WorldWideScience

Sample records for hybrid power converters

  1. Hybrid switch for resonant power converters

    Science.gov (United States)

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  2. High Temperature Power Converters for Military Hybrid Electric Vehicles

    Science.gov (United States)

    2011-08-09

    M) MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN HIGH TEMPERATURE POWER CONVERTERS FOR MILITARY HYBRID ELECTRIC VEHICLES ABSTRACT...SUBTITLE High Temperature Power Converters for Military Hybrid Electric Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...public release High Temperature Power Converters for Military Hybrid Electric Vehicles Page 2 of 8 I. INTRODUCTION Today, wide bandgap devices

  3. Hybrid Voltage-Multipliers Based Switching Power Converters

    Science.gov (United States)

    Rosas-Caro, Julio C.; Mayo-Maldonado, Jonathan C.; Vazquez-Bautista, Rene Fabian; Valderrabano-Gonzalez, Antonio; Salas-Cabrera, Ruben; Valdez-Resendiz, Jesus Elias

    2011-08-01

    This work presents a derivation of PWM DC-DC hybrid converters by combining traditional converters with the Cockcroft-Walton voltage multiplier, the voltage multiplier of each converter is driven with the same transistor of the basic topology; this fact makes the structure of the new converters very simple and provides high-voltage gain. The traditional topologies discussed are the boost, buck-boost, Cuk and SEPIC. They main features of the discussed family are: (i) high-voltage gain without using extreme duty cycles or transformers, which allow high switching frequency and (ii) low voltage stress in switching devices, along with modular structures, and more output levels can be added without modifying the main circuit, which is highly desirable in some applications such as renewable energy generation systems. It is shown how a multiplier converter can become a generalized topology and how some of the traditional converters and several state-of-the-art converters can be derived from the generalized topologies and vice-versa. All the discussed converters were simulated, additionally experimental results are provided with an interleaved multiplier converter.

  4. Hybrid-Circuit Module For Dc-To-Dc Power Converter

    Science.gov (United States)

    Vorperian, Vatche; Detwiler, Robert; Karmon, Dan

    1996-01-01

    Power hybrid module is general-purpose power-switching module providing flexibility in design and application. Complete dc-to-dc power converter constructed by adding input/output filters and feedback circuitry to module to suit specific application.

  5. Efficient Hybrid Optimal Design Method for Power Electronics Converters

    CERN Document Server

    AUTHOR|(SzGeCERN)697719; Aguglia, Davide; Viarouge, Philippe; Cros, Jérôme

    2015-01-01

    This paper presents a novel design methodology for dimensioning optimal power-electronic converters, which is able to achieve the precision of numerical simulation-based optimization procedures, however minimizing the overall computation time. The approach is based on the utilization of analytical and frequency-domain design models for a numerical optimization process, a validation with numerical simulations of the intermediate optimal solutions, and the correction of the analytical design models precision from the numerical simulation results. This method allows using the numerical simulation in an efficient way, where typically less than ten correction iterations are required. In order to demonstrate the performances of the proposed methodology, the calculation of the control parameters for an H-bridge DC-DC converter and the optimal dimensioning of a damped output filter for a buck converter using the proposed approach is presented.

  6. Modular Power System Configured with Standard Product Hybrid DC-DC Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex NASA space power electronic systems can be configured using a small number of qualified hybrid DC-DC converter and...

  7. Direct switching control of DC-DC power electronic converters using hybrid system theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology

    2010-07-01

    A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.

  8. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then......, a multiple-input power conversion system including a decoupled dual-input converter and a three-phase neutral-point-clamped (NPC) inverter is proposed. The system can operate in both stand-alone and grid-connected modes. Simulation and experimental results are provided to show the feasibility of the proposed...

  9. Photovoltaic Energy Conversion System Constructed by High Step-Up Converter with Hybrid Maximum Power Point Tracking

    OpenAIRE

    Hwu, K. I.; Tu, W. C.; Wang, C.R.

    2013-01-01

    A photovoltaic energy conversion system, constructed by high step-up converter with hybrid maximum power point tracking (HMPPT), is presented. A voltage converter with a high voltage conversion ratio is proposed, which is simple in circuit and easy in control. After this, such a converter operating with a suitable initial duty cycle of the pulsewidth-modulated (PWM) control signal, together with the proposed HMPPT algorithm combining the fractional open-circuit voltage method and the incremen...

  10. Modular Power System Configured with Standard Product Hybrid DC-DC Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex, multiple-output, DC-DC converter systems can be configured through use of only 2 standard product hybrid DC-DC...

  11. Power Converters for Accelerators

    CERN Document Server

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  12. Design and Implementation of Power Converters for Hybrid Wind-Solar Energy Conversion System with an Implementation of MPPT

    Directory of Open Access Journals (Sweden)

    G. Sridhar Babu

    2013-11-01

    Full Text Available This paper presents the design and implementation of power converters for wind conversion systems. The power converter can not only transfer the power from a wind generator, but also improve the stability and safety of the system. The proposed system consists of a Permanent magnet synchronous generator (PMSG; a DC/DC boosts converter, a bi-directional DC/DC converter and a full-bridge DC/AC inverter. The wind generator is the main power source of the system, and the battery is used for energy storage and power compensation to recover the natural irregularity of the wind power. In this paper presents a new system configuration of the front-end rectifier stage for a hybrid wind or photo voltaic energy system. The configuration allows the two sources to supply the load separately or simultaneously, depending on the availability of energy sources. The inherent nature of this cuk-scpic fused converter, additional input filters are not necessary to filter out high frequency harmonic content is determinant for the generator life span, heating issue and efficiency. The fused multi-input rectifier stage also allows maximum power from the wind and sun. When it is available an adaptive MPPT algorithm will be used for photo voltaic (PV system. Operational analysis of the roposed system, will discoursed in this paper simulation results are given to highlight the merit of the proposed circuit.

  13. Electrical Power Converter

    NARCIS (Netherlands)

    Ferreira, J.A.

    2014-01-01

    Electrical power converter for converting electrical power of a power source connected or connectable at an input to electrical DC-power at an output, wherein between the input and the output a first circuit of submodules is provided, wherein said first circuit of submodules and the power source for

  14. Grid-Connected Pv-Fc Hybrid System Power Control Using Mppt And Boost Converter

    Directory of Open Access Journals (Sweden)

    P.HARIKA

    2014-09-01

    Full Text Available This paper proposes a method for operating a grid connected hybrid system. This system composed of a Photovoltaic (PV array and a Proton exchange membrane fuel cell (PEMFC is considered. As the variations occur in temperature and irradiation during power delivery to load, Photo voltaic (PV system becomes uncontrollable. In coordination with PEMFC, the hybrid system output power becomes controllable. Two operation modes are the unit-power control (UPC mode and the feeder-flow control (FFC mode, can be applied to the hybrid system. All MPPT methods follow the same goal that is maximizing the PV system output power by tracking the maximum power on every operating condition. Maximum power point tracking technique (Incremental conductance for photovoltaic systems was introduced to maximize the produced energy. The coordination of two control modes, coordination of the PV array and the PEMFC in the hybrid system, and determination of reference parameters are presented. The proposed operating strategy systems with a flexible operation mode change always operate the PV array at maximum output power and the PEMFC in its high efficiency performance band. Also thus improving the performance of system operation, enhancing system stability, and reducing the number of operating mode changes.

  15. Hybrid Electric Vehicle Power Management Solutions Based on Isolated and Non-Isolated Configurations of MMCCC Converter

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Faisal H [ORNL; Tolbert, Leon M [ORNL; Webb, William E [Oak Ridge National Laboratory (ORNL)

    2009-01-01

    This paper presents the various configurations of a multilevel modular capacitor-clamped converter (MMCCC), and it reveals many useful and new formations of the original MMCCC for transferring power in either an isolated or nonisolated manner. The various features of the original MMCCC circuit are best suited for a multibus system in future plug-in hybrid or fuel-cell-powered vehicles' drive train. The original MMCCC is capable of bidirectional power transfer using multilevel modular structure with capacitor-clamped topology. It has a nonisolated structure, and it offers very high efficiency even at partial loads. This circuit was modified to integrate single or multiple high-frequency transformers by using the intermediate voltage nodes of the converter. On the other hand, a special formation of the MMCCC can exhibit dc outputs offering limited isolation without using any isolation transformer. This modified version can produce a high conversion ratio from a limited number of components and has several useful applications in providing power to multiple low-voltage loads in a hybrid or electric automobile. This paper will investigate the origin of generating ac outputs from the MMCCC and shows how the transformer-free version can be modified to create limited isolation from the circuit. In addition, this paper will compare various modified forms of the MMCCC topology with existing dc-dc converter circuits from compactness and component utilization perspectives.

  16. Improving Power Converter Reliability

    DEFF Research Database (Denmark)

    Ghimire, Pramod; de Vega, Angel Ruiz; Beczkowski, Szymon

    2014-01-01

    The real-time junction temperature monitoring of a high-power insulated-gate bipolar transistor (IGBT) module is important to increase the overall reliability of power converters for industrial applications. This article proposes a new method to measure the on-state collector?emitter voltage...... of a high-power IGBT module during converter operation, which may play a vital role in improving the reliability of the power converters. The measured voltage is used to estimate the module average junction temperature of the high and low-voltage side of a half-bridge IGBT separately in every fundamental...... is measured in a wind power converter at a low fundamental frequency. To illustrate more, the test method as well as the performance of the measurement circuit are also presented. This measurement is also useful to indicate failure mechanisms such as bond wire lift-off and solder layer degradation...

  17. Definition of Power Converters

    CERN Document Server

    Bordry, F

    2015-01-01

    The paper is intended to introduce power conversion principles and to define common terms in the domain. The concept s of sources and switches are defined and classified. From the basic laws of source interconnections, a generic method of power converter synthesis is presented. Some examples illustrate this systematic method. Finally, the commutation cell and soft commuta tion are introduced and discussedd.

  18. A novel power control strategy of Modular Multi-level Converter in HVDC-AC hybrid transmission systems for passive networks

    DEFF Research Database (Denmark)

    Hu, Zhenda; Wu, Rui; Yang, Xiaodong;

    2014-01-01

    With the development of High Voltage DC Transmission (HVDC) technology, there will be more and more HVDC-AC hybrid transmission system in the world. A basic challenge in HVDC-AC hybrid transmission systems is to optimize the power sharing between DC and AC lines, which become more severe when...... supplying power for passive networks, as the surplus power can only flow back to power grids through the AC lines. To deal with this issue, it demands not only accurate system capability design but also flexible power control strategy of power converters in VSC-HVDC. This paper proposes a novel power...

  19. Design of High-Voltage Switch-Mode Power Amplifier Based on Digital-Controlled Hybrid Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Yanbin Hou

    2016-01-01

    Full Text Available Compared with conventional Class-A, Class-B, and Class-AB amplifiers, Class-D amplifier, also known as switching amplifier, employs pulse width modulation (PWM technology and solid-state switching devices, capable of achieving much higher efficiency. However, PWM-based switching amplifier is usually designed for low-voltage application, offering a maximum output voltage of several hundred Volts. Therefore, a step-up transformer is indispensably adopted in PWM-based Class-D amplifier to produce high-voltage output. In this paper, a switching amplifier without step-up transformer is developed based on digital pulse step modulation (PSM and hybrid multilevel converter. Under the control of input signal, cascaded power converters with separate DC sources operate in PSM switch mode to directly generate high-voltage and high-power output. The relevant topological structure, operating principle, and design scheme are introduced. Finally, a prototype system is built, which can provide power up to 1400 Watts and peak voltage up to ±1700 Volts. And the performance, including efficiency, linearity, and distortion, is evaluated by experimental tests.

  20. Enhanced static ground power unit based on flying capacitor based h-bridge hybrid active-neutral-point-clamped converter

    DEFF Research Database (Denmark)

    Abarzadeh, Mostafa; Madadi Kojabadi, Hossein; Deng, Fujin

    2016-01-01

    Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages...... improvement in GPU dynamic performances. This progress is achieved by utilising the proposed FCHB converter to an ANPC converter and using the suggested modulation method. This leads to diminish the size and cost and enhance the feasibility and reliability of the converter. Applying the proposed modulation...

  1. A Bidirectional, Triple-Voltage DC-DC Converter for Hybrid and Fuel Cell Vehicle Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2007-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may employ three voltage (14V, 42V and high voltage (HV)) nets. These will be necessary to accommodate existing 14V loads as well as efficiently handle new heavy loads at the 42V net and an electrical traction drive on the HV bus. A low-cost bi-directional dc-dc converter was proposed in (10) for connecting the three voltage nets. The converter consists of two half-bridges and a high-frequency transformer; thus minimizing the number of switching devices and their associated gate driver components. One salient feature is that the half-bridge on the 42V bus is also utilized to provide the 14V bus by operating its duty ratio around an atypical value of 1/3. This eliminates the need for an additional 14V/42V converter. Moreover, it makes use of the parasitic capacitance of the switches and the transformer leakage inductance for soft-switching; no extra active switches or passive resonant components are required. The use of half-bridges makes the topology suitable for interleaved multi-phase configurations as a means to increase the power level because the capacitor legs can be shared. This paper presents simulation and experimental results on an interleaved two-phase arrangement rated at 4.5 kW. Also discussed are the benefits of operating with the atypical duty ratio on the transformer and a preferred multi-phase configuration to minimize capacitor ripple currents.

  2. Unity power factor converter

    Science.gov (United States)

    Wester, Gene W. (Inventor)

    1980-01-01

    A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.

  3. Power Converters Secure Electronics in Harsh Environments

    Science.gov (United States)

    2013-01-01

    In order to harden power converters for the rigors of space, NASA awarded multiple SBIR contracts to Blacksburg, Virginia-based VPT Inc. The resulting hybrid DC-DC converters have proven valuable in aerospace applications, and as a result the company has generated millions in revenue from the product line and created four high-tech jobs to handle production.

  4. Resonant power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2012-01-01

    This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit

  5. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-03-01

    Full Text Available This paper proposes a novel high-gain three-port power converter with fuel cell (FC, battery sources and stacked output for a hybrid electric vehicle (HEV connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, which makes it suitable for interfacing with the HEV and dc-microgrid. On the basis of the charging and discharging states of the battery storage device, two power operation modes are defined. The proposed power converter comprises only one boost inductor integrated with a flyback transformer; the boost and flyback circuit output terminals are stacked to increase the output voltage gain and reduce the voltage stress on the power devices. This paper presents the circuit configuration, operating principle, and steady-state analysis of the proposed converter, and experiments conducted on a laboratory prototype are presented to verify its effectiveness.

  6. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... control methods. Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems. Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well...

  7. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    Science.gov (United States)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  8. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  9. Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Application

    Science.gov (United States)

    2006-06-13

    34Approved for public release: distribution is unlimited" Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Applications Sonya...requirements for DC-DC converters for electric and hybrid vehicles . This paper introduces a bidirectional, isolated DC-DC converter for medium power...the design and build of a medium power DC-DC converter . Key words: Power Converter , DC-DC, Hybrid Electric Vehicle , Battery, Galvanically Isolation

  10. Stirling Converters For Solar Power

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1993-01-01

    Two designs expected to meet long-term goals for performance and cost. Proposed for advanced systems to convert solar thermal power to electrical power. Each system, designed to operate with 11-m-diameter paraboloidal reflector, includes solar-energy receiver, liquid-metal heat-transport subsystem, free-piston Stirling engine, cooling subsystem, alternator or generator coupled directly or indirectly to commercial electric-power system, and control and power-conditioning circuitry. System converts approximately 75 kW of input solar thermal power falling on collector to about 25 kW of output electrical power.

  11. Power converter simulation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ghazy, M.A.

    1989-01-01

    There has been a great deal of progress made in computer aided design and analysis in the power electronic field. Many of the simulation packages are inefficient and time consuming in simulating switching converters. This thesis proposes an efficient, simple, general simulation approach to simulate any power converter with less computation time and space requirements on computer. In this approach the equations of power converters are formulated using network topology. In this thesis several procedures have been explained for the steady-state computation of power electronic circuits. Also, the steady-state analyses have been accomplished by a new technique called Fourier series method. For a complete system consisting of converters, filters, and electric machines, the simulation is complicated if a frequency domain technique is used. This thesis introduces a better technique which decouples the system into subsystems and simulates it in the time domain. The design of power converters using optimization techniques is presented in this thesis. Finally, the theory of Variable Structured Systems has been applied to power converters. Sliding mode control for DC-DC and DC-AC power converters is introduced as a tool to accomplish desired characteristics.

  12. DSP controlled power converter

    OpenAIRE

    Chan, CH; Pong, MH

    1995-01-01

    A digital controller is designed and implemented by a Digital Signal Processor (DSP) to replace the Pulse Width Modulator (PWM) and error amplifier compensation network in a two wheeler forward converter. The DSP controller is designed in three approaches: a) Discretization of analog controller - the design is based on the transfer function of the error amplifier compensation network. b) Digital PID controller design - the design is based on the general form of the pulse transfer function of ...

  13. Radiation tolerant power converter controls

    CERN Document Server

    Todd, B; King, Q; Uznanski, S

    2012-01-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to signifi...

  14. 基于混合动力型内燃机车主变流器的研制%Traction Converter Development of Hybrid-power Diesel Locomotive

    Institute of Scientific and Technical Information of China (English)

    饶沛南; 柴多; 张义

    2012-01-01

    介绍了混合动力型内燃机车主变流器的性能以及主要技术参数,通过动力蓄电池和柴油发电机共同实现机车牵引,解决传统内燃机车存在的不足.详细介绍该主变流器的工作原理及研发过程,阐述了主变流器的主要特点和创新点.%Performance and main technic parameters of hybrid-power diesel locomotive traction converters were introduced, which overcame shortages of traditional diesel locomotive by using both power battery and diesel generator for traction. Operating principle, development process, main characteristics and innovation of traction converters were described particularly.

  15. A PWM Buck Converter With Load-Adaptive Power Transistor Scaling Scheme Using Analog-Digital Hybrid Control for High Energy Efficiency in Implantable Biomedical Systems.

    Science.gov (United States)

    Park, Sung-Yun; Cho, Jihyun; Lee, Kyuseok; Yoon, Euisik

    2015-12-01

    We report a pulse width modulation (PWM) buck converter that is able to achieve a power conversion efficiency (PCE) of > 80% in light loads 100 μA) for implantable biomedical systems. In order to achieve a high PCE for the given light loads, the buck converter adaptively reconfigures the size of power PMOS and NMOS transistors and their gate drivers in accordance with load currents, while operating at a fixed frequency of 1 MHz. The buck converter employs the analog-digital hybrid control scheme for coarse/fine adjustment of power transistors. The coarse digital control generates an approximate duty cycle necessary for driving a given load and selects an appropriate width of power transistors to minimize redundant power dissipation. The fine analog control provides the final tuning of the duty cycle to compensate for the error from the coarse digital control. The mode switching between the analog and digital controls is accomplished by a mode arbiter which estimates the average of duty cycles for the given load condition from limit cycle oscillations (LCO) induced by coarse adjustment. The fabricated buck converter achieved a peak efficiency of 86.3% at 1.4 mA and > 80% efficiency for a wide range of load conditions from 45 μA to 4.1 mA, while generating 1 V output from 2.5-3.3 V supply. The converter occupies 0.375 mm(2) in 0.18 μm CMOS processes and requires two external components: 1.2 μF capacitor and 6.8 μH inductor.

  16. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  17. PWM Converter Power Density Barriers

    Science.gov (United States)

    Kolar, Johann W.; Drofenik, Uwe; Biela, Juergen; Heldwein, Marcelo; Ertl, Hans; Friedli, Thomas; Round, Simon

    Power density of power electronic converters has roughly doubled every 10 years since 1970. Behind this trajectory is the continuous advancement of power semiconductor devices, which has increased the converter switching frequencies by a factor of 10 every decade. However, today's cooling concepts and passive components are major barriers for a continuation of this trend. To identify such technological barriers, this paper investigates the volume of the cooling system and passive components as a function of the switching frequency for power electronic converters and determines the switching frequency that minimizes the total volume. A power density limit of 28kW/dm3 at 300kHz is calculated for an isolated DC-DC converter, 44kW/dm3 at 820kHz for a three-phase unity power factor PWM rectifier, and 26kW/dm3 at 21kHz for a sparse matrix converter. For single-phase AC-DC conversion a general limit of 35kW/dm3 results from the DC link capacitor. These power density limits highlight the need to broaden the scope of power electronics research to include cooling systems, high frequency electromagnetics, interconnection and packaging technology, and multi-domain modelling and simulation to ensure further advancement along the power density trajectory.

  18. Integrated power electronic converters and digital control

    CERN Document Server

    Emadi, Ali; Nie, Zhong

    2009-01-01

    Non-isolated DC-DC ConvertersBuck ConverterBoost ConverterBuck-Boost ConverterIsolated DC-DC ConvertersFlyback ConverterForward ConverterPush-Pull ConverterFull-Bridge ConverterHalf-Bridge ConverterPower Factor CorrectionConcept of PFCGeneral Classification of PFC CircuitsHigh Switching Frequency Topologies for PFCApplication of PFC in Advanced Motor DrivesIntegrated Switched-Mode Power ConvertersSwitched-Mode Power SuppliesThe Concept of Integrated ConverterDefinition of Integrated Switched-Mode Power Supplies (ISMPS)Boost-Type Integrated TopologiesGeneral Structure of Boost-Type Integrated T

  19. Radiation tolerant power converter controls

    Science.gov (United States)

    Todd, B.; Dinius, A.; King, Q.; Uznanski, S.

    2012-11-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to significantly increased radiation induced effects in materials close to the accelerator, including the FGC. Recent radiation tests indicate that the current FGC would not be sufficiently reliable. A so-called FGClite is being designed to work reliably in the radiation environment in the post-LS1 era. This paper outlines the concepts of power converter controls for machines such as the LHC, introduces the risks related to radiation and a radiation tolerant project flow. The FGClite is then described, with its key concepts and challenges: aiming for high reliability in a radiation field.

  20. Advanced power electronics converters PWM converters processing AC voltages

    CERN Document Server

    dos Santos, Euzeli

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book.  Introduces a new method to present power electronics converters called Power Blocks Geometry. Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters. Offers a comprehensive set of simulation results to help understand the circuits presented throughout the book

  1. Hybrid power source

    Science.gov (United States)

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  2. Low arc drop hybrid mode thermionic converter

    Science.gov (United States)

    Shimada, K.

    1977-01-01

    The hybrid mode operation for the reduction of plasma drops is being investigated. This report discusses the results obtained from two molybdenum emitter converters. One converter had a molybdenum collector and the other a nickel collector. The molybdenum collector converter was operated in a hybrid mode (at an interelectrode distance of 1.7 mm) and produced a minimum barrier index of 1.96 eV at an emitter temperature of 1500 K. The arc drop was calculated to be 0.14 eV, using the published results for a molybdenum collector. On the other hand, the nickel collector converter was operated in a conventional ignited mode (at an interelectrode distance of 0.5 mm) and produced a minimum barrier index of 2.1 eV at an emitter temperature of 1700 K. It is tentatively concluded that a large-gap operation of the hybrid mode converter permits the diffusion of cesium ions to a distance in the order of one millimeter for an effective neutralization of electron space charge. By employing a low work function collector (1.55 eV) in a hybrid mode converter with an arc drop of 0.14 eV, it appears that a barrier index as low as 1.69 eV could be achieved.

  3. Early Oscillation Detection Technique for Hybrid DC/DC Converters

    Science.gov (United States)

    Wang, Bright L.

    2011-01-01

    Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s

  4. Ecologically Optimal Solution of Power Semiconductors Converters

    Directory of Open Access Journals (Sweden)

    Ivan Lokseninec

    2003-01-01

    Full Text Available One of the relevant scientific programs of Department of Power Electrical Systems is research of ecologically optimal topologies main circuits of power converters. This paper presents some methods how to reduce unfavourable influences of power converters on the grid. The achieved results were applieed in praxis, especially in the power converters produced by Electrotechnical Research and Projecting Institute in Nova Dubnica.

  5. Bidirectional dc-to-dc Power Converter

    Science.gov (United States)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  6. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault......-tolerant adjustable speed drive systems; mission profile oriented reliability design in wind turbine and photovoltaic systems; reliability of power conversion systems in photovoltaic applications; power supplies for computers; and high-power converters. Reliability of Power Electronic Converter Systems is essential...... reading for researchers, professionals and students working with power electronics and their applications, particularly those specializing in the development and application of power electronic converters and systems....

  7. Hybrid Magnetics and Power Applications

    DEFF Research Database (Denmark)

    Mo, Wai Keung; Paasch, Kasper

    A hybrid magnetic approach, merging two different magnetic core properites such as ferrite and iron powder cores, is an effective solution for power converter applications. It can offer similar magnetic properties to that of magnetic powder cores but showing less copper loss than powder cores...

  8. Hybrid-free Josephson Parametric Converter

    Science.gov (United States)

    Frattini, N. E.; Narla, A.; Sliwa, K. M.; Shankar, S.; Hatridge, M.; Devoret, M. H.

    A necessary component for any quantum computation architecture is the ability to perform efficient quantum operations. In the microwave regime of superconducting qubits, these quantum-limited operations can be realized with a non-degenerate Josephson junction based three-wave mixer, the Josephson Parametric Converter (JPC). Currently, the quantum signal of interest must pass through a lossy 180 degree hybrid to be presented as a differential drive to the JPC. This hybrid therefore places a limit on the quantum efficiency of the system and also increases the device footprint. We present a new design for the JPC eliminating the need for any external hybrid. We also show that this design has nominally identical performance to the conventional JPC. Work supported by ARO, AFOSR and YINQE.

  9. Periodic Control of Power Electronic Converters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Danwei, Wang; Yang, Yongheng

    Advanced power electronic converters convert, control and condition electricity. Power converters require control strategies for periodic signal compensation to assure good power quality and stable power system operation. This comprehensive text presents the most recent internal model principle...... based periodic control technology, which offers the perfect periodic control solution for power electronic conversion. It also provides complete analysis and synthesis methods for periodic control systems, and plenty of practical examples to demonstrate the validity of proposed periodic control...... technology for power converters. It proposes a unified framework for housing periodic control schemes for power converters, and provides a general proportional-integral-derivative control solution to periodic signal compensation in extensive engineering applications. Periodic Control of Power Electronic...

  10. Development of a Modular Power Converter

    Science.gov (United States)

    Stepanov, A.; Biesenieks, L.; Sokolovs, A.; Galkin, I.

    2009-01-01

    This report describes the most important details of elaboration of a versatile power module that can be utilized as a part of various converters. Two or more modules connected together can form a frequency converter or multilevel converter or 3-phase inverter/rectifier etc. Initially the module was developed for fast prototyping of uninterruptible power supplies and energy systems with alternative energy sources. The module can be used also as a basis for laboratory equipment of the power electronics course.

  11. Interface of magnetoresistive converter of active power

    Directory of Open Access Journals (Sweden)

    A. I. Vytiaganets

    2009-10-01

    Full Text Available The vehicle and programmatic interfaces of magnetoresistive converter of active power are considered, the results of statistical treatment of the multiple measuring of active-power are analysed.

  12. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability. ...

  13. High Precision Current Measurement for Power Converters

    CERN Document Server

    Cerqueira Bastos, M

    2015-01-01

    The accurate measurement of power converter currents is essential to controlling and delivering stable and repeatable currents to magnets in particle accelerators. This paper reviews the most commonly used devices for the measurement of power converter currents and discusses test and calibration methods.

  14. Retrofits Convert Gas Vehicles into Hybrids

    Science.gov (United States)

    2012-01-01

    Successful space missions can rarely be attributed to a single thing. Rather, they are the result of a system of systems: integrated elements functioning effectively in their individual roles and together with related components, then those systems interacting with and supporting other systems to form a collaborative whole - from the spacecraft itself to the engineering and research teams that design and build it. An example is found in spacecraft power systems. Unlike a gas-powered car or a battery-powered laptop, most spacecraft are powered by multiple energy sources - such as photovoltaic panels, fuel cells, and batteries - working in tandem to ensure the spacecraft functions throughout the course of a mission. As with any system, the appropriate combination of elements and the method of their management are key to high performance and efficiency. One initiative at Glenn Research Center, the Hybrid Power Management (HPM) program, focused on joining new and mature technologies for optimal power systems applications in space and on Earth, with the goal not only to develop ultra-efficient space power systems, but to advance HPM to address global energy issues. The HPM program emerged from Glenn s long history of electric vehicle research dating back to the 1970s, including the NASA Hybrid Electric Transit Bus (HETB) project in the 1990s, which was the largest vehicle to use supercapacitor energy storage.

  15. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...

  16. A novel power converter for photovoltaic applications

    Science.gov (United States)

    Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang

    A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.

  17. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  18. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  19. Selective harmonic control for power converters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede;

    2014-01-01

    This paper proposes an Internal Model Principle (IMP) based Selective Harmonic Controller (SHC) for power converters. The proposed SHC offers an optimal control solution for power converters to mitigate power harmonics. It makes a good trade-off among cost, complexity and performance. It has high...... accuracy and fast transient response, and it is cost-effective, easy for real-time implementation, and compatible for design rules-of-thumb. An application on a three-phase PWM converter has confirmed the effectiveness of the proposed control scheme in terms of harmonic mitigation....

  20. CMOS integrated switching power converters

    CERN Document Server

    Villar-Pique, Gerard

    2011-01-01

    This book describes the structured design and optimization of efficient, energy processing integrated circuits. The approach is multidisciplinary, covering the monolithic integration of IC design techniques, power electronics and control theory. In particular, this book enables readers to conceive, synthesize, design and implement integrated circuits with high-density high-efficiency on-chip switching power regulators. Topics covered encompass the structured design of the on-chip power supply, efficiency optimization, IC-compatible power inductors and capacitors, power MOSFET switches and effi

  1. Power electronics converters and regulators

    CERN Document Server

    Dokić, Branko L

    2015-01-01

    This book is the result of the extensive experience the authors gained through their year-long occupation at the Faculty of Electrical Engineering at the University of Banja Luka. Starting at the fundamental basics of electrical engineering, the book guides the reader into this field and covers all the relevant types of converters and regulators. Understanding is enhanced by the given examples, exercises and solutions. Thus this book can be used as a textbook for students, for self-study or as a reference book for professionals.

  2. Reliability of power electronic converter systems

    CERN Document Server

    Chung, Henry Shu-hung; Blaabjerg, Frede; Pecht, Michael

    2016-01-01

    This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of Power Electronic Converter Systems (PECS) at different levels of complexity.

  3. Bidirectional power converter control electronics

    Science.gov (United States)

    Mildice, J. W.

    1987-01-01

    The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.

  4. Optoelectronics Interfaces for Power Converters

    Directory of Open Access Journals (Sweden)

    Ovidiu Neamtu

    2009-05-01

    Full Text Available The most important issue interface is galvanicseparation between the signal part and the power board.Standards in the field have increased continuouslyelectro-security requirements on the rigidity of thedielectric and insulation resistance. Recommendations forclassical solutions require the use of galvanic separationoptoelectronics devices. Interfacing with a PC or DSP -controller is a target of interposition optical signals viathe power hardware commands.

  5. Autonomous Control of Interlinking Converter With Energy Storage in Hybrid AC–DC Microgrid

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Li, Ding; Chai, Yi Kang

    2013-01-01

    The coexistence of ac and dc subgrids in a hybrid microgrid is likely given that modern distributed sources can either be ac or dc. Linking these subgrids is a power converter, whose topology should preferably be not too unconventional. This is to avoid unnecessary compromises to reliability......, simplicity, and industry relevance of the converter. The desired operating features of the hybrid microgrid can then be added through this interlinking converter. To demonstrate, an appropriate control scheme is now developed for controlling the interlinking converter. The objective is to keep the hybrid...... microgrid in autonomous operation with active power proportionally shared among its distributed sources. Power sharing here should depend only on the source ratings and not their placements within the hybrid microgrid. The proposed scheme can also be extended to include energy storage within...

  6. LHC Power Converters: A Precision Game

    CERN Multimedia

    2001-01-01

    The LHC test-bed, String 2, is close to commissioning and one important element to get a first chance to prove what it can do is the power converter system. In String 2 there are 16 converters, in the full LHC there will be almost 1800. This article takes a look at what is so special about the power converters for the LHC. The 13 000 Amps power converters with the watercooled cables going to the String 2 feedboxes. The LHC's superconducting magnets will be the pinnacle of high technology. But to work, they'll need the help of high-precision power converters to supply them with extremely stable DC current. Perfection will be the name of the game, with an accuracy of just 1-2 parts per million (ppm) required. LEP, for the sake of comparison, could live with 10-20 ppm. The LHC's power converters will be very different from those of LEP or the SPS since the new accelerator's magnets are mostly superconducting. That means that they require much higher currents at a lower voltage since superconductors have no re...

  7. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components......, and damps the possible harmonic resonance. Simulation results demonstrate that the converter system can transfer the real power by following a desired reference power for a variable speed wind power conversion system to effectively extract the renewable energy and also enhance the power quality...

  8. Materials technology for Stirling space power converters

    Science.gov (United States)

    Baggenstoss, William; Mittendorf, Donald

    1992-01-01

    This program was conducted in support of the NASA LeRC development of the Stirling power converter (SPC) for space power applications. The objectives of this contract were: (1) to perform a technology review and analyses to support the evaluation of materials issues for the SPC; (2) to evaluate liquid metal compatibility issues of the SPC; (3) to evaluate and define a transient liquid phase diffusion bonding (TLPDB) process for the SPC joints to the Udimet 720 heater head; and (4) to evaluate alternative (to the TLPDB) joining techniques. In the technology review, several aspects of the current Stirling design were examined including the power converter assembly process, materials joining, gas bearings, and heat exchangers. The supporting analyses included GLIMPS power converter simulation in support of the materials studies, and system level analysis in support of the technology review. The liquid metal compatibility study evaluated process parameters for use in the Stirling power converter. The alternative joining techniques study looked at the applicability of various joining techniques to the Stirling power converter requirements.

  9. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most......A power converter is needed in almost all kinds of renewable energy systems and drive systems. It is used both for controlling the renewable source and for interfacing with the load, which can be grid-connected or working in standalone mode. Further, it drives the motors efficiently. Increasing...... frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...

  10. High-power converters and AC drives

    CERN Document Server

    Wu, Bin

    2017-01-01

    This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.

  11. Power system applications for PASC converter systems

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M.K. [Pacific Northwest Lab., Richland, WA (United States); Johnson, R.M. [Montana State Univ., Bozeman, MT (United States)

    1994-04-01

    This paper shows, using computer EMTP simulations, some preliminary results of applying pulse amplitude synthesis and control (PASC) technology to single-source level voltage converter system. The method can be applied to any single terminal pair source with appropriate modifications in power extraction interface and computer control program to match source and load impedance characteristics. The PASC realization as discussed here employs banks of transformers, one bank per phase, in which the primaries are connected in parallel through a switch matrix to the dc source. Two opposite polarity primaries per transformer are pulsed alternatively in time to produce an oscillatory sinusoidal output waveform. PASC conversion system capabilities to produce both leading and lagging power factor power output in single-phase and three-phase {Delta} or Y configurations are illustrated. EMTP simulations are used to demonstrate the converter capabilities. Also included are discussions regarding harmonics and potential control strategies to adapt the converter to an application or to minimize harmonics.

  12. Self-oscillating resonant power converter

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to resonant power converters and inverters comprising a self-oscillating feedback loop coupled from a switch output to a control input of a switching network comprising one or more semiconductor switches. The self-oscillating feedback loop sets a switching frequency...... of the power converter and comprises a first intrinsic switch capacitance coupled between a switch output and a control input of the switching network and a first inductor. The first inductor is coupled in-between a first bias voltage source and the control input of the switching network and has...... a substantially fixed inductance. The first bias voltage source is configured to generate an adjustable bias voltage applied to the first inductor. The output voltage of the power converter is controlled in a flexible and rapid manner by controlling the adjustable bias voltage....

  13. Component technology for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.

  14. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    , and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often......The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...... determined by the performance at the system worst case operating point which is usually at minimum input voltage and maximum power. Except for the non-regulating V6 converters, all published solutions exhibit a very significant drop in conversion efficiency at minimum input voltage and maximum output power...

  15. Low-power variable frequency PFC converters

    Energy Technology Data Exchange (ETDEWEB)

    Li Yani; Yang Yintang; Zhu Zhangming, E-mail: yanili@mail.xidian.edu.c [Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices of the Ministry of Education, Institute of Microelectronics, Xidian University, Xi' an 710071 (China)

    2010-01-15

    Based on the SinoMOS 1 {mu}m 40 V CMOS process, a novel power factor contention (PFC) converter with a low-power variable frequency function is presented. The circuit introduces a multi-vector error amplifier and a programmable oscillator to achieve frequency modulation, which provides a rapid dynamic response and precise output voltage clamping with low power in the entire load. According to the external load variation, the system can modulate the circuit operating frequency linearly, thereby ensuring that the PFC converter can work in frequency conversion-mode. Measured results show that the normal operating frequency of the PFC converter is 5-6 kHz, the start-up current is 36 {mu}A, the stable operating current is only 2.43 mA, the efficiency is 97.3%, the power factor (PF) is 0.988, THD is 3.8%, the load adjust rate is 3%, and the linear adjust rate is less than 1%. Both theoretical and practical results reveal that the power consumption of the whole supply system is reduced efficiently, especially when the load varies. The active die area of the PFC converter chip is 1.61 x 1.52 mm{sup 2}. (semiconductor integrated circuits)

  16. A Two-stage DC-DC Converter for the Fuel Cell-Supercapacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    A wide input range multi-stage converter is proposed with the fuel cells and supercapacitors as a hybrid system. The front-end two-phase boost converter is used to optimize the output power and to reduce the current ripple of fuel cells. The supercapacitor power module is connected by push......-pull-forward half bridge (PPFHB) converter with coupled inductors in the second stage to handle the slow transient response of the fuel cells and realize the bidirectional power flow control. Moreover, this cascaded structure simplifies the power management. The control strategy for the whole system is analyzed...

  17. Transcutaneous optical power converter for implantable devices

    Science.gov (United States)

    Tamura, Toshiyo; Shamsuddin, A. K. M.; Kawarada, Atsushi; Togawa, Tatsuo; Oberg, P. Ake

    1994-02-01

    An optical transcutaneous power converter has been developed for the power supply of implanted devices. It consists of a light source, optical fiber system and a photo detector. The light source is either a halogen lamp or continuous high-power laser diode which illuminated skin surface. The light penetrates through the skin to the solar cells. The preliminary experiments with a slice of tissue in between the light source and the solar cells showed that the power transfer efficiency was 40% in comparison to direct illumination of the solar cells. The maximum electric power obtained with a slice of tissue simulating the skin was about 8 mW at a laser diode run at a power of 100 mW. The electric power transferred is enough to supply low power consuming CMOS circuits.

  18. EMI filter techniques in power electronic converters

    Directory of Open Access Journals (Sweden)

    Fredy Edimer Hoyos Velasco

    2012-04-01

    Full Text Available This paper presents the results of EMI reduction techniques applied to power electronic converters. The techniques applied included shielding control and power signals, separating power system references regarding reference for instrumentation and measurement signals, implementing analog filters and configuring an appropriate switch trigger system for electronic power to decrease shifting EMI emissions to the maximum. This paper presents the results before and after applying the techniques to reduce interference. The results were also veryfied by using two real time control strategies rapid control prototyping (RCP.

  19. The Power of Hybridization

    CERN Document Server

    CERN. Geneva

    2011-01-01

    Programming languages always seem to do some things well but not others: Python punts when it comes to user interfaces, Java’s artificial complexity prevents rapid development and produces tangles, and it will be awhile before we see benefits from C++ concurrency work. The cognitive load of languages and their blind spots increases the cost of experimentation, impeding your ability to fail fast and iterate. If you use a single language to solve your problem, you are binding yourself to the worldview limitations and the mistakes made by the creator of that language. Consider increasing your wiggle room by crossing language boundaries, complementing a language that is powerful in one area with a different language powerful in another. Language hybridization can speed development to quickly discover your real problems, giving you more time to fix them. After making a case for hybridizing your thinking in general, I will present a number of simple examples; first showing the benefits of using other languages...

  20. Grid-connected Photovoltaic Micro-inverter with New Hybrid Control LLC Resonant Converter

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Qingbo, Ke;

    2016-01-01

    A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse...... power of 250W and output voltage of 220VAC/50Hz. The experiment shows that the peak efficiency of the PVMI is 95.5%, where efficiency of LLC converter is up to 97.7%, and the MPPT accuracy is more than 99%. Thus the validity of the proposed system structure, design and control method is verified....

  1. Hybrid battery with bi-directional DC/DC converter

    Directory of Open Access Journals (Sweden)

    DUDRIK Jaroslav

    2010-05-01

    Full Text Available Bi-directional buck-boost DC/DC converterfor hybrid battery is described in this paper. The firstpart of the paper is aimed at concept of hybrid battery;main advance compared to conventional accumulatoris explained there. Control circuit with UC3637 andpower circuit of the converter are described in thesecond part of the paper. Experimental results frommeasuring of converter are mentioned in the last part.

  2. Hybrid Power Management (HPM)

    Science.gov (United States)

    Eichenberg, Dennis J.

    2007-01-01

    The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.

  3. Hybrid power semiconductor

    Science.gov (United States)

    Chen, D. Y.

    1985-10-01

    The voltage rating of a bipolar transistor may be greatly extended while at the same time reducing its switching time by operating it in conjunction with FETs in a hybrid circuit. One FET is used to drive the bipolar transistor while the other FET is connected in series with the transistor and an inductive load. Both FETs are turned on or off by a single drive signal of load power, the second FET upon ceasing conductions, rendering one power electrode of the bipolar transistor open. Means are provided to dissipate currents which flow after the bipolar transistor is rendered nonconducting.

  4. Buck-Boost/Forward Hybrid Converter for PV Energy Conversion Applications

    OpenAIRE

    2014-01-01

    This paper presents a charger and LED lighting (discharger) hybrid system with a PV array as its power source for electronic sign indicator applications. The charger adopts buck-boost converter which is operated in constant current mode to charge lead-acid battery and with the perturb and observe method to extract maximum power of PV arrays. Their control algorithms are implemented by microcontroller. Moreover, forward converter with active clamp circuit is operated in voltage regulation cond...

  5. Passive components used in power converters

    CERN Document Server

    Rufer, A; Barrade, P

    2006-01-01

    In power converters, passive components play an important role, and have in general specific nature and properties. The goal of this tutorial is to give an overview, first on inductive components for power conversion, and second on dedicated power capacitors. In a third part, new components— supercapacitors—will be presented. Generally, inductors for power applications must be custom designed. In this tutorial, the most important effects encountered when realising inductive components will be presented in the first part, without entering into the detailed design of such components. For that purpose, the referenced documents that have served as a base for this tutorial must be consulted [1], [2], and mainly [3]. The second part of this tutorial (Capacitors used in power electronics) is dedicated to power capacitors. Unlike inductors, capacitors cannot be specifically designed, but must be selected from a manufacturer’s list of components. Here, the documentation corresponds to a subset of Ref. [4] that h...

  6. Grid-connected Photovoltaic Micro-inverter with New Hybrid Control LLC Resonant Converter

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Qingbo, Ke;

    2016-01-01

    A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse-frequency modulat......A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse......-frequency modulation (PFM) and phase-shift pulse-width modulation (PS-PWM) is employed on a full-bridge LLC dc-dc converter, in order to achieve high efficiency when PV output voltage varies in a wide range. Moreover, a maximum power point tracking (MPPT) method based on power perturbation is implemented in the dc......-ac inverter. Therefore, the complexity of regulating LLC converter can be reduced effectively, and efficiency optimal design can be carried out through the proposed designing procedure for the resonant tank of LLC converter. Finally, a prototype of the proposed PV micro-inverter (PVMI) is developed with rated...

  7. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    The large scale integration of renewable energy sources requires suitable energy storage systems to balance energy production and demand in the electrical grid. Bidirectional fuel cells are an attractive technology for energy storage systems due to the high energy density of fuel. Compared...... entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies...... to traditional unidirectional fuel cell, bidirectional fuel cells have increased operating voltage and current ranges. These characteristics increase the stresses on dc-dc and dc-ac converters in the electrical system, which require proper design and advanced optimization. This work is part of the PhD project...

  8. The CERN Control Protocol for power converters

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, I.; Benincasa, G.; Berrig, O.; Brun, R.; Burla, P.; Coudert, G.; Pett, J.G.; Pittin, R.; Royer, J.P.; Trofimov, N. (CERN, Geneva (Switzerland))

    1993-08-01

    The Control Protocols provide, for a class of similar devices, a unique and standard access procedure from the control system. Behavioral models have been proposed for the different kinds of Power Converters and the corresponding functionalities, with their parameters, variables and attributes have been identified. The resulting data structures have been presented using the ISO ASN.1 metalanguage, that permits universal representation independent of any computer environment. Implementations in the UNIX-based CERN accelerator control systems are under development.

  9. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    , and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. In chapter 2, a review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning...

  10. Model of Bi-directional Flyback Converter for Hybrid AC/DC Distribution System

    Directory of Open Access Journals (Sweden)

    Riku Pasonen

    2013-12-01

    Full Text Available In this article, a simulation model and concept of two switch bi-directional isolated DC/DC converter is presented. Converter is based on flyback converter type. Also control method for voltage regulation with bi-directional power transfer is presented. Target application of the proposed converter was selected to be a hybrid AC/DC distribution system concept of which was briefly described. The requirement of galvanic isolation in the hybrid AC/DC concept comes from use of shared neutral wire; DC current runs with unbalanced part of AC current in neutral wire. Without galvanic isolation grounded neutral would cause short circuit if DC/DC converter is connected to three phase rectifier or inverter. Simulation was carried out with PSCAD electromagnetic transient simulator.

  11. Modular Power Converters for PV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need

  12. Modular Power Converters for PV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need

  13. Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yen-Ching Wang

    2016-06-01

    Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.

  14. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  15. CCLIBS: The CERN Power Converter Control Libraries

    CERN Document Server

    AUTHOR|(SzGeCERN)404953; Lebioda, Krzysztof Tomasz; Magrans De Abril, Marc; Martino, Michele; Murillo Garcia, Raul; Nicoletti, Achille

    2015-01-01

    Accurate control of power converters is a vital activity in large physics projects. Several different control scenarios may coexist, including regulation of a circuit’s voltage, current, or field strength within a magnet. Depending on the type of facility, a circuit’s reference value may be changed asynchronously or synchronously with other circuits. Synchronous changes may be on demand or under the control of a cyclic timing system. In other cases, the reference may be calculated in real-time by an outer regulation loop of some other quantity, such as the tune of the beam in a synchrotron. The power stage may be unipolar or bipolar in voltage and current. If it is unipolar in current, it may be used with a polarity switch. Depending on the design, the power stage may be controlled by a firing angle or PWM duty-cycle reference, or a voltage or current reference. All these cases are supported by the CERN Converter Control Libraries (CCLIBS). These open-source C libraries include advanced reference generati...

  16. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...... and second resonant DC-DC power converters. The first and second inductors are corresponding components of the first and second resonant DC-DC power converters....

  17. Power converters for medium voltage networks

    CERN Document Server

    Islam, Md Rabiul; Zhu, Jianguo

    2014-01-01

    This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book's individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration te

  18. Dead time optimization method for power converter

    Science.gov (United States)

    Deselaers, C.; Bergmann, U.; Gronwald, F.

    2013-07-01

    This paper introduces a method for dead time optimization in variable speed motor drive systems. The aim of this method is to reduce the conduction time of the freewheeling diode to a minimum without generation of cross conduction. This results in lower losses, improved EMC, and less overshooting of the phase voltage. The principle of the method is to detect beginning cross currents without adding additional components in the half bridge like resistors or inductances. Only the wave shape of the phase voltage needs to be monitored during switching. This is illustrated by an application of the method to a real power converter.

  19. Trimode Power Converter optimizes PV, diesel and battery energy sources

    Science.gov (United States)

    Osullivan, George; Bonn, Russell; Bower, Ward

    1994-12-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT's with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  20. A nine-level hybrid symmetric cascaded multilevel converter for induction motor drive

    Indian Academy of Sciences (India)

    INDRAJIT SARKAR; B G FERNANDES

    2017-08-01

    A nine-level hybrid symmetric cascaded multilevel converter (MLC) fed induction motor drive is proposed in this paper. The proposed converter is capable of producing nine output voltage levels by using the same number of power cells as that of conventional five-level symmetric cascaded H-bridge converter. Eachphase in this configuration consists of one five-level transistor-clamped H-Bridge (TCHB) power cell and one three-level H-bridge power cell with equal dc link voltages, and they are connected in cascade. Due to cascade connection and equal dc link voltage, the power shared by each power cell is nearly equal. Near-equal power sharing enables the feature of improving input current quality by using an appropriate phase-shifting multiwinding transformer at the converter input. In this paper, the operation of the converter is explained using staircase and hybrid multi-carrier sine PWM techniques. Further, a detailed analysis for the variations in the dc link capacitor voltages and the dc link mid-point voltage in TCHB power cell is carried out, and the analytical expressions thus obtained are presented. The performance of proposed system is analysed by simulating a 500 hp induction motor drive system in MATLAB/Simulink environment. A laboratory prototype is also developed to validate the claims experimentally.

  1. One-Quadrant Switched-Mode Power Converters

    CERN Document Server

    Petrocelli, R

    2015-01-01

    This article presents the main topics related to one-quadrant power convert- ers. The basic topologies are analysed and a simple methodology to obtain the steady-state output–input voltage ratio is set out. A short discussion of dif- ferent methods to control one-quadrant power converters is presented. Some of the reported derived topologies of one-quadrant power converters are also considered. Some topics related to one-quadrant power converters such as syn- chronous rectification, hard and soft commutation, and interleaved converters are discussed. Finally, a brief introduction to resonant converters is given.

  2. Power electronic converters and systems frontiers and applications

    CERN Document Server

    Trzynadlowski, Andrzej M

    2016-01-01

    Power electronics is a branch of electrical engineering dealing with conversion and control of electric power using semiconductor power switches. This book provides an overview of modern power electronic converters and systems, and their applications.

  3. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... assessments of these specific VSCs so that their power densities and reliabilities are quantitatively determined, which requires extensive utilization of the electro-thermal models of the VSCs under investigation. In this thesis, the three-level neutral-point-clamped VSCs (3L-NPC-VSCs), which are classified......-HB-VSCs). As the switch technology for realizing these 3L-VSCs, press-pack IGBTs are chosen to ensure high power density and reliability. Based on the selected 3L-VSCs and switch technology, the converter electro-thermal models are developed comprehensively, implemented practically, and validated via a full-scale 3L...

  4. Piezoelectric power converter with bi-directional power transfer

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a bi-directional piezoelectric power converter com¬ prising a piezoelectric transformer. The piezoelectric transformer comprises an input electrode electrically coupled to a primary section of the piezoelectric transformer and an output electrode electrically...... coupled to an output section of the piezoelectric transformer to provide a transformer output signal. A bi-directional switching circuit is coupled between the output electrode and a DC or AC output voltage of the power converter. Forward and reverse current conducting periods of the bi......, a reverse current is conducted through the bi-directional switching circuit from the DC or AC output voltage to the output electrode to discharge the DC or AC output voltage and return power to the primary section of the piezoelectric transformer....

  5. Optimizing design of converters using power cycling lifetime models

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Munk-Nielsen, Stig

    2015-01-01

    Converter power cycling lifetime depends heavily on converter operation point. A lifetime model of a single power module switched mode power supply with wide input voltage range is shown. A lifetime model is created using a power loss model, a thermal model and a model for power cycling capability...... with a given mission profile. A method to improve the expected lifetime of the converter is presented, taking into account switching frequency, input voltage and transformer turns ratio....

  6. Buck-Boost/Forward Hybrid Converter for PV Energy Conversion Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2014-01-01

    Full Text Available This paper presents a charger and LED lighting (discharger hybrid system with a PV array as its power source for electronic sign indicator applications. The charger adopts buck-boost converter which is operated in constant current mode to charge lead-acid battery and with the perturb and observe method to extract maximum power of PV arrays. Their control algorithms are implemented by microcontroller. Moreover, forward converter with active clamp circuit is operated in voltage regulation condition to drive LED for electronic sign applications. To simplify the circuit structure of the proposed hybrid converter, switches of two converters are integrated with the switch integration technique. With this approach, the proposed hybrid converter has several merits, which are less component counts, lighter weight, smaller size, and higher conversion efficiency. Finally, a prototype of LED driving system under output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the electronic sign indicator applications.

  7. Intermittency in Switching Power Converters: Theoretical Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-fei; CHEN Jun-ning; TSE Chi K.; QIU Shui-sheng; KE Dao-ming; SHI Long-xing; SUN Wei-feng

    2006-01-01

    In view of reasonable explanation of intermittent subharmonics and chaos that can be gained from coupling filter between circuits,this paper discusses a method that maps time bifurcation with parameter bifurcation.Based on this mapping method,the general analysis method of characteristic multiplier,which is originally aimed at parameter bifurcation,can be used for the study of intermittency,i.e.,time bifurcation.In this paper,all researches coming from characteristic multipliers,parameter-bifurcation diagrams,and the largest Lyapunov exponent indicate the same results as those produced by simulation and experiment.Thus,it is proved theoretically that the intermittency in switching power converter can be explained in terms of coupling of spurious interference.

  8. Design and implementation of a switched capacitor-based embedded hybrid DC-DC converter

    Science.gov (United States)

    Bhattacharyya, Kaushik; Mandal, Pradip

    2012-06-01

    Here, we propose an integrated hybrid DC-DC converter suitable for high drop-out energy conscious applications. In the hybrid converter topology, along with a linear regulator two switched capacitors are used to store and recycle charge for better power efficiency. Without significant power loss the switched capacitors step down the supply voltage for the linear regulator working in low drop-out mode. The linear regulator, on the other hand, attenuates the voltage ripple that originates from the switched capacitors converter on its power supply rejection ratio. It also helps for line and load regulation. Additionally, a synthesised counter ripple is injected through the linear regulator to further reduce the output ripple. With these two techniques, for a moderate load current and an acceptable output ripple, the switching and load capacitors are reduced to a value which can be implemented within the chip. The proposed integrated converter circuit has been designed, implemented and tested in a 0.18 mm CMOS process for 3.3-1.3V conversion. With two switching capacitors of 210 pF each and 100 pF load capacitor, more than 13 mA of load current, measured peak-to-peak output voltage ripple is 146 mV. The achieved measured power efficiency is 64.97%. Exhaustive silicon characterisation of the converter is done to observe the power efficiency and ripple variation at different frequency of operations.

  9. Three-phase AC-AC power converters based on matrix converter topology matrix-reactance frequency converters concept

    CERN Document Server

    Szczesniak, Pawel

    2013-01-01

    AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial app

  10. Synchronously Driven Power Converter Controller Solution for MedAustron

    CERN Document Server

    Šepetavc, Luka; Tavčar, Rok; Moser, Roland; Gutleber, Johannes

    2011-01-01

    MedAustron is an ion beam cancer therapy and research centre currently under construction in Wiener Neustadt, Austria. This facility features a synchrotron particle accelerator for light ions. Cosylab is closely working together with MedAustron on the development of a power converter controller (PCC) for the 260 deployed power converterspower supplies. Power converters deliver power to magnets used for focusing and steering particle beams. We have designed and developed software and hardware which allows integration of different types of power converters into MedAustron's control system (MACS). PCC's role is to synchronously control and monitor connected power converters. Custom real-time fibre optics link and modular front end devices have been designed for this purpose. Modular front end devices make it possible to interface with almost any type of power converter – with or without built in regulation logic. We implemented realtime mechanisms and a dedicated real-time fibre link to ...

  11. Simulation of New Switched Capacitance Power Converter for Srm

    Directory of Open Access Journals (Sweden)

    S. M. Mohamed Saleem

    2014-06-01

    Full Text Available In this paper, design and simulation of switched capacitance power converter are proposed for 6/4 switched reluctance motor (SRM drive. The operating principle and design consideration of the proposed converter is explained. The proposed converter performance is better in reduction of torque ripple and constant speed can be achieved quickly with reduced power loss when compared with asymmetric converter. The proposed system is simulated by using MATLAB Simulink and their results are clearly presented.

  12. Recent progress in hybrid mode thermionic converter development

    Science.gov (United States)

    Shimada, K.

    1979-01-01

    Thermionic research has been conducted to investigate a hybrid-mode thermionic converter as a candidate for reducing the barrier index. The hybrid-mode thermionic converter is designed to operate in a combination ignited mode and unignited mode by using a series of parallel grooves in the emitter. The emitter material is molybdenum and the non-grooved land area is thinly coated with rhenium metal. When the emitter is exposed to cesium vapor, as it is during the converter operation, the rhenium-coated land area achieves a lower work function than the grooved molybdenum surface by as much as 0.5 eV. The low work function land area provides a major portion of electron emission, and the high work function grooved area provides cesium ions required for efficient transport of electrons generated in adjacent land areas to the collector. Experimental results obtained from two different converters and a numerical analysis of converter characteristics are presented in this paper.

  13. A New Hard Switching Bidirectional Converter With High Power Density

    Directory of Open Access Journals (Sweden)

    Bahador Fani

    2010-01-01

    Full Text Available In this paper, a new isolated dc-dc bidirectional converter is proposed. This converter consists of two transformers (flyback and forward and only one switch in primary side and one switch in secondary side of transformers. In this converter energy transfers to the output in both on and off switch states so power density of this converter is high This converter controlled by PWM signal. Also this converter operates over a wide input voltage range. Theoretical analysis is presented and computer simulation and experimental results verify the converter analysis.

  14. Hybrid electric vehicle power management system

    Energy Technology Data Exchange (ETDEWEB)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  15. High-power converters for space applications

    Science.gov (United States)

    Park, J. N.; Cooper, Randy

    1991-06-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  16. An Efficient DC- DC Converter with Bidirectional Power Flow

    Directory of Open Access Journals (Sweden)

    N.RAJARAJESWARI

    2008-07-01

    Full Text Available This paper introduces a Bi-directional DC-DC converter with adaptive fuzzy logic controller. Bidirectional power flow is obtained by same power components and provides a simple, efficient, and galvanically isolated converter. In the presence of DC mains the converter operates as buck converter and charges the battery. When the DC mains fails, the converter operates as boost converter and the down stream converter is fed by the battery. The power switches are controlled by Pulse Width Modulation technique and the pulses are generated by the application of fuzzy logic with an adoption algorithm. The proposed converter is simulated using MATLAB and laboratory prototype was developed to validate the simulation results.

  17. Investigations on a hybrid positron source with a granular converter

    Energy Technology Data Exchange (ETDEWEB)

    Artru, X. [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Chaikovska, I. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Chehab, R., E-mail: chehab@lal.in2p3.fr [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Chevallier, M. [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Dadoun, O. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Furukawa, K. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Guler, H. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Kamitani, T.; Miyahara, F.; Satoh, M. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Sievers, P. [CERN, Geneva (Switzerland); Suwada, T.; Umemori, K. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Variola, A. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France)

    2015-07-15

    Promising results obtained with crystal targets for positron production led to the elaboration of a hybrid source made of an axially oriented tungsten crystal, as a radiator, and an amorphous tungsten converter. If the converter is granular, made of small spheres, the heat dissipation is greatly enhanced and the thermal shocks reduced, allowing the consideration of such device for the future linear colliders. A positron source of this kind is investigated. Previous simulations have shown very promising results for the yield as for the energy deposition and the PEDD (Peak Energy Deposition Density). Here, we present detailed simulations made in this granular converter with emphasis on the energy deposition density, which is a critical parameter as learned from the breakdown of the SLC target. A test on the KEKB linac is foreseen; it will allow a determination of the energy deposited and the PEDD in the converter through temperature measurements. Four granular converters, made of W spheres of mm radius have been built at LAL-Orsay; they will be installed at KEK and compared to compact converters. A description of the experimental layout at KEK is provided. Applications to future linear colliders as CLIC and ILC are considered.

  18. Multifunctional Converter Drive for Automotive Electric Power Steering Systems

    NARCIS (Netherlands)

    Hackner, T.J.

    2013-01-01

    In this thesis it is shown that in the case of an automotive electric power steering system, critical pulse power loads can be decoupled from the power net with a storage element and a multifunctional converter. A multifunctional converter system is proposed because it uses the motor drive system as

  19. Four-quadrant flyback converter for direct audio power amplification

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a bidirectional, four-quadrant flyback converter for use in direct audio power amplification. When compared to the standard Class-D switching audio power amplifier with a separate power supply, the proposed four-quadrant flyback converter provides simple solution with better...

  20. Single-Phase PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers

    Directory of Open Access Journals (Sweden)

    Shakil Ahamed Khan

    2012-06-01

    Full Text Available In this paper, a front end ac–dc power factor correction topology is proposed for plug-in hybrid electric vehicle (PHEV battery charging. The topology can achieve improved power quality, in terms of power factor correction, reduced total harmonic distortion at input ac mains, and precisely regulated dc output. Within this context, this paper introduces a boost converter topology for implementing digital power factor correction based on low cost digital signal controller that operates the converter in continuous conduction mode, thereby significantly reducing input current harmonics. The theoretical analysis of the proposed converter is then developed, while an experimental digital control system is used to implement the new control strategy. A detailed converter operation, analysis and control strategy are presented along with simulation and experimental results for universal ac input voltage (100–240V to 380V dc output at up to 3.0 kW load and a power factor greater than 0.98. Experimental results show the advantages and flexibilities of the new control method for plug-in hybrid electric vehicle (PHEV battery charging application.

  1. High Efficiency Hall Thruster Discharge Power Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek leveraged previous, internally sponsored, high power, Hall thruster discharge converter development which allowed it to design, build, and test new printed...

  2. Application of Theory of Hybrid Systems to Control the Switching of Buck Converter

    KAUST Repository

    Benmiloud, Mohammed

    2013-08-01

    The field of power electronics poses challenging control problems that can’t be treated in a complete manner using traditional modeling. In this paper, the buck converter operating in Continuous Conduction Mode (CCM) is represented analytically by hybrid automaton model and graphically representation is also given. The hybrid trajectory and the model behavior are presented. The control problem of buck switching converters is transformed to a guard selection problem. The guard selection calculation formulas of buck converter are derived from the basic circuit laws. The stability of the switching is established analytically by the use of multiple Lyapunov functions to ensure the convergence and Poincare map to assess the local stability of the limit cycle. Numerical results clearly bring out the advantages and effectiveness of the proposed control law under varying line voltage and load conditions. Simulation studies are carried out in Matlab/Simulink/Stateflow.

  3. Novel screening techniques for wind turbine power converters

    DEFF Research Database (Denmark)

    Jørgensen, Asger Bjørn; Sønderskov, Simon Dyhr; Christensen, Nicklas;

    2016-01-01

    Power converters represent one of the highest failure rates in the wind turbine. Therefore converter manufacturers perform burn-in tests to prevent shipping of faulty converters. Recent developments in junction temperature estimation, based on accurate online IGBT collector-emitter voltage...

  4. Hybrid simulation: an active power filter case study

    Directory of Open Access Journals (Sweden)

    Y. A. Garcés

    2011-10-01

    Full Text Available The hybrid simulation concept consisting of a combination of computer simulation and laboratory tests. This approach is a cost effective alternative to physically testing the whole system and allows better understanding of complex coupled systems.This paper describes implementing an active power filter (APF hybrid prototype where the source system and load are implemented as a real-time simulation and the system of static power converter acting as an active power filter is implemented in physical hardware. It also confirmed the hybrid simulation results by implementing the simulation in MATLAB-Simulink regarding the same system implemented during the active power filter analysis and design stage.

  5. A Reduced-Part, Triple-Voltage DC-DC Converter for Electric Vehicle Power Management

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2007-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets; 14 V, 42 V and high voltage (>200 V) buses. A soft-switched, bi-directional dc-dc converter using only four switches was proposed for interconnecting the three nets. This paper presents a reduced- part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Simulation and experimental data are included to verify a simple power flow control scheme.

  6. Three Phase Resonant DC Power Converter for Ion Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our phase 1 study has revealed many significant benefits of a new class of DC-to-DC power converters with performance that cannot be matched by current flight power...

  7. Planar Integrated Magnetics (PIM) Module in Hybrid Bidirectional DC-DC Converter for Fuel Cell Application

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Zhang, Zhe; Thomsen, Ole Cornelius

    2011-01-01

    , hereby increasing the power density of converters. In this paper, a new planar integrated magnetics (PIM) module for a phase-shift plus duty cycle controlled hybrid bi-directional dc-dc converter is proposed, which assembles one boost inductor and two transformers into an E-I-E core geometry, reducing...... and theoretical analysis, a lab prototype employing the PIM module is implemented for a fuel cell application with 20~40 V input voltage and 400 V output voltage. Detailed results from the experimental comparisons demonstrate that the PIM module is fully functional and electromagnetically equivalent...

  8. Stabilizing control for power converters connected to transmission lines

    NARCIS (Netherlands)

    Zainea, Marius; Schaft, Arjan van der; Buisson, Jean

    2007-01-01

    This paper proposes a switching control strategy for the set-point stabilization of a power converter connected via a transmission line to a resistive load. The strategy employs a Lyapunov function that is directly based on energy considerations of the power converter, as well as of the transmission

  9. Power electronic converters PWM strategies and current control techniques

    CERN Document Server

    Monmasson, Eric

    2013-01-01

    A voltage converter changes the voltage of an electrical power source and is usually combined with other components to create a power supply. This title is devoted to the control of static converters, which deals with pulse-width modulation (PWM) techniques, and also discusses methods for current control. Various application cases are treated. The book is ideal for professionals in power engineering, power electronics, and electric drives industries, as well as practicing engineers, university professors, postdoctoral fellows, and graduate students.

  10. ENVIRONMENTAL ASPECTS OF GRID CONNECTED POWER ELECTRONIC CONVERTERS CONTROL

    Directory of Open Access Journals (Sweden)

    Tomasz Chmielewski

    2017-03-01

    Full Text Available This paper presents an unconventional view on power electronic converters control as an important factor in environmental protection. Two distinct features that are provided by the control system, namely harmonics elimination and Fault Ride-Through are addressed herein. The paper provides the discussion on how well designed and robust power converter control can influence the environment in a positive way. One of the shortcomings of power converters is emission of current harmonics which results in supply voltage distortion. The appropriate control minimizes the harmonics content which leads to energy losses reduction, especially in power transformers cores. Fault ride-through is an ability of power converter to remain connected and operating in a grid where the fault occurred. It is of paramount importance for integration of large power renewable energy sources. Shutting down e.g. large wind farm would result in engaging the conventional power plants to fill in the energy production gap.

  11. Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

    OpenAIRE

    2014-01-01

    The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT) evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and ...

  12. Hybrid Power Management System and Method

    Science.gov (United States)

    Eichenberg, Dennis J. (Inventor)

    2008-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  13. Sliding mode control of switching power converters techniques and implementation

    CERN Document Server

    Tan, Siew-Chong; Tse, Chi-Kong

    2011-01-01

    Sliding Mode Control of Switching Power Converters: Techniques and Implementation is perhaps the first in-depth account of how sliding mode controllers can be practically engineered to optimize control of power converters. A complete understanding of this process is timely and necessary, as the electronics industry moves toward the use of renewable energy sources and widely varying loads that can be adequately supported only by power converters using nonlinear controllers.Of the various advanced control methods used to handle the complex requirements of power conversion systems, sliding mode c

  14. Single phase AC-DC power factor corrected converter with high frequency isolation using buck converter

    Directory of Open Access Journals (Sweden)

    R. Ramesh,

    2014-03-01

    Full Text Available Single phase ac-dc converters having high frequency isolation are implemented in buck, boost, buck-boost configuration with improving the power quality in terms of reducing the harmonics of input current. The paperpropose the circuit configuration, control mechanism, and simulation result for the single phase ac-dc converter.

  15. The New Modular Control System for Power Converters at CERN

    CERN Document Server

    Di Cosmo, Matteo

    2015-01-01

    The CERN accelerator complex consists of several generations of particle accelerators, with around 5000 power converters supplying regulated current and voltage to normal and superconducting magnet circuits. Today around 12 generations of converter control platforms can be found in the accelerator complex, ranging in age and technology. The diversity of these platforms has a significant impact on operability, maintenance and support of power converters. Over the past few years a new generation of modular controls called RegFGC3 has been developed by CERN’s power conversion group, with a goal to provide a standardised control platform, supporting a wide variety of converter topologies. The aim of this project is to reduce maintenance costs by decreasing the variety and diversity of control systems whilst simultaneously improving the operability and reliability of power converters and their controls. This paper describes the state of the on-going design and realization of the RegFGC3 platform, focusing on fun...

  16. A study of Schwarz converters for nuclear powered spacecraft

    Science.gov (United States)

    Stuart, Thomas A.; Schwarze, Gene E.

    1987-01-01

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation; parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  17. Rf-to-dc power converters for wireless powering

    KAUST Repository

    Ouda, Mahmoud Hamdy

    2016-12-01

    Various examples are provided related to radio frequency (RF) to direct current (DC) power conversion. In one example, a RF-to-DC converter includes a fully cross-coupled rectification circuit including a pair of forward rectifying transistors and a feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a fully cross-coupled rectification circuit including a pair of forward rectifying transistors; and providing a DC output voltage from an output connection of the fully cross-coupled rectification circuit, where gating of the pair of forward rectifying transistors is controlled by feedback bias signals provided to gates of the pair of forward rectifying transistors via feedback branch elements.

  18. Power Quality Improvement Using Hybrid Power Flow Controller in Power System

    Directory of Open Access Journals (Sweden)

    Manidhar Thula ,

    2014-01-01

    Full Text Available This paper discusses the applicability of Hybrid Power Flow Controller (HPFC as an alternative to Unified Power Flow Controller (UPFC for improvement of power system performance. UPFC is a flexible AC transmission system (FACTS device containing two switching converters, one in series and one in shunt. To configure the HPFC, one of the switching converters of the UPFC is replaced by thyristor controlled variable impedances, thus reducing the cost. In this paper, the HPFC has been configured by multilevel Voltage Source Converter (VSC used for the shunt compensation branches and a thyristor controlled variable impedance used for series compensation. It is shown that with suitable control the HPFC can inject a voltage of required magnitude in series with the line at any desired angle, just like UPFC. This helps in providing compensation equivalent to UPFC and improving the steady state stability limits of the power system.

  19. Hybrid power plants; Thermische Hybridkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Tuschy, I. [ALSTOM Power Support, Mannheim (Germany). Bereiche Forschung und Entwicklung/Ingenieurdienstleistungen; Franke, U. [Fachhochschule Flensburg (Germany). Thermodynamik

    2002-07-01

    New German laws concerning the use of biomass and other renewable energy sources have improved the conditions for power generation with renewable energies. A promising alternative to common small-scale (combined-heat-and-) power plants could be found in so-called hybrid power plants which use renewable energies and fossil fuels in combination. A thermodynamic process analysis shows how to determine the renewable energies' portion of a hybrid power plant's total output. [German] Mit den veraenderten gesetzlichen Rahmenbedingungen erhoeht sich die Motivation, regenerative Energiequellen zur Stromerzeugung zu nutzen. Neben dem exklusiven Einsatz in kleineren (Heiz-) Kraftwerken bietet sich die gemeinsame Nutzung mit fossilen Energietraegern in sogenannten Hybridkraftwerken an. Hier stellt sich die Frage, wie der Anteil der regenerativen Energien an der Gesamt-Stromproduktion des Hybridkraftwerkes zu ermitteln ist. Eine thermodynamische Prozessanalyse kann darueber Aufschluss geben.

  20. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  1. Hybrid Magnetics and Power Applications

    DEFF Research Database (Denmark)

    Mo, Wai Keung; Paasch, Kasper

    2017-01-01

    . In order to prevent ferrite core saturation, placing an effective air gap within the ferrite core is a key method to obtain optimum hybrid magnetic performance. Furthermore, a relatively large inductance at low loading current is an excellent way to minimze power loss in order to achieve high efficiency...

  2. Comparison of control schemes for a fuel cell hybrid tramway integrating two dc/dc converters

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, L.M.; Garcia, P.; Garcia, C.A. [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n, 11202 Algeciras (Cadiz) (Spain); Torreglosa, J.P.; Jurado, F. [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, n 28. 23700 Linares (Jaen) (Spain)

    2010-06-15

    This paper describes a comparative study of two control schemes for the energy management system of a hybrid tramway powered by a Polymer Electrolyte Membrane (PEM) Fuel Cell (FC) and an Ni-MH battery. The hybrid system was designed for a real surface tramway of 400 kW. It is composed of a PEM FC system with a unidirectional dc/dc boost converter (FC converter) and a rechargeable Ni-MH battery with a bidirectional dc/dc converter (battery converter), both of which are coupled to a traction dc bus. The PEM FC and Ni-MH battery models were designed from commercially available components. The function of the two control architectures was to effectively distribute the power of the electrical sources. One of these control architectures was a state machine control strategy, based on eight states. The other was a cascade control strategy which was used to validate the results obtained. The simulation results for the real driving cycle of the tramway reflected the optimal performance of the control systems compared in this study. (author)

  3. Parallel Stirling Converters Being Developed for Spacecraft Onboard Power

    Science.gov (United States)

    Thieme, Lanny G.

    1999-01-01

    Stirling Technology Co., as part of a NASA Lewis Research Center Phase II Small Business Innovation Research contract, has successfully demonstrated paralleling two thermodynamically independent Stirling converters. A system of four Stirling converters is being developed by NASA and the Department of Energy as an alternative high-efficiency radioisotope power source for spacecraft onboard electric power for NASA deep space missions. The high Stirling efficiency, exceeding 20 percent for this application, will greatly reduce the necessary isotope inventory in comparison to the current radioisotope thermoelectric generators (RTG s), significantly reducing mission cost and risk. Stirling is the most developed converter option of the advanced power technologies under consideration.

  4. Power electronic converters modeling and control with case studies

    CERN Document Server

    Bacha, Seddik; Bratcu, Antoneta Iuliana

    2014-01-01

    Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: ·        switched and averaged models; ·        small/large-signal models; and ·        time/frequency models. The second focuses on three groups of control methods: ·        linear control approaches normally associated with power converters; ·        resonant controllers b...

  5. Lifetime estimation for the power semiconductors considering mission profiles in wind power converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included...... estimation, more detailed information for the reliability performance of wind power converter can be obtained....

  6. Implementation of a DSP-based hybrid sensor for switched reluctance motor converter

    Energy Technology Data Exchange (ETDEWEB)

    Whei-Min Lin; Ching-Ming Hong; Huang-Chen Chien [Department of Electrical Engineering National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C. (China); Huang-Chen Chien [Electronic Communication Engineering, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan, R.O.C. (China)

    2010-07-01

    The Switched Reluctance Motor (SRM) inherits a simple and reliable structure with an economical manufacturing cost. The DC power output supplies the unipolar converter to control the pulses sent to SRM. Thus, the velocity and torque are controllable for various velocity commands, and the SRM is gaining more and more applications on high torque requirement field with constant power. This paper proposes a DSP based hybrid sensor for switched reluctance motor with easy implementation. The current transducer is used to monitor the energized current and proximity sensors for rotor salient. The signals are then fed back to DSP. This design will improve the performance of SRM to operate more smoothly.

  7. Implementation of a DSP-based hybrid sensor for switched reluctance motor converter

    Directory of Open Access Journals (Sweden)

    Whei-Min Lin, Chih-Ming Hong, Huang -Chen Chien, Huang-Chen Chien

    2010-09-01

    Full Text Available The Switched Reluctance Motor (SRM inherits a simple and reliable structure with an economical manufacturing cost. The DC power output supplies the unipolar converter to control the pulses sent to SRM. Thus, the velocity and torque are controllable for various velocity commands, and the SRM is gaining more and more applications on high torque requirement field with constant power. This paper proposes a DSP based hybrid sensor for switched reluctance motor with easy implementation. The current transducer is used to monitor the energized current and proximity sensors for rotor salient. The signals are then fed back to DSP. This design will improve the performance of SRM to operate more smoothly.

  8. SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, Laura D [ORNL; Zhu, Lizhi [Ballard Power Systems/Siemens VDO

    2007-07-01

    The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

  9. New topology for DC/DC bidirectional converter for hybrid systems in renewable energy

    Science.gov (United States)

    Lopez, Juan Carlos; Ortega, Manuel; Jurado, Francisco

    2015-03-01

    This article presents a new isolated DC/DC bidirectional converter with soft switching, using a transformer with two voltage taps and two full bridges with insulated-gate bipolar transistors (IGBTs), one on each side of the transformer to be integrated in hybrid systems of renewable energy. A large voltage conversion ratio can be achieved using this converter, in buck and booster modes. Also medium and high DC power can be converted with a good efficiency. Analysis and switching techniques have been reported. To verify the principle of operation, a laboratory prototype of 10 kW has been performed. Experimental results are presented, operating in boost mode. The switching algorithm used has been modelled in MATLAB-Simulink to generate C code. This code has been implemented in a DSP F2812, which has been used to build the prototype.

  10. Control of Power Converters in AC Microgrids

    DEFF Research Database (Denmark)

    Rocabert, Joan; Luna, Alvaro; Blaabjerg, Frede

    2012-01-01

    The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the ele......The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability...

  11. An Advanced Turbo-Brayton Converter for Radioisotope Power Systems

    Science.gov (United States)

    Zagarola, Mark V.; Izenson, Michael G.; Breedlove, Jeffrey J.; O'Connor, George M.; Ketchum, Andrew C.; Jetley, Richard L.; Simons, James K.

    2005-02-01

    Past work has shown that Brayton power converters are an attractive option for high power, long-duration space missions. More recently, Creare has shown that Brayton technology could be scaled with high efficiency and specific power to lower power levels suitable for radioisotope power conversion systems. Creare is currently leading the development of an advanced turbo-Brayton converter under NASA's Prometheus Program. The converter design is based on space-proven cryocooler technologies that have been shown to be safe; to provide long, maintenance-free lifetimes; and to have high reliability, negligible vibration emittance, and low EMI/EMC. The predicted performance of a converter at the beginning of life is greater than 20% (including electronic inefficiencies and overhead) with a converter specific power of greater than 8 We/kg for a test unit and greater than 15 We/kg for a flight unit. The degradation in performance over a 14-year mission lifetime is predicted to be negligible, and the primary life limiting factor is not expected to be an issue for greater than twice the mission duration. Work during the last year focused on the material and fabrication issues associated with a high temperature turbine and a lightweight recuperator, and the performance issues associated with the high-temperature insulation and power conversion electronics. The development of the converter is on schedule. Thermal vacuum testing to demonstrate a technology readiness level of 5 is currently planned for 2006.

  12. Intercooled Turbo-Brayton Power Converter for Spaceflight Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA space missions require advanced systems to convert thermal energy into electric power. These systems must be reliable, efficient, and lightweight. In...

  13. Turbo-Brayton Power Converter for Spaceflight Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA space missions require advanced systems to convert thermal energy into electric power. These systems must be reliable, efficient, and lightweight. In...

  14. Another look at Statics and Dynamics of Switching Power Converters

    Science.gov (United States)

    Sasaki, Seigo; Watanabe, Haruo

    Three types of switching power supply, which are buck, boost, buck/boost converter, are statically and dynamically analysed. A framework of large signal analysis presents characteristics of converters which vary with operating points, and discusses a relationship between statics and dynamics. It is shown that boost and buck/boost converters substantially change their characteristics. There exists the operating points where for low frequencies the phases become -90° or -180° and the gains fall off to low values. The phenomenon is characterized by a zero of transfer function of the converter and also by the statics.

  15. Radiation effects in power converters: Design of a radiation hardened integrated switching DC/DC converter

    Science.gov (United States)

    Adell, Philippe

    When electronic devices are used in space and military systems, they may be exposed to various types of radiation, including photons, electrons, protons, neutrons, and heavy ions. The effects of radiation on the semiconductor devices within the systems range from gradual degradation to catastrophic failure. In order to design and produce reliable systems for space or military applications, it is necessary to understand the device-level effects of radiation and develop appropriate strategies for reducing system susceptibility. This research focuses on understanding radiation effects in power converters for space and military applications. We show that power converters are very sensitive to radiation (total-dose, single event effects and displacement damage) and that their radiation response is dependent on input bias conditions and load conditions. We compared the radiation hardness of various power converter topologies using experiments and simulations. Evaluation of these designs under different modes of operation is demonstrated to be critical for determining radiation hardness. We emphasize the correlation between radiation effects and the role of the dynamic response of these topologies. For instance, total dose exposure has been found to degrade loop gain and affect regulation in some converters. We propose several radiation-hardening solutions to improve the radiation response of these designs. For instance, we demonstrate the design of a digitally controlled boost converter suitable for space applications based on an SRAM FPGA. A design hardening solution has been developed and successfully applied through VHDL simulations and experiments to assure the continuous operation of the converter in the presence of SEES (more precisely SEFIs). This research led to the design of a digitally controlled radiation hardened integrated switching buck converter. The proposed design is suitable for micro-satellite applications and is based on a high-voltage/CMOS process

  16. Power converters and AC electrical drives with linear neural networks

    CERN Document Server

    Cirrincione, Maurizio

    2012-01-01

    The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts,

  17. Grid converters for photovoltaic and wind power systems

    CERN Document Server

    Teodorescu, Remus; Rodríguez, Pedro

    2011-01-01

    "Grid Converters for Photovoltaic and Wind Power Systems provides a comprehensive description of the control of grid converters for photovoltaic and wind power systems. The authors present a range of control methods for meeting the latest application, power quality and power conversion requirements and standards, as well as looking towards potential future control functions. Practical examples, exercises, and an accompanying website with simulation models using Matlab and Simulink environments, and PSIM software make this text a pragmatic resource for electrical engineers as well as students taking related courses"--

  18. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    CERN Document Server

    Pfeffer, H; Wolff, D

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  19. Reactive Power Impact on Lifetime Prediction of Two-level Wind Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, M.

    2013-01-01

    The influence of reactive power injection on the dominating two-level wind power converter is investigated and compared in terms of power loss and thermal behavior. Then the lifetime of both the partial-scale and full-scale power converter is estimated based on the widely used Coffin-Manson model...

  20. Multi Port Single Stage Power Electronics Converter and Wind PFC Converter for DC Micro Grid Applications

    Directory of Open Access Journals (Sweden)

    M. Hemachandran

    2014-08-01

    Full Text Available In this study multi port AC/DC-DC single stage power electronics converter proposed for grid power supply. The topology includes reduced number of active element and passive element. Passive element is used to provide to achieve improved voltage gain and to reduce the voltage stress of input side switches. The active-clamp circuits are used to recycle the energy stored in the leakage inductors and to improve the system performances. Here two input port (wind and battery unit and output port connected to dc grid, battery act as charge unit and source. Efficient wind power conversion is achieved by PFC boost dc-dc converter. Controlled and high step up voltage is supplied to multi-port converter from wind source.

  1. A direct power conversion topology for grid integrations of hybrid AC/DC resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng;

    2012-01-01

    This paper proposes a multiple-input versatile matrix converter (VMC) to integrate hybrid ac/dc energy resources and storages to a power grid. The VMC is developed based on the indirect matrix converter (IMC) with its six-switch voltage source converter replaced by a nine-switch topology. The nine...

  2. Architecture for a High-to-Medium-Voltage Power Converter

    Science.gov (United States)

    Vorpenian, Vatche

    2008-01-01

    A power converter now undergoing development is required to operate at a DC input potential ranging between 5.5 and 10 kV and a DC output potential of 400 V at a current up to 25 A. This power converter is also required to be sufficiently compact and reliable to fit and operate within the confines of a high-pressure case to be lowered to several miles (approx.5 km) below the surface of the ocean. The architecture chosen to satisfy these requirements calls for a series/ parallel arrangement of 48 high-frequency, pulse-width-modulation (PWM), transformer-isolation DC-to-DC power converter blocks. The input sides of the converter blocks would be connected in series so that the input potential would be divided among them, each of them being exposed to an input potential of no more than 10 kV/48 . 210 V. The series connection of inputs would also enforce a requirement that all the converter blocks operate at the same input current. The outputs of the converter blocks would be connected in a matrix comprising 6 parallel legs, each leg being a cascade of eight outputs wired in series (see figure). All the converter blocks would be identical within the tolerances of the values of their components. A single voltage feedback loop would regulate the output potential. All the converter blocks would be driven by the same PWM waveform generated by this feedback loop. The power transformer of each converter block would have a unity turns ratio and would be capable of withstanding as much as 10 kVDC between its primary and secondary windings. (Although, in general, the turns ratio could be different from unity, the simplest construction for minimizing leakage and maximizing breakdown voltage is attained at a turns ratio of unity.)

  3. Reactive Power Impact on Lifetime Prediction of Two-level Wind Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, M.;

    2013-01-01

    The influence of reactive power injection on the dominating two-level wind power converter is investigated and compared in terms of power loss and thermal behavior. Then the lifetime of both the partial-scale and full-scale power converter is estimated based on the widely used Coffin-Manson model....... It is concluded that the injection of the reactive power could have serious impact on the power loss and thermal profile, especially at lower wind speed. Furthermore, the introduction of the reactive power could also shorten the lifetime of the wind power converter significantly....

  4. Device Loading of Modular Multilevel Converter in Wind Power

    DEFF Research Database (Denmark)

    Popova, L.; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    on the gird conditions/requirements for wind power. The efficiency of the MMC under different P/Q boundaries defined by grid codes is investigated and compared with two-level (2L) and three-level (3L) neutral point clamped converters. It is concluded that it is possible to use the MMC in wind power...

  5. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  6. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...... capacitor coupled between the positive and negative input terminals and the secondary side circuit comprises an output capacitor chargeable to a converter output voltage between a first positive electrode and a second negative electrode. A switched energy storage network is configured for alternatingly...

  7. Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters

    CERN Document Server

    Cravero, Jean-Marc

    2013-01-01

    This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.

  8. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  9. A bi-directional DC/DC converter for hybrid wind generator/battery system with state machine control

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C.C.; Liao, Y.C. [National Yunlin Univ. of Science and Technology, Yunlin, Taiwan (China). Dept. of Electrical Engineering

    2008-07-01

    A bi-directional DC to DC converter used in a hybrid wind generator/lead-acid battery power system was presented. A state machine control strategy was used to control both the system power flow and load distribution. It was also used to increase the power capacity of the system. The battery was also charged or discharged through the bi-directional DC to DC converter. Multi-stage current charging control of the batteries was accomplished by adjusting the duty cycle of the power converter. This also improved the charging efficiency by the maximum power point tracking algorithm. It was concluded that the proposed control method can be readily extended to other renewable energy conversion systems. 6 refs., 13 figs.

  10. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2008-01-01

    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  11. Nonlinear Phenomena in Buck-Boost Power Factor Correction Converter

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Vatani

    2013-01-01

    Full Text Available Buck-Boost Power-Factor-Correction (PFC converter with Average-Current-Model (ACM control is a nonlinear circuit because of the multiplier using and large change in the duty cycle, so its stability analysis must be studied by nonlinear model. In this paper double averaging method is used for describing the model of this converter. By this model we would be able to explain the low frequency dynamics of the system and identify stability boundaries according to circuit parameters and also nonlinear phenomena of this converter are detected.

  12. Solar Photovoltaic Powered Sailing Boat Using Buck Converter

    Directory of Open Access Journals (Sweden)

    Soumya Das

    2015-03-01

    Full Text Available The main objective of this paper is to establish technical and economical aspects of the application of stand-alone photovoltaic (PV system in sailing boat using a buck converter in order to enhance the power generation and also to minimize the cost. Performance and control of dc-dc converter, suitable for photovoltaic (PV applications, is presented here. A buck converter is employed here which extracts complete power from the PV source and feeds into the dc load. The power, which is fed into the load, is sufficient to drive a boat . With the help of matlab simulink software PV module and buck model has been designed and simulated and also compared with theoretical predictions.

  13. CAS course on Power Converters in Baden, Switzerland

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN Accelerator School (CAS) and the Paul Scherrer Institute (PSI) recently organised a specialised course on Power Converters, which was held at the Hotel du Parc in Baden, Switzerland from 7 to 14 May 2014.   Photo courtesy of Markus Fischer, Paul Scherrer Institut. Following some recapitulation lectures on accelerators and the requirements on power converters, the course covered a wide range of topics related to the different types of power converters needed for particle accelerators. Topical seminars completed the programme. The course was very successful, attended by 84 students representing 21 nationalities, mostly from European countries but also from America, Brazil, Canada, China, Iran, Jordan and Thailand. Feedback from the participants was very positive, reflecting the high standard of the lectures and teaching. In addition to the academic programme, the participants also had an opportunity to take part in a full-day site visit to ABB and PSI and an excursion to the Rhine Fall...

  14. Control strategy of interlinking converters as the key segment of hybrid AC–DC microgrids

    DEFF Research Database (Denmark)

    Baharizadeh, Mehdi; Karshenas, Hamid Reza; Guerrero, Josep M.

    2016-01-01

    , which again deteriorates the IC ac-side voltage quality. The proposed strategy is based on droop method, similar to what is used in the autonomous control of sources in an AC-MG. This technique uses voltage-controlled method and does not need frequency measurement in its structure. This considerably......This study is concerned with presenting control strategy for interlink converters in hybrid microgrids. When both ac microgrids (AC-MGs) and dc microgrids are in the vicinity of each other, they can be interconnected via ac-dc converters, known as ICs, making it possible to exchange energy between...... two grids. Common methods employed in IC control strategy use frequency variation and CCM in their structure. This method requires the frequency variation at IC ac-side to be large, leading to poor power quality and stability of AC-MG. Furthermore, CCM does not directly regulate the IC ac-side voltage...

  15. Control approach for comfortable power shifting in hybrid transmissions - ML 450 hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Saenger Zetina, Siegfried; Neiss, Konstantin [Daimler AG, Hybrid Development Center, Troy, MI (United States)

    2008-07-01

    The comfortable shifting control in a luxury class vehicle is extremely important, due to competitive automatic transmissions with torque converters; clutch automated manual transmissions and dual clutch transmissions. Hybrid transmissions play a key role in comfort and performance enhancement while at the same time being fuel efficient with the aid of electric machines and battery packs. Here, the alternative to conventional add-on hybrid power head transmissions: the power split hybrid transmission is studied. As a practical example, the Two Mode of the Hybrid Development Center is used within the ML450 Hybrid. For achieving a smooth shifting, there are model based algorithms needed. As objective measure to evaluate the shifting the VDV (Vibration Dose Value) is used. (orig.)

  16. High power density dc/dc converter: Selection of converter topology

    Science.gov (United States)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  17. Hybrid Impedance Network-Based Converter With High Voltage Gain and No Commutation Problem

    DEFF Research Database (Denmark)

    Mostaan, Ali; N. Soltani, Mohsen; A. Gorji, Saman

    2016-01-01

    In this paper, a new hybrid converter based on Z-source DC/DC converter with common ground is introduced. The proposed converter can supply ac and dc loads simultaneously or individually (stand- alone ac or dc loads). Also, the commutation problem of its counterpart has been solved in this topolo...

  18. Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-09

    Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The University’s microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion process—improving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

  19. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede;

    2015-01-01

    As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included....... Consequently, a relative more advanced approach is proposed in this paper, which is based on the loading and strength analysis of devices and takes into account different time constants of the thermal behaviors in power converter. With the established methods for loading and lifetime estimation for power...

  20. Stability Analysis of a Constant Power Load Serviced by a Buck Converter as the Source Impedance Varies

    Science.gov (United States)

    2012-09-01

    electric ships, being aware of the stability issues associated with direct current (DC)-DC and DC-alternating current (AC) power converters and... Electric vehicles FCV Fuel Cell Vehicle HEV Hybrid Electric Vehicle Hf Final Load Transfer Function Hf_vec Final Load Transfer Function...Voltage Law SL Source Inductance MEV More Electric Vehicle MVDC Medium Voltage DC xiv P Power OP Output Power Pof Final Power Level Poi

  1. Variable frequency iteration MPPT for resonant power converters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  2. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    Science.gov (United States)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology

  3. Solid state radioisotopic energy converter for space nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.M. (IsoGen Radioisotopic Research Laboratory, 315 S. McLoughlin Blvd., Oregon City, Oregon 97045 (United States))

    1993-01-10

    Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25% which is two to three times greater than the 6 to 8% capabilities of current thermoelectric systems. Radioisotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, better efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.

  4. Self-commutating converters for high power applications

    CERN Document Server

    Arrillaga, Jos; Watson, Neville R; Murray, Nicholas J

    2010-01-01

    For very high voltage or very high current applications, the power industry still relies on thyristor-based Line Commutated Conversion (LCC), which limits the power controllability to two quadrant operation. However, the ratings of self-commutating switches such as the Insulated-Gate Bipolar Transistor (IGBT) and Integrated Gate-Commutated Thyristor (IGCT), are reaching levels that make the technology possible for very high power applications. This unique book reviews the present state and future prospects of self-commutating static power converters for applications requiring either ultr

  5. A new perspective in power converters modelling : complementarity systems

    NARCIS (Netherlands)

    Vasca, Francesco; Iannelli, Luigi; Çamlıbel, Kanat

    2007-01-01

    Switched complementarity framework is proposed as an useful and simple way for modelling the dynamic behavior of power electronics converters. The voltage/current characteristic of each electronic device in each conducting state is assumed to be representable in piecewise linear form. It is shown ho

  6. Piezoelectric transformer based power converters; design and control

    DEFF Research Database (Denmark)

    Rødgaard, Martin Schøler

    The last two decades of research into piezoelectric transformer (PT) based power converters have led to some extensive improvements of the technology, but it still struggles to get its commercial success. This calls for further research and has been the subject of this work, in order to enable...

  7. A Reliability-Oriented Design Method for Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    handbook) to the physics-of-failure approach and design for reliability process. A systematic design procedure consisting of various design tools is presented in this paper to design reliability into the power electronic converters since the early concept phase. The corresponding design procedures...

  8. Power decoupling method for single phase differential buck converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Tang, Yi; Zhang, Xiaobin

    2015-01-01

    The well-known inherent second-order ripple power in single phase converters imposes harmonic stress on the dc link, resulting in low efficiency and overheating issues. In order to avoid installing bulky electrolytic capacitors or LC filters in the dc-link, this paper presents a differential buck...

  9. High-Efficiency Hall Thruster Discharge Power Converter

    Science.gov (United States)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  10. Tests Of A Stirling-Engine Power Converter

    Science.gov (United States)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  11. New Multiphase Hybrid Boost Converter with Wide Conversion Ratio for PV System

    Directory of Open Access Journals (Sweden)

    Ioana-Monica Pop-Calimanu

    2014-01-01

    Full Text Available A new multiphase hybrid boost converter, with wide conversion ratio as a solution for photovoltaic energy system, is presented in this paper. To ensure that all the phases of the converter operate at the same switching frequency we use interleaving topology. The proposed converter can be used as an interface between the PV system and the DC load/inverter. This multiphase converter has the advantage of reduced value and physical size of the input and output capacitor as well as the effort for the inductors. To validate the operation of the converter we provide the analyses and the simulation results of the converter.

  12. Digital control of grid connected converters for distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Skjellnes, Tore

    2008-07-01

    Pulse width modulated converters are becoming increasingly popular as their cost decreases and power rating increases. The new trend of small scale power producers, often using renewable energy sources, has created new demands for delivery of energy to the grid. A major advantage of the pulse width modulated converter is the ability to control the output voltage at any point in the voltage period. This enables rapid response to load changes and non-linear loads. In addition it can shape the voltage in response to the output current to create an outward appearance of a source impedance. This is called a virtual impedance. This thesis presents a controller for a voltage controlled three phase pulse width modulated converter. This controller enables operation in standalone mode, in parallel with other converters in a micro grid, and in parallel with a strong main grid. A time varying virtual impedance is presented which mainly attenuates reactive currents. A method of investigating the overall impedance including the virtual impedance is presented. New net standards have been introduced, requiring the converter to operate even during severe dips in the grid voltage. Experiments are presented verifying the operation of the controller during voltage dips. (Author). 37 refs., 65 figs., 10 tabs

  13. Control of high power IGBT modules in the active region for fast pulsed power converters

    CERN Document Server

    Cravero, J M; Garcia Retegui, R; Maestri, S; Uicich, G

    2014-01-01

    At CERN, fast pulsed power converters are used to supply trapezoidal current in different magnet loads. These converters perform output current regulation by using a high power IGBT module in its ohmic region. This paper presents a new strategy for pulsed current control applications using a specifically designed IGBT driver.

  14. A Reduced-Part, Triple-Voltage DC-DC Converter for EV/HEV Power Management

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2009-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets: 14 V, 42 V, and high voltage (>200 V) buses. A soft-switched, bidirectional dc-dc converter that uses only four switches was proposed for interconnecting the three nets. This paper presents a reduced-part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Experimental data are included to verify a simple power flow control scheme.

  15. DC-DC power converter research for Orbiter/Station power exchange

    Science.gov (United States)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  16. Distributed Generation Using Indirect Matrix Converter in Reverse Power Mode

    DEFF Research Database (Denmark)

    Liu, Xiong; Chiang Loh, Poh; Wang, Peng

    2013-01-01

    not appropriate. Like most power converters, the operation of the IMC can surely be reversed to produce a boosted gain, but so far its relevant control principles have not been discussed. These challenges are now addressed in this paper with distributed generation suggested as a potential application. Simulation......Indirect matrix converter (IMC) is an alternative for ac/ac energy conversion, usually operated with a voltage stepped-down gain of only 0.866. For applications like distribution generation where voltage-boost functionality is required, the traditional style of operating the IMC is therefore...

  17. Performance Enhancement of Hybrid Wind/Photo Voltaic System Using Z Source Inverter with Cuk-sepic Fused Converter

    Directory of Open Access Journals (Sweden)

    A. Nazar Ali

    2014-05-01

    Full Text Available This study presents a new method of design of z source inverter for improving the performance of the hybrid wind/photo voltaic system with cuk-sepic fused converter. The various drawbacks of the conventional converter are, it requires passive input filters, the generator current decreases its lifespan, increases the power loss due to heating. In proposed method, the Cuk-SEPIC fused converter is used, which eliminates the need of additional input filters to filter out high frequency harmonics. This configuration makes it possible for the wind source and photo voltaic source to supply the load separately or simultaneously depending on their availability. A simulation model for the hybrid wind/photovoltaic system has been developed using MATLAB/SIMULINK.

  18. A Hybrid Cascade Converter Topology With Series-Connected Symmetrical and Asymmetrical Diode-Clamped H-Bridge Cells

    DEFF Research Database (Denmark)

    Nami, Alireza; Zare, Firuz; Ghosh, Arindam

    2011-01-01

    voltage with the same number of components. To balance the dc link capacitor voltages for the maximum output voltage resolution as well as synthesize asymmetrical dc link combination, a new multi-output boost converter is utilized at the dc link voltage of a seven-level H-bridge diode-clamped inverter......A novel H-bridge multilevel pulsewidth modulation converter topology based on a series connection of a high-voltage diode-clamped inverter and a low-voltage conventional inverter is proposed in this paper. A dc link voltage arrangement for the new hybrid and asymmetric solution is presented to have...... a maximum number of output voltage levels by preserving the adjacent switching vectors between voltage levels. Hence, a 15-level hybrid converter can be attained with a minimum number of power components. A comparative study has been carried out to present high performance of the proposed configuration...

  19. Advanced power converters for universal and flexible power management in future electricity network - Converter applications in future European electricity network

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    The present report summarizes the work done in the Work Package 2 where the main goal is to provide essential data for the other workpackages in the UNIFLEX-PM project and determines in detail the performance requirements that will be placed upon power converters to make the Future European...

  20. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    Science.gov (United States)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  1. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  2. Thermal Behavior Optimization in Multi-MW Wind Power Converter by Reactive Power Circulation

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2014-01-01

    The influence of actively controlled reactive power on the thermal behavior of multi-MW wind power converter with a Doubly-Fed Induction Generator (DFIG) is investigated. First, the allowable range of internal reactive power circulation is mapped depending on the DC-link voltage as well...... as the induction generator and power device capacity. Then, the effects of reactive power circulation on current characteristic and thermal distribution of the two-level back-to-back power converter are analyzed and compared. Finally, the thermal-oriented reactive power control method is introduced to the system...... for the conditions of constant wind speed and during wind gust. It is concluded that the thermal performance will be improved by injecting proper reactive power circulation within the wind turbine system, thereby being able to reduce the thermal cycling and enhance the reliability of the power converter....

  3. Modular Power Electronic Converters in the Power Range 1 to 10 kW

    DEFF Research Database (Denmark)

    Klimczak, Pawel

    of SES based plants , like hydro-, geothermal-, biofuel-plants, use synchronous generators directly connected to the grid. But some other SES technologies, like fuel cell or photovoltaic, require a power electronic converter between the energy source and the load or the grid. Work presented...... in this thesis concentrates on dc-dc non-isolated converters suitable for high voltage gain applications, like uninterruptible power supply (UPS) and some of sustainable energy sources. A special attention is on reduction of power losses and efficiency improvements in non-isolated dc-dc step-up converters......-pull-boost and a non-isolated two-inductor-boost converters are the best candidates for applications requiring a high voltage gain. Design of a high efficiency converter requires a detailed knowledge and accurate prediction of power losses. For this purpose average steady-state models of selected topologies...

  4. The Chaotic-Based Control of Three-Port Isolated Bidirectional DC/DC Converters for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2016-01-01

    Full Text Available Three-port isolated (TPI bidirectional DC/DC converters have three energy ports and offer advantages of large voltage gain, galvanic isolation ability and high power density. For this reason this kind of converters are suitable to connect different energy sources and loads in electric and hybrid vehicles. The purpose of this paper is to propose chaotic modulation and the related control scheme for TPI bidirectional DC/DC converters, in such a way that the switching harmonic peaks can be suppressed in spectrum and the conducted electromagnetic interference (EMI is reduced. Two chaotic modulation strategies, namely the continuously chaotic modulation and the discretely chaotic modulation are presented. These two chaotic modulation strategies are applied for TPI bidirectional DC/DC converters with shifted-phase angle based control and phase-shifted PWM control. Both simulation and experiments are given to verify the validity of the proposed chaotic modulation-based control schemes.

  5. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  6. Complex-Vector Time-Delay Control of Power Converters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P. C.; Tang, Y.;

    2008-01-01

    Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation...... to develop dynamically fast and accurate current controllers is even more intensive with more features expected to be embedded within a single control module. Believing in its continual importance, this paper contributes by proposing a complex-vector time-delay control scheme that can achieve high tracking...... precision and disturbance rejection. In principle, the proposed scheme can either be implemented solely in the stationary frame or in a "mixed" stationary and synchronous frame, termed as mixed frame in the paper. Regardless of the frame orientation chosen, the scheme always exhibits ease of implementation...

  7. Experimental Assessment of Derating Guidelines Applied to Power Electronics Converters

    Directory of Open Access Journals (Sweden)

    S.E. De León-Aldaco

    2013-02-01

    Full Text Available Power transistors are the most vulnerable components in switching converters, and derating is usually applied to increase their reliability. In this paper, the effectiveness of derating guidelines is experimentally assessed using a push-pull DC-DC converter as a case study, operating in three different environments. After measuring the electrical variables and temperature, reliability was predicted following the guidelines in MIL HDBK 217F. The sensitivity analysis performed indicates that temperature has the largest impact on reliability, followed by environment and device quality. The results obtained demonstrate that a derating procedure based solely on DC ratings does not ensure an adequate performance. Therefore, additional guidelines are suggested to help increase the overall reliability obtained from a power circuit.

  8. Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2014-08-01

    Full Text Available The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter systems are conducted and results are presented in the paper. The maximum power point tracking function is achieved through appropriate control of the power switches of the power converter. A fuzzy logic controller is developed to perform the MPPT function for obtaining maximum power from the PV panel. The MATLAB-based Simulink piecewise linear electric circuit simulation tool is used to verify the complete circuit simulation model.

  9. Power oscillation damping by a converter-based power generation device

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a power generation park comprising a power output for providing electrical output power to an electricity network . A power generation device comprises a converter device configured for receiving input power from a power generator and providing, in response hereto, the electrical...... output power to the power output. The power generation park further comprises a controller being configured for receiving an oscillation indicating signal indicative of a power oscillation in the electricity network, the controller being further configured for providing a damping control signal...... in response to the oscillation indicating signal; the converter device being configured for modulating the electrical output power in response to the damping control signal so as to damp the power oscillation in the electricity network....

  10. Self-oscillating loop based piezoelectric power converter

    OpenAIRE

    Rødgaard, Martin Schøler; Andersen, Michael A. E.; Esbern, Andreas; Meyer, Kasper Sinding

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output voltage of the piezoelectric transformer and the input driver to provide a self-oscillation loop around a primary section of the piezoelectric transformer oscillating at an excitation frequency. Elec...

  11. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  12. A Direct Power Conversion Topology for Grid Integration of Hybrid AC/DC Energy Resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng;

    2013-01-01

    This paper proposes a multiple-input versatile matrix converter (VMC) for integrating hybrid ac/dc energy resources and storages to the power grid. The VMC is developed from the traditional indirect matrix converter but operates in the reverse-boost mode rather than in the forward-buck mode. The ...

  13. Reconfigurable Switched-Capacitor Power Converters Principles and Designs for Self-Powered Microsystems

    CERN Document Server

    Ma, Dongsheng

    2013-01-01

    This book provides readers specializing in ultra-low power supply design for self-powered applications, an invaluable reference on reconfigurable switched capacitor power converters. Readers will benefit from a comprehensive introduction to the design of robust power supplies for energy harvesting and self-power applications, focusing on the use of reconfigurable switched capacitor based DC-DC converters, which is ideal for such applications.  Coverage includes all aspects of switched capacitor power supply designs, from fundamentals, to reconfigurable power stages, and sophisticated controller designs.    Provides a comprehensive introduction to the fundamentals of switched capacitor power supply design for novices, as well as advanced design and implementation  techniques for advanced readers; Includes discussion of all aspects of switched capacitor power supply designs, from fundamentals, to reconfigurable power stages, and sophisticated controller designs; Covers most state-of-art power supply design...

  14. Comparative efficiency evaluation of buck and hybrid buck DC-DC converters for automotive applications

    DEFF Research Database (Denmark)

    Pelan, Ovidiu; Cornea, Octavian; Muntean, Nicolae

    2014-01-01

    This paper presents and discusses design considerations and efficiency investigation of a conventional step-down and a hybrid switched-capacitor DC-DC converter. Three MOSFETs with low on-resistance have been tested for each converter in order to find the most adequate switch for this application...

  15. Status of NASA's Stirling Space Power Converter Program

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.

    1991-01-01

    An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.

  16. Analysis and Design of a Bidirectional Isolated DC-DC Converter for Fuel Cell and Super-Capacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Ouyang, Ziwei; Thomsen, Ole Cornelius

    2012-01-01

    Electrical power system in future uninterruptible power supply (UPS) or electrical vehicle (EV) may employ hybrid energy sources, such as fuel cells and super-capacitors. It will be necessary to efficiently draw the energy from these two sources as well as recharge the energy storage elements...... for zero voltage switching (ZVS). Moreover, a phase-shift and duty cycle modulation method is utilized to control the bidirectional power flow flexibly and it also makes the converter operate under a quasi-optimal condition over a wide input voltage range. This paper describes the operation principle...

  17. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  18. Monitoring Wind Turbine Loading Using Power Converter Signals

    Science.gov (United States)

    Rieg, C. A.; Smith, C. J.; Crabtree, C. J.

    2016-09-01

    The ability to detect faults and predict loads on a wind turbine drivetrain's mechanical components cost-effectively is critical to making the cost of wind energy competitive. In order to investigate whether this is possible using the readily available power converter current signals, an existing permanent magnet synchronous generator based wind energy conversion system computer model was modified to include a grid-side converter (GSC) for an improved converter model and a gearbox. The GSC maintains a constant DC link voltage via vector control. The gearbox was modelled as a 3-mass model to allow faults to be included. Gusts and gearbox faults were introduced to investigate the ability of the machine side converter (MSC) current (I q) to detect and quantify loads on the mechanical components. In this model, gearbox faults were not detectable in the I q signal due to shaft stiffness and damping interaction. However, a model that predicts the load change on mechanical wind turbine components using I q was developed and verified using synthetic and real wind data.

  19. Active power decoupling with reduced converter stress for single-phase power conversion and interfacing

    Indian Academy of Sciences (India)

    SUJATA BHOWMICK; L UMANAND

    2017-08-01

    Single-phase DC–AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. However, the electrolytic capacitors having short end of lifetime limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed in implementing APD. The topology claims the benefit of (1) reduced stress on converter switches and (2) using smaller capacitance value, thus alleviating the use of electrolytic capacitor and in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.

  20. Optimized Reactive Power Flow of DFIG Power Converters for Better Reliability Performance Considering Grid Codes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2015-01-01

    . In order to fulfill the modern grid codes, over-excited reactive power injection will further reduce the lifetime of the rotor-side converter. In this paper, the additional stress of the power semiconductor due to the reactive power injection is firstly evaluated in terms of modulation index...

  1. Power-Based Control for a Bidirectional AC-DC Power Converter

    NARCIS (Netherlands)

    del Puerto Flores, Dunstano; Scherpen, Jacquelien M.A.

    2011-01-01

    In many electrical applications it is indispensable that the power converter can operate as a generating or rectifier unit, and the controller must be able to handle this bidirectional power flow. An application example is the doubly fed induction machine, where power can flow in both directions thr

  2. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    Directory of Open Access Journals (Sweden)

    Charles W. Solbrig

    2011-01-01

    plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage of already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.

  3. Implementation of Power Efficient Flash Analogue-to-Digital Converter

    Directory of Open Access Journals (Sweden)

    Taninki Sai Lakshmi

    2014-01-01

    Full Text Available An efficient low power high speed 5-bit 5-GS/s flash analogue-to-digital converter (ADC is proposed in this paper. The designing of a thermometer code to binary code is one of the exacting issues of low power flash ADC. The embodiment consists of two main blocks, a comparator and a digital encoder. To reduce the metastability and the effect of bubble errors, the thermometer code is converted into the gray code and there after translated to binary code through encoder. The proposed encoder is thus implemented by using differential cascade voltage switch logic (DCVSL to maintain high speed and low power dissipation. The proposed 5-bit flash ADC is designed using Cadence 180 nm CMOS technology with a supply rail voltage typically ±0.85 V. The simulation results include a total power dissipation of 46.69 mW, integral nonlinearity (INL value of −0.30 LSB and differential nonlinearity (DNL value of −0.24 LSB, of the flash ADC.

  4. Hierarchical Control of Parallel AC-DC Converter Interfaces for Hybrid Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai;

    2014-01-01

    In this paper, a hierarchical control system for parallel power electronics interfaces between ac bus and dc bus in a hybrid microgrid is presented. Both standalone and grid-connected operation modes in the dc side of the microgrid are analyzed. Concretely, a three-level hierarchical control syst...... the three control levels is developed in order to adjust the main control parameters and study the system stability. Experimental results of a 2×2.2 kW parallel ac-dc converter system have shown satisfactory realization of the designed system.......In this paper, a hierarchical control system for parallel power electronics interfaces between ac bus and dc bus in a hybrid microgrid is presented. Both standalone and grid-connected operation modes in the dc side of the microgrid are analyzed. Concretely, a three-level hierarchical control system...... is implemented. In the primary control level, the decentralized control is realized by using the droop method. Local ac current proportional-resonant controller and dc voltage proportional-integral controller are employed. When the local load is connected to the dc bus, dc droop control is applied to obtain...

  5. Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

  6. Development and Demonstration of a 25 Watt Thermophotovoltaic Power Source for a Hybrid Power System

    Science.gov (United States)

    Doyle, Edward; Shukla, Kailash; Metcalfe, Christopher

    2001-01-01

    The development of a propane-fueled, 25 W thermophotovoltaic (TPV) power source for use in a hybrid power system is described. The TPV power source uses a platinum emitting surface with an anti-reflective coating to radiate to gallium antimonide photocells, which converts the radiation to electric power. The development program started with the design and fabrication of an engineering prototype system. This was used as a component development vehicle to develop the technologies for the various components. A 25 W demonstration prototype was then designed and fabricated using the most advanced component approaches. The designs and test results from this development program are discussed.

  7. RESONANT STEP-DOWN DC-DC POWER CONVERTERS

    DEFF Research Database (Denmark)

    2015-01-01

    charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short...... of the primary side circuit thereby establishing in both the first and second cases a series coupling of the output capacitor and the input capacitor. A load connection is established, in the first case, between the first positive electrode of the output capacitor and the positive input terminal or......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...

  8. Experimental Assessment of Derating Guidelines Applied to Power Electronics Converters

    Directory of Open Access Journals (Sweden)

    S. E. De León-Aldaco

    2013-01-01

    Full Text Available ABSTRACTPower transistors are the most vulnerable components in switching converters, and derating is usually applied toincrease their reliability. In this paper, the effectiveness of derating guidelines is experimentally assessed using apush-pull DC-DC converter as a case study, operating in three different environments. After measuring the electricalvariables and temperature, reliability was predicted following the guidelines in MIL HDBK 217F. The sensitivityanalysis performed indicates that temperature has the largest impact on reliability, followed by environment anddevice quality. The results obtained demonstrate that a derating procedure based solely on DC ratings does notensure an adequate performance. Therefore, additional guidelines are suggested to help increase the overallreliability obtained from a power circuit.

  9. Active Power and DC-link Voltage Coordinative Control for Cascaded DC-AC Converter with Bidirectional Power Application

    DEFF Research Database (Denmark)

    Tian, Yanjun; Chen, Zhe; Deng, Fujin;

    2015-01-01

    Two stage cascaded converters are widely used in DC/AC hybrid systems to achieve the bidirectional power transmission. The topology of dual active bridge cascaded with inverter (DABCI) is commonly used in this application. This paper proposes a coordinative control method for DABCI and it’s able...... to reduce the DC-link voltage fluctuation between the DAB and inverter, then reduce the stress on the switching devices, as well as improve the system dynamic performance. In the proposed control method, the DAB and inverter are coordinated to control the DC-link voltage and the power......, and this responsibility sharing control can effectively suppress the impact of the power variation on the DC-link voltage, without sacrificing stability. The proposed control method is also effective for DABCI in unidirectional power transmission. The effectiveness of the propose control has been validated by both...

  10. Improved power converter for pulsed operation of DBD

    Science.gov (United States)

    Schwarz-Kiene, Peter; Heering, Wolfgang

    2000-04-01

    In this paper an electronic ballast for pulsed operation of dielectric barrier discharges (DBD) is presented. The converter is designed as a transformer coupled square wave power source optimized for capacitive loads like DBD. The special features are the bipolar trapezoid waveform with variable slew rate (dU/dt), duty cycle, frequency and amplitude of the output voltage, which is balanced to ground. The power stage is designed in zero voltage switching technology. The ballast is primarily designed to investigate the discharge characteristics of DBD in dependence on the waveform parameters. A simple electrical DBD model is presented, which allows to predict the external DBD voltage and the discharge power in dependence of slew rate and duty cycle. The paper is closed with some experimental results of pulse XeCl*-excimer lamps.

  11. Power quality analysis of hybrid renewable energy system

    Directory of Open Access Journals (Sweden)

    Rinchin W. Mosobi

    2015-12-01

    Full Text Available An hybrid renewable energy sources consisting of solar photovoltaic, wind energy system, and a microhydro system is proposed in this paper. This system is suitable for supplying electricity to isolated locations or remote villages far from the grid supply. The solar photovoltaic system is modeled with two power converters, the first one being a DC-DC converter along with an maximum power point tracking to achieve a regulated DC output voltage and the second one being a DC-AC converter to obtain AC output. The wind energy system is modeled with a wind-turbine prime mover with varying wind speed and fixed pitch angle to drive an self excited induction generator (SEIG. Owing to inherent drooping characteristics of the SEIG, a closed loop turbine input system is incorporated. The microhydro system is modeled with a constant input power to drive an SEIG. The three different sources are integrated through an AC bus and the proposed hybrid system is supplied to R, R-L, and induction motor loads. A static compensator is proposed to improve the load voltage and current profiles; it also mitigates the harmonic contents of the voltage and current. The static synchronous compensator is realized by means of a three-phase IGBT-based current-controlled voltage source inverter with a self-supporting DC bus. The complete system is modeled and simulated using Matlab/Simulink. The simulation results obtained illustrate the feasibility of the proposed system and are found to be satisfactory.

  12. Model predictive control for Z-source power converter

    DEFF Research Database (Denmark)

    Mo, W.; Loh, P.C.; Blaabjerg, Frede

    2011-01-01

    This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...... of variable switching frequency as well as robustness of transient response can be obtained at the same time with a formulated Z-source network model. Operating steady state and transient state simulation of MPC are going to be presented, which shows good reference tracking ability of this control method....

  13. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output...... voltage of the piezoelectric transformer and the input driver to provide a self-oscillation loop around a primary section of the piezoelectric transformer oscillating at an excitation frequency. Electrical characteristics of the feedback loop are configured to set the excitation frequency of the self......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  14. Thermal behavior optimization in multi-MW wind power converter by reactive power circulation

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2013-01-01

    In the paper, an actively controlled reactive power influence to the thermal behavior of multi-MW wind power converter with Doubly-Fed Induction Generator (DFIG) is investigated. The allowable range of internal reactive power circulation is firstly mapped depending on the DC-link voltage as well...... as the induction generator and power device capacity. Then the effects of reactive power circulation towards current characteristic and thermal distribution of the two-level back-to-back power converter is analyzed and compared. Finally the thermal-oriented reactive power is introduced to the system...... in the conditions of constant wind speed and during wind gust. It is concluded that the thermal performance will be improved by injecting proper reactive power circulation in the wind turbine system and thereby be able to reduce the thermal cycling and enhance the reliability....

  15. A new multi-motor drive system based on two-stage direct power converter

    OpenAIRE

    Kumar, Dinesh

    2011-01-01

    The two-stage AC to AC direct power converter is an alternative matrix converter topology, which offers the benefits of sinusoidal input currents and output voltages, bidirectional power flow and controllable input power factor. The absence of any energy storage devices, such as electrolytic capacitors, has increased the potential lifetime of the converter. In this research work, a new multi-motor drive system based on a two-stage direct power converter has been proposed, with two motors c...

  16. Control of a hybrid HVDC link to increase inter-regional power transfer

    DEFF Research Database (Denmark)

    Kotb, Omar; Ghandhari, Mehrdad; Eriksson, Robert

    2016-01-01

    This paper examines the application of a hybrid HVDC link in a two area power system with the purpose of increasing the inter-regional power transfer. A hybrid HVDC system combines both LCCs and VSCs, and hence it is capable of combining the benefits of both converter technologies, such as reduced...... cost and power losses due to the LCCs, and ability to connect to weak AC grids due to the VSCs. The mathematical model of the power system including the HVDC link is presented. The increase in inter-area power transfer is demonstrated and compared to the case when the hybrid HVDC link is not used....... Furthermore, the transient stability of the AC/DC power system was enhanced using auxiliary controllers for Power Oscillation Damping (POD). The results show the ability of the hybrid HVDC link to increase the unidirectional inter-area power transfer, while enhancing the transient stability of the power...

  17. Flight Testing of Hybrid Powered Vehicles

    Science.gov (United States)

    Story, George; Arves, Joe

    2006-01-01

    Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.

  18. Guiding Principles in Selecting AC To DC Converters For Power Factor Corrections in AC Transmission System

    Directory of Open Access Journals (Sweden)

    Ibekwe B.E

    2014-10-01

    Full Text Available The ac to dc converters’ power factors correction in ac transmission system were investigated. The studies include: phase-controlled converter; pulse width modulated (PWM converter and ac input current shaped converter. Using Fourier series, power factors of these converters were calculated and simulated using MATLAB. The resulting curves are displayed in the hard copies for practical guides in the choice of converters; and comparatively, current shaped type is the best.

  19. Integration of planar transformer and/or planar inductor with power switches in power converter

    Science.gov (United States)

    Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi

    2007-10-30

    A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.

  20. Time-multiplexed amplification in a hybrid-less and coil-less Josephson parametric converter

    Science.gov (United States)

    Abdo, Baleegh; Chavez-Garcia, Jose M.; Brink, Markus; Keefe, George; Chow, Jerry M.

    2017-02-01

    Josephson parametric converters (JPCs) are superconducting devices capable of performing nondegenerate, three-wave mixing in the microwave domain without losses. One drawback limiting their use in scalable quantum architectures is the large footprint of the auxiliary circuit needed for their operation, in particular, the use of off-chip, bulky, broadband hybrids and magnetic coils. Here, we realize a JPC that eliminates the need for these bulky components. The pump drive and flux bias are applied in the Hybrid-Less, Coil-Less (HLCL) device through an on-chip, lossless, three-port power divider and an on-chip flux line, respectively. We show that the HLCL design considerably simplifies the circuit and reduces the footprint of the device while maintaining a comparable performance to state-of-the-art JPCs. Furthermore, we exploit the tunable bandwidth property of the JPC and the added capability of applying alternating currents to the flux line in order to switch the resonance frequencies of the device, hence demonstrating time-multiplexed amplification of microwave tones that are separated by more than the dynamical bandwidth of the amplifier. Such a measurement technique can potentially serve to perform a time-multiplexed, high-fidelity readout of superconducting qubits.

  1. Converter Power Density Increase using Low Inductive Integrated DC-link Capacitor/Bus

    DEFF Research Database (Denmark)

    Trintis, Ionut; Franke, Toke; Rannested, Bjørn;

    2015-01-01

    The power losses in switching devices have a direct effect on the maximum converter power. For a voltage source converter, the DC-link bus has a major influence on the power loss and safe operating area of the power devices. The Power Ring Film CapacitorTM integrated with an optimized bus structu...

  2. Converter Power Density Increase using Low Inductive Integrated DC-link Capacitor/Bus

    DEFF Research Database (Denmark)

    Trintis, Ionut; Franke, Toke; Rannested, Bjørn

    2015-01-01

    The power losses in switching devices have a direct effect on the maximum converter power. For a voltage source converter, the DC-link bus has a major influence on the power loss and safe operating area of the power devices. The Power Ring Film CapacitorTM integrated with an optimized bus structu...

  3. Simulation of hybrid solar power plants

    Science.gov (United States)

    Dieckmann, Simon; Dersch, Jürgen

    2017-06-01

    Hybrid solar power plants have the potential to combine advantages of two different technologies at the cost of increased complexity. The present paper shows the potential of the software greenius for the techno-economic evaluation of hybrid solar power plants and discusses two exemplary scenarios. Depreciated Concentrated Solar Power (CSP) plants based on trough technology can be retrofitted with solar towers in order to reach higher steam cycle temperatures and hence efficiencies. Compared to a newly built tower plant the hybridization of a depreciated trough plant causes about 30% lower LCOE reaching 104 /MWh. The second hybrid scenario combines cost-efficient photovoltaics with dispatchable CSP technology. This hybrid plant offers very high capacity factors up to 69% based on 100% load from 8am to 11pm. The LCOE of the hybrid plant are only slightly lower (174 vs. 186 /MWh) compared to the pure CSP plant because the capital expenditure for thermal storage and power block remains the same while the electricity output is much lower.

  4. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  5. A New Buck-Boost Converter for a Hybrid-Electric Drive Stand

    Directory of Open Access Journals (Sweden)

    P. Mašek

    2009-01-01

    Full Text Available This paper describes work on the laboratory working stand for a hybrid-electric drive located in laboratory T2:H1-26.The basic idea is to operate the combustion engine in its optimal regime. In this regime the engine has the highest efficiency and minimal smoke exhaust. This optimal regime is only a small portion of its operation area. Because the engine has to operate in this area, it is necessary to add a new converter to the hybrid-electric stand. The new converter must be allowed to buck and boost and must operate as a current source in this regime. 

  6. Hybrid Multistarting GA-Tabu Search Method for the Placement of BtB Converters for Korean Metropolitan Ring Grid

    Directory of Open Access Journals (Sweden)

    Remund J. Labios

    2016-01-01

    Full Text Available This paper presents a method to determine the optimal locations for installing back-to-back (BtB converters in a power grid as a countermeasure to reduce fault current levels. The installation of BtB converters can be regarded as network reconfiguration. For the purpose, a hybrid multistarting GA-tabu search method was used to determine the best locations from a preselected list of candidate locations. The constraints used in determining the best locations include circuit breaker fault current limits, proximity of proposed locations, and capability of the solution to reach power flow convergence. A simple power injection model after applying line-opening on selected branches was used as a means for power flows with BtB converters. Kron reduction was also applied as a method for network reduction for fast evaluation of fault currents with a given topology. Simulations of the search method were performed on the Korean power system, particularly the Seoul metropolitan area.

  7. Wind-solar Hybrid Power System

    OpenAIRE

    Jin, Fei

    2014-01-01

    In the development and utilization of new energy sources, the solar energy and wind energy are paid more attention by various countries, and have become a new field of energy development and utilization of the highest level, the most mature technology, the most widely used and commercial development conditions for new energy. But both the traditional wind power system and solar power system have the characteristic of energy instability. Therefore, wind-solar hybrid power system was proposed i...

  8. Control and fault diagnosis based sliding mode observer of a multicellular converter: Hybrid approach

    KAUST Repository

    Benzineb, Omar

    2013-01-01

    In this article, the diagnosis of a three cell converter is developed. The hybrid nature of the system represented by the presence of continuous and discrete dynamics is taken into account in the control design. The idea is based on using a hybrid control and an observer-type sliding mode to generate residuals from the observation errors of the system. The simulation results are presented at the end to illustrate the performance of the proposed approach. © 2013 FEI STU.

  9. Power Quality Application of Hybrid Drivetrain

    OpenAIRE

    Rassõlkin, Anton; Hõimoja, Hardi

    2012-01-01

    This paper presents a study on the power conditioning features of hybrid powertrain, especially regarding diesel-electric locomotives. Equipped with an embarked energy buffer for diesel generator support and utility grid interface, such a locomotive can be considered as a plug-in series hybrid vehicle. The driveline inductive components, like generator and motor windings, and capacitive components like dc link capacitors can be used to provide STATCOM functions, and the energy buffer can be u...

  10. Model predictive control for Z-source power converter

    DEFF Research Database (Denmark)

    Mo, W.; Loh, P.C.; Blaabjerg, Frede

    2011-01-01

    This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...... regulations, impedance network inductor current, capacitor voltage as well as switching frequency fixation, transient reservation and null state penalization are all regulated as subjecting to constraints of this control method. The quality of output waveform, stability of impedance-network, level constraint...... of variable switching frequency as well as robustness of transient response can be obtained at the same time with a formulated Z-source network model. Operating steady state and transient state simulation of MPC are going to be presented, which shows good reference tracking ability of this control method....

  11. Study of Power Converter Topologies with Energy Recovery and grid power flow control Part B: boost converter with energy storage

    CERN Document Server

    Rogelio, Garcia Retegui; Gustavo, Uicich; Mario, Benedetti; Gilles, Le Godec; Konstantinos, Papastergiou

    2015-01-01

    In the framework of a Transfer line (TT2) Consolidation Programme, a number of studies on Energy cycling have been commissioned. Part of this work involves the study of dierent power electronic system topologies for magnet energy recovery. In this report, the use of a boost front-end converter supplying DC link of a 4-quadrant magnet supply is analysed. The key objective of the study is to find control strategies that result in the control of the peak power required from the power network as well as to recover the magnet energy into capacitor banks with controlled voltage fluctuation. The study comprises the modelling of the system by means of the method of state averaging and the development of regulation strategies to energy management. The proposed control strategies can be divided in two groups: in the first group, the magnet current is used to define the reference for the control system, while in the second group this current is unknown and some strategies are devised to limit the power drawn from the el...

  12. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  13. Use of Chaotic Switching for Harmonic Power Redistribution in Power Converters

    Science.gov (United States)

    Chung, Henry S. H.; Hui, S. Y. Ron; Tse, K. K.

    This chapter gives an evaluation of the chaotic carrier frequency modulation scheme on the spectral characteristics of switching converters. By incorporating a Chua's circuit into the pulse-width modulator for driving the main switch in the converters, different time-and frequency-domain characteristics at equilibrium point, limit-cycle and chaotic regions are observed. The power spectral density of the input current of the three basic dc/dc converters including buck, boost, and buck-boost converters with the Chua's circuit are studied. By controlling the circuit parameter, gradual transition of the spectral characteristics from periodic frequency modulation scheme to near random frequency modulation scheme are observed. Analysis method for random carrier frequency switching scheme is applied and its validity is confirmed theoretically and experimentally.

  14. Comparison of multi-MW converters considering the determining factors in wind power application

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Many power converter configurations have been proposed for the next generation multi-MW wind turbines. However a comprehensive comparison based on the real determining factors in the wind power application is still missing. In fact the existing evaluation criteria and methods for the multi-MW power...... converters are normally targeted to the industrial drive applications, and they did not take into account the special requirements in the case of wind power. This paper tries to unify and compare several promising wind power converters by a series new model and perspective. The evaluation criteria...... will mainly focus on the costeffectiveness of power semiconductors and the converter performances when complying with grid codes - which are more crucial for the wind power converters. It is concluded that the power converters with various voltage levels, topologies, and paralleling structures are possible...

  15. A new converter for improving efficiency of multi-actuators fluid power system

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yong; Shang, JianZhong; Yang, JunHong; Wang Zhuo [National University of Defense Technology, Changsha (China)

    2016-05-15

    This paper is concerned with the application of energy efficient fluid power in mobile robots system and proposes a new fluid power converter system which is analogous to a boost converter in power electronics. The fluid power converter system is based on the principle of pulse-width modulation. The fluid power converter has an effect akin to an electrical switched inductance transformer, wherein the output pressure or flow rate can be stepped up or down. Using an inductive reactance device (an inertia mass-block), the output flow and pressure can be varied to meet the load by a means that does not rely on dissipation of power (the resistance control). The simulation model based on the mathematics models of the components is built to analyse the performance of the fluid power converter. It is clearly shown that the fluid power converter has higher energy efficiency than conventional resistance control manners.

  16. Matrix Converter Based Unified Power Quality Conditioner (MUPQC for Power Quality Improvement in a Utility

    Directory of Open Access Journals (Sweden)

    G.L. Valsala

    2014-05-01

    Full Text Available This study proposes a new approach of unified power quality conditioner which is made up of a matrix converter without energy storage devices to mitigate the current harmonics, voltage sags and swell. By connecting the matrix converter output terminals to the load side through series transformer and the input side of matrix converter is connected to the supply side with step up transformer. So a matrix converter injects the compensation voltage on the load-side, so it is possible to mitigate the voltage sag/swell problems, resulting in an efficient solution for mitigating voltage and current related power quality problems. Thus, the proposed topology can mitigate the voltage fluctuations and current harmonics without energy storage elements and the total harmonic distortion produced by the system also very low. It also reduced volume and cost, reduced capacitor power losses, together with higher reliability. The Space-Vector Modulation (SVM is used to control the matrix converter. MATLAB/SIMULINK based simulation results are presented to validate the approach.

  17. Active energy recovery clamping circuit to improve the performance of power converters

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Bret; Barkley, Adam

    2017-05-09

    A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.

  18. Fuzzy control of power converters based on quasilinear modelling

    Science.gov (United States)

    Li, C. K.; Lee, W. L.; Chou, Y. W.

    1995-03-01

    Unlike feedback control by the fuzzy PID method, a new fuzzy control algorithm based on quasilinear modelling of the DC-DC converter is proposed. Investigation is carried out using a buck-boost converter. Simulation results demonstrated that the converter can be regulated with improved performance even when subjected to input disturbance and load variation.

  19. Two phase interleaved buck converter for driving high power LEDs

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Munk-Nielsen, Stig

    2011-01-01

    increases luminous efficacy of LED compared to PWM dimmed system. Because of the low dynamic resistance of LEDs the duty cycle of the converter does not change greatly with controlled current. By setting the input voltage of the buck converter to around twice the voltage of diode strings, converter can...

  20. A Learning Aid Tool for Power Electronics Converters

    Directory of Open Access Journals (Sweden)

    O. Bouketir

    2005-06-01

    Full Text Available It is known that power electronics and its related subjects are not easy to understand for students taking them for first time. This is due to nature of the subjects which involve many areas and disciplines. The introduction of general purpose simulation package has helped the student a step further in understanding this subject. However, because of the generality of these tools and their drag-and drop and ad-hoc features, the students still face problems in designing a converter circuit. In this paper, the problem above is addressed by introducing a learning aid tool that guides the student over prescribed steps to design a power electronics circuit. The tool is knowledge-based system where its knowledge base encompasses two types of knowledge; topologies and switching devices. The first step in the design procedure is the selection of the application of the desired circuit. Then few steps are to be followed to come out with the appropriate topology with the optimum switching devices and parameters. System structure, its different modules and the detailed design procedure are explained in this paper

  1. Custom DC-DC converters for distributing power in SLHC trackers

    CERN Document Server

    Allongue, B; Blanchot, G; Faccio, F; Fuentes, C; Mattavelli, P; Michelis, S; Orlandis, S; Spiazzi, G

    2008-01-01

    A power distribution scheme based on the use of on-board DC-DC converters is proposed to efficiently distribute power to the on-detector electronics of SLHC trackers. A comparative analysis of different promising converter topologies is presented, leading to the choice of a magneticbased buck converter as a first conversion stage followed by an on-chip switched capacitors converter. An overall efficiency above 80% is estimated for the practical implementation proposed.

  2. Power flow controller with a fractionally rated back-to-back converter

    Science.gov (United States)

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  3. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  4. Dynamics and Control of Switched Electronic Systems Advanced Perspectives for Modeling, Simulation and Control of Power Converters

    CERN Document Server

    Iannelli, Luigi

    2012-01-01

    The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of “switched electronic systems”. Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched electrical networks. In that sense the analysis of switched electronic systems represents a source for new ideas and benchmarks for switched and hybrid systems generally. Dynamics and Control of Switched Electronic Systems draws on the expertise of an international group of expert contributors to give an overview of recent advances in the modeling, simulation and control of switched electronic systems. The reader is provided...

  5. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    Science.gov (United States)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  6. A High Power Density DC-DC Converter for Distributed PV Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed S; Chi, Song; Elasser, Ahmed; Harfman-Todorovic, Maja; Jiang, Yan; Mueller, Frank; Tao, Fengfeng

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  7. Improvement of Power Quality Using a Hybrid Interline UPQC

    Directory of Open Access Journals (Sweden)

    M.K.Elango

    2014-05-01

    Full Text Available This paper proposed the reduced rating star connected transformer based interline unified power quality conditioner. This work comprises of unified power quality conditioner connected between the two feeders, star connected transformer and LC filter. This hybrid approach significantly improves the performance of UPQC under unbalance source voltage condition. The UPQC adopted to compensate current and voltage-quality problems of sensitive loads and suppressing the load current harmonics under distorted supply conditions. The series converter control strategy is based on the fuzzy-logic controller. The extensive simulation results have carried out in MATLAB/Simulink environment power system blockset toolboxes. From the results it has shown that hybrid interline UPQC achieves superior capability of mitigating the effects of voltage sag/swell and suppressing the load current harmonics, phase current harmonics and neutral current under distorted supply conditions. To validate the results produced by the proposed method, it is compared with the conventional UPQC method and better results obtained from the hybrid approach.

  8. Design and Implementation of Anti-windup PI Control on DC-DC Bidirectional Converter for Hybrid Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Muh. Zakiyullah Romdlony

    2012-07-01

    Full Text Available Well-regulated DC bus voltage is the important point to guarantee the power demand in hybrid vehicle applications. Voltage regulation can be achieved with control method that build switching signal on DC-DC converter. This paper describes design and small scale experimental results of bus voltage regulation control of the DC-DC bidirectional converter with battery and supercapacitor as energy source. The control system consists of two control loops, the outer loop that get DC bus voltage feedback using PI anti-windup back calculation control method. This outer loop will generate a reference current for the inner loop that implement hysteresis control. The inner control loop will compare that reference curent with the source current obtained from the current sensor. Simulation and experimental results show that bus voltage is well-regulated under the load changes with 1% voltage ripple.

  9. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; de Vega, Angel Ruiz

    2014-01-01

    This paper presents a real time measurement of on-state forward voltage and estimating the junction temperature for a high power IGBT module during a power converter operation. The power converter is realized as it can be used for a wind turbine system. The peak of the junction temperature is dec...

  10. Reliability-cost models for the power switching devices of wind power converters

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    In order to satisfy the growing reliability requirements for the wind power converters with more cost-effective solution, the target of this paper is to establish a new reliability-cost model which can connect the relationship between reliability performances and corresponding semiconductor cost...... for power switching devices. First the conduction loss, switching loss as well as thermal impedance models of power switching devices (IGBT module) are related to the semiconductor chip number information respectively. Afterwards simplified analytical solutions, which can directly extract the junction...

  11. Soft switching buck-boost converter for photovoltaic power generation; Taiyoko hatsuden no tame no soft switching shokoatsu converter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. [Kyungnam University (Korea, Republic of)

    1996-10-27

    A soft switching method with small switching loss was proposed for the purpose of increasing the efficiency of a DC-DC boost converter which converted a DC current generated by solar cells to a variable DC current. Existing current converters are supplemented by using a snubber circuit around the switch so as to protect the switch by a hard switching action. However, with an increase of the output current, snubber loss is increased, reducing the efficiency. In order to solve this problem, the partial resonant switch method was applied to the converter; with this method of partially forming a resonant circuit only at the time of turning on/off of the switch, the switching loss was reduced through the soft switching, thereby making the proposed converter operate with high efficiency. Moreover, the resonant element of the partial resonant circuit using a snubber condenser, the energy accumulated in the condenser was regenerated on the power supply side without loss of snubber. With the regenerated energy, the proposed converter was provided with a smaller ratio of switching to use than the conventional converter. 4 refs., 7 figs., 1 tab.

  12. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    Science.gov (United States)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  13. DC Storage Energy Variation Factor Study for Switched Mode Power Converters

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effectiveness of energy conversion in DC switched-mode power converters is studied.The ratio of the energy storage in the systemto the energy put - through is investigated for several converters.A very comprehensive study to identify how the energy is manipulatedby the various types of converters is reported in this paper.

  14. Lightweight DC-DC Converter with Partial Power Processing and MPPT for a Solar Powered Aircraft

    Science.gov (United States)

    Diab-Marzouk, Ahmad

    A lightweight dc-dc partial power processing converter is demonstrated for solar aerospace applications. A system-level model is conceived to determine conformity to payload and target distance objectives, with the Solarship aircraft used as an application example. The concept of partial power processing is utilized to realize a high efficiency lightweight converter that performs Max Peak Power Tracking (MPPT) to transfer power from the aircraft solar array to the high-voltage battery bus. The isolated Cuk is determined to be a suitable converter topology for the application. A small-signal model is derived for control design. The operation of a 400V, 2.7 kW prototype is verified at high frequency (200 kHz), high efficiency (> 98%), small mass (0.604 kg), and uses no electrolytic capacitors. MPPT operation is verified on a 376 V commercial solar installation at The University of Toronto. The prototype serves as an enabling technology for solar aerospace applications.

  15. Reactive Power Dispatch Method in Wind Farms to Improve the Lifetime of Power Converter Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi;

    2017-01-01

    Generator (DFIG) WT and the lifetime of DFIG WT’s power converter, a reactive power dispatch method is proposed in the WF with DFIG WTs to improve the lifetime of the upstream WT’s power converter. The proposed reactive power dispatch method is analyzed and demonstrated by the simulation on a WF with 80...... DFIG WTs. It can be concluded that, compared with the traditional reactive power dispatch method, the proposed method can increase the lifetime of the upstream WT’s power converter....

  16. Cascaded Thermoelectric Converters for Advanced Radioisotope Power Systems

    Science.gov (United States)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2004-02-01

    Three Cascaded Thermoelectric Converters (CTCs) are optimized for potential use in Multi-Mission Advanced Radioisotope Power Systems (MM-ARPS) for electrical powers up to 1 kWe, or even higher, in support of 7-10 year missions. The peak efficiencies of these CTCs of 9.43% to 14.32% are 40% to 110% higher than that of SiGe in State-of-the-Art (SOA) Radioisotope Thermoelectric Generators (RTGs). Such high efficiencies would significantly reduce the amount of 238PuO2 fuel and the total system mass for a lower mission cost. Each CTC is comprised of a SiGe top unicouple that is thermally, but not electrically, coupled to a bottom unicouple with one of the following three choices of thermoelectric materials: (a) p-leg of TAGS-85 and n-leg of 2N-PbTe (b) p-leg of CeFe3.5Co0.5Sb12 and n-leg of CoSb3; and (c) segmented p-leg of CeFe3.5Co0.5Sb12 and Zn4Sb3 and n-leg of CoSb3. The length of the top and bottom unicouples is 10 mm, but the cross-sectional areas of the n- and p-legs of the unicouples are optimized for maximum efficiency operation. They vary with the thermal power inputs of 1, 2, and 3 Wth per SiGe unicouple, and the heat rejection temperature of 375 K, 475 K, and 575 K, from the bottom unicouple. Such geometrical optimization is at nominal hot shoe temperature of 1273 K for the SiGe unicouple and cold shoe temperature of either 780 K or 980 K, depending on the materials of the bottom unicouples. The hot shoe temperature of the bottom unicouples is 20 K lower than the cold shoe of the top SiGe unicouple, but the rate of heat input is the same as the rate of heat rejection from the top unicouple. The present results are conservative as they assume a contact resistance of 150 μΩ-cm2 per leg for the top and the bottom unicouples in the CTCs; however, decreasing this resistance to 50 μΩ-cm2 per leg could increase the current efficiency estimates by an additional 1 - 2 percentage points.

  17. High-feedback Operation of Power Electronic Converters

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Andriyanov, Alexey I.;

    2013-01-01

    The purpose of this review is to provide a survey of some of the most important bifurcation phenomena that one can observe in pulse-modulated converter systems when operating with high corrector gain factors. Like other systems with switching control, electronic converter systems belong to the cl......The purpose of this review is to provide a survey of some of the most important bifurcation phenomena that one can observe in pulse-modulated converter systems when operating with high corrector gain factors. Like other systems with switching control, electronic converter systems belong...... or resonant periodic dynamics on the surface of a two-dimensional torus. This transition occurs when the feedback gain is increased beyond a certain threshold, for instance in order to improve the speed and accuracy of the output voltage regulation. For each of the three converter types, we discuss a number...

  18. Shunt Active and Series Active Filters-Based Power Quality Conditioner for Matrix Converter

    Directory of Open Access Journals (Sweden)

    P. Jeno Paul

    2011-01-01

    Full Text Available This paper proposes a series active filter and shunt active filter to minimize the power quality impact present in matrix converters instead of passive filter. A matrix converter produces significant harmonics and nonstandard frequency components into load. The proposed system compensates the sag and swell problems efficiently in matrix converter. The proposed system has been tested and validated on the matrix converter using MATLAB/Simulink software. Simulated results confirm that the active power filters can maintain high performance for matrix converter.

  19. A High Efficiency Power Factor Correction Using Interleaved Boost Converter With Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    M.BHUVANESWARI

    2013-06-01

    Full Text Available This paper presents interleaved front end boost converter to perform better power factor correction to store energy for electric vehicles. The interleaved boost converter increases reliability, decreased stress on critical components, improves efficiency and more flexibility. The parallel connection of two boost converters reduces the input ripple current of the converter. The interleaved boost converter with coupled inductors reduces the volume and copper usage of the magnetic components and also achieves high power density. The coupled inductor delivers continuous current to improve the efficiency. The boost power factor correction (PFC converter with auxiliary circuit optimizes the amount of reactive current during light load condition. In addition the control system regulates the amount of reactive current to guarantee zero voltage switching (ZVS during line cycle for different load conditions. The proposed interleaved boost converter with coupled inductor was modeled and its performance is simulated and analyzed in Mat lab/Simulink environment.

  20. Intelligent uninterruptible power supply system with back-up fuel cell/battery hybrid power source

    Science.gov (United States)

    Zhan, Yuedong; Guo, Youguang; Zhu, Jianguo; Wang, Hua

    2008-05-01

    This paper presents the development of an intelligent uninterruptible power supply (UPS) system with a hybrid power source that comprises a proton-exchange membrane fuel cell (PEMFC) and a battery. Attention is focused on the architecture of the UPS hybrid system and the data acquisition and control of the PEMFC. Specifically, the hybrid UPS system consists of a low-cost 60-cell 300 W PEMFC stack, a 3-cell lead-acid battery, an active power factor correction ac-dc rectifier, a half-bridge dc-ac inverter, a dc-dc converter, an ac-dc charger and their control units based on a digital signal processor TMS320F240, other integrated circuit chips, and a simple network management protocol adapter. Experimental tests and theoretical studies are conducted. First, the major parameters of the PEMFC are experimentally obtained and evaluated. Then an intelligent control strategy for the PEMFC stack is proposed and implemented. Finally, the performance of the hybrid UPS system is measured and analyzed.

  1. Hybrid Photovoltaic-Hydrogen Power Conditioning System

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Ejea, J. B.; Ferreres, A.; Sanchis, E.

    2011-10-01

    This paper explores a power conditioning unit for photovoltaic/hydrogen based energy systems. Similar power conversion techniques, compared to traditional space power systems, are applied. An S4R regulator is devised with an unregulated battery bus as primary output and a secondary path to feed and electrolyser. A modular fuel cell converter completes the system and it operates when photovoltaic energy is not available or load demand exceeds solar power, i. e. like a traditional BDR. An ancillary battery keeps the unregulated bus voltage distributed in the system and it also aids the fuel cell during transients or start-up due to its limited speed. A 1kW breadboard has been designed and implemented to corroborate the proposed system.

  2. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

    2011-01-01

    This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...

  3. Hybrid power technology for remote military facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, R.N.

    1996-09-01

    The Department of Defense (DoD) operates hundreds of test, evaluation, and training facilities across the US and abroad. Due to the nature of their missions, these facilities are often remote and isolated from the utility grid. The preferred choice for power at these facilities has historically been manned diesel generators. The DoD Photovoltaic Review Committee, estimates that on the order of 350 million gallons of diesel fuel is burned each year to generate the 2000 GWh of electricity required to operate these remote military facilities. Other federal agencies, including the National Park Service and the USDA Forest Service use diesel generators for remote power needs as well. The generation of power diesel generators is both expensive and detrimental to the environment. The augmentation of power from diesel generators with power processing and battery energy storage enhances the efficiency and utilization of the generator resulting in lower fuel consumption and lower generator run- time in proportion to the amount of renewables added. The hybrid technology can both reduce the cost of power and reduce environmental degradation at remote DoD facilities. This paper describes the expected performance and economics of photovoltaic/diesel hybrid systems. Capabilities and status of systems now being installed at DoD facilities are presented along with financing mechanisms available within DoD.

  4. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  5. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.;

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...... based approach is used to control the DC/DC power converters associated with the DC sources, the backstepping technique combined with the field oriented control strategy are invoked in order to control the induction motor. It is formally shown, using a theoretical analysis and simulation results...

  6. Series Connected Converter for Control of Multi-Bus Spacecraft Power Utility

    Science.gov (United States)

    Beach, Raymond F. (Inventor); Brush, Andy (Inventor)

    1997-01-01

    The invention provides a power system using series connected regulators. Power from a source, such as a solar array, is processed through the regulators and provided to corresponding buses used to charge a battery and supply loads. The regulators employ a bypass loop around a DC-DC converter. The bypass loop connects a hot input of the converter to a return output, preferably though an inductor. Part of the current from the source passes through the bypass loop to the power bus. The converter bucks or boosts the voltage from the source to maintain the desired voltage at the bus. Thus, only part of the power is processed through the converter. The converter can also be used without the bypass loop to provide isolation. All of the converters can be substantially identical.

  7. Stability of networks with distributed generation and power converter interfaces: final report

    Energy Technology Data Exchange (ETDEWEB)

    Rasolonjanahary, J.L.; Banks, R.; Clare, J.; Asher, G.; Bozhko, S. [Nottingham Univ. (United Kingdom)

    2004-07-01

    This report summarises the results of a project developing and applying software for establishing control regimes to ensure stability and power quality of a distributed utility grid taking into account the requirements of power converter controlled units and assessing the extra control freedom of power converter interfaces. Control methods for single generation systems are described and assessed covering dual rate control, multivariable based control via feedback linearization, and compensated generator control. Multiple generator converter systems are examined, and simulation software, system parameters, and converter control design are discussed in appendices.

  8. Modular Multi-level converter based HVDC System for Grid Connection of Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Gnanarathna, U.N.; Chaudhary, Sanjay Kumar; Gole, A.M.;

    2010-01-01

    This paper explores the application of modular multi-level converters (MMC) as a means for harnessing the power from off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter (VSC) submodules that can be easily assembled into a converter for high......-voltage and high power. The paper shows that the MMC converter has a fast response and low harmonic content in comparison with a two-level VSC option. The paper discusses the modeling approach used, including a solution to the modeling challenge imposed by the very large number of switching devices in the MMC....

  9. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-01-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  10. High power density dc/dc converter: Component selection and design

    Science.gov (United States)

    Divan, Deepakraj M.

    1989-01-01

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  11. Improved Design Methods for Robust Single- and Three-Phase ac-dc-ac Power Converters

    DEFF Research Database (Denmark)

    Qin, Zian

    becomes a emerging challenge. Accordingly, installation of sustainable power generators like wind turbines and solar panels has experienced a large increase during the last decades. Meanwhile, power electronics converters, as interfaces in electrical system, are delivering approximately 80 % electricity...

  12. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I of this project, APEI, Inc. proved the feasibility of creating ultra-lightweight power converters (utilizing now emerging silicon carbide [SiC] power...

  13. Integrated magnetics design for HF-link power converters

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper deals with the design of integrated magnetics for HF-link converters, where the integrated magnetic components do not necessarily belong to the same voltage loop. Depending on the specific HF-link converter topology, the proposed integrated magnetics can either alleviate the derivation...... of independent auxiliary supply voltages from the main transformer or integrate other magnetic structures, thus saving board space and cutting costs....

  14. Integrated magnetics design for HF-link power converters

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper deals with the design of integrated magnetics for HF-link converters, where the two integrated magnetic components on the same core do not necessarily belong to the same voltage loop. Depending on the specific HF-link converter topology, the proposed integrated magnetics can either alleviate the derivation of independent auxiliary supply voltages from the main transformer or integrate other magnetic structures, thus saving board space and cutting costs. (au)

  15. Investigating Enhancement Mode Gallium Nitride Power FETs in High Voltage, High Frequency Soft Switching Converters

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    An increased attention has been detected to develop smaller and lighter high voltage power converters in the range of 50V to 400V domain. The main applications for these converters are mainly focused for Power over Ethernet (PoE), LED lighting and AC adapters. This work will discuss a study...

  16. Proportional derivative based stabilizing control of paralleled grid converters with cables in renewable power plants

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    Resonant interactions of grid-connected converters with each other and with cable capacitance are challenging the stability and power quality of renewable energy sources based power plants. This paper addresses the instability of current control of converters with the multiple resonance frequenci...

  17. Accelerated lifetime testing of energy storage capacitors used in particle accelerators power converters

    CERN Document Server

    AUTHOR|(SzGeCERN)679542; Genton, Charles-Mathieu

    2015-01-01

    Energy storage capacitors are used in large quantities in high power converters for particle accelerators. In this application capacitors see neither a DC nor an AC voltage but a combination of the two. The paper presents a new power converter explicitly designed to perform accelerated testing on these capacitors and the results of the tests.

  18. Investigating Enhancement Mode Gallium Nitride Power FETs in High Voltage, High Frequency Soft Switching Converters

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    An increased attention has been detected to develop smaller and lighter high voltage power converters in the range of 50V to 400V domain. The main applications for these converters are mainly focused for Power over Ethernet (PoE), LED lighting and AC adapters. This work will discuss a study of us...

  19. DC-DC switching converter based power distribution vs serial power distribution EMC strategies

    CERN Document Server

    Arteche, F; Iglesias, M; Rivetta, C; Arcega, F G; Vila, I

    2009-01-01

    This paper presents a detailed and comparative analysis from the electromagnetic compatibility point of view of the proposed power distributions for the SLHC tracker up-grade. The main idea is to identify and quantify the noise sources, noise distribution at the system level and the sensitive areas in the front-end electronics corresponding to both proposed topologies: The DC-DC converter based power distribution and the serial power distribution. These studies will be used to define critical points on both systems to be studied and prototyped to ensure the correct integration of the system taking critically into account the electromagnetic compatibility. This analysis at the system level is crucial to ensure the final performance of the detector using non conventional power distributions, avoiding interference problems and excessive losses that can lead to catastrophic failures or expensive and un-practical solutions.

  20. A Novel Serial Hybrid Three-level NPC Topology for Multi-MW Medium Voltage Wind Power Converters%兆瓦级中压风电变流器的新型串联混合三电平NPC拓扑

    Institute of Scientific and Technical Information of China (English)

    陈根; 王勇; 蔡旭

    2013-01-01

    A novel serial hybrid three-level neutral point clamped (NPC) topology was proposed in this paper.It's a derivative of conventional three-level NPC topology with introducing serial application of high power IGBT.In the novel topology,the leg's two outer IGBTs are two low voltage ones in serial connection respectively,while the inner two IGBTs are both high voltage ones.In multi-MW medium voltage wind power converter,the switching losses of high power IGBTs are very large,which limits its switching frequency.The proposed topology can reduce power losses and increase switching frequency by serial connecting of low voltage IGBTs.The increase of switching frequency can also reduce the output filter's size.The power losses of IGBT in both conventional three-level NPC topology and proposed novel topology are compared to indicate the advantage of the new topology.By changing the gate resistor,the voltage sharing of serial connecting IGBT is achieved,which is significant for the application of the novel topology.Finally,a single phase leg prototype is built up to validate the feasibility and advantage of proposed topology.%提出一种新型的串联混合三电平中点钳位(neutralpoint clamped,NPC)拓扑,该拓扑是基于传统三电平NPC拓扑的改进和优化,引入大功率IGBT的串联应用.该新型拓扑中,桥臂的两个外管分别用两个低压IGBT串联,两个内管均用高压IGBT.在多兆瓦级中压风电变流器中,大功率IGBT的开关损耗很大,从而限制了开关频率.提出的新型拓扑通过低压IGBT的串联来减小功率器件的损耗,从而提高开关频率,同时可减小输出滤波器的尺寸.通过传统三电平拓扑和新型串联混合三电平拓扑IGBT损耗的对比,说明新拓扑的优势.通过改变门极驱动电阻实现串联IGBT的均压,对新拓扑的应用具有重大意义.最后通过新拓扑的单相样机验证新拓扑的正确性和可行性.

  1. Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System

    Science.gov (United States)

    2009-07-30

    Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System Jarrett Goodell and...TITLE AND SUBTITLE Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System 5a...for ~ 22 ton tracked vehicle • Tested and Developed: – Motors, Generators, Batteries, Inverters, DC-DC Converters , Thermal Management, Pulse Power

  2. Power flow analysis for droop controlled LV hybrid AC-DC microgrids with virtual impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Vasquez, Juan Carlos

    2014-01-01

    The AC-DC hybrid microgrid is an effective form of utilizing different energy resources and the analysis of this system requires a proper power flow algorithm. This paper proposes a suitable power flow algorithm for LV hybrid AC-DC microgrid based on droop control and virtual impedance. Droop...... and virtual impedance concepts for AC network, DC network and interlinking converter are reviewed so as to model it in the power flow analysis. The validation of the algorithm is verified by comparing it with steady state results from detailed time domain simulation. The effectiveness of the proposed...

  3. Hybrid Power Management-Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  4. High-Repeatable Data Acquisition Systems for Pulsed Power Converters in Particle Accelerator Structures

    CERN Document Server

    AUTHOR|(CDS)2087245; Martino, Michele; Zinno, Raffaele

    In this Ph.D. thesis, the issues related to the metrological characterization of high-performance pulsed power converters are addressed. Initially, a background and a state of the art on the measurement systems needed to correctly operate a high-performance power converter are presented. As a matter of fact, power converters usually exploits digital control loops to enhance their performance. In this context the final performance of a power converter has to be validated by a reference instrument with higher metrological characteristics. In addition, an on-line measurement systemis also needed to digitize the quantity to be controlled with high accuracy. Then, in industrial applications of power converters metrology, specifications are given in terms of Worst-Case Uncertainty (WCU). Therefore, an analytical model for predicting the Worst-Case Uncertainty (WCU) of a measurement system is discussed and detailed for an instrument affected by Gaussian noise. Furthermore, the study and the design of a Reference Acq...

  5. Design and Implementation of Power Flow Control for a novel Dual Input DC-DC Converter

    DEFF Research Database (Denmark)

    Taeed, Fazel; Ouyang, Ziwei; Nymand, Morten

    2014-01-01

    In this paper a control strategy for controlling the power flow from input voltage sources of a novel dual-input dcdc converter to the load is introduced. The converter can be used in renewable energy applications with two independent power sources. Firstly, the operation principle of the converter...... to control the power flow in the converter. The implemented controller in FPGA is low cost and simple. The complete system can be practically used in power management for renewable energy sources....... is outlined; then the control method for adjusting power sharing is proposed. In the next step, the controller is implemented in an FPGA, and then a 350W dual input converter is built to verify operation of the proposed control strategy. The experimental results show the excellent ability of the controller...

  6. Review of the Initial Phases of the LHC Power Converter Commissioning

    CERN Document Server

    Nisbet, D

    2008-01-01

    The LHC requires more than 1700 power converter systems that supply between 60A and 13kA of precisely regulated current to the superconducting magnets. For the first time at CERN these converters have been installed underground in close proximity to many other accelerator systems. In addition to the power converters themselves, many utilities such as air and water cooling, electrical power, communication networks and magnet safety systems needed to be installed and commissioned as a single system. Due to the complexity of installing and commissioning such a large infrastructure, with inevitable interaction between the different systems, a three phase test strategy was developed. The first phase comprised the manufacture, integration and reception tests of all converter sub-systems necessary for powering. The second phase covered the commissioning of all the power converters installed in their final environment with the utilities. The third phase will add the superconducting magnets and will not be covered by ...

  7. High-Feedback Operation of Power Electronic Converters

    Directory of Open Access Journals (Sweden)

    Gennady Y. Mikhal'chenko

    2013-03-01

    Full Text Available The purpose of this review is to provide a survey of some of the most important bifurcation phenomena that one can observe in pulse-modulated converter systems when operating with high corrector gain factors. Like other systems with switching control, electronic converter systems belong to the class of piecewise-smooth dynamical systems. A characteristic feature of such systems is that the trajectory is “sewed” together from subsequent discrete parts. Moreover, the transitions between different modes of operation in response to a parameter variation are often qualitatively different from the bifurcations we know for smooth systems. The review starts with an introduction to the concept of border-collision bifurcations and also demonstrates the approach by which the full dynamics of the piecewise-linear, time-continuous system can be reduced to the dynamics of a piecewise-smooth map. We describe the main bifurcation structures that one observes in three different types of converter systems: (1 a DC/DC converter; (2 a multi-level DC/DC converter; and (3 a DC/AC converter. Our focus will be on the bifurcations by which the regular switching dynamics becomes unstable and is replaced by ergodic or resonant periodic dynamics on the surface of a two-dimensional torus. This transition occurs when the feedback gain is increased beyond a certain threshold, for instance in Electronics 2013, 2 114 order to improve the speed and accuracy of the output voltage regulation. For each of the three converter types, we discuss a number of additional bifurcation phenomena, including the formation and reconstruction of multi-layered tori and the appearance of phase-synchronized quasiperiodicity. Our numerical simulations are compared with experimentally observed waveforms.

  8. Analysis of energy processes in pulse converters of AC electric power

    Directory of Open Access Journals (Sweden)

    Kadatsky A.F.

    2015-02-01

    Full Text Available The article presents the analysis of energy processes in switched-mode AC-AC converters of buck, boost and buck-boost types. The mathematical model of energy processes is obtained. The mathematical model is generalized to DC-DC and AC-AC converters, to three basic types of converters and considers possibility of autotransformer inclusion of an inductor. It is shown that the use of bi-directional switches allows both DC and AC conversion of electrical energy regardless of the load type and also supports recuperation of electrical energy back to the source. It is shown that the maximum value of instant power in a load circuit in AC—AC converters exceeds twice the rated value of load power in comparison with DC—DC converters. It is shown that the energy capacity of an inductor in AC—AC converters exceeds twice the energy capacity of DC—DC converters at the identical rated power of conversion. It is shown that the energy capacity of an inductor in converters of buck and boost types depends on the ratio of input and output voltage. Also, the energy capacity of an inductor in converters of buck-boost type does not depend on the ratio of input and output voltage. It is shown that the energy capacity of an inductor in converters of buck and boost types is lower than the energy capacity of an inductor in the converter of buck-boost type.

  9. Design of Power Converters for Renewable Energy Sources and Electric Vehicles Charging

    Directory of Open Access Journals (Sweden)

    Martin Tvrdon

    2013-01-01

    Full Text Available This paper describes the design and construction of new series of power converters equipped with liquid cooling system. This power series is created for project ENET – Energy Units for Utilization of non Traditional Energy Sources. First power converter is determined for stationary battery system use, the second one is used as an inverter/rectifier for a small solar plant system and the last power inverter is used as a fast charger for electric vehicles. Energy balance is performed for the fast charger converter, which is solved using numerical simulations of the system.

  10. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; de Vega, Angel Ruiz;

    2014-01-01

    This paper presents a real time measurement of on-state forward voltage and estimating the junction temperature for a high power IGBT module during a power converter operation. The power converter is realized as it can be used for a wind turbine system. The peak of the junction temperature...... is decreased at higher fundamental frequency due to change in on-state time from the change in output frequency. The junction temperature is estimated using the on-state collector-emitter voltage of the IGBT module. Lower output frequency is thermally a higher stressing zone for wind power converters, hence...

  11. Low dose failures of hardened DC-DC power converters

    Science.gov (United States)

    Lehman, J.; Yui, C.; Rax, B. G.; Miyahira, T. F.; Weideman, M.; Schrick, P.; Swift, G. M.; Johnston, A. H.

    2002-01-01

    Box-level total dose testing of the FOG (Fiber Optic Gyro) by IXSEA at ESA's GammabeamFacility were abruptly terminated at 8krad (Si) due to catastrophic failure (complete shutdown). This was unexpected because all components within the gyro were supposedly radiation tolerant. Further testing showed that the components responsible for the failure were two DC-DC converters, manufactured by Interpoint, that stopped regulating shortly before shutdown. This paper summarizes diagnostic test results for the converters to determine the underlying cause of the unexpected failure at low levels of radiation.

  12. High Voltage Power Converter for Large Wind Turbine

    DEFF Research Database (Denmark)

    Sztykiel, Michal

    performance has been achieved by the transformer-less turbine with a back-to-back modular multilevel converter (MMC) topology, which is single grounded only through its DC link common-mode point. It has also occurred that the results derived from losses and short circuit analyses have become advantageous over...... system operates at 20 kV level - identical as for the collector distribution network. Medium voltage operation allows the converter unit along with the filter to be installed on the base platform inside the tower. In this manner, more space in the nacelle can be flexibly accommodated by the mechanical...

  13. Efficiency and Regulation of Commercial Low Power DC/DC Converter Modules at Low Temperatures

    Science.gov (United States)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2000-01-01

    DC/DC converters that are capable of operating at cryogenic temperatures are anticipated to play an important role in the power systems of future NASA deep space missions. Design of these converters to survive cryogenic temperatures will improve the power system performance, and reduce development and launch costs. At the NASA Glenn Research Center Low Temperature Electronics Laboratory, several commercial off-the-shelf dc/dc converter modules were evaluated for their low temperature performance. Various parameters were investigated as a function of temperature, in the range of 20 C to -190 C. Data pertaining to the efficiency and voltage regulation of the tested converters is presented and discussed.

  14. DC to DC power converters and methods of controlling the same

    Science.gov (United States)

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  15. Energy Factor and Mathematical Modeling for Power DC/DC Converters

    Institute of Scientific and Technical Information of China (English)

    Fang Lin LUO; Hong YE

    2004-01-01

    Mathematical modelling for power DC/DC converters is a historical problem accompanying DC/DC conversion technology since 1940's. The traditional mathematical modelling is not available for complex structure converters since the differential equation order increases very high. We have to search other way to establish mathematical modelling for power DC/DC converters. We have theoretically defined a new concept - Energy Factor (EF) in this paper and researched the relations between EF and the mathematical modelling for power DC/DC converters. EF is a new concept in power DC/DC conversion technology, which thoroughly differs from the traditional concepts such as power factor (PF), power transfer efficiency (η), total harmonic distortion (THD) and ripple factor (RF). EF and the subsequential EFv (and EFvD ) can illustrate the system stability, reference response and interference recovery. This investigation is very helpful for system design and DC/DC converters characteristics foreseeing. Two DC/DC converters: Buck converter and Super-Lift Luo-Converter as the samples are analysed in this paper to demonstrate the applications of EF, EFv (and EFvD), PE,SE, VE (and VED ), time constant τ and damping time constant τd .

  16. Modeling and simulation of a hybrid ship power system

    Science.gov (United States)

    Doktorcik, Christopher J.

    2011-12-01

    Optimizing the performance of naval ship power systems requires integrated design and coordination of the respective subsystems (sources, converters, and loads). A significant challenge in the system-level integration is solving the Power Management Control Problem (PMCP). The PMCP entails deciding on subsystem power usages for achieving a trade-off between the error in tracking a desired position/velocity profile, minimizing fuel consumption, and ensuring stable system operation, while at the same time meeting performance limitations of each subsystem. As such, the PMCP naturally arises at a supervisory level of a ship's operation. In this research, several critical steps toward the solution of the PMCP for surface ships have been undertaken. First, new behavioral models have been developed for gas turbine engines, wound rotor synchronous machines, DC super-capacitors, induction machines, and ship propulsion systems. Conventional models describe system inputs and outputs in terms of physical variables such as voltage, current, torque, and force. In contrast, the behavioral models developed herein express system inputs and outputs in terms of power whenever possible. Additionally, the models have been configured to form a hybrid system-level power model (HSPM) of a proposed ship electrical architecture. Lastly, several simulation studies have been completed to expose the capabilities and limitations of the HSPM.

  17. Evaluation and Design Tools for the Reliability of Wind Power Converter System

    DEFF Research Database (Denmark)

    Ma, Ke; Zhou, Dao; Blaabjerg, Frede

    2015-01-01

    of suitable physic-of-failure based evaluation tools for a reliability assessment in power electronics. In this paper, an advanced tool structure which can acquire various reliability metrics of wind power converter is proposed. The tool is based on failure mechanisms in critical components of the system......As a key part in the wind turbine system, the power electronic converter is proven to have high failure rates. At the same time, the failure of the wind power converter is becoming more unacceptable because of the quick growth in capacity, remote locations to reach, and strong impact to the power...... grid. As a result, the correct assessment of reliable performance for power electronics is a crucial and emerging need; the assessment is essential for design improvement, as well as for the extension of converter lifetime and reduction of energy cost. Unfortunately, there still exists a lack...

  18. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    Science.gov (United States)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  19. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    network in a first switch state and select a second impedance characteristic of the resonant network in a second switch state. An output voltage or current control circuit is configured to adjust the converter output voltage and/or current by activating and interrupting the first switch control signal...

  20. Lyapunov-Based Control for Switched Power Converters

    Science.gov (United States)

    1990-06-01

    up-down converter of Figure 2 which has a state- V( space averaged model of the form MWny stabilizing control schemes can be obtained by in- S= Az...straigL -forward to specify a globally stabilizing control law for performing the described measurement process, it is possible the mcdel (6) of the form

  1. Analysis, Design, Modeling, and Control of an Interleaved-Boost Full-Bridge Three-Port Converter for Hybrid Renewable Energy Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Zhang, Zhe; Knott, Arnold

    2017-01-01

    This paper presents the design, modeling, and control of an isolated dc-dc three-port converter (TPC) based on an interleaved-boost full-bridge converter with pulsewidth modulation (PWM) and phase-shift control for hybrid renewable energy systems. In the proposed topology, the switches are driven......, a prototype is constructed and tested under the various modes, depending on the availability of the renewable energy source and the load consumption. The experimental results show that the two decoupled control variables achieve effective regulation of the power flow among the three ports....

  2. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    Science.gov (United States)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  3. Three-dimensional integration of power electronic converters on printed circuit board

    OpenAIRE

    de Jong, E.C.W.

    2007-01-01

    The current construction technology for PCB assembled power converters is based on the assembly of pre-manufactured discrete components. Fundamental limits of this construction method are steadily being reached as power converters tend to exploit higher processing speeds to gain advantages in both magnetic component size and overall power density. This thesis investigates a new design approach encompassing thermal management, geometrical packaging and electromagnetic integration (focussing on...

  4. Design and Research on Sigma-Delta Digital-to-Analog Converters for Audio Power Amplifiers

    OpenAIRE

    Puidokas, Vytenis

    2011-01-01

    The dissertation investigates the issues of analyzing a digital Sigma-Delta digital-to-analog converter (DAC) for audio power amplifiers. The main objects of research include a digital Sigma-Delta audio power DAC, improvement of its structure and an experimental research. The primary purpose of the dissertation is to suggest methods for improvement the structure of digital Sigma-Delta audio power DAC interpolator and the converter analysis. Disertacijoje nagrinėjami Sigma-Delta skaitmenini...

  5. HYBRID FUEL CELL-SOLAR CELL SPACE POWER SUBSYSTEM CAPABILITY.

    Science.gov (United States)

    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid system...to conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  6. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    Directory of Open Access Journals (Sweden)

    A. Hajizadeh

    2013-12-01

    Full Text Available This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid power system is simulated in MATLAB/ SIMIULINK environment and different operating conditions have been considered to evaluate the response of power management strategy.

  7. Power Control of Offshore Wind Power System through Modular Multilevel Converter

    DEFF Research Database (Denmark)

    Hakimi, Mehdi; Hajizadeh, Amin

    2017-01-01

    This paper presents an Adaptive Fuzzy Sliding Mode (AFSM) Current Control of Modular Multilevel Converter (MMC) for integration offshore wind power system to on-grid network. In order to design adaptive robust control strategy, mathematical dynamic model of MMC using rotating d-q theory based upon...... positive and negative symmetrical components has been developed. Time-domain simulation studies are carried out in the Matlab/Simulink environment to verify the performance of the overall proposed control system. The simulation results show that the proposed controller provides the load with a set...

  8. Hybrid Non-Isolated and Non Inverting Nx Interleaved DC-DC Multilevel Boost Converter for Renewable Energy Applications

    DEFF Research Database (Denmark)

    Bhaskar, Mahajan Sagar; Kulkarni, Rishi M.; Padmanaban, Sanjeevi Kumar;

    2016-01-01

    In this paper hybrid non isolated/ non inverting Nx interleaved DC-DC multilevel Boost Converter for renewable energy applications is presented. The presented hybrid topology is derived from the conventional interleaved converter and the Nx Multilevel boost converter. In renewable energy...... applications, generated energy cannot be directly used at application end. In most of the cases it needs to be stepped up with DC-DC converter at operating voltage levels as per the requirement of the application. Though conventional boost converter can theoretically be used for this purpose, but obtaining....... The advantages of presenting topology of DC-DC converter are high voltage conversion, reduce ripple, low voltage stress, non inverting without utilizing the high duty and transformer. The main advantage of presented topology is more number of levels can be increased by adding capacitor and diode circuitry...

  9. Non Isolated and Non-Inverting Cockcroft Walton Multiplier Based Hybrid 2Nx Interleaved Boost Converter For Renewable Energy Applications

    DEFF Research Database (Denmark)

    Bhaskar, Mahajan Sagar; Padamanaban, Sanjeevi Kumar; Blaabjerg, Frede

    2016-01-01

    In this paper hybrid non isolated and non-invertingCockcroft-Walton multiplier based 2Nx InterleavedBoost converter (2Nx IBC) for renewable energy applications is presented. The presented hybrid boost converter topology is derived from non-inverting Nx Multilevel Boost Converter (Nx MBC......) and inverting Nx Multilevel Boost Converter (Nx MBC). In renewable energy applications, generated voltage needs to be stepped up with high conversion ratio using a DC-DC converter at voltage levels as per the application requirement. The advantages of the presentedtopology of interleaved converter are high...... voltage conversion ratio, reduce ripple, low voltage stress, non-inverting output voltage without utilizing the high duty cycle, coupled inductors and transformer. The main advantage of presented topology consists in increasing voltage gain by adding capacitor and diode into circuitry without disturbing...

  10. Hybrid high power femtosecond laser system

    Science.gov (United States)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  11. Design and comparative study of discrete and module-based IGBT power converters

    Indian Academy of Sciences (India)

    D VENKATRAMANAN; ANIL KUMAR ADAPA; VINOD JOHN

    2017-08-01

    This paper discusses concepts of a 20 kVA power converter design and key differences between discrete IGBT and module-based design approaches. Module-based power converters have been typically employed in academic and research institutes for power levels of 10 kVA and more. However, with advancement in IGBT technologies and the growing need to minimize system size and weight, designs based on discrete devices are now an attractive alternative for such power levels. A simple procedure is presented for power converter design that includes power loss evaluation, heat-sink thermal characterization, thermal model of overall system and sizing of DC link capacitor. Using the same, a state-of-the-art discrete device and modulebased power converters are designed. A comparison is subsequently made, where it is shown that discrete approach yields a compact and economic design up to a power level of 20 kVA. A key objective of this work is to lay emphasis on laboratory design of power converters. This enables a graduate level student to build a converter from start and in the process gain insights into the underlying engineering design aspects.

  12. Modular Multilevel Converter solutions with few Sub-Modules for wind power application

    DEFF Research Database (Denmark)

    Smirnova, Liudmila; Pyrhönen, Juha; Ma, Ke;

    2014-01-01

    Modular Multilevel Converter (MMC) is a topology where series connection of Sub-Modules (SM) is used to achieve almost sinusoidal output voltage. The MMC converter with a large number of SMs is actively used in high voltage DC (HVDC) transmission systems where a bulky converter is not a difficult...... issue. In this paper the possibility to use a MMC with just a few SMs for wind power application with limited space in the nacelle is analysed. The current loading, electrical losses and thermal performance of the power devices in the converter solutions studied are analysed. It is shown that an MMC...... converter with full-bridge (FB) SMs has a more uniform loss and temperature distribution among the semiconductor devices than an MMC with half-bridge (HB) SMs. The reliability of the MMC converters is also investigated in terms of thermal loading....

  13. Design of Solar/Electric Powered Hybrid Vehicle (SEPHV) System with Charge Pattern Optimization for Energy Cost

    OpenAIRE

    T Balamurugan; Dr.S.Manoharan

    2014-01-01

    This paper proposes a Solar Electric Powered Hybrid Vehicle (SEPHV) system which solves the major problems of fuel and pollution. An electric vehicle usually uses a battery which has been charged by external electrical power supply. All recent electric vehicles present a drive on AC power supplied motor. An inverter set is required to be connected with the battery through which AC power is converted to DC power. During this conversion many losses take place and also the maintenance cost of th...

  14. Voltage source ac-to-dc converters for high-power transmitters

    Science.gov (United States)

    Cormier, R.

    1990-01-01

    This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

  15. Capacitor performance limitations in high power converter applications

    DEFF Research Database (Denmark)

    El-Khatib, Walid Ziad; Holbøll, Joachim; Rasmussen, Tonny Wederberg

    2013-01-01

    High voltage low inductance capacitors are used in converters as HVDC-links, snubber circuits and sub model (MMC) capacitances. They facilitate the possibility of large peak currents under high frequent or transient voltage applications. On the other hand, using capacitors with larger equivalent...... series inductances include the risk of transient overvoltages, with a negative effect on life time and reliability of the capacitors. These allowable limits of such current and voltage peaks are decided by the ability of the converter components, including the capacitors, to withstand them over...... the expected life time. In this paper results are described from investigations on the electrical environment of these capacitors, including all the conditions they would be exposed to, thereby trying to find the tradeoffs needed to find a suitable capacitor. Different types of capacitors with the same voltage...

  16. SIMPLIFIED APPROACHES FOR CONTROLLING DC-DC POWER CONVERTERS

    Directory of Open Access Journals (Sweden)

    M. M. ABDEL AZIZ

    2012-02-01

    Full Text Available This paper represents the design procedures of different compensation schemes for voltage mode controlled (VMC dc–dc switching converters. Proportional integral derivative (PID controllers, Fuzzy logic controllers (FLC, parallel combination of PID and FLC, and FLC tuned by PI controller have been investigated. MATLAB software is used to depict the buck converter performance with each compensator type when it is electrically simulated, and analytically modeled using its equivalent transfer function (TF. The comparative study Resultsemphasize that FLC tuned by PI controller is superior to the other control strategies because of fast transient response, minimum steady state error and good disturbance rejection under various variations of the operating conditions. Hence, it achieves the most tightly output voltage regulation.

  17. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    Science.gov (United States)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  18. Proceedings of the CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 2014

    CERN Document Server

    Bailey, R

    2015-01-01

    These proceedings collate lectures given at the twenty-eighth specialized course organised by the CERN Accelerator School (CAS). The course was held at the Hotel du Parc, Baden, Switzerland from 7 - 14 May 2014, in collaboration with the Paul Scherrer Institute. Following introductory lectures on accelerators and the requirements on power converters, the course covered components and topologies of the different types of power converters needed for particle accelerators. Issues of design, control and exploitation in a sometimes-hostile environment were addressed. Site visits to ABB and PSI provided an insight into state-of-the-art power converter production and operation, while topical seminars completed the programme.

  19. Digital control of high-frequency switched-mode power converters

    CERN Document Server

    Corradini, Luca; Mattavelli, Paolo; Zane, Regan

    This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also

  20. Diode-clamped multilevel converters with integrable gate-driver power-supply circuits

    OpenAIRE

    Busquets Monge, Sergio; Rocabert Delgado, Joan; Crébier, Jean-Christophe; Peracaula Roura, Joan

    2009-01-01

    International audience; Recent contributions in pulse width modulations (PWM) for multilevel diode-clamped converters enable the use of these converters with passive front-ends, any number of levels, and small dc-link capacitors. Highly compact converters designs based on these topologies can be envisioned. However, the design of the gate-driver power-supply for the multiple controlled semiconductor devices remains an important issue to be addressed. This paper focuses on the design of such c...

  1. Current-Mode Power Converter for Radiation Control in DBD Excimer Lamps

    OpenAIRE

    2012-01-01

    A pulsed current-mode converter specifically designed for the supply of dielectric barrier discharge excimer lamps is proposed in this paper. The power supply structure is defined on the basis of causality criteria that are justified by the structure of the lamp model. The converter operation is studied, and its design criteria are established using state-plane analysis. This converter, operating in discontinuous conduction mode, controls directly both the amplitude and the duration of the em...

  2. Carrier phase shifted SPWM based on current sourced multi-modular converter for active power filter

    Institute of Scientific and Technical Information of China (English)

    王立乔; 李建林; 张仲超

    2004-01-01

    A novel current-source active power filter(APF)based on multi-modular converter with carrier phase-shifted SPWM(CPS-SPWM)technique is proposed.With this technique,the effect of equivalent high switching frequency converter is obtained with low switching frequency converter.It is very promising in current-source APF that adopt superconducting magnetic energy storage component.

  3. Compact, Low-Profile Power Converters: Highly-Laminated, High-Saturation-Flux-Density, Magnetic Cores for On-Chip Inductors in Power Converter Applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-09-01

    ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgia Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.

  4. A Multiphase, Modular, Bidirectional, Triple-Voltage DC-DC Converter Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2008-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may employ three voltage [14 V, 42 V, and high voltage (HV)] nets. These will be necessary to accommodate existing 14-V loads as well as efficiently handle new heavy loads at the 42-V net and a traction drive on the HV bus. A low-cost DC-DC converter was proposed for connecting the three voltage nets. It minimizes the number of switches and their associated gate driver components by using two half-bridges and a high-frequency transformer. Another salient feature is that the half bridge on the 42-V bus is also utilized to provide the 14-V bus by operating at duty ratios around an atypical value of 1/3. Moreover, it makes use of the parasitic capacitance of the switches and the transformer leakage inductance for soft switching. The use of half bridges makes the topology well suited for interleaved multiphase modular configurations as a means to increase the power level because the capacitor legs can be shared. This paper presents simulation and experimental results on an interleaved two-phase arrangement rated at 4.5 kW. Also discussed are the benefits of operating with an atypical duty ratio on the transformer and a preferred multiphase configuration to minimize capacitor ripple currents.

  5. Multi-timescale modelling for the loading behaviours of power electronics converter

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2015-01-01

    The thermal dynamics of power device, referred as “thermal cycling”, are closely related to the reliability as well as the cost of the power electronics converter. However, the device loading is disturbed by many factors of the converter system which present at various times-constants from micro...... into three modelling levels according to the timescales of the interested thermal dynamics and their disturbances. A series of multi-disciplinary models are then established including the whole set of control, electrical, loss and thermal parts of the converter. It is concluded that, by the proposed multi......-timescales modelling concept and approaches, more complete loading information of power device can be mapped based on the mission profiles of converter, thus it is very helpful for better prediction of converter lifetime and more cost-effective design of the cooling system....

  6. Thermal analysis of multi-MW two-level wind power converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau;

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature in the p......In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....

  7. Auxiliary subsystems of a General-Purpose IGBT Stack for high-performance laboratory power converters

    Indian Academy of Sciences (India)

    ANIL KUMAR ADAPA; D VENKATRAMANAN; VINOD JOHN

    2017-08-01

    A PWM converter is the prime component in many power electronic applications such as static UPS, electric motor drives, power quality conditioners and renewable-energy-based power generation systems. While there are a number of computer simulation tools available today for studying power electronic systems,the value added by the experience of building a power converter and controlling it to function as desired is unparalleled. A student, in the process, not only understands power electronic concepts better, but also gains insights into other essential engineering aspects of auxiliary subsystems such as start-up, sensing, protection, circuit layout design, mechanical arrangement and system integration. Higher levels of protection features are critical for the converters used in a laboratory environment, as advanced protection schemes could prevent unanticipated failures occurring during the course of research. This paper presents a laboratory-built General-Purpose IGBT Stack (GPIS), which facilitates students to practically realize different power converter topologies. Essential subsystems for a complete power converter system is presented covering details of semiconductor device driving, sensing circuit, protection mechanism, system start-up, relaying and critical PCB layout design, followed by a brief comparison to commercially available IGBT stacks. The results show the high performance that can be obtained by the GPIS converter.

  8. Estimation and reduction of harmonic currents from power converters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian

    Power Electronics is entering more and more products that inevitably increase the number of non-linear loads installed on the power system. The major concern of the non-linear loads is the emission of non-sinusoidal currents in the supply. Circulation of the harmonic currents in power systems...... creates losses, thus determining overrating of the power system. Furthermore, the harmonic currents cause harmonic voltage distortion, which is detrimental for all connected equipments to the power system, such as capacitors, ac-machines, control and protection equipments, measuring devices and electronic...... power supplies. Although their design takes into account a certain level of harmonic voltage distortion, there are many real-life cases when the equipments experience abnormal operation, malfunction or failure. One such case appeared at a local company in Denmark, a Heat Power Station where due...

  9. Photonic Routing Systems Using All-optical, Hybrid Integrated Wavelength Converter Arrays

    Directory of Open Access Journals (Sweden)

    Leontios Stampoulidis

    2010-02-01

    Full Text Available The integration of a new generation of all-optical wavelength converters within European project ISTMUFINS has enabled the development of compact and multi-functional photonic processing systems. Here we present the realization of demanding functionalities required in high-capacity photonic routers using these highly integrated components including: Clock recovery, data/label recovery, wavelength routing and contention resolution; all implemented with multi-signal processing using a single photonic chip – a quadruple array of SOAMZI wavelength converters which occupies a chip area of only 15 x 58 mm2. In addition, we present the capability of the technology to build WDM signal processing systems with the simultaneous operation of four quad devices in a four wavelength burst-mode regenerator. Finally, the potential of the technology to provide photonic systems-onchip is demonstrated with the first hybrid integrated alloptical burst-mode receiver prototype.

  10. Modelling supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.; Bindner, H.; Lundsager, P. [Risoe National Lab., Roskilde (Denmark); Jannerup, O. [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)

    1999-03-01

    Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)

  11. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...

  12. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System

    Science.gov (United States)

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…

  13. Precise Model Analysis for 3-phase High Power Converter using the Harmonic State Space Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    This paper presents about the generalized multi-frequency modeling and analysis methodology, which can be used in control loop design and stability analysis. In terms of the switching frequency of high power converter, there can be harmonics interruption if the voltage source converter has a low...

  14. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Kramer, Morten; Vidal, Enrique

    2013-01-01

    The Wavestar Wave Energy Converter (WEC) is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO) system, converting the wave induced motion of the floats into a steady power output to the grid....... In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy...

  15. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    Energy Technology Data Exchange (ETDEWEB)

    S. Merrill Skeist; Richard H. (Dick) Baker; Anthony G.P. Marini; DOE Project Officer - Keith Bennett

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to

  16. Easily processable multimodal spectral converters based on metal oxide/organic-inorganic hybrid nanocomposites.

    Science.gov (United States)

    Julián-López, Beatriz; Gonell, Francisco; Lima, Patricia P; Freitas, Vânia T; André, Paulo S; Carlos, Luis D; Ferreira, Rute A S

    2015-10-09

    This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er(3+), Yb(3+) codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er(3+)- and Yb(3+)-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices.

  17. Easily processable multimodal spectral converters based on metal oxide/organic—inorganic hybrid nanocomposites

    Science.gov (United States)

    Julián-López, Beatriz; Gonell, Francisco; Lima, Patricia P.; Freitas, Vânia T.; André, Paulo S.; Carlos, Luis D.; Ferreira, Rute A. S.

    2015-10-01

    This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er3+, Yb3+ codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er3+- and Yb3+-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices.

  18. Advanced DC-DC converter for power conditioning in hydrogen fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, G.; Tenconi, A.; Bojoi, R. [Department of Electrical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2008-06-15

    The fuel cell (FC) generators can produce electric energy directly from hydrogen and oxygen. The DC voltage generated by FC is generally low amplitude and it is not constant, depending on the operating conditions. Furthermore, FC systems have dynamic response that is slower than the transient responses typically requested by the load. For this reason, in many applications the FC generators must be interfaced with other energy/power sources by means of an electronic power converter. An advanced full-bridge (FB) DC-DC converter, which effectively achieves zero-voltage switching and zero-current switching (ZVS-ZCS), is proposed for power-conditioning (PC) in hydrogen FC applications. The operation and features of the converter are analyzed and verified by simulations results. The ZVS-ZCS operation is obtained by means of a simple auxiliary circuit. Introduction of the soft-switching operation in PC unit brings improvements not only from the converter efficiency point of view, but also in terms of increased converter power density. Quantitative analysis of hard and soft-switching operating of the proposed converter is also made, bringing in evidence the benefits of soft-switching operation mode. The proposed converter can be a suitable solution for PC in hydrogen FC systems, especially for the medium to high-power applications. (author)

  19. STATIC CONVERTERS OF THE ELECTRIC POWER WITH IMPROVED OPERATION-TECHNICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Uskov A. E.

    2014-03-01

    Full Text Available The article describes scopes and new technical decisions of static converters of the electric power with the improved operation-characteristics, executed with use of new element base and a modular principle of construction

  20. The electrical, thermal and spatial integration of a converter in a power electronic module

    NARCIS (Netherlands)

    Gerber, M.B.

    2005-01-01

    This thesis is concerned with the design and implementation of a power electronic system (14/42V DC/DC converter) that is implemented in the automotive environment, specifically the engine compartment. The power electronic system must have a high power density while operating in a high temperature e

  1. Low Power Penalty Operation of a Wide Input Dynamic Range Cross-Phase Modulation Wavelength Converter

    Institute of Scientific and Technical Information of China (English)

    Jun; Endo; Akira; Ohki; Rieko; Sato; Toshio; Ito; Yuichi; Tohmori; Yasuhiro; Suzuki

    2003-01-01

    We successfully demonstrated low power penalty operation of a cross-phase modulated (XPM) wavelength converter using a semiconductor optical amplifier (SOA) power equalizer. We also clarified the SOA equalizing level for more adaptive wavelength conversion and achieved a power penalty of less than 1 dB over the wide input dynamic range of 15 dB.

  2. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun;

    2013-01-01

    This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia ...

  3. A DC-DC Converter Efficiency Model for System Level Analysis in Ultra Low Power Applications

    Directory of Open Access Journals (Sweden)

    Benton H. Calhoun

    2013-06-01

    Full Text Available This paper presents a model of inductor based DC-DC converters that can be used to study the impact of power management techniques such as dynamic voltage and frequency scaling (DVFS. System level power models of low power systems on chip (SoCs and power management strategies cannot be correctly established without accounting for the associated overhead related to the DC-DC converters that provide regulated power to the system. The proposed model accurately predicts the efficiency of inductor based DC-DC converters with varying topologies and control schemes across a range of output voltage and current loads. It also accounts for the energy and timing overhead associated with the change in the operating condition of the regulator. Since modern SoCs employ power management techniques that vary the voltage and current loads seen by the converter, accurate modeling of the impact on the converter efficiency becomes critical. We use this model to compute the overall cost of two power distribution strategies for a SoC with multiple voltage islands. The proposed model helps us to obtain the energy benefits of a power management technique and can also be used as a basis for comparison between power management techniques or as a tool for design space exploration early in a SoC design cycle.

  4. The application of standardized control and interface circuits to three dc to dc power converters.

    Science.gov (United States)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  5. A Low-Power, Variable-Resolution Analog-to-Digital Converter

    OpenAIRE

    Aust, Carrie Ellen

    2000-01-01

    Analog-to-digital converters (ADCs) are used to convert analog signals to the digital domain in digital communications systems. An ADC used in wireless communications should meet the necessary requirements for the worst-case channel condition. However, the worst-case scenario rarely occurs. As a consequence, a high-resolution and subsequently high power ADC designed for the worst case is not required for most operating conditions. A solution to reduce the power dissipation of ADCs in wire...

  6. The Feasibility Study on Thermal Loading Control of Wind Power Converters with a Flexible Switching Frequency

    DEFF Research Database (Denmark)

    Qin, Zian; Wang, Huai; Blaabjerg, Frede;

    2015-01-01

    Thermal loading of wind power converters is critical to their reliability performance. Especially for IGBT modules applied in a converter, both of the mean value and variation of the junction temperature have significant impact on the lifetime. Besides other strategies to reduce the thermal loadi...... the temperature fluctuations due to wind speed variations. The trade-off between the reduced amplitude of temperature fluctuations and the additional power losses that may be introduced is quantitatively studied....

  7. Hybrid LC filter for power electronic drives. Theory and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Dzhankhotov, V.

    2009-07-01

    Power electronic converter drives use, for the sake of high efficiency, pulse-width modulation that results in sequences of high-voltage high-frequency steep-edged pulses. Such a signal contains a set of high harmonics not required for control purposes. Harmonics cause reflections in the cable between the motor and the inverter leading to faster winding insulation ageing. Bearing failures and problems with electromagnetic compatibility may also result. Electrical du/dt filters provide an effective solution to problems caused by pulse-width modulation, thereby increasing the performance and service life of the electrical machines. It is shown that RLC filters effectively decrease the reflection phenomena in the cable. Improved (simple, but effective) solutions are found for both differential- and common-mode signals; these solutions use a galvanic connection between the RLC filter star point and the converter DC link. Foil chokes and film capacitors are among the most widely used components in high-power applications. In actual applications they can be placed in different parts of the cabinet. This fact complicates the arrangement of the cabinet and decreases the reliability of the system. In addition, the inductances of connection wires may prevent filtration at high frequencies. This thesis introduces a new hybrid LC filter that uses a natural capacitance between the turns of the foil choke based on integration of an auxiliary layer into it. The main idea of the hybrid LC filter results from the fact that both the foil choke and the film capacitors have the same roll structure. Moreover, the capacitance between the turns ('intra capacitance') of the foil inductors is the reason for the deterioration of their properties at high frequencies. It is shown that the proposed filter has a natural cancellation of the intra capacitance. A hybrid LC filter may contain two or more foil layers isolated from each other and coiled on a core. The core material can be

  8. A New Very-High-Efficiency R4 Converter for High-Power Fuel Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael Andreas E.

    2009-01-01

    W prototype converter is presented. Input voltage range is 30-60 V and output voltage is 800 V. Test results, including voltage- and current waveforms and efficiency measurements, are presented. A record high converter efficiency of 98.2 % is achieved. The proposed R4 boost converter thus constitutes a low......A new very high efficiency 10 kW isolated R4 boost converter for low-voltage high-power fuel cell applications is presented. Using a new concept for partially paralleling of isolated boost converters, only the critical high ac-current parts are paralleled. Four 2.5 kW power stages, consisting...... cost solution to achieve very high conversion efficiency in high input current applications....

  9. The Quiet Rotary Power and Information Transformer Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many satellites, spacecraft, and radar antennas with spun and de-spun configurations require the transfer of power across rotating interfaces in lieu of slip rings...

  10. Power Converters and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Chen, Zhe;

    2004-01-01

    The global electrical energy consumption is steadily rising and therefore a continuous demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective renewable...... energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface to the grid...... for the renewables and this paper will first briefly discuss three different alternative/renewable energy sources. Next, various configurations of small and medium power conversion topologies are presented including their control (mainly for PV-systems). Finally wind turbine configuration and their control...

  11. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  12. Module-Integrated Power Converters Based on Universal Dock

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Patrick; Rodriguez, Fernando

    2015-03-13

    Solar power installations using alternating current photovoltaic (ACPV) modules have significant cost and performance advantages over systems using conventional solar modules and string inverters. ACPV modules have improved energy harvest due to module-level power point tracking and redundancy. More importantly, ACPV modules are easier and cheaper to install, lowering the total installed cost, indirect costs, and barriers to market entry. Furthermore, ACPV modules have communications and data logging capability, yielding module-level telemetry data that is useful in site diagnostics and other data applications. The products of these efforts were threefold. First, an advanced microinverter power topology was developed, modeled, simulated, and tested. Second, new microinverter enclosure concepts were developed and tested. Third, a new ACPV module prototype was constructed, combining the power topology and the enclosure concepts. SolarBridge filed for patents in each of these areas and is transitioning the project from a concept phase to full development.

  13. A Proposal of a Power Distortion Compensator Using a Matrix Converter

    Science.gov (United States)

    Tamada, Shunsuke; Itoh, Jun-Ichi

    Recently, renewable resources supplies, such as fuel cells, photovoltaic cells, wind power and engine generators, for distributed power system have been studied intensely. Conventional compensators with switching devices are constructed based on a voltage source inverter using six arms. Therefore, conventional power quality compensators require a large electrolytic capacitor in the dc link part of the equipment. The use of a large capacitor hinders downsizing efforts and the lowering of equipment costs. Direct converters, which do not have a large electrolytic capacitor and an initial charge circuit, can be used to realize downsizing and lowering of equipment costs, when compared with conventional converters. This paper proposes one of new applications of a matrix converter to a PM generator for power quality compensation, such as reactive power compensation, harmonic current and power interruption. The novel point of this work is that the matrix converter provides reactive power with harmonic current. Simulated and experimental results confirm that the matrix converter can maintain high performance as same as a conventional active filter and an uninterruptible power supply (UPS).

  14. Thermal analysis of multi-MW two-level wind power converter

    OpenAIRE

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau; Tonnes, Michael

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generat...

  15. Laboratory manual for pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2015-01-01

    Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters.  Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines program

  16. Simulation of wind power with front-end converter into interconnected grid system

    Directory of Open Access Journals (Sweden)

    Sharad W. Mohod

    2009-09-01

    Full Text Available In the growing electricity supply industry and open access market for electricity worldwide, renewable sources are getting added into the grid system. This affects the grid power quality. To assess the impact on grid due to wind energy integration, the knowledge of electrical characteristic of wind turbine and associated control equipments are required. The paper presents a simulation set-up for wind turbine in MATLAB / SIMULINK, with front end converter and interconnected system. The presented control scheme provides the wind power flow to the grid through a converter. The injected power in the system at the point of common coupling is ensured within the power quality norms.

  17. The Electromagnetic Compatibility (EMC) Design Challenge for Scientific Spacecraft Powered by a Stirling Power Converter

    Science.gov (United States)

    Sargent, Noel B.

    2001-01-01

    A 55 We free-piston Stirling Technology Demonstration Convertor (TDC) has been tested as part of an evaluation to determine its feasibility as a means for significantly reducing the amount of radioactive material required compared to Radioisotope Thermoelectric Generators (RTGs) to support long-term space science missions. Measurements were made to quantify the low frequency magnetic and electric fields radiated from the Stirling's 80 Hertz (Hz) linear alternator and control electronics in order to determine the magnitude of reduction that will be required to protect sensitive field sensors aboard some science missions. One identified "Solar Probe" mission requires a 100 dB reduction in the low frequency magnetic field over typical military standard design limits, to protect its plasma wave sensor. This paper discusses the electromagnetic interference (EMI) control options relative to the physical design impacts for this power system, composed of 3 basic electrical elements. They are (1) the Stirling Power Convertor with its linear alternator, (2) the power switching and control electronics to convert the 90 V, 80 Hz alternator output to DC for the use of the spacecraft, and (3) the interconnecting wiring including any instrumentation to monitor and control items 1 and 2.

  18. An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight.

    Science.gov (United States)

    Wang, Qian; Newhard, Christopher S; Ramanath, Seemanti; Sheppard, Debra; Swank, Douglas M

    2014-01-15

    Stretch activation (SA) is critical to the flight ability of insects powered by asynchronous, indirect flight muscles (IFMs). An essential muscle protein component for SA and power generation is myosin. Which structural domains of myosin are significant for setting SA properties and power generation levels is poorly understood. We made use of the transgenic techniques and unique single muscle myosin heavy chain gene of Drosophila to test the influence of the myosin converter domain on IFM SA and power generation. Replacing the endogenous converter with an embryonic version decreased SA tension and the rate of SA tension generation. The alterations in SA properties and myosin kinetics from the converter exchange caused power generation to drop to 10% of control fiber power when the optimal conditions for control fibers - 1% muscle length (ML) amplitude and 150 Hz oscillation frequency - were applied to fibers expressing the embryonic converter (IFI-EC). Optimizing conditions for IFI-EC fiber power production, by doubling ML amplitude and decreasing oscillation frequency by 60%, improved power output to 60% of optimized control fiber power. IFI-EC flies altered their aerodynamic flight characteristics to better match optimal fiber power generation conditions as wing beat frequency decreased and wing stroke amplitude increased. This enabled flight in spite of the drastic changes to fiber mechanical performance.

  19. Figures of merit for the evaluation of regenerative power converters

    CERN Document Server

    Maestri, Sebastian; Le Godec, Gilles; Papastergiou, Konstantinos; Carrica, Daniel; Retegui, Rogeli Garcia

    2016-01-01

    In some applications, like those for particle accelerators and transfer lines, electromagnet loads operate in cycling mode i.e. absorbing or extracting energy from or to a power source. Built-in energy storage such as electrochemical capacitors can be used whose lifetime is heavily depended on the current ripple and depth of discharge. Moreover, the sizing of this storage element is a trade-off between power taken from the grid and energy stored. Additionally, the adopted power conversion structure and control strategy impact on such decision process. In this work, a number of topologies have been evaluated for these applications and the key metrics used to compare them. The proposed figures of merit are used through examples to highlight the trade-offs related with the choice of dc-bus regulation topology and control strategy.

  20. Method for Evaluating Insertion Loss of EMI Filter Connected to Semiconductor Power Converters

    Science.gov (United States)

    Tamate, Michio; Sasaki, Tamiko; Toba, Akio; Matsumoto, Yasushi; Wada, Keiji; Shimizu, Toshihisa

    In this paper, to design an EMI filter effectively, a method for insertion loss of an EMI filter connected to a semiconductor power converter is proposed. Conducted EMI noise that flows from the converter should conform to the regulations of an international commission, such as International Electrotechnical Commission (IEC). In order to conform to such regulations, EMI filters have to be connected to power converters. In general, the performance of the EMI filter is evaluated on the basis of the insertion loss of 50Ω measurement system. However, the impedance of the power converters is usually not set to 50Ω. As a result, the EMI filter design is often performed using a trial-and-error method because the noise reduction effect is different from the insertion loss. In this work, for simplicity, a power converter is considered to be a capacitor, instead of a stray capacitor. Then, a method for evaluating the insertion loss of an EMI filter connected to the power converter is proposed. This proposed method is employed using the 50Ω measurement system and the capacitance. The proposed method helps to design the EMI filter because the derived noise reduction effect corresponds to the experimental one.

  1. Investigation of a metallic photonic crystal high power microwave mode converter

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-02-01

    Full Text Available It is demonstrated that an L band metallic photonic crystal TEM-TE11 mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE11 mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  2. Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2015-04-01

    Full Text Available This paper presents an indirect matrix converter (IMC topology for hybrid electric vehicle (HEV application with three-phase and single-phase outputs. The HEV includes mechanical, electrical, control, and electrochemical systems among others. In the mechanical system, a traction motor and a compressor motor are used to drive the HEV. The traction motor and the compressor motor are usually operated as three-phase and single-phase motors, respectively. In this respect, a dual AC-drive system can operate the traction and the compressor motor simultaneously. Furthermore, compared to a conventional dual matrix converter system, the proposed topology can reduce the number of switches that the dual outputs share with a DC-link. The application of this system for HEV has advantages, like long lifetime and reduced volume due to the lack of a DC-link. The proposed control strategy and modulation schemes ensure the sinusoidal input and output waveforms and bidirectional power transmission. The proposed system for the HEV application is verified by simulation and experiments.

  3. Module-Level Power Converters For Parallel Connected Photovoltaic Arrays

    Science.gov (United States)

    2012-01-01

    Secondary Bare Wire Area Rs Secondary Resistance Ps Secondary Copper Loss Pcu Total Copper Loss W/kg Watts Per Kilogram Pfe Core Loss PΣ Total...material properties of the chosen core [30]. The calculated core loss power density was was 17.2712 W/kg. The core loss, Pfe , was calculated

  4. High-power non linear frequency converted laser diodes

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh;

    2015-01-01

    We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity...

  5. A hybrid electromechanical solid state switch for ac power control

    Science.gov (United States)

    1972-01-01

    Bidirectional thyristor coupled to a series of actuator driven electromechanical contacts generates hybrid electromechanical solid state switch for ac power control. Device is useful in power control applications where zero crossover switching is required.

  6. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  7. Fuzzy PI Controller Based Fault Analysis and Recovery in Sensorless BLDC Motor using High Gain Hybrid Converter (HGHC

    Directory of Open Access Journals (Sweden)

    R. Jayanthi

    2014-12-01

    Full Text Available Renewable Energy Sources (RES has been widely used in various applications due to increase in power demand. In this study, a High Gain Hybrid Converter (HGHC has been used to utilize maximum power from PV panel and to control the battery mode of operation such as charging/discharging in an efficient manner. In the load side, sensor less BLDC motor has been used in this study. After the back EMF is generated in the load side BLDC motor, it is taken as feedback to the HGHC. So, this will act as the main supply and thus, more power can be saved. Moreover, this research study also focuses on the transient analysis of the BLDC motor. The inverter in BLDC motor plays a vital role as it is responsible for flux generation and fixing up of angle ‘θ’ to the motor for its operation. So, the failures in the switches of the inverter would greatly affect the overall functioning of the BLDC motor. Thus, this research study focuses on the failure analysis of these switches in the inverter. In order to analyze and recover these faults, error controllers have been used in this proposed study. The simulations are carried out in MATLAB r2011a and the results are taken. The results show the significant performance of the proposed model.

  8. Bimode uninterruptible power supply compatibility in renewable hybrid energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W. (Sandia National Labs., Albuquerque, NM (USA)); O' Sullivan, G. (Abacus Controls, Inc., Somerville, NJ (USA))

    1990-08-01

    Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.

  9. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations.

  10. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  11. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power u

  12. Portable Hybrid Powered Water Filtration Device

    Directory of Open Access Journals (Sweden)

    Maria Lourdes V. Balansay

    2015-08-01

    Full Text Available The existing water filtration device has features that can be developed to be more useful and functional during emergency situations. The project’s development has been aided by following provisions in PEC, NEC, NEMA and Philippine National Standard for Safe Drinking Water provide standards for the construction of the project. These standards protect both the prototype and the user. These also served as guide for the maintenance of every component. The design of the portable hybrid powered water filtration device shows that the project has more advanced features such as portability and the power supply used such as photovoltaic module solar cells and manually operated generator. This also shows its effectiveness and reliability based on the results of discharging test, water quality test and water production test. Based on analysis of the overall financial aspects, the machine can be profitable and the amount of revenue and operating cost will increase as years pass. Using the proper machine/ tools and methods of fabrication helps in easy assembly of the project. The materials and components used are cost effective and efficient. The best time for charging the battery using solar panel is 9:00 am onwards while the hand crank generator is too slow because the generated current is little. The water filtration device is very efficient regarding the operating hours and water production. The machine may have a great effect to society and economy in generation of clean available water at less cost.

  13. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  14. A power electronics controlled current source based on a double-converter topology

    Directory of Open Access Journals (Sweden)

    Gwóźdź Michał

    2014-09-01

    Full Text Available The paper presents a conception of power electronics voltage controlled current source (VCCS which is able much more precise mapping of its an output current in a reference signal, compared to a typical converter solution. It can be achieved by means of such interconnection of two separate converters that one of them corrects a total output current towards a reference signal. An output power of auxiliary converter is much smaller than an output power of main one. Thanks to continuous work of this converter also pulse modulation components in this current are minimized. These benefits are paid for by a relatively small increase in the complexity and the cost of the system. This conception of a converter has been called the double-converter topology (DCT. In the author opinion presented solution of the system can find application in many power electronics equipment and, therefore, will be developed. In the paper DCT basics, simulation experiments, and possible practical arrangement of the DCT are presented

  15. Isolated single-stage high power factor AC/DC converter

    Institute of Scientific and Technical Information of China (English)

    王卫; 贲洪奇; 高国安

    2001-01-01

    The problem of harmonic pollution has brought wide attention with the increase of power customers. The adoption of the technology of active power factor correction (APFC) with advanced high frequency power converter is a more efficient solution to the problem of harmonic pollution. A single-stage isolated high power factor AC/DC converter, which features wide range DC output, high power factor, lower harmonic pollution in input current, and phase-shift PWM full-bridge circuit can achieve soft switching. The principle of the circuit topology and the reasons of voltage surges across the power switch are analyzed. Experiment results illustrate that this circuit has the advantages of high power factor and lower harmonic distortion.

  16. Multi Channel Σ∆ A/D Converter for Integrated Power Meter

    Directory of Open Access Journals (Sweden)

    Dejan D. Mirković

    2010-06-01

    Full Text Available This paper describes three architectures for multi-channel sigma-delta ADC IC design. The proposed solution is aimed for the front-end of a three-phase integrated power meter. The pervious version of the power meter is to be redesigned by substituting six ADCs with two: one for converting currents and another for converting voltages in the three-phase power system. Therefore one pair of analog 3-to-1 multiplexers precedes ADCs. Discussion of advantages and drawbacks of the proposed solutions is illustrated by simulations using ADMS simulator that is a part of Mentor Graphics design kit.

  17. Lifetime Estimation of Electrolytic Capacitors in Fuel Cell Power Converter at Various Confidence Levels

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of the power density and the reliability. In this paper, according to the degradation data of tested capacitors, the lifetime model of the component is analyzed at various confidence levels. Then, the mission profile...... based lifetime expectancy of the individual capacitor and the capacitor bank is estimated in a fuel cell backup power converter operating in both standby mode and operation mode. The lifetime prediction of the capacitor banks at different confidence levels is also obtained....

  18. Lifetime Estimation of Electrolytic Capacitors in Fuel Cell Power Converter at Various Confidence Levels

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of the power density and the reliability. In this paper, according to the degradation data of tested capacitors, the lifetime model of the component is analyzed at various confidence levels. Then, the mission profile...... based lifetime expectancy of the individual capacitor and the capacitor bank is estimated in a fuel cell backup power converter operating in both standby mode and operation mode. The lifetime prediction of the capacitor banks at different confidence levels is also obtained....

  19. Observer design for DC/DC power converters with bilinear averaged model

    NARCIS (Netherlands)

    Spinu, V.; Dam, M.C.A.; Lazar, M.

    2012-01-01

    Increased demand for high bandwidth and high efficiency made full state-feedback control solutions very attractive to power-electronics community. However, full state measurement is economically prohibitive for a large range of applications. Moreover, state measurements in switching power converters

  20. Degradation Effect on Reliability Evaluation of Aluminum Electrolytic Capacitor in Backup Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of power density as well as reliability. In this paper, according to the degradation data of electrolytic capacitors through the accelerated test, the time-to-failure of the capacitor cell is acquired and it can be...

  1. Control development for an 18 MW pulsed power converter using a real-time simulation platform

    CERN Document Server

    Genton, Charles-Mathieu; Boattini, Fulvio

    2015-01-01

    In the frame of the LHC Injectors Upgrade (LIU) project, a new main power supply (MPS) for the PSBooster accelerator is required. The largest element of the new MPS is the 18 MW main power converter (MPC). The paper presents the design of the MPC control software, using Rapid Control Prototyping.

  2. Loss Performance Analysis of an Isolated Power Supply for Ultrafast Tracking Converters

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the loss performance analysis of an isolated power supply that is designed for ultra-fast tracking converters. The results of the analysis provide insights into the operation of the proposed power supply, how each physical component contributes to the total loss, and how its e...

  3. Grid Synchronization of Power Converters using Multiple Second Order Generalized Integrators

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Candela, Ignacio;

    2008-01-01

    This paper presents a new frequency-adaptive synchronization method for grid-connected power converters which allows estimating not only the positive- and negative- sequence components of the power signal at the fundamental frequency, but also other sequence components at higher frequencies. The ...

  4. A control strategy for multi-functional converter to improve grid power quality

    DEFF Research Database (Denmark)

    Li, Fei; Wang, Xiongfei; Chen, Zhe

    2011-01-01

    The extensive use of converter-interfacing distributed energy resources (DER), combined with a large amount of nonlinear and unbalanced loads connected to the distribution power system, has led to power quality problem. This paper proposes a control strategy for a three-phase four-leg multi-funct...

  5. Thermal analysis of two-level wind power converter under symmetrical grid fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    ) condition as well as the junction temperature. For the full-scale wind turbine system, the most thermal stressed power device in the grid-side converter will appear at the grid voltage below 0.5 pu, and for the partial-scale wind turbine system, the most thermal stressed power device in the rotor...

  6. Multiresonant Frequency-Locked Loop for Grid Synchronization of Power Converters Under Distorted Grid Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Candela, Ignacio;

    2011-01-01

    This paper presents a new multiresonant frequency-adaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmoni...

  7. Series Resonant Power Converter for Contactless Energy Transfer with Improved Efficiency

    NARCIS (Netherlands)

    Valtchev, S.S.

    2008-01-01

    The development of more efficient power converters is the most important and challenging task for Power Electronics specialists. In the same time, many currently existing or yet to appear future applications require full mechanical independence between the transmitter and receiver of the electrical

  8. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.

    2012-01-01

    The Transmission System Operators are specially concerned about the Low Voltage Ride Through requirements of distributed generation power plants. Solutions based on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters have contrib...... under such conditions. Its response will be analyzed with respect the synchronization needs that can be extracted from the standards....

  9. Modeling and design of a monolithically integrated power converter on SiC

    Science.gov (United States)

    Yu, L. C.; Sheng, K.; Zhao, J. H.

    2008-10-01

    To fully explore the high temperature and high power density potential of the 4H-SiC material, not only power devices need to be fabricated on SiC, but also the circuitries for signal generation/processing, gate driver and control. In this paper, static and dynamic characteristics of SiC lateral JFET (LJFET) devices are numerically simulated and compact circuit models developed. Based on these models, analog and digital integrated circuits functional blocks such as OPAMP, gate driver and logic gates are then designed and simulated. Finally, a fully integrated power converter including pulse-width-modulation circuit, over-temperature protection circuit and a power boost converter is designed and simulated. The converter has an input of 200 V and an output voltage of 400 V, 2.5 A, operating at 1 kW and 5 MHz.

  10. Simple Power Control for Sensorless Induction Motor Drives Fed by a Matrix Converter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lee, Kyo Beum

    2008-01-01

    This paper presents a new and simple method for sensorless control of matrix converter drives using a power flowing to the motor. The proposed control algorithm is based on controlling the instantaneous real and imaginary powers into the induction motor. To improve low-speed sensorless performance......, the nonlinearities of a matrix converter drive such as commutation delays, turn-ON and turn-OFF times of switching devices, and on-state switching device voltage drop are modeled using a PQ power transformation and compensated using a reference power control scheme. The proposed sensorless control method is applied...... for the induction motor drive using a 3 kW matrix converter system. Experimental results are shown to illustrate the feasibility of the proposed strategy....

  11. An Experimental and Analytical Investigation of Stirling Space Power Converter Heater Head

    Science.gov (United States)

    Abdul-Aziz, Ali; Bartolotta, Paul; Tong, Mike; Allen, Gorden

    1995-01-01

    NASA has identified the Stirling power converter as a prime candidate for the next generation power system for space applications requiring 60000 hr of operation. To meet this long-term goal, several critical components of the power converter have been analyzed using advanced structural assessment methods. Perhaps the most critical component, because of its geometric complexity and operating environment, is the power converter's heater head. This report describes the life assessment of the heater head which includes the characterization of a viscoplastic material model, the thermal and structural analyses of the heater head, and the interpolation of fatigue and creep test results of a nickel-base superalloy, Udimet 720 LI (Low Inclusions), at several elevated temperatures for life prediction purposes.

  12. Optimized MPPT-based converter for TEG energy harvester to power wireless sensor and monitoring system in nuclear power plant

    Science.gov (United States)

    Xing, Shaoxu; Anakok, Isil; Zuo, Lei

    2017-04-01

    Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.

  13. Power Network impedance effects on noise emission of DC-DC converters

    Science.gov (United States)

    Esteban, M. C.; Arteche, F.; Iglesias, M.; Gimeno, A.; Arcega, F. J.; Johnson, M.; Cooper, W. E.

    2012-01-01

    The characterization of electromagnetic noise emissions of DC-DC converters is a critical issue that has been analyzed during the desing phase of CMS tracker upgrade. Previous simulation studies showed important variations in the level of conducted emissions when DC-DC converters are loaded/driven by different impedances and power network topologies. Several tests have been performed on real DC-DC converters to validate the Pspice model and simulation results. This paper presents these test results. Conducted noise emissions at the input and at the output terminals of DC-DC converters has been measured for different types of power and FEE impedances. Special attention has been paid to influence on the common-mode emissions by the carbon fiber material used to build the mechanical structure of the central detector. These study results show important recommendations and criteria to be applied in order to decrease the system noise level when integrating the DC-DC.

  14. Low Temperature Performance of High Power Density DC/DC Converter Modules

    Science.gov (United States)

    Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric

    2001-01-01

    In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  15. Control of a Two-Stage Direct Power Converter with a Single Voltage Sensor Mounted in the Intermediary Circuit

    DEFF Research Database (Denmark)

    Klumpner, Christian; Wheeler, P.; Blaabjerg, Frede

    2004-01-01

    Controlling a converter requires not only a powerful processors but also accurate voltage and current sensors and fast and precise analogue-digital converters, which increase the cost per kW of the assembly, especially in the low power range. A matrix converter requires less transducers than a ba...

  16. DESIGN, OPERATION AND CONTROL OF SERIES-CONNECTED POWER CONVERTERS FOR OFFSHORE WIND PARKS

    OpenAIRE

    Garces Ruiz, Alejandro

    2012-01-01

    OFFSHORE wind farms need to develop technologies that fulfill three main objectives:Efficiency, power density and reliability. The purpose of this thesisis to study an HVDC transmission system based on series connection of the turbineswhich theoretically meet these three objectives. A new topology of matrixconverter operated at high frequency is proposed. This converter is studied usingdifferent modulation algorithms. Simulation and experimental results demonstratedthat the converter can be o...

  17. 1 GS/s, Low Power Flash, Analog to Digital Converter in 90nm CMOS Technology

    OpenAIRE

    Hassan Raza Naqvi, Syed

    2007-01-01

    The analog to digital converters is the key components in modern electronic systems. As the digital signal processing industry grows the ADC design becomes more and more challenging for researchers. In these days an ADC becomes a part of the system on chip instead of standalone circuit for data converters. This increases the requirements on ADC design concerning for example speed, power, area, resolution, noise etc. New techniques and methods are going to develop day by day to achieve high pe...

  18. Estimation and reduction of harmonic currents from power converters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian

    of estimation and reduction of the harmonic currents from industrial Adjustable Speed Drives, in order to come up with an optimized solution for customers. The work is structured in two main directions. The first direction consists of analyzing the mechanism of the harmonic current generation from ASD...... and harmonic rotating frame transformations, generalized harmonic integrators. Extensive simulations are employed in Matlab/Simulink and a laboratory stand is built to test the shunt APF topology. The actual implementation is done in fundamental rotating frame, where a new selective harmonic integrator....... Although the purpose of APF study was not finding a solution directly applicable for the Heat Power Station, there was an influence in the way the research line is further approached. As the cost of the APF is still relatively high, its utilization becomes more efficient for mediumor high...

  19. A High-Efficient Low-Cost Converter for Capacitive Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Il-Oun Lee

    2017-09-01

    Full Text Available Growth of the Internet of Things (IoT spurs need for new ways of delivering power. Wireless power transfer (WPT has come into the spotlight from both academia and industry as a promising way to power the IoT devices. As one of the well-known WPT techniques, the capacitive power transfer (CPT has the merit of low electromagnetic radiation and amenability of combined power and data transfer over a capacitive interface. However, applying the CPT to the IoT devices is still challenging in reality. One of the major issues is due to the small capacitance of the capacitive interface, which results in low efficiency of the power transfer. To tackle this problem, we present a new step-up single-switch quasi-resonant (SSQR converter for the CPT system. To enhance the CPT efficiency, the proposed converter is designed to operate at low frequency and drive small current into the capacitive interfaces. In addition, by eliminating resistor-capacitor-diode (RCD snubber in the converter, we reduce the implementation cost of the CPT system. Based on intensive experimental work with a CPT system prototype that supports maximum 50 W (100 V/0.5 A power transfer, we demonstrate the functional correctness of the converter that achieves up to 93% efficiency.

  20. Implementation of Rapid Prototyping Tools for Power Loss and Cost Minimization of DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Amruta V. Kulkarni

    2016-07-01

    Full Text Available In this paper, power loss and cost models of power electronic converters based on converter ratings and datasheet information are presented. These models aid in creating rapid prototypes which facilitate the component selection process. Through rapid prototyping, users can estimate power loss and cost which are essential in design decisions. The proposed approach treats main power electronic components of a converter as building blocks that can be arranged to obtain multiple topologies to facilitate rapid prototyping. In order to get system-level power loss and cost models, two processes are implemented. The first process automatically provides minimum power loss or cost estimates and identifies components for specific applications and ratings; the second process estimates power losses and costs of each component of interest as well as the whole system. Two examples are used to illustrate the proposed approaches—boost and buck converters in continuous conduction mode. Achieved cost and loss estimates are over 93% accurate when compared to measured losses and real cost data. This research presents derivations of the proposed models, experimental validation of the models and demonstration of a user friendly interface that integrates all the models. Tools presented in this paper are expected to be very useful for practicing engineers, designers, and researchers, and are flexible and adaptable with changing or new technologies and varying component prices.

  1. Research on Two-channel Interleaved Two-stage Paralleled Buck DC-DC Converter for Plasma Cutting Power Supply

    DEFF Research Database (Denmark)

    Yang, Xi-jun; Qu, Hao; Yao, Chen

    2014-01-01

    As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply...

  2. Simulation of a Pneumatic Hybrid Powertrain with VVT in GT-Power and Comparison with Experimental Data

    OpenAIRE

    Trajkovic, Sasa; Tunestål, Per; Johansson, Bengt

    2009-01-01

    In the study presented in this paper, experimental data from a pneumatic hybrid has been compared to the results from a simulation of the engine in GT-Power. The engine in question is a single-cylinder Scania D12 diesel engine, which has been converted to work as a pneumatic hybrid. The base engine model, provided by Scania, is made in GT-Power and it is based on the same engine configuration as the one used during real engine testing. During pneumatic hybrid operation the engine can be us...

  3. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    converter topology based on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling......The inherent double line ripple power in single-phase systems is adverse to the performance of power electronics converters, e.g. limited lifetime due to the requirement of large electrolytic capacitors and low voltage control bandwidth due to harmonic disturbance. In this paper, an active...... of the proposed system is presented, and a dual voltage control strategy is then proposed, which comprises one voltage loop implemented in the synchronous reference frame for active power balancing, and another one implemented in the stationary reference frame for ripple power compensation. Special attention...

  4. A power conditioning system for thermoelectric generator based on interleaved Boost converter with MPPT control

    DEFF Research Database (Denmark)

    Ni, L.-X; Sun, K.; Zhang, L.

    2011-01-01

    The thermoelectric generation (TEG) system has its special charactristics of high stablility, low voltage and high current output, which is different from PV modules. The power conditioning system and control schemes used in PV applications cannot be directly applied to TEG applications. A power...... conditioning system for TEG based on interleaved Boost converter with maximum power point tracking (MPPT) control is investigated in this paper. Since an internal resistance exists inside TEG modules, an improved perturbation and observation (P&O) MPPT control scheme with power limit is proposed to extract...... maximum power from TEG by matching the load with internal resistance. Since the battery is usually employed as the load for TEG systems, the interleaved Boost converter operates in two different modes for battery charging: before the battery is fully charged, the system outputs the maximum power (MPPT...

  5. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    of significant deviation in the packaging structure, electrical characteristics, as well as thermal impedance, these available power switching devices may have various thermal cycling behaviors, which will lead to converter solutions with very different cost, size and reliability performance. As a result......Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because......, this paper aimed to investigate the thermal related characteristics of some important power switching devices. Their impact on the thermal cycling of a 10 MW three-level Neutral-Point-Clamped wind power converter is then evaluated under various operating conditions; the main focus will be on the grid...

  6. Design of low-power high-frequency digital controlled DC-DC switching power converter%小功牢高频数字控制DC/DC变换器设计

    Institute of Scientific and Technical Information of China (English)

    高艳霞; 郭水保; LIN-SHI Xue-fang; ALLARD Bruno

    2008-01-01

    This paper models a low-power high-frequency digitally controlled synchronous rectifier (SR) buck converter. The converter is a hybrid system with three operation modes. Digital PID controler is used. Key problems such as quantization resolution of digital pulse-width modulation (DPWM) and steady-state limit cycles of digital control switching model power supply (SMPS) are discussed, with corresponding solutions presented. Simulation of a digital control synchronous buck is performed with a fixed-point algorithm. The results show that the described approach enables high-speed dynamic performance.

  7. Generation of Random Wind Speed Profiles for Evaluation of Stress in WT Power Converters

    OpenAIRE

    Pigazo, Alberto; Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Wind turbines are subjected to wind speed variations that cause a power profile that will stress the overall system. This stress is tranfered to the power converter, resulting in temperature variations of the power devices and, hence, causing the reduction of the lifetime. The lifetime expectation changes depending on the real wind speed once the wind turbine is operating. Usually, the real wind speed profiles are employed to evaluate this stress but they do not consider all possible operatio...

  8. Design of Highly Efficient Hybrid Si-Au Taper for Dielectric Strip Waveguide to Plasmonic Slot Waveguide Mode Converter

    CERN Document Server

    Chen, Chin-Ta; Hosseini, Amir; Pan, Zeyu; Subbaraman, Harish; Zhang, Xingyu; Chen, Ray T

    2015-01-01

    In this paper, we design a dielectric-to-plasmonic slot waveguide mode converter based on the hybrid silicon-gold taper. The effects of mode matching, the effective index matching, and the metallic absorption loss on the conversion efficiency are studied. Consequently, a metallic taper-funnel coupler with an overall length of 1.7um is designed to achieve a very high conversion efficiency of 93.3% at 1550 nm. The configuration limitations for not allowing this mode converter to achieve a 100% conversion efficiency are also investigated. Such a high-efficiency converter can provide practical routes to realize ultracompact integrated circuits.

  9. A 10-bit low power SAR A/D converter based on 90 nm CMOS

    Institute of Scientific and Technical Information of China (English)

    Tong Xingyuan; Yang Yintang; Zhu Zhangming; Xiao Yan; Chen Jianming

    2009-01-01

    Traditional and some recently reported low power, high speed and high resolution approaches for SAR A/D converters are discussed. Based on SMIC 65 nm CMOS technology, two typical low power methods reported in previous works are validated by circuit design and simulation. Design challenges and considerations for high speed SAR A/D converters are presented. Moreover, an R-C combination based method is also addressed and a 10-bit SAR A/D converter with this approach is implemented in SMIC 90 nm CMOS process. The DNL and INL are measured to be less than 0.31 LSB and 0.59 LSB respectively. With an input frequency of 420 kHz at 1 MS/s sampling rate, the SFDR and ENOB are measured to be 67.6 dB and 9.46 bits respectively, and the power dissipation is measured to be just 3.17 mW.

  10. Power loss benchmark of nine-switch converters in three-phase online-UPS application

    DEFF Research Database (Denmark)

    Qin, Zian; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    Three-phase online-UPS is an appropriate application for the nine-switch converter, where its high voltage stress of the power device caused by the reduced switch feature can be relieved significantly. Its power loss and loss distribution still have the flexibility from the control point of view...... due to its asymmetrical structure, which are critical indicators for efficiency and reliability. They are therefore analyzed mathematically in this paper, in terms of conduction loss and switching loss. Moreover, various modulation strategies that fit for the nine-switch converter as well...... as parameters like modulation index and phase angle of the load are taken into account. The benchmark of power loss will become a guidance for the users to make best use of the advantages and bypass the disadvantages of nine-switch converters. The results are finally verified on a 1.5 kW prototype....

  11. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end...

  12. Wind-driven SEIG supplying DC microgrid through a single-stage power converter

    Directory of Open Access Journals (Sweden)

    Vellapatchi Nayanar

    2016-09-01

    Full Text Available Nowadays, there is an increased emphasis on utilizing the renewable energy sources and selection of suitable power converters for supplying dc microgrid. Among the various renewable energy sources, wind energy stands first in terms of installed capacity. So, an attempt is made in this paper for supplying dc microgrid utilizing wind energy. A self-excited induction generator has been used in the proposed wind energy conversion system (WECS. A single-stage power converter, namely, semi-converter is connected between the SEIG and dc grid terminals for closed-loop control of the proposed system. A perturb and observe (P&O based maximum power point tracking (MPPT algorithm has been developed and implemented using a dsPIC30F4011 digital controller. In this MPPT algorithm, the firing angle of the converter is adjusted by continuously monitoring the dc grid current for a given wind velocity. For analyzing the proposed system, a MATLAB/Simulink model has been developed by selecting the various components starting from wind-turbine model to the power converter supplying dc microgrid. Successful working of the proposed WECS has also been shown through experimental results obtained on a prototype model developed in the laboratory.

  13. The Power Quality Compensation Strategy for Power Distribution System Based on Hybrid Parallel Active Power Filters

    Directory of Open Access Journals (Sweden)

    Rachid DEHINI

    2010-12-01

    Full Text Available In this paper, the main aim is to confront the performance of shunt active power filter (SAPF and the shunt hybrid active power filter (SHAPF to achieve flexibility and reliability of the filter devices. Both of the two devices used the classical proportional-integral controller for pulse generation to trigger the inventers MOSFET’s. In the adopted hybrid active filter there is a passive power filter with high power rating to filter the low order harmonies and one active filter with low power rating to filter the other high order harmonies. In order to investigate the effectiveness of (SHAPF, the studies have been accomplished using simulation with the MATLAB-SIMULINK. The results show That (SHAPF is more effective than (SAPF, and has lower cost.

  14. Assesment and Analyze Hybride Control System in Distribution Static Synchronous Compensator Based Current Source Converter

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Ali Zanjani

    2011-10-01

    Full Text Available With the rapid technology advancement in control processes, electric utilities are experiencing more demanding requirements on the power quality from the large industrial power consumers. For achieved this purpose use of FACTS devices. One of kind compensator is D-Statcom, using in distribution system for conquest of power quality problem. This paper presents system modeling and control design techniques of distribution static synchronous compensator. For reach an optimal design, using a hybride state-feedback and d-q control systems. Using direct sampling on network parameter, than conventional control system, as well as fast dynamic responses are achieved. The derived simulations are tried to verify the result of this paper.

  15. Operational Principle and Tuning of the MegaDiscaP Power Converters Control System

    CERN Document Server

    Cravero, JM; Garcia Retegui, R; Benedetti, M; Maestri, S; Kloster, W

    2010-01-01

    This technical report presents the regulation system of the MegaDiscaP power converter prototype. This type of converter will be used to power the septum magnet for Booster injection with Linac 4. First, the MegaDiscaP topology and operational principles are introduced. Then, as the system is composed by different stages, a regulation system capable of handling their interconnections with minimum transient response is presented. Its features, behavior and design considerations adopted are accounted for. Finally, a complete documentation of the implemented software is reported.

  16. Evolution of the CERN Power Converter Function Generator/Controller for Operation in Fast Cycling Accelerators

    CERN Document Server

    Calcoen, D; Semanaz, PF

    2011-01-01

    Power converters in the LHC are controlled by the second generation of an embedded computer known as a Function Generator/Controller (FGC2). Following the success of this control system, new power converter installations at CERN will be based around an evolution of the design – a third generation called FGC3. The FGC3 will initially be used in the PS Booster and Linac4. This paper compares the hardware of the two generations of FGC and details the decisions made during the design of the FGC3.

  17. Summary of the NASA Lewis component technology program for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.; Swec, Diane M.

    1992-01-01

    An update is presented on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power project is part of the High Capacity Power element of the NASA Civil Space Technology Initiative (CSTI). Lewis is also providing technical management of a DOE funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The primary contractors for the space power and solar terrestrial projects develop component technologies directly related to their project goals. This Lewis component technology program, while coordinated with these main projects, is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  18. Power Controllability of Three-phase Converter with Unbalanced AC Source

    DEFF Research Database (Denmark)

    Ma, Ke; Chen, Wenjie; Liserre, Marco

    2015-01-01

    Three-phase DC-AC power converters suffer from power oscillation and overcurrent problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zerosequence components are proposed to enhance the power control ability under this adverse condition. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC voltage....

  19. Power Controllability of Three-phase Converter with Unbalanced AC Source

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Three-phase DC-AC power converters suffer from power oscillation and overcurrentt problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC sources....... currents. In this work a new series of control strategies which utilize the zero-sequence components are proposed to enhance the power control ability under this adverse conditions. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...

  20. Summary of the NASA Lewis component technology program for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.; Swec, Diane M.

    1992-10-01

    An update is presented on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power project is part of the High Capacity Power element of the NASA Civil Space Technology Initiative (CSTI). Lewis is also providing technical management of a DOE funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The primary contractors for the space power and solar terrestrial projects develop component technologies directly related to their project goals. This Lewis component technology program, while coordinated with these main projects, is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  1. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2014-01-01

    The inherent double line ripple power in singlephase systems is adverse to the converter performance, e.g. limited lifetime due to the requirement of large electrolytic capacitors and low voltage control bandwidth due to harmonic disturbance. In this paper, an active converter topology based...... on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling of the proposed system...... is presented, and a dual voltage control strategy is then proposed, which comprises one voltage loop implemented in the synchronous reference frame for active power balancing, and another one implemented in the harmonic reference frame for ripple power compensation. Special attention is given to the bandwidth...

  2. Agent-based power sharing scheme for active hybrid power sources

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhenhua [Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33146 (United States)

    2008-02-15

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles. (author)

  3. Agent-based power sharing scheme for active hybrid power sources

    Science.gov (United States)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  4. Design, operation and control of series-connected power converters for offshore wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Alejandro Garces

    2012-07-01

    Offshore wind farms need to develop technologies that fulfill three main objectives:Efficiency, power density and reliability. The purpose of this thesis is to study an HVDC transmission system based on series connection of the turbines which theoretically meet these three objectives. A new topology of matrix converter operated at high frequency is proposed. This converter is studied using different modulation algorithms. Simulation and experimental results demonstrated that the converter can be operated as a current source converter with high efficiency. An optimal control based on a linear quadratic regulator is propose dto control the matrix converter as well as the converter placed on shore. Results demonstrated the high performance of this type of control and its simplicity for implementation. An stationary state study based on non-linear programming and Montecarlo simulation was carried out to determine the performance of the concept for long-term operation. Series connection is an efficient technology if and only if the differences in the effective wind velocity are small. This aspect limits the number of wind turbines that can be connected in series, since a numerous number of turbines will lead to high covariances in the distribution of the wind. A complementary study about active filter and reactive power compensation was carried out using an optimization-based algorithm. (Author)

  5. Unified power flow controller based on two shunt converters and a series capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Khoshkbar Sadigh, Arash; Tarafdar Hagh, Mehrdad; Sabahi, Mehran [Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz (Iran)

    2010-12-15

    In this paper a novel configuration of unified power flow controller (UPFC) which consists of two shunt converters and a series capacitor is proposed. In this configuration, a series capacitor is used between two shunt converters to inject desired series voltage. As a result, it is possible to control the active and reactive power flow as same as the conventional configuration of UPFC. The main advantage of the proposed UPFC in comparison with the conventional configuration is injection of a series voltage waveform with a very low total harmonic distortion (THD). Also, using two shunt converters instead of a series and a shunt converters, results in reduction of design efforts and simplification of control, measuring and protection strategies. An optimal control strategy based on the discrete model of converters is applied to shunt converters. The proposed UPFC is simulated using PSCAD/EMTDC and MATLAB software and simulation results are presented to validate the effectiveness of the novel configuration of UPFC. Also, the experimental results which are obtained from an experimental set-up are presented. (author)

  6. Impact of modulation strategies on power devices loading for 10 MW multilevel wind power converter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Isidori, Andrea; Rossi, Fabio Mario

    2012-01-01

    in the semiconductor devices of three-level converter adopting continuous and discontinuous PWM modulation strategies. This aspect strongly influences the operation of the converter and directly affects its efficiency. Therefore, a simulation platform is developed in Matlab/Simulink and PLECS environment to analyse...

  7. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  8. POWER FACTOR CORRECTION IN PERMANENT MAGNET BRUSHLESS DC MOTOR DRIVE USING SINGLE-PHASE CUK CONVERTER

    Directory of Open Access Journals (Sweden)

    SANJEEV SINGH

    2010-12-01

    Full Text Available Permanent magnet brushless DC motor (PMBLDCM drives are being employed in many variable speed applications due to their high efficiency, silent operation, compact size, high reliability, ease of control, and low maintenance requirements. These drives have power quality problems and poor power factor at input AC mains as they are mostly fed through diode bridge rectifier based voltage source inverters. To overcome such problems a single-phase single-switch power factor correction AC-DC converter topology based on a Cuk converter is proposed to feed voltage source inverters based PMBLDCM. It focuses on the analysis, design and performance evaluation of the proposed PFC converter topology for a 1.5 kW, 1500 rpm, 400 V PMBLDCM drive used for an air-conditioning system. The proposed PFC converter topology is modelled and its performance is simulated in Matlab-Simulink environment and results show an improved power quality and good power factor in wide speed range of the drive.

  9. A High-Efficiency Monolithic DC-DC PFM Boost Converter with Parallel Power MOS Technique

    Directory of Open Access Journals (Sweden)

    Hou-Ming Chen

    2013-01-01

    Full Text Available This paper presents a high-efficiency monolithic dc-dc PFM boost converter designed with a standard TSMC 3.3/5V 0.35 μm CMOS technology. The proposed boost converter combines the parallel power MOS technique with pulse-frequency modulation (PFM technique to achieve high efficiency over a wide load current range, extending battery life and reducing the cost for the portable systems. The proposed parallel power MOS controller and load current detector exactly determine the size of power MOS to increase power conversion efficiency in different loads. Postlayout simulation results of the designed circuit show that the power conversion is 74.9–90.7% efficiency over a load range from 1 mA to 420 mA with 1.5 V supply. Moreover, the proposed boost converter has a smaller area and lower cost than those of the existing boost converter circuits.

  10. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    Full Text Available Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  11. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  12. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  13. Light weight, high power, high voltage dc/dc converter technologies

    Science.gov (United States)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  14. A novel synthetic test system for thyristor level in the converter valve of HVDC power transmission

    Directory of Open Access Journals (Sweden)

    Liu Longchen

    2016-01-01

    Full Text Available The converter valve is the core equipment in the HVDC power transmission system, a+-nd its performance has a direct effect on the reliability, stability and efficiency of the whole power system. As the basic unit of HVDC converter valve, the thyristor level needs to be test routinely in order to grasp the state of the converter valve equipment. Therefore, it is urgent to develop a novel synthetic test system for the thyristor level with thyristor control unit (TCU. However, currently there is no specific test scheme for the thyristor level of HVDC converter valve. In this paper, the synthetic test principle, content and methods for the thyristor level with TCU are presented based on the analysis of the thyristor reverse recovery characteristic and the IEC technology standard. And a transient high-voltage pulse is applied to the thyristor level during its reverse recovery period in order to test the characteristics of thyristor level. Then, the synthetic test system for the thyristor level is applied to the converter valve test of ±800 kV HVDC power transmission project, and the practical test result verifies the reasonability and validity of the proposed synthetic test system.

  15. Analysis, Design, Modelling and Control of an Interleaved-Boost Full-Bridge Three-Port Converter for Hybrid Renewable Energy Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Zhang, Zhe; Knott, Arnold;

    2016-01-01

    This paper presents the design, modelling and control of a three-port (TPC) isolated dc-dc converter based on interleaved-boost-full-bridge with pulse-width-modulation and phase-shift control for hybrid renewable energy systems. In the proposed topology, the switches are driven by phase-shifted PWM...... of the proposed ac inductor based TPC is investigated by performing state-space modelling. Moreover, the derived mathematical models are validated by simulation and measurements. In order to verify the validity of the theoretical analysis, design and power decoupling control scheme, a prototype is constructed...

  16. Space and power efficient hybrid counters array

    Science.gov (United States)

    Gara, Alan G.; Salapura, Valentina

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  17. Progress update of NASA's free-piston Stirling space power converter technology project

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  18. Thermal Modeling and Design of On-board DC-DC Power Converter using Finite Element Method

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Zhang, Zhe; Pittini, Riccardo;

    2014-01-01

    Power electronic converters are widely used and play a pivotal role in electronics area . The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...

  19. Thermal Modelling and Design of On-board DC-DC Power Converter using Finite Element Method

    DEFF Research Database (Denmark)

    Staliulionis, Z.; Zhang, Z.; Pittini, R.;

    2014-01-01

    Power electronic converters are widely used and play a pivotal role in electronics area. The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...

  20. Analog Fixed Maximum Power Point Control for a PWM Step-downConverter for Water Pumping Installations

    DEFF Research Database (Denmark)

    Beltran, H.; Perez, E.; Chen, Zhe

    2009-01-01

    This paper describes a Fixed Maximum Power Point analog control used in a step-down Pulse Width Modulated power converter. The DC/DC converter drives a DC motor used in small water pumping installations, without any electric storage device. The power supply is provided by PV panels working around...

  1. A Design Methodology for Power-efficient Continuous-time Sigma-Delta A/D Converters

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Bruun, Erik

    2003-01-01

    In this paper we present a design methodology for optimizing the power consumption of continuous-time (CT) ΣΔ A/D converters. A method for performance prediction for ΣΔ A/D converters is presented. Estimation of analog and digital power consumption is derived and employed to predict the most power...

  2. Three-phase electronic power converter for photovoltaic system connected to power line; Conversor eletronico de potencia trifasico para sistema fotovoltaico conectado a rede eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Villalva, Marcelo Gradella

    2010-10-15

    This work is a contribution to the study of power converters for photovoltaic distributed generation systems. The main objective is to present the development and results of a three phase power converter for a grid-connected photovoltaic plant. The work presents experimental results and theoretical studies on the modeling and simulation of photovoltaic devices, regulation of the photovoltaic voltage, maximum power point tracking, and the modeling and control of a two-stage grid-connected power converter. (author)

  3. An out-of-core thermionic-converter system for nuclear space power.

    Science.gov (United States)

    Breitwieser, R.

    1972-01-01

    Reexamination of designs of nuclear thermionic space power systems with the converter outside the reactor in the perspective of recent advances in heat-transfer methods, materials, converter performance, and radiation design. The 40- to 70-kW(e) power range is treated. The configuration is found to meet the constraints of readily available launch vehicles. It allows for off-design operation including startup, shutdown, and possible emergency conditions; provides tolerance of failure by extensive use of modular, redundant elements; incorporates and uses heat pipes in a fashion that reduces the need for extensive in-pile testing of system components; and uses thermionic converters, nuclear fuel elements, and heat-transfer devices in a geometrical form adapted from existing incore thermionic system designs.

  4. Advanced Control Strategy of Back-to-Back PWM Converters in PMSG Wind Power System

    Directory of Open Access Journals (Sweden)

    Tan Luong Van

    2015-01-01

    Full Text Available This paper proposes a control scheme of back-to-back PWM converters for the permanent magnet synchronous generator (PMSG wind turbine system. The DC-link voltage can be controlled at the machine-side converter (MSC, while the grid-side converter (GSC controls the grid active power for a maximum power point tracking (MPPT. At the grid fault condition, the DC-link voltage controller is designed using a feedback linearization (FL theory. For the MPPT, a proportional control loop is added to the torque control to reduce the influence of the inertia moment in the wind turbines, which can improve its dynamic performance. The validity of this control algorithm has been verified by the simulation of the 2-MW PMSG wind turbine system.

  5. Digital Control of a power conditioner for fuel cell/super-capacitor hybrid system

    DEFF Research Database (Denmark)

    Caballero, Juan C Trujillo; Gomis-Bellmunt, Oriol; Montesinos-Miracle, Daniel

    2014-01-01

    This article proposes a digital control scheme to operate a proton exchange membrane fuel cell module of 1.2 kW and a super-capacitor through a DC/DC hybrid converter. A fuel cell has been proposed as a primary source of energy, and a super-capacitor has been proposed as an auxiliary source...... of energy. Experimental validation of the system implemented in the laboratory is provided. Several tests have been performed to verify that the system achieves excellent output voltage (V0) regulation and super-capacitor voltage (V SC) control under disturbances from fuel cell power (PFC) and output power...

  6. Digital Control of a power conditioner for fuel cell/super-capacitor hybrid system

    DEFF Research Database (Denmark)

    Caballero, Juan C Trujillo; Gomis-Bellmunt, Oriol; Montesinos-Miracle, Daniel;

    2014-01-01

    This article proposes a digital control scheme to operate a proton exchange membrane fuel cell module of 1.2 kW and a super-capacitor through a DC/DC hybrid converter. A fuel cell has been proposed as a primary source of energy, and a super-capacitor has been proposed as an auxiliary source...... of energy. Experimental validation of the system implemented in the laboratory is provided. Several tests have been performed to verify that the system achieves excellent output voltage (V0) regulation and super-capacitor voltage (V SC) control under disturbances from fuel cell power (PFC) and output power...

  7. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

    2011-01-01

    This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...... manner to increase effectively the torque density and efficiency of this machine. The efficiency of this machine is comparable to the efficiency of a traditional permanent magnet machine in the similar power range. The cogging torque, due to the existence of the permanent magnetic field, is beneficially...

  8. Load estimator-based hybrid controller design for two-interleaved boost converter dedicated to renewable energy and automotive applications.

    Science.gov (United States)

    Bougrine, Mohamed; Benmiloud, Mohammed; Benalia, Atallah; Delaleau, Emmanuel; Benbouzid, Mohamed

    2017-01-01

    This paper is devoted to the development of a hybrid controller for a two-interleaved boost converter dedicated to renewable energy and automotive applications. The control requirements, resumed in fast transient and low input current ripple, are formulated as a problem of fast stabilization of a predefined optimal limit cycle, and solved using hybrid automaton formalism. In addition, a real time estimation of the load is developed using an algebraic approach for online adjustment of the hybrid controller. Mathematical proofs are provided with simulations to illustrate the effectiveness and the robustness of the proposed controller despite different disturbances. Furthermore, a fuel cell system supplying a resistive load through a two-interleaved boost converter is also highlighted.

  9. Impact of Wind Power Plants with Full Converter Wind Turbines on Power System Small-Signal Stability

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nygaard Nielsen, Jørgen; Dixon, Andrew

    of operation. The participation of the WT mechanical system in the inter-area modes were found to be orders of magnitudes smaller than the participation of the synchronous generators. The reactive power controller of the WPP and the WT were found have the highest participation among the WPP and WT states. WPPs......Wind power is being developed in power systems all around the world, and already today wind power covers more than 20 % of the electricity consumption in some countries. As the size of each wind power plant (WPP) increases and as the levels of penetration reaches certain magnitudes, the inclusion...... of the dynamic properties of the WPPs in the power system stability studies become important. The work presented in this report deal with the impact of WPPs based on full converter wind turbines (WTs) on the power system small-signal rotor angle stability. During small disturbances in the power system, the rotor...

  10. Overview of the NASA Lewis component technology program for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.; Swec, Diane M.

    1992-01-01

    This paper presents an update on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power program is part of the High Capacity Power element of the NASA Civil Space Technology Initiative. Lewis is also providing technical management of a DOE-funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The Lewis component technology program is coordinated with the primary contract efforts of these projects but is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  11. Overview of power converter designs feasible for high voltage transformer-less wind turbine

    DEFF Research Database (Denmark)

    Sztykiel, Michal

    2011-01-01

    voltage design enables low power losses and elimination of bulky step-up transformer from the wind turbine system. However, new challenges appear for such topology, which have to be properly identified and successfully overcome. This paper presents possible concept for transformer-less wind turbine......Many leading wind turbine manufacturers are pushing forward in variable-speed wind turbines, often exceeding 5 MW. Therefore, novel designs and concepts for optimal high power wind turbines appeared. One of the most promising concepts is the high voltage (10-35 kV) transformer-less topology. High...... topology along with an overview of most promising candidates for optimal full-scale power converter design. Study is carried with proposed and justified high voltage wind turbine application along with selection of existing and most promising multilevel power converter topologies, which could...

  12. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli;

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  13. An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive

    Science.gov (United States)

    Singh, Bhim; Bist, Vashist

    2015-12-01

    This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.

  14. Overview of the NASA Lewis component technology program for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.; Swec, Diane M.

    This paper presents an update on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power program is part of the High Capacity Power element of the NASA Civil Space Technology Initiative. Lewis is also providing technical management of a DOE-funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The Lewis component technology program is coordinated with the primary contract efforts of these projects but is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  15. Thermoelectric Generator Power Converter System Configurations: A Review

    DEFF Research Database (Denmark)

    Man, Elena Anamaria; Schaltz, Erik; Rosendahl, Lasse

    2013-01-01

    In a Thermoelectric Generator (TEG) system, the Thermoelectric (TE) modules can be connected in series, parallel or a combination of both. Independent of the module connection, the power production of the TEG changes with the temperature gradient applied at its input. In consequence, the system...... requires a power conditioning circuit to deliver a stable and maximized output to the load. The solution is to integrate a DC-DC converter between the TEG and the load. Furthermore, a suitable control strategy is necessary to make the TEG operate at its maximum power point (MPP). The maximum power point...

  16. Influence of Frequency Converters on Insulation of Power Supply Cables at Oil-Producing Stations

    Directory of Open Access Journals (Sweden)

    D. I. Zalizny

    2011-01-01

    Full Text Available The paper considers consequences of negative frequency converter influence on insulation of  power supply cables used for submersible installations of electric-centrifugal pumps at oil-producing stations. The possible approaches to the solution of the problem are proposed on the basis of a harmonic analysis of actually measured voltages and currents in a cable.  

  17. High Efficiency Power Converter for a Doubly-fed SOEC/SOFC System

    DEFF Research Database (Denmark)

    Tomas Manez, Kevin; Anthon, Alexander; Zhang, Zhe

    2016-01-01

    modes is possible. This paper discusses the design considerations for this novel PCU, and verifies its operation principle with Matlab/Simulink simulations. Experimental results on a tailored dc-dc converter confirm the design simplifications for high efficiency operation along the entire power...

  18. Resonant power converter with dead-time control of synchronous rectification circuit

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising a synchronous rectifier for supplying a DC output voltage. The synchronous rectifier is configured for alternatingly connecting a resonant output voltage to positive and negative DC output nodes via first and second ...

  19. Tuning of Passivity-Preserving Controllers for Switched-Mode Power Converters

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Scherpen, Jacquelien M.A.

    2004-01-01

    Nonlinear passivity-based control (PBC) algorithms for power converters have proved to be an interesting alternative to other, mostly linear, control techniques. The control objective is usually achieved through an energy reshaping process and by injecting damping to modify the dissipation structure

  20. Development of Field Data Logger for Recording Mission Profile of Power Converters

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay Kumar; Ghimire, Pramod; Blaabjerg, Frede

    2015-01-01

    Mission profile data provides useful data for a cost effective and reliable design of future power converters. The development of a field data logger using a Raspberry Pi (RBPI) and temperature and humidity sensors is presented. The collected data is analyzed and classified for the purpose of data...

  1. Power Factor Correction and THD Minimization by Interleaved Boost Converter in Continuous Conduction Mode

    Directory of Open Access Journals (Sweden)

    Saubhik Maulik

    2014-02-01

    Full Text Available The electrical energy available in the utility grid is not suitable for direct use in many applications. In particular, applications requiring DC source must involve an interface device between the AC power line and the load requiring the DC voltage. Conventional AC/DC conversion involves diode rectifiers with large capacitor to reduce DC voltage ripple. The filter capacitor reduces the ripple present in the output voltage but draws non-sinusoidal line current which reduces the power factor. So power factor correction (PFC techniques are gaining increasing attention. The most popular topology for active PFC is boost converter as it draws continuous input current. This input current can be manipulated by average current mode control technique. But there are ripple in the input current due to inductor of boost converter which can be minimized by using two phase interleaved boost converter. Here average current mode controlled interleaved boost converter in continuous conduction mode using PI controller, is represented which provides high power factor and low THD.

  2. Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency.

    Science.gov (United States)

    Jin, Long; Chen, Jun; Zhang, Binbin; Deng, Weili; Zhang, Lei; Zhang, Haitao; Huang, Xi; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-08-23

    The rapid development of Internet of Things and the related sensor technology requires sustainable power sources for their continuous operation. Scavenging and utilizing the ambient environmental energy could be a superior solution. Here, we report a self-powered helmet for emergency, which was powered by the energy converted from ambient mechanical vibration via a hybridized nanogenerator that consists of a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG). Integrating with transformers and rectifiers, the hybridized nanogenerator can deliver a power density up to 167.22 W/m(3), which was demonstrated to light up 1000 commercial light-emitting diodes (LEDs) instantaneously. By wearing the developed safety helmet, equipped with rationally designed hybridized nanogenerator, the harvested vibration energy from natural human motion is also capable of powering a wireless pedometer for real-time transmitting data reporting to a personal cell phone. Without adding much extra weight to a commercial one, the developed wearing helmet can be a superior sustainable power source for explorers, engineers, mine-workers under well, as well as and disaster-relief workers, especially in remote areas. This work not only presents a significant step toward energy harvesting from human biomechanical movement, but also greatly expands the applicability of TENGs as power sources for self-sustained electronics.

  3. Review of modular power converters solutions for smart transformer in distribution system

    DEFF Research Database (Denmark)

    Alzola, Rafael Pena; Gohil, Ghanshyamsinh Vijaysinh; Mathe, Laszlo

    2013-01-01

    While the use of power electronics based Smart Transformer (ST) is becoming a reality in traction applications, and it has been considered as an interesting option for interfacing different transmission systems, the possibility to use it in distribution systems is still considered futuristic....... Replacing primary distribution transformers with ST can lead to more flexible handling of the distribution feeders, while replacing secondary distribution transformers can allow decoupling of distribution network. This paper reviews different power converter solutions for the ST focusing on modularity...

  4. Totem-Pole Power-Factor-Correction Converter under Critical-Conduction-Mode Interleaved Operation

    Science.gov (United States)

    Firmansyah, Eka; Tomioka, Satoshi; Abe, Seiya; Shoyama, Masahito; Ninomiya, Tamotsu

    This paper proposes a new power-factor-correction (PFC) topology, and explains its operation principle, its control mechanism, related application problems followed by experimental results. In this proposed topology, critical-conduction-mode (CRM) interleaved technique is applied to a bridgeless PFC in order to achieve high efficiency by combining benefits of each topology. This application is targeted toward low to middle power applications that normally employs continuous-conduction-mode boost converter.

  5. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    Energy Technology Data Exchange (ETDEWEB)

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (λ = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  6. Modular VSC converter based HVDC power transmission from offshore wind power plant: Compared to the conventional HVAC system

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj;

    2010-01-01

    power transmission options with HVDC systems are under consideration. In this paper, a comparison between a conventional HVAC transmission system and a HVDC system equipped with modular voltage source converters is provided. The comparison is based on the total energy transmission capability...

  7. Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System

    OpenAIRE

    2013-01-01

    This paper analyzes and simulates the Li-ion battery charging process for a solar powered battery management system. The battery is charged using a non-inverting synchronous buck-boost DC/DC power converter. The system operates in buck, buck-boost, or boost mode, according to the supply voltage conditions from the solar panels. Rapid changes in atmospheric conditions or sunlight incident angle cause supply voltage variations. This study develops an electrochemical-based equivalent circuit mod...

  8. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  9. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    Science.gov (United States)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  10. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    Science.gov (United States)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  11. Operating and Loading Conditions of a Three-Level Neutral-Point-Clamped Wind Power Converter Under Various Grid Faults

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    In order to fulfill the growing demands from the grid side, full-scale power converters are becoming popular in the wind turbine system. The low-voltage ride-through (LVRT) requirements may not only cause control problems but also result in overstressed components for the power converter. However......, the thermal loading of the wind power converter under various grid faults is still not yet clarified, particularly at megawatt power level. In this paper, the impacts by three types of grid faults to a three-level neutral-point-clamped (3L-NPC) wind power converter in terms of operating and loading conditions...... are analytically solved and simulated. It has been found that the operating and loading conditions of the converter under LVRT strongly depend on the types/severity values of grid voltage dips and also the chosen control algorithms. The thermal distribution among the three phases of the converter may be quite...

  12. A Transformer-less Partial Power Boost Converter for PV Applications Using a Three-Level Switching Cell

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed; Harfman-Todorovic, Maja; Elasser, Ahmed; Essakiappan, Somasundaram

    2013-03-01

    Photovoltaic architectures with distributed power electronics provide many advantages in terms of energy yield as well as system level optimization. As the power level of the solar farm increases it becomes more beneficial to increase the dc collection network voltage, which requires the use of power devices with higher voltage ratings, and thus making the design of efficient, low cost, distributed power converters more challenging. In this paper a simple partial power converter topology is proposed. The topology is implemented using a three-level switching cell, which allows the use of semiconductor devices with lower voltage rating; thus improving design and performance and reducing converter cost. This makes the converters suitable for use for medium to high power applications where dc-link voltages of 600V~1kV may be needed without the need for high voltage devices. Converter operation and experimental results are presented for two partial power circuit variants using three-level switching cells.

  13. Final design of the Korean AC/DC converters for the ITER coil power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong-Seok, E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, Jungwan; Suh, Jae-Hak; Choi, Jihyun [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lee, Lacksang; Kim, Changwoo; Park, Hyungjin; Jo, Seongman; Lee, Seungyun; Hwang, Kwangcheol; Liu, Hyoyol [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Hong, Ki-Don; Sim, Dong-Joon; Lee, Jang-Soo [Hyosung Corp., Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); Lee, Eui-Jae; Kwon, Yang-Hae; Lee, Dae-Yeol; Ko, Ki-Won; Kim, Jong-Min [Mobiis Corp., Yangjae-dong, Seoul 137-888 (Korea, Republic of); Song, Inho [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); and others

    2015-10-15

    The final design of the ITER TF, CS, CC and VS AC/DC converters has been completed to implement ITER requirements following the detailed design and refinements of the preliminary design. The number of parallel thyristors and the rating of fuses are coordinated to keep those devices within the explosion limit even under most severe fault conditions. The impedance of the converter transformer has been optimized taking into account the energization inrush current, short circuit current, reactive power consumption and the available DC voltage. To ensure system integrity, AC/DC converters are mechanically divided into transformers, AC busbars, 6-pulse bridges, DC interconnecting busbars and DC reactors, and then all subsystems are decoupled by flexible links. To provide stable real time network communication down to the converters, a one GbE link is deployed between master controllers and local controllers. IEEE 1588 is implemented to the embedded controllers for precision time synchronization. This paper describes the detailed solutions implemented in the final design for the ITER AC/DC converters with R&D results of converter prototypes.

  14. A High-Efficiency, Low-Cost Solution for On-Board Power Converters

    Directory of Open Access Journals (Sweden)

    V. Boscaino

    2012-01-01

    Full Text Available Wide-input, low-voltage, and high-current applications are addressed. A single-ended isolated topology which improves the power efficiency, reduces both switching and conduction losses, and heavily lowers the system cost is presented. During each switching cycle, the transformer core reset is provided. The traditional tradeoff between the maximum allowable duty-cycle and the reset voltage is avoided and the off-voltage of active switches is clamped to the input voltage. Therefore, the system cost is heavily reduced and the converter is well suited for wide-input applications. Zero-voltage switching is achieved for active switches, and the power efficiency is greatly improved. In the output mesh, an inductor is included making the converter suitable for high-current, low-voltage applications. Since the active clamp forward converter is the closest competitor of the proposed converter, a comparison is provided as well. In this paper, the steady-state and small-signal analysis of the proposed converter is presented. Design examples are provided for further applications. Simulation and experimental results are shown to validate the great advantages brought by the proposed topology.

  15. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    Science.gov (United States)

    Wilson, T. G.

    1981-11-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  16. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Enrique Vidal

    2013-08-01

    Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

  17. Hybrid Engine Powered City Car: Fuzzy Controlled Approach

    Science.gov (United States)

    Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany

    2017-03-01

    This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.

  18. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  19. Linear Robust Output Regulation in a Class of Switched Power Converters

    Directory of Open Access Journals (Sweden)

    Josep M. Olm

    2010-01-01

    Full Text Available This article addresses the robust output regulation problem for a class of nonlinear switched power converters after its linearization by means of a change of the control vector variable. The methodology employs a dynamic state feedback control law and considers parametric uncertainty due to unknown values of resistive loads. Restrictions arising from the fact that the control gains exhibit fixed values are taken into account. The proposed technique is exemplified with the output voltage regulation of a Noninverting Buck-Boost converter and tested through realistic numerical simulations.

  20. Point-of-load switched-capacitor DC-DC converter for distributed power systems

    Science.gov (United States)

    Shunkov, V. E.; Kus, O. N.; Prokopyev, V. Y.; Butuzov, V. A.; Bocharov, Y. I.; Shunkov, V. E.

    2016-10-01

    Integrated circuit (IC) of point-of-load DC-DC converter is presented. It is intended mainly for use in distributed power systems as a stand-along IC or as an on-chip block of the system-on-chip. The converter is based on multiphase switched-capacitor architecture and implemented in commercially available, 180 nm bulk-CMOS process. The paper discusses features of output voltage control in the multiphase system over a wide range of input and output voltages and load currents as well as output noise reducing techniques. The results of the test samples evaluation are presented.