applications. This book provides a deep understanding of the need, application and mechanism of hybrid machining processes.

  8. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  9. Research and application of hybrid wheat in China

    Institute of Scientific and Technical Information of China (English)

    Zhao Changping

    2013-01-01

    Hybrid wheat is recognized as a preferred approach to improve wheat yield,and it will be a competi-tion focus in high-tech seed industry in the future. We have made a breakthrough for the first time in creation of two-line hybrid wheat system,which reaches the world leading level in wheat research and has laid an important foundation for the future direction of the world wheat research. Similar to hybrid rice,the innovation of two-line hybrid wheat system is another achievement in science and technology. The application of hybrid wheat in China will greatly increase the food production,and make a great significance to food production and food security. This paper introduces the development process and major breakthrough of hybrid wheat in China,and the main bottle-neck and countermeasures in the application of hybrid wheat.

  10. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  11. Hybrid modelling of anaerobic wastewater treatment processes.

    Science.gov (United States)

    Karama, A; Bernard, O; Genovesi, A; Dochain, D; Benhammou, A; Steyer, J P

    2001-01-01

    This paper presents a hybrid approach for the modelling of an anaerobic digestion process. The hybrid model combines a feed-forward network, describing the bacterial kinetics, and the a priori knowledge based on the mass balances of the process components. We have considered an architecture which incorporates the neural network as a static model of unmeasured process parameters (kinetic growth rate) and an integrator for the dynamic representation of the process using a set of dynamic differential equations. The paper contains a description of the neural network component training procedure. The performance of this approach is illustrated with experimental data.

  12. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  13. Process algebra for Hybrid systems

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, Chap. 4, 2002] and the process algebra with propositional signals from Baeten and Bergstra [Theoretical Computer

  14. Process algebra for hybrid systems

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2005-01-01

    We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg (Process Algebra with Timing, Springer,Berlin, 2002, Chapter 4), and the process algebra with propositional signals from Baeten and Bergstra(Theoret. Com

  15. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  16. Hybrid scheme for Brownian semistationary processes

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel; Lunde, Asger; Pakkanen, Mikko S.

    the asymptotics of the mean square error of the hybrid scheme and we observe that the scheme leads to a substantial improvement of accuracy compared to the ordinary forward Riemann-sum scheme, while having the same computational complexity. We exemplify the use of the hybrid scheme by two numerical experiments......, where we examine the finite-sample properties of an estimator of the roughness parameter of a Brownian semistationary process and study Monte Carlo option pricing in the rough Bergomi model of Bayer et al. (2015), respectively....

  17. Hybrid staging of geothermal energy conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Steidel, R.F.

    1978-09-01

    A hybrid system consists of two or more energy conversion processes. This study examines the use of three energy conversion machines in hybrid systems: the conventional single-phase turbine, and the two-phase expanders known as the Lysholm engine and the radial outflow reaction turbine. Two hybrid systems are presented. The first is a two-stage, single-flash system with the Lysholm engine as the first stage, and a separator and conventional turbine as the second stage. The second system adds a radial outflow reaction turbine to recover a part of the energy rejected in the second stage. A theoretical specific power of 41.3 kW.s/lb is predicted for the two-stage, single-flash hybrid system. The addition of the radial outflow rotary turbine increases performance to 44.8 kW.s/lb. Both are superior to the double-flash system, with a specific power of 37.8 kW.s/lb. In addition, the hybrid system offers operating flexibility.

  18. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  19. Ultralight Solar Powered Hybrid Research Drone

    CERN Document Server

    Singer, Csaba

    2013-01-01

    A planetary research drone is proposed, which is capable for vertical takeoff and landing. A hybrid flight concept utilizing static lift enables the exploration over ground. The static lift is achieved with a lighter than CO2 gas like air, He or H2.

  20. Direction and Policies Needed to Support Hybrid Electric Car Research

    Directory of Open Access Journals (Sweden)

    Ridwan Arief Subekti

    2012-07-01

    Full Text Available The rising number of vehicles over the years has driven the increase of air pollution and fuel consumption. One of the solutions to overcome this problem is using hybrid electric car because it is environmentally friendly and efficient in fuel consumption. LIPI has conducted electric car research since 1997, but there were so many problems in its development that electric car can not be developed into a national industry scale. Therefore, it is important to conduct a study that maps the problems and finds the solutions to prevent the same failure of electric car commercialization process from happening to hybrid electric car . This study was done by collecting and analyzing the primary and secondary data through interviews, discussing electric hybrid car with stakeholders, and examining earlier study results and regulations. Based on this study, several policies to support sustainability research of hybrid electric car were proposed. Some recommendations were the making of national roadmap and regulation for the usage of hybrid electric car on the road. For policy makers at LIPI, a research focus, research coordination, and pre-commercialization program were recommended.

  1. Sustainable process design & analysis of hybrid separations

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Befort, Bridgette; Garg, Nipun

    2016-01-01

    Distillation is an energy intensive operation in chemical process industries. There are around 40,000 distillation columns in operation in the US, requiring approximately 40% of the total energy consumption in US chemical process industries. However, analysis of separations by distillation has...... shown that more than 50% of energy is spent in purifying the last 5-10% of the distillate product. Membrane modules on the other hand can achieve high purity separations at lower energy costs, but if the flux is high, it requires large membrane area. A hybrid scheme where distillation and membrane...... modules are combined such that each operates at its highest efficiency, has the potential for significant energy reduction without significant increase of capital costs. This paper presents a method for sustainable design of hybrid distillation-membrane schemes with guaranteed reduction of energy...

  2. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng

    2015-09-08

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications.

  3. Hybrid DPWM with Process and Temperature Calibration

    Science.gov (United States)

    Lu, Jing

    In this thesis, a 12-bit high resolution, power and area efficiency hybrid DPWM with process and temperature calibration is proposed for DPWM controller IC for DC-DC converters. The hybrid structure of DPWM combines a 6-bit differential segmented tapped delay line structure and a 6-bit counter-comparator structure, resulting in a power and area saving solution. Furthermore, the 6-bit differential segmented delay line structure serves as the clock to the high 6-bit counter-comparator structure, thus a high frequency clock is eliminated and power is significantly saved. In order to have simple delay cell and flexible delay time controllability, voltage controlled inverter is adopted to build the differential delay cell, which allows fine-tuning of the delay time. The process and temperature calibration circuit is composed of process and temperature monitors, two 2-bit flash ADCs, and a lookup table. The monitor circuits sense the process and temperature variations, and the flash ADC converts the data into digital code. The lookup table combines both the process and the temperature digital information and provides an appropriate value to the control voltage of the differential delay cell. The complete circuits design has been verified under different corners of CMOS 0.11um process technology node.

  4. Advanced Digital Signal Processing for Hybrid Lidar FY 2014

    Science.gov (United States)

    2014-10-30

    Report 3. DATES COVERED (Frorr) - To) 6/2011 to 9/2014 4. TITLE AND SUBTITLE Advance Digital Signal Processing for Hybrid Lidar 5a. CONTRACT NUMBER...report describes the technical progress towards the development of signed processing algorithms for hybrid lidar - radar designed to improve...detection performance. 15. SUBJECT TERMS Hybrid Lidar

  5. Use of a hybrid computer in engineering-seismology research

    Science.gov (United States)

    Park, R.B.; Hays, W.W.

    1977-01-01

    A hybrid computer is an important tool in the seismological research conducted by the U.S. Geological Survey in support of the Energy Research and Development Administration nuclear explosion testing program at the Nevada Test Site and the U.S. Geological Survey Earthquake Hazard Reduction Program. The hybrid computer system, which employs both digital and analog computational techniques, facilitates efficient seismic data processing. Standard data processing operations include: (1) preview of dubbed magnetic tapes of data; (2) correction of data for instrument response; (3) derivation of displacement and acceleration time histories from velocity recordings; (4) extraction of peak-amplitude data; (5) digitization of time histories; (6) rotation of instrumental axes; (7) derivation of response spectra; and (8) derivation of relative transfer functions between recording sites. Catalog of time histories and response spectra of ground motion from nuclear explosions and earthquakes that have been processed by the hybrid computer are used in the Earthquake Hazard Research Program to evaluate the effects of source, propagation path, and site effects on recorded ground motion; to assess seismic risk; to predict system response; and to solve system design problems.

  6. Powder processing of hybrid titanium neural electrodes

    Science.gov (United States)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  7. Research Planning Process

    Science.gov (United States)

    Lofton, Rodney

    2010-01-01

    This presentation describes the process used to collect, review, integrate, and assess research requirements desired to be a part of research and payload activities conducted on the ISS. The presentation provides a description of: where the requirements originate, to whom they are submitted, how they are integrated into a requirements plan, and how that integrated plan is formulated and approved. It is hoped that from completing the review of this presentation, one will get an understanding of the planning process that formulates payload requirements into an integrated plan used for specifying research activities to take place on the ISS.

  8. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-05-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf{trademark} (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described.

  9. The Serendipitous Research Process

    Science.gov (United States)

    Nutefall, Jennifer E.; Ryder, Phyllis Mentzell

    2010-01-01

    This article presents the results of an exploratory study asking faculty in the first-year writing program and instruction librarians about their research process focusing on results specifically related to serendipity. Steps to prepare for serendipity are highlighted as well as a model for incorporating serendipity into a first-year writing…

  10. Hybrid soft computing approaches research and applications

    CERN Document Server

    Dutta, Paramartha; Chakraborty, Susanta

    2016-01-01

    The book provides a platform for dealing with the flaws and failings of the soft computing paradigm through different manifestations. The different chapters highlight the necessity of the hybrid soft computing methodology in general with emphasis on several application perspectives in particular. Typical examples include (a) Study of Economic Load Dispatch by Various Hybrid Optimization Techniques, (b) An Application of Color Magnetic Resonance Brain Image Segmentation by ParaOptiMUSIG activation Function, (c) Hybrid Rough-PSO Approach in Remote Sensing Imagery Analysis,  (d) A Study and Analysis of Hybrid Intelligent Techniques for Breast Cancer Detection using Breast Thermograms, and (e) Hybridization of 2D-3D Images for Human Face Recognition. The elaborate findings of the chapters enhance the exhibition of the hybrid soft computing paradigm in the field of intelligent computing.

  11. Production of Fine Metallic Powders by Hybrid Atomization Process

    Science.gov (United States)

    Minagawa, Kazumi; Liu, Yunzhong; Kakisawa, Hideki; Halada, Kohmei

    Hybrid Atomization is a recently developed powder-making process that combines effectively free-fall gas atomization and centrifugal atomization. This technique can produce very fine spherical powders with mean diameters of around 10 micrometers, and in high yields. The present report discusses the concept and basic principles of hybrid atomization. Process experiments were carried out and the optimal processing conditions were obtained. The results show that the influences of processing parameters and optimum conditions differ greatly between the proposed and the conventional atomization processes. A new correlation of atomization equation applicable to hybrid atomization is proposed and discussed.

  12. Authenticizing the Research Process

    Directory of Open Access Journals (Sweden)

    Nora Elizondo-Schmelkes, MA, Ph.D. Candidate

    2011-06-01

    Full Text Available This study reflects the main concern of students (national and international who are trying to get a postgraduate degree in a third world (or “in means of development” country. The emergent problem found is that students have to finish their thesis or dissertation but they do not really know how to accomplish this goal. They resolve this problem by authenticizing the process as their own. The theory of authenticizing involves compassing their way to solve the problem of advancing in the research process. Compassing allows the student to authenticize his/her research process, making it a personal and „owned. process. The main categories of compassing are the intellectual, physical and emotional dimension patterns that the student has, learns and follows in order to finish the project and get a degree. Authenticizing implies to author with authenticity their thesis or dissertation. Compassing allows them to do this in their own way, at their own pace or time and with their own internal resources, strengths and weaknesses.

  13. The HFEA public consultation process on hybrids and chimeras: informed, effective, and meaningful?

    Science.gov (United States)

    Baylis, Françoise

    2009-03-01

    In September 2007, the Human Fertilisation and Embryology Authority (HFEA) in the United Kingdom concluded that "there is no fundamental reason to prevent cytoplasmic hybrid research ... this area of research can, with caution and careful scrutiny, be permitted." Later, in January 2008, HFEA issued two research licenses to create humanesque cytoplasmic hybrid embryos from which stem cells could be derived. This article critically examines the public consultation process that preceded these decisions, concluding that the process was flawed and demonstrating how the HFEA documents summarizing the findings of the public consultation process misrepresent the public's contributions to this policymaking initiative.

  14. Hybrid Filtering in Semantic Query Processing

    Science.gov (United States)

    Jeong, Hanjo

    2011-01-01

    This dissertation presents a hybrid filtering method and a case-based reasoning framework for enhancing the effectiveness of Web search. Web search may not reflect user needs, intent, context, and preferences, because today's keyword-based search is lacking semantic information to capture the user's context and intent in posing the search query.…

  15. Research of IDSS Architecture Based on Hybrid Systems

    Institute of Scientific and Technical Information of China (English)

    MA Biao; YANG Bao-an

    2005-01-01

    This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose core system is isomeric knowledge system. The architecture is composed of knowledge component, problems processing system, data component and intelligent user interface. This new architecture aims to enhance the capability of integrating hybrid systems, to improve the supporting effectiveness of decision-making and the intelligent level of IDSS, and tries a new way to elevate the system's ability of handling and learning knowledge.

  16. Electro Processing Research

    Science.gov (United States)

    1982-01-01

    Electroprocessing which is concerned with fluid dynamics of the electroreduction process to determine how it may be modified to improve the quality of the deposit was studied. Experimental techniques are used in this research. These techniques include laser Schlieren photography, laser Doppler velocimetry, and frequency spectrum analysis. Projects involve fluid flow studies of zinc plating in aqueous and molten salt electrolytes, study of cell design for magnesium chlorides electrolysis, digital signal analysis of manganese electrodeposition in molten chlorides, and electroplating of molybdenum from low melting salts. It is anticipated that the use of refractory metals as constructed materials in engineering will increase. Their electrodeposition from molten salt electrolytes is important in the extraction metallurgy of refractory metals.

  17. Solution-processed hybrid materials for light detection

    Science.gov (United States)

    Adinolfi, Valerio

    Inorganic semiconductors form the foundation of modern electronics and optoelectronics. These materials benefit from excellent optoelectronic properties, but applications are generally limited due to high cost of fabrication. More recently, organic semiconductors have emerged as a low-cost alternative for light emitting devices. Organic materials benefit from facile, low temperature fabrication and offer attractive features such as flexibility and transparency. However, these materials are inherently limited by poor electronic transport. In recent years, new materials have been developed to overcome the dichotomy between performance and the cost. Hybrid organic--inorganic semiconductors combine the superior electronic properties of inorganic materials with the facile assembly of organic systems to yield high-performance, low-cost electronics. This dissertation focuses on the development of solution-processed light detectors using hybrid material systems, particularly colloidal quantum dots (CQDs) and hybrid perovskites. First, advanced architectures for colloidal quantum dot light detectors are presented. These devices overcome the responsivity--speed--dark current trade-off that has limited past reports of CQD-based devices. The photo-junction field effect transistors presented in this work decrease the dark current of CQD detectors by two orders of magnitude, ultimately reducing power consumption (100x) and noise current (10x). The detector simultaneously benefits from high gain (˜10 electrons/photon) and fast time response (˜ 10 mus). This represents the first CQD-based three-terminal-junction device reported in the literature. Building on this success, hybrid perovskite devices are then presented. This material system has become a focal point of the semiconductor research community due to its relatively unexplored nature and attractive optoelectronic properties. Herein we present the first extensive electronic characterization of single crystal organolead

  18. Mapping the Collaborative Research Process

    Science.gov (United States)

    Kochanek, Julie Reed; Scholz, Carrie; Garcia, Alicia N.

    2015-01-01

    Despite significant federal investments in the production of high-quality education research, the direct use of that research in policy and practice is not evident. Some education researchers are increasingly employing collaborative research models that use structures and processes to integrate practitioners into the research process in an effort…

  19. Qualitative Research Process

    OpenAIRE

    Hossain, Dewan Mahboob

    2011-01-01

    This article provides with an overview of the qualitative research methods. Over last few decades, qualitative research is getting very popular in the fields of business, sociology, psychology and others. This article, in its introduction, gives a general idea about the qualitative research. Then it discusses the main differences between qualitative and quantitative research methods. The article also discusses about the ethical issues important for qualitative research. Lastly it discusses ab...

  20. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  1. Hybrids of Gibbs Point Process Models and Their Implementation

    Directory of Open Access Journals (Sweden)

    Adrian Baddeley

    2013-11-01

    Full Text Available We describe a simple way to construct new statistical models for spatial point pattern data. Taking two or more existing models (finite Gibbs spatial point processes we multiply the probability densities together and renormalise to obtain a new probability density. We call the resulting model a hybrid. We discuss stochastic properties of hybrids, their statistical implications, statistical inference, computational strategies and software implementation in the R package spatstat. Hybrids are particularly useful for constructing models which exhibit interaction at different spatial scales. The methods are demonstrated on a real data set on human social interaction. Software and data are provided.

  2. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    CERN Document Server

    Licari, James J

    1998-01-01

    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  3. The Automated Discovery of Hybrid Processes

    DEFF Research Database (Denmark)

    Slaats, Tijs; Reijers, Hajo; Maggi, Fabrizio Maria

    2014-01-01

    The declarative-procedural dichotomy is highly relevant when choosing the most suitable process modeling language to represent a discovered process. Less-structured processes with a high level of variability can be described in a more compact way using a declarative language. By contrast, procedu...

  4. Quantum-Classical Hybrid for Information Processing

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source

  5. Stages in the research process.

    Science.gov (United States)

    Gelling, Leslie

    2015-03-01

    Research should be conducted in a systematic manner, allowing the researcher to progress from a general idea or clinical problem to scientifically rigorous research findings that enable new developments to improve clinical practice. Using a research process helps guide this process. This article is the first in a 26-part series on nursing research. It examines the process that is common to all research, and provides insights into ten different stages of this process: developing the research question, searching and evaluating the literature, selecting the research approach, selecting research methods, gaining access to the research site and data, pilot study, sampling and recruitment, data collection, data analysis, and dissemination of results and implementation of findings.

  6. Hybrid process technologies in the financial sector

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Marquard, Morten;

    2015-01-01

    Danish mortgage credit institutes deal with highly variable and knowledgeintensive processes. At the same time these processes are required to be strictly conformant to current regulations and laws. In addition different divisions of the business are interested in different views on the same proc...

  7. Hybrid process technologies in the financial sector

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Marquard, Morten

    2015-01-01

    Danish mortgage credit institutes deal with highly variable and knowledgeintensive processes. At the same time these processes are required to be strictly conformant to current regulations and laws. In addition different divisions of the business are interested in different views on the same...

  8. Hybrid Sludge Modeling in Water Treatment Processes

    OpenAIRE

    Brenda, Marian

    2015-01-01

    Sludge occurs in many waste water and drinking water treatment processes. The numeric modeling of sludge is therefore crucial for developing and optimizing water treatment processes. Numeric single-phase sludge models mainly include settling and viscoplastic behavior. Even though many investigators emphasize the importance of modeling the rheology of sludge for good simulation results, it is difficult to measure, because of settling and the viscoplastic behavior. In this thesis, a new method ...

  9. Removal of heavy metals by hybrid electrocoagulation and microfiltration processes.

    Science.gov (United States)

    Keerthi; Vinduja, V; Balasubramanian, N

    2013-01-01

    This study is based on the investigation of the performance of electrocoagulation (EC), followed by the microfiltration process for heavy metal removal in synthetic model waste water containing Zn2+, Ni2+ and Cd2+ ions. Effects of initial concentration, current density and pH on metal removal were analysed to optimize the EC process. The optimized EC process was then integrated with dead-end microfiltration (MF) and was found that the hybrid process was capable of 99% removal of heavy metals. The cake layer formed over the membrane by the hybrid process was analysed through scanning electron microscope-energy-dispersive X-ray spectroscopy. The particle size analysis of the sludge formed during EC was done to investigate the fouling caused during the process.

  10. Research on the Interior Sound Quality in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Liao Lian Ying

    2016-01-01

    Full Text Available Even the overall level of vehicle interior noise of hybrid electric vehicle (HEV reduced to a certain degree, the vibration and noise generated by the engine, motor, generator and power split have made greater effect on the vehicle interior sound quality in HEV. In order to research the feature of vehicle interior sound quality in HEV, the HEV is used to be the research object, the binaural noise sample of the driver when playing different kinds of music in the vehicle with the speed of sixty kilometers per hour is collected. ArtemiS is used to conduct frequency division processing, so as to obtain the relative weight of each frequency band and the overall noise. The tone, roughness and sharpness of sound quality subjective evaluation parameters are quantified, the SPSS is used to establish the linear regression model of the sample, and the best masking music tracks are found out. Then, the sound samples that contains the best music tracks and the simple vehicle interior noise are re-collected, the regression model and ArtemiS are used to predict the subjective evaluation value. The research results show that when adding the music, the tone degree rises and the lowering degree decreases, thus the disturbing degree reduces, which significantly improves the sound quality in the HEV.

  11. Selection processes in a citrus hybrid population using RAPD markers

    Directory of Open Access Journals (Sweden)

    Oliveira Roberto Pedroso de

    2003-01-01

    Full Text Available The objective of this work was to evaluate the processes of selection in a citrus hybrid population using segregation analysis of RAPD markers. The segregation of 123 RAPD markers between 'Cravo' mandarin (Citrus reticulata Blanco and 'Pêra' sweet orange (C. sinensis (L. Osbeck was analysed in a F1 progeny of 94 hybrids. Genetic composition, diversity, heterozygosity, differences in chromosomal structure and the presence of deleterious recessive genes are discussed based on the segregation ratios obtained. A high percentage of markers had a skeweness of the 1:1 expected segregation ratio in the F1 population. Many markers showed a 3:1 segregation ratio in both varieties and 1:3 in 'Pêra' sweet orange, probably due to directional selection processes. The distribution analysis of the frequencies of the segregant markers in a hybrid population is a simple method which allows a better understanding of the genetics of citrus group.

  12. Hybrid modelling of a sugar boiling process

    CERN Document Server

    Lauret, Alfred Jean Philippe; Gatina, Jean Claude

    2012-01-01

    The first and maybe the most important step in designing a model-based predictive controller is to develop a model that is as accurate as possible and that is valid under a wide range of operating conditions. The sugar boiling process is a strongly nonlinear and nonstationary process. The main process nonlinearities are represented by the crystal growth rate. This paper addresses the development of the crystal growth rate model according to two approaches. The first approach is classical and consists of determining the parameters of the empirical expressions of the growth rate through the use of a nonlinear programming optimization technique. The second is a novel modeling strategy that combines an artificial neural network (ANN) as an approximator of the growth rate with prior knowledge represented by the mass balance of sucrose crystals. The first results show that the first type of model performs local fitting while the second offers a greater flexibility. The two models were developed with industrial data...

  13. Astronomy Education: Becoming a Hybrid Researcher

    Directory of Open Access Journals (Sweden)

    Erik Brogt

    2007-01-01

    Full Text Available This article describes the experiences of a former astronomer who is making the transition to astronomy education research as an international graduate student in the United States. The article describes the author’s encounters with education research, its methodologies, and his changing research interests as he progresses through the graduate program. It also describes his experiences with the busy life of a graduate student in American academia and his experiences as an international student.

  14. Stress test: identifying crowding stress-tolerant hybrids in processing sweet corn

    Science.gov (United States)

    Improvement in tolerance to intense competition at high plant populations (i.e. crowding stress) is a major genetic driver of corn yield gain the last half-century. Recent research found differences in crowding stress tolerance among a few modern processing sweet corn hybrids; however, a larger asse...

  15. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  16. Hybrid Discrete-Continuous Markov Decision Processes

    Science.gov (United States)

    Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich

    2003-01-01

    This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.

  17. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Dalrymple

    2004-06-01

    This final report describes the objectives, technical approach, results and conclusions for a project funded by the U.S. Department of Energy to test a hybrid sulfur recovery process for natural gas upgrading. The process concept is a configuration of CrystaTech, Inc.'s CrystaSulf{reg_sign} process which utilizes a direct oxidation catalyst upstream of the absorber tower to oxidize a portion of the inlet hydrogen sulfide (H{sub 2}S) to sulfur dioxide (SO{sub 2}) and elemental sulfur. This hybrid configuration of CrystaSulf has been named CrystaSulf-DO and represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day and more. This hybrid process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both onshore and offshore applications. CrystaSulf is a nonaqueous sulfur recovery process that removes H{sub 2}S from gas streams and converts it to elemental sulfur. In CrystaSulf, H{sub 2}S in the inlet gas is reacted with SO{sub 2} to make elemental sulfur according to the liquid phase Claus reaction: 2H{sub 2}S + SO{sub 2} {yields} 2H{sub 2}O + 3S. The SO{sub 2} for the reaction can be supplied from external sources by purchasing liquid SO{sub 2} and injecting it into the CrystaSulf solution, or produced internally by converting a portion of the inlet gas H{sub 2}S to SO{sub 2} or by burning a portion of the sulfur produced to make SO{sub 2}. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, the needed SO{sub 2} is produced by placing a bed of direct oxidation catalyst in the inlet gas stream to oxidize

  18. FERMENTATION PROCESS CHARACTERISTICS OF DIFFERENT MAIZE SILAGE HYBRIDS

    Directory of Open Access Journals (Sweden)

    Daniel Bíro

    2009-03-01

    Full Text Available The aim of this study was to detect the fermentation process differences in different hybrid maize silage. We conserved in laboratory conditions hybrids of whole maize plants with different length of the vegetative period (FAO number. Maize hybrids for silage were harvested in the vegetation stage of the milk-wax maturity of corn and the content of dry matter was from 377.7 to 422.8 g.kg-1. The highest content of dry matter was typical for silages made from the hybrids with FAO number 310 (400.0 g.kg-1 and FAO 300a (400.4 g.kg-1. The content of desirable lactic acid ranged from 23.7 g.kg-1 of dry matter (FAO 350 to 58.9 g.kg-1 of dry matter (FAO 420. We detected the occurrence of undesirable butyric acid in silages from hybrids FAO 250, 300b, 310 and 380. The highest content of total alcohols we found in silages made from hybrid with FAO number 240 (25.2 g.kg-1 of dry matter. Ammonia contents were in tested silages from 0.153 (FAO 270 to 0.223 g.kg-1 of dry matter (FAO 240. The lowest value of silage titration acidity we analyzed in silage made from hybrid FAO 420 (3.66. We observed in maize silages with different length of plant maturity tested in the experiment differences in content of lactic acid, total alcohols, titration acidity, pH and content of fermentation products.

  19. High mobility solution-processed hybrid light emitting transistors

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bright; Kim, Jin Young [School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B., E-mail: e.namdas@uq.edu.au, E-mail: seojh@dau.ac.kr [Centre for Organic Photonics and Electronics, University of Queensland, Brisbane, Queensland 4072 (Australia); Chae, Gil Jo [Department of Materials Physics, Dong-A University, Busan 604-714 (Korea, Republic of); Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Cho, Shinuk [Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Seo, Jung Hwa, E-mail: e.namdas@uq.edu.au, E-mail: seojh@dau.ac.kr [Department of Materials Physics, Dong-A University, Busan 604-714 (Korea, Republic of)

    2014-11-03

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm{sup 2}/V s, current on/off ratios of >10{sup 7}, and external quantum efficiency of 10{sup −2}% at 2100 cd/m{sup 2}. These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective.

  20. Current Challenges and Prospective Research for Upscaling Hybrid Perovskite Photovoltaics.

    Science.gov (United States)

    Williams, Spencer T; Rajagopal, Adharsh; Chueh, Chu-Chen; Jen, Alex K-Y

    2016-03-01

    Organic-inorganic hybrid perovskite photovoltaics (PSCs) are poised to push toward technology translation, but significant challenges complicating commercialization remain. Though J-V hysteresis and ecotoxicity are uniquely imposing issues at scale, CH3NH3PbI3 degradation is by far the sharpest limitation to the technology's potential market contribution. Herein, we offer a perspective on the practical market potential of PSCs, the nature of fundamental PSC challenges at scale, and an outline of prospective solutions for achieving module scale PSC production tailored to intrinsic advantages of CH3NH3PbI3. Although integrating PSCs into the energy grid is complicated by CH3NH3PbI3 degradation, the ability of PSCs to contribute to consumer electronics and other niche markets like those organic photovoltaics have sought footing in rests primarily upon the technology's price point. Thus, slot die, roll-to-roll processing has the greatest potential to enable PSC scale-up, and herein, we present a perspective on the research necessary to realize fully printable PSCs at scale.

  1. Design, processing and testing of LSI arrays: Hybrid microelectronics task

    Science.gov (United States)

    Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.

    1979-01-01

    Mathematical cost factors were generated for both hybrid microcircuit and printed wiring board packaging methods. A mathematical cost model was created for analysis of microcircuit fabrication costs. The costing factors were refined and reduced to formulae for computerization. Efficient methods were investigated for low cost packaging of LSI devices as a function of density and reliability. Technical problem areas such as wafer bumping, inner/outer leading bonding, testing on tape, and tape processing, were investigated.

  2. Modeling and Simulation of Metallurgical Process Based on Hybrid Petri Net

    Science.gov (United States)

    Ren, Yujuan; Bao, Hong

    2016-11-01

    In order to achieve the goals of energy saving and emission reduction of iron and steel enterprises, an increasing number of modeling and simulation technologies are used to research and analyse metallurgical production process. In this paper, the basic principle of Hybrid Petri net is used to model and analyse the Metallurgical Process. Firstly, the definition of Hybrid Petri Net System of Metallurgical Process (MPHPNS) and its modeling theory are proposed. Secondly, the model of MPHPNS based on material flow is constructed. The dynamic flow of materials and the real-time change of each technological state in metallurgical process are simulated vividly by using this model. The simulation process can implement interaction between the continuous event dynamic system and the discrete event dynamic system at the same level, and play a positive role in the production decision.

  3. Treatment of sharp mandibular alveolar process with hybrid prosthesis

    Directory of Open Access Journals (Sweden)

    Sukaedi Sukaedi

    2010-09-01

    Full Text Available Background: Losing posterior teeth for a long time would occasionally lead to the sharpening of alveolar process. The removable partial denture usually have problems when used during mastication, because of the pressure on the mucosa under the alveolar ridge. Purpose: The purpose of this case report was to manage patients with sharp mandibular alveolar process by wearing hybrid prosthesis with extra coronal precision attachment retention and soft liner on the surface base beneath the removable partial denture. Case: A 76 years old woman visited the Prosthodontic Clinic Faculty of Dentistry Airlangga University. The patient had a long span bridge on the upper jaw and a free end acrylic removable partial denture on the lower jaw. She was having problems with mastication. The patient did not wear her lower denture because of the discomfort with it during mastication. Hence, she would like to replace it with a new removable partial denture. Case management: The patient was treated by wearing a hybrid prosthesis with extra coronal precision attachment on the lower jaw. Soft liner was applied on the surface of the removable partial denture. Hybrid prosthesis is a complex denture consisting of removable partial denture and fixed bridge. Conclusion: It concluded that after restoration, the patient had no problems with sharp alveolar process with her new denture, and she was able to masticate well.Latar belakang: Kehilangan geligi posterior dapat menimbulkan processus alveolaris tajam. Gigi tiruan sebagian lepasan mempunyai masalah selama pengunyahan karena adanya tekanan di mukosa di bawah alveolar ridge. Tujuan: Tujuan laporan kasus ini adalah untuk menjelaskan cara menangani pasien yang mempunyai prosesus alveolaris yang tajam di rahang bawah dengan dibuatkan protesis hybrid dengan daya tahan extra coronal precision attachment dan soft liner di permukaan bawah basis gigi tiruan sebagian lepasan. Kasus: Pasien wanita berumur 76 tahun datang di klinik

  4. ANALYSIS OF A TRANSPORT PROCESS USING HYBRID PETRI NETS

    Directory of Open Access Journals (Sweden)

    Elisabeta Mihaela CIORTEA

    2013-05-01

    Full Text Available Purpose of the paper is to analyze the Petri net model, to describe the transport process, part of amanufacturing system and its dynamics.A hibrid Petri net model is built to describe the dinamics of the transport process manufacturingsystem. Mathematical formulation of the dinamycs processes a detailed description. Based on this model, theanalysis of the transport process is designed to be able to execute a production plan and resolve any conflictsthat may arise in the system.In the analysis dinamics known two stages: in the continuous variables are discrete hybrid system in thehibrid discrete variables are used as safety control with very well defined responsibilities.In terms of the chosen model, analyze transport process is designed to help execute a production planand resolve conflicts that may arise in the process, and then the ones in the system

  5. Hybrid language processing in the Spoken Language Translator

    CERN Document Server

    Rayner, M; Rayner, Manny; Carter, David

    1997-01-01

    The paper presents an overview of the Spoken Language Translator (SLT) system's hybrid language-processing architecture, focussing on the way in which rule-based and statistical methods are combined to achieve robust and efficient performance within a linguistically motivated framework. In general, we argue that rules are desirable in order to encode domain-independent linguistic constraints and achieve high-quality grammatical output, while corpus-derived statistics are needed if systems are to be efficient and robust; further, that hybrid architectures are superior from the point of view of portability to architectures which only make use of one type of information. We address the topics of ``multi-engine'' strategies for robust translation; robust bottom-up parsing using pruning and grammar specialization; rational development of linguistic rule-sets using balanced domain corpora; and efficient supervised training by interactive disambiguation. All work described is fully implemented in the current version...

  6. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.

    Science.gov (United States)

    Kim, Hyunjun; Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu; Sim, Sung-Han

    2017-09-07

    Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.

  7. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing

    Directory of Open Access Journals (Sweden)

    Hyunjun Kim

    2017-09-01

    Full Text Available Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.

  8. Engaged Research in Process Improvement

    DEFF Research Database (Denmark)

    Pries-Heje, Jan

    2010-01-01

    This keynote initiates from an example of engaged research; a Danish software house that made it from maturity level 1 to 5 in eight years. The organizational change implied at each step is discussed and a design theory of process improvement and change derived.......This keynote initiates from an example of engaged research; a Danish software house that made it from maturity level 1 to 5 in eight years. The organizational change implied at each step is discussed and a design theory of process improvement and change derived....

  9. Micro-Processes of Employees in a Hybrid Organization

    DEFF Research Database (Denmark)

    Svenningsen, Virginie; Boxenbaum, Eva; Ravasi, Davide

    actors engaged in the energy transition. We draw on the literature on institutional logics and hybrid organizations to examine how employees of this French energy corporation deal with this institutionally complex environment. Our findings point to three strategies that individuals use to cope......The present article examines how employees cope with an organizational setting that is institutionally complex. The empirical setting is a French energy corporation that simultaneously pursues a logic of science and a logic of market through multiple research partnerships with public and private...

  10. A hybrid analytical network process and fuzzy goal programming for supplier selection: A case study of auto part maker

    OpenAIRE

    Hesam Zande Hesami; Mohammad Ali Afshari; Seyed Ali Ayazi; Javad Siahkali Moradi

    2011-01-01

    The aim of this research is to present a hybrid model to select auto part suppliers. The proposed method of this paper uses factor analysis to find the most influencing factors on part maker selection and the results are validated using different statistical tests such as Cronbach's Alpha and Kaiser-Meyer.The hybrid model uses analytical network process to rank different part maker suppliers and fuzzy goal programming to choose the appropriate alternative among various choices. The implementa...

  11. Near-Optimal Hybrid Processing for Massive MIMO Systems via Matrix Decomposition

    OpenAIRE

    Ni, Weiheng; Dong, Xiaodai; Lu, Wu-Sheng

    2015-01-01

    For the practical implementation of massive multiple-input multiple-output (MIMO) systems, the hybrid processing (precoding/combining) structure is promising to reduce the high cost rendered by large number of RF chains of the traditional processing structure. The hybrid processing is performed through low-dimensional digital baseband processing combined with analog RF processing enabled by phase shifters. We propose to design hybrid RF and baseband precoders/combiners for multi-stream transm...

  12. Research and Innovation Processes revisited

    DEFF Research Database (Denmark)

    Timmermans, Job; Yaghmaei, Emad; Carsten Stahl, Bernd

    2017-01-01

    Purpose: The purpose of this paper is to explore how relationships between different actors are being shaped to allow industry to come to acceptable and desirable uses of research and innovation (R&I) that address societal challenges. Design/methodology/approach: Building on existing notions....... By describing overlaps in objects, subjects and other aspects across relationships, the theoretical model proved adequate in untangling and displaying interrelatedness of responsibilities. Furthermore, the analysis surfaced characteristics of responsible research and innovation (RRI) that are already in place...... in the R&I processes of two innovative companies, such as anticipation, foresight and stakeholder engagement. Not all aspects of responsibility outlined in the theoretical model could be extracted from the interview data for every responsibility relationship, pointing to the need for further research...

  13. XPS-XRF hybrid metrology enabling FDSOI process

    Science.gov (United States)

    Hossain, Mainul; Subramanian, Ganesh; Triyoso, Dina; Wahl, Jeremy; Mcardle, Timothy; Vaid, Alok; Bello, A. F.; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Pois, Heath; Wang, Ying; Larson, Tom

    2016-03-01

    Planar fully-depleted silicon-on-insulator (FDSOI) technology potentially offers comparable transistor performance as FinFETs. pFET FDOSI devices are based on a silicon germanium (cSiGe) layer on top of a buried oxide (BOX). Ndoped interfacial layer (IL), high-k (HfO2) layer and the metal gate stacks are then successively built on top of the SiGe layer. In-line metrology is critical in precisely monitoring the thickness and composition of the gate stack and associated underlying layers in order to achieve desired process control. However, any single in-line metrology technique is insufficient to obtain the thickness of IL, high-k, cSiGe layers in addition to Ge% and N-dose in one single measurement. A hybrid approach is therefore needed that combines the capabilities of more than one measurement technique to extract multiple parameters in a given film stack. This paper will discuss the approaches, challenges, and results associated with the first-in-industry implementation of XPS-XRF hybrid metrology for simultaneous detection of high-k thickness, IL thickness, N-dose, cSiGe thickness and %Ge, all in one signal measurement on a FDSOI substrate in a manufacturing fab. Strong correlation to electrical data for one or more of these measured parameters will also be presented, establishing the reliability of this technique.

  14. Research on Modulation Strategies Based on Multilevel Inverter Universal Hybrid Topology

    Institute of Scientific and Technical Information of China (English)

    Zhou Jinghua; Su Yanmin; Shen Chuanwen; Zhang Lin

    2005-01-01

    Based on multi-module-cascaded inverter topology, this study presented a universal multilevel inverter hybrid topology and unified the researches on multilevel inverter topology. According to the freedom of this universal topology, several new hybrid topologies were constructed. Also, based on conventional modulation strategies- multi-carrier SPWM (Sinusoidal Pulse Width Modulation), hybrid modulation strategies were introduced corresponding to hybrid topologies, and a multilevel SVPWM (Space Vector Pulse Width Modulation) technique based on phase-shifted theory was naturally produced. Simulation and experiment results prove that hybrid topologies and corresponding modulation strategies are valid, which lay a foundation for practical application of hybrid multilevel inverter topologies.

  15. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-04-01

    This first quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf{sup SM} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. In a previous reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H{sub 2}S present. The experiments showed that hexane oxidation is suppressed when H{sub 2}S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H{sub 2}S oxidation conditions, and more importantly, does not

  16. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-07-01

    This second quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. Previous reports described development of a catalyst with the required selectivity and efficiency for producing sulfur dioxide from H{sub 2}S. In the laboratory, the catalyst was shown to be robust and stable in the presence of several intentionally added contaminants, including condensate from the pilot plant site. This report describes testing using the laboratory apparatus but operated at the pilot plant using the actual pilot

  17. Evaluation of hybrid inverters for strategic environmental research and development program applications

    Energy Technology Data Exchange (ETDEWEB)

    Ginn, J.W. [Sandia National Laboratory, Albuquerque, NM (United States)

    1995-11-01

    The photovoltaic systems test facility at Sandia National Laboratories is evaluating the performance of large hybrid power-processing centers (PPC`s). The primary customer for this work has been the Strategic Environmental Research and Development Program (SERDP) of the Department of Defense. One of the goals of SERDP is to develop power-processing hardware to be used in photovoltaic-hybrid power systems at remote military installations. Power for these installations is presently provided by engine-generators. Currently, hardware for twelve such sites is in various stages of procurement. The subject of this talk is testing of the PPC for the first SERDP system, a 300-kW unit for Superior Valley, a US Navy site at China Lake, California.

  18. Hybrid quantum repeater protocol with fast local processing

    DEFF Research Database (Denmark)

    Borregaard, Johannes; Brask, Jonatan Bohr; Sørensen, Anders Søndberg

    2012-01-01

    the need for classical communication during growth. Entanglement is generated in subsequent connection processes. Furthermore the growth procedure is optimized. We review the main elements of the original protocol and present the two modifications. Finally the two protocols are compared and the modified......We propose a hybrid quantum repeater protocol combining the advantages of continuous and discrete variables. The repeater is based on the previous work of Brask et al. [ Phys. Rev. Lett. 105 160501 (2010)] but we present two ways of improving this protocol. In the previous protocol entangled single......-photon states are produced and grown into superpositions of coherent states, known as two-mode cat states. The entanglement is then distributed using homodyne detection. To improve the protocol, we replace the time-consuming nonlocal growth of cat states with local growth of single-mode cat states, eliminating...

  19. Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors

    Science.gov (United States)

    Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

    1994-11-01

    An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed and manufactured for conducting experimental investigations. Oxidizer (LOX or GOX) supply and control systems have been designed and partly constructed for the head-end injection into the test chamber. Experiments using HTPB fuel, as well as fuels supplied by NASA designated industrial companies will be conducted. Design and construction of fuel casting molds and sample holders have been completed. The portion of these items for industrial company fuel casting will be sent to the McDonnell Douglas Aerospace Corporation in the near future. The study focuses on the following areas: observation of solid fuel burning processes with LOX or GOX, measurement and correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study (Part 2) also being conducted at PSU.

  20. Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors

    Science.gov (United States)

    Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

    1994-01-01

    An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed and manufactured for conducting experimental investigations. Oxidizer (LOX or GOX) supply and control systems have been designed and partly constructed for the head-end injection into the test chamber. Experiments using HTPB fuel, as well as fuels supplied by NASA designated industrial companies will be conducted. Design and construction of fuel casting molds and sample holders have been completed. The portion of these items for industrial company fuel casting will be sent to the McDonnell Douglas Aerospace Corporation in the near future. The study focuses on the following areas: observation of solid fuel burning processes with LOX or GOX, measurement and correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study (Part 2) also being conducted at PSU.

  1. Development of hybrid fluid jet/float polishing process

    Science.gov (United States)

    Beaucamp, Anthony T. H.; Namba, Yoshiharu; Freeman, Richard R.

    2013-09-01

    On one hand, the "float polishing" process consists of a tin lap having many concentric grooves, cut from a flat by single point diamond turning. This lap is rotated above a hydrostatic bearing spindle of high rigidity, damping and rotational accuracy. The optical surface thus floats above a thin layer of abrasive particles. But whilst surface texture can be smoothed to ~0.1nm rms (as measured by atomic force microscopy), this process can only be used on flat surfaces. On the other hand, the CNC "fluid jet polishing" process consists of pumping a mixture of water and abrasive particles to a converging nozzle, thus generating a polishing spot that can be moved along a tool path with tight track spacing. But whilst tool path feed can be moderated to ultra-precisely correct form error on freeform optical surfaces, surface finish improvement is generally limited to ~1.5nm rms (with fine abrasives). This paper reports on the development of a novel finishing method, that combines the advantages of "fluid jet polishing" (i.e. freeform corrective capability) with "float polishing" (i.e. super-smooth surface finish of 0.1nm rms or less). To come up with this new "hybrid" method, computational fluid dynamic modeling of both processes in COMSOL is being used to characterize abrasion conditions and adapt the process parameters of experimental fluid jet polishing equipment, including: (1) geometrical shape of nozzle, (2) position relative to the surface, (3) control of inlet pressure. This new process is aimed at finishing of next generation X-Ray / Gamma Ray focusing optics.

  2. Building a Hybrid Experimental Platform for Mobile Botnet Research

    Directory of Open Access Journals (Sweden)

    Apostolos Malatras

    2016-03-01

    Full Text Available Mobile botnets are an emerging security threat that aims at exploiting the wide penetration of mobile devices and systems and their vulnerabilities in the same spirit of traditional botnets. Mobile botmasters take advantage of infected mobile devices and issue command and control operations on them to extract personal information, cause denial of service or gain financially. To date, research on countering such attacks or studying their effects has been conducted in a sporadic manner that hinders the repetition of experiments and thus limits their validity. We present here our work on a hybrid experimental platform for mobile botnets that supports the execution and monitoring of related scenarios concerning their infection, attack vectors, propagation, etc. The platform is based on principles of flexibility, extensibility and facilitates the setup of scalable experiments utilising both real and emulated mobile systems. We also discuss a novel method of estimating the active bot population in a botnet and illustrate its deployment on the experimental platform.

  3. Traditional machining processes research advances

    CERN Document Server

    2015-01-01

    This book collects several examples of research in machining processes. Chapter 1 provides information on polycrystalline diamond tool material and its emerging applications. Chapter 2 is dedicated to the analysis of orthogonal cutting experiments using diamond-coated tools with force and temperature measurements. Chapter 3 describes the estimation of cutting forces and tool wear using modified mechanistic models in high performance turning. Chapter 4 contains information on cutting under gas shields for industrial applications. Chapter 5 is dedicated to the machinability of magnesium and its alloys. Chapter 6 provides information on grinding science. Finally, chapter 7 is dedicated to flexible integration of shape and functional modelling of machine tool spindles in a design framework.    

  4. Suppression Subtractive Hybridization (SSH) and its modifications in microbiological research.

    Science.gov (United States)

    Huang, Xiaowei; Li, Yunxia; Niu, Qiuhong; Zhang, Keqin

    2007-09-01

    Suppression subtractive hybridization (SSH) is an effective approach to identify the genes that vary in expression levels during different biological processes. It is often used in higher eukaryotes to study the molecular regulation in complex pathogenic progress, such as tumorigenesis and other chronic multigene-associated diseases. Because microbes have relatively smaller genomes compared with eukaryotes, aside from the analysis at the mRNA level, SSH as well as its modifications have been further employed to isolate specific chromosomal locus, study genomic diversity related with exceptional bacterial secondary metabolisms or genes with special microbial function. This review introduces the SSH and its associated methods and focus on their applications to detect specific functional genes or DNA markers in microorganisms.

  5. Research on a New Hybrid System of a Tyre Crane Using Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    XU Li; GAO Xiao-hong; HU Yi

    2008-01-01

    Research on a hybrid system of a crane is a focus which considers environmental protection and energy saving.A new environmental protection and energy saving hybrid system of tyre crane.which utilizes supercapacitors as the energy store device,is presented.Analyzing the pdneiple of supercapacitors,the model of the crane's hybrid system is set up in this paper,and the model of main blocks are established.Through simulation analyzing,the energy saving result of the new hybrid system is obtained,and the good application value of the new hybrid system is explained.

  6. Hybrid Adsorption-Membrane Biological Reactors for Improved Performance and Reliability of Perchlorate Removal Processes

    Science.gov (United States)

    2008-12-01

    carbon supply for the autotrophic perchlorate reducing bacteria. The membrane used in the reactor is a hollow-fiber microfiltration membrane made from...1 HYBRID ADSORPTION- MEMBRANE BIOLOGICAL REACTORS FOR IMPROVED PERFORMANCE AND RELIABILITY OF PERCHLORATE REMOVAL PROCESSES L.C. Schideman...Center Champaign, IL 61826, USA ABSTRACT This study introduces the novel HAMBgR process (Hybrid Adsorption Membrane Biological Reactor) and

  7. Structural and Morphological Investigation for Water-Processed Graphene Oxide/Single-Walled Carbon Nanotubes Hybrids

    Science.gov (United States)

    Muda, M. R.; Ramli, M. M.; Mat Isa, S. S.; Halin, D. S. C.; Talip, L. F. A.; Mazelan, N. S.; Anhar, N. A. M.; Danial, N. A.

    2017-06-01

    New group of materials derived from hybridization of single walled carbon nanotubes (SWCNTs) and graphene oxide (GO) which resulting novel three dimensional (3D) materials generates an outstanding properties compared to corresponding SWCNTs and GO/Graphene. In this paper, we describe a simple approach using water processing method to develop integrated rGO/GO-SWCNT hybrids with different hybrid ratios. The hybrid ratios were varied into three divided ratio and the results were compared between pristine SWCNTs and GO in order to investigate the structural density and morphology of these carbonaceous materials. With an optimized ratio of rGO/GO-SWCNT, the hybrid shows a well-organized hybrid film structures with less defects density sites. The optimized mixture ratio emphasized the important of both rGO and SWCNTs in the hybrid structures. Morphological structural and defects density degrees were examined by Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy.

  8. Access to global health research. Prevalence and cost of gold and hybrid open access

    Energy Technology Data Exchange (ETDEWEB)

    Haustein, S.; Smith, E.; Mongeon, P.; Shu, F.; Lariviere, V.

    2016-07-01

    As it is a priority of global health research (GHR) to achieve equity in health worldwide, there is an increased demand and expectation that knowledge be shared freely and without barriers. Making research findings available for free to readers by publishing open access (OA) is thus central to GHR. Several studies have assessed the extent to which different forms of OA prevail but despite the importance of free access to knowledge in GHR, particular empirical evidence is missing. This paper aims to fill this gap by analyzing the extent to which GHR papers indexed in PubMed are published OA and how much it costs to publish in gold and hybrid OA journals. Findings show that between 2010 and 2014 as few as 18% of papers were published in gold OA journals, 7% published as hybrid OA (i.e., OA papers in subscription journals), while more than 60% were behind paywalls. Costs for gold OA amounted to $990,619 for 404 papers, whereas $722,631 were spent on article processing charges (APCs) of 223 hybrid papers. The majority of APCs were obtained by large commercial publishing houses known for exorbitant profit margins. (Author)

  9. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume 1. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Surber, F.T.

    1979-09-30

    The results of investigations conducted under Ce Hybrid Vehicle Potential Assessment Task are reported in 10 volumes. This volume contains an overview of the study and its results. The purpose of the overall study was to determine if the petroleum fuel savings achievable through the use of hybrid electric vehicles is worth the R and D expenditures needed to develop the hybrid vehicles and to determine R and D priorities. It was concluded that by the year 2010 hybrid vehicles could replace 80% of the automotive power that would otherwise be produced from petroleum fuels; the public should not suffer any mobility loss through the use of hybrid vehicles; high initial and life-cycle costs are a limiting factor; and R and D funds should be spent for systems design and the development of low-cost batteries and controllers. (LCL)

  10. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  11. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)

    OpenAIRE

    Krantz, William B.; Anthony G. Fane; Tzyy Haur Chong; Chuyang Y. Tang; Sim, Victor S.T.; Qianhong She

    2013-01-01

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water...

  12. The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element

    Science.gov (United States)

    Deyong, Mark R.; Findley, Randall L.; Fields, Chris

    1992-01-01

    A hybrid analog-digital neural processing element with the time-dependent behavior of biological neurons has been developed. The hybrid processing element is designed for VLSI implementation and offers the best attributes of both analog and digital computation. Custom VLSI layout reduces the layout area of the processing element, which in turn increases the expected network density. The hybrid processing element operates at the nanosecond time scale, which enables it to produce real-time solutions to complex spatiotemporal problems found in high-speed signal processing applications. VLSI prototype chips have been designed, fabricated, and tested with encouraging results. Systems utilizing the time-dependent behavior of the hybrid processing element have been simulated and are currently in the fabrication process. Future applications are also discussed.

  13. The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element

    Science.gov (United States)

    Deyong, Mark R.; Findley, Randall L.; Fields, Chris

    1992-01-01

    A hybrid analog-digital neural processing element with the time-dependent behavior of biological neurons has been developed. The hybrid processing element is designed for VLSI implementation and offers the best attributes of both analog and digital computation. Custom VLSI layout reduces the layout area of the processing element, which in turn increases the expected network density. The hybrid processing element operates at the nanosecond time scale, which enables it to produce real-time solutions to complex spatiotemporal problems found in high-speed signal processing applications. VLSI prototype chips have been designed, fabricated, and tested with encouraging results. Systems utilizing the time-dependent behavior of the hybrid processing element have been simulated and are currently in the fabrication process. Future applications are also discussed.

  14. Research Education: Perspectives and subjective processes involved in educational research

    Directory of Open Access Journals (Sweden)

    Harm H. Tillema

    2009-10-01

    Full Text Available Educational research acknowledges that researcher’s beliefs and training play a role in framing the outcomes of any study. Research not only consists of defining objectives and following certain methods (search but also of making decisions over the steps taking during the inquiry process (research.Establishing a conceptual framework to guide actions on the subjective processes in research is then crucial to control them. With that purpose in mind we offer researchers and Teacher Educators a heuristic tool to be conscious on the risks that can be taken when immersed in research interpretative process. This instrument could be utilised in PhD programs, masters and research projects.

  15. A hybrid analytical network process and fuzzy goal programming for supplier selection: A case study of auto part maker

    Directory of Open Access Journals (Sweden)

    Hesam Zande Hesami

    2011-10-01

    Full Text Available The aim of this research is to present a hybrid model to select auto part suppliers. The proposed method of this paper uses factor analysis to find the most influencing factors on part maker selection and the results are validated using different statistical tests such as Cronbach's Alpha and Kaiser-Meyer.The hybrid model uses analytical network process to rank different part maker suppliers and fuzzy goal programming to choose the appropriate alternative among various choices. The implementation of the proposed model of this paper is used for a case study of real-world problem and the results are discussed.

  16. Ground Motion Data Profile of Western Turkey with Intelligent Hybrid Processing

    Science.gov (United States)

    Korkmaz, Kasim A.; Demir, Fuat

    2016-09-01

    The recent earthquakes caused severe damages on the existing buildings. By this motivation, an important amount of research work has been conducted to determine the seismic risk of seismically active regions. For an accurate seismic risk assessment, processing of ground motions would provide an advantage. Using the current technology, it is not possible to precisely predict the future earthquakes. Therefore, most of the current seismic risk assessment methodologies are based on statistical evaluation by using recurrence and magnitude of the earthquakes hit the specified region. Because of the limited number of records on earthquakes, the quality of definitions is questionable. Fuzzy logic algorithm can be used to improve the quality of the definition. In the present study, ground motion data profile of western Turkey is defined using an intelligent hybrid processing. The approach is given in a practical way for an easier and faster calculation. Earthquake data between 1970 and 1999 from western part of Turkey have been used for training. The results are tested and validated with the earthquake data between 2000 and 2015 of the same region. Enough approximation was validated between calculated values and the earthquake data by using the intelligent hybrid processing.

  17. Ground Motion Data Profile of Western Turkey with Intelligent Hybrid Processing

    Science.gov (United States)

    Korkmaz, Kasim A.; Demir, Fuat

    2017-01-01

    The recent earthquakes caused severe damages on the existing buildings. By this motivation, an important amount of research work has been conducted to determine the seismic risk of seismically active regions. For an accurate seismic risk assessment, processing of ground motions would provide an advantage. Using the current technology, it is not possible to precisely predict the future earthquakes. Therefore, most of the current seismic risk assessment methodologies are based on statistical evaluation by using recurrence and magnitude of the earthquakes hit the specified region. Because of the limited number of records on earthquakes, the quality of definitions is questionable. Fuzzy logic algorithm can be used to improve the quality of the definition. In the present study, ground motion data profile of western Turkey is defined using an intelligent hybrid processing. The approach is given in a practical way for an easier and faster calculation. Earthquake data between 1970 and 1999 from western part of Turkey have been used for training. The results are tested and validated with the earthquake data between 2000 and 2015 of the same region. Enough approximation was validated between calculated values and the earthquake data by using the intelligent hybrid processing.

  18. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  19. Organic-Inorganic Hybrid Solution-Processed H-2-Evolving Photocathodes

    NARCIS (Netherlands)

    Lai, Lai-Hung; Gomulya, Widianta; Berghuis, Matthijs; Protesescu, Loredana; Detz, Remko J.; Reek, Joost N. H.; Kovalenko, Maksym V.; Loi, Maria A.

    2015-01-01

    Here we report for the first time an H-2-evolving photocathode fabricated by a solution-processed organic inorganic hybrid composed of CdSe and P3HT. The CdSe:P3HT (10:1 (w/w)) hybrid bulk heterojunction treated with 1,2-ethanedithiol (EDT) showed efficient water reduction and hydrogen generation. A

  20. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  1. Effect of Nozzle Design and Processing Parameter on Characteristics of Glass/Polypropylene Hybrid Yarns

    Directory of Open Access Journals (Sweden)

    Dr Hireni Mankodi

    2014-12-01

    Full Text Available Among the various methods commingling process is comparatively better alternative to produce hybrid yarns. The required properties of hybrid yarns can be obtained by controlling main processing parameters such as air pressure, overfeed and take-up speed along with proper selection of nozzle (jet design. The commingling machine has been fabricated to study the commingling parameters. The nozzle is the most important element of the commingling machine. The design specification of commingling jet along with the processing parameters decides the final characteristics of yarn. In the present study two different types of jets have been selected to investigate commingling characteristics of glass/polypropylene hybrid yarn.

  2. Combined Laser Beam Welding and Brazing Process for Aluminium Titanium Hybrid Structures

    Science.gov (United States)

    Möller, F.; Grden, M.; Thomy, C.; Vollertsen, F.

    The current state of the art in light-weight construction is - for the case of aircraft structures - the use of either aluminium or titanium. Whereas aluminium is light-weight and less expensive, titanium offers superior corrosion properties at higher cost. In order to combine the advantages of both materials, a hybrid Ti-Al structure is proposed for e.g. seat-track application. In this paper, an overview of the results from this research work and the accompanying thermo-mechanical simulations will be reported and discussed. On the basis of the development of an appropriate system technology, the process development will be described, focusing on the main influencing parameters of the process on joint properties.

  3. European Research and Development in Hybrid Flexible Electronics

    Science.gov (United States)

    2010-07-01

    quenching, trapping and annihilation rates of excitons, quantum and conversion efficiencies, photodegradation and device lifetimes, and device...technologies that reduce the production process and cost. Konarka researchers have investigated a variety of systems: dye - sensitized titania solar cells...driven by using pH to modulate metal complexation and decomplexation with optical readout. She also described Grätzel dye -sensitized solar cells in

  4. STRONG CONVERGENCE OF MONOTONE HYBRID METHOD FOR FIXED POINT ITERATION PROCESSES

    Institute of Scientific and Technical Information of China (English)

    Yongfu SU; Xiaolong QIN

    2008-01-01

    K. Nakajo and W. Takahashi in 2003 proved the strong convergence theorems for nonexpansive mappings, nonexpansive semigroups, and proximal point algorithm for zero point of monotone operators in Hilbert spaces by using the hybrid method in mathematical programming. The purpose of this paper is to modify the hybrid iteration method of K. Nakajo and W. Takahashi through the monotone hybrid method, and to prove strong convergence theorems. The convergence rate of iteration process of the monotone hybrid method is faster than that of the iteration process of the hybrid method of K. Nakajo and W. Takahashi. In the proofs in this article, Cauchy sequence method is used to avoid the use of the demiclosedness principle and Opial's condition.

  5. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  6. Organic Micropollutants Removal from Water by Oxidation and Other Processes:QSAR Models, Decision Support System and Hybrids of Processes

    KAUST Repository

    Sudhakaran, Sairam

    2013-08-01

    The presence of organic micropollutants (OMPs) in water is of great environmental concern. OMPs such as endocrine disruptors and certain pharmaceuticals have shown alarming effects on aquatic life. OMPs are included in the priority list of contaminants in several government directorate frameworks. The low levels of OMPs concentration (ng/L to μg/L) force the use of sophisticated analytical instruments. Although, the techniques to detect OMPs are progressing, the focus of current research is only on limited, important OMPs due to the high amount of time, cost and effort involved in analyzing them. Alternatively, quantitative structure activity relationship (QSAR) models help to screen processes and propose appropriate options without considerable experimental effort. QSAR models are well-established in regulatory bodies as a method to screen toxic chemicals. The goal of the present thesis was to develop QSAR models for OMPs removal by oxidation. Apart from the QSAR models, a decision support system (DSS) based on multi-criteria analysis (MCA) involving socio-economic-technical and sustainability aspects was developed. Also, hybrids of different water treatment processes were studied to propose a sustainable water treatment train for OMPs removal. In order to build the QSAR models, the ozone/hydroxyl radical rate constants or percent removals of the OMPs were compiled. Several software packages were used to 5 compute the chemical properties of OMPs and perform statistical analyses. For DSS, MCA was used since it allows the comparison of qualitative (non-monetary, non-metric) and quantitative criteria (e.g., costs). Quadrant plots were developed to study the hybrid of natural and advanced water treatment processes. The QSAR models satisfied both chemical and statistical criteria. The DSS resulted in natural treatment and ozonation as the preferred processes for OMPs removal. The QSAR models can be used as a screening tool for OMPs removal by oxidation. Moreover, the

  7. The Research Process on Converter Steelmaking Process by Using Limestone

    Science.gov (United States)

    Tang, Biao; Li, Xing-yi; Cheng, Han-chi; Wang, Jing; Zhang, Yun-long

    2017-08-01

    Compared with traditional converter steelmaking process, steelmaking process with limestone uses limestone to replace lime partly. A lot of researchers have studied about the new steelmaking process. There are much related research about material balance calculation, the behaviour of limestone in the slag, limestone powder injection in converter and application of limestone in iron and steel enterprises. The results show that the surplus heat of converter can meet the need of the limestone calcination, and the new process can reduce the steelmaking process energy loss in the whole steelmaking process, reduce carbon dioxide emissions, and improve the quality of the gas.

  8. ?HY-CHANGE?: AN HYBRID METHODOLOGY FOR CONTINUOUS PERFORMANCE IMPROVEMENT OF MANUFACTURING PROCESSES

    OpenAIRE

    Dassisti, Michele

    2010-01-01

    Abstract An hybrid methodology based on the joint recourse of Business Process An hybrid methodology for Continuous Performance Improvement (CPI) is presented, basically funded on the joint recourse of Business Process Reengineering (BPR) and Continuous Quality Improvement (CQI) principles and tools. The methodology (called HY-CHANGE) is conceived as a logical and technical support to the decision maker. It results in a number of recursive phases, where the rational and synchronous...

  9. Photovoltaic/diesel hybrid systems: The design process

    Science.gov (United States)

    Jones, G. J.; Chapman, R. N.

    A photovoltaic/storage system by itself may be uneconomical for stand-alone applications with large energy demands. However, by combining the PV system with a back-up energy source, such as a diesel, gasoline, or propane/thermoelectric generator, system economics can be improved. Such PV/fossil hybrid systems are being used, but their design has required detailed modeling to determine the optimal mix of photovoltaics and back-up energy. Recent data on diesel field reliability and a new design technique for stand-alone systems have overcome this problem. The approach provides the means for sizing the photovoltaic system to obtain a near optimal hybrid system, with about a 90% savings in back-up fuel costs. System economics are determined by comparing PV capital cost to the present value of the displaced diesel operation and maintenance costs.

  10. Organic-inorganic hybrid materials processing and applications

    OpenAIRE

    Schmidt, Helmut K.; Mennig, Martin; Nonninger, Ralph; Oliveira, Peter William de; Schirra, Hermann

    1999-01-01

    Hybrid materials as inorganic-organic nanostructured composites require tailored surface chemistry in order to obtain a homogeneous distribution of the nanoparticles in the matrix. For this reason, nanoparticles with organic functions have been synthesized, first, to provide the desired æ-potential at a given pH value, second, to avoid irreversible agglomeration due to the spacing effect, and third, to provide the appropriate surface chemistry. I could be shown that using this approach, it is...

  11. Process Improvement for Interinstitutional Research Contracting.

    Science.gov (United States)

    Varner, Michael; Logan, Jennifer; Bjorklund, Todd; Whitfield, Jesse; Reed, Peggy; Lesher, Laurie; Sikalis, Amy; Brown, Brent; Drollinger, Sandy; Larrabee, Kristine; Thompson, Kristie; Clark, Erin; Workman, Michael; Boi, Luca

    2015-08-01

    Sponsored research increasingly requires multiinstitutional collaboration. However, research contracting procedures have become more complicated and time consuming. The perinatal research units of two colocated healthcare systems sought to improve their research contracting processes. The Lean Process, a management practice that iteratively involves team members in root cause analyses and process improvement, was applied to the research contracting process, initially using Process Mapping and then developing Problem Solving Reports. Root cause analyses revealed that the longest delays were the individual contract legal negotiations. In addition, the "business entity" was the research support personnel of both healthcare systems whose "customers" were investigators attempting to conduct interinstitutional research. Development of mutually acceptable research contract templates and language, chain of custody templates, and process development and refinement formats decreased the Notice of Grant Award to Purchase Order time from a mean of 103.5 days in the year prior to Lean Process implementation to 45.8 days in the year after implementation (p = 0.004). The Lean Process can be applied to interinstitutional research contracting with significant improvement in contract implementation. © 2015 Wiley Periodicals, Inc.

  12. Solution processable organic/inorganic hybrid ultraviolet photovoltaic detector

    Directory of Open Access Journals (Sweden)

    Xiaopeng Guo

    2016-05-01

    Full Text Available Ultraviolet (UV photodetector is a kind of important optoelectronic device which can be widely used in scientific and engineering fields including astronomical research, environmental monitoring, forest-fire prevention, medical analysis, and missile approach warning etc. The development of UV detector is hindered by the acquirement of stable p-type materials, which makes it difficult to realize large array, low-power consumption UV focal plane array (FPA detector. Here, we provide a novel structure (Al/Poly(9,9-di-n-octylfuorenyl-2,7-diyl(PFO/ZnO/ITO to demonstrate the UV photovoltaic (PV response. A rather smooth surface (RMS roughness: 0.28 nm may be reached by solution process, which sheds light on the development of large-array, light-weight and low-cost UV FPA detectors.

  13. Aspect of Dynamic Simulation and Experimental Research Studies on Hybrid Pneumatic Power System

    Directory of Open Access Journals (Sweden)

    K. David Huang

    2010-01-01

    Full Text Available A Hybrid Pneumatic Power System (HPPS has been developed for several years with the major aim of reducing the vehicle fuel consumption, environment pollution and enhancing the vehicle performance as well. Comparing with the conventional hybrid system, HPPS replaces the battery's electrochemical energy with a high-pressure air storage tank and enables the internal combustion engine (ICE to function at its sweet spot. Besides, the HPPS, which effectively merges both the high-pressure air flow from the storage tank and the recycled exhaust flow from the ICE, thereby increases the thermal efficiency of the ICE and transforms the merged flow energy into mechanical energy using a high-efficiency turbine. This paper focuses on the major research process into HPPSs, including overall dynamic simulation and experimental validation. By using the simulation tool ITI-Sim, this research demonstrates an experiment which can be operated precisely according to the requirements of various driving conditions under which a car actually runs on the road in accordance with the regulated running vehicle test mode. HPPS is expected to increase the performance of the entire system from 15% to 39%, and is likely to replace the traditional system in the coming years.

  14. Process-Product Research: A Cornerstone in Educational Effectiveness Research

    Science.gov (United States)

    Creemers, Bert; Kyriakides, Leonidas

    2015-01-01

    This article links the contribution of process-product studies in developing the theoretical framework of educational effectiveness by pointing out the importance of teacher behavior in the classroom. The role that Jere Brophy played in this evolving research is described within the various phases of teacher effectiveness research. Process-product…

  15. Hybrid Genetic Algorithm Based Optimization of Coupled HMM for Complex Interacting Processes Recognition

    Institute of Scientific and Technical Information of China (English)

    Liu Jianghua(刘江华); Chen Jiapin; Cheng Junshi

    2004-01-01

    Coupled Hidden Markov Model (CHMM) is the extension of traditional HMM, which is mainly used for complex interactive process modeling such as two-hand gestures. However, the problems of finding optimal model parameter are still of great interest to the researches in this area. This paper proposes a hybrid genetic algorithm (HGA) for the CHMM training. Chaos is used to initialize GA and used as mutation operator. Experiments on Chinese TaiChi gestures show that standard GA (SGA) based CHMM training is superior to Maximum Likelihood (ML) HMM training. HGA approach has the highest recognition rate of 98.0769%, then 96.1538% for SGA. The last one is ML method, only with a recognition rate of 69.2308%.

  16. Video Recording and the Research Process

    Science.gov (United States)

    Leung, Constant; Hawkins, Margaret R.

    2011-01-01

    This is a two-part discussion. Part 1 is entitled "English Language Learning in Subject Lessons", and Part 2 is titled "Video as a Research Tool/Counterpoint". Working with different research concerns, the authors attempt to draw attention to a set of methodological and theoretical issues that have emerged in the research process using video data.…

  17. Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium

    Science.gov (United States)

    Yanqoritha, Nyimas; Turmuzi, Muhammad; Derlini

    2017-05-01

    The appropriate process to resolve sewage contamination which have a high organic using anaerobic technology. Hybrid Upflow Anaerobic Sludge Blanket reactor is one of the anaerobic process which consists of a suspended growth media and attached growth media. The reactor has the ability to work at high load rate, sludge produced easily settles, high biomass and the separation of gas, solid and liquid excelent. The purpose of research is to study the acclimatization process in the reactor of Hybrid Upflow Anaerobic Sludge Blanket using a polyvinl chloride ring as the attached growth medium. Reactor of Hybrid Upflow Anaerobic Sludge Blanket use a working volume of 8.6 L. The operation consisting of 3 L suspended reactor and 5.6 L attached reactor. Acclimatization is conducted by providing the substrate from the smallest concentration of COD up to a concentration that will be processed. During the 50th day, acclimatization process assumed the bacteria begin to work, indicated by the dissolved COD and VSS decrease and biogas production. Due to the wastewater containing the high of protein in consequence operational parameters should be controlled and some precautions should be taken to prevent process partially or totally inhibited.

  18. Hybrid quantum repeater protocol with fast local processing

    DEFF Research Database (Denmark)

    Borregaard, Johannes; Brask, Jonatan Bohr; Sørensen, Anders Søndberg

    2012-01-01

    We propose a hybrid quantum repeater protocol combining the advantages of continuous and discrete variables. The repeater is based on the previous work of Brask et al. [ Phys. Rev. Lett. 105 160501 (2010)] but we present two ways of improving this protocol. In the previous protocol entangled single......-photon states are produced and grown into superpositions of coherent states, known as two-mode cat states. The entanglement is then distributed using homodyne detection. To improve the protocol, we replace the time-consuming nonlocal growth of cat states with local growth of single-mode cat states, eliminating...

  19. A Dynamic Feature-Based Method for Hybrid Blurred/Multiple Object Detection in Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Tsun-Kuo Lin

    2016-01-01

    Full Text Available Vision-based inspection has been applied for quality control and product sorting in manufacturing processes. Blurred or multiple objects are common causes of poor performance in conventional vision-based inspection systems. Detecting hybrid blurred/multiple objects has long been a challenge in manufacturing. For example, single-feature-based algorithms might fail to exactly extract features when concurrently detecting hybrid blurred/multiple objects. Therefore, to resolve this problem, this study proposes a novel vision-based inspection algorithm that entails selecting a dynamic feature-based method on the basis of a multiclassifier of support vector machines (SVMs for inspecting hybrid blurred/multiple object images. The proposed algorithm dynamically selects suitable inspection schemes for classifying the hybrid images. The inspection schemes include discrete wavelet transform, spherical wavelet transform, moment invariants, and edge-feature-descriptor-based classification methods. The classification methods for single and multiple objects are adaptive region growing- (ARG- based and local adaptive region growing- (LARG- based learning approaches, respectively. The experimental results demonstrate that the proposed algorithm can dynamically select suitable inspection schemes by applying a selection algorithm, which uses SVMs for classifying hybrid blurred/multiple object samples. Moreover, the method applies suitable feature-based schemes on the basis of the classification results for employing the ARG/LARG-based method to inspect the hybrid objects. The method improves conventional methods for inspecting hybrid blurred/multiple objects and achieves high recognition rates for that in manufacturing processes.

  20. Numerical Research on Hybrid Fuel Locking Device for Upward Flow Core-Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Cho, Yeong-Garp; Yoo, Yeon-Sik; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The assembly must be held firmly against these forces, but cannot be permanently attached to the support stand because periodic refueling of the reactor requires removal or relocation of each assembly. There are so many kinds of fuel locking device, but they are operated manually. As a part of a new project, we have investigated a hybrid fuel locking device (HFLD) for research reactor which is operated automatically. Prior method of holding down the fuel assembly includes a hybrid zero electromagnet consisting of an electromagnet and a permanent magnet. The role of an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by controlling the coil current. At this time, a HFLD is an unlocking state. On the contrary, it is locking state that only a permanent magnet works when the power of an electromagnet is off. The results of a FEM in this work lead to the following conclusions: (1) It is possible that an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by remote controlling the coil current. (2) At this time, it is able to detect remotely using proximity sensor whether a HFLD is latched or not.

  1. Psychotherapy change process research: realizing the promise.

    Science.gov (United States)

    Elliott, Robert

    2010-03-01

    Change process research (CPR) is the study of the processes by which change occurs in psychotherapy and is a necessary complement to randomized clinical trials and other forms of efficacy research. In this article the author describes and evaluates four types of CPR. The first three are basic designs and include quantitative process-outcome, qualitative helpful factors, and microanalytic sequential process; the fourth, the significant events approach, refers to methods such as task analysis and comprehensive process analysis that integrate the first three. The strengths and weaknesses of each design are described and summarized using both causal and practical criteria as part of an overall argument for systematic methodological pluralism.

  2. Influence of processing parameters on long lasting hybrid phosphor for LED applications

    Science.gov (United States)

    Jain, Abhilasha; Kumar, Ashwini; Dhoble, S. J.; Peshwe, D. R.

    2016-05-01

    Rare earth activated hybrid phosphors have made significant progress in terms of better light output, color properties and potential for long life. All these features coupled with low cost production and reduced maintenance have offered phosphor converted LEDs for diverse optoelectronic applications including signal lighting in advanced aviation. The present paper explores the effect of various processing parameters on luminescent hybrid phosphors fabricated through combustion synthesis.

  3. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  4. Manufacturing Technology (MATES) II. Task Order 0006: Air Force Technology and Industrial Base Research Sub-Task 07: Future Advances in Electronic Materials and Processes-Flexible Hybrid Electronics

    Science.gov (United States)

    2016-02-29

    temporary handle die to make it manageable for processing, and then wafers were bumped to create Sn/Pb solder bumps on each die pad. A vacuum...Circuits and System Adaptation..............................................................208 7.3.5.1. Wafer Thinning...170 38 50-µm-thick Die Flip Chip Bonded with Sn/Pb Solder Bumps .......................................170 39 Flexible

  5. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  6. Visit and course at Hunan Hybrid Rice Research Ceater ( HHRRC )

    Institute of Scientific and Technical Information of China (English)

    TANZhijun

    1992-01-01

    Invited by Prof YUAN Longping 3 Japanese scientists of the delegation of National Federation of Agricultural Cooperative Association (ZEN-NOH) led by Hibino, came to visit HHRRC. During their visit, HHRRC experts introduced to them the advances in hybrid rice research in China and the Japanese guests reported the recent progresses on improvement of grain quality and cultivation techniques for indica/japonica hybrid rice.

  7. The research of controller area network on hybrid electrical vehicle

    Institute of Scientific and Technical Information of China (English)

    Wu Hongxing; Song Liwei; Kou Baoquan; Cheng Shukang

    2006-01-01

    It is of increasing importance to design and implement vehicle networks for transferring information between electrical control units on Hybrid Electrical Vehicle (HEV). This paper presents a scheme of using Controller Area Network (CAN) technology to realize communication and datasharing between the electrical units on the HEV. The principle and communication protocol of Electrical Control Units (ECU) CAN node are introduced. By considering different sensitivity of the devices to the latency of data transportation, a new design procedure is proposed for the purpose of simplifying network codes and wiring harness, reducing assembly space and weight, improving assembly efficiency, and enhancing fault-diagnose in auto networks.

  8. A Hybrid FPGA/Coarse Parallel Processing Architecture for Multi-modal Visual Feature Descriptors

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Alonso, Javier Díaz

    2008-01-01

    This paper describes the hybrid architecture developed for speeding up the processing of so-called multi-modal visual primitives which are sparse image descriptors extracted along contours. In the system, the first stages of visual processing are implemented on FPGAs due to their highly parallel...

  9. Energy minimization of separation processes using conventional/membrane hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Gottschlich, D.E.; Roberts, D.L. (SRI International, Menlo Park, CA (USA))

    1990-09-28

    The purpose of this study was to identify the general principles governing the choice of hybrid separation systems over straight membrane or straight nonmembrane systems and to do so by examining practical applications (process design and economics). Our focus was to examine the energy consumption characteristics and overall cost factors of the membrane and nonmembrane technologies that cause hybrid systems to be preferred over nonhybrid systems. We evaluated four cases studies, chosen on the basis of likelihood of commercial viability of a hybrid system and magnitude of energy savings: (1) propane/propylene separation; (2) removal of nitrogen from natural gas; (3) concentration of Kraft black liquor; and (4)solvent deasphalting. For propane/propylene splitting, the membrane proved to be superior to distillation in both thermodynamic efficiency and processing cost (PC) when the product was 95% pure propylene. However, to produce higher purity products, the membrane alone could not perform the separation, and a membrane/distillation hybrid was required. In these cases, there is an optimum amount of separation to be accomplished by the membrane (expressed as the fraction of the total availability change of the membrane/distillation hybrid that takes place in the membrane and defined as {phi}{sub m}, the thermodynamic extent of separation). Qualitative and quantitative guidelines are discussed with regard to choosing a hybrid system. 54 refs., 66 figs., 36 tabs.

  10. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  11. Research on stellarator-mirror fission-fusion hybrid

    Science.gov (United States)

    Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.

    2014-09-01

    The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.

  12. Hybrid Organic/Inorganic Coatings Through Dual-Cure Processes: State of the Art and Perspectives

    Directory of Open Access Journals (Sweden)

    Giulio Malucelli

    2016-03-01

    Full Text Available This paper reviews the current state of the art related to the synthesis and characterization of hybrid organic-inorganic (O/I coatings obtained through the exploitation of dual-cure processes, which involve a photo-induced polymerization followed by a thermal treatment: this latter allows the occurrence of sol-gel reactions of suitable alkoxy precursors already embedded in the UV-curable system. After a brief introduction on hybrid organic-inorganic coatings, the first part of the review is focused on the design and feasibility issues provided by the dual-cure method, emphasizing the possibility of tuning the structure of the final hybrid network on the basis of the composition of the starting liquid mixture. Then, some recent examples of hybrid organic-inorganic networks are thoroughly described, showing their potential advances and the application fields to which they can be addressed.

  13. Sustainability Research: Biofuels, Processes and Supply Chains

    Science.gov (United States)

    Presentation will talk about sustainability at the EPA, summarily covering high level efforts and focusing in more detail on research in metrics for liquid biofuels and tools to evaluate sustainable processes. The presentation will also briefly touch on a new area of research, t...

  14. Experimental investigations on the state of the friction-welded joint zone in steel hybrid components after process-relevant thermo-mechanical loadings

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Peshekhodov, I.; Matthias, T.; Kolbasnikov, N.; Sokolov, S.; Ganin, S.

    2016-10-01

    As a part of the newly established Collaborative Research Center 1153 (SFB 1153) "Process chain for the manufacturing of hybrid high-performance components by tailored forming" at the Leibniz Universität Hannover, the Institute of Forming Technology and Machines (IFUM) examines the influence of thermo-mechanical stresses on the reduced Young's modulus as well as the hardness of hybrid (steel-steel compound) joined semi-finished products. Currently the expertise in the production of bulk metal formed parts is limited to mono-materials. For manufacturing parts of hybrid materials and also for the methods of the new process routes, practical experience has to be gained. The subproject C1 within the collaborative research center 1153 with the short title "Failure Prediction" deals with the question, if the hybrid semi-finished products fulfill the thermo-mechanical demands or if they fail at the joining zone (JZ) during forging. For this purpose, stresses similar to those in the process were imposed on hybrid semi-finished products by torsion tests by using the thermo-mechanical test system Gleeble 3800. Afterwards, the specimens were examined metallographically and by nanoindentations with the help of a TriboIndenter TI950. Thus, first knowledge on the behaviour of thermo-mechanical stresses on the reduced Young's modulus and the hardness of hybrid joined semi-finished parts was gained.

  15. GREEN BUSINESS PROCESS MANAGEMENT: A RESEARCH AGENDA

    Directory of Open Access Journals (Sweden)

    Aditya Ghose

    2010-01-01

    Full Text Available There is a global consensus on the need to reduce our collective carbon footprint. While much research attention has focused on developing alternative energy sources, automotive technologies or waste disposal techniques, we often ignore the fact that the ability to optimize (existing operations to reduce their emissions impact is fundamental to this exercise. Business process management (BPM technology, with its focus on understanding, modelling and improving/optimizing business processes, is a key starting point. Process modelling technology has applications beyond what we would traditionally describe as business processes - we can also model and improve manufacturing and other "physical" processes. This paper describes the contours of the emerging research landscape in green business process management and presents some early results in this area.

  16. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO

    Directory of Open Access Journals (Sweden)

    William B. Krantz

    2013-07-01

    Full Text Available This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.

  17. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO).

    Science.gov (United States)

    Sim, Victor S T; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G; Krantz, William B

    2013-07-04

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%-20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.

  18. Anodic bonding using a hybrid electrode with a two-step bonding process

    Science.gov (United States)

    Wei, Luo; Jing, Xie; Yang, Zhang; Chaobo, Li; Yang, Xia

    2012-06-01

    A two-step bonding process using a novel hybrid electrode is presented. The effects of different electrodes on bonding time, bond strength and the bonded interface are analyzed. The anodic bonding is studied using a domestic bonding system, which carries out a detailed analysis of the integrity of the bonded interface and the bond strength measurement. With the aid of the hybrid electrode, a bubble-free anodic bonding process could be accomplished within 15-20 min, with a shear strength in excess of 10 MPa. These results show that the proposed method has a high degree of application value, including in most wafer-level MEMS packaging.

  19. Application of Hybrid Genetic Algorithm Routine in Optimizing Food and Bioengineering Processes.

    Science.gov (United States)

    Tumuluru, Jaya Shankar; McCulloch, Richard

    2016-11-09

    Optimization is a crucial step in the analysis of experimental results. Deterministic methods only converge on local optimums and require exponentially more time as dimensionality increases. Stochastic algorithms are capable of efficiently searching the domain space; however convergence is not guaranteed. This article demonstrates the novelty of the hybrid genetic algorithm (HGA), which combines both stochastic and deterministic routines for improved optimization results. The new hybrid genetic algorithm developed is applied to the Ackley benchmark function as well as case studies in food, biofuel, and biotechnology processes. For each case study, the hybrid genetic algorithm found a better optimum candidate than reported by the sources. In the case of food processing, the hybrid genetic algorithm improved the anthocyanin yield by 6.44%. Optimization of bio-oil production using HGA resulted in a 5.06% higher yield. In the enzyme production process, HGA predicted a 0.39% higher xylanase yield. Hybridization of the genetic algorithm with a deterministic algorithm resulted in an improved optimum compared to statistical methods.

  20. Fundamental phenomena on fuel decomposition and boundary-layer combustion processes with applications to hybrid rocket motors

    Science.gov (United States)

    Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir

    1995-01-01

    The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.

  1. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    Science.gov (United States)

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants.

  2. Resonant photothermal laser processing of hybrid gold/titania nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Lina; Franzka, Steffen; Dzialkowski, Kevin [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Hardt, Sebastian; Wiggers, Hartmut [Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Institut für Verbrennung und Gasdynamik, Universität Duisburg-Essen, 47048 Duisburg (Germany); Reichenberger, Sven [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Institut für Lacke und Oberflächenchemie, Hochschule Niederrhein, 47798 Krefeld (Germany); Wagener, Philipp [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany)

    2015-05-01

    Graphical abstract: - Highlights: • Photothermal processing of TiO{sub 2} and hybrid Au/TiO{sub 2} nanoparticles using continuous-wave lasers is demonstrated. • Processing of TiO{sub 2} nanoparticles at 355 nm results in a transition from anatase to rutile. • Decoration of TiO{sub 2} nanoparticles with Au nanoparticles results in an increased absorbance in the visible range. • Hybrid Au/TiO{sub 2} nanoparticles can be processed at 355 nm and 532 nm in a large laser parameter window. • Processing of hybrid Au/TiO{sub 2} nanoparticles at 532 nm can be carried out at low laser powers and short laser pulse lengths. - Abstract: Photothermal processing of thin anatase TiO{sub 2} and hybrid Au/anatase TiO{sub 2} nanoparticle films on glass supports is investigated using continuous-wave microfocused lasers at λ = 355 nm and λ = 532 nm. UV/Vis spectroscopy, Raman spectroscopy, optical microscopy, atomic force microscopy and scanning electron microscopy are used for characterization. Processing of TiO{sub 2} nanoparticle films is feasible at λ = 355 nm only. In contrast, the addition of Au nanoparticles enhances the overall absorbance of the material in the visible range and enables processing at both wavelengths, i.e. at λ = 355 nm and λ = 532 nm. Generally, laser heating induces a transition from anatase to rutile. The modification degree increases with increasing laser power and laser irradiation time. Resonant laser processing of hybrid Au/TiO{sub 2}-mesoporous films provide promising perspectives in various applications, e.g. in photovoltaics, where embedded nanoparticulate Au could be exploited to enhance light trapping.

  3. Hybrid Pluggable Processing Pipeline (HyP3): A cloud-based infrastructure for generic processing of SAR data

    Science.gov (United States)

    Hogenson, K.; Arko, S. A.; Buechler, B.; Hogenson, R.; Herrmann, J.; Geiger, A.

    2016-12-01

    A problem often faced by Earth science researchers is how to scale algorithms that were developed against few datasets and take them to regional or global scales. One significant hurdle can be the processing and storage resources available for such a task, not to mention the administration of those resources. As a processing environment, the cloud offers nearly unlimited potential for compute and storage, with limited administration required. The goal of the Hybrid Pluggable Processing Pipeline (HyP3) project was to demonstrate the utility of the Amazon cloud to process large amounts of data quickly and cost effectively, while remaining generic enough to incorporate new algorithms with limited administration time or expense. Principally built by three undergraduate students at the ASF DAAC, the HyP3 system relies on core Amazon services such as Lambda, the Simple Notification Service (SNS), Relational Database Service (RDS), Elastic Compute Cloud (EC2), Simple Storage Service (S3), and Elastic Beanstalk. The HyP3 user interface was written using elastic beanstalk, and the system uses SNS and Lamdba to handle creating, instantiating, executing, and terminating EC2 instances automatically. Data are sent to S3 for delivery to customers and removed using standard data lifecycle management rules. In HyP3 all data processing is ephemeral; there are no persistent processes taking compute and storage resources or generating added cost. When complete, HyP3 will leverage the automatic scaling up and down of EC2 compute power to respond to event-driven demand surges correlated with natural disaster or reprocessing efforts. Massive simultaneous processing within EC2 will be able match the demand spike in ways conventional physical computing power never could, and then tail off incurring no costs when not needed. This presentation will focus on the development techniques and technologies that were used in developing the HyP3 system. Data and process flow will be shown

  4. Research Update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability

    Science.gov (United States)

    Kim, Jeonghun; Lee, Ju-Hyuck; Lee, Jaewoo; Yamauchi, Yusuke; Choi, Chang Ho; Kim, Jung Ho

    2017-07-01

    The past decade has been especially creative for nanogenerators as energy harvesting devices utilizing both piezoelectric and triboelectric properties. Most recently, self-charging power units using both nanogenerators and energy storage systems have begun to be investigated for portable and wearable electronics to be used in our daily lives. This review focuses on these hybrid devices with self-charging combined with energy harvesting storage systems based on the most recent reports. In this research update, we will describe the materials, device structures, integration, applications, and research progress up to the present on hybrid devices.

  5. Optimal hybrid separations for intensified downstream processing of biobutanol

    NARCIS (Netherlands)

    Sánchez-Ramírez, Eduardo; Quiroz-Ramírez, Juan José; Hernández, Salvador; Segovia-Hernández, Juan Gabriel; Kiss, Anton A.

    2017-01-01

    Current research focuses on new energy alternatives which could compete with the traditional energy sources based on fossil fuels, and eventually diminish the consequences on climate. Recently, butanol produced by ABE fermentation attracted more attention since its energy power is comparable to that

  6. Processing investigation and optimization for hybrid thermoplastic composites

    Institute of Scientific and Technical Information of China (English)

    M Tufail

    2007-01-01

    A thermoplastic based composite material is suitable for automobile and aerospace applications. The recyclability of thermoplastic and clean processing further enhance its use. The only limitation encountered in using this material is its high-melt viscosity. Various techniques have been developed to overcome this problem. Commingled materials are one of such methods adopted for making proper use of thermoplastic. A major problem observed during the use of a commingled material is its de-commingling, wherein, the uniform distribution of fiber and thermoplastic yarn gets disturbed and affects the final quality of the composite. The effects of the braiding process on laminate quality were investigated. Flat plaques were produced by braiding the commingled yarn, using a 48-carrier braiding machine. The braids (and control woven samples) were subsequently heated and consolidated in a nonisothermal compression molding operation. Prior to the manufacture of the 'best quality' plaques, a series of moldings were produced under different consolidation conditions, to study the dependence of properties on the process variables. This enabled a processing window to be established for each material and helped to separate the respective effects of yarn handling, textile processing, and consolidation on laminate properties.

  7. Design and implementation of a hybrid circuit system for micro sensor signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhuping; Chen Jing; Liu Ruqing, E-mail: wangzhuping169@163.com [School of Information and Electronics, Beijing Institute of Technology, Beijing 100081 (China)

    2011-04-15

    This paper covers a micro sensor analog signal processing circuit system (MASPS) chip with low power and a digital signal processing circuit board implementation including hardware connection and software design. Attention has been paid to incorporate the MASPS chip into the digital circuit board. The ultimate aim is to form a hybrid circuit used for mixed-signal processing, which can be applied to a micro sensor flow monitoring system. (semiconductor integrated circuits)

  8. Design and implementation of a hybrid circuit system for micro sensor signal processing*

    Institute of Scientific and Technical Information of China (English)

    Wang Zhuping; Chen Jing; Liu Ruqing

    2011-01-01

    This paper covers a micro sensor analog signal processing circuit system (MASPS) chip with low power and a digital signal processing circuit board implementation including hardware connection and software design.Attention has been paid to incorporate the MASPS chip into the digital circuit board. The ultimate aim is to form a hybrid circuit used for mixed-signal processing, which can be applied to a micro sensor flow monitoring system.

  9. Coagulation-Adsorption Hybrid Process for the Treatment of Dyes and Pigments Wastewater

    Directory of Open Access Journals (Sweden)

    Abdul Karim Shah

    2013-10-01

    Full Text Available The study aimed to improve the effectiveness of dyes and pigments wastewater treatment. Hybrid system of adsorption and coagulation was applied for the reduction of COD, color, turbidity and TSS. Activated carbon adsorbent was prepared from a waste of sugar industry boiler. It was processed through physicochemical treatment with sulfuric acid following grinding, sieving, washing and drying unit operations. Combined wastewater of dyes and pigments manufacturing plant was treated with a hybrid process of coagulation and adsorption. FeCl 3, FeSO 4and Alum coagulants were tested individually and found them less effective. It was revealed that FeCl 3 coagulation, adsorption and hybrid process reduced COD (41, 51 and 54%, Color (67, 70 and 89%, turbidity (69, 71 and 90% and TSS (82, 93 and 97% respectively. Combination of FeCl3 -SBFA (Sugarcane Bagasse Fly Ash proved 90% efficient in removal than coagulation as an individual process. 4g adsorbent dose was optimized for this hybrid process

  10. Data Mining: A Hybrid Methodology for Complex and Dynamic Research

    Science.gov (United States)

    Lang, Susan; Baehr, Craig

    2012-01-01

    This article provides an overview of the ways in which data and text mining have potential as research methodologies in composition studies. It introduces data mining in the context of the field of composition studies and discusses ways in which this methodology can complement and extend our existing research practices by blending the best of what…

  11. Data Mining: A Hybrid Methodology for Complex and Dynamic Research

    Science.gov (United States)

    Lang, Susan; Baehr, Craig

    2012-01-01

    This article provides an overview of the ways in which data and text mining have potential as research methodologies in composition studies. It introduces data mining in the context of the field of composition studies and discusses ways in which this methodology can complement and extend our existing research practices by blending the best of what…

  12. Research on Hybrid Input Mechanical Press Driven by Two Motors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Given the speed requirements of a mechanical press slider, a differential gear train is adopted instead of the belt and gear drive of a general mechanical press. Two electric motors are used to drive the differential gear train with hybrid input. Based on the working principle of a differential gear train, the angular speed equations and the power distribution equations of the input-output system are established. By controlling the angular speeds of the two motors, the slider can move at different speeds. Taken a JH23-100 type mechanical press as example, the driving system is designed and the power of two motors determined. The simulated results show that the highest slider speed in the mechanical press approaches 39 mm/s only at the forging-punching stage, far less than the 232 mm/s of a general JH23-100 type mechanical press. This provides a new scheme to realize low-speed forging-punching technology from a mechanical press.

  13. Research of the incubation and hybridization instrument with vibration for nanoparticles.

    Science.gov (United States)

    Liu, Zheng; Deng, Yan; Li, Qihua; Liu, Bin; Xia, Yun; Du, Yuhang; He, Nongyue

    2012-11-01

    Nanoparticles are the largest and most widely used nanomaterial in biomedical research nowadays, which are always used in solution. However, traditional techniques, such as hybridization oven are not appropriate for the incubation and hybridization of nanoparticles. Thus designing and developing an effective method and instrument for hybridization of nanoparticles is very essential to solve these present problems. This paper introduced and successfully designed a hybridization instrument, including insulated and closed chamber, temperature control system, motion control system input and output control system. The instrument can not only control temperature precisely to meet various requirements for chemical and biological molecule's incubation and hybridization on nanomaterials, but also make liquid flow slowly and shake according to a certain frequency for mixing to improve hybridization efficiency significantly. The control algorithm of temperature applied PID and fuzzy-PID, the accuracy is improved and stable. Vibration is the most obvious and advantageous feature of the instrument. Furthermore the core control system was improved whose core is C8051F060 MCU and designed into panel.

  14. PERFORMANCE EVALUATION METHOD FOR BUSINESS PROCESS OF MACHINERY MANUFACTURER BASED ON DEA/AHP HYBRID MODEL

    Institute of Scientific and Technical Information of China (English)

    WANG Ting; YI Shuping; YANG Yuanzhao

    2007-01-01

    A set of indices for performance evaluation for business processes with multiple inputs and multiple outputs is proposed, which are found in machinery manufacturers. Based on the traditional methods of data envelopment analysis (DEA) and analytical hierarchical process (AHP), a hybrid model called DEA/AHP model is proposed to deal with the evaluation of business process performance. With the proposed method, the DEA is firstly used to develop a pairwise comparison matrix, and then the AHP is applied to evaluate the performance of business process using the pairwise comparison matrix. The significant advantage of this hybrid model is the use of objective data instead of subjective human judgment for performance evaluation. In the case study, a project of business process reengineering (BPR) with a hydraulic machinery manufacturer is used to demonstrate the effectiveness of the DEA/AHP model.

  15. Hybrid membrane operations in water desalination and industrial process rationalisation.

    Science.gov (United States)

    Drioli, E; Di Profio, G; Curcio, E

    2005-01-01

    Membrane science and technology are recognized today as powerful tools in resolving some important global problems, and developing newer industrial processes, needed from the imperative of sustainable industrial growth. In seawater desalination, for resolving the dramatic increase of freshwater demand in many regions of the world, membrane unitary operations or the combination of some of them in integrated systems are already a real means for producing water from the sea, at lower costs and minimum environmental impact, with a very interesting prospective in particular for poor economy countries. However, membranes are used or are becoming used in some important industrial fields, for developing more efficient productive cycles, with reduced waste of raw-material, reducing the polluting charge by controlling byproduct generation, and reducing overall costs. In the present paper, other than for seawater desalination applications, some industrial applications where membrane technology has led already to match the goal of process intensification are discussed.

  16. Processes of international collaboration in management research

    DEFF Research Database (Denmark)

    Jonsen, Karsten; Butler, Christina; Mäkelä, Kristiina;

    2013-01-01

    collaborative research. We offer systematic insights into the social and intellectual processes of academic collaborative writing, identifying six lessons and two key tensions that influence the success of international research teams. Our findings may benefit the formation of future coauthor teams......Scientists and academics increasingly work on collaborative projects and write papers in international research teams. This trend is driven by greater publishing demands in terms of the quality and breadth of data and analysis methods, which tend to be difficult to achieve without collaborating...

  17. Hybrid colored noise process with space-dependent switching rates

    Science.gov (United States)

    Bressloff, Paul C.; Lawley, Sean D.

    2017-07-01

    A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular biology, we considered a Brownian particle that randomly switches between two distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the effective multiplicative noise process obtained by taking both the white-noise limit (κ →0 ) and fast switching limit (ɛ →0 ) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we show that yet another form of multiplicative noise is obtained in the simultaneous limit ɛ ,κ →0 with ɛ /κ2 fixed.

  18. Energy supply chain optimization of hybrid feedstock processes: a review.

    Science.gov (United States)

    Elia, Josephine A; Floudas, Christodoulos A

    2014-01-01

    The economic, environmental, and social performances of energy systems depend on their geographical locations and the surrounding market infrastructure for feedstocks and energy products. Strategic decisions to locate energy conversion facilities must take all upstream and downstream operations into account, prompting the development of supply chain modeling and optimization methods. This article reviews the contributions of energy supply chain studies that include heat, power, and liquid fuels production. Studies are categorized based on specific features of the mathematical model, highlighting those that address energy supply chain models with and without considerations of multiperiod decisions. Studies that incorporate uncertainties are discussed, and opportunities for future research developments are outlined.

  19. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  20. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  1. Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Arenillas, A.; Menendez, J.A.

    2015-01-01

    A 3-electrode half-cell setup consisting of a yttria-stabilized zirconia (YSZ) electrolyte support was employed to investigate the chemical and electrochemical processes occurring in the vicinity of a model hybrid direct carbon fuel cell (HDCFC) anode (Ni-YSZ) in contact with a molten carbon...

  2. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation

    Science.gov (United States)

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao

    2016-01-26

    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  3. Easily processable multimodal spectral converters based on metal oxide/organic-inorganic hybrid nanocomposites.

    Science.gov (United States)

    Julián-López, Beatriz; Gonell, Francisco; Lima, Patricia P; Freitas, Vânia T; André, Paulo S; Carlos, Luis D; Ferreira, Rute A S

    2015-10-09

    This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er(3+), Yb(3+) codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er(3+)- and Yb(3+)-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices.

  4. Easily processable multimodal spectral converters based on metal oxide/organic—inorganic hybrid nanocomposites

    Science.gov (United States)

    Julián-López, Beatriz; Gonell, Francisco; Lima, Patricia P.; Freitas, Vânia T.; André, Paulo S.; Carlos, Luis D.; Ferreira, Rute A. S.

    2015-10-01

    This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er3+, Yb3+ codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er3+- and Yb3+-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices.

  5. Research at Yale in Natural Language Processing. Research Report #84.

    Science.gov (United States)

    Schank, Roger C.

    This report summarizes the capabilities of five computer programs at Yale that do automatic natural language processing as of the end of 1976. For each program an introduction to its overall intent is given, followed by the input/output, a short discussion of the research underlying the program, and a prognosis for future development. The programs…

  6. Material efficient production of complex (hybrid) components using semi solid forming processes

    Science.gov (United States)

    Riedmüller, Kim Rouven; Liewald, Mathias

    2016-10-01

    By means of lightweight design and lightweight material structures, weight of single components and of resulting component assemblies should be reduced and, additionally, existing functionalities, reliabilities and material properties should be preserved. Therefore, on the one hand novel materials and hybrid material combinations are investigated and on the other hand weight reduction is realized by material efficient component designs. With regard to the manufacturing of such complex component geometries with high dimensional accuracy and relating to the realization of hybrid material concepts, semi solid forming technology offers promising prospects. This paper deals with two research projects recently conducted at the Institute for Metal Forming Technology (IFU, University of Stuttgart) in the field of this forming technology. First project is concerned with the manufacturing of hybrid components with integrated sensor and/or actuator functions and second project is in the field of material efficient manufacturing.

  7. Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers

    DEFF Research Database (Denmark)

    Markos, Christos

    2016-01-01

    The possibility to combine silica photonic crystal fiber (PCF) as low-loss platform with advanced functional materials, offers an enormous range of choices for the development of fiber-based tunable devices. Here, we report a tunable hybrid silica PCF with integrated As2S3 glass nanolayers inside...... antiresonances by taking advantage the high thermo-optic coefficient of the solution-processed nanolayers. Two different hybrid fiber structures, with core diameter 10 and 5 mu m, were developed and characterized using a supercontinuum source. The maximum sensitivity was measured to be as high as 3.6 nm...

  8. The Future of Nearshore Processes Research

    Science.gov (United States)

    Elko, N.; Feddersen, F.; Foster, D. L.; Holman, R. A.; McNinch, J.; Ozkan-Haller, H. T.; Plant, N. G.; Raubenheimer, B.; Elgar, S.; Hay, A. E.; Holland, K. T.; Kirby, J. T., Jr.; Lippmann, T. C.; Miller, J. K.; Stockdon, H. F.; Ashton, A. D.; Boehm, A. B.; Clark, D.; Cowen, E.; Dalyander, S.; Gelfenbaum, G. R.; Hapke, C. J.; MacMahan, J.; McNamara, D.; Mulligan, R. P.; Palmsten, M. L.; Ruggiero, P.; Sherwood, C. R.; Hsu, T. J.

    2014-12-01

    Over 70 members of the nearshore coastal processes research community convened in April 2014 to discuss a vision for the future of nearshore science while celebrating the memories and contributions of our recently departed colleague, Abby Sallenger. The participants reviewed community accomplishments over the past four decades. Federal agencies, including FEMA, NOAA, NPS, USGS, USACE, and NRL discussed the most pressing societal needs within the coastal zone. The group engaged in a retrospective of the last four decades of progress, assessed the current status and limitations of nearshore processes research, and developed a vision for the future that focuses on societally relevant problems. The top research topics identified included: Long-term Coastal Impacts: Meaningfully improve our understanding and prediction of the long-term coastal effects of sea level rise and changes in storminess patterns and associated efforts to protect coastal infrastructure. Extreme Events: Coastal flooding, overland flow, and concurrent morphological evolution during extreme events including the subsequent process of coastal recovery. Human and Ecosystem Health: Linkages between physical coastal processes (transport and mixing) and land-based pollution (pathogens, nutrients, toxic contaminants). Critical for addressing these research questions is enabling infrastructure, such as new observational tools and data sets, models, and nearshore-community communication and collaboration. Idea and concepts developed during the meeting (to be published in Shore and Beach) will be presented to foster collaboration and advocacy amongst the wider nearshore community. Meeting materials are available at: https://scripps.ucsd.edu/centers/nearshorefuture/.

  9. Research Experience with a Plug-In Hybrid Electric Vehicle: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Pesaran, A.; Kelly, K.; Thornton, M.; Nortman, P.

    2007-12-01

    This technical document reports on the exploratory research conducted by NREL on PHEV technology using a Toyota Prius that has been converted to a plug-in hybrid electric vehicle. The data includes both controlled dynamometer and on-road test results, particularly for hilly driving. The results highlight the petroleum savings and benefits of PHEV technology.

  10. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aut.ac.i [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of); Davilu, Hadi [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Barfrosh, Ahmad Abdollahzadeh [Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of)

    2009-12-15

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  11. Hard X-rays for processing hybrid organic-inorganic thick films.

    Science.gov (United States)

    Jiang, Yu; Carboni, Davide; Pinna, Alessandra; Marmiroli, Benedetta; Malfatti, Luca; Innocenzi, Plinio

    2016-01-01

    Hard X-rays, deriving from a synchrotron light source, have been used as an effective tool for processing hybrid organic-inorganic films and thick coatings up to several micrometres. These coatings could be directly modified, in terms of composition and properties, by controlled exposure to X-rays. The physico-chemical properties of the coatings, such as hardness, refractive index and fluorescence, can be properly tuned using the interaction of hard X-rays with the sol-gel hybrid films. The changes in the microstructure have been correlated especially with the modification of the optical and the mechanical properties. A relationship between the degradation rate of the organic groups and the rise of fluorescence from the hybrid material has been observed; nanoindentation analysis of the coatings as a function of the X-ray doses has shown a not linear dependence between thickness and film hardness.

  12. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  13. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Directory of Open Access Journals (Sweden)

    Meng Song

    2015-09-01

    Full Text Available Integrating carbon nanotubes (CNTs and graphene into hybrid structures provides a novel approach to three dimensional (3D materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ∼1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  14. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Science.gov (United States)

    Song, Meng; Xu, Peng; Song, Yenan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wu, Huizhen; Zhao, Pei; Wang, Miao

    2015-09-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ˜1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  15. Preliminary Design Study of a Hybrid Airship for Flight Research

    Science.gov (United States)

    Browning, R. G. E.

    1981-01-01

    The feasibility of using components from four small helicopters and an airship envelope as the basis for a quad-rotor research aircraft was studied. Preliminary investigations included a review of candidate hardware and various combinations of rotor craft/airship configurations. A selected vehicle was analyzed to assess its structural and performance characteristics.

  16. A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management

    NARCIS (Netherlands)

    Li, W.; Krantz, W.B.; Cornelissen, E.R.; Post, J.W.; Verliefde, A.R.D.; Tang, C.Y.

    2013-01-01

    This paper introduces a novel concept for a hybrid desalination system that combines reverse electrodialysis (RED) and reverse osmosis (RO) processes. In this hybrid process the RED unit harvests the energy in the form of electricity from the salinity gradient between a highly concentrated solution

  17. Ship-in-a-Bottle Biomicrochips Fabricated by Hybrid Femtosecond Laser Processing

    Directory of Open Access Journals (Sweden)

    Sugioka Koji

    2013-11-01

    Full Text Available We demonstrate fabrication of highly functional biomicrochips by hybrid femtosecond laser processing. In this process, 3D microfluidic structures are first formed inside photosensitive glass by femtosecond laser direct writing followed by thermal treatment and successive chemical wet etching. Then, functional microcomponents are integrated inside the fabricated microfluidic structures by two-photon photopolyerization. We term the fabricated microchips ship-in-a-bottle biomicrochips,

  18. Energy transfer processes in semiconductor quantum dots: bacteriorhodopsin hybrid system

    Science.gov (United States)

    Rakovich, Aliaksandra; Sukhanova, Alyona; Bouchonville, Nicolas; Molinari, Michael; Troyon, Michel; Cohen, Jacques H. M.; Rakovich, Yury; Donegan, John F.; Nabiev, Igor

    2009-05-01

    The potential impact of nanoscience on energy transfer processes in biomolecules was investigated on the example of a complex between fluorescent semiconductor nanocrystals and photochromic membrane protein. The interactions between colloidal CdTe quantum dots (QDs) and bacteriorhodopsin (bR) protein were studied by a variety of spectroscopic techniques, including integrated and time-resolved fluorescence spectroscopies, zeta potential and size measurement, and fluorescence correlation spectroscopy. QDs' luminescence was found to be strongly modulated by bacteriorhodopsin, but in a controllable way. Decreasing emission lifetimes and blue shifts in QDs' emission at increasing protein concentrations suggest that quenching occurs via Förster resonance energy transfer. On the other hand, concave Stern-Volmer plots and sigmoidal photoluminescence quenching curves imply that the self-assembling of NCs and bR exists, and the number of nanocrystals (NCs) per bacteriorhodopsin contributing to energy transfer can be determined from the inflection points of sigmoidal curves. This number was found to be highly dependent not only on the spectral overlap between NC emission and bR absorption bands, but also on nanocrystal surface charge. These results demonstrate the potential of how inorganic nanoscale materials can be employed to improve the generic molecular functions of biomolecules. The observed interactions between CdTe nanocrystals and bacteriorhodopsin can provide the basis for the development of novel functional materials with unique photonic properties and applications in areas such as all-optical switching, photovoltaics and data storage.

  19. Feed process studies: Research-Scale Melter

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ``channeling`` which allowed the top section to cool, reducing production rates.

  20. Novel hybrid FRP tubular columns for sustainable mining infrastructure:Recent research at University of Wollongong

    Institute of Scientific and Technical Information of China (English)

    Yu Tao; Remennikov Alex M.

    2014-01-01

    This paper introduces, for applications in the mining industry, an innovative hybrid column form which consists of an inner steel tube, an outer fibre-reinforced polymer (FRP) tube and an annular concrete infill between them. The two tubes may be concentrically placed to produce a section form more suitable for columns, or eccentrically placed to produce a section form more suitable for beams. The FRP is combined with steel and concrete in these hybrid structural members in such a way that the advantages of FRP are appropriately exploited while its disadvantages are minimized. As a result, these hybrid members pos-sess excellent corrosion resistance as well as excellent ductility and seismic resistance. This paper sum-marizes existing research on this new form of structural members, and discusses their potential applications in mining infrastructure before presenting a summary of the recent and current studies at University of Wollongong (UOW) on their structural behaviour and design.

  1. Research Update: Hybrid organic-inorganic perovskite (HOIP thin films and solar cells by vapor phase reaction

    Directory of Open Access Journals (Sweden)

    Po-Shen Shen

    2016-09-01

    Full Text Available With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP thin films, this new class of photovoltaic (PV technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  2. Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction

    Science.gov (United States)

    Shen, Po-Shen; Chiang, Yu-Hsien; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-01

    With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP) thin films, this new class of photovoltaic (PV) technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  3. Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction.

    Science.gov (United States)

    Agulleiro, J I; Vázquez, F; Garzón, E M; Fernández, J J

    2012-04-01

    Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A Hybrid Low Temperature Surface Alloying Process for Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    Y. Sun

    2004-01-01

    This paper describes a novel, hybrid process developed to engineer the surfaces of austenitic stainless steels at temperatures below 450℃ for the improvement in wear and corrosion resistance. The process is carried out in the plasma of a glow discharge containing both nitrogen and carbon reactive species, and facilitates the incorporation of both nitrogen and carbon into the austenite surface to form a dual-layer structure comprising a nitrogen-rich layer on top of a carbon-rich layer.Both layers can be precipitation-free at sufficiently low processing temperatures, and contain nitrogen and carbon respectively in supersaturated fcc austenite solid solutions. The resultant hybrid structure offers several advantages over the conventional low temperature nitriding and the newly developed carburizing processes in terms of mechanical and chemical properties, including higher surface hardness, a hardness gradient from the surface towards the layer-core interface, uniform layer thickness, and much enhanced corrosion resistance. This paper discusses the main features of this hybrid process and the various structural and properties characteristics of the resultant engineered surfaces.

  5. Tunable high-refractive index hybrid for solution-processed light management devices (Conference Presentation)

    Science.gov (United States)

    Bachevillier, Stefan

    2016-10-01

    After the use of highly efficient but expensive inorganic optical materials, solution-processable polymers and hybrids have drawn more and more interest. Our group have recently developed a novel polymer-based hybrid optical material from titanium oxide hydrate exhibiting an outstanding set of optical and material properties. Firstly, their low cost, processability and cross-linked states are particularly attractive for many applications. Moreover, a high refractive index can be repeatedly achieved while optical losses stays considerably low over the entire visible and near-infrared wavelength regime. Indeed, the formation of inorganic nanoparticles, usually present in nanocomposites, is avoided by a specific formulation process. Even more remarkably, the refractive index can be tuned by either changing the inorganic content, using different titanium precursors or via a low-temperature curing process. A part of our work is focused on the reliable optical characterization of these properties, in particular a microscope-based setup allowing in-situ measurement and sample mapping has been developed. Our efforts are also concentrated on various applications of these exceptional properties. This hybrid material is tailored for photonic devices, with a specific emphasis on the production of highly efficient solution processable Distributed Bragg Reflectors (DBR) and anti-reflection coatings. Furthermore, waveguides can be fabricated from thin films along with in-coupling and out-coupling structures. These light managements structures are particularly adapted to organic photovoltaic cells (OPVs) and light emitting diodes (OLEDs).

  6. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    National Research Council Canada - National Science Library

    Kim Sang-Young; Shim Chun Sik; Sturtevant Caleb; Kim Dave (Dae-Wook); Song Ha Cheol

    2014-01-01

    .... This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed...

  7. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Institute of Scientific and Technical Information of China (English)

    Yanbin Chen; Zhenglong Lei; Liqun Li; Lin Wu

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and thedroplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stablehybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  8. Characteristics of the consumer preferences research process

    Directory of Open Access Journals (Sweden)

    Mirela-Cristina Voicu

    2013-05-01

    Full Text Available Information is one of the most important resources that a company must possess. Some information is hidden deep in the black box - the mind of the consumer, as in the case of information about consumer preferences. Although it seems a concept difficult to grasp, it was shown that consumer preferences can be effectively measured and their research may provide a deeper understanding of the choices that consumers make when deciding to select an offer against another and when deciding to continue in time the relationship with one supplier. The following paper reveals some important aspects regarding the use of information regarding consumer preferences, the fundamentals behind consumer preferences research and the milestones in the consumer preferences research process.

  9. CHARACTERISTICS OF THE CONSUMER PREFERENCES RESEARCH PROCESS

    Directory of Open Access Journals (Sweden)

    MIRELA-CRISTINA VOICU

    2013-05-01

    Full Text Available Information is one of the most important resources that a company must possess. Some information is hidden deep in the black box - the mind of the consumer, as in the case of information about consumer preferences. Although it seems a concept difficult to grasp, it was shown that consumer preferences can be effectively measured and their research may provide a deeper understanding of the choices that consumers make when deciding to select an offer against another and when deciding to continue in time the relationship with one supplier. The following paper reveals some important aspects regarding the use of information regarding consumer preferences, the fundamentals behind consumer preferences research and the milestones in the consumer preferences research process.

  10. The Dark Snow Project: a hybrid research communication program

    Science.gov (United States)

    Box, J. E.; Sinclair, P.

    2015-12-01

    The Dark Snow Project, to crowd fund and communicate Greenland ice-climate interactions expedition research, was a baptism by fire climate communications venture. We did it without a guide book and ran on pure inspiration. Along the way, we acquired quite some of the communication skill set: marketing; social psychology; crowd funding; conventional media; video production; social media.The aim of this presentation is to inventory lessons learned, experience, and resolve recommendations how to do it better for those adventurous enough to do a crowd funded actvity. Key themes are amplifying basic research, engagement in citizen science, outreach, communication.Quickly, one begins thinking of success tactics, like launching news on a Monday instead of a Saturday or keeping the conversation going by telling the story from different and evolving perspectives. The experience taught that unconventional funding is harder won than conventional funding. Yet, because the support came from unconventional sources, the public, we began tapping a large resource in citizen science engagement. If having a compelling call to action such a campaign can be a significant source of sustain. What had also proven difficult was doing it with a small team when each of the following skills demands a larger group; running a media campaign; logistics; video recording and editing; social media promotion; conventional media engagement. The issue and brand awareness grows in a snowball effect encouraging us to run successive annual campaigns.Now in third year, the project can be more effective if upscaling from a single to a multi-cell organization.

  11. The future of nearshore processes research

    Science.gov (United States)

    Elko, Nicole A.; Feddersen, Falk; Foster, Diane; Hapke, Cheryl J.; McNinch, Jesse E.; Mulligan, Ryan; Tuba Ӧzkan-Haller, H.; Plant, Nathaniel G.; Raubenheimer, Britt

    2014-01-01

    The nearshore is the transition region between land and the continental shelf including (from onshore to offshore) coastal plains, wetlands, estuaries, coastal cliffs, dunes, beaches, surf zones (regions of wave breaking), and the inner shelf (Figure ES-1). Nearshore regions are vital to the national economy, security, commerce, and recreation. The nearshore is dynamically evolving, is often densely populated, and is under increasing threat from sea level rise, long-term erosion, extreme storms, and anthropogenic influences. Worldwide, almost one billion people live at elevations within 10 m of present sea level. Long-term erosion threatens communities, infrastructure, ecosystems, and habitat. Extreme storms can cause billions of dollars of damage. Degraded water quality impacts ecosystem and human health. Nearshore processes, the complex interactions between water, sediment, biota, and humans, must be understood and predicted to manage this often highly developed yet vulnerable nearshore environment. Over the past three decades, the understanding of nearshore processes has improved. However, societal needs are growing with increased coastal urbanization and threats of future climate change, and significant scientific challenges remain. To address these challenges, members of academia, industry, and federal agencies (USGS, USACE, NPS, NOAA, FEMA, ONR) met at the “The Past and Future of Nearshore Processes Research: Reflections on the Sallenger Years and a New Vision for the Future” workshop to develop a nearshore processes research vision where societal needs and science challenges intersect. The resulting vision is comprised of three broad research themes: Long-term coastal evolution due to natural and anthropogenic processes: As global climate change alters the rates of sea level rise and potentially storm patterns and coastal urbanization increases over the coming decades, an understanding of coastal evolution is critical. Improved knowledge of long

  12. RESEARCH ON THE INTERNATIONAL ACCOUNTING HARMONIZATION PROCESS

    Directory of Open Access Journals (Sweden)

    Tatiana Danescu

    2016-12-01

    Full Text Available During the last decades, the need of harmonization of the financial reporting frameworks has become more acute, mostly because the capital markets are not restricted anymore by country borders and capital movement has outlined the phenomenon of globalization and internationalism. A significant step in harmonizing the financial reporting was done in the process of normalization through different sets of rules and principles, recognized and applied in many states are the International Financial Reporting Standards (IFRS. The process of international recognition of these standards continues along with conceptual development which is based on epistemological research on specific markets, industries, economies open to international capital flows. In this context it becomes of interest to identify and understand generally accepted and applied accounting elements which carry forward the accounting harmonization process along with factors and circumstances that create diversity in nationally applied financial reporting frameworks.

  13. Multi-objective optimization of process parameters in Electro-Discharge Diamond Face Grinding based on ANN-NSGA-II hybrid technique

    Science.gov (United States)

    Yadav, Ravindra Nath; Yadava, Vinod; Singh, G. K.

    2013-09-01

    The effective study of hybrid machining processes (HMPs), in terms of modeling and optimization has always been a challenge to the researchers. The combined approach of Artificial Neural Network (ANN) and Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) has attracted attention of researchers for modeling and optimization of the complex machining processes. In this paper, a hybrid machining process of Electrical Discharge Face Grinding (EDFG) and Diamond Face Grinding (DFG) named as Electrical Discharge Diamond face Grinding (EDDFG) have been studied using a hybrid methodology of ANN-NSGA-II. In this study, ANN has been used for modeling while NSGA-II is used to optimize the control parameters of the EDDFG process. For observations of input-output relations, the experiments were conducted on a self developed face grinding setup, which is attached with the ram of EDM machine. During experimentation, the wheel speed, pulse current, pulse on-time and duty factor are taken as input parameters while output parameters are material removal rate (MRR) and average surface roughness ( R a). The results have shown that the developed ANN model is capable to predict the output responses within the acceptable limit for a given set of input parameters. It has also been found that hybrid approach of ANN-NSGAII gives a set of optimal solutions for getting appropriate value of outputs with multiple objectives.

  14. Polypropylene – zinc oxide nanorod hybrid material for applications in separation processes

    Directory of Open Access Journals (Sweden)

    Jakubiak Szymon

    2016-09-01

    Full Text Available Hybrid filter material was obtained via modification of polypropylene (PP nonwoven with nanosize zinc oxide particles of a high aspect ratio. Modification was conducted as a three-step process, a variant of hydrothermal method used for synthesis of nano-ZnO, adopted for coating three dimensional polymeric nonwoven filters. The process consisted of plasma treatment of nonwoven to increase its wettability, deposition of ZnO nanoparticles and low temperature hydrothermal growth of ZnO rods. The modified nonwovens were investigated by a high resolution scanning electron microscopy (HR-SEM. It has been found that the obtained hybrid filters offer a higher filtration efficiency, in particular for so called most penetrating particle sizes.

  15. Surface morphology of PMMA/boehmite hybrid nanostructures prepared via facile one-pot process

    Science.gov (United States)

    Ghamari, Misagh; Farzi, Gholamali

    2017-08-01

    In this study, we developed the novel aqueous-based PMMA/AlOOH hybrid by a one-pot process starting from their relevant precursors in a controlled manner. Starting chemical reactions directly from precursors and the sequence of adding reactants provide the possibility towards enhancing the homogeneity of the final product. Inorganic and organic segments were made compatible by means of oleic acid as a coupling agent. Boehmite to PMMA weight ratio as the main parameter was varied from 0 to 18% and the morphology, particle size, size distribution, and topography map of hybrids was shown to be composition dependent. Final PMMA/Bo nanohybrids were characterized using FTIR to confirm the chemical interactions between inorganic and organic segments. TEM analysis showed that nanohybrid particles with irregular shapes containing inorganic particles dispersed in the organic matrix are formed with an average diameter which depends on boehmite content. The presence of phase transformation of Bo makes PMMA/Bo hybrids significantly thermally stable. According to AFM topography map analysis and relevant Gaussian fit function, the roughness of nanocomposite, the size of hybrid nanoparticles and deviation from the mean value (size) were increased as Bo increases from 0 to 18.

  16. Research Regarding the Hybrids Resulted from the Domestic Pig and the Wild Boar

    Directory of Open Access Journals (Sweden)

    Marcel Matiuti

    2010-05-01

    Full Text Available Research was conducted between 2005-2009 in Barzava, Arad county. The villagers breed pigs traditionally, the animals having the freedom to roam the outskirts of the villages. Over the years the domestic sows (Sus scrofa domesticus which had been let by their owners to roam the forests for mast and acorn, have mated with wild boars (Sus scrofa ferus, thus obtaining crossbreeds in various colours – either resembling the female or the male. In Bazava the total number of swine is 1820 specimens out of which 546 is formed by hybrids or crossbreeds in 2009. In the case of these hybrids the length of the head together with that of the trunk can reach 150-170 cm. An adult male can have a weight of 150-200 kg and the female 100-150 kg. These specimens are easily recognizable by the fact that they have the trunk covered in thick, long, spiky hairs. There are also other external characteristics of these crossbreeds. Data has been gathered on what concerns the colour and the length of the hair, external features, maintenance and feeding. Behavioural observations have been made also. The local people appreciate a lot these hybrids because of their qualitative meat, out of which they obtain traditional dishes, combining this meat with that from domestic pigs and veal. Moreover, the maintenance of these hybrids is very low-cost, the only conditions which have to be met being simple shelters during the night and during the winter. The demand for such animals is great. These hybrids are being bought by the Zoos or are used for repopulating the areas in which the wild boars are on the verge of extinction because of excessive poaching. Foreign buyers are also interested in these hybrids, wanting to breed them in special parks and then to organize hunting outings.

  17. A hermetic sealing process for large irregularly shaped hybrid microcircuit enclosures

    Science.gov (United States)

    Stahler, M. R.

    1977-01-01

    A system for sealing vacuum baked hybrids in a dry inert atmosphere using an overlapping spot resistance weld is described. A unique electrode configuration and fixturing that permits sealing of large and irregularly shaped gold plated Kovar packages to the hermeticity requirements of MIL-STD-883 was discussed. Metallurgical considerations and comparisons to laser sealing were made. Problems encountered during the development and optimization of the process were highlighted. Solutions to plating, fixturing, warpage, weld splatter and cracked bead problems are presented.

  18. Digital processing of in situ hybridization images: identification and spatial allocation of specific labels

    OpenAIRE

    2007-01-01

    In situ hybridization (ISH) method allows to reveal specific genes expression, identify specific cell types and detect areas or tissues, displaying differential gene expression. This work describes a standardized procedure of digital image processing that allows detailed analyses of ISH preparations. We have developed a software that allows through a graphical interface (a) to reliably identify and quantify ISH labels, (b) to locate each label within the image reference system (c) to assemble...

  19. Hybrid light emitting diodes based on solution processed polymers, colloidal quantum dots, and colloidal metal nanoparticles

    Science.gov (United States)

    Ma, Xin

    This dissertation focuses on solution-processed light-emitting devices based on polymer, polymer/PbS quantum dot, and polymer/silver nanoparticle hybrid materials. Solution based materials and organic/inorganic hybrid light emitting diodes attracted significant interest recently due to many of their advantages over conventional light emitting diodes (LEDs) including low fabrication cost, flexible, high substrate compatibility, as well as tunable emission wavelength of the quantum dot materials. However, the application of these novel solution processed materials based devices is still limited due to their low performances. Material properties and fabrication parameters need to be carefully examined and understood for further device improvement. This thesis first investigates the impact of solvent property and evaporation rate on the polymer molecular chain morphology and packaging in device structures. Solvent is a key component to make the active material solution for spin coating fabrication process. Their impacts are observed and examined on both polymer blend system and mono-polymer device. Secondly, PbS colloidal quantum dot are introduced to form hybrid device with polymer and to migrate the device emission into near-IR range. As we show, the dithiol molecules used to cross-link quantum dots determine the optical and electrical property of the resulting thin films. By choosing a proper ligand for quantum dot ligand exchange, a high performance polymer/quantum dot hybrid LED is fabricated. In the end, the interaction of polymer exciton with surface plasmon mode in colloidal silver nanoparticles and the use of this effect to enhance solution processed LEDs' performances are investigated.

  20. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez-Rivera, Efrain [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Madison, Jonathan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holm, Elizabeth Ann [Carnegie Mellon Univ., Pittsburgh, PA (United States); Patterson, Burton R. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Homer, Eric R. [Brigham Young Univ., Provo, UT (United States). Dept. of Mechanical Engineering

    2013-09-01

    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  1. Novel organic–inorganic amorphous photoactive hybrid films with rare earth (Eu{sup 3+}, Tb{sup 3+}) covalently embedded into silicon–oxygen network via sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang; Sheng, Ye; Zheng, Keyan; Qin, Xuming; Ma, Pingchuan; Zou, Haifeng, E-mail: haifengzou0431@gmail.com

    2015-10-15

    Highlights: • The hybrids are prepared through the hydrolysis and condensation process. • The hybrids are amorphous and heat stabilized. • The hybrids containing Eu{sup 3+} and Tb{sup 3+} show the typical red and green emissions. - Abstract: Novel organic–inorganic hybrid amorphous thin films were synthesized by linking lanthanide (Tb{sup 3+}, Eu{sup 3+}) complexes through 3,4-bis(3-(triethoxysilyl)propylcarbamoyloxy)benzoic acid using sol–gel method. These inorganic–organic hybrids were characterized in detail by Fourier transform infrared spectroscopy, wide angle X-ray diffraction, themogravimetric analysis, scanning electron microscope, and fluorescence spectra. The above research results indicate that the hybrids possess high thermal-stability, amorphous structure features and especially favorable luminescent performances, such as long luminescent decay lifetime, high quantum yield etc.

  2. 2010 Membranes: Materials & Processes Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  3. Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures.

    Science.gov (United States)

    Genovese, Luigi; Ospici, Matthieu; Deutsch, Thierry; Méhaut, Jean-François; Neelov, Alexey; Goedecker, Stefan

    2009-07-21

    We present the implementation of a full electronic structure calculation code on a hybrid parallel architecture with graphic processing units (GPUs). This implementation is performed on a free software code based on Daubechies wavelets. Such code shows very good performances, systematic convergence properties, and an excellent efficiency on parallel computers. Our GPU-based acceleration fully preserves all these properties. In particular, the code is able to run on many cores which may or may not have a GPU associated, and thus on parallel and massive parallel hybrid machines. With double precision calculations, we may achieve considerable speedup, between a factor of 20 for some operations and a factor of 6 for the whole density functional theory code.

  4. Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Agulleiro, J.I.; Vazquez, F.; Garzon, E.M. [Supercomputing and Algorithms Group, Associated Unit CSIC-UAL, University of Almeria, 04120 Almeria (Spain); Fernandez, J.J., E-mail: JJ.Fernandez@csic.es [National Centre for Biotechnology, National Research Council (CNB-CSIC), Campus UAM, C/Darwin 3, Cantoblanco, 28049 Madrid (Spain)

    2012-04-15

    Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. -- Highlights: Black-Right-Pointing-Pointer Hybrid computing allows full exploitation of the power (CPU+GPU) in a computer. Black-Right-Pointing-Pointer Proper orchestration of workload is managed by an on-demand strategy. Black-Right-Pointing-Pointer Total number of threads running in the system should be limited to the number of CPUs.

  5. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  6. Research Update: The electronic structure of hybrid perovskite layers and their energetic alignment in devices

    Directory of Open Access Journals (Sweden)

    Selina Olthof

    2016-09-01

    Full Text Available In recent years, the interest in hybrid organic–inorganic perovskites has increased at a rapid pace due to their tremendous success in the field of thin film solar cells. This area closely ties together fundamental solid state research and device application, as it is necessary to understand the basic material properties to optimize the performances and open up new areas of application. In this regard, the energy levels and their respective alignment with adjacent charge transport layers play a crucial role. Currently, we are lacking a detailed understanding about the electronic structure and are struggling to understand what influences the alignment, how it varies, or how it can be intentionally modified. This research update aims at giving an overview over recent results regarding measurements of the electronic structure of hybrid perovskites using photoelectron spectroscopy to summarize the present status.

  7. Corn silage management I: effects of hybrid, maturity, and mechanical processing on chemical and physical characteristics.

    Science.gov (United States)

    Johnson, L M; Harrison, J H; Davidson, D; Robutti, J L; Swift, M; Mahanna, W C; Shinners, K

    2002-04-01

    Two experiments were conducted to evaluate the effects of hybrid, maturity, and mechanical processing of whole plant corn on chemical and physical characteristics, particle size, pack density, and dry matter recovery. In the first experiment, hybrid 3845 whole plant corn was harvested at hard dough, one-third milkline, and two-thirds milkline with a theoretical length-of-cut of 6.4 mm. In the second experiment, hybrids 3845 and Quanta were harvested at one-third milkline, two-thirds milkline, and blackline stages of maturity with a theoretical length-of-cut of 12.7 mm. At each stage of maturity, corn was harvested with and without mechanical processing by using a John Deere 5830 harvester with an onboard kernel processor. The percentage of intact corn kernels present in unprocessed corn silage explained 62% of variation in total tract starch digestibility. As the amount of intact kernels increased, total tract starch digestibility decreased. Post-ensiled vitreousness of corn kernels within the corn silage explained 31 and 48% of the variation of total tract starch digestibility for processed and unprocessed treatments, respectively. For a given amount of vitreous starch in corn kernels, total tract starch digestibility was lower for cows fed unprocessed corn silage compared with processed corn silage. This suggests that processing corn silage disrupts the dense protein matrix within the corn kernel where starch is embedded, therefore making the starch more available for digestion. Particle size of corn silage and orts that contained corn silage was reduced when it was processed. Wet pack density was greater for processed compared with unprocessed corn silage.

  8. Summary of research on microbiological processes

    Energy Technology Data Exchange (ETDEWEB)

    Winters, A.L.

    1992-09-01

    Storage of thermal energy in aquifers has obvious benefits of saving energy and decreasing the consumption of fossil fuels. However, aquifer thermal energy storage (ATES), which involves groundwater aquifers as the storage medium for heat or chill, impinges on the environment. A literature review of pertinent microbiology publications (Hicks and Stewart, 1988) identified the potential for the interaction of ATES systems and microbiological processes to create a source of infectious diseases and the potential for damage to the environment. In addition, the review identified a potential for microbiological processes to develop conditions that would interfere with the operation of an ATES system. As a result of this research effort, investigators from Finland, Germany, Switzerland, and the United States have examined several ATES systems in operation and have observed that the ATES systems studied do not contribute to infectious disease transmission, do not adversely affect the environment, and do not contribute significantly to biofouling or biocorrosion.

  9. A digital-analog hybrid system and its application to the automatic flight control system simulation research

    Science.gov (United States)

    1981-01-01

    The characteristics of a digital-analog hybrid system composed of a DJS-8 digital computer and a HMJ-200 analog computer are described as well as its applications to simulation research for an automatic flight control system. A hybrid computational example is included to illustrate the application.

  10. Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability.

    Science.gov (United States)

    Zhou, Renjia; Zheng, Ying; Qian, Lei; Yang, Yixing; Holloway, Paul H; Xue, Jiangeng

    2012-06-07

    Hybrid organic-inorganic solar cells, as an alternative to all-organic solar cells, have received significant attention for their potential advantages in combining the solution-processability and versatility of organic materials with high charge mobility and environmental stability of inorganic semiconductors. Here we report efficient and air-stable hybrid organic-inorganic solar cells with broad spectral sensitivity based on a low-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and spherical CdSe nanoparticles. The solvents used for depositing the hybrid PCPDTBT:CdSe active layer were shown to strongly influence the film morphology, and subsequently the photovoltaic performance of the resulted solar cells. Appropriate post-deposition annealing of the hybrid film was also shown to improve the solar cell efficiency. The inclusion of a thin ZnO nanoparticle layer between the active layer and the metal cathode leads to a significant increase in device efficiency especially at long wavelengths, due to a combination of optical and electronic effects including more optimal light absorption in the active layer and elimination of unwanted hole leakage into the cathode. Overall, maximum power conversion efficiencies up to 3.7 ± 0.2% and spectral sensitivity extending above 800 nm were achieved in such PCPDTBT:CdSe nanosphere hybrid solar cells. Furthermore, the devices with a ZnO nanoparticle layer retained ∼70% of the original efficiency after storage under ambient laboratory conditions for over 60 days without any encapsulation.

  11. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. R., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br; Passador, F. R., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br; Pessan, L. A., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br [Dep. de Engenharia de Materiais, Federal University of São Carlos (Brazil)

    2014-05-15

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH{sub 4}) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Büchi, Switzerland) with 115°C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  12. Fearing a non-existing Minotaur? The ethical challenges of research on cytoplasmic hybrid embryos.

    Science.gov (United States)

    Camporesi, S; Boniolo, G

    2008-11-01

    In this paper we address the ethical challenges of research on cytoplasmic hybrid embryos, or "cybrids". The controversial pronouncement of the UK's Human Embryology and Fertilisation Authority of September 2007 on the permissibility of this area of research is the starting point of our discussion, and we argue in its favour. By a rigorous definition of the entities at issue, we show how the terms "chimera" and "hybrid" are improper in the case of cybrids, and how their use can bias the debate creating moral prejudices. After analysing the scientific aspects of cybrids research and sketching out current alternatives, we enter the ethical debate, starting from the premise that research on early human embryos is ethically permissible under some circumstances. We emphasise how research on cybrids has positive consequences in terms of scientific and therapeutic applications, since it allows the derivation of human embryonic stem cells genetically tailored to the somatic cell donor. Such cell lines offer a unique in vitro model both for studies of human pathogenesis and for drug screening and discovery. Research on cybrids also circumvents the problem of the scarcity of human oocytes and their ethically dubious donation. Finally, we object to the most common arguments against cybrids research, that is, moral repugnance, the slippery slope argument, the appeal to "nature", and the unfair distribution of economical resources.

  13. The Study of Microwave and Electric Hybrid Sintering Process of AZO Target

    Directory of Open Access Journals (Sweden)

    Ling-yun Han

    2016-01-01

    Full Text Available We simulated the microwave sintering of ZnO by 3D modelling. A large-size Al-doped ZnO (AZO green ceramic compact was prepared by slurry casting. Through studying the microwave and electric hybrid sintering of the green compact, a relative density of up to 98.1% could be obtained by starting microwave heating at 1200°C and increasing the power 20 min later to 4 kW for an AZO ceramic target measuring 120 × 240 × 12 mm. The resistivity of AZO targets sintered with microwave assistance was investigated. The energy consumption of sintering could be greatly reduced by this heating method. Until now, few studies have been reported on the microwave and electric hybrid sintering of large-size AZO ceramic targets. This research can aid in developing sintering technology for large-size high-quality oxide ceramic targets.

  14. A new research tool for hybrid Bayesian networks using script language

    Science.gov (United States)

    Sun, Wei; Park, Cheol Young; Carvalho, Rommel

    2011-06-01

    While continuous variables become more and more inevitable in Bayesian networks for modeling real-life applications in complex systems, there are not much software tools to support it. Popular commercial Bayesian network tools such as Hugin, and Netica etc., are either expensive or have to discretize continuous variables. In addition, some free programs existing in the literature, commonly known as BNT, GeNie/SMILE, etc, have their own advantages and disadvantages respectively. In this paper, we introduce a newly developed Java tool for model construction and inference for hybrid Bayesian networks. Via the representation power of the script language, this tool can build the hybrid model automatically based on a well defined string that follows the specific grammars. Furthermore, it implements several inference algorithms capable to accommodate hybrid Bayesian networks, including Junction Tree algorithm (JT) for conditional linear Gaussian model (CLG), and Direct Message Passing (DMP) for general hybrid Bayesian networks with CLG structure. We believe this tool will be useful for researchers in the field.

  15. MULTICRITERIA HYBRID FLOW SHOP SCHEDULING PROBLEM: LITERATURE REVIEW, ANALYSIS, AND FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Marcia de Fatima Morais

    2014-12-01

    Full Text Available This research focuses on the Hybrid Flow Shop production scheduling problem, which is one of the most difficult problems to solve. The literature points to several studies that focus the Hybrid Flow Shop scheduling problem with monocriteria functions. Despite of the fact that, many real world problems involve several objective functions, they can often compete and conflict, leading researchers to concentrate direct their efforts on the development of methods that take consider this variant into consideration. The goal of the study is to review and analyze the methods in order to solve the Hybrid Flow Shop production scheduling problem with multicriteria functions in the literature. The analyses were performed using several papers that have been published over the years, also the parallel machines types, the approach used to develop solution methods, the type of method develop, the objective function, the performance criterion adopted, and the additional constraints considered. The results of the reviewing and analysis of 46 papers showed opportunities for future research on this topic, including the following: (i use uniform and dedicated parallel machines, (ii use exact and metaheuristics approaches, (iv develop lower and uppers bounds, relations of dominance and different search strategies to improve the computational time of the exact methods,  (v develop  other types of metaheuristic, (vi work with anticipatory setups, and (vii add constraints faced by the production systems itself.

  16. Process planning optimization on turning machine tool using a hybrid genetic algorithm with local search approach

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-04-01

    Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.

  17. Modeling and Optimizing Energy Utilization of Steel Production Process: A Hybrid Petri Net Approach

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2013-01-01

    Full Text Available The steel industry is responsible for nearly 9% of anthropogenic energy utilization in the world. It is urgent to reduce the total energy utilization of steel industry under the huge pressures on reducing energy consumption and CO2 emission. Meanwhile, the steel manufacturing is a typical continuous-discrete process with multiprocedures, multiobjects, multiconstraints, and multimachines coupled, which makes energy management rather difficult. In order to study the energy flow within the real steel production process, this paper presents a new modeling and optimization method for the process based on Hybrid Petri Nets (HPN in consideration of the situation above. Firstly, we introduce the detailed description of HPN. Then the real steel production process from one typical integrated steel plant is transformed into Hybrid Petri Net model as a case. Furthermore, we obtain a series of constraints of our optimization model from this model. In consideration of the real process situation, we pick the steel production, energy efficiency and self-made gas surplus as the main optimized goals in this paper. Afterwards, a fuzzy linear programming method is conducted to obtain the multiobjective optimization results. Finally, some measures are suggested to improve this low efficiency and high whole cost process structure.

  18. An exergetic/energetic/economic analysis of three hydrogen production processes - Electrolysis, hybrid, and thermochemical

    Science.gov (United States)

    Funk, J. E.; Eisermann, W.

    This paper presents the results of a combined first and second law analysis, along with capital and operating costs, for hydrogen production from water by means of electrolytic, hybrid, and thermochemical processes. The processes are SPE and Lurgi electrolysis with light water reactor power generation and sulfur cycle hybrid, thermochemical and SPE electrolysis with a very high temperature reactor primary energy source. Energy and Exergy (2nd law) flow diagrams for the process are shown along with the location and magnitude of the process irreversibilities. The overall process thermal (1st law) efficiencies vary from 25 to 51% and the exergetic (2nd law) efficiencies, referred to the fuel for the primary energy source, vary from 22 to 45%. Capital and operating costs, escalated to 1979 dollars, are shown for each process for both the primary energy source and the hydrogen production plant. All costs were taken from information available in the open literature and are for a plant capacity of 100 x 10 to the 6th SCF/day. Production costs vary from 10 to 18 $/GJ, based on the higher heating value of hydrogen, and are based on a 90% plant operating factor with a 21% annual charge on total capital costs.

  19. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    Science.gov (United States)

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.

  20. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    Science.gov (United States)

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model. PMID:28120889

  1. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    Science.gov (United States)

    Manera, M. G.; Spadavecchia, J.; Taurino, A.; Rella, R.

    2010-03-01

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV-vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA-Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA-DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T)15ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality.

  2. All-optical quantum computing with a hybrid solid-state processing unit

    CERN Document Server

    Pei, Pei; Li, Chong

    2011-01-01

    We develop an architecture of hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have prominent advantage of the insensitivity to dissipation process due to the virtual excitation of subsystems. Moreover, the QND measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid systems can merge and be integrated into one quantum processor afterwards.

  3. Bismaleimide/Preceramic Polymer Blends for Hybrid Material Transition Regions. Part 1. Processing and Characterization (Postprint)

    Science.gov (United States)

    2014-01-01

    polymer matrix composite to a ceramic matrix composite. Thermal and elemental analysis, and morphology characterization of RD-730 preceramic polymer blends, which convert to silicon carbide upon pyrolysis, and Matrimid A/B polymer (a bismaleimide), were carried out as a function of cure cycle. Cure cycles were chosen to vary the resin viscosity during processing in order to affect the amount of phase separation observed. The results were then used to associate processing parameters with the miscibility of the two resins and the likelihood of producing a hybrid

  4. Hybrid Modelling Approach to Prairie hydrology: Fusing Data-driven and Process-based Hydrological Models

    Science.gov (United States)

    Mekonnen, B.; Nazemi, A.; Elshorbagy, A.; Mazurek, K.; Putz, G.

    2012-04-01

    Modeling the hydrological response in prairie regions, characterized by flat and undulating terrain, and thus, large non-contributing areas, is a known challenge. The hydrological response (runoff) is the combination of the traditional runoff from the hydrologically contributing area and the occasional overflow from the non-contributing area. This study provides a unique opportunity to analyze the issue of fusing the Soil and Water Assessment Tool (SWAT) and Artificial Neural Networks (ANNs) in a hybrid structure to model the hydrological response in prairie regions. A hybrid SWAT-ANN model is proposed, where the SWAT component and the ANN module deal with the effective (contributing) area and the non-contributing area, respectively. The hybrid model is applied to the case study of Moose Jaw watershed, located in southern Saskatchewan, Canada. As an initial exploration, a comparison between ANN and SWAT models is established based on addressing the daily runoff (streamflow) prediction accuracy using multiple error measures. This is done to identify the merits and drawbacks of each modeling approach. It has been found out that the SWAT model has better performance during the low flow periods but with degraded efficiency during periods of high flows. The case is different for the ANN model as ANNs exhibit improved simulation during high flow periods but with biased estimates during low flow periods. The modelling results show that the new hybrid SWAT-ANN model is capable of exploiting the strengths of both SWAT and ANN models in an integrated framrwork. The new hybrid SWAT-ANN model simulates daily runoff quite satisfactorily with NSE measures of 0.80 and 0.83 during calibration and validation periods, respectively. Furthermore, an experimental assessment was performed to identify the effects of the ANN training method on the performance of the hybrid model as well as the parametric identifiability. Overall, the results obtained in this study suggest that the fusion

  5. A hybrid CMOS-imager with a solution-processable polymer as photoactive layer

    Science.gov (United States)

    Baierl, Daniela; Pancheri, Lucio; Schmidt, Morten; Stoppa, David; Dalla Betta, Gian-Franco; Scarpa, Giuseppe; Lugli, Paolo

    2012-11-01

    The solution-processability of organic photodetectors allows a straightforward combination with other materials, including inorganic ones, without increasing cost and process complexity significantly compared with conventional crystalline semiconductors. Although the optoelectronic performance of these organic devices does not outmatch their inorganic counterparts, there are certain applications exploiting the benefit of the solution-processability. Here we demonstrate that the small pixel fill factor of present complementary metal oxide semiconductor-imagers, decreasing the light sensitivity, can be increased up to 100% by replacing silicon photodiodes with an organic photoactive layer deposited with a simple low-cost spray-coating process. By performing a full optoelectronic characterization on this first solution-processable hybrid complementary metal oxide semiconductor-imager, including the first reported observation of different noise types in organic photodiodes, we demonstrate the suitability of this novel device for imaging. Furthermore, by integrating monolithically different organic materials to the chip, we show the cost-effective portability of the hybrid concept to different wavelength regions.

  6. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  7. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  8. Teachers Learning to Research Climate: Development of hybrid teacher professional development to support climate inquiry and research in the classroom

    Science.gov (United States)

    Odell, M. R.; Charlevoix, D. J.; Kennedy, T.

    2011-12-01

    The GLOBE Program is an international science and education focused on connecting scientists, teachers and students around relevant, local environmental issues. GLOBE's focus during the next two years in on climate, global change and understanding climate from a scientific perspective. The GLOBE Student Climate Research Campaign (SCRFC) will engage youth from around the world in understanding and researching climate through investigations of local climate challenges. GLOBE teachers are trained in implementation of inquiry in the classroom and the use of scientific data collection protocols to develop inquiry and research projects of the Earth System. In preparation for the SCRC, GLOBE teachers will need additional training in climate science, global change and communicating climate science in the classroom. GLOBE's reach to 111 countries around the world requires development of scalable models for training teachers. In June GLOBE held the first teacher professional development workshop (Learning to Research Summer Institute) in a hybrid format with two-thirds of the teachers participating face-to-face and the remaining teachers participating virtually using Adobe Connect. The week long workshop prepared teachers to integrate climate science inquiry and research projects in the classrooms in the 2011-12 academic year. GLOBE scientists and other climate science experts will work with teachers and their students throughout the year in designing and executing a climate science research project. Final projects and research results will be presented in May 2012 through a virtual conference. This presentation will provide the framework for hybrid teacher professional development in climate science research and inquiry projects as well as summarize the findings from this inaugural session. The GLOBE Program office, headquartered in Boulder, is funded through cooperative agreements with NASA and NOAA with additional support from NSF and the U.S. Department of State. GLOBE

  9. A Hybrid Model Ranking Search Result for Research Paper Searching on Social Bookmarking

    Directory of Open Access Journals (Sweden)

    pijitra jomsri

    2015-11-01

    Full Text Available Social bookmarking and publication sharing systems are essential tools for web resource discovery. The performance and capabilities of search results from research paper bookmarking system are vital. Many researchers use social bookmarking for searching papers related to their topics of interest. This paper proposes a combination of similarity based indexing “tag title and abstract” and static ranking to improve search results. In this particular study, the year of the published paper and type of research paper publication are combined with similarity ranking called (HybridRank. Different weighting scores are employed. The retrieval performance of these weighted combination rankings are evaluated using mean values of NDCG. The results suggest that HybridRank and similarity rank with weight 75:25 has the highest NDCG scores. From the preliminary result of experiment, the combination ranking technique provide more relevant research paper search results. Furthermore the chosen heuristic ranking can improve the efficiency of research paper searching on social bookmarking websites.

  10. Research on the Critical Speed of a Mixed-Flow Turbocharger with Hybrid Ceramic Ball Bearing

    Institute of Scientific and Technical Information of China (English)

    HUANG Ruo; GE Xin-bin; MA Chao-chen

    2009-01-01

    The critical speeds for a vehicle turbocharger with hybrid ceramic ball bearing are researched. The ball bearing-rotor system produces resonance when it working in critical speed and that makes the turbocharger injury working for a long time. The calculation and analysis methods of the critical speed for the vehicle turbocharger are described. The critical speed is computed by two methods including Riccati transfer matrix and DyRoBeS finite element method for a vehicle turbocharger with hybrid ceramic ball bearing. The vibration experiment had been taken to validate the calculating result. Comparison between the results by two calculation methods and the test results show that the first critical speed differences are 6.47% and 5.66%, the second critical speed differences are 2.87% and 2.94% respectively. And then, the primary factors which influence the critical speed are analyzed, the conclusions will be helpful for the vehicle turbocharger bearing-rotor system design.

  11. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: new concepts in multi-barrier treatment.

    Science.gov (United States)

    Sudhakaran, Sairam; Maeng, Sung Kyu; Amy, Gary

    2013-07-01

    Organic micropollutants (OMPs) represent a major constraint in drinking water supply. In the past, emphasis has been on individual treatment processes comprising conventional treatment (coagulation, sedimentation, and filtration) followed by advanced treatment processes (adsorption, ion-exchange, oxidation, and membrane separation). With the depletion of water resources and high demand for power and chemical usage, efforts need to be made to judiciously use advanced treatment processes. There is a new interest in multiple barriers with synergies in which two coupled processes can function as a hybrid process. Within the context of this paper, the hybrid processes include a natural treatment process coupled with an advanced process. Pilot/full-scale studies have shown efficient removal of OMPs by these hybrid processes. With this hybridization, the usage of resources such as power and chemicals can be reduced. In this study, coupling/hybridization of aquifer recharge and recovery (ARR) with oxidation (O3), advanced oxidation process which involves OH radicals (AOP), nanofiltration (NF), reverse osmosis (RO) and granular activated carbon (GAC) adsorption for OMP removal was studied. O3 or AOP as a pre-treatment and GAC, NF, RO, or UV/chlorination as a post-treatment to ARR was studied. NF can be replaced by RO for removal of OMPs since studies have shown similar performance of NF to RO for removal of many OMPs, thereby reducing costs and providing a more sustainable approach.

  12. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: New concepts in multi-barrier treatment

    KAUST Repository

    Sudhakaran, Sairam

    2013-07-01

    In the past, emphasis has been on individual treatment processes comprising conventional treatment (coagulation, sedimentation, and filtration) followed by advanced treatment processes (adsorption, ion-exchange, oxidation, and membrane separation). With the depletion of water resources and high demand for power and chemical usage, efforts need to be made to judiciously use advanced treatment processes. There is a new interest in multiple barriers with synergies in which two coupled processes can function as a hybrid process. Within the context of this paper, the hybrid processes include a natural treatment process coupled with an advanced process. Pilot/full-scale studies have shown efficient removal of OMPs by these hybrid processes. With this hybridization, the usage of resources such as power and chemicals can be reduced. In this study, coupling/hybridization of aquifer recharge and recovery (ARR) with oxidation (O3), advanced oxidation process which involves OH radicals (AOP), nanofiltration (NF), reverse osmosis (RO) and granular activated carbon (GAC) adsorption for OMP removal was studied. O3 or AOP as a pre-treatment and GAC, NF, RO, or UV/chlorination as a post-treatment to ARR was studied. NF can be replaced by RO for removal of OMPs since studies have shown similar performance of NF to RO for removal of many OMPs, thereby reducing costs and providing a more sustainable approach. © 2013 Elsevier Ltd.

  13. Hybrid flotation--membrane filtration process for the removal of heavy metal ions from wastewater.

    Science.gov (United States)

    Blöcher, C; Dorda, J; Mavrov, V; Chmiel, H; Lazaridis, N K; Matis, K A

    2003-09-01

    A promising process for the removal of heavy metal ions from aqueous solutions involves bonding the metals firstly to a special bonding agent and then separating the loaded bonding agents from the wastewater stream by separation processes. For the separation stage, a new hybrid process of flotation and membrane separation has been developed in this work by integrating specially designed submerged microfiltration modules directly into a flotation reactor. This made it possible to combine the advantages of both flotation and membrane separation while overcoming the limitations. The feasibility of this hybrid process was proven using powdered synthetic zeolites as bonding agents. Stable fluxes of up to 80l m(-2)h(-1) were achieved with the ceramic flat-sheet multi-channel membranes applied at low transmembrane pressure (copper, nickel and zinc, were reduced from initial concentrations of 474, 3.3 and 167mg x l(-1), respectively, to below 0.05 mg x l(-1), consistently meeting the discharge limits.

  14. Resonant photothermal laser processing of hybrid gold/titania nanoparticle films

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Dzialkowski, Kevin; Hardt, Sebastian; Wiggers, Hartmut; Reichenberger, Sven; Wagener, Philipp; Hartmann, Nils

    2015-05-01

    Photothermal processing of thin anatase TiO2 and hybrid Au/anatase TiO2 nanoparticle films on glass supports is investigated using continuous-wave microfocused lasers at λ = 355 nm and λ = 532 nm. UV/Vis spectroscopy, Raman spectroscopy, optical microscopy, atomic force microscopy and scanning electron microscopy are used for characterization. Processing of TiO2 nanoparticle films is feasible at λ = 355 nm only. In contrast, the addition of Au nanoparticles enhances the overall absorbance of the material in the visible range and enables processing at both wavelengths, i.e. at λ = 355 nm and λ = 532 nm. Generally, laser heating induces a transition from anatase to rutile. The modification degree increases with increasing laser power and laser irradiation time. Resonant laser processing of hybrid Au/TiO2-mesoporous films provide promising perspectives in various applications, e.g. in photovoltaics, where embedded nanoparticulate Au could be exploited to enhance light trapping.

  15. A Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems

    KAUST Repository

    Harshvardhan,

    2015-05-01

    With the advent of big-data, processing large graphs quickly has become increasingly important. Most existing approaches either utilize in-memory processing techniques that can only process graphs that fit completely in RAM, or disk-based techniques that sacrifice performance. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into sub graphs that fit in RAM and uses a paging-like technique to load sub graphs. We show that without modifying the algorithms, this approach can scale from small memory-constrained systems (such as tablets) to large-scale distributed machines with 16, 000+ cores.

  16. Selected Parameters of Micro-Jet Cooling Gases in Hybrid Spraying Process

    Directory of Open Access Journals (Sweden)

    Szczucka-Lasota B.

    2016-06-01

    Full Text Available The innovative technology, like thermal spraying with a micro-jet cooling is one of the important modification of classical ultrasonic spraying methods. Using of micro-stream with gases like argon or nitrogen allows to cool the coating immediately after spraying, and thereby reduce the time of transition during the injection of each layer. As a result of the process, the fine dispersive structure of coatings is obtained during the shorter time in comparable to the classical high velocity oxygen fuel process (HVOF. The parameter of process and the type of stream equipment determine the quality of the obtained structure and thermal stress in the coating. The article presents the relationship between selected parameters of hybrid process and properties of the coatings. The presented technology should be adapted to the actual production of protective coating for machines and construction working in wear conditions.

  17. Researching the Parallel Process in Supervision and Psychotherapy

    DEFF Research Database (Denmark)

    Jacobsen, Claus Haugaard

    Reflects upon how to do process research in supervision and in the parallel process. A single case study is presented illustrating how a study on parallel process can be carried out.......Reflects upon how to do process research in supervision and in the parallel process. A single case study is presented illustrating how a study on parallel process can be carried out....

  18. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  19. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Science.gov (United States)

    Ito, Atsushi M.; Takayama, Arimichi; Oda, Yasuhiro; Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji; Ohno, Noriyasu; Kajita, Shin; Yajima, Miyuki; Noiri, Yasuyuki; Yoshimoto, Yoshihide; Saito, Seiki; Takamura, Shuichi; Murashima, Takahiro; Miyamoto, Mitsutaka; Nakamura, Hiroaki

    2015-08-01

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  20. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  1. A New Method to Study the Sol-gel Transition Process of Organic/Inorganic Hybrid Materials

    Institute of Scientific and Technical Information of China (English)

    GUO Bin; GAO Jian-gang; CHEN Da-zhu; LIU Jian-ping; HE Ping-sheng; ZHANG Qi-jin

    2005-01-01

    The sol-gel transition process of PMMA/SiO2 hybrid materials was first studied by means of the dynamic torsional vibration method. The different stages of the transition can be described by the change of torque. The temperature-dependent measurement of the gel time(tg) gives the possibility to determine the apparent activation energy(Ea) of this transition according to Flory′s gelation theory. The non-equilibrium thermodynamic fluctuation theory was used to predict the transition behavior. The isothermal transition experiments on hybrid sols with different TEOS(tetraethyl orthosilicate) contents were carried out. The results show that the Ea of a hybrid sol is higher than that of a non- hybrid sol of a TEOS-water-ethanol system. The increasing of TEOS content in a hybrid sol has no obvious effect on the Ea value, but it can enhance the sol-gel reaction rate.

  2. Research with Individuals Labeled "Other": Reflections on the Research Process

    Science.gov (United States)

    Petersen, Amy J.

    2011-01-01

    Using the emancipatory research paradigm as a conceptual framework, this autoethnography reflects upon participant and researcher relationships within a larger qualitative research study that involved participants labeled "other". Issues relating to fear of the "other", building reciprocal relationships, and who gains from the research are…

  3. High-strength bolt-forming of fine-grained aluminum alloy 6061 with a continuous hybrid process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hun; Hwang, Sun Kwang [National Research Laboratory for Computer Aided Materials Processing, Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Im, Yong-Taek, E-mail: ytim@kaist.ac.kr [National Research Laboratory for Computer Aided Materials Processing, Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Son, Il-Heon; Bae, Chul Min [Wire Rod Research Group, Technical Research Laboratories, POSCO, 1 Goedong-dong, Nam-gu, Pohang, Gyeongbuk 790-785 (Korea, Republic of)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Fine-grained AA6061-O was produced by a continuous hybrid process. Black-Right-Pointing-Pointer It consists of rolling, ECAP, and drawing. Black-Right-Pointing-Pointer High-strength bolt was manufactured with the fine-grained AA6061-O. Black-Right-Pointing-Pointer The UTS and micro-hardness of the bolt was increased by 50%. Black-Right-Pointing-Pointer The route C was better in making a uniform micro-hardness distribution in the bolt. - Abstract: It is well known that the development of a continuous manufacturing process to apply severe plastic deformation (SPD) is a major challenge for industrial usages to improve the mechanical properties of the material through grain refinement. In this study, fine-grained AA6061-O wire was manufactured by a two-pass hybrid process consisting of drawing, equal channel angular pressing and rolling in a continuous manner to investigate the effects of processing routes for two different routes, A and C, on the variation of ultimate tensile strength (UTS) and micro-hardness distribution. The UTS value (185 MPa) of the specimen processed by the two-pass hybrid process with route A was higher than that of 171 MPa obtained from the two-pass wire-drawing process and was equivalent to the level of 184 MPa processed by the three-pass wire-drawing process. The average micro-hardness value (Hv 58.0) obtained from the two-pass hybrid process through route C was the highest among all the cases. According to transmission electron microscopy, the original grain was subdivided and elongated owing to deformation during the processes. The specimen processed by the two-pass hybrid process through route C showed smaller deformation bands and had potentially higher angle grain boundaries compared to the specimen processed by the two-pass wire-drawing process. Finally, the high-strength bolt was manufactured using the fine-grained AA6061-O wire prepared by the continuous hybrid process to check its formability

  4. Hybrid Neural Network Model of an Industrial Ethanol Fermentation Process Considering the Effect of Temperature

    Science.gov (United States)

    Mantovanelli, Ivana C. C.; Rivera, Elmer Ccopa; da Costa, Aline C.; Filho, Rubens Maciel

    In this work a procedure for the development of a robust mathematical model for an industrial alcoholic fermentation process was evaluated. The proposed model is a hybrid neural model, which combines mass and energy balance equations with functional link networks to describe the kinetics. These networks have been shown to have a good nonlinear approximation capability, although the estimation of its weights is linear. The proposed model considers the effect of temperature on the kinetics and has the neural network weights reestimated always so that a change in operational conditions occurs. This allow to follow the system behavior when changes in operating conditions occur.

  5. ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process

    Directory of Open Access Journals (Sweden)

    E. K. Boukas

    2004-01-01

    Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.

  6. Hybrid image and signal processing III; Proceedings of the Meeting, Orlando, FL, Apr. 23, 24, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Casasent, D.P.; Tescher, A.G.

    1992-01-01

    The present conference discusses the optical Gabor and wavelet transforms for image analysis, image segmentation via optical wavelets, semidifferential invariants, object labeling via convolution, tactile pattern recognition with complex linear morphology, a hybrid six-degree-of-freedom tracking system, and a hazard detection/avoidance sensor for NASA planetary landers. Also discussed are layered optical processing architectures, optoelectronic wide-world personality ROMs for high-speed control, a GaAs-based photorefractive time-integrating correlator, multispectral lossy data compression using vector quantization, broad vector quantization for transform image coding, and a mixed vendor computer architecture for precision image analysis.

  7. Open Access, Library Subscriptions and Article Processing Charges: Hybrid journals models and issues

    OpenAIRE

    Vijayakumar, J. K.; Tamarkin, Molly

    2016-01-01

    Hybrid journals contains articles behind a pay-wall to be subscribed, as well as papers made open access when author pays article processing charge (APC). In such cases, an Institution will end up paying twice and Publishers tend to double-dip. Discussions and pilot models are emerging on pricing options, such as “offset pricing,” [where APCs are adjusted or discounted with subscription costs as vouchers or reductions in next year subscriptions, APCs beyond the subscription costs are modestl...

  8. Properties of Lead Zirconate Titanate Ceramics Determined Using Microwave and Hot-Press Hybrid Sintering Process

    Science.gov (United States)

    Takahashi, Hirofumi; Kato, Kazuaki; Qiu, Jinhao; Tani, Junji; Nagata, Kunihiro

    2001-09-01

    Piezoelectric materials play an important role in smart material and structural systems, and high-performance piezoelectric actuators with larger force and displacement output are in demand. It was shown in our previous work that the hybrid sintering process using a 28 GHz microwave technique and hot pressing offers advantages over conventional technologies reference. It was also confirmed that the maximum achieved value of piezoelectric constant d31 of the specimens of the hybrid-sintering process is approximately 360× 10-12 m/V, which is about 38% larger than 260× 10-12 m/V, the d31 of the conventionally sintered specimens. In this study, the material properties, including electromechanical coupling factor, Young’s modulus, frequency constant, Curie temperature and dielectric constant, of the specimens fabricated with the microwave sintering process were further investigated for different sintering temperatures. The Curie point Tc decreases, but the dielectric constant \\varepsilonr at Tc increases with the grain size of specimens for all sintering methods. The influence of grain size on Tc and \\varepsilonr can be attributed to the residual stress induced by the lattice mismatch between the cubic phase and the tetragonal-rhombohedral mixed phase.

  9. HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS

    Directory of Open Access Journals (Sweden)

    M.K. Tan

    2011-07-01

    Full Text Available In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL and genetic algorithm (GA to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.

  10. Thoughts and Practice on Some Problems about Research and Application of Two-Line Hybrid Rice

    Directory of Open Access Journals (Sweden)

    Li-yun CHEN

    2011-06-01

    Full Text Available The main problems about research and application of two-line hybrid rice were reviewed, including the confusing nomenclature and male sterile lines classification, the unclear characteristics of photoperiod and temperature responses and the unsuitable site selection for male sterile line and hybrid rice seed production. In order to efficiently and accurately use dual-purpose genic male sterile lines, four types, including PTGMS (photo-thermo-sensitive genic male sterile rice, TGMS (thermo-sensitive genic male sterile rice, reverse PTGMS and reverse TGMS, were proposed. A new idea for explaining the mechanism of sterility in dual-purpose hybrid rice was proposed. The transition from sterile to fertile was involved in the cooperative regulation of major-effect sterile genes and photoperiod and/or temperature sensitive ones. The minor-effect genes with accumulative effect on sterility were important factors that affected the critical temperature of sterility transfer. In order to make better use of dual-purpose lines, the characterization of responses to photoperiod and temperature of PTGMS should be made and the identification method for the characterization of photoperiod and temperature responses of PTGMS should also be put forward. The optimal ecological site for seed production could be determined according to the historical climate data and the requirements for the meteorological conditions during the different periods of seed production.

  11. Thoughts and Practice on Some Problems about Research and Application of Two-Line Hybrid Rice

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-yun; LEI Dong-yang; TANG Wen-bang; XIAO Ying-hui

    2011-01-01

    The main problems about research and application of two-line hybrid rice were reviewed,including the confusing nomenclature and male sterile lines classification,the unclear characteristics of photoperiod and temperature responses and the unsuitable site selection for male sterile line and hybrid rice seed production.In order to efficiently and accurately use dual-purpose genic male sterile lines,four types,including PTGMS (photo-thermo-sensitive genic male sterile rice),TGMS (thermo-sensitive genic male sterile rice),reverse PTGMS and reverse TGMS,were proposed.A new idea for explaining the mechanism of sterility in dual-purpose hybrid rice was proposed.The transition from sterile to fertile was involved in the cooperative regulation of major-effect sterile genes and photoperiod and/or temperature sensitive ones.The minor-effect genes with accumulative effect on sterility were important factors that affected the critical temperature of sterility transfer.In order to make better use of dual-purpose lines,the charecterization of responses to photoperiod and temperature of PTGMS should be made and the identification method for the characterization of photoperiod and temperature responses of PTGMS should also be put forward.The optimal ecological site for seed production could be determined according to the historical climate data and the requirements for the meteorological conditions during the different periods of seed production.

  12. Hybrid intelligent control of combustion process for ore-roasting furnace

    Institute of Scientific and Technical Information of China (English)

    Aijun YAN; Tianyou CHAI; Fenghua WU; Pu WANG

    2008-01-01

    Because of its synthetic and complex characteristics, the combustion process of the shaft ore-roasting furnace is very difficult to control stably. A hybrid intelligent control approach is developed which consists of two systems: one is a cascade fuzzy control system with a temperature soft-sensor, and the other is a ratio control system for air flow with a compensation model for heating gas flow and air-fuel ratio. This approach combined intelligent control, soft-sensing and fault diagnosis with conventional control. It can adjust both the heating gas flow and the air-fuel ratio in real time. By this way, the difficulty of online measurement of the furnace temperature is solved, the fault ratios during combustion process is decreased, the steady control of the furnace temperature is achieved, and the gas consumption is reduced. The successful application in shaft furnaces of a mineral processing plant in China indicates its effectiveness.

  13. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  14. The effect of microstructure and texture evolution on mechanical properties of low-carbon steel processed by the continuous hybrid process

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sun Kwang; Baek, Hyun Moo [National Research Laboratory for Computer Aided Materials Processing, Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Son, Il-Heon [Wire Rod Research Group, Technical Research Laboratories, POSCO, 1 Goedong-dong, Nam-gu, Pohang, Gyeongbuk 790-785 (Korea, Republic of); Im, Yong-Taek, E-mail: ytim@kaist.ac.kr [National Research Laboratory for Computer Aided Materials Processing, Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Bae, Chul Min [Wire Rod Research Group, Technical Research Laboratories, POSCO, 1 Goedong-dong, Nam-gu, Pohang, Gyeongbuk 790-785 (Korea, Republic of)

    2013-09-01

    In this paper, the continuous hybrid process is newly designed and applied for producing grain-refined long and large cross-section wires of low-carbon steel at high speed at room temperature. The initial specimen, with a diameter of 13 mm, continuously passes through the rolls, equal channel angular pressing (ECAP) dies, and wire-drawing dies in sequence during the process. The specimens deformed by the continuous hybrid process without and with the wire-drawing dies were obtained to investigate the role in the deformation separately. Their microstructures, textures, and mechanical properties were investigated by optical microscopy (OM), electron backscattering diffraction (EBSD), X-ray diffraction (XRD), tension, and Vickers micro-hardness tests and were compared with those for the case processed by the conventional wire-drawing process. According to the present investigation, the continuous hybrid process can more efficiently manufacture fine-grained wires with a strong shear texture in a continuous way than the conventional wire-drawing process can. In addition, the ultimate tensile strength value of the specimen processed by the continuous hybrid process was 23.9% higher, although the elongation was slightly lower than the one produced by the conventional wire-drawing process. The plastic deformation was mainly imposed by the ECAP dies, and the wire-drawing dies improve the dimensional accuracy and increase the local strain homogeneity in the continuous hybrid process. It is demonstrated that the continuous hybrid process might be beneficial in commercializing a continuous application of the severe plastic deformation process for producing grain-refined wires for industrial applications.

  15. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Directory of Open Access Journals (Sweden)

    Sang-Young Kim

    2014-09-01

    Full Text Available Glass Fiber Reinforced Plastic (GFRP structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties.

  16. Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study

    Science.gov (United States)

    Riadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E.

    2016-11-01

    Reactive dyes contain a significant portion of colorants used in yarn dying process and also in textile industry. Since the COD content is usually high in such wastewater,we conducted a hybrid electrocoagulation-fenton method to treat the wastewater. This work describes the application of the hybrid system to the removal of chemical oxygen demand and color from the wastewater in a batch reactor. Having worked with initial pH of 3,0; temperature at 30°C, molar ratio of Fe2+/H2O2 =1/10 and the mol ratio H2O2/COD = 4, we got 88.3% COD conversion and 88.5% color removal. The COD degradation process can be explained in two phases, the first phase is instantaneous reaction and the second phase is first order reaction. The kinetic constant was 0.0053 minute-1 and the rate of COD degradation was 0.0053[COD] mg/L minute.

  17. Hydrophobicity control by a supercritical drying technique in a sol–gel process with hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hongbo; Qiao, Zemin; Liu, Xiao; Cui, Xudong, E-mail: xudcui@gmail.com

    2015-10-15

    Highlights: • Sol–gel route is combined with polymerization without using modifier. • Supercritical drying control is the key to obtain super-hydrophobic surfaces. • The whole fabrication is technologically controllable and with low costs. • The production rate is higher than 90%. • The method provides a cost-effective way for industry applications. - Abstract: We successfully synthesized one type of cheap super-hydrophobic hybrid porous materials in a sol–gel process. In this route, hydrophilic polymers and TEOS-base sol are used as precursors, the ultraviolet ray-initiated polymerization and supercritical fluid drying techniques are combined together to fulfill this task. All fabricated samples exhibit lotus-leaf-like surface structures with super-hydrophobicity. The underlying mechanisms are carefully investigated using a field-emission scanning electron microscopy (FESEM) and an X-ray photoelectron spectroscopy (XPS). We found that a well-controlled drying process is crucial to the formation of such super-hydrophobic surfaces. As high as 90% production rate is obtained in our route and thus, it might provide a cost-effective way to produce super-hydrophobic hybrid materials for industry applications.

  18. Stochastic analysis and simulation of hydrometeorological processes for optimizing hybrid renewable energy systems

    Science.gov (United States)

    Tsekouras, Georgios; Ioannou, Christos; Efstratiadis, Andreas; Koutsoyiannis, Demetris

    2013-04-01

    The drawbacks of conventional energy sources including their negative environmental impacts emphasize the need to integrate renewable energy sources into energy balance. However, the renewable sources strongly depend on time varying and uncertain hydrometeorological processes, including wind speed, sunshine duration and solar radiation. To study the design and management of hybrid energy systems we investigate the stochastic properties of these natural processes, including possible long-term persistence. We use wind speed and sunshine duration time series retrieved from a European database of daily records and we estimate representative values of the Hurst coefficient for both variables. We conduct simultaneous generation of synthetic time series of wind speed and sunshine duration, on yearly, monthly and daily scale. To this we use the Castalia software system which performs multivariate stochastic simulation. Using these time series as input, we perform stochastic simulation of an autonomous hypothetical hybrid renewable energy system and optimize its performance using genetic algorithms. For the system design we optimize the sizing of the system in order to satisfy the energy demand with high reliability also minimizing the cost. While the simulation scale is the daily, a simple method allows utilizing the subdaily distribution of the produced wind power. Various scenarios are assumed in order to examine the influence of input parameters, such as the Hurst coefficient, and design parameters such as the photovoltaic panel angle.

  19. Hybrid manufacturing processes for fusion welding and friction stir welding of aerospace grade aluminum alloys

    Science.gov (United States)

    Gegesky, Megan Alexandra

    Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction to aerospace grade aluminum alloys as well as non-weldable alloys, is new. This is brought about by a lowered required clamping force required by adding a fusion weld before a friction stir processing technique. The changes in properties associated with joining techniques include: microstructural changes, changes in hardness, tensile strength, and corrosion resistance. This thesis illustrates these changes for the non-weldable AA2024-T351 and AA7075-T651 as well as the weldable alloy AA5052-H32. The microhardness, tensile strength and corrosion resistance of the four processing states: base material, fusion welded material, friction stir welded material, and friction stir processed fusion welded material is studied. The plausibility of this hybrid process for the three different materials is characterized, as well as plausible applications for this joining technique.

  20. Research on consistency measurement and weight estimation approach of hybrid uncertain comparison matrix

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The consistency measurement and weight estimation approach of the hybrid uncertain comparison matrix in the analytic hierarchy process (AHP) are studied. First, the decision-making satisfaction membership function is defined based on the decision making's allowable error. Then, the weight model based on the maximal satisfactory consistency idea is suggested, and the consistency index is put forward. Moreover, the weight distributing value model is developed to solve the decision making misleading problem since the multioptimization solutions in the former model. Finally, the weights are ranked based on the possibility degree approach to obtain the ultimate order.

  1. Enhancing the efficiency of solution-processed polymer:colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment.

    Science.gov (United States)

    Zhou, Renjia; Stalder, Romain; Xie, Dongping; Cao, Weiran; Zheng, Ying; Yang, Yixing; Plaisant, Marc; Holloway, Paul H; Schanze, Kirk S; Reynolds, John R; Xue, Jiangeng

    2013-06-25

    Advances in colloidal inorganic nanocrystal synthesis and processing have led to the demonstration of organic-inorganic hybrid photovoltaic (PV) cells using low-cost solution processes from blends of conjugated polymer and colloidal nanocrystals. However, the performance of such hybrid PV cells has been limited due to the lack of control at the complex interfaces between the organic and inorganic hybrid active materials. Here we show that the efficiency of hybrid PV devices can be significantly enhanced by engineering the polymer-nanocrystal interface with proper chemical treatment. Using two different conjugated polymers, poly(3-hexylthiophene) (P3HT) and poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), we show that treating the polymer:nanocrystal hybrid film in an ethanedithiol-containing acetonitrile solution can increase the efficiency of the hybrid PV devices by 30-90%, and a maximum power conversion efficiency of 5.2 ± 0.3% was obtained in the PCPDTBT:CdSe devices at 0.2 sun (AM 1.5G), which was slightly reduced to 4.7 ± 0.3% at 1 sun. The ethanedithiol treatment did not result in significant changes in the morphology and UV-vis optical absorption of the hybrid thin films; however, infrared absorption, NMR, and X-ray photoelectron spectroscopies revealed the effective removal of organic ligands, especially the charged phosphonic acid ligands, from the CdSe nanorod surface after the treatment, accompanied by the possible monolayer passivation of nanorod surfaces with Cd-thiolates. We attribute the hybrid PV cell efficiency increase upon the ethanedithiol treatment to the reduction in charge and exciton recombination sites on the nanocrystal surface and the simultaneous increase in electron transport through the hybrid film.

  2. Cleaner production for continuous digester processes based on hybrid Pareto genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Pulping production process produce large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implement cleaner production by using modeling and optimization technology. This paper studies the model and multi-objective genetic algorithms for continuous digester process. A model is established, in which environmental pollution and saving energy factors are considered. A hybrid genetic algorithm based on Pareto stratum-niche count is designed for finding near-Pareto or Pareto optimal solutions in the problem. A new genetic evaluation and selection mechanism is proposed. Using the real data from a pulp mill shows the results of computer simulation. Through comparing with the practical curve of digester,this method can reduce the pollutant effectively and increase the profit while keeping the pulp quality constant.

  3. Cleaner production for continuous digester processes based on hybrid Pareto genetic algorithm.

    Science.gov (United States)

    Jin, Fu-Jiang; Wang, Hui; Li, Ping

    2003-01-01

    Pulping production process produces a large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implement cleaner production by using modeling and optimization technology. This paper studies the modeling and multi-objective genetic algorithms for continuous digester process. First, model is established, in which environmental pollution and saving energy factors are considered. Then hybrid genetic algorithm based on Pareto stratum-nichecount is designed for finding near-Pareto or Pareto optimal solutions in the problem and a new genetic evaluation and selection mechanism is proposed. Finally using the real data from a pulp mill shows the results of computer simulation. Through comparing with the practical curve of digester, this method can reduce the pollutant effectively and increase the profit while keeping the pulp quality unchanged.

  4. Optimization of process parameters in drilling of fibre hybrid composite using Taguchi and grey relational analysis

    Science.gov (United States)

    Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.

    2017-03-01

    Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.

  5. Advances in the study of hybrid finite elements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.

  6. FCS Undergrads at Mississippi State Learn Research Process

    Science.gov (United States)

    Worthy, Sheri L.

    2009-01-01

    Understanding the research process is a vital part of the undergraduate experience. Conducting research helps students see the value of the scientific process and various research methods, and encourages inquisitiveness about family and consumer sciences (FCS) issues. Research experiences augment students' professional development, increase their…

  7. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    Science.gov (United States)

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations.

  8. Start-up of the anammox process from the conventional activated sludge in a hybrid bioreactor

    Institute of Scientific and Technical Information of China (English)

    Xiumei Duan; Jiti Zhou; Sen Qiao; Xin Yin; Tian Tian; Fangdi Xu

    2012-01-01

    The anaerobic ammonium oxidation (anammox) process was successfully started up from conventional activated sludge using a hybrid bioreactor within 2 months.The average removal efficiencies of ammonia and nitrite were both over 80%,and the maximum total nitrogen removal rate of 1.85 kg1 N/(m3·day) was obtained on day 362 with the initial sludge concentration of 0.7 g mixed liquor suspended solids (MLSS)/L.Scanning electron microscope (SEM) observation of the granular sludge in the hybrid reactor clearly showed a high degree of compactness and cell sphericity,and the cell size was quite uniform.Transmission electron microscope photos showed that cells were round or oval,the cellular diameter was 0.6-1.0 μm,and the percentage of the anammoxosome compartment was 51%-85% of the whole cell volume.Fluorescence in situ hybridization analysis (FISH) indicated that anammox bacteria became the dominant population in the community (accounting for more than 51% of total bacteria on day 250).Seven planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass and affiliated to Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia sp.,a new anammox species.In addition,the average effluent suspended solid (MLSS) concentrations of outlets Ⅰ (above the non-woven carrier) and Ⅱ (below the non-woven carrier) were 0.0009 and 0.0035 g/L,respectively.This showed that the non-woven carrier could catch the biomass effectively,which increased biomass and improved the nitrogen removal rate in the reactor.

  9. Effect of Particles Content on Microstructure, Mechanical Properties, and Electrochemical Behavior of Aluminum-Based Hybrid Composite Processed by Accumulative Roll Bonding Process

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Naseri, Majid; Alemi, Mohamad Hesam

    2017-03-01

    Effect of B4C/SiC particles content on the microstructure, deformation, and electrochemical behavior of aluminum-based hybrid composite processed by accumulative roll bonding (ARB) was investigated. The ARB process was used to fabricate hybrid composites which consist of 1 and 2.5 wt pct of B4C/SiC mixed particles as reinforcement. The microstructure of the fabricated hybrid composites after the ninth cycle of the ARB process exhibited an excellent distribution of B4C/SiC particles in the aluminum matrix where no porosity was observed. In addition, with increasing the particle content in the aluminum matrix, the hybrid composites demonstrated higher tensile strength and lower elongation. The ARB-processed hybrid composites exhibited 3.12 and 3.37 times higher hardness for samples having 1 and 2.5 wt pct B4C/SiC, respectively, than that of the annealed aluminum. Electrochemical impedance spectroscopy and potentiodynamic polarization curves revealed that the corrosion resistance dropped drastically by increasing the number of ARB cycles from 3 to 5. However, by further ARB processing, the corrosion resistance gradually increased, and finally, after 9 cycles reached to the values higher than those of 3-cycle ARB-processed samples.

  10. Effect of Particles Content on Microstructure, Mechanical Properties, and Electrochemical Behavior of Aluminum-Based Hybrid Composite Processed by Accumulative Roll Bonding Process

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Naseri, Majid; Alemi, Mohamad Hesam

    2017-01-01

    Effect of B4C/SiC particles content on the microstructure, deformation, and electrochemical behavior of aluminum-based hybrid composite processed by accumulative roll bonding (ARB) was investigated. The ARB process was used to fabricate hybrid composites which consist of 1 and 2.5 wt pct of B4C/SiC mixed particles as reinforcement. The microstructure of the fabricated hybrid composites after the ninth cycle of the ARB process exhibited an excellent distribution of B4C/SiC particles in the aluminum matrix where no porosity was observed. In addition, with increasing the particle content in the aluminum matrix, the hybrid composites demonstrated higher tensile strength and lower elongation. The ARB-processed hybrid composites exhibited 3.12 and 3.37 times higher hardness for samples having 1 and 2.5 wt pct B4C/SiC, respectively, than that of the annealed aluminum. Electrochemical impedance spectroscopy and potentiodynamic polarization curves revealed that the corrosion resistance dropped drastically by increasing the number of ARB cycles from 3 to 5. However, by further ARB processing, the corrosion resistance gradually increased, and finally, after 9 cycles reached to the values higher than those of 3-cycle ARB-processed samples.

  11. Hybrid microelectronic technology

    Science.gov (United States)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  12. 77 FR 26911 - Processed Raspberry Promotion, Research, and Information Order

    Science.gov (United States)

    2012-05-08

    ... Service 7 CFR Part 1208 RIN 0581-AC79 Processed Raspberry Promotion, Research, and Information Order... Processed Raspberry Promotion, Research, and Information Order (Order). The program will be implemented..., producers of raspberries for processing and importers of processed raspberries will pay an assessment of...

  13. Interpretive Research Design. Concepts and Processes

    NARCIS (Netherlands)

    Schwartz-Shea, P.; Yanow, D.

    2012-01-01

    Research design is fundamental to all scientific endeavors, at all levels and in all institutional settings. In many social science disciplines, however, scholars working in an interpretive-qualitative tradition get little guidance on this aspect of research from the positivist-centered training the

  14. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems: Summary of Research

    Science.gov (United States)

    Manna, Zohar

    1998-01-01

    This research is directed towards the implementation of a comprehensive deductive-algorithmic environment (toolkit) for the development and verification of high assurance reactive systems, especially concurrent, real-time, and hybrid systems. For this, we have designed and implemented the STCP (Stanford Temporal Prover) verification system. Reactive systems have an ongoing interaction with their environment, and their computations are infinite sequences of states. A large number of systems can be seen as reactive systems, including hardware, concurrent programs, network protocols, and embedded systems. Temporal logic provides a convenient language for expressing properties of reactive systems. A temporal verification methodology provides procedures for proving that a given system satisfies a given temporal property. The research covered necessary theoretical foundations as well as implementation and application issues.

  15. A Hybrid EAV-Relational Model for Consistent and Scalable Capture of Clinical Research Data.

    Science.gov (United States)

    Khan, Omar; Lim Choi Keung, Sarah N; Zhao, Lei; Arvanitis, Theodoros N

    2014-01-01

    Many clinical research databases are built for specific purposes and their design is often guided by the requirements of their particular setting. Not only does this lead to issues of interoperability and reusability between research groups in the wider community but, within the project itself, changes and additions to the system could be implemented using an ad hoc approach, which may make the system difficult to maintain and even more difficult to share. In this paper, we outline a hybrid Entity-Attribute-Value and relational model approach for modelling data, in light of frequently changing requirements, which enables the back-end database schema to remain static, improving the extensibility and scalability of an application. The model also facilitates data reuse. The methods used build on the modular architecture previously introduced in the CURe project.

  16. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  17. Wear Behavior of Aluminum Matrix Hybrid Composites Fabricated through Friction Stir Welding Process

    Institute of Scientific and Technical Information of China (English)

    Halil Ibrahim KURT; Murat ODUNCUOGLU; Ramazan ASMATULU

    2016-01-01

    Effects of friction stir processing (FSP)parameters and reinforcements on the wear behavior of 6061-T6 based hybrid composites were investigated.A mathematical formulation was derived to calculate the wear volume loss of the composites.The experimental results were contrasted with the results of the proposed model.The influ-ences of sliding distance,tool traverse and rotational speeds,as well as graphite (Gr)and titanium carbide (TiC) volume fractions on the wear volume loss of the composites were also investigated using the prepared formulation. The results demonstrated that the wear volume loss of the composites significantly increased with increasing sliding distance,tool traverse speed,and rotational speed;while the wear volume loss decreased with increasing volume fraction of the reinforcements.A minimum wear volume loss for the hybrid composites with complex reinforcements was specified at the inclusion ratio of 50% TiC+50% Al2 O3 because of improved lubricant ability,as well as resist-ance to brittleness and wear.New possibilities to develop wear-resistant aluminum-based composites for different in-dustrial applications were proposed.

  18. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    Science.gov (United States)

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  19. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David;

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  20. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    Science.gov (United States)

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  1. Modelling Efficient Process Oriented Architecture for Secure Mobile Commerce Using Hybrid Routing Protocol in Mobile Adhoc Network

    Directory of Open Access Journals (Sweden)

    Chitra Kiran N

    2012-01-01

    Full Text Available The proposed research work presents a novel approach of process oriented architecture for secure mobile commerce framework using uniquely designed hybrid mobile adhoc routing protocols using reactive and proactive type in real time test-bed. The research work discusses about deployment of mobile commerce which is one of the emerging trend in mobile applications with huge demands. Majority of the existing system lacks either QoS or efficient security protocol when it relates to secure mobile transaction due to the reason that development in wireless technology involved in m-commerce is still in its nascent stage. The real time test bed has been implemented with 20 Intel Atom processor with 32 bit OS establishing an adhoc network and by providing a random mobility to achieve any file type transfer from node to node. For the real-time set up purpose, the experiment is conducted in wireless infrastructure with mobility using G-based Linksys wireless router. Iteration of experiments conducted shows a satisfactory results. This research journal will provide insights with various parameters, security requirements, and concepts which is required in creating a robust model for secure m-commerce system.

  2. Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing

    OpenAIRE

    Guangru Li; Michael Price; Felix Deschler

    2016-01-01

    Hybrid lead-halide perovskites have emerged as promising solution-processed semiconductor materials for thin-film optoelectronics. In this review, we discuss current challenges in perovskite LED performance, using thin-film and nano-crystalline perovskite as emitter layers, and look at device performance and stability. Fabrication of electrically pumped, optical-feedback devices with hybrid lead halide perovskites as gain medium is a future challenge, initiated by the demonstration of optical...

  3. Transient simulation of regression rate on thrust regulation process in hybrid rocket motor

    Directory of Open Access Journals (Sweden)

    Tian Hui

    2014-12-01

    Full Text Available The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.

  4. Transient simulation of regression rate on thrust regulation process in hybrid rocket motor

    Institute of Scientific and Technical Information of China (English)

    Tian Hui; Li Yijie; Zeng Peng

    2014-01-01

    The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.

  5. A hybrid process combining homogeneous catalytic ozonation and membrane distillation for wastewater treatment.

    Science.gov (United States)

    Zhang, Yong; Zhao, Peng; Li, Jie; Hou, Deyin; Wang, Jun; Liu, Huijuan

    2016-10-01

    A novel catalytic ozonation membrane reactor (COMR) coupling homogeneous catalytic ozonation and direct contact membrane distillation (DCMD) was developed for refractory saline organic pollutant treatment from wastewater. An ozonation process took place in the reactor to degrade organic pollutants, whilst the DCMD process was used to recover ionic catalysts and produce clean water. It was found that 98.6% total organic carbon (TOC) and almost 100% salt were removed and almost 100% metal ion catalyst was recovered. TOC in the permeate water was less than 16 mg/L after 5 h operation, which was considered satisfactory as the TOC in the potassium hydrogen phthalate (KHP) feed water was as high as 1000 mg/L. Meanwhile, the membrane distillation flux in the COMR process was 49.8% higher than that in DCMD process alone after 60 h operation. Further, scanning electron microscope images showed less amount and smaller size of contaminants on the membrane surface, which indicated the mitigation of membrane fouling. The tensile strength and FT-IR spectra tests did not reveal obvious changes for the polyvinylidene fluoride membrane after 60 h operation, which indicated the good durability. This novel COMR hybrid process exhibited promising application prospects for saline organic wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  7. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2013-11-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  8. Biomolecular hybrid material and process for preparing same and uses for same

    Science.gov (United States)

    Kim, Jungbae [Richland, WA

    2010-11-23

    Disclosed is a composition and method for fabricating novel hybrid materials comprised of, e.g., carbon nanotubes (CNTs) and crosslinked enzyme clusters (CECs). In one method, enzyme-CNT hybrids are prepared by precipitation of enzymes which are subsequently crosslinked, yielding crosslinked enzyme clusters (CECs) on the surface of the CNTs. The CEC-enzyme-CNT hybrids exhibit high activity per unit area or mass as well as improved enzyme stability and longevity over hybrid materials known in the art. The CECs in the disclosed materials permit multilayer biocatalytic coatings to be applied to surfaces providing hybrid materials suitable for use in, e.g., biocatalytic applications and devices as described herein.

  9. Optimization of the Thermosetting Pultrusion Process by Using Hybrid and Mixed Integer Genetic Algorithms

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2013-01-01

    In this paper thermo-chemical simulation of the pultrusion process of a composite rod is first used as a validation case to ensure that the utilized numerical scheme is stable and converges to results given in literature. Following this validation case, a cylindrical die block with heaters is added...... to the pultrusion domain of a composite part and thermal contact resistance (TCR) regions at the die-part interface are defined. Two optimization case studies are performed on this new configuration. In the first one, optimal die radius and TCR values are found by using a hybrid genetic algorithm based......) such that the total number of heaters is minimized while satisfying the constraints for the maximum composite temperature, the mean of the cure degree at the die exit and the pulling speed....

  10. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    Directory of Open Access Journals (Sweden)

    S. Molla-Alizadeh-Zavardehi

    2014-01-01

    Full Text Available This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA, variable neighborhood search (VNS, and simulated annealing (SA frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms.

  11. Hybrid metaheuristics for solving a fuzzy single batch-processing machine scheduling problem.

    Science.gov (United States)

    Molla-Alizadeh-Zavardehi, S; Tavakkoli-Moghaddam, R; Lotfi, F Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms.

  12. Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process.

    Science.gov (United States)

    Hassanin, H; Mohammadkhani, A; Jiang, K

    2012-10-21

    In the study, a novel and low cost nanofabrication process is proposed for producing hybrid polydimethylsiloxane (PDMS) nanostructured arrays. The proposed process involves monolayer self-assembly of polystyrene (PS) spheres, PDMS nanoreplication, thin film coating, and PDMS to PDMS (PDMS/PDMS) replication. A self-assembled monolayer of PS spheres is used as the first template. Second, a PDMS template is achieved by replica moulding. Third, the PDMS template is coated with a platinum or gold layer. Finally, a PDMS nanostructured array is developed by casting PDMS slurry on top of the coated PDMS. The cured PDMS is peeled off and used as a replica surface. In this study, the influences of the coating on the PDMS topography, contact angle of the PDMS slurry and the peeling off ability are discussed in detail. From experimental evaluation, a thickness of at least 20 nm gold layer or 40 nm platinum layer on the surface of the PDMS template improves the contact angle and eases peeling off. The coated PDMS surface is successfully used as a template to achieve the replica with a uniform array via PDMS/PDMS replication process. Both the PDMS template and the replica are free of defects and also undistorted after demoulding with a highly ordered hexagonal arrangement. In addition, the geometry of the nanostructured PDMS can be controlled by changing the thickness of the deposited layer. The simplicity and the controllability of the process show great promise as a robust nanoreplication method for functional applications.

  13. Hybrid fNIRS-EEG based classification of auditory and visual perception processes

    Directory of Open Access Journals (Sweden)

    Felix ePutze

    2014-11-01

    Full Text Available For multimodal Human-Computer Interaction (HCI, it is very useful to identify the modalities on which the user is currently processing information. This would enable a system to select complementary output modalities to reduce the user's workload. In this paper, we develop a hybrid Brain-Computer Interface (BCI which uses Electroencephalography (EEG and functional Near Infrared Spectroscopy (fNIRS to discriminate and detect visual and auditory stimulus processing. We describe the experimental setup we used for collection of our data corpus with 12 subjects. We present cross validation evaluation results for different classification conditions. We show that our subject-dependent systems achieved a classification accuracy of 97.8% for discriminating visual and auditory perception processes from each other and a classification accuracy of up to 94.8% for detecting modality-specific processes independently of other cognitive activity. The same classification conditions could also be discriminated in a subject-independent fashion with accuracy of up to 94.6% and 86.7%, respectively. We also look at the contributions of the two signal types and show that the fusion of classifiers using different features significantly increases accuracy.

  14. Automated solar cell assembly team process research

    Science.gov (United States)

    Nowlan, M. J.; Hogan, S. J.; Darkazalli, G.; Breen, W. F.; Murach, J. M.; Sutherland, S. F.; Patterson, J. S.

    1994-06-01

    This report describes work done under the Photovoltaic Manufacturing Technology (PVMaT) project, Phase 3A, which addresses problems that are generic to the photovoltaic (PV) industry. Spire's objective during Phase 3A was to use its light soldering technology and experience to design and fabricate solar cell tabbing and interconnecting equipment to develop new, high-yield, high-throughput, fully automated processes for tabbing and interconnecting thin cells. Areas that were addressed include processing rates, process control, yield, throughput, material utilization efficiency, and increased use of automation. Spire teamed with Solec International, a PV module manufacturer, and the University of Massachusetts at Lowell's Center for Productivity Enhancement (CPE), automation specialists, who are lower-tier subcontractors. A number of other PV manufacturers, including Siemens Solar, Mobil Solar, Solar Web, and Texas instruments, agreed to evaluate the processes developed under this program.

  15. Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, F. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada); Gerlich, A.P. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Kokabi, A.H. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of)

    2015-02-25

    A fine-grained aluminum-matrix hybrid nanocomposite reinforced with TiO{sub 2}, MgO and Al{sub 3}Ti nanoparticles was prepared via reactive friction stir processing (FSP) of an Al–Mg sheet with pre-placed TiO{sub 2} particles (50 nm; 3.1 vol%). The microstructure of the hybrid nanocomposite comprises high-angle grain boundaries (~90%) with an average size of 2 µm and hard inclusions with sizes in the range of 30–50 nm. Evaluation of the hot deformation behavior of the nanocomposite by uniaxial tensile testing at different temperatures (300–450 °C) and strain rates (0.001–0.1 s{sup −1}) shows that the deformation apparent activation energy of the nanocomposite is 137 kJ mol{sup −1} at ≤300 °C. The values of the activation energy for the Al–Mg alloy before and after FSP at this temperature range are about 105 and 135 kJ mol{sup −1}, respectively. This observation highlights the role of ultrafine hard particles and the structural changes induced by FSP on the deformation process. At the higher temperatures, the deformation activation energy for the aluminum alloy without and with the reinforcing particles is 303 and 456 kJ mol{sup −1}, respectively. Detailed microstructural analysis by electron back scattered diffraction and transmission electron microscopy suggests that dynamic recrystallization is responsible for the deformation behavior at the elevated temperatures. Meanwhile, the presence of the hard nanoparticles operates as a grain growth inhibitor improving the thermal stability of the fine-grained aluminum alloy.

  16. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    Science.gov (United States)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  17. Research on Operation Principle and Control of Novel Hybrid Excitation Bearingless Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2016-08-01

    Full Text Available Under the condition of load changing, the magnetic field of traditional permanent magnet generators (PMG is hard to be adjusted, and the mechanical bearings are significantly worn. To overcome the drawbacks above, a novel hybrid excitation bearingless permanent magnet generator (HEBPMG is proposed in this paper, which has integrated the merits of hybrid excitation permanent magnet generators and magnetic bearings. Firstly, the structure and winding configuration of the HEBPMG are introduced, and then the principles of radial suspension and power generation are presented. The suspension principle as well as power generation principle is analyzed in this paper. Then, the flux linkage and induced voltage equations are derived, and the accurate mathematical model of radial suspension force is built based on the Maxwell tensor method. Subsequently, by means of the finite element analysis software-ANSYS Maxwell, the corresponding electromagnetic characteristics are analyzed to verify the correctness of the mentioned models. In addition, a compensation control strategy based on flux-linkage observation is proposed to solve the problems of unstable suspension force and generating voltage under variable load condition in this paper. Meanwhile, the corresponding control system is constructed and its feasibility is validated by simulation results. Finally, an experimental prototype of a 2.2 kW HEBPMG is tested. Experimental researches show that the HEBPMG can operate steadily under variable load condition and possess good suspension performance and power generation quality.

  18. Review and Prospect on Japonica Hybrid Rice Research in Anhui Province, China

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-quan; WANG Shou-hai; WANG De-zheng; LUO Yan-chang; ZHANG Pei-jiang; WU Shuang; DU Shi-yun; XU Chuan-wan

    2005-01-01

    The breeding history and commercial exploitation of japonica hybrid rice in Anhui Province, China over the last threedecades were reviewed. Besides, the bottleneck problems restricting the development of japonica hybrid rice in China weresummarized, and corresponding technological countermeasures were proposed.

  19. Continuity Controlled Hybrid Automata

    OpenAIRE

    Bergstra, J. A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of hybrid automata as timed transition systems. We also relate the synchronized product operator on hybrid automata to the parallel composition operator of the process algebra. It turns out that the f...

  20. Adherence Process Research on Developmental Interventions: Filling in the Middle.

    Science.gov (United States)

    Hogue, Aaron

    2002-01-01

    Presents a framework and some practical examples for using rigorous implementation research to inform program outcomes and foster program development for developmental interventions. Focuses on: (1) role of process research, specifically developing developmental interventions; (2) characteristics of adherence process research; and (3)…

  1. 42 CFR 93.316 - Completing the research misconduct process.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Completing the research misconduct process. 93.316... POLICIES ON RESEARCH MISCONDUCT Responsibilities of Institutions The Institutional Investigation § 93.316 Completing the research misconduct process. (a) ORI expects institutions to carry inquiries...

  2. Research Methodologies and the Doctoral Process.

    Science.gov (United States)

    Creswell, John W.; Miller, Gary A.

    1997-01-01

    Doctoral students often select one of four common research methodologies that are popular in the social sciences and education today: positivist; interpretive; ideological; and pragmatic. But choice of methodology also influences the student's choice of course work, membership of dissertation committee, and the form and structure of the…

  3. Research Methodologies and the Doctoral Process.

    Science.gov (United States)

    Creswell, John W.; Miller, Gary A.

    1997-01-01

    Doctoral students often select one of four common research methodologies that are popular in the social sciences and education today: positivist; interpretive; ideological; and pragmatic. But choice of methodology also influences the student's choice of course work, membership of dissertation committee, and the form and structure of the…

  4. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes.

    Science.gov (United States)

    Hancock, Nathan T; Black, Nathan D; Cath, Tzahi Y

    2012-03-15

    The purpose of this study was to determine the comparative environmental impacts of coupled seawater desalination and water reclamation using a novel hybrid system that consist of an osmotically driven membrane process and established membrane desalination technologies. A comparative life cycle assessment methodology was used to differentiate between a novel hybrid process consisting of forward osmosis (FO) operated in osmotic dilution (ODN) mode and seawater reverse osmosis (SWRO), and two other processes: a stand alone conventional SWRO desalination system, and a combined SWRO and dual barrier impaired water purification system consisting of nanofiltration followed by reverse osmosis. Each process was evaluated using ten baseline impact categories. It was demonstrated that from a life cycle perspective two hurdles exist to further development of the ODN-SWRO process: module design of FO membranes and cleaning intensity of the FO membranes. System optimization analysis revealed that doubling FO membrane packing density, tripling FO membrane permeability, and optimizing system operation, all of which are technically feasible at the time of this publication, could reduce the environmental impact of the hybrid ODN-SWRO process compared to SWRO by more than 25%; yet, novel hybrid nanofiltration-RO treatment of seawater and wastewater can achieve almost similar levels of environmental impact.

  5. Research on sintering process of YSZ electrolyte

    Institute of Scientific and Technical Information of China (English)

    HAN Minfang; TANG Xiuling; PENG Suping

    2006-01-01

    Yttria stabilized zirconia (YSZ) has widely been used as electrolyte in solid oxide fuel cell (SOFC).The microstructure of YSZ related to the fabrication process was discussed in the paper.With YSZ nano-powders about 40-100 nm as raw material, the YSZ adobe was manufactured by tape calendering process.The named three-step sintering process was performed at 1000 ℃ for 2 h, then raised the temperature with normal rate and as soon as up to 1400 ℃, the furnace was controlled at 1250-1300 ℃ for 10-20 h.The high dense YSZs with the relative density of 96%-99% were obtained; the grain size of YSZ could be reduced to 0.5-3 μm.The above result is benefited to co-fired in the electrode-supported SOFCs.

  6. A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol-gel process.

    Science.gov (United States)

    Jun, Shin-Hee; Lee, Eun-Jung; Yook, Se-Won; Kim, Hyoun-Ee; Kim, Hae-Won; Koh, Young-Hag

    2010-01-01

    A bioactive coating consisting of a silica xerogel/chitosan hybrid was applied to Ti at room temperature as a novel surface treatment for metallic implants. A crack-free thin layer (coated on Ti with a chitosan content of >30 vol.% through a sol-gel process. The coating layer became more hydrophilic with increasing silica xerogel content, as assessed by contact angle measurement. The hybrid coatings afforded excellent bone bioactivity by inducing the rapid precipitation of apatite on their surface when immersed in a simulated body fluid (SBF). Osteoblastic cells cultured on the hybrid coatings were more viable than those on a pure chitosan coating. Furthermore, the alkaline phosphate activity of the cells was significantly higher on the hybrid coatings than on a pure chitosan coating, with the highest level being achieved on the hybrid coating containing 30% chitosan. These results indicate that silica xerogel/chitosan hybrids are potentially useful as room temperature bioactive coating materials on titanium-based medical implants.

  7. The Process of Divorce Recovery: A Review of the Research.

    Science.gov (United States)

    Gastil, Richard W.

    Many researchers have speculated over the nature of the divorce recovery process. Is the process similar to Kubler-Ross's stages of grief or does divorce recovery follow a unique process? This paper examines the current body of empirical research in an attempt to answer these questions. From the 91 sources analyzed, it was discovered that most of…

  8. Fusion-Fission Research Facility (FFRF) as a Practical Step Toward Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    L. Zakharov, J. Li and Y. Wu

    2010-11-18

    The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.

  9. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.

    Science.gov (United States)

    Komasi, Mehdi; Sharghi, Soroush

    2016-01-01

    Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process.

  10. Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor K.

    2013-10-09

    Emerging Big Data applications in areas like e-commerce and energy industry require both online and on-demand queries to be performed over vast and fast data arriving as streams. These present novel challenges to Big Data management systems. Complex Event Processing (CEP) is recognized as a high performance online query scheme which in particular deals with the velocity aspect of the 3-V’s of Big Data. However, traditional CEP systems do not consider data variety and lack the capability to embed ad hoc queries over the volume of data streams. In this paper, we propose H2O, a stateful complex event processing framework, to support hybrid online and on-demand queries over realtime data. We propose a semantically enriched event and query model to address data variety. A formal query algebra is developed to precisely capture the stateful and containment semantics of online and on-demand queries. We describe techniques to achieve the interactive query processing over realtime data featured by efficient online querying, dynamic stream data persistence and on-demand access. The system architecture is presented and the current implementation status reported.

  11. Study on Power Switching Process of a Hybrid Electric Vehicle with In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-01-01

    Full Text Available Hybrid electric vehicles with in-wheel motors (IWM achieve a variety of driving modes by two power sources—the engine and the IWM. One of the critical problems that exists in such vehicle is the different transient characteristics between the engine and the IWM. Therefore, switching processes between the power sources have noteworthy impacts on vehicle dynamics and driving performance. For the particular switching process of the pure electric mode to the engine driving mode, a specific control strategy coordinating clutch torque, motor torque, and engine torque was proposed to solve drivability issues caused by inconsistent responses of different power sources during the mode transition. The specific switching process could be described as follows: the engine was started by IWM with the clutch serving as a key enabling actuator, dynamic torque compensation through IWM was implemented after engine started, and, meanwhile, engine speed was controlled to track the target speed through the closed loop PID control strategy. The bench tests results showed that the vehicle jerk caused during mode switching was reduced and fast and smooth mode switching was realized, which leads to the improvement of vehicle’s riding comfort.

  12. Data-based hybrid tension estimation and fault diagnosis of cold rolling continuous annealing processes.

    Science.gov (United States)

    Liu, Qiang; Chai, Tianyou; Wang, Hong; Qin, Si-Zhao Joe

    2011-12-01

    The continuous annealing process line (CAPL) of cold rolling is an important unit to improve the mechanical properties of steel strips in steel making. In continuous annealing processes, strip tension is an important factor, which indicates whether the line operates steadily. Abnormal tension profile distribution along the production line can lead to strip break and roll slippage. Therefore, it is essential to estimate the whole tension profile in order to prevent the occurrence of faults. However, in real annealing processes, only a limited number of strip tension sensors are installed along the machine direction. Since the effects of strip temperature, gas flow, bearing friction, strip inertia, and roll eccentricity can lead to nonlinear tension dynamics, it is difficult to apply the first-principles induced model to estimate the tension profile distribution. In this paper, a novel data-based hybrid tension estimation and fault diagnosis method is proposed to estimate the unmeasured tension between two neighboring rolls. The main model is established by an observer-based method using a limited number of measured tensions, speeds, and currents of each roll, where the tension error compensation model is designed by applying neural networks principal component regression. The corresponding tension fault diagnosis method is designed using the estimated tensions. Finally, the proposed tension estimation and fault diagnosis method was applied to a real CAPL in a steel-making company, demonstrating the effectiveness of the proposed method.

  13. River Water Purification via a Coagulation-Porous Ceramic Membrane Hybrid Process

    Institute of Scientific and Technical Information of China (English)

    张荟钦; 仲兆祥; 李卫星; 邢卫红; 金万勤

    2014-01-01

    Membrane filtration technology combined with coagulation is widely used to purify river water. In this study, microfiltration (MF) and ultrafiltration (UF) ceramic membranes were combined with coagulation to treat local river water located at Xinghua, Jiangsu province, China. The operation parameters, fouling mechanism and pilot-scale tests were investigated. The results show that the pore size of membrane has small effect on the pseudo-steady flux for dead-end filtration, and the increase of flux in MF process is more than that in UF process for cross-flow filtration with the same increase of cross-flow velocity. The membrane pore size has little influence on the water quality. The analysis on membrane fouling mechanism shows that the cake filtration has significant in-fluence on the pseudo-steady flux and water quality for the membrane with pore size of 50, 200 and 500 nm. For the membrane with pore size of 200 nm and backwashing employed in our pilot study, a constant flux of 150 L·m-2·h-1 was reached during stable operation, with the removal efficiency of turbidity, total organic carbon (TOC) and UV254 higher than 99%, 45%and 48%, respectively. The study demonstrates that coagulation-porous ceramic membrane hybrid process is a reliable method for river water purification.

  14. Controllable lasing performance in solution-processed organic-inorganic hybrid perovskites.

    Science.gov (United States)

    Kao, Tsung Sheng; Chou, Yu-Hsun; Hong, Kuo-Bin; Huang, Jiong-Fu; Chou, Chun-Hsien; Kuo, Hao-Chung; Chen, Fang-Chung; Lu, Tien-Chang

    2016-11-03

    Solution-processed organic-inorganic perovskites are fascinating due to their remarkable photo-conversion efficiency and great potential in the cost-effective, versatile and large-scale manufacturing of optoelectronic devices. In this paper, we demonstrate that the perovskite nanocrystal sizes can be simply controlled by manipulating the precursor solution concentrations in a two-step sequential deposition process, thus achieving the feasible tunability of excitonic properties and lasing performance in hybrid metal-halide perovskites. The lasing threshold is at around 230 μJ cm(-2) in this solution-processed organic-inorganic lead-halide material, which is comparable to the colloidal quantum dot lasers. The efficient stimulated emission originates from the multiple random scattering provided by the micro-meter scale rugged morphology and polycrystalline grain boundaries. Thus the excitonic properties in perovskites exhibit high correlation with the formed morphology of the perovskite nanocrystals. Compared to the conventional lasers normally serving as a coherent light source, the perovskite random lasers are promising in making low-cost thin-film lasing devices for flexible and speckle-free imaging applications.

  15. Co-Curing of CFRP-Steel Hybrid Joints Using the Vacuum Assisted Resin Infusion Process

    Science.gov (United States)

    Streitferdt, Alexander; Rudolph, Natalie; Taha, Iman

    2017-01-01

    This study focuses on the one-step co-curing process of carbon fiber reinforced plastics (CFRP) joined with a steel plate to form a hybrid structure. In this process CFRP laminate and bond to the metal are realized simultaneously by resin infusion, such that the same resin serves for both infusion and adhesion. For comparison, the commonly applied two-step process of adhesive bonding is studied. In this case, the CFRP laminate is fabricated in a first stage through resin infusion of Non Crimp Fabric (NCF) and joined to the steel plate in a further step through adhesive bonding. For this purpose, the commercially available epoxy-based Betamate 1620 is applied. CFRP laminates were fabricated using two different resin systems, namely the epoxy (EP)-based RTM6 and a newly developed fast curing polyurethane (PU) resin. Results show comparable mechanical performance of the PU and EP based CFRP laminates. The strength of the bond of the co-cured samples was in the same order as the samples adhesively bonded with the PU resin and the structural adhesive. The assembly adhesive with higher ductility showed a weaker performance compared to the other tests. It could be shown that the surface roughness had the highest impact on the joint performance under the investigated conditions.

  16. Improving Defense Health Program Medical Research Processes

    Science.gov (United States)

    2017-08-08

    Health (NIH), Centers for Disease Control and Prevention , private foundations, and others (Figure 1b). These disparate funding sources may fund...Reed and his team’s discovery and confirmation of the transmission of deadly diseases such as typhoid fever and yellow fever. 5 Researchers also...contributed to the development of intravenous therapy for cholera ; 6 and the development of anti- malarial agents such as chloroquine, doxycycline

  17. The uncertainty of atmospheric processes in planning a hybrid renewable energy system for a non-connected island

    Science.gov (United States)

    Daniil, Vasiliki; Pouliasis, George; Zacharopoulou, Eleni; Demetriou, Evangelos; Manou, Georgia; Chalakatevaki, Maria; Parara, Iliana; Georganta, Xristina; Stamou, Paraskevi; Karali, Sophia; Hadjimitsis, Evanthis; Koudouris, Giannis; Moschos, Evangelos; Roussis, Dimitrios; Papoulakos, Konstantinos; Koskinas, Aristotelis; Pollakis, Giorgos; Gournari, Panagiota; Sakellari, Katerina; Moustakis, Yiannis

    2017-04-01

    Non-connected islands to the electric gird are often depending on oil-fueled power plants with high unit cost. A hybrid energy system with renewable resources such as wind and solar plants could reduce this cost and also offer more environmental friendly solutions. However, atmospheric processes are characterized by high uncertainty that does not permit harvesting and utilizing full of their potential. Therefore, a more sophisticated framework that somehow incorporates this uncertainty could improve the performance of the system. In this context, we describe several stochastic and financial aspects of this framework. Particularly, we investigate the cross-correlation between several atmospheric processes and the energy demand, the possibility of mixing renewable resources with the conventional ones and in what degree of reliability, and critical financial subsystems such as weather derivatives. A pilot application of the above framework is also presented for a remote island in the Aegean Sea. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly. *The "Stochastics in Energy Resources Management (NTUA)" Team: Nikos Mamasis, Andreas Efstratiadis, Hristos Tyralis, Panayiotis Dimitriadis, Theano Iliopoulou, Georgios Karakatsanis, Katerina Tzouka, Ilias Deligiannis, Vicky Tsoukala, Panos Papanicolaou and Demetris Koutsoyiannis

  18. Refuges and wildlife research needs and proposal review process

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This memorandum contains eight research proposals the Red Rock Lakes National Wildlife Refuge submitted to the Region's research needs and proposal review process....

  19. Research competence accounting profession as a specialist business process management in processing industries

    OpenAIRE

    Rozhelyuk, Viktoriya

    2015-01-01

    The article is the realization of research competence accountancy profession as a specialist business process management in processing industries.The main base for the study are research scientists to research the accounting profession as a specialist business process management in processing industries. When writing articles used methods: monographic (the study of scientific publications of scientists for the development of basic principles of formation of accounting in the processing indust...

  20. Fuel decomposition and boundary-layer combustion processes of hybrid rocket motors

    Science.gov (United States)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with GOX under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from +/-20% of the localized mean pressure to an acceptable range of +/-1.5% Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thickness burned and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented.

  1. Engineering therapeutic processes: from research to commodity

    Science.gov (United States)

    Galloway, Robert L.

    2014-03-01

    Three of the most important forces driving medical care are: patient specificity, treatment specificity and the move from discovery to design. Engineers while trained in specificity, efficiency, and design are often not trained in either biology or medical processes. Yet they are increasing critical to medical care. For example, modern medical imaging at US hospitals generates 1 exabyte (10^18 bytes) of data per year clearly beyond unassisted human analysis. It is not desirable to involve engineers in the acquisition, storage and analysis of this data, it is essential. While in the past we have nibbled around the edges of medical care, it is time and perhaps past time to insert ourselves more squarely into medical processes, making them more efficient, more specific and more robust. This requires engineers who understand biology and physicians who are willing to step away from classic medical thinking to try new approaches. But once the idea is proven in a laboratory, it must move into use and then into common practice. This requires additional engineering to make the process robust to noisy data and imprecise practices as well as workflow analysis to get the new technique into operating and treatment rooms. True innovation and true translation will require physicians, engineers, other medical stakeholders and even corporate involvement to take a new, important idea and move it not just to a patient but to all patients.

  2. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  3. A hybrid approach for treating fluorided water and biogeophysical monitoring of treatment processes

    Science.gov (United States)

    Singh, K. P.

    2016-12-01

    A laboratory experiment has been conducted for investigating the possibility of development of novel techniques for treating fluoride contamination and monitoring of physico-chemical alterations caused by biogeochemical processes in the media. In the present study, high adsorption capacity and ion-exchange property of natural zeolites have been utilized in treating fluoride contamination. The preset goals are achieved by designing and constructing experimental setup consisting of three columns, first one is filled with 450 ppm fluorided water prepared by dissolving sodium fluoride in deionized water, the second is filled with zeolite and fluorided water, and the third is filled with zeolite, fluorided water, sodium lactate and the bacterial seed. The first and the second columns were poisoned with sodium azide for preventing the growth of microorganisms. The self-potential (SP) signals associated with physico-chemical alterations in natural zeolite induced by biogeochemical processes are measured by using Cu-CuSO4 gel electrodes. Liquid-phase analysis of samples from column two and three show the reduced concentrations of fluoride and aluminum and it indicates the possibility of precipitation of insoluble aluminum fluoride. This is further confirmed by the presence of fluoride and aluminum in the solid samples as detected by energy dispersive X-ray analysis. The distinct SP of the order of -50 mV and 200 mV have been associated with biostimulated fluoride remediation and geochemical fluoride remediation processes respectively. Thus, there is a possibility of non-invasive monitoring of fluoride remediation processes driven by both microbes and chemical processes. It is found that after thirty-day nitrate and sulfate is introduced in column two due chemical interaction between water and natural zeolite. Furthermore, this study demonstrates that a hybrid approach, a combination of ion exchange and adsorption properties of natural zeolite and the bioremediation is more

  4. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Research on Networked Rapid Product Development Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Today the cycle time of the product develop is requ ir ed to be shortened. At the same time the requirement of the customers becomes mo re and more diverse and complex. The capability of the develop unit is limited b ecause of the existence of heterogeneous systems and distributed environments. I n this paper, we bring forward a new approach to solve the problem in product de velopment process. We also settle part key technologies in it. A great deal of information from all kinds of sources in the distribu...

  6. Processing of physiological signals in automotive research.

    Science.gov (United States)

    Dambier, Michael; Altmüller, Tobias; Ladstätter, Ulrich

    2006-12-01

    The development of innovative driver assistance systems requires the evaluation of the predisposed hypotheses such as acceptance and driving safety. For this purpose, the conduction of experiments with end-users as subjects is necessary. Analysis and evaluation are based on the recording of numerous sensor values and system variables. Video, gaze and physiological data are recorded for the analysis of gaze distraction and emotional reactions of subjects to system behaviour. In this paper, a modular data streaming and processing architecture is suggested and a concept for this architecture is defined for consistent data evaluation, which integrates off-the-shelf products for data analysis and evaluation.

  7. Structure-Property-Processing Correlations in Freeze-Cast Hybrid Scaffolds

    Science.gov (United States)

    Hunger, Philipp Malte

    Porous materials are highly sought after for applications ranging from catalyst carriers to tissue scaffolds. Most applications require clearly defined structural features and a specific mechanical performance. Therefore, it is essential to establish systematic structure-property-processing correlations to be able to tailor both structure and mechanical properties for a particular application. Because the introduction of porosity is detrimental to the mechanical performance of highly porous structures, it is necessary to generate a structure that allows for the mechanical properties to be maximized. One example for such a structure are honeycombs. In addition to the porosity and pore morphology, the scaffold's performance depends on the properties inherent to the material from which it is made. Polymeric foams possess high toughness but low stiffness, whereas ceramic foams possess high stiffness but low toughness. Natural composites like bone, antler and nacre have both high stiffness and high toughness. This unusual set of mechanical properties is thought to be intricately linked to the multi-level hierarchical composite structure present in these materials. Great potential for the fabrication of stiff, strong and tough porous scaffolds is thus seen in nacre-like composite materials with a hierarchical, honeycomb-like structure. Freeze casting is a method with which such hybrid materials can be made, adding the third dimension to nacre by forming a highly porous, hierarchical bulk material, with dense, nacre-like cell walls. The nacre-like cell walls self-assemble during the directional freezing of a water-based ceramic-polymer slurry. Reported here are structure-property-processing correlations observed in these materials. They are unusual, because they are, like nacre, solely glued by a polymeric phase and not processed further by sintering. The results illustrate several pathways to control both structure and mechanical properties in freeze-cast composites and

  8. Riding the Wave: Student Researcher Reflection on the Action Research Process

    Science.gov (United States)

    Burrows, Andrea; Thomas, Jonathan; Woods, Angie; Suess, Robert; Dole, Deborah

    2012-01-01

    The focus of this article is the exploration of and an explanation of student researchers' affect and activity in an action research project. Using a hermeneutical theoretical framework we argue that the researcher group as a whole constructs a wave process and at the same time each individual researcher in the group creates a wave process that…

  9. Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning– electrospraying hybrid process for use in protective applications

    Science.gov (United States)

    ZnO/Nylon 6 nanofiber mats were prepared by an electrospinning–electrospraying hybrid process in which ZnO nanoparticles were dispersed on the surface of Nylon 6 nanofibers without becoming completely embedded. The prepared ZnO/Nylon 6 nanofiber mats were evaluated for their abilities to kill bacter...

  10. Fertilization effects on forest carbon storage and exchange, and net primary production: A new hybrid process model for stand management

    Science.gov (United States)

    D. A. Sampson; R. H. Waring; C. A. Maier; C. M. Gough; M. J. Ducey; K. H. Johnsen

    2006-01-01

    A critical ecological question in plantation management is whether fertilization, which generally increases yield, results in enhanced C sequestration over short rotations. We present a rotation-length hybrid process model (SECRETS-3PG) that was calibrated (using control treatments; CW) and verified (using fertilized treatments; FW) using daily estimates of H

  11. A Hybrid MPC-PID Control System Design for the Continuous Purification and Processing of Active Pharmaceutical Ingredients

    Directory of Open Access Journals (Sweden)

    Maitraye Sen

    2014-05-01

    Full Text Available In this work, a hybrid MPC (model predictive control-PID (proportional-integral-derivative control system has been designed for the continuous purification and processing framework of active pharmaceutical ingredients (APIs. The specific unit operations associated with the purification and processing of API have been developed from first-principles and connected in a continuous framework in the form of a flowsheet model. These integrated unit operations are highly interactive along with the presence of process delays. Therefore, a hybrid MPC-PID is a promising alternative to achieve the desired control loop performance as mandated by the regulatory authorities. The integrated flowsheet model has been simulated in gPROMSTM (Process System Enterprise, London, UK. This flowsheet model has been linearized in order to design the control scheme. The ability to track the set point and reject disturbances has been evaluated. A comparative study between the performance of the hybrid MPC-PID and a PID-only control scheme has been presented. The results show that an enhanced control loop performance can be obtained under the hybrid control scheme and demonstrate that such a scheme has high potential in improving the efficiency of pharmaceutical manufacturing operations.

  12. Effects of no feeding, maintenance feeding, and refeeding on production and processing characteristics of market-size hybrid catfish

    Science.gov (United States)

    A pond study was initiated to evaluate effects of no feeding, maintenance feeding, and refeeding on production and processing characteristics of market-size hybrid catfish (female Channel Catfish Ictalurus punctatus × male Blue Catfish I. furcatus). Fish with an average weight of 644 g were stocked ...

  13. Unsymmetrical triphenylamine-oligothiophene hybrid conjugated systems as donor materials for high-voltage solution-processed organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ripaud, Emilie; Rousseau, Theodulf; Leriche, Philippe; Roncali, Jean [Group Linear Conjugated Systems, CNRS Moltech-Anjou, University of Angers, 2Bd Lavoisier, 49045 Angers (France)

    2011-07-15

    The synthesis of unsymmetrical triphenylamine-oligothiophene hybrid conjugated systems bearing dicyanovinyl electron acceptor end-groups is presented. When used as molecular donor materials in solution-processed bulk heteroj-unction solar cells, these compounds lead to efficient devices with very high open-circuit voltages. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. A general strategy for nanohybrids synthesis via coupled competitive reactions controlled in a hybrid process.

    Science.gov (United States)

    Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun

    2015-01-01

    A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesis can be realized by the hybrid process, which enables us to investigate nanohybrid formation at each stage through their solution color changes and TEM images. By adjusting the bi-channel solvents and kinetic parameters of each stage, the primary components of alloyed cores and the second components of transition metal doping ZnO or Al2O3 as surface coatings can be successively formed. The core alloying and shell gradient-doping strategy can efficiently eliminate the crystal lattice mismatch in different components. Consequently, varieties of gradient core-shell nanohybrids can be synthesized using CoM, FeM, AuM, AgM (M = Zn or Al) alloys as cores and transition metal gradient-doping ZnO or Al2O3 as shells, endowing these nanohybrids with unique magnetic and optical properties (e.g., high temperature ferromagnetic property and enhanced blue emission).

  15. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment.

    Science.gov (United States)

    Krayzelova, Lucie; Lynn, Thomas J; Banihani, Qais; Bartacek, Jan; Jenicek, Pavel; Ergas, Sarina J

    2014-09-15

    Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions.

  16. Research on Oxygen Sensor for Metallurgical Process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new technique for manufacture of the oxygen sensor used formetallurgical process has been developed. The powder of MgO-PSZ was prepared by coprecipitation. The MgO-PSZ tube was prepared by powder injection molding (PIM). The final sintered tube was assembled into oxygen cell, then tested in laboratory and on RH vessel. The results showed that the thermal shock resistance of MgO-PSZ matrix is strong enough for determining the active oxygen concentration in steel melt. The reproducibility of the EMF measurement is very good. The structure of the tube has been analysed by means of SEM and XRD. In addition, the characteristics such as the density and phase ratio in the product were compared with that of Shijiazhuang Maple Wood Sensor Company′s product.

  17. Optical Image Classification Using Optical/digital Hybrid Image Processing Systems.

    Science.gov (United States)

    Li, Xiaoyang

    1990-01-01

    Offering parallel and real-time operations, optical image classification is becoming a general technique in the solution of real-life image classification problems. This thesis investigates several algorithms for optical realization. Compared to other statistical pattern recognition algorithms, the Kittler-Young transform can provide more discriminative feature spaces for image classification. We shall apply the Kittler-Young transform to image classification and implement it on optical systems. A feature selection criterion is designed for the application of the Kittler -Young transform to image classification. The realizations of the Kittler-Young transform on both a joint transform correlator and a matrix multiplier are successively conducted. Experiments of applying this technique to two-category and three-category problems are demonstrated. To combine the advantages of the statistical pattern recognition algorithms and the neural network models, processes using the two methods are studied. The Karhunen-Loeve Hopfield model is developed for image classification. This model has significant improvement in the system capacity and the capability of using image structures for more discriminative classification processes. As another such hybrid process, we propose the feature extraction perceptron. The application of feature extraction techniques to the perceptron shortens its learning time. An improved activation function of neurons (dynamic activation function), its design and updating rule for fast learning process and high space-bandwidth product image classification are also proposed. We have shortened by two-thirds the learning time on the feature extraction perceptron as compared with the original perceptron. By using this architecture, we have shown that the classification performs better than both the Kittler-Young transform and the original perceptron.

  18. The Two Faces of Security in Hybrid Political Orders: A Framework for Analysis and Research

    Directory of Open Access Journals (Sweden)

    Robin Luckham

    2013-09-01

    authority and capacity to deliver security are weak, disputed or compromised by special interests; and (iii “securitised policy spaces” in which international actors collaborate to ensure peace and fulfil their responsibility to protect vulnerable end-users in unsecured regions. In making these distinctions we argue that similar analytical lenses can be turned upon international actors in securitised policy spaces as well as upon state and non-state security actors. The concluding section argues that such a reframing of the security and development debate demands not just new modes of analysis but also fresh approaches to research designed both to provide insights into the vernacular understandings, coping strategies and potential agency of end-users and to uncover the informal networks, alliances and covert strategies of the multiple actors determining their security in hybrid political orders. This paper builds upon a systematic literature search undertaken by the Justice and Security Research Programme (JSRP at the London School of Economics (LSE funded by the UK’s Department for International Development (DFID. The search itself and its main findings are discussed in Luckham and Kirk (2012 and Luckham and Kirk (2013.

  19. Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process.

    Science.gov (United States)

    Smitha, S; Shajesh, P; Mukundan, P; Nair, T D R; Warrier, K G K

    2007-03-15

    Silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica and gelatin as the biopolymer counterpart. The surface modification of the hybrid material has been done with methyltrimethoxysilane leading to the formation of biocompatible hydrophobic silica-gelatin hybrid. Here we are reporting hydrophobic silica-gelatin hybrid and coating precursor for the first time. The hybrid gel has been evaluated for chemical modification, thermal degradation, hydrophobicity, particle size, transparency under the UV-visible region and morphology. FTIR spectroscopy has been used to verify the presence of CH(3) groups which introduce hydrophobicity to the SiO2-MTMS-gelatin hybrids. The hydrophobic property has also been tailored by varying the concentration of methyltrimethoxysilane. Contact angle by Wilhelmy plate method of transparent hydrophobic silica-gelatin coatings has been found to be as high as approximately 95 degrees . Oxidation of the organic group which induces the hydrophobic character occurs at 530 degrees C which indicates that the surface hydrophobicity is retained up to that temperature. Optical transmittance of SiO2-MTMS-gelatin hybrid coatings on glass substrates has been found to be close to 100% which will enable the hybrid for possible optical applications and also for preparation of transparent biocompatible hydrophobic coatings on biological substrates such as leather.

  20. Research on Hybrid Isolation System for Micro-Nano-Fabrication Platform

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2014-06-01

    Full Text Available In order to obtain better vibration suppression effect, this paper designs a semiactive/fully active hybrid isolator by using magnetorheological elastomer (MRE and piezoelectric material. Combined with multimode control scheme, full frequency vibration suppression is achieved. Firstly, series type structure is determined for the hybrid isolator, and the structure of hybrid isolator is designed. Next, the dynamic model of hybrid isolator is derived, the dynamic characteristics measurement for MRE isolator and piezoelectric stack actuator (PSA is established, and parameters such as voltage-displacement coefficient, stiffness and damping constant are identified from the experimental results, respectively. Meanwhile, the switch frequency is determined by experimental results of PSA and MRE isolator. Lastly, influence of the stiffness of MRE, control voltage of PSA, and intermediate mass on hybrid isolator system is analyzed by simulations, and the results show that the hybrid isolator proposed is effective.

  1. Therapeutic Process and Outcome: The Interplay of Research

    Science.gov (United States)

    Campbel, Holly

    2008-01-01

    From Freud through to modern times researchers have aimed to develop a clearer understanding of therapeutic processes and outcomes. Despite this continued interest in the field, the representation of psychotherapy processes and the applicability of research findings and recommendations to the therapeutic field continue to prove difficult.…

  2. Therapeutic Process and Outcome: The Interplay of Research

    Science.gov (United States)

    Campbel, Holly

    2008-01-01

    From Freud through to modern times researchers have aimed to develop a clearer understanding of therapeutic processes and outcomes. Despite this continued interest in the field, the representation of psychotherapy processes and the applicability of research findings and recommendations to the therapeutic field continue to prove difficult.…

  3. Hybrid Rice Research and Development in China and Its New Progress

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Hybrid rice's history and its development up to date are described in the paper. Compared with the conventional rice, hybrid rice can increase grain yield by about 20%. Hybrid rice breeding in China has been advancing along the three-line method, to two-line method, to super high-yielding rice application strategically and its success in higher degree will be seen by the utilization of distant heterosis cooperated with biotechnology.

  4. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  5. High performance adaptive image processing on multi-scale hybrid architectures

    NARCIS (Netherlands)

    Liu, Fangbin

    2015-01-01

    In such an exciting age of information explosion, huge amount of visual data are produced continuously 24 hours, 7 days in both daily life and scientific research. Processing and storage of such a huge amount of data forms big challenges. Use of supercomputers tackles the need-for-speed challenge pa

  6. New Academics and Identities: Research as a Process of "Becoming"

    Science.gov (United States)

    McLeod, Heather; Badenhorst, Cecile

    2014-01-01

    We are new academics involved in the process of becoming researchers. We believe that gathering, reflecting, sharing and producing knowledge are important parts of constructing a strong identity as a researcher that we produce and own rather than being produced by the prevailing academic discourse. We decenter research as a product and bring into…

  7. COMPARATIVE RESEARCHE REGARDING METABOLIC PROFILE OF THE CALIFORNIAN, NEW ZEALAND WHITE, GRAND CHINCHILLA MEAT RABIT BREEDS AND THE F1 NZCH HYBRIDS

    Directory of Open Access Journals (Sweden)

    DANIELA-MARCELA TOBĂ (GOINA

    2013-12-01

    Full Text Available Precious biological characteristics of rabbits make their breeding a very profitable occupation. The rabbit meat, organoleptically same to the white meat, is rich in proteins, but low in fats. Biological researched done in direction to elucidate the biochemical systems that are the basis for organism physiological processes, have revealed that the level in which this process are develop directly influence the rabbits productivity capacity. 60 rabbit’s heads was used as biological material, distributed in: 15 Californian, 15 New Zeeland White, 15 Grand Chinchilla and 15 F1NZCH hybrids obtained from cross-breeding the New Zeeland White as maternal form and Grand Chinchilla as paternal form. Blood was sampled from the rabbit and was biochemical analyzed. The studied indices were: total protein, albumin, urea, uric acid, creatinine, total bilirubine, cholesterol, triglyceride and glucose. The experimental lot formed from F1 NZCH hybrids registered a concentration of 2.1 mg/dl uric acid, and in the other three lots the concentration was under 2 mg/dl. In all four lots, uric acid value was in normal limits. The determined creatinine registered very low values, under 1 mg/dl, at the low limit of reference values. At hybrids from New Zeeland White as maternal form and Grand Chinchilla as paternal form, in equal environmental conditions, the serum biochemical analysis haven’t registered significant differences compared to pure breeds individuals.

  8. The Development and Current State of Translation Process Research

    DEFF Research Database (Denmark)

    Lykke Jakobsen, Arnt

    2014-01-01

    The development and current state of translation process research ch Arnt Lykke Jakobsen Copenhagen Business School lInterest in process-oriented translation studies has been intense for the past almost half a century. Translation process research (TPR) is the label we have used to refer to a spe......The development and current state of translation process research ch Arnt Lykke Jakobsen Copenhagen Business School lInterest in process-oriented translation studies has been intense for the past almost half a century. Translation process research (TPR) is the label we have used to refer...... to a special descriptive, empirical, experimental approach to translation studies based on close, technology-supported observation of translational (micro)behaviour. Fundamentally, TPR is based on software which logs a translator’s keystrokes on a computer keyboard in time in combination with an eyetracker...

  9. Use of adaptive hybrid filtering process in Crohn's disease lesion detection from real capsule endoscopy videos.

    Science.gov (United States)

    Charisis, Vasileios S; Hadjileontiadis, Leontios J

    2016-03-01

    The aim of this Letter is to present a new capsule endoscopy (CE) image analysis scheme for the detection of small bowel ulcers that relate to Crohn's disease. More specifically, this scheme is based on: (i) a hybrid adaptive filtering (HAF) process, that utilises genetic algorithms to the curvelet-based representation of images for efficient extraction of the lesion-related morphological characteristics, (ii) differential lacunarity (DL) analysis for texture feature extraction from the HAF-filtered images and (iii) support vector machines for robust classification performance. For the training of the proposed scheme, namely HAF-DL, an 800-image database was used and the evaluation was based on ten 30-second long endoscopic videos. Experimental results, along with comparison with other related efforts, have shown that the HAF-DL approach evidently outperforms the latter in the field of CE image analysis for automated lesion detection, providing higher classification results. The promising performance of HAF-DL paves the way for a complete computer-aided diagnosis system that could support the physicians' clinical practice.

  10. Solution-processible organic-inorganic hybrid bipolar field-effect transistors

    Science.gov (United States)

    Chae, Gil Jo; Kim, Kang Dae; Cho, Shinuk; Walker, Bright; Seo, Jung Hwa

    2016-04-01

    Organic-inorganic hybrid bipolar field-effect transistors (HBFETs) comprising a layer of p-type organic poly(3-hexylthiophene) (P3HT) separated from a parallel layer of n-type inorganic zinc oxide (ZnO) were demonstrated by solution processing. In order to achieve balanced hole and electron mobilities, we initially optimized the hole-transporting P3HT channel by the addition of the polar non-solvent acetonitrile (AN) to P3HT solutions in chloroform, which induced a selfassembled nano-fibril morphology and an enhancement of hole mobilities. For the electron channel, a wet-chemically-prepared ZnO layer was optimized by thermal annealing. Unipolar P3HT FET with 5% AN exhibited the highest hole mobility of 7.20 × 10-2 cm2V-1s-1 while the highest electron mobility (3.64 × 10-2 cm2V-1s-1) was observed in unipolar ZnO FETs annealed at 200°C. The organic-inorganic HBFETs consisting of the P3HT layer with 5% AN and ZnO annealed at 200°C exhibited well-balanced hole and electron mobilities of 1.94 × 10-2 cm2V-1s-1 and 1.98 × 10-2 cm2V-1s-1, respectively.

  11. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    Science.gov (United States)

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  12. Using Hybrid Decision Tree -Houph Transform Approach For Automatic Bank Check Processing

    Directory of Open Access Journals (Sweden)

    Heba A. Elnemr

    2012-05-01

    Full Text Available One of the first steps in the realization of an automatic system of bank check processing is the automatic classification of checks and extraction of handwritten area. This paper presents a new hybrid method which couple together the statistical color histogram features, the entropy, the energy and the Houph transform to achieve the automatic classification of checks as well as the segmentation and recognition of the various information on the check. The proposed method relies on two stages. First, a two-step classification algorithm is implemented. In the first step, a decision classification tree is built using the entropy, the energy, the logo location and histogram features of colored bank checks. These features are used to classify checks into several groups. Each group may contain one or more type of checks. Therefore, in the second step the bank logo or bank name are matched against its stored template to identify the correct prototype. Second, Hough transform is utilized to detect lines in the classified checks. These lines are used as indicator to the bank check fields. A group of experiments is performed showing that the proposed technique is promising as regards classifying the bank checks and extracting the important fields in that check.

  13. Online Model Learning of Buildings Using Stochastic Hybrid Systems Based on Gaussian Processes

    Directory of Open Access Journals (Sweden)

    Hamzah Abdel-Aziz

    2017-01-01

    Full Text Available Dynamical models are essential for model-based control methodologies which allow smart buildings to operate autonomously in an energy and cost efficient manner. However, buildings have complex thermal dynamics which are affected externally by the environment and internally by thermal loads such as equipment and occupancy. Moreover, the physical parameters of buildings may change over time as the buildings age or due to changes in the buildings’ configuration or structure. In this paper, we introduce an online model learning methodology to identify a nonparametric dynamical model for buildings when the thermal load is latent (i.e., the thermal load cannot be measured. The proposed model is based on stochastic hybrid systems, where the discrete state describes the level of the thermal load and the continuous dynamics represented by Gaussian processes describe the thermal dynamics of the air temperature. We demonstrate the evaluation of the proposed model using two-zone and five-zone buildings. The data for both experiments are generated using the EnergyPlus software. Experimental results show that the proposed model estimates the thermal load level correctly and predicts the thermal behavior with good performance.

  14. Promising sour cherry hybrids (Prunus cerasus L. developed at Fruit Research Institute Čačak

    Directory of Open Access Journals (Sweden)

    Radičević Sanja

    2010-01-01

    Full Text Available At Fruit Research Institute in Čačak, major objectives of the work on breeding new sour cherry (Prunus cerasus L. cultivars are high cropping, large, high-quality fruits and resistance to causal agents of diseases and pests. As a result of the planned hybridization, more than 10,000 hybrid seedlings have been developed from about 40 cultivars within more than 110 parental combinations, among which are 'Čačanski rubin' ('Shasse Morello' x 'Köröser Weichsel' and 'Šumadinka' ('Köröser Weichsel' x 'Heimanns Konserven Weichsel' which have been named and released. Ten-year study of 11 hybrids, selected from the population of about 3,000 hybrid seedlings, gave four hybrids which have been singled out as elite (III/23, III/31, II/40 i XII/57. These hybrids are currently under procedure of being released as new cultivars. The paper presents two-year results of the study of ripening time, pomological properties, biochemical composition of fruits, and field resistance to causal agents of diseases and pests attacking the above named genotypes which were compared to standard cultivar 'Heimanns Konserven Weichsel'. In the studied hybrids, fruit weight, soluble solids content and sugars content were higher than in standard cultivar. In addition, they exhibit substantial field resistance to causal agents of brown rot (Monilinia laxa /Ader et Ruhl./ Honey ex Whetz., cherry leaf spot (Blumeriella jaapii (Rehm. v. Arx., shot-hole (Clasterosporium carpophilum (Lév. Aderh. and cherry fruit fly (Rhagoletis cerasi L. attack.

  15. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume IV. Series systems

    Energy Technology Data Exchange (ETDEWEB)

    Popinski, Z.

    1979-09-30

    In the Hybrid Vehicle Potential Assessment Task three major powertrain configurations (parallel, parallel with flywheel, and series) were studied. An evaluation of the series configuration is presented. The series configuration has the advantage that the engine is mechanically uncoupled from the wheels and can be operated at its best economy point much of the time. The mechanical energy produced by the engine is converted through a generator into electrical energy which is used to drive the motor or charge the batteries. This configuration offers a good degree of flexibility. It has the disadvantage that substantial losses of energy occur since the mechanical energy from the engine passes through several components before being used to drive the wheels. The energy produced by the engine is reduced by the product of efficiencies of components connected in series. Trade-offs involved in the study of the series configuration were directed toward establishing the size of the engine, motor and generator to meet vehicle acceleration performance; determining what level to operate the engine, and determining when to use the battery. These results were then used in the electric range simulation.

  16. Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing

    Science.gov (United States)

    Li, Guangru; Price, Michael; Deschler, Felix

    2016-09-01

    Hybrid lead-halide perovskites have emerged as promising solution-processed semiconductor materials for thin-film optoelectronics. In this review, we discuss current challenges in perovskite LED performance, using thin-film and nano-crystalline perovskite as emitter layers, and look at device performance and stability. Fabrication of electrically pumped, optical-feedback devices with hybrid lead halide perovskites as gain medium is a future challenge, initiated by the demonstration of optically pumped lasing structures with low gain thresholds. We explain the material parameters affecting optical gain in perovskites and discuss the challenges towards electrically pumped perovskite lasers.

  17. Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing

    Directory of Open Access Journals (Sweden)

    Guangru Li

    2016-09-01

    Full Text Available Hybrid lead-halide perovskites have emerged as promising solution-processed semiconductor materials for thin-film optoelectronics. In this review, we discuss current challenges in perovskite LED performance, using thin-film and nano-crystalline perovskite as emitter layers, and look at device performance and stability. Fabrication of electrically pumped, optical-feedback devices with hybrid lead halide perovskites as gain medium is a future challenge, initiated by the demonstration of optically pumped lasing structures with low gain thresholds. We explain the material parameters affecting optical gain in perovskites and discuss the challenges towards electrically pumped perovskite lasers.

  18. Research of the thorium purification at monazite refinement processes

    Science.gov (United States)

    Shagalov, V. V.; Sobolev, V. I.; Turinskaya, M. V.; Malin, A. V.

    2016-06-01

    This paper is aimed to the research of the thorium purification processes at monazite refinement processes. We have investigated different solution containing thorium with different mix of rare-earth elements. It was found that the application of cation resin is well- recommended if we want to reach the highest yields of thorium purification process.

  19. Ammonia removal in the carbon contactor of a hybrid membrane process.

    Science.gov (United States)

    Stoquart, Céline; Servais, Pierre; Barbeau, Benoit

    2014-12-15

    The hybrid membrane process (HMP) coupling powdered activated carbon (PAC) and low-pressure membrane filtration is emerging as a promising new option to remove dissolved contaminants from drinking water. Yet, defining optimal HMP operating conditions has not been confirmed. In this study, ammonia removal occurring in the PAC contactor of an HMP was simulated at lab-scale. Kinetics were monitored using three PAC concentrations (1-5-10 g L(-1)), three PAC ages (0-10-60 days), two temperatures (7-22 °C), in ambient influent condition (100 μg N-NH4 L(-1)) as well as with a simulated peak pollution scenario (1000 μg N-NH4L(-1)). The following conclusions were drawn: i) Using a colonized PAC in the HMP is essential to reach complete ammonia removal, ii) an older PAC offers a higher resilience to temperature decrease as well as lower operating costs; ii) PAC concentration inside the HMP reactor is not a key operating parameter as under the conditions tested, PAC colonization was not limited by the available surface; iii) ammonia flux limited biomass growth and iv) hydraulic retention time was a critical parameter. In the case of a peak pollution, the process was most probably phosphate-limited but a mixed adsorption/nitrification still allowed reaching a 50% ammonia removal. Finally, a kinetic model based on these experiments is proposed to predict ammonia removal occurring in the PAC reactor of the HMP. The model determines the relative importance of the adsorption and biological oxidation of ammonia on colonized PAC, and demonstrates the combined role of nitrification and residual adsorption capacity of colonized PAC.

  20. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.

    Science.gov (United States)

    Uba, Franklin I; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A

    2015-02-21

    Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high T(g) (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower T(g). Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (T(g) = 104 °C) and sealed with a cover plate (T(g) = 75 °C) at a temperature significantly below the T(g) of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.

  1. The Growth Analysis in the Kernel Filling Process of K-Type Hybrid 901 and Its Parent Wheat

    Institute of Scientific and Technical Information of China (English)

    GONG Yue-hua; LIU Ying-zhou; GAO Jun-feng

    2005-01-01

    Using Matlab software, the grain filling process of hybrid wheat 901 and its parents was fitted by Richards equation W = A/(1 +Be-kt in order to study the characteristics of grain filling of the hybrid. The active grain growth period of the hybrid was 6 d longer than that of Shaan 229, and its final grain weight (43.7 g/1000 grains) was higher than that of Shaan229 (36.3 g/1 000 grains). N values of 901 and R205 were both less than 1, and their grain growth was faster in the early filling stage, while slower in the middle-late stage. N value of Shaan 229 was >1, and its growth was slower in the early stage and faster in the middle stage. The period of early stage of 901 was shorter and of middle-late stage was longer. The situation of Shaan 229 was totally reversed. For parents, the father plant R205 was similar to hybrid wheat 901, whereas its mother plant K3314A similar to Shaan 229. It has been found that Richards equation was more suitable for fitting the grain filling process of wheat than Logistic equation.

  2. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  3. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  4. Expert panel reviews of research centers: the site visit process.

    Science.gov (United States)

    Lawrenz, Frances; Thao, Mao; Johnson, Kelli

    2012-08-01

    Site visits are used extensively in a variety of settings within the evaluation community. They are especially common in making summative value decisions about the quality and worth of research programs/centers. However, there has been little empirical research and guidance about how to appropriately conduct evaluative site visits of research centers. We review the processes of two site visit examples using an expert panel review: (1) a process to evaluate four university research centers and (2) a process to review a federally sponsored research center. A set of 14 categories describing the expert panel review process was obtained through content analysis and participant observation. Most categories were addressed differently through the two processes highlighting the need for more research about the most effective processes to use within different contexts. Decisions about how to structure site visits appear to depend on the research context, practical considerations, the level at which the review is being conducted and the intended impact of the report. Future research pertaining to the selection of site visitors, the autonomy of the visitors in data collection and report writing, and the amount and type of information provided would be particularly valuable.

  5. The effect of concentration ratio and type of functional group on synthesis of CNT-ZnO hybrid nanomaterial by an in situ sol-gel process

    Science.gov (United States)

    Hosseini Largani, Sekineh; Akbarzadeh Pasha, Mohammad

    2016-12-01

    In this research, MWCNT-ZnO hybrid nanomaterials were synthesized by a simple sol-gel process using Zn(CH3COO)2·2H2O and functionalized MWCNT with carboxyl(COOH) and hydroxyl(OH) groups. Three different mass ratios of MWCNT:ZnO = 3:1, 1:1 and 1:3 were examined. The prepared nanomaterials were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). Successful growth of MWCNT-ZnO hybrids for both COOH and OH functional groups and all the three mass ratios were obtained. The ZnO nanoparticles attached on the surfaces of CNTs have rather spherical shapes and hexagonal crystal structure. By increasing the concentration of ZnO, the number and average size of ZnO nanoparticles decorated the body of CNTs in hybrid structures increase. By increasing the ZnO precursor, the distribution of ZnO nanoparticles that appeared on the surface of CNTs becomes more uniform. The SEM observation beside EDX analysis revealed that at the same concentration ratio the amount of ZnO loading on the surface of MWCNT-COOH is more than MWCNT-OH. Moreover, the average size of ZnO nanoparticles attached on the surface of COOH functionalized CNTs is relatively smaller than that of OH functionalized ones.

  6. Trends in Psychotherapy Process Research: Samples, Measures, Researchers, and Classic Publications.

    Science.gov (United States)

    Hill, Clara E.; And Others

    1994-01-01

    Examined psychotherapy studies published in "Journal of Counseling Psychology" (JCP) and "Journal of Consulting and Clinical Psychology" (JCCP) between 1978 and 1992. Found that JCP published mostly process, outcome, and analogue research, whereas JCCP published mostly outcome research. Most process and process-outcome studies across journals were…

  7. Hybrid performance measurement of a business process outsourcing - A Malaysian company perspective

    Science.gov (United States)

    Oluyinka, Oludapo Samson; Tamyez, Puteri Fadzline; Kie, Cheng Jack; Freida, Ayodele Ozavize

    2017-05-01

    It's no longer new that customer perceived value for product and services are now greatly influenced by its psychological and social advantages. In order to meet up with the increasing operational cost, response time, quality and innovative capabilities many companies turned their fixed operational cost to a variable cost through outsourcing. Hence, the researcher explored different underlying outsourcing theories and infer that these theories are essential to performance improvement. In this study, the researcher evaluates the performance of a business process outsource company by a combination of lean and agile method. To test the hypotheses, we analyze different variability that a business process company faces, how lean and agile have been used in other industry to address such variability and discuss the result using a predictive multiple regression analysis on data collected from companies in Malaysia. The findings from this study revealed that while each method has its own advantage, a business process outsource company could achieve more (up to 87%) increase in performance level by developing a strategy which focuses on a perfect mixture of lean and agile improvement methods. Secondly, this study shows that performance indicator could be better evaluated with non-metrics variables of the agile method. Thirdly, this study also shows that business process outsourcing company could perform better when they concentrate more on strengthening internal process integration of employees.

  8. SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2014-01-01

    This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications. The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences. This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of an Engineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x 100mm in size The typical power draw of the processor card is 8 to 10W and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor

  9. The National Shipbuilding Research Program. Process Analysis Via Accuracy Control

    Science.gov (United States)

    1985-08-01

    Process Analysis Via Accuracy Control U.S. DEPARTMENT OF TRANSPORTATION Maritime Administration in cooperation with Todd Pacific Shipyards...AUG 1985 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE The National Shipbuilding Research Program Process Analysis Via...lighting, retraining work- ers, or other such approaches. This product of A/C is called process or method analysis. Process analysis involves a

  10. Aligning Web-Based Tools to the Research Process Cycle: A Resource for Collaborative Research Projects

    Science.gov (United States)

    Price, Geoffrey P.; Wright, Vivian H.

    2012-01-01

    Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…

  11. Aligning Web-Based Tools to the Research Process Cycle: A Resource for Collaborative Research Projects

    Science.gov (United States)

    Price, Geoffrey P.; Wright, Vivian H.

    2012-01-01

    Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…

  12. Research of hail impact on aircraft wheel door with lattice hybrid structure

    Science.gov (United States)

    Li, Shengze; Jin, Feng; Zhang, Weihua; Meng, Xuanzhu

    2016-09-01

    Aimed at a long lasting issue of hail impact on aircraft structures and aviation safety due to its high speed, the resistance performance of hail impact on the wheel door of aircraft with lattice hybrid structure is investigated. The proper anti-hail structure can be designed both efficiency and precision based on this work. The dynamic responses of 8 different sandwich plates in diverse impact speed are measured. Smoothed Particle Hydrodynamic (SPH) method is introduced to mimic the speciality of solid-liquid mixture trait of hailstone during the impact process. The deformation and damage degree of upper and lower panel of sandwich plate are analysed. The application range and failure mode for the relevant structure, as well as the energy absorbing ratio between lattice structure and aluminium foam are summarized. Results show that the tetrahedral sandwich plate with aluminium foam core is confirmed the best for absorbing energy. Furthermore, the high absorption characteristics of foam material enhance the capability of the impact resistance for the composition with lattice structure without increasing the structure surface density. The results of study are of worth to provide a reliable basis for reduced weight aircraft wheel door.

  13. Comparative genome research between maize and rice using genomic in situ hybridization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using the genomic DNAs of maize and rice as probes respectively,the homology of maize and rice genomes was assessed by genomic in situ hybridization. When rice genomic DNAs were hybridized to maize, all chromosomes displayed many multiple discrete regions, while each rice chromosome delineated a single consecutive chromosomal region after they were hybridized with maize genomic DNAs. The results indicate that the genomes of maize and rice share high homology, and confirm the proposal that maize and rice are diverged from a common ancestor.

  14. Controlling Atomic, Solid-State and Hybrid Systems for Quantum Information Processing

    Science.gov (United States)

    Gullans, Michael John

    Quantum information science involves the use of precise control over quantum systems to explore new technologies. However, as quantum systems are scaled up they require an ever deeper understanding of many-body physics to achieve the required degree of control. Current experiments are entering a regime which requires active control of a mesoscopic number of coupled quantum systems or quantum bits (qubits). This thesis describes several approaches to this goal and shows how mesoscopic quantum systems can be controlled and utilized for quantum information tasks. The first system we consider is the nuclear spin environment of GaAs double quantum dots containing two electrons. We show that the through appropriate control of dynamic nuclear polarization one can prepare the nuclear spin environment in three distinct collective quantum states which are useful for quantum information processing with electron spin qubits. We then investigate a hybrid system in which an optical lattice is formed in the near field scattering off an array of metallic nanoparticles by utilizing the plasmonic resonance of the nanoparticles. We show that such a system would realize new regimes of dense, ultra-cold quantum matter and can be used to create a quantum network of atoms and plasmons. Finally we investigate quantum nonlinear optical systems. We show that the intrinsic nonlinearity for plasmons in graphene can be large enough to make a quantum gate for single photons. We also consider two nonlinear optical systems based on ultracold gases of atoms. In one case, we demonstrate an all-optical single photon switch using cavity quantum electrodynamics (QED) and slow light. In the second case, we study few photon physics in strongly interacting Rydberg polariton systems, where we demonstrate the existence of two and three photon bound states and study their properties.

  15. Synthesis and characterization of AA 6061- Graphene - SiC hybrid nanocomposites processed through microwave sintering

    Science.gov (United States)

    Jauhari, Siddhartha; Prashantha Kumar, H. G.; Xavior, . M. Anthony

    2016-09-01

    As one of the most essential industrial and engineering materials, Aluminum alloy 6061 have been extensively used in automobile industries and many engineering applications due to its impending properties like low density, good structural rigidity, feasibility to incorporate and enhance the strength by addition of various reinforcing materials. The essential criteria in enhancing the properties without sacrificing the ductility is always challenging in Aluminum and its alloys based composites. In the recent years, enormous research has been carried on ceramic based and carbon based reinforcement materials used in Aluminum metal matrix composites. But the combination of both is never tried so far due to lack of processing methods. The current research work is carried out to process, synthesize and perform the characterization of Al 6061 matrix nanocomposites with Graphene of flake size 10 μm and SiC of particle size 10 pm as reinforcement combinations in various proportions (weight percentage) which are carried out through powder metallurgy (PM) approach. The powders are processed through ultrasonic liquid processing method and the mixtures were ball milled by adding SiC particles followed by uniaxial hot compaction. Thus prepared compacts are sintered (conventional and microwave) and mechanical properties like hardness, density are investigated as a function of Graphene and SiC concentrations (weight fraction). Relevant strengthening mechanism involved in the Al6061 - Graphene -SiC composites in comparison with monolithic Al 6061 alloy were discussed.

  16. Prodiag--a hybrid artificial intelligence based reactor diagnostic system for process faults

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J.; Wei, T.Y.C.; Vitela, J.E. [Argonne National Lab., IL (United States); Applequist, C. A. [Commonwealth Research Corp., Chicago, IL (United States); Chasensky, T.M. [Commonwealth Edison Co., Chicago, IL (United States)

    1996-03-01

    Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL) are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA), project to perform feasibility studies on a novel approach to Artificial Intelligence (Al) based diagnostics for component faults in nuclear power plants. Investigations are being performed in the construction of a first-principles physics-based plant level process diagnostic expert system (ES) and the identification of component-level fault patterns through operating component characteristics using artificial neural networks (ANNs). The purpose of the proof-of-concept project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use thermal hydraulic (T-H) signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance.To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. A full-scope operator training simulator representing the Commonwealth Edison Braidwood nuclear power plant is being used both as the source of development data and as the means to evaluate the advantages of the proposed diagnostic system. This is an ongoing multi-year project and this paper presents the results to date of the CRADA phase.

  17. Neural and Hybrid Modeling: An Alternative Route to Efficiently Predict the Behavior of Biotechnological Processes Aimed at Biofuels Obtainment

    Science.gov (United States)

    Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele

    2014-01-01

    The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved. PMID:24516363

  18. Neural and hybrid modeling: an alternative route to efficiently predict the behavior of biotechnological processes aimed at biofuels obtainment.

    Science.gov (United States)

    Curcio, Stefano; Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele

    2014-01-01

    The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.

  19. Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells.

    Science.gov (United States)

    Wang, Yiling; Luo, Qun; Wu, Na; Wang, Qiankun; Zhu, Hongfei; Chen, Liwei; Li, Yan-Qing; Luo, Liqiang; Ma, Chang-Qi

    2015-04-08

    Solution-processed organic-inorganic hybrids composing of MoO3 nanoparticles and PEDOT:PSS were developed for use in inverted organic solar cells as hole transporting layer (HTL). The hybrid MoO3:PEDOT:PSS inks were prepared by simply mixing PEDOT:PSS aqueous and MoO3 ethanol suspension together. A core-shell structure was proposed in the MoO3:PEDOT:PSS hybrid ink, where PEDOT chains act as the core and MoO3 nanoparticles connected with PSS chains act as the composite shell. The mixing with PEDOT:PSS suppressed the aggregation of MoO3 nanoparticles, which led to a smoother surface. In addition, since the hydrophilic PSS chains were passivated through preferentially connection with MoO3, the stronger adhesion between MoO3 nanoparticles and the photoactive layer improved the film forming ability of the MoO3:PEDOT:PSS hybrid ink. The MoO3:PEDOT:PSS hybrid HTL can therefore be feasibly deposited onto the hydrophobic photoactive polymer layer without any surface treatment. The use of the MoO3:PEDOT:PSS hybrid HTL resulted in the optimized P3HT:PC61BM- and PTB7:PC61BM-based inverted organic solar cells reaching highest power conversion efficiencies of 3.29% and 5.92%, respectively, which were comparable with that of the control devices using thermally evaporated MoO3 HTL (3.05% and 6.01%, respectively). Furthermore, less HTL thickness dependence of device performance was found for the hybrid HTL-based devices, which makes it more compatible with roll-to-roll printing process. In the end, influence of the blend ratio of MoO3 to PEDOT:PSS on photovoltaic performance and device stability was studied carefully, results indicated that the device performance would decrease with the increase of MoO3 blended ratio, whereas the long-term stability was improved.

  20. Northwestern University Facility for Clean Catalytic Process Research

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin Jay [Northwestern University

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  1. FPGA implementation of a hybrid on-line process monitoring in PC based real-time systems

    Directory of Open Access Journals (Sweden)

    Jovanović Bojan

    2011-01-01

    Full Text Available This paper presents one way of FPGA implementation of hybrid (hardware-software based on-line process monitoring in Real-Time systems (RTS. The reasons for RTS monitoring are presented at the beginning. The summary of different RTS monitoring approaches along with its advantages and drawbacks are also exposed. Finally, monitoring module is described in details. Also, FPGA implementation results and some useful monitoring system applications are mentioned.

  2. Natural Language Processing in Game Studies Research: An Overview

    Science.gov (United States)

    Zagal, Jose P.; Tomuro, Noriko; Shepitsen, Andriy

    2012-01-01

    Natural language processing (NLP) is a field of computer science and linguistics devoted to creating computer systems that use human (natural) language as input and/or output. The authors propose that NLP can also be used for game studies research. In this article, the authors provide an overview of NLP and describe some research possibilities…

  3. Relevance as Process: Judgements in the Context of Scholarly Research

    Science.gov (United States)

    Anderson, Theresa Dirndorfer

    2005-01-01

    Introduction: This paper discusses how exploring the research process in-depth and over time contributes to a fuller understanding of interactions with various representations of information. Method. A longitudinal ethnographic study explored decisions made by two informants involved in scholarly research. Relevance assessment and information…

  4. Complexity, Methodology and Method: Crafting a Critical Process of Research

    Science.gov (United States)

    Alhadeff-Jones, Michel

    2013-01-01

    This paper defines a theoretical framework aiming to support the actions and reflections of researchers looking for a "method" in order to critically conceive the complexity of a scientific process of research. First, it starts with a brief overview of the core assumptions framing Morin's "paradigm of complexity" and Le…

  5. Investigative Research, FMECA and PHM Modeling of Hybrid-Electric Distributed Propulsion System Architectures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development with validation and demonstrations...

  6. Understanding the Processes of Translation and Transliteration in Qualitative Research

    OpenAIRE

    Regmi, Krishna; Naidoo, Jennie; Pilkington, Paul

    2010-01-01

    There has been growing interest in the use of qualitative methods in health research amongst health and social care professionals. Good qualitative cross-cultural research analysis is not an easy task as it involves knowledge of different approaches, techniques and command of the appropriate languages. This article aims to discuss and explore some of the key processes and concepts involved in conducting translation and transliteration of qualitative research.

  7. Understanding the Processes of Translation and Transliteration in Qualitative Research

    Directory of Open Access Journals (Sweden)

    Krishna Regmi FHEA, MPH, PGDip, PGCert. PhD Researcher

    2010-03-01

    Full Text Available There has been growing interest in the use of qualitative methods in health research amongst health and social care professionals. Good qualitative cross-cultural research analysis is not an easy task as it involves knowledge of different approaches, techniques and command of the appropriate languages. This article aims to discuss and explore some of the key processes and concepts involved in conducting translation and transliteration of qualitative research.

  8. Hybrid upper surface blown flap propulsive-lift concept for the Quiet Short-Haul Research Aircraft

    Science.gov (United States)

    Cochrane, J. A.; Carros, R. J.

    1975-01-01

    The hybrid upper surface blowing concept consists of wing-mounted turbofan engines with a major portion of the fan exhaust directed over the wing upper surface to provide high levels of propulsive lift, but with a portion of the fan airflow directed over selected portions of the airframe to provide boundary layer control. NASA-sponsored preliminary design studies identified the hybrid upper surface blowing concept as the best propulsive lift concept to be applied to the Quiet Short-Haul Research Aircraft (QSRA) that is planned as a flight facility to conduct flight research at low noise levels, high approach lift coefficients, and steep approaches. Data from NASA in-house and NASA-sponsored small and large-scale wind tunnel tests of various configurations using this concept are presented.

  9. Inkjet-printed zinc-tin-oxide TFTs with a solution-processed hybrid dielectric layer

    Science.gov (United States)

    Jang, Hye-Ryun; Kwack, Young-Jin; Choi, Woon-Seop

    2014-11-01

    Sol-gel TiO2 was synthesized and used as a gate dielectric for oxide thin-film transistors (TFTs). A hybrid gate insulator composed of sol-gel TiO2/thermally-grown SiO2 was applied to the inkjet-printed zinc-tin oxide (ZTO) TFTs for the first time. The electrical properties of an inkjet-printed ZTO TFT with a hybrid gate insulator show a mobility of 0.17 cm2/Vs, an on-to-off current ratio of 5 × 104, a subthreshold slope of 0.8 V/dec, and a threshold voltage of 0.6 V. The hybrid gate insulator for the inkjet-printed ZTO TFT shows a much improved operating voltage and subthreshold slope and a lower mobility compared to the SiO2 gate insulator.

  10. Collaborative Practices in Dance Research: Unpacking the Process

    Science.gov (United States)

    Barr, Sherrie

    2015-01-01

    This essay explores the numerous and diverse ways collaborative practices in dance research can unfold. Strengths and challenges within the collaborative process are discussed as emphasis is given to the multiple perspectives and types of relationships that evolve from and within the process. These core elements offer scholars a rich array of…

  11. Collaborative Practices in Dance Research: Unpacking the Process

    Science.gov (United States)

    Barr, Sherrie

    2015-01-01

    This essay explores the numerous and diverse ways collaborative practices in dance research can unfold. Strengths and challenges within the collaborative process are discussed as emphasis is given to the multiple perspectives and types of relationships that evolve from and within the process. These core elements offer scholars a rich array of…

  12. Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study.

    Science.gov (United States)

    von Stosch, Moritz; Hamelink, Jan-Martijn; Oliveira, Rui

    2016-05-01

    Process understanding is emphasized in the process analytical technology initiative and the quality by design paradigm to be essential for manufacturing of biopharmaceutical products with consistent high quality. A typical approach to developing a process understanding is applying a combination of design of experiments with statistical data analysis. Hybrid semi-parametric modeling is investigated as an alternative method to pure statistical data analysis. The hybrid model framework provides flexibility to select model complexity based on available data and knowledge. Here, a parametric dynamic bioreactor model is integrated with a nonparametric artificial neural network that describes biomass and product formation rates as function of varied fed-batch fermentation conditions for high cell density heterologous protein production with E. coli. Our model can accurately describe biomass growth and product formation across variations in induction temperature, pH and feed rates. The model indicates that while product expression rate is a function of early induction phase conditions, it is negatively impacted as productivity increases. This could correspond with physiological changes due to cytoplasmic product accumulation. Due to the dynamic nature of the model, rational process timing decisions can be made and the impact of temporal variations in process parameters on product formation and process performance can be assessed, which is central for process understanding.

  13. Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures

    Science.gov (United States)

    Mohan Kumar, G.; Ilanchezhiyan, P.; Madhan Kumar, A.; Yuldashev, Sh. U.; Kang, T. W.

    2016-04-01

    A hybrid structure based on p-type polypyrolle (PPy) and n-type aluminum (Al) doped ZnO nanorods was successfully constructed. The effect of Al doping on material properties of wurtzite structured ZnO were studied using several analytical techniques. To establish the desired hybrid structure, pyrrole monomers were polymerized on hydrothermally grown Al doped ZnO nanorods by chemical polymerization. The current⿿voltage characteristics on the fabricated PPy/Al doped ZnO heterostructures were found to exhibit excellent rectifying characteristics under dark and illumination conditions. The obtained results augment the prescribed architecture to be highly suitable for high-sensitivity optoelectronic applications.

  14. Digital signal processing system design LabVIEW-bases hybrid programming

    CERN Document Server

    Kehtarnavaz, Nasser; Peng, Qingzhong

    2008-01-01

    Reflecting LabView's new MathScripting feature, the new edition of this book combines textual and graphical programming to form a hybrid programming approach, enabling a more effective means of building and analyzing DSP systems. The hybrid programming approach allows the use of previously developed textual programming solutions to be integrated into LabVIEW's highly interactive and visual environment, providing an easier and quicker method for building DSP systems.Features * The only DSP laboratory book that combines both textual and graphical programming * 12 lab experime

  15. Research on Business Processes Optimization for Agile Manufacturing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on macroscopic and synthetic approaches, especia lly information entropy approach, the quantification of the flexible degree and order degree of business processes is studied. According to the outcome of abov e analysis, a conceptual model of optimizing business processes is proposed whic h supports to construct dynamic stable business processes. The research above has been applied in project 863/SDDAC-CIMS, and achieved primary benefits.

  16. Research on Framework of Digital Process Planning Platform

    Institute of Scientific and Technical Information of China (English)

    MA Yumin; FAN Liuqun; ZHU Zhihao; ZHANG Hao

    2006-01-01

    Digital factory technology is a research focus in academe and industry, which is an advanced manufacturing technology that is proposed to bridge product development and manufacturing. For applying digital factory technology in machining domain, a concept of digital process planning and its framework are suggested, its components including machining domain knowledge model, machining knowledge base, machining resource base and process planning system are studied. The framework of digital process planning is of value for implementing digital factory technology in machining industry.

  17. In situ biosynthesis of bacterial nanocellulose-CaCO{sub 3} hybrid bionanocomposite: One-step process

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadkazemi, Faranak, E-mail: f_mkazemi@sbu.ac.ir [Department of Cellulose and Paper Technology, Faculty of New Technologies Engineering, Shahid Beheshti University, Science and Research Campus, Zirab, Savadkooh, Mazandaran (Iran, Islamic Republic of); Faria, Marisa; Cordeiro, Nereida [Faculty of Exact Science and Engineering, University of Madeira, Funchal (Portugal)

    2016-08-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO{sub 3}) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO{sub 3} was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO{sub 3} hybrid bionanocomposites production, structure and properties. The BNC/CaCO{sub 3} biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO{sub 3} content incorporation. The CaCO{sub 3} was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO{sub 3} hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. - Graphical Abstract: Display Omitted - Highlights: • BNC/CaCO{sub 3} hybrid bionanocomposites were produced using in situ biosynthesis process. • Ethanol and culture medium play an important role in the production and properties. • Z-BNC/CaCO{sub 3} bionanocomposites revealed higher O/C ratio and amphoteric surface character. • CaCO{sub 3} incorporated into the BNC decreased crystallinity.

  18. Design and Statistics in Quantitative Translation (Process) Research

    DEFF Research Database (Denmark)

    Balling, Laura Winther; Hvelplund, Kristian Tangsgaard

    2015-01-01

    is unfamiliar. In this article, we attempt to mitigate these problems by outlining our approach to good quantitative research, all the way from research questions and study design to data preparation and statistics. We concentrate especially on the nature of the variables involved, both in terms of their scale......Traditionally, translation research has been qualitative, but quantitative research is becoming increasingly important, especially in translation process research but also in other areas of translation studies. This poses problems to many translation scholars since this way of thinking...... and their role in the design; this has implications for both design and choice of statistics. Although we focus on quantitative research, we also argue that such research should be supplemented with qualitative analyses and considerations of the translation product....

  19. The Role of Hybrid Make-to-Stock (MTS) - Make-to-Order (MTO) and Economic Order Quantity (EOQ) Inventory Control Models in Food and Beverage Processing Industry

    Science.gov (United States)

    Najhan Mohd Nagib, Ahmad; Naufal Adnan, Ahmad; Ismail, Azianti; Halim, Nurul Hayati Abdul; Syuhadah Khusaini, Nurul

    2016-11-01

    The inventory model had been utilized since the early 1900s. The implementation of the inventory management model is generally to ensure that an organisation is able to fulfil customer's demand at the lowest possible cost to improve profitability. This paper focuses on reviewing previous published papers regarding inventory control model mainly in the food and beverage processing industry. The author discusses four inventory models, which are the make-to-stock (MTS), make-to-order (MTO), economic order quantity (EOQ), and hybrid of MTS-MTO models. The issues raised by the researchers on the above techniques as well as the elements need to be considered upon selection have been discussed in this paper. The main objective of the study is to highlight the important role played by these inventory control models in the food and beverage processing industry.

  20. Experimental comparison of the MIG, friction stir welding, cold metal transfer and hybrid laser-MIG processes for AA 6005-T6 aluminium alloy

    Science.gov (United States)

    Caruso, Serafino; Sgambitterra, Emanuele; Rinaldi, Sergio; Gallone, Antonello; Viscido, Lucio; Filice, Luigino; Umbrello, Domenico

    2016-10-01

    In this study, the mechanical properties of welded joints of AA 6005-T6 aluminum alloy obtained with hybrid laser-MIG and cold metal transfer (CMT) welding were analyzed. The performance of hybrid laser-MIG and CMT welded joints were identified using tensile, bending, shear and fatigue life tests. Taking into account the process conditions and requirements, hybrid laser-MIG and CMT welding processes were compared with friction stir welding (FSW) and conventional metal inert gas (MIG) welding processes, shown in a previous work, to understand the advantages and disadvantages of the processes for welding applications of studied Al alloy. Better tensile, bending and shear strength and fatigue life behavior were obtained with hybrid laser-MIG and FSW welded joints compared with conventional MIG processes.

  1. A Hybrid ICA-SVM Approach for Determining the Quality Variables at Fault in a Multivariate Process

    Directory of Open Access Journals (Sweden)

    Yuehjen E. Shao

    2012-01-01

    Full Text Available The monitoring of a multivariate process with the use of multivariate statistical process control (MSPC charts has received considerable attention. However, in practice, the use of MSPC chart typically encounters a difficulty. This difficult involves which quality variable or which set of the quality variables is responsible for the generation of the signal. This study proposes a hybrid scheme which is composed of independent component analysis (ICA and support vector machine (SVM to determine the fault quality variables when a step-change disturbance existed in a multivariate process. The proposed hybrid ICA-SVM scheme initially applies ICA to the Hotelling T2 MSPC chart to generate independent components (ICs. The hidden information of the fault quality variables can be identified in these ICs. The ICs are then served as the input variables of the classifier SVM for performing the classification process. The performance of various process designs is investigated and compared with the typical classification method. Using the proposed approach, the fault quality variables for a multivariate process can be accurately and reliably determined.

  2. iMAGE cloud: medical image processing as a service for regional healthcare in a hybrid cloud environment.

    Science.gov (United States)

    Liu, Li; Chen, Weiping; Nie, Min; Zhang, Fengjuan; Wang, Yu; He, Ailing; Wang, Xiaonan; Yan, Gen

    2016-11-01

    To handle the emergence of the regional healthcare ecosystem, physicians and surgeons in various departments and healthcare institutions must process medical images securely, conveniently, and efficiently, and must integrate them with electronic medical records (EMRs). In this manuscript, we propose a software as a service (SaaS) cloud called the iMAGE cloud. A three-layer hybrid cloud was created to provide medical image processing services in the smart city of Wuxi, China, in April 2015. In the first step, medical images and EMR data were received and integrated via the hybrid regional healthcare network. Then, traditional and advanced image processing functions were proposed and computed in a unified manner in the high-performance cloud units. Finally, the image processing results were delivered to regional users using the virtual desktop infrastructure (VDI) technology. Security infrastructure was also taken into consideration. Integrated information query and many advanced medical image processing functions-such as coronary extraction, pulmonary reconstruction, vascular extraction, intelligent detection of pulmonary nodules, image fusion, and 3D printing-were available to local physicians and surgeons in various departments and healthcare institutions. Implementation results indicate that the iMAGE cloud can provide convenient, efficient, compatible, and secure medical image processing services in regional healthcare networks. The iMAGE cloud has been proven to be valuable in applications in the regional healthcare system, and it could have a promising future in the healthcare system worldwide.

  3. Hybrid Statistical Testing for Nuclear Material Accounting Data and/or Process Monitoring Data

    Energy Technology Data Exchange (ETDEWEB)

    Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hamada, Michael Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burr, Thomas Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-14

    The two tests employed in the hybrid testing scheme are Page’s cumulative sums for all streams within a Balance Period (maximum of the maximums and average of the maximums) and Crosier’s multivariate cumulative sum applied to incremental cumulative sums across Balance Periods. The role of residuals for both kinds of data is discussed.

  4. Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process

    NARCIS (Netherlands)

    Agrawal, Garima; Schuerings, Marco Philipp; van Rijn, Patrick; Pich, Andrij

    2013-01-01

    A newly developed N-vinylcaprolactam/acetoacetoxyethyl methacrylate/acrylic acid based microgel displays in situ reductive reactivity towards HAuCl4, forming hybrid polymer-gold nanostructures at ambient temperature without additional reducing agents. The colloidal gold nanostructure is selectively

  5. One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS

    Science.gov (United States)

    Satheeshkumar, Elumalai; Makaryan, Taron; Melikyan, Armen; Minassian, Hayk; Gogotsi, Yury; Yoshimura, Masahiro

    2016-08-01

    We report on one-step hybridization of silver, gold and palladium nanoparticles from solution onto exfoliated two-dimensional (2D) Ti3C2 titanium carbide (MXene) nanosheets. The produced hybrid materials can be used as substrates for surface-enhanced Raman spectroscopy (SERS). An approximate analytical approach is also developed for the calculation of the surface plasmon resonance (SPR) frequency of nanoparticles immersed in a medium, near the interface of two dielectric media with different dielectric constants. We obtained a good match with the experimental data for SPR wavelengths, 440 nm and 558 nm, respectively for silver and gold nanoparticles. In the case of palladium, our calculated SPR wavelength for the planar geometry was 160 nm, demonstrating that non-spherical palladium nanoparticles coupled with 2D MXene yield a broad, significanlty red-shifted SPR band with a peak at 230 nm. We propose a possible mechanism of the plasmonic hybridization of nanoparticles with MXene. The as-prepared noble metal nanoparticles on MXene show a highly sensitive SERS detection of methylene blue (MB) with calculated enhancement factors on the order of 105. These findings open a pathway for extending visible-range SERS applications of novel 2D hybrid materials in sensors, catalysis, and biomedical applications.

  6. Solution processeable organic-inorganic hybrids based on pyrene functionalized mixed cubic silsesquioxanes as emitters in OLEDs

    KAUST Repository

    Yang, Xiaohui

    2012-01-01

    Traditional materials for application in organic light emitting diodes (OLEDs) are primarily based on small molecules and polymers, with much fewer examples of intermediate molecular weight materials. Our interest lies in this intermediate molecular weight range, specifically in hybrids based on 3-dimensional silsesquioxane (SSQ) cores that represents a new class of versatile materials for application in solution processable OLEDs. We report here various SSQ based hybrids that are easily prepared in one high-yield step from the Heck coupling of commercially available 1-bromopyrene, and 1-bromo-4-heptylbenzene with octavinyl-T8-SSQ, and a mixture of octavinyl-T8-, decavinyl-T10- and dodecavinyl-T12-SSQ. The resulting materials offer numerous advantages for OLEDs including amorphous properties, high-glass-transition temperatures (T g), low polydispersity, solubility in common solvents, and high purity via column chromatography. Solution processed OLEDs prepared from the SSQ hybrids provide sky-blue emission with external quantum efficiencies and current efficiencies of 3.64% and 9.56 cd A -1 respectively. © 2012 The Royal Society of Chemistry.

  7. Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time.

    Science.gov (United States)

    Das, Saptarshi; Pan, Indranil; Das, Shantanu

    2013-07-01

    Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Reclaiming Queerness: Self, Identity, and the Research Process

    Directory of Open Access Journals (Sweden)

    Janna Marie Jackson

    2007-01-01

    Full Text Available This article explores some of the challenges and benefits of doing a dissertation with participants from a population to which I belong and on a topic some consider controversial, that of gay and lesbian educators. I describe the homophobia I experienced and how that homophobia affected my choice of topic, the research process, and my job prospects. Each step of this research journey presented me with a variety of delicate decisions. I discuss my thought processes in resolving these dilemmas and some of the practical solutions I used to address a variety of difficulties. Although written specifically about doing research with gay and lesbian teachers, many of the lessons I learned throughout this process can be applied to a range of research situations. For example, many researchers share cultural backgrounds with their participants. This presents both the opportunity to establish rapport with participants quickly but also the danger of the researcher reading his or her own experiences into the data. I describe some of the ways I addressed this issue as well as others commonly faced by those doing dissertations. I conclude that doing a dissertation on a topic I feel passionately about sustained me throughout the dissertation process.

  9. Problem-centric Process for Research-based Learning

    Directory of Open Access Journals (Sweden)

    Khaled Shaban

    2015-05-01

    Full Text Available Research-based Learning (RbL extends Inquiry and Project-based Learning by facilitating an early stage exposure and training for future scientists through authentic research activities. In this paper, an iterative problem-centric RbL process is introduced, and its activities and management aspects are described. The process helps implement course-integrated research systematically and practically. Furthermore, the novel process follows constructivist methods in incorporating inquiry, scaffolding, open-ended projects, as well as a goal oriented learning approach. The RbL process is adopted in two advanced computing courses, at two different universities: a leading comprehensive Western university and a new university in a developing country. The paper summarizes new lessons learned in these rewarding experiences. In particular, the instructor should help students start their projects, by providing them with previous work or data and pre-approving the papers to review by students. He should also maintain a continuous feedback to and from students to keep the students motivated and help the instructor refine and adapt the RBL process. We note that research collaborators can help students in identifying the research topics early. The paper also shows how to alleviate difficulties that may be encountered by students who find the novel approach demanding, and consequently it also helps the instructors better manage the course contents.

  10. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  11. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.

    Science.gov (United States)

    Huang, C-L; Chen, C-C; Lin, C-Y; Liu, W-T

    2009-01-01

    Two hydrogen-producing continuous flow stirred tank reactors (CSTRs) fed respectively with glucose and sucrose were investigated by polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH). The substrate was fed in a continuous mode decreased from hydraulic retention time (HRT) 10 hours to 6, 5, 4, 3, and 2 hours. Quantitative fluorescent in-situ hybridization (FISH) observations further demonstrated that two morphotypes of bacteria dominated both microbial communities. One was long rod bacteria which can be targeted either by Chis150 probe designed to hybridize the gram positive low G + C bacteria or the specific oligonucleotide probe Lg10-6. The probe Lg10-6, affiliated with Clostridium pasteurianum, was designed and then checked with other reference organisms. The other type, unknown group, which cannot be detected by Chis150 was curved rod bacteria. Notably, the population ratios of the two predominant groups reflected the different operational performance of the two reactors, such as hydrogen producing rates, substrate turnover rates and metabolites compositions. Therefore, a competition mode of the two dominant bacteria groups was hypothesized. In the study, 16S rRNA-based gene library of hydrogen-producing microbial communities was established. The efficiency of hydrogen yields was correlated with substrates (glucose or sucrose), HRT, metabolites compositions (acetate, propionate, butyrate and ethanol), thermal pre-treatment (seed biomass was heated at 100 degrees C for 45 minutes), and microbial communities in the bioreactor, not sludge sources (municipal sewage sludge, alcohol-processing sludge, or bean-processing sludge). The designed specific oligonucleotide probe Lg10-6 also provides us a useful and fast molecular tool to screen hydrogen-producing microbial communities in the future research.

  12. Research on Three Dimensional Computer Assistance Assembly Process Design System

    Institute of Scientific and Technical Information of China (English)

    HOU Wenjun; YAN Yaoqi; DUAN Wenjia; SUN Hanxu

    2006-01-01

    The computer aided process planning will certainly play a significant role in the success of enterprise informationization. 3-dimensional design will promote Tri-dimensional process planning. This article analysis nowadays situation and problems of assembly process planning, gives a 3-dimensional computer aided process planning system (3D-VAPP), and researches on the product information extraction, assembly sequence and path planning in visual interactive assembly process design, dynamic emulation of assembly and process verification, assembly animation outputs and automatic exploding view generation, interactive craft filling and craft knowledge management, etc. It also gives a multi-layer collision detect and multi-perspective automatic camera switching algorithm. Experiments were done to validate the feasibility of such technology and algorithm, which established the foundation of tri-dimensional computer aided process planning.

  13. Research on cognitive, social and cultural processes of written communication.

    Science.gov (United States)

    Arroyo González, Rosario; Salvador Mata, Francisco

    2009-08-01

    This article compiles the investigations carried out by a Research Group of the University of Granada, Spain. Its different projects on writing's cognitive social and cultural processes have been supported by the Spanish Government. This line of research joined together linguistic, psychological, social and cultural contributions to the development of writing from the 1970s. Currently, this line of research develops in collaboration with other European Universities: (a) Interuniversity Centre for Research On Cognitive Processing in Natural and Artificial Systems (ECONA), "La Sapienza" University of Rome (Italy); (b) Anadolu University, (Eskisehir, Turkey); (c) Coimbra University (Portugal); (d) University of Zaragoza (Spain); (e) the Institute of Education of the University of London (United Kingdom). The aforementioned collaboration is materializing into projects like the International Master on Multilingual Writing: Cognitive, Intercultural and Technological Processes of Written Communication ( http://www.multilingualwriting.com ) and the International Congress: Writing in the twenty-first Century: Cognition, Multilinguisim and Technologies, held in Granada ( http://www.asprogrades.org ). This research line is focussed on the development of strategies in writing development, basic to train twenty-first century societies' citizens. In these societies, participation in production media, social exchange and the development of multilingual written communication skills through new computer technologies spread multicultural values. In order to fulfil the social exigencies, it is needed to have the collaboration of research groups for designing and applying international research projects.

  14. Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation

    Science.gov (United States)

    Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.

    2004-01-01

    A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.

  15. Consent Processes for Mobile App Mediated Research: Systematic Review.

    Science.gov (United States)

    Moore, Sarah; Tassé, Anne-Marie; Thorogood, Adrian; Winship, Ingrid; Zawati, Ma'n; Doerr, Megan

    2017-08-30

    Since the launch of ResearchKit on the iOS platform in March 2015 and ResearchStack on the Android platform in June 2016, many academic and commercial institutions around the world have adapted these frameworks to develop mobile app-based research studies. These studies cover a wide variety of subject areas including melanoma, cardiomyopathy, and autism. Additionally, these app-based studies target a variety of participant populations, including children and pregnant women. The aim of this review was to document the variety of self-administered remote informed consent processes used in app-based research studies available between May and September 2016. Remote consent is defined as any consenting process with zero in-person steps, when a participant is able to join a study without ever seeing a member of the research team. This type of review has not been previously conducted. The research community would benefit from a rigorous interrogation of the types of consent taken as part of the seismic shift to entirely mobile meditated research studies. This review examines both the process of information giving and specific content shared, with special attention to data privacy, aggregation, and sharing. Consistency across some elements of the app-based consent processes was found; for example, informing participants about how data will be curated from the phone. Variations in other elements were identified; for example, where specific information is shared and the level of detail disclosed. Additionally, several novel elements present in eConsent not typically seen in traditional consent for research were highlighted. This review advocates the importance of participant informedness in a novel and largely unregulated research setting.

  16. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.

    Science.gov (United States)

    De Angelis, Filippo

    2014-11-18

    CONSPECTUS: Over the last 2 decades, researchers have invested enormous research effort into hybrid/organic photovoltaics, leading to the recent launch of the first commercial products that use this technology. Dye-sensitized solar cells (DSCs) have shown clear advantages over competing technologies. The top certified efficiency of DSCs exceeds 11%, and the laboratory-cell efficiency is greater than 13%. In 2012, the first reports of high efficiency solid-state DSCs based on organohalide lead perovskites completely revolutionized the field. These materials are used as light absorbers in DSCs and as light-harvesting materials and electron conductors in meso-superstructured and flat heterojunction solar cells and show certified efficiencies that exceed 17%. To effectively compete with conventional photovoltaics, emerging technologies such as DSCs need to achieve higher efficiency and stability, while maintaining low production costs. Many of the advances in the DSC field have relied on the computational design and screening of new materials, with researchers examining material characteristics that can improve device performance or stability. Suitable modeling strategies allow researchers to observe the otherwise inaccessible but crucial heterointerfaces that control the operation of DSCs, offering the opportunity to develop new and more efficient materials and optimize processes. In this Account, we present a unified view of recent computational modeling research examining DSCs, illustrating how the principles and simulation tools used for these systems can also be adapted to study the emerging field of perovskite solar cells. Researchers have widely applied first-principles modeling to the DSC field and, more recently, to perovskite-based solar cells. DFT/TDDFT methods provide the basic framework to describe most of the desired materials and interfacial properties, and Car-Parrinello molecular dynamics allow researchers the further ability to sample local minima and

  17. Experiencing the Full Research Process at Sea Education Association (SEA)

    Science.gov (United States)

    Harris, S. E.; Joyce, P.; Jaroslow, G.; Graziano, L.; Lea, C.; Witting, J.; Bower, A.

    2003-12-01

    While some undergraduate research experiences include only a small piece of the research process, students attending Sea Education Association's SEA Semester complete all aspects of oceanographic research in an intensive 12 week program that earns a full semester's credit. In the first half of the program, students read and discuss background literature on a subject, ask questions, pose hypotheses, and develop a written research proposal, which they defend orally. The second half of the course takes place at sea on one of SEA's state-of-the-art oceanographic research vessels where students carry out their sampling plans, analyze samples and data, write a final paper and present their results before the vessel reaches port, completing the course. At sea, students participate in sample collection and analysis for all student projects in addition to learning the general oceanography along their cruise track. This structure exposes students to the realities of research from start to finish and allows them to take full ownership of their projects. In addition to honing writing, public speaking, and problem-solving skills, students learn that research requires dedication, flexibility, and creativity, particularly when their results are unexpected or negate their hypothesis. SEA's undergraduate research program has been developing since 1971. Over that time, SEA has collected an extensive historical oceanographic database in the western Atlantic and Caribbean, plus Pacific data since 2001. This database is available to both students and outside research scientists. Collaborations with scientists outside SEA enhance the student experience and help facilitate oceanographic research by providing "ship-of-opportunity" sampling in remote locations. SEA Semester provides an excellent model for undergraduate research experiences with over 5000 alumni, about 30% of whom enter graduate school. About half the students in SEA's undergraduate programs are non-science majors. Although

  18. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    Energy Technology Data Exchange (ETDEWEB)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  19. Research on performance of hybrid organic dyes-sensitized solar cell

    Institute of Scientific and Technical Information of China (English)

    Lei Sun; Weizheng Yuan; Dayong Qiao

    2006-01-01

    The hybrid sensitizer rhodamine B and coumarin or eosin and coumarin is used to sensitize nanocrystalline porous films. Absorption of the nanocrystalline photovoltaic cell (NPC) is improved in visible light. The performance of these cells is more effective than that of cells sensitized only by sensitizer rhodamine B or eosin. In the simulative solar light, cell sensitized by hybrid sensitizer rhodamine B and coumarin can get open circuit voltage (Voc) of 550 mV and short circuit current (Isc) of 0.1375 mA/cm2.

  20. Research on Fuel Consumption of Hybrid Bulldozer under Typical Duty Cycle

    Science.gov (United States)

    Song, Qiang; Wang, Wen-Jun; Jia, Chao; Yao, You-Liang; Wang, Sheng-Bo

    The hybrid drive bulldozer adopts a dual-motor independent drive system with engine-generator assembly as its power source. The mathematical model of the whole system is constructed on the software platform of MATLAB/Simulink. And then according to the velocity data gained from a real test experiment, a typical duty cycle is build up. Finally the fuel consumption of the bulldozer is calculated under this duty-cycle. Simulation results show that, compared with the traditional mechanical one, the hybrid electric drive system can save fuel up to 16% and therefore indicates great potential for lifting up fuel economy.

  1. Postgraduate Students’ Perception of Creativity in the Research Process

    Directory of Open Access Journals (Sweden)

    Mojca Juriševič

    2011-01-01

    Full Text Available The purpose of the research was, with the aid of a short questionnaire, to determine how postgraduate students (N = 32perceive the opportunities for creative research in general, and how they perceive creativity in the preparation of their own research work in particular. Descriptive analysis shows that students (1 perceive a positive study-research climate that encourages creative processes (independence, motivation, intellectual challenges, (2 judge that researchers have numerous opportunities for creative work in the various phases of research and (3 evaluate themselves as highly creative individuals in everyday life. Students perceive themselves as being at their most creative in the definition of the research problem, which they mainly identify with the use of personal strategies (work experience and take various lengths of time to form, typically up to one year. The most difficult problem in this regard is represented by giving meaning to the problem (breadth, depth, specificity, application. Amongst the perceived encouragement with which mentors motivate students for creative research the most frequent is less directive general guidance in study and research.On the basis of the presented findings, guidelines are suggested for the more effective encouragement of creative research in postgraduate students.

  2. APPLICATION OF FUZZY ANALYTIC HIERARCHY PROCESS TO BUILDING RESEARCH TEAMS

    Directory of Open Access Journals (Sweden)

    Karol DĄBROWSKI

    2016-01-01

    Full Text Available Building teams has a fundamental impact for execution of research and development projects. The teams appointed for the needs of given projects are based on individuals from both inside and outside of the organization. Knowledge is not only a product available on the market but also an intangible resource affecting their internal and external processes. Thus it is vitally important for businesses and scientific research facilities to effectively manage knowledge within project teams. The article presents a proposal to use Fuzzy AHP (Analytic Hierarchy Process and ANFIS (Adaptive Neuro Fuzzy Inference System methods in working groups building for R&D projects on the basis of employees skills.

  3. Researching on the process of remote sensing video imagery

    Science.gov (United States)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  4. Autoethnography and Psychodynamics in Interrelational Spaces of the Research Process

    Directory of Open Access Journals (Sweden)

    Birgitte Hansson

    2012-12-01

    Full Text Available This article takes the stance that the subjectivity of the researcher is an integral part of the research process. It should be studied as a key to understanding the interrelational processes of meaning in an interview situation. The article demonstrates how the subjectivity of the researcher can be made accessible methodologically and methodically by combining a psychodynamic approach with an autoethnographic approach. The methodical question is therefore how the researcher can conduct introspection and at the same time reflect upon and analyse the central object of investigation. The approach is psychoanalytically informed, but autoethnography became the actual vehicle for moving beyond reflections on the psychodynamics represented in the texts. The researcher ventured into an introspection of not only the texts, but also her own feelings, fantasies, and bodily experiences at the time of the interview and also when bringing the data into new situations. The abstract reflections after the interview situation were left for a while, and instead a more experiential and sensual/bodily understanding appeared, based on narratives, feelings, and reflections from the research field. In doing so, the affective and experiential personal process became an important step in the interpretation.

  5. Youth researching youth: benefits, limitations and ethical considerations within a participatory research process

    Directory of Open Access Journals (Sweden)

    Cynthia G. Jardine

    2012-05-01

    Full Text Available Objectives. To examine the benefits, limitations and ethical issues associated with conducting participatory research on tobacco use using youth to research other youth. Study design. Community-based participatory research. Methods. Research on tobacco use was conducted with students in the K’àlemì Dene School and Kaw Tay Whee School in the Northwest Territories, Canada, using PhotoVoice. The Grade 9–12 students acted as researchers. Researcher reflections and observations were assessed using “member checking,” whereby students, teachers and community partners could agree or disagree with the researcher's interpretation. The students and teachers were further asked informally to share their own reflections and observations on this process. Results and conclusions. Using youth to research other youth within a participatory research framework had many benefits for the quality of the research, the youth researchers and the community. The research was perceived by the researchers and participants to be more valid and credible. The approach was more appropriate for the students, and the youth researchers gained valuable research experience and a sense of ownership of both the research process and results. Viewing smoking through their children's eyes was seen by the community to be a powerful and effective means of creating awareness of the community environment. Limitations of the approach were residual response bias of participants, the short period of time to conduct the research and failure to fully explore student motivations to smoke or not to smoke. Ethical considerations included conducting research with minors, difficulties in obtaining written parental consent, decisions on cameras (disposable versus digital and representation of all participants in the final research product.

  6. Youth researching youth: benefits, limitations and ethical considerations within a participatory research process.

    Science.gov (United States)

    Jardine, Cynthia G; James, Angela

    2012-05-08

    To examine the benefits, limitations and ethical issues associated with conducting participatory research on tobacco use using youth to research other youth. Community-based participatory research. Research on tobacco use was conducted with students in the K'àlemì Dene School and Kaw Tay Whee School in the Northwest Territories, Canada, using PhotoVoice. The Grade 9-12 students acted as researchers. Researcher reflections and observations were assessed using "member checking," whereby students, teachers and community partners could agree or disagree with the researcher's interpretation. The students and teachers were further asked informally to share their own reflections and observations on this process. Using youth to research other youth within a participatory research framework had many benefits for the quality of the research, the youth researchers and the community. The research was perceived by the researchers and participants to be more valid and credible. The approach was more appropriate for the students, and the youth researchers gained valuable research experience and a sense of ownership of both the research process and results. Viewing smoking through their children's eyes was seen by the community to be a powerful and effective means of creating awareness of the community environment. Limitations of the approach were residual response bias of participants, the short period of time to conduct the research and failure to fully explore student motivations to smoke or not to smoke. Ethical considerations included conducting research with minors, difficulties in obtaining written parental consent, decisions on cameras (disposable versus digital) and representation of all participants in the final research product.

  7. Processing, structure and flexural strength of CNT and carbon fibre reinforced, epoxy-matrix hybrid composite

    Indian Academy of Sciences (India)

    K Chandra Shekar; M Sai Priya; P K Subramanian; Anil Kumar; B Anjaneya Prasad; N Eswara Prasad

    2014-05-01

    Advanced materials such as continuous fibre-reinforced polymer matrix composites offer significant enhancements in variety of properties, as compared to their bulk, monolithic counterparts. These properties include primarily the tensile stress, flexural stress and fracture parameters. However, till date, there are hardly any scientific studies reported on carbon fibre (Cf) and carbon nanotube (CNT) reinforced hybrid epoxy matrix composites (unidirectional). The present work is an attempt to bring out the flexural strength properties along with a detailed investigation in the synthesis of reinforced hybrid composite. In this present study, the importance of alignment of fibre is comprehensively evaluated and reported. The results obtained are discussed in terms of material characteristics, microstructure and mode of failure under flexural (3-point bend) loading. The study reveals the material exhibiting exceptionally high strength values and declaring itself as a material with high strength to weight ratio when compared to other competing polymer matrix composites (PMCs); as a novel structural material for aeronautical and aerospace applications.

  8. Laser-ablated titania nanoparticles for aqueous processed hybrid solar cells

    Science.gov (United States)

    Körstgens, V.; Pröller, S.; Buchmann, T.; Moseguí González, D.; Song, L.; Yao, Y.; Wang, W.; Werhahn, J.; Santoro, G.; Roth, S. V.; Iglev, H.; Kienberger, R.; Müller-Buschbaum, P.

    2015-02-01

    Titania nanoparticles are produced by laser ablation in liquid in order to initiate functionalization of titania with the polymer for the active layer. By combining these titania nanoparticles and water-soluble poly[3-(potassium-6-hexanoate)thiophene-2,5-diyl] (P3P6T) hybrid solar cells are realized.Titania nanoparticles are produced by laser ablation in liquid in order to initiate functionalization of titania with the polymer for the active layer. By combining these titania nanoparticles and water-soluble poly[3-(potassium-6-hexanoate)thiophene-2,5-diyl] (P3P6T) hybrid solar cells are realized. Electronic supplementary information (ESI) available: Full scheme of the production of solar cells, additional spectra and details of the measurement techniques. See DOI: 10.1039/c4nr06782g

  9. Hybrid ion-exchange membranes for fuel cells and separation processes

    Science.gov (United States)

    Fernández-Carretero, F. J.; Compañ, V.; Riande, E.

    This work reports the preparation and characterization of hybrid membranes cast from dispersions of inorganic fillers in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene solutions. Silica gel, SBA-15 and sepiolite, all of them functionalized with phenylsulfonic acid groups, were used as fillers. For comparative purposes, the performance of composite membranes cast from dispersions of functionalized inorganic fillers in Nafion ® solutions was investigated. Inspection of the texture of the membranes by using SEM techniques shows that the fillers are better dispersed in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene than in Nafion ®. The value of the water uptake for the membranes prepared from the former polyelectrolyte is in most cases at least three times that measured for hybrid Nafion ® membranes. The conductivity of the membranes was measured at 80 °C by impedance spectroscopy obtaining values of 3.44, 6.90 and 3.54 S m -1 for the hybrid membranes based on the triblock copolymer containing functionalized silica gel, SBA-15 and sepiolite fillers, respectively. These results compare very favourably with those obtained at 80 °C for Nafion ® hybrid membranes containing silica gel, SBA-15 and sepiolite, all of them fuctionalized with phenylsulfonic acid groups, whose conductivities are, 2.84, 6.75 and 3.31 S m -1, respectively. Resistance measurements carried out under controlled humidity conditions show that the conductivity of sulfonated triblock copolymer membranes containing functionalized SBA-15 filler undergoes a rather sharp increase when they are conditioned under an atmosphere of 75%, or larger, relative humidity.

  10. Hybrid OPC modeling with SEM contour technique for 10nm node process

    Science.gov (United States)

    Hitomi, Keiichiro; Halle, Scott; Miller, Marshal; Graur, Ioana; Saulnier, Nicole; Dunn, Derren; Okai, Nobuhiro; Hotta, Shoji; Yamaguchi, Atsuko; Komuro, Hitoshi; Ishimoto, Toru; Koshihara, Shunsuke; Hojo, Yutaka

    2014-03-01

    Hybrid OPC modeling is investigated using both CDs from 1D and simple 2D structures and contours extracted from complex 2D structures, which are obtained by a Critical Dimension-Scanning Electron Microscope (CD-SEM). Recent studies have addressed some of key issues needed for the implementation of contour extraction, including an edge detection algorithm consistent with conventional CD measurements, contour averaging and contour alignment. Firstly, pattern contours obtained from CD-SEM images were used to complement traditional site driven CD metrology for the calibration of OPC models for both metal and contact layers of 10 nm-node logic device, developed in Albany Nano-Tech. The accuracy of hybrid OPC model was compared with that of conventional OPC model, which was created with only CD data. Accuracy of the model, defined as total error root-mean-square (RMS), was improved by 23% with the use of hybrid OPC modeling for contact layer and 18% for metal layer, respectively. Pattern specific benefit of hybrid modeling was also examined. Resist shrink correction was applied to contours extracted from CD-SEM images in order to improve accuracy of the contours, and shrink corrected contours were used for OPC modeling. The accuracy of OPC model with shrink correction was compared with that without shrink correction, and total error RMS was decreased by 0.2nm (12%) with shrink correction technique. Variation of model accuracy among 8 modeling runs with different model calibration patterns was reduced by applying shrink correction. The shrink correction of contours can improve accuracy and stability of OPC model.

  11. Hybrid ion-exchange membranes for fuel cells and separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Carretero, F.J.; Compan, V. [Departamento de Termodinamica Aplicada, ETSII, Universidad Politecnica de Valencia, 46020 Valencia (Spain); Riande, E. [Instituto de Ciencia y Tecnologia de Polimeros (CSIC), 28006 Madrid (Spain)

    2007-11-08

    This work reports the preparation and characterization of hybrid membranes cast from dispersions of inorganic fillers in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene solutions. Silica gel, SBA-15 and sepiolite, all of them functionalized with phenylsulfonic acid groups, were used as fillers. For comparative purposes, the performance of composite membranes cast from dispersions of functionalized inorganic fillers in Nafion {sup registered} solutions was investigated. Inspection of the texture of the membranes by using SEM techniques shows that the fillers are better dispersed in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene than in Nafion {sup registered}. The value of the water uptake for the membranes prepared from the former polyelectrolyte is in most cases at least three times that measured for hybrid Nafion {sup registered} membranes. The conductivity of the membranes was measured at 80 C by impedance spectroscopy obtaining values of 3.44, 6.90 and 3.54 S m{sup -1} for the hybrid membranes based on the triblock copolymer containing functionalized silica gel, SBA-15 and sepiolite fillers, respectively. These results compare very favourably with those obtained at 80 C for Nafion {sup registered} hybrid membranes containing silica gel, SBA-15 and sepiolite, all of them fuctionalized with phenylsulfonic acid groups, whose conductivities are, 2.84, 6.75 and 3.31 S m{sup -1}, respectively. Resistance measurements carried out under controlled humidity conditions show that the conductivity of sulfonated triblock copolymer membranes containing functionalized SBA-15 filler undergoes a rather sharp increase when they are conditioned under an atmosphere of 75%, or larger, relative humidity. (author)

  12. Aesthetic design process: Descriptive design research and ways forward

    OpenAIRE

    Jagtap, Santosh; Jagtap, Sachin

    2015-01-01

    Consumer response to designed products has a profound effect on how products are interpreted, approached and used. Product design is crucial in determining this consumer response. Research in this field has been centered on studying the relationship between product features and subjective responses of users and consumers to those features. The subject of aesthetic or styling design process has been relatively neglected despite the important role of this process in fulfilling intended consumer...

  13. Fundamental research in the chemistry of industrial oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, N.M.

    1984-01-01

    The causes of low oil recovery from formations and physiochemical methods for increasing oil recovery are analyzed. A survey of results from research in this field at the chemical institutes of the Academy of Sciences of the USSR is given. The primary concepts of interformation combustion are examined together with the possibilities for using this method to control the combustion processes and enhance oil recovery as well as to optimize combustion processes.

  14. [Research progress of adventitious respiratory sound signal processing].

    Science.gov (United States)

    Li, Zhenzhen; Wu, Xiaoming

    2013-10-01

    Adventitious respiratory sound signal processing has been an important researching topic in the field of computerized respiratory sound analysis system. In recent years, new progress has been achieved in adventitious respiratory sound signal analysis due to the applications of techniques of non-stationary random signal processing. Algorithm progress of adventitious respiratory sound detections is discussed in detail in this paper. Then the state of art of adventitious respiratory sound analysis is reviewed, and development directions of next phase are pointed out.

  15. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    Science.gov (United States)

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Optimization of Process Parameters of Hybrid Laser-Arc Welding onto 316L Using Ensemble of Metamodels

    Science.gov (United States)

    Zhou, Qi; Jiang, Ping; Shao, Xinyu; Gao, Zhongmei; Cao, Longchao; Yue, Chen; Li, Xiongbin

    2016-08-01

    Hybrid laser-arc welding (LAW) provides an effective way to overcome problems commonly encountered during either laser or arc welding such as brittle phase formation, cracking, and porosity. The process parameters of LAW have significant effects on the bead profile and hence the quality of joint. This paper proposes an optimization methodology by combining non-dominated sorting genetic algorithm (NSGA-II) and ensemble of metamodels (EMs) to address multi-objective process parameter optimization in LAW onto 316L. Firstly, Taguchi experimental design is adopted to generate the experimental samples. Secondly, the relationships between process parameters ( i.e., laser power ( P), welding current ( A), distance between laser and arc ( D), and welding speed ( V)) and the bead geometries are fitted using EMs. The comparative results show that the EMs can take advantage of the prediction ability of each stand-alone metamodel and thus decrease the risk of adopting inappropriate metamodels. Then, the NSGA-II is used to facilitate design space exploration. Besides, the main effects and contribution rates of process parameters on bead profile are analyzed. Eventually, the verification experiments of the obtained optima are carried out and compared with the un-optimized weld seam for bead geometries, weld appearances, and welding defects. Results illustrate that the proposed hybrid approach exhibits great capability of improving welding quality in LAW.

  17. A forward osmosis-membrane distillation hybrid process for direct sewer mining: system performance and limitations.

    Science.gov (United States)

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2013-01-01

    This study demonstrates the robustness and treatment capacity of a forward osmosis (FO)-membrane distillation (MD) hybrid system for small-scale decentralized sewer mining. A stable water flux was realized using a laboratory-scale FO-MD hybrid system operating continuously with raw sewage as the feed at water recovery up to 80%. The hybrid system also showed an excellent capacity for the removal of trace organic contaminants (TrOCs), with removal rates ranging from 91 to 98%. The results suggest that TrOC transport through the FO membrane is governed by "solute-membrane" interaction, whereas that through the MD membrane is strongly correlated to TrOC volatility. Concentrations of organic matter and TrOCs in the draw solution increased substantially as the water recovery increased. This accumulation of some contaminants in the draw solution is attributed to the difference in their rejection by the FO and MD systems. We demonstrate that granular activated carbon adsorption or ultraviolet oxidation could be used to prevent contaminant accumulation in the draw solution, resulting in near complete rejection (>99.5%) of TrOCs.

  18. Novel solar energy harvesting options based on solution-processable inorganic/organic hybrid materials

    Science.gov (United States)

    Stingelin, Natalie

    2015-03-01

    The growing demand for energy and increasing concerns for the effect of the excessive abuse of fossil fuels on the environment force the scientific world to search for alternative, clean and safe energy sources. Finding ways to harvest solar energy is thereby one of the most appealing options. Here, we present a novel approach that exploits the versatile properties of recently developed, photoactive organic/inorganic hybrid fluids based on titanium oxide hydrates and polyalcohols for the production of versatile solar fuels. We will show that such systems can absorb light in the UV-near visible wave-length range. The sunlight's energy is then converted into chemical energy in the form of reduced titanium species, which can be re-oxidised by oxygen when required. Therefore, the absorbed energy is stored as long as oxygen is excluded by the hybrid system. We, furthermore, demonstrate that once discharged, the fluid can be activated again by exposing it to sunlight and recycled - a property that is important technologically. The same hybrids can also be exploited to produce structures that permit efficient management of light. We will illustrate the potential of this class of materials based on some of our recent approaches to fabricate light-scattering and light in-coupling structures, and discuss future opportunities they open up.

  19. Investigation of the effectiveness of nutrient release from sludge foam after hybrid pretreatment processes by IR analysis and EDX Quantification.

    Science.gov (United States)

    Machnicka, Alicja; Grübel, Klaudiusz

    2016-12-01

    One of the problems in wastewater treatment technologies is the formation of foam/scum. It is thought that filamentous microorganisms are responsible for foam formation and foam elimination/destruction can be carried out by various methods, among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation) of foam microorganisms results in the transfer of phosphates, ammonium nitrogen, magnesium and potassium from the foam solids into the liquid phase. Application of both methods as a hybrid pretreatment process caused an increase in the concentration of phosphates of about 650 mg [Formula: see text] L(-1) and ammonium nitrogen of about 30 mg [Formula: see text] L(-1). The concentration of Mg(2+) and K(+) in the solution increased from 6.8 and 26.1 mg Mg(2+) L(-1) to 32.2 and 82.2 mg K(+) L(-1), respectively. The presence of nutrients and metal cations in the solid phase of foam was acknowledged by EDX Quantification. The confirmation of physico-chemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration) was done by infrared analysis. It was demonstrated that the disintegration of foam permits the removal of a part of nutrients in the form of struvite.

  20. Molecular dynamics simulation of the formation of sp3 hybridized bonds in hydrogenated diamondlike carbon deposition processes.

    Science.gov (United States)

    Murakami, Yasuo; Horiguchi, Seishi; Hamaguchi, Satoshi

    2010-04-01

    The formation process of sp3 hybridized carbon networks (i.e., diamondlike structures) in hydrogenated diamondlike carbon (DLC) films has been studied with the use of molecular-dynamics simulations. The processes simulated in this study are injections of hydrocarbon (CH3 and CH) beams into amorphous carbon (a-C) substrates. It has been shown that diamondlike sp3 structures are formed predominantly at a subsurface level when the beam energy is relatively high, as in the "subplantation" process for hydrogen-free DLC deposition. However, for hydrogenated DLC deposition, the presence of abundant hydrogen at subsurface levels, together with thermal spikes caused by energetic ion injections, substantially enhances the formation of carbon-to-carbon sp3 bonds. Therefore, the sp3 bond formation process for hydrogenated DLC films essentially differs from that for hydrogen-free DLC films.

  1. A Qualitative Experiment: Research on Mediated Meaning Construction Using a Hybrid Approach

    Science.gov (United States)

    Robinson, Sue; Mendelson, Andrew L.

    2012-01-01

    This article presents a hybrid methodological technique that fuses elements of experimental design with qualitative strategies to explore mediated communication. Called the "qualitative experiment," this strategy uses focus groups and in-depth interviews "within" randomized stimulus conditions typically associated with…

  2. Researching Hybrid Learning Communities in the Digital Age through Educational Ethnography

    Science.gov (United States)

    James, Nalita; Busher, Hugh

    2013-01-01

    This paper discusses the complexities of investigating the experiences of participants in hybrid (online/offline) learning communities through educational ethnography. In these communities, people construct small cultures in the liminal spaces or "border crossings" between the virtually real and "actually" real, using computer-mediated and…

  3. Hybrid striped bass National Breeding Program: Research towards genetic improvement of a non-model species

    Science.gov (United States)

    The hybrid striped bass (HSB) farming industry at present relies almost totally on wild broodstock for annual production of larvae and fingerlings, and industry efforts to domesticate the parent species of the HSB (white bass: WB, Morone chrysops; striped bass: SB, M. saxatilis) have been fairly lim...

  4. Bench-Scale Development of a Hybrid Membrane-Absorption CO{sub 2} Capture Process: Preliminary Cost Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Brice; Kniep, Jay; Pingjiao, Hao; Baker, Richard; Rochelle, Gary; Chen, Eric; Frailie, Peter; Ding, Junyuan; Zhang, Yue

    2014-03-31

    This report describes a study of capture costs for a hybrid membrane-absorption capture system based on Membrane Technology and Research, Inc. (MTR)’s low-pressure membrane contactors and the University of Texas at Austin’s 5 m piperazine (PZ) Advanced Flash Stripper (AFS; 5 m PZ AFS) based CO2 capture system. The report is submitted for NETL review, and may be superseded by a final topical report on this topic that will be submitted to satisfy the Task 2 report requirement of the current project (DE-FE0013118).

  5. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  6. Fate of bulk and trace organics during a simulated aquifer recharge and recovery (ARR)-ozone hybrid process.

    Science.gov (United States)

    Yoon, Min K; Drewes, Jörg E; Amy, Gary L

    2013-11-01

    The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC=1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5 ng L(-1)) both during ARR treatment alone and the ARR-ozone hybrid.

  7. Fate of bulk and trace organics during a simulated aquifer recharge and recovery (ARR)-ozone hybrid process

    KAUST Repository

    Yoon, Min

    2013-11-01

    The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC=1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5ngL-1) both during ARR treatment alone and the ARR-ozone hybrid. © 2013 Elsevier Ltd.

  8. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  9. Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, B.R.; Yan, W. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

    1993-11-01

    The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods.

  10. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant.

    Science.gov (United States)

    Jin, Xin; Jin, Pengkang; Hou, Rui; Yang, Lei; Wang, Xiaochang C

    2017-04-05

    A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1mgO3/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O3-resistant hydroxyl radical (OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of OH compared with pre-ozonation process. This indicates that the OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of processing routes in a multi-pass continuous hybrid process on mechanical properties, microstructure, and texture evolutions of low-carbon steel wires

    Science.gov (United States)

    Hwang, Sun Kwang; Baek, Hyun Moo; Joo, Ho Seon; Im, Yong-Taek

    2015-03-01

    In this work, a multi-pass continuous hybrid (CH) process was experimentally applied with up to five passes with three processing routes, A, Bc, and C, to check the practicality of the processing routes and investigate their effect on the mechanical properties, microstructure, and texture evolutions of low-carbon steel wires. According to the present investigation, the wires processed by the 5th pass CH process with route A showed the highest ultimate tensile strength value (762 MPa) compared to those for routes Bc (718 MPa) and C (720 MPa), respectively. Based on the compression test results, the CH processed wire showed good workability when the aspect ratio was smaller than 2.4 for all the processing routes. According to the microstructure and texture evolutions, the grain sizes of the 5th pass CH processed wires decreased for all the processing routes than that of the initial specimen, and the wires showed mixed texture distribution of shear and drawing texture components. From the present investigation, it was concluded that the processing routes of the CH process could strongly affect the microstructure and texture evolutions, resulting in changes of the mechanical properties and workability of the low-carbon steel wires.

  12. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    Science.gov (United States)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  13. External Influences on an Internal Process: Supporting Preservice Teacher Research

    Science.gov (United States)

    Schulte, Ann; Klipfel, Lyndsay Halpin

    2016-01-01

    In an effort to better understand how participating in teacher research as a student teacher compares to conducting it as a practicing teacher, a teacher educator and her former teacher education student engaged in a collaborative dialogue. They focus their reflections in this article on the impact of external forces on the process of teacher…

  14. Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model

    Science.gov (United States)

    Berman, Jeanette; Smyth, Robyn

    2015-01-01

    This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…

  15. Cancer systems biology: signal processing for cancer research

    Institute of Scientific and Technical Information of China (English)

    Olli Yli-Harja; Antti Ylip(a)(a); Matti Nykter; Wei Zhang

    2011-01-01

    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts.

  16. Cancer systems biology: signal processing for cancer research.

    Science.gov (United States)

    Yli-Harja, Olli; Ylipää, Antti; Nykter, Matti; Zhang, Wei

    2011-04-01

    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts.

  17. Virtual Vocabulary: Research and Learning in Lexical Processing

    Science.gov (United States)

    Schuetze, Ulf; Weimer-Stuckmann, Gerlinde

    2010-01-01

    This article presents the concept development, research programming, and learning design of a lexical processing web application, Virtual Vocabulary, which was developed using theories in both cognitive psychology and second language acquisition (SLA). It is being tested with first-year students of German at the University of Victoria in Canada,…

  18. Relational Processes in Career Transition: Extending Theory, Research, and Practice

    Science.gov (United States)

    Motulsky, Sue L.

    2010-01-01

    A growing body of work in relational theory and career decision making explores how relational processes, not just people's relationships but more broadly their connections to self, others, and society, inform career development and counseling. This article presents the results of a qualitative research study of midlife women in career transition…

  19. Organizing an Integrated Planning, Research and Marketing Process.

    Science.gov (United States)

    Spencer, Richard; Dock, Stephen

    Several sets of outlines, charts, and diagrams present an overview of a comprehensive institutional program at Delaware County Community College (DCCC) which incorporates planning, research, and marketing strategies. The first set of documents outlines the objective-based planning process, describes the organizational framework, defines…

  20. Partnering with Indigenous student co-researchers: improving research processes and outcomes

    Directory of Open Access Journals (Sweden)

    Shelagh K. Genuis

    2015-07-01

    Full Text Available Objective: To examine the contribution of student co-researchers to a community-based participatory Photovoice investigation of Indigenous children's food-related lived experience. We examine co-researchers’ contributions to the research process, their role in knowledge co-generation and dissemination, and factors that fostered research partnership with the teenage co-researchers. Methods: High school students attending a First Nation community school in Canada were trained as research partners. They contributed to aspects of research design, conducted interviews with grades 3 and 4 Photovoice participants, and participated in data analysis and the development of a culturally relevant photobook. The study was initiated by the community's research committee. It is informed by critical consciousness theory and the positive youth development framework. Results: Student co-researchers incorporated culturally appropriate strategies as they interviewed participants. Co-researchers adopted conversational approaches, built rapport by articulating personal and cultural connections, and engaged in mentoring and health promotion as they interviewed participants. They made critical contributions to dissemination by developing photobook content that promoted the importance of traditional foods and the vital role of family and community in healthy eating practices. Relationships and “dialogic” space were important to building partnership with and promoting capacity development among youth co-researchers. Conclusions: Partnership between university researchers and Indigenous student co-researchers holds great promise for health promotion in communities. Co-researchers developed research and leadership skills, gained understanding of health challenges facing their community, and initiated health and cultural promotion through the project's Photobook. This investigation supports the powerful potential of student co-researchers to meaningfully contribute to

  1. The latest progress in research of plastics processing technology

    Institute of Scientific and Technical Information of China (English)

    Qu Jinping

    2012-01-01

    According to the great demand for the" green" plastics processing technology of the low energy consumption, high efficiency and environmental protection in plastics industry, the plastics processing method and technology based on the elongation rheology, with continuing evolution and innovation of the plastics plasticating and conveying method, are presented and researched on the basis of the plastics dynamic processing method arid equipment, and the plastics plasticating and conveying process in the vane extrusion system, the technical characteristics and the applications of vane plasticating and conveying technology are discussed. The research results show that compared with the conventional processing equipment, this new technology and equipment shows many outstanding advantages, such as shortening the thermo-meehanical history of the plastics processing by more than 50 % , reducing the energy consumption by 30 % or so, improving the mixing and blending effects, improving the quality of the products and the adaptability to materials, etc. , and it is found that the new technology and equipment has special superiority in the fields of the processing for material systems, such as the multiphase and multicomponent composite materials, the shear heat sensitive macromolecular materials, etc.

  2. Improving industrial designers work process by involving user research

    DEFF Research Database (Denmark)

    Dai, Zheng; Ómarsson, Ólafur

    2011-01-01

    With changing times, new technologies and more opinionated consumers, the modern industrial designer has found himself in need of fresher and more up to date approaches in his daily work. In a fast moving industry, the designer needs to keep a thinking process of dynamic and subjective attitude....... User research is part of user centered design (UCD). UCD has a reputation for subjective and reflective practice. In this paper there are two example cases. One is conducted by a classical industrial design process, and another is costing half of energy and time in user research. These examples...... will give the grounding for believing that the industrial designer needs to adopt user research methods to a level where he can still continue to work under the very nature of industrial design that has made it a successful practice for the last century. The combing of the approaches and attitude will help...

  3. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.

  4. Product- and Process Units in the CRITT Translation Process Research Database

    DEFF Research Database (Denmark)

    Carl, Michael

    The first version of the "Translation Process Research Database" (TPR DB v1.0) was released In August 2012, containing logging data of more than 400 translation and text production sessions. The current version of the TPR DB, (v1.4), contains data from more than 940 sessions, which represents more...... than 300 hours of text production. The database provides the raw logging data, as well as Tables of pre-processed product- and processing units. The TPR-DB includes various types of simple and composed product and process units that are intended to support the analysis and modelling of human text...... reception, production, and translation processes. In this talk I describe some of the functions and features of the TPR-DB v1.4, and how they can be deployed in empirical human translation process research....

  5. [Required procedure for nominal data files processing in biomedical research].

    Science.gov (United States)

    Chambon-Savanovitch, C; Dubray, C; Albuisson, E; Sauvant, M P

    2001-12-01

    To date, biomedical research using nominal data files for the data collection, data acquisition or data processing has had to comply with 2 French laws (Law of December, 20, 1988, modified, relating to the protection of patients participating in biomedical research, and the Law of January, 6, 1978, completed by the Law of July 1, 1994 n degrees 94-548, chapter V bis). This later law dictates rules not only for the establishment of nominal data files, but also confer individual rights to filed persons. These regulations concern epidemiological research, clinical trials, drug watch studies and economic health research. In this note, we describe the obligations and specific general and simplified procedure required for conducting biomedical research. Included in the requirements are an information and authorization procedure with the local and national consultative committees on data processing in biomedical research (CCTIRS, Comité Consultatif sur le Traitement de l'Information en Recherche Biomédicale, and CNIL, Commission Nationale Informatique et Libertés).

  6. Nanostructured Silica/Gold-Cellulose-Bonded Amino-POSS Hybrid Composite via Sol-Gel Process and Its Properties

    Science.gov (United States)

    Ramesh, Sivalingam; Kim, Heung Soo; Lee, Young-June; Hong, Gwang-Wook; Kim, Joo-Hyung

    2017-06-01

    It is demonstrated in this paper that silica nanoparticles coated with core/shell gold provide efficient thermal, optical, and morphological properties with respect to the cellulose-polyhedral oligomeric silsesquioxanes (POSS) hybrid system. The one-step synthesis of a silica/gold nanocomposite is achieved with a simultaneous hydrolysis and reduction of gold chloride in the presence of formic acid, and the trimethoxysilane group acts as a silica precursor. The focus here comprises the synthesis of cellulose-POSS and silica/gold hybrid nanocomposites using the following two methods: (1) an in situ sol-gel process and (2) a polyvinyl alcohol/tetrakis (hydroxymethyl)phosphonium chloride process. Accordingly, the silica/gold core/shell nanoparticles are synthesized. The growth and attachment of the gold nanoparticles onto the functionalized surface of the silica at the nanometer scale is achieved via both the sol-gel and the tetrakis (hydroxymethyl) phosphonium chloride processes. The cellulose-POSS-silica/gold nanocomposites are characterized according to Fourier transformed infrared spectroscopy, Raman, X-ray diffraction, UV, photoluminescence, SEM, energy-dispersive X-ray spectroscopy, TEM, thermogravimetric, and Brunauer-Emmett-Teller analyses.

  7. Research progress of hybrid UV curing%混杂紫外光固化研究进展

    Institute of Scientific and Technical Information of China (English)

    刘红波; 吴宗南

    2009-01-01

    The recent research progress and application of hybrid UV curing at home and abroad were reviewed.The free radical-cationic hybrid UV curing of acrylate-epoxy and acrylate-vinyl ether system,free radical-free radical hybrid UV curing,UV-heat, UV-air and UV-moisture curing were included.The cured products had better comprehensive properties by the hybird curing methods.%综述了近年国内外混杂紫外光固化研究的进展和应用情况.其中包括丙烯酸酯-环氧树脂体系、丙烯酸酯-乙烯基醚体系的自由基-阳离子混杂光固化,自由基-自由基体系混杂固化,光-热、光-空气及光-潮气混杂固化等.这些混杂固化方式使固化产物的综合性能更为优异.

  8. SOUNDS OF THE RESISTANCE, BLACKENING PROCESS AND CULTURAL HYBRID OF RESISTANCE, A DECOLONIZING GLANCE UPON THE MUSICAL PRACTICES OF TRADITIONAL CAUCAN VIOLINS

    Directory of Open Access Journals (Sweden)

    William Almonacid González

    2015-10-01

    Full Text Available The following paper deals with the diverse forms of coloniality as well as with the resultant scenarios of dominance. Through these very scenarios and their particular moments in history, first as individuals and subjugated communities and then through their resistance against the hegemonic view of western modern world, it tracks the historic itinerary of Afro-descendant communities of northern Cauca in Colombia. It is also discussed here the colonial nature of a major part of Colombian musical academy along with its legitimating role of structures of power inherited from colonial times. The main point here is the presentation of two concepts developed in a research work entitled THE ZERO POINT OF COLOMBIAN MUSIC: A decolonizing glance upon the musical practices of traditional Caucan violins, which have been respectively nominated blackening process and cultural hybrid of resistance and are the result of field observation of the already mentioned practices from a decolonizing perspective.

  9. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Jin, Pengkang, E-mail: pkjin@hotmail.com [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Hou, Rui [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Yang, Lei [Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800 (Australia); Wang, Xiaochang C., E-mail: xcwang@xauat.edu.cn [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China)

    2017-04-05

    Highlights: • A novel HOC process was firstly put forward to apply in wastewater reclamation. • Interactions between ozone and Al-based coagulants was found in the HOC process. • Ozonation can be catalyzed and enhanced by Al-based coagulants in the HOC process. • HOC process showed better organics removal than pre-ozonation-coagulation process. - Abstract: A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1 mgO{sub 3}/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O{sub 3}-resistant hydroxyl radical (·OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of ·OH compared with pre-ozonation process. This indicates that the ·OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency.

  10. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint

    Directory of Open Access Journals (Sweden)

    Su Ding

    2015-05-01

    Full Text Available The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area.

  11. Two-line Hybrid Glutinous Sorghum Variety Xiangliangyou Nuoliang 1 and Its Processed Products

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Sorghum subspecies and varieties in China Chinese sorghum has two species according to their grain's glutinousness degree: the Jing subspecies (not glutinous) and glutinous subspecies. Most hybrid sorghum varieties in commercial production in the country at present belong to the Jing subspecies grown in the northern China which is highly yielding but without satisfactory marketing price because of their poor palatability and less satisfactory spirit making quality. In comparison to the Jing varieties,the glutinous mostly grown in the south are local cultivars which often have fine table quality but low grain yield,and thus,their cultivation can't be expanded wide in the country.

  12. Hybrid Materials Prepared from Polymers and Self-assembled Systems by Physical Processes

    Institute of Scientific and Technical Information of China (English)

    Jean-Michel; Guenet

    2007-01-01

    1 Results A new type of hybrid materails prepared from ternary systems polymer/bicopper organic complex/solvent is presented.Each binary system displays differing types of behaviour: The polymer solutions produce thermoreversible gels while the bicopper organic complex (designated as CuS8) forms randomly-dispersed,self-assembling threads in organic solvents (See Fig.1(a),(b)).Fig.1 The CuS8 and ips thermoreversible gels Thermoreversible gels possess a fibrillar morphology with a typical mesh size ra...

  13. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.;

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can...... the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  14. Hydrogen production by the solar-powered hybrid sulfur process: Analysis of the integration of the CSP and chemical plants in selected scenarios

    Science.gov (United States)

    Liberatore, Raffaele; Lanchi, Michela; Turchetti, Luca

    2016-05-01

    The Hybrid Sulfur (HyS) is a water splitting process for hydrogen production powered with high temperature nuclear heat and electric power; among the numerous thermo-chemical and thermo-electro-chemical cycles proposed in the literature, such cycle is considered to have a particularly high potential also if powered by renewable energy. SOL2HY2 (Solar to Hydrogen Hybrid Cycles) is a 3 year research project, co-funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU). A significant part of the project activities are devoted to the analysis and optimization of the integration of the solar power plant with the chemical, hydrogen production plant. This work reports a part of the results obtained in such research activity. The analysis presented in this work builds on previous process simulations used to determine the energy requirements of the hydrogen production plant in terms of electric power, medium (550°C) temperature heat. For the supply of medium temperature (MT) heat, a parabolic trough CSP plant using molten salts as heat transfer and storage medium is considered. A central receiver CSP (Concentrated Solar Power) plant is considered to provide high temperature (HT) heat, which is only needed for sulfuric acid decomposition. Finally, electric power is provided by a power block included in the MT solar plant and/or drawn from the grid, depending on the scenario considered. In particular, the analysis presented here focuses on the medium temperature CSP plant, possibly combined with a power block. Different scenarios were analysed by considering plants with different combinations of geographical location and sizing criteria.

  15. Research on hybrid power filter of 6 kV power grid in coal mine

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-feng; LI Jian

    2010-01-01

    Studied the harmonic control of the 6 kV power grid in a coal mine substation.Taking harmonic suppression and reactive power compensation into account, and complying with the economic and efficient technical line of the smart grid, a new hybrid active filter was proposed and applied to the power grid in the coal mine with the advantages such as large capacity, low cost and low loss. In order to improve detection speed and reduce the succeeding errors to improve the filtering performance of the active power filter,the DFT (Discrete Fourier Transform) sliding window algorithm based on coordinate transformation and improved hysteresis control method was proposed. The Matlab simulation results show that the hybrid active filter is satisfactory, can improve the grid power factor and can meet the requirements of improving the power quality in the coal mine.

  16. Large Unifying Hybrid Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.

  17. Application of Hybrid Real-Time Power System Simulator for Designing and Researching of Relay Protection and Automation

    Science.gov (United States)

    Borovikov, Yu S.; Sulaymanov, A. O.; Andreev, M. V.

    2015-10-01

    Development, research and operation of smart grids (SG) with active-adaptive networks (AAS) are actual tasks for today. Planned integration of high-speed FACTS devices greatly complicates complex dynamic properties of power systems. As a result the operating conditions of equipment of power systems are significantly changing. Such situation creates the new actual problem of development and research of relay protection and automation (RPA) which will be able to adequately operate in the SGs and adapt to its regimes. Effectiveness of solution of the problem depends on using tools - different simulators of electric power systems. Analysis of the most famous and widely exploited simulators led to the conclusion about the impossibility of using them for solution of the mentioned problem. In Tomsk Polytechnic University developed the prototype of hybrid multiprocessor software and hardware system - Hybrid Real-Time Power System Simulator (HRTSim). Because of its unique features this simulator can be used for solution of mentioned tasks. This article introduces the concept of development and research of relay protection and automation with usage of HRTSim.

  18. A Low Power VITERBI Decoder Design With Minimum Transition Hybrid Register Exchange Processing For Wireless Applications

    Directory of Open Access Journals (Sweden)

    S. L. Haridas

    2010-12-01

    Full Text Available This work proposes the low power implementation of Viterbi Decoder. Majority of viterbi decoder designs in the past use simple Register Exchange or Traceback method to achieve very high speed and low power decoding respectively, but it suffers from both complex routing and high switching activity.Here simplification is made in survivor memory unit by storing only m-1 bits to identify previous state in the survivor path, and by assigning m-1 registers to decision vectors. This approach eliminates unnecessary shift operations. Also for storing the decoded data only half memory is required than register exchange method. In this paper Hybrid approach that combines both Traceback and Register Exchange schemes has been applied to the viterbi decoder design. By using distance properties of encoder we further modified to minimum transition hybrid register exchange method. It leads to lower dynamic power consumption because of lower switching activity. Dynamic power estimation obtained through gate level simulation indicates that the proposed design reduces the power dissipation of a conventional viterbi decoder design by 30%.

  19. A Low Power VITERBI Decoder Design With Minimum Transition Hybrid Register Exchange Processing For Wireless Applications

    Directory of Open Access Journals (Sweden)

    S. L. Haridas

    2010-12-01

    Full Text Available This work proposes the low power implementation of Viterbi Decoder. Majority of viterbi decoder designs in the past use simple Register Exchange or Trace back method to achieve very high speed and low power decoding respectively, but it suffers from both complex routing and high switching activity.Here simplification is made in survivor memory unit by storing only m-1 bits to identify previous state in the survivor path, and by assigning m-1 registers to decision vectors. This approach eliminates unnecessary shift operations. Also for storing the decoded data only half memory is required than register exchange method. In this paper Hybrid approach that combines both Trace back and Register Exchange schemes has been applied to the viterbi decoder design. By using distance properties of encoder we further modified to minimum transition hybrid register exchange method. It leads to lower dynamic power consumption because of lower switching activity. Dynamic power estimation obtained through gate level simulation indicates that the proposed design reduces the power dissipation of a conventional viterbi decoder design by 30%.

  20. Solution-processed hybrid cathode interlayer for inverted organic solar cells.

    Science.gov (United States)

    Wu, Yulei; Zhang, Wenjun; Li, Xiaodong; Min, Chao; Jiu, Tonggang; Zhu, Yuejin; Dai, Ning; Fang, Junfeng

    2013-11-13

    A novel hybrid material CdS/2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (CdS·BCP) was prepared from the decomposition of its organic soluble precursor complex Cd(S2COEt)2·(BCP) by low-temperature treatment. CdS·BCP, which integrated the favorable properties of solvent durability, and high electron mobility of CdS as well as the good hole blocking property of BCP, was designed and developed as the interface modification material to improve electron collection in bulk heterojunction organic solar cells (OSCs). The inverted OSCs with CdS·BCP as buffer layer on ITO showed improved efficiency compared with the pure CdS or BCP. Devices with CdS·BCP as interlayer exhibited excellent stability, only 14.19% decay of power conversion efficiencies (PCEs) was observed (from 7.47% to 6.41%) after stored in glovebox for 3264 h (136 days). Our results demonstrate promising potentials of hybrid materials as the interface modification layers in OSCs, and provide new insights for the development of new interface modification materials in the future.

  1. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    Directory of Open Access Journals (Sweden)

    Lili Song

    2016-03-01

    Full Text Available This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC, and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  2. A Hybrid Improved Genetic Algorithm and Its Application in Dynamic Optimization Problems of Chemical Processes

    Institute of Scientific and Technical Information of China (English)

    SUN Fan; DU Wenli; QI Rongbin; QIAN Feng; ZHONG Weimin

    2013-01-01

    The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature.Genetic algorithm(GA)has been proved to be a feasible method when the gradient is difficult to calculate.Its advantage is that the control profiles at all time stages are optimized simultaneously,but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum.In this study,a hybrid improved genetic algorithm(HIGA)for solving dynamic optimization problems is proposed to overcome these defects.Simplex method(SM)is used to perform the local search in the neighborhood of the optimal solution.By using SM,the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved.The hybrid algorithm presents some improvements,such as protecting the best individual,accepting immigrations,as well as employing adaptive crossover and Gaussian mutation operators.The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems.At last,HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable.

  3. Modeling of the coal gasification processes in a hybrid plasma torch

    Energy Technology Data Exchange (ETDEWEB)

    Matveev, I.B.; Serbin, S.I. [Applied Plasma Technology, Mclean, VA (USA)

    2007-12-15

    The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of the computational-fluid-dynamics-computational method, preliminary 3-D calculations of heat exchange in a 1-MW plasma generator operating with direct vortex and RV have been conducted at the air flow rate of 100 g/s. For the investigated mode and designed parameters, reduction of the total wall heat transfer for the reverse scheme is about 65 kW, which corresponds to an increase of the plasma generator efficiency by approximately 6.5%. This new hybrid plasma torch operates as a multimode, high power plasma system with a wide range of plasma feedstock gases and turn down ratio, and offers convenient and simultaneous feeding of several additional reagents into the discharge zone.

  4. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  5. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  6. Recent Research Trend in Laser-Soldering Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Tae; Kil, Sang Cheol [Korea Institute of Science and Technology Information, Seoul (Korea, Republic of); Hwang, Woon Suk [Inha University, Incheon (Korea, Republic of)

    2009-10-15

    The trend of the microjoining technology by the laser-soldering process has been reviewed. Among the production technologies, joining technology plays an important role in the fabrication of electronic components. This has led to an increasing attention towards the use of modem microjoining technology such as micro-resistance spot joining micro-soldering, micro-friction stir joining and laser-soldering, etc. This review covers the recent technical trends of laser-soldering collected from the COMPENDEX DB analysis of published papers, research subject and research institutes.

  7. Uniform, High Efficiency, Hybrid CIGS Process with Application to Novel Device Structures: Annual Technical Report, 15 March 2005 - 14 March 2006

    Energy Technology Data Exchange (ETDEWEB)

    Delahoy, A. E.; Chen, L.; Sang, B.

    2006-06-01

    One of the main Phase I objectives of this subcontract was for EPV to demonstrate 14%-efficient CIGS devices using a hybrid process. The processing was also required to have good control ability. These goals were successfully accomplished. It will be seen that during Phase I, we successfully developed a new, simplified hybrid process. A highlight of intensive work was the achievement of a 14.0% NREL-verified device at a CIGS thickness of 1.13 ..mu..m. The simplified hybrid process considerably reduces CIGS film formation time and offers the promise of being a truly cost-effective and manufacturable one. It is considered to be one of the more attractive CIGS processes in the industry.

  8. Production of Biodiesel from High Acid Value Waste Cooking Oil Using an Optimized Lipase Enzyme/Acid-Catalyzed Hybrid Process

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.

  9. Abortive Process of a Novel Rapeseed Cytoplasmic Male Sterility Line Derived from Somatic Hybrids Between Brassica napus and Sinapis alba

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; GAO Ya-nan; KONG Yue-qin; JIANG Jin-jin; LI Ai-min; ZHANG Yong-tai; WANG You-ping

    2014-01-01

    Somatic hybridization is performed to obtain significant cytoplasmic male sterility (CMS) lines, whose CMS genes are derived either from the transfer of sterile genes from the mitochondrial genome of donor parent to the counterpart of receptor or production of new sterile genes caused by mitochondrial genome recombination of the biparent during protoplast fusion. In this study, a novel male sterile line, SaNa-1A, was obtained from the somatic hybridization between Brassica napus and Sinapis alba. The normal anther development of the maintainer line, SaNa-1B, and the abortive process of SaNa-1A were described through phenotypic observations and microtome sections. The lforal organ of the sterile line SaNa-1A was sterile with a shortened iflament and delfated anther. No detectable pollen grains were found on the surface of the sterile anthers. Semi-thin sections indicated that SaNa-1A aborted in the pollen mother cell (PMC) stage when vacuolization of the tapetum and PMCs began. The tapetum radically elongated and became highly vacuolated, occupying the entire locule together with the vacuolated microspores. Therefore, SaNa-1A is different from other CMS lines, such as ogu CMS, pol CMS and nap CMS as shown by the abortive process of the anther.

  10. Electroless Sliver-Plating Process in the Preparation of 103Pd-125I Hybrid Brachytherapy Seed Cores

    Directory of Open Access Journals (Sweden)

    LI Zhong-yong1,2;CHEN Bin-da1;Lv Xiao-zhou1;LU Jin-hui1;CUI Hai-ping1,2

    2014-02-01

    Full Text Available Electroless 103Pd plating and electroless Ag plating and chemical 125I depositing were took place on the surface of carbon rods in turn, which was a reliable method for the preparation of 103Pd-125I hybrid brachytherapy seed cores. 103Pd and 125I were deposited on the same substrate effectively through silver coating as a bridge. The process of electroless Ag plating was a novel and important step in the preparation of 103Pd-125I hybrid seed. In this work, the process of electroless Ag plating was studied using 0.5×3.0 mm carbon rods with palladium coating as substrate, silver-ammino complex as precursor, 110mAg as radioactive tracer, and hydrazine as reductant. The optimum conditions were AgNO3 2g/L,Na2EDTA 40 g/L,NH3•H2O 16.25%,H4N2•H2O 5‰,pH=10,t=60 min,and T=35 ℃. Sliver deposited on each carbon rod was uniform, and sliver-coating was white and smooth.

  11. Arts-Based Research: Trojan Horses and Shibboleths. The Liabilities of a Hybrid Research Approach. "What Hath Eisner Wrought?"

    Science.gov (United States)

    Pariser, David

    2009-01-01

    The term "arts-based research" has been debated for some time now. In an article strongly in favor of this approach Bean (2007) identifies three species: "Research on the arts (italics in the original) (art history, visual and cultural studies, media studies etc.)...Research for the arts, refers to research into applied techniques, materials and…

  12. Surgery and Research: A Practical Approach to Managing the Research Process.

    Science.gov (United States)

    Swiatek, Peter R; Chung, Kevin C; Mahmoudi, Elham

    2016-01-01

    Following a practical project management method is essential in completing a research project on time and within budget. Although this concept is well developed in the business world, it has yet to be explored in academic surgical research. Defining and adhering to a suitable workflow would increase portability, reusability, and therefore efficiency of the research process. In this article, the authors briefly review project management techniques. The authors specifically underline four main steps of project management-definition and organization, planning, execution, and evaluation-using practical examples from their own multidisciplinary plastic surgery research team.

  13. Surgery and Research: A Practical Approach to Managing the Research Process

    Science.gov (United States)

    Swiatek, Peter R.; Chung, Kevin C.; Mahmoudi, Elham

    2016-01-01

    Following a practical project management method is essential in completing a research project on time and within budget. Although this concept is well developed in the business world, it has yet to be explored in academic surgical research. Defining and adhering to a suitable workflow would increase portability, reusability, and therefore, efficiency of the research process. In this article, we briefly review project management techniques. We specifically underline four main steps of project management: (1) definition and organization, (2) planning, (3) execution, and (4) evaluation, using practical examples from our own multidisciplinary plastic surgery research team. PMID:26710037

  14. Practical process research and development a guide for organic chemists

    CERN Document Server

    Anderson, Neal G

    2014-01-01

    Designed to provide a comprehensive, step-by-step approach to organic process research and development in the pharmaceutical, fine chemical, and agricultural chemical industries, this book describes the steps taken, following synthesis and evaluation, to bring key compounds to market in a cost-effective manner. It describes hands-on, step-by-step, approaches to solving process development problems, including route, reagent, and solvent selection; optimising catalytic reactions; chiral syntheses; and ""green chemistry."" Second Edition highlights:  Reflects the current thinking in chemical p

  15. Optimisation of the geometry of the drill bit and process parameters for cutting hybrid composite/metal structures in new aircrafts

    Science.gov (United States)

    Isbilir, Ozden

    Owing to their desirable strength-to-weight characteristics, carbon fibre reinforced polymer composites have been favourite materials for structural applications in different industries such as aerospace, transport, sports and energy. They provide a weight reduction in whole structure and consequently decrease fuel consumption. The use of lightweight materials such as titanium and its alloys in modern aircrafts has also increased significantly in the last couple of decades. Titanium and its alloys offer high strength/weight ratio, high compressive and tensile strength at high temperatures, low density, excellent corrosion resistance, exceptional erosion resistance, superior fatigue resistance and relatively low modulus of elasticity. Although composite/metal hybrid structures are increasingly used in airframes nowadays, number of studies regarding drilling of composite/metal stacks is very limited. During drilling of multilayer materials different problems may arise due to very different attributes of these materials. Machining conditions of drilling such structures play an important role on tool wear, quality of holes and cost of machining.. The research work in this thesis is aimed to investigate drilling of CFRP/Ti6Al4V hybrid structure and to optimize process parameters and drill geometry. The research work consist complete experimental study including drilling tests, in-situ and post measurements and related analysis; and finite element analysis including fully 3-D finite element models. The experimental investigations focused on drilling outputs such as thrust force, torque, delamination, burr formation, surface roughness and tool wear. An algorithm was developed to analyse drilling induced delamination quantitatively based on the images. In the numerical analysis, novel 3-D finite element models of drilling of CFRP, Ti6Al4V and CFRP/Ti6Al4V hybrid structure were developed with the use of 3-D complex drill geometries. A user defined subroutine was developed

  16. ISS and Shuttle Payload Research Development and Processing

    Science.gov (United States)

    Calhoun, Kyle A.

    2010-01-01

    NASA's ISS and Spacecraft Processing Directorate (UB) is charged with the performance of payload development for research originating through NASA, ISS international partners, and the National Laboratory. The Payload Development sector of the Directorate takes biological research approved for on orbit experimentation from its infancy stage and finds a way to integrate and implement that research into a payload on either a Shuttle sortie or Space Station increment. From solicitation and selection, to definition, to verification, to integration and finally to operations and analysis, Payload Development is there every step of the way. My specific work as an intern this summer has consisted of investigating data received by separate flight and ground control Advanced Biological Research Systems (ABRS) units for Advanced Plant Experiments (APEX) and Cambium research. By correlation and analysis of this data and specific logbook information I have been working to explain changes in environmental conditions on both the flight and ground control unit. I have then, compiled all of that information into a form that can be presentable to the Principal Investigator (PI). This compilation allows that PI scientist to support their findings and add merit to their research. It also allows us, as the Payload Developers, to further inspect the ABRS unit and its performance

  17. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-30

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison

  18. Research of aerohydrodynamic and aeroelastic processes on PNRPU HPC system

    Science.gov (United States)

    Modorskii, V. Ya.; Shevelev, N. A.

    2016-10-01

    Research of aerohydrodynamic and aeroelastic processes with the High Performance Computing Complex in PNIPU is actively conducted within the university priority development direction "Aviation engine and gas turbine technology". Work is carried out in two areas: development and use of domestic software and use of well-known foreign licensed applied software packets. In addition, the third direction associated with the verification of computational experiments - physical modeling, with unique proprietary experimental installations is being developed.

  19. Information Processing Theory of Human Performance and Related Research.

    Science.gov (United States)

    1979-05-01

    stimulus sampling models such as that of Estes (1972) or Bjork and Murray (1977)). Perceptual concepts. Perceptual concepts such as the Gestalt concept of...the stimulus. It may that this is appropriate although at least some Gestalt concepts have been assumed to result from inferential processes by their...learning and motivation research and therapy (Vol 2). New York: Academic Press, 1968. Atkinson, R. C. & Shiffrin, R. M. The control of short-term memory

  20. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97