WorldWideScience

Sample records for hybrid poplars populus

  1. Efficient Agrobacterium-Mediated Transformation of Hybrid Poplar Populus davidiana Dode × Populus bollena Lauche

    Directory of Open Access Journals (Sweden)

    Xue Han

    2013-01-01

    Full Text Available Poplar is a model organism for high in vitro regeneration in woody plants. We have chosen a hybrid poplar Populus davidiana Dode × Populus bollena Lauche. By optimizing the Murashige and Skoog medium with (0.3 mg/L 6-benzylaminopurine and (0.08 mg/L naphthaleneacetic acid, we have achieved the highest frequency (90% for shoot regeneration from poplar leaves. It was also important to improve the transformation efficiency of poplar for genetic breeding and other applications. In this study, we found a significant improvement of the transformation frequency by controlling the leaf age. Transformation efficiency was enhanced by optimizing the Agrobacterium concentration (OD600 = 0.8–1.0 and an infection time (20–30 min. According to transmission electron microscopy observations, there were more Agrobacterium invasions in the 30-day-old leaf explants than in 60-day-old and 90-day-old explants. Using the green fluorescent protein (GFP marker, the expression of MD–GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode × P. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants. Our results suggest that younger leaves had higher transformation efficiency (~30% than older leaves (10%.

  2. Sapflow of hybrid poplar (Populus nigra L. x P. maximowiczii A. Henry 'NM6') during phytoremediation of landfill leachate

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Don E. Riemenschneider

    2006-01-01

    Poplars are ideal for phytoremediation because of their high water usage, fast growth, and deep root systems. We measured in 2002 and 2003 the sapflow of hybrid poplars (Populus nigra L. x P. maximowiczii A. Henry 'NM6') planted in 1999 for phytoremediation of a landfill in Rhinelander, WI, USA (45.6?N, 89.4?W).

  3. Chemical responses to modified lignin composition in tension wood of hybrid poplar (Populus tremula x Populus alba).

    Science.gov (United States)

    Al-Haddad, Jameel M; Kang, Kyu-Young; Mansfield, Shawn D; Telewski, Frank W

    2013-04-01

    The effect of altering the expression level of the F5H gene was investigated in three wood tissues (normal, opposite and tension wood) in 1-year-old hybrid poplar clone 717 (Populus tremula × Populus alba L.), containing the F5H gene under the control of the C4H promoter. Elevated expression of the F5H gene in poplar has been previously reported to increase the percent syringyl content of lignin. The wild-type and three transgenic lines were inclined 45° for 3 months to induce tension wood formation. Tension and opposite wood from inclined trees, along with normal wood from control trees, were analyzed separately for carbohydrates, lignin, cellulose crystallinity and microfibril angle (MFA). In the wild-type poplar, the lignin in tension wood contained a significantly higher percentage of syringyl than normal wood or opposite wood. However, there was no significant difference in the percent syringyl content of the three wood types within each of the transgenic lines. Increasing the F5H gene expression caused an increase in the percent syringyl content and a slight decrease in the total lignin in normal wood. In tension wood, the addition of a gelatinous layer in the fiber walls resulted in a consistently lower percentage of total lignin in the tissue. Acid-soluble lignin was observed to increase by up to 2.3-fold in the transgenic lines. Compared with normal wood and opposite wood, cell wall crystallinity in tension wood was higher and the MFA was smaller, as expected, with no evidence of an effect from modifying the syringyl monomer ratio. Tension wood in all the lines contained consistently higher total sugar and glucose percentages when compared with normal wood within the respective lines. However, both sugar and glucose percentages were lower in the tension wood of transgenic lines when compared with the tension wood of wild-type trees. Evaluating the response of trees with altered syringyl content to gravity will improve our understanding of the changes

  4. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry.

    Science.gov (United States)

    Yevtushenko, Dmytro P; Misra, Santosh

    2010-03-01

    Many economically important species of Populus, especially those in sections Aigeiros and Tacamahaca, remain recalcitrant to genetic transformation. In this study, a simple and reliable protocol was developed for the efficient Agrobacterium-mediated transformation of a difficult-to-transform, but commercially viable, hybrid poplar Populus nigra L. x P. maximowiczii A. Henry (NM6). A plant transformation vector designed to express the beta-glucuronidase (GUS) gene was used to detect transformation events at early stages of plant regeneration and to optimize parameters affecting poplar transformation. The use of zeatin riboside in shoot-induction medium, regeneration of shoots via indirect organogenesis, and early selection pressure were the major modifications that drastically improved the efficiency of poplar transformation and minimized the number of untransformed regenerants. Transgenic shoots were routinely obtained 4-10 weeks after co-culture with A. tumefaciens, with a greater than 90% rate of plant recovery. Stable transgene integration, ranging from a single insertion to ten copies per genome, was confirmed by Southern blot analysis. The mean transformation frequency was 36.3% and about two-thirds of the lines had 1-2 transgene copies. Among the explants, petioles and leaves had a higher transformation frequency than did stem segments. Growth characteristics and the morphology of transgenic poplar plants were identical to untransformed controls. These findings will accelerate the development of P. nigra x P. maximowiczii plants with novel traits, and may also be useful to improve transformation procedures for other Populus species.

  5. In vitro shoot regeneration from leaf mesophyll protoplasts of hybrid poplar (Populus nigra x P. maximowiczii).

    Science.gov (United States)

    Park, Y G; Son, S H

    1992-02-01

    Protoplasts were isolated from leaf mesophyll of hybrid poplar (Populus nigra X P. maximowiczii) with a mean yield of 10.4 x 10(6) protoplasts per g fresh weight using 2.0% Cellulase 'Onozuka' R-10, 0.8% Macerozyme R-10, 1.2% Hemicellulase, 2.0% Driselase, and 0.05% Pectolyase Y-23 with CPW salts solution containing 0.6 M mannitol, 0.002 M DTT, 3 mM MES at pH 5.6. A liquid plating method produced the highest frequency of dividing protoplasts (48.6%) using an MS medium without NH4NO3. The highest percent of colony formation was 22.8%, produced with fabric supported semi-solid (0.5% w/v) agar plating method using the same culture medium. Growing cell colonies and/or micro-calli were transferred to a fresh semisolid agar medium containing 0.44 μM BAP and 9.0 μM 2,4-D. Multiple shoots were produced from protoplast-derived callus after culture on MS medium containing 6.8 μM zeatin. After root induction on half-strength MS medium that lacked growth regulators, shoots were transferred to pots containing artificial soil mix.

  6. Predicting yields of short-rotation hybrid poplar (Populus spp.) for the United States through model-data synthesis.

    Science.gov (United States)

    Wang, Dan; LeBauer, David; Dietze, Michael

    2013-06-01

    Hybrid poplar (Populus spp.) is an important biomass crop being evaluated for cellulosic ethanol production. Predictions of poplar growth, rotation period, and soil carbon sequestration under various growing conditions, soils, and climates are critical for farmers and managers planning to establish short-rotation forestry (SRF) plantations. In this study, we used an ecoinformatics workflow, the Predictive Ecosystem Analyzer (PEcAn), to integrate literature data and field measurements into the Ecosystem Demography 2 (ED2) model to estimate yield potential of poplar plantations. Within PEcAn 164 records of seven different traits from the literature were assimilated using a Bayesian meta-analysis. Next, variance decomposition identified seven variables for further constraint that contributed > 80% to the uncertainty in modeled yields: growth respiration, dark respiration, quantum efficiency, mortality coefficient, water conductance, fine-root allocation, and root turnover rate. Assimilation of observed yields further constrained uncertainty in model parameters (especially dark respiration and root turnover rate) and biomass estimates. Additional measurements of growth respiration, mortality, water conductance, and quantum efficiency would provide the most efficient path toward further constraint of modeled yields. Modeled validation demonstrated that ED2 successfully captured the interannual and spatial variability of poplar yield observed at nine independent sites. Site-level analyses were conducted to estimate the effect of land use change to SRF poplar on soil C sequestration compared to alternate land uses. These suggest that poplar plantations became a C sink within 18 years of conversion from corn production or existing forest. Finally, poplar yields were estimated for the contiguous United States at a half degree resolution in order to determine potential productivity, estimate the optimal rotation period, and compare poplar to perennial grass yields. This

  7. Cellulose and lignin biosynthesis is altered by ozone in wood of hybrid poplar (Populus tremula × alba).

    Science.gov (United States)

    Richet, Nicolas; Afif, Dany; Huber, Françoise; Pollet, Brigitte; Banvoy, Jacques; El Zein, Rana; Lapierre, Catherine; Dizengremel, Pierre; Perré, Patrick; Cabané, Mireille

    2011-06-01

    Wood formation in trees is a dynamic process that is strongly affected by environmental factors. However, the impact of ozone on wood is poorly documented. The objective of this study was to assess the effects of ozone on wood formation by focusing on the two major wood components, cellulose and lignin, and analysing any anatomical modifications. Young hybrid poplars (Populus tremula × alba) were cultivated under different ozone concentrations (50, 100, 200, and 300 l l(-1)). As upright poplars usually develop tension wood in a non-set pattern, the trees were bent in order to induce tension wood formation on the upper side of the stem and normal or opposite wood on the lower side. Biosynthesis of cellulose and lignin (enzymes and RNA levels), together with cambial growth, decreased in response to ozone exposure. The cellulose to lignin ratio was reduced, suggesting that cellulose biosynthesis was more affected than that of lignin. Tension wood was generally more altered than opposite wood, especially at the anatomical level. Tension wood may be more susceptible to reduced carbon allocation to the stems under ozone exposure. These results suggested a coordinated regulation of cellulose and lignin deposition to sustain mechanical strength under ozone. The modifications of the cellulose to lignin ratio and wood anatomy could allow the tree to maintain radial growth while minimizing carbon cost.

  8. Altering carbon allocation in hybrid poplar (Populus alba × grandidentata) impacts cell wall growth and development.

    Science.gov (United States)

    Unda, Faride; Kim, Hoon; Hefer, Charles; Ralph, John; Mansfield, Shawn D

    2016-12-20

    Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. Hybrid poplar (Populus alba × grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sections of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. In addition, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. The results suggest that the overexpression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood.

  9. Repeated unidirectional introgression towards Populus balsamifera in contact zones of exotic and native poplars

    NARCIS (Netherlands)

    Thompson, S.L.; Lamothe, M.; Meirmans, P.G.; Périnet, P.; Isabel, N.

    2010-01-01

    As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus

  10. Tree and stand water fluxes of hybrid poplar clone (Populus nigra x P. maximowiczii) in short rotation coppice culture

    Science.gov (United States)

    Fischer, M.; Trnka, M.; Kucera, J.; Zalud, Z.

    2010-09-01

    This study reports on evapotranspiration and tree water use in short rotation coppice culture of hybrid poplar (Populus nigra x P. maximowiczii) for biomass energy in the Czech Republic. The high density poplar plantation (10 000 trees per ha) was established in 2003 on arable land in Czech-Moravian Highland (49°32´ N, 16°15´ E, 530 m a.s.l.) and has been coppiced in rotation period of 7 years. Firstly, evapotranspiration of the stand has been estimated by applying the Bowen ratio-energy budget method, which is considered as reliable, robust, quite simple and inexpensive technique with comparable results to eddy covariance and lysimeters. The gaps in evapotranspiration diurnal patterns caused by limitation of the bowen ratio method were filled with simple linear regression model based on relation between potential and actual evapotranspiration with regard to soil water availability and leaf area index and thus the daily, monthly and seasonal totals could be calculated. The amount of evapotranspiration during the growing season 2009 (1 March - 31 October) was 593 mm with highest monthly total 116 mm in June. Mean daily water loss over the season reached 2.43 mm per day. During the hot summer day, the maximal value 5.73 mm per day, which presented 89 % of potential evapotranspiration calculated by Penman equation, was recorded with a peak rate 0.94 mm per hour. Secondly, the transpiration was measured by sap flow tissue heat balance techniques on four individual trees with greatest stem diameters (11 - 12 cm d.b.h.) and height of 12 - 12.5 m. Relatively high transpiration values by the poplars were found during the measured part of growing season (18 June - 31 October), with maximum and mean daily transpiration of 44.41 dm3 and 16.69 dm3 per day, respectively. The seasonal transpiration of the most vigorous from the investigated individuals amounted 2542 dm3. Because in this study we didńt evaluate the transpiration of thinner trees (technical features of sap

  11. Microarray and suppression subtractive hybridization analyses of gene expression in hybrid poplar (Populus alba × Populus tremula var. glandulosa) cell suspension cultures after exposure to NaCl.

    Science.gov (United States)

    Bae, Eun-Kyung; Lee, Hyoshin; Lee, Jae-Soon; Noh, Eun-Woon; Choi, Young-Im; Lee, Byung-Hyun; Choi, Dong-Woog

    2012-09-01

    The gene expression profiles of hybrid poplar (Populus alba × Populus tremula var. glandulosa) cells in suspension culture after exposure to salinity (NaCl) induced stress were examined by constructing two suppression subtractive hybridization (SSH) libraries. cDNA from non-treated cells was used as a driver and cDNA samples from cell suspension cultures exposed to 150 mM NaCl for 2 or 10 h were used as testers. Randomly selected clones from each SSH library were sequenced and 727 high-quality expressed sequence tags (ESTs) were obtained and analyzed. Four novel ESTs were identified. Between the two libraries, 542 unique SSH clones were selected for placement on a cDNA microarray. In total, 18 differentially expressed genes were identified with 4 and 12 genes being significantly differentially expressed 2 and 10 h after the treatment, respectively. Genes related to metabolism and protein synthesis and several genes whose protein products are implicated in salt or other abiotic stress-related responses were expressed in the salt-stressed cells.

  12. Transcriptome profiles of hybrid poplar (Populus trichocarpa × deltoides) reveal rapid changes in undamaged, systemic sink leaves after simulated feeding by forest tent caterpillar (Malacosoma disstria).

    Science.gov (United States)

    Philippe, Ryan N; Ralph, Steven G; Mansfield, Shawn D; Bohlmann, Jörg

    2010-11-01

    Poplar has been established as a model tree system for genomic research of the response to biotic stresses. This study describes a series of induced transcriptome changes and the associated physiological characterization of local and systemic responses in hybrid poplar (Populus trichocarpa × deltoides) after simulated herbivory. • Responses were measured in local source (LSo), systemic source (SSo), and systemic sink (SSi) leaves following application of forest tent caterpillar (Malacosoma disstria) oral secretions to mechanically wounded leaves. • Transcriptome analyses identified spatially and temporally dynamic, distinct patterns of local and systemic gene expression in LSo, SSo and SSi leaves. Galactinol synthase was strongly and rapidly upregulated in SSi leaves. Genome analyses and full-length cDNA cloning established an inventory of poplar galactinol synthases. Induced changes of galactinol and raffinose oligosaccharides were detected by anion-exchange high-pressure liquid chromatography. • The LSo leaves showed a rapid and strong transcriptome response compared with a weaker and slower response in adjacent SSo leaves. Surprisingly, the transcriptome response in distant, juvenile SSi leaves was faster and stronger than that observed in SSo leaves. Systemic transcriptome changes of SSi leaves have signatures of rapid change of metabolism and signaling, followed by later induction of defense genes.

  13. Effects of in vitro ozone treatment on proteolysis of purified rubisco from two hybrid poplar clones. [Populus maximowizii x trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Landry, L.G.; Pell, E.J. (Pennsylvania State Univ., University Park (USA))

    1989-04-01

    Plants exposed to ozone (O{sub 3}) exhibited symptoms of premature senescence, including early decline in quantity of rubisco. O{sub 3}-induced oxidation may cause changes in protein conformation of rubisco, resulting in enhanced proteolysis. To test this hypothesis, rubisco was purified from two hybrid clones of Populus maximowizii x trichocarpa, clones 388 and 245, and treated in vitro with O{sub 3} or air. Rubisco was then challenged with bromelain, papain, chymotrypsin, carboxypeptidase A, or endoproteinase Glu-C and percent degradation measured by SDS-PAGE and densitometric scanning of the gels. Degree of rubisco sensitivity to oxidation may be related to available sulfhydryl (SH) groups on the protein. The number of SH groups in native and denatured rubisco was measured for purified rubisco of both clones by DTNB titration method. The relationship between sensitivity to proteolysis and number and availability of SH groups is discussed.

  14. Barcoding poplars (Populus L. from western China.

    Directory of Open Access Journals (Sweden)

    Jianju Feng

    Full Text Available BACKGROUND: Populus is an ecologically and economically important genus of trees, but distinguishing between wild species is relatively difficult due to extensive interspecific hybridization and introgression, and the high level of intraspecific morphological variation. The DNA barcoding approach is a potential solution to this problem. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested the discrimination power of five chloroplast barcodes and one nuclear barcode (ITS among 95 trees that represent 21 Populus species from western China. Among all single barcode candidates, the discrimination power is highest for the nuclear ITS, progressively lower for chloroplast barcodes matK (M, trnG-psbK (G and psbK-psbI (P, and trnH-psbA (H and rbcL (R; the discrimination efficiency of the nuclear ITS (I is also higher than any two-, three-, or even the five-locus combination of chloroplast barcodes. Among the five combinations of a single chloroplast barcode plus the nuclear ITS, H+I and P+I differentiated the highest and lowest portion of species, respectively. The highest discrimination rate for the barcodes or barcode combinations examined here is 55.0% (H+I, and usually discrimination failures occurred among species from sympatric or parapatric areas. CONCLUSIONS/SIGNIFICANCE: In this case study, we showed that when discriminating Populus species from western China, the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions. Meanwhile, combining the ITS region with chloroplast regions may improve the barcoding success rate and assist in detecting recent interspecific hybridizations. Failure to discriminate among several groups of Populus species from sympatric or parapatric areas may have been the result of incomplete lineage sorting, frequent interspecific hybridizations and introgressions. We agree with a previous proposal for constructing a tiered barcoding system in

  15. Nucleotide diversity among natural populations of a North American poplar (Populus balsamifera, Salicaceae).

    Science.gov (United States)

    Breen, Amy L; Glenn, Elise; Yeager, Adam; Olson, Matthew S

    2009-01-01

    Poplars (Populus spp.) comprise an important component of circumpolar boreal forest ecosystems and are the model species for tree genomics. In this study, we surveyed genetic variation and population differentiation in three nuclear genes among populations of balsam poplar (Populus balsamifera) in North America. We examined nucleotide sequence variation in alcohol dehydrogenase 1 (Adh1) and glyceraldehyde 3-phosphate dehydrogenase (G3pdh), two well-studied nuclear loci in plants, and abscisic acid insensitivity 1B (ABI1B), a locus coincident with timing of seasonal dormancy in quantitative trait locus (QTL) studies of hybrid poplars. We compared estimates of baseline population genetic parameters for these loci with those obtained in studies of other poplar species, particularly European aspen (Populus tremula). Average pairwise nucleotide diversity (pi(tot) = 0.00216-0.00353) was equivalent to that in Populus trichocarpa, but markedly less than that in P. tremula. Elevated levels of population structure were observed in ABI1B between the northern and southern regions (F(CT) = 0.184, P boreal plant species.

  16. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar.

    Science.gov (United States)

    Cho, Jin-Seong; Nguyen, Van Phap; Jeon, Hyung-Woo; Kim, Min-Ha; Eom, Seok Hyun; Lim, You Jin; Kim, Won-Chan; Park, Eung-Jun; Choi, Young-Im; Ko, Jae-Heung

    2016-09-01

    Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120

  17. Conservation status of white poplar (Populus alba L. and black poplar (Populus nigra L. in the territory of Great War Island

    Directory of Open Access Journals (Sweden)

    Šijačić-Nikolić Mirjana

    2014-01-01

    Full Text Available T he paper describes t he conservation status of white poplar (Populus alba L. and black poplar (Populus nigra L. in the territory of Great War Island. The activities of in situ and ex situ gene pool conservation have been defined in order to preserve and expand the populations of the above species, as carriers of complex wetland forest ecosystems.

  18. Transformation of spider neurotoxin gene with prospective insecticidal properties into hybrid poplar Populus simonii × P. nigra%向小黑杨转化蜘蛛杀虫毒素基因

    Institute of Scientific and Technical Information of China (English)

    林同; 王志英; 刘宽余; 景天忠; 张传溪

    2006-01-01

    In recent years, the pest insects on hybrid poplar Populus simonii × P. nigra broke out heavily, which caused great losses in forestry. In order to improve insect resistance of P. simonii × P. nigra and avoid pollution due to insecticides, the fused BGT gene consisting of the insecticidal toxin gene from the spider, Atrax robustus, and the C terminal of Cry Ⅰ A (b) gene from Bacillus thuringiensis was transferred into P. simonii × P. nigra by Agrobacteriumm-mediated transformation system. The results of PCR and Southern blotting analyses showed that the insecticidal gene of BGT was integrated into the genome of P. simonii × P. nigra. The corrected mortality of the second instar of Lymantria dispar in 6 days and 9 days after they were fed with the transgenic poplars was 37.0% and92.6% , respectively. Analysis of variance showed that there was significant difference in body weight between L. dispar larvae fed with the transformed poplars and those fed with untransformed poplars. The results indicated that the growth rate of L. dispar fed with the transgenic poplars was affected negatively.%近年来,危害小黑杨Populus simonii×P.nigra的害虫发生严重,给林业生产造成很大损失.为了提高小黑杨的抗虫能力,避免使用杀虫剂带来的污染,用农杆菌介导法将澳大利亚漏斗蛛Atrax robustus的毒蛋白基因和苏云金芽孢杆菌Cry Ⅰ A(b)基因C末端的融合基因BGT转化入小黑杨.PCR和Southern印记分析转基因植株,结果表明,BGT杀虫基因已经整合在小黑杨基因组上.活性实验表明,取食转基因杨树6天和9天后,舞毒蛾Lymantria dispar 2龄幼虫的校正死亡率分别是37.0%和92.6%.方差分析表明取食转基因和对照杨树的舞毒蛾幼虫体重差异显著.这些结果显示转基因杨树上的舞毒蛾的发育速率受到影响.

  19. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    Science.gov (United States)

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  20. Analysis of genetic and environmental effects on hybrid poplar rooting in Central and Northern Minnesota, USA

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Don Riemenschneider; Edmund Bauer

    2000-01-01

    We studied genetic and environmental effects on adventitious root initiation and growth because rooting is biologically prerequisite to the establishment of hybrid poplar plantations. Six clones from two pedigrees (pure Populus deltoides "cottonwoods" and P. deltoides x P. maximowiczii hybrids) were...

  1. Biochar as a substitute for vermiculite in potting mix for hybrid poplar

    Science.gov (United States)

    William L. Headlee; Catherine E. Brewer; Richard B. Hall

    2014-01-01

    The purpose of this study was to evaluate biochar as a substitute for vermiculite in potting mixes for unrooted vegetative cuttings of hybrid poplar as represented by the clone ‘NM6’ (Populus nigra L. × Populus suaveolens Fischer subsp. maximowiczii A. Henry). We compared three treatments (peat moss (control), peat moss mixed with vermiculite, and peat moss mixed with...

  2. The use of the white poplar (Populus alba L.) biomass as fuel

    Institute of Scientific and Technical Information of China (English)

    Tatiana Griu; Aurel Lunguleasa

    2016-01-01

    We determined the calorific value of white poplar (Populus alba L.) woody biomass to use it as fire-wood. The value of 19.133 MJ kg-1 obtained experimen-tally shows that the white poplar can be quite successfully used as firewood. Being of a lower quality in comparison with usual beech firewood, the white poplar has similar calorific value. The white poplar has a calorific density of 30.7%lower than that of current firewood. That is why the price of this firewood from white poplar is lower accord-ingly. Also, the prognosis of calorific value on the basis of the main chemical elements, being very close to the experimental value (?2.6%), indicates an appropriate value can be achieved to be used for investigation with the chemical element analysis.

  3. The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a.

    Directory of Open Access Journals (Sweden)

    Juan Jesús Molina-Rueda

    Full Text Available BACKGROUND: Glutamine synthetase (GS plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4 expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD family were reciprocally regulated in GS poplar when compared with the wild-type control, in all tissues examined. SOD was the only gene family found to exhibit such patterns. RESULTS: In silico analysis of the Populus genome identified 12 SOD genes and two genes encoding copper chaperones for SOD (CCSs. The poplar SODs form three phylogenetic clusters in accordance with their distinct metal co-factor requirements and gene structure. Nearly all poplar SODs and CCSs are present in duplicate derived from whole genome duplication, in sharp contrast to their predominantly single-copy Arabidopsis orthologs. Drought stress triggered plant-wide down-regulation of the plastidic copper SODs (CSDs, with concomitant up-regulation of plastidic iron SODs (FSDs in GS poplar relative to the wild type; this was confirmed at the activity level. We also found evidence for coordinated down-regulation of other copper proteins, including plastidic CCSs and polyphenol oxidases, in GS poplar under drought conditions. CONCLUSIONS: Both gene duplication and expression divergence have contributed to the expansion and transcriptional diversity of the Populus SOD/CCS families. Coordinated down-regulation of major copper proteins in drought-tolerant GS poplars supports the copper cofactor economy model where copper supply is preferentially allocated for plastocyanins to sustain photosynthesis during drought. Our results also extend previous findings on the compensatory regulation between chloroplastic CSDs and FSDs, and suggest that this

  4. PROPERTIES OF PARALLEL STRAND LUMBER FROM TWO HYBRID POPLAR CLONES USING MELAMINE UREA FORMALDEHYDE ADHESIVE

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt,

    2012-06-01

    Full Text Available Experimental parallel strand lumbers (PSLs were manufactured from fast growing rotary peeled I-214 (Populus x euramericana and I-77/51 (Populus deltoides hybrid poplar clones veneer strands with melamine urea formaldehyde (MUF adhesive. The results showed that hybrid poplar clones can be used in PSLs manufacturing. Physical and mechanical properties of PSLs were affected by clone types. The I-77/51 clone had better properties and was found to be more suitable for PSLs manufacturing compared to the I-214 clone. PSLs properties were higher than those of solid woods (SWs and laminated veneer lumbers (LVLs of the same poplar clones. This increase may be due to materials, densification as a result of high pressure use, and the manufacturing techniques. The degree of contribution of SWs properties to the PSLs properties was lower than that of LVLs. This indicated that factors other than SWs properties played more important roles in the strength increase of PSLs.

  5. SUITABILITY OF THREE HYBRID POPLAR CLONES FOR LAMINATED VENEER LUMBER MANUFACTURING USING MELAMINE UREA FORMALDEHYDE ADHESIVE

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt

    2010-07-01

    Full Text Available Experimental laminated veneer lumbers (LVLs from rotary peeled I-214 (Populus x Euramericana and two Populus deltoides I-77/51 and S.307-26 fast growing hybrid poplar clones were manufactured with a melamine urea formaldehyde (MUF adhesive successfully. Two Populus deltoides clones that are grown in Turkey were used for the first time in LVLs manufacturing. The results showed that clone types affected physical and mechanical properties of LVLs. Populus deltoides clones had better physical and mechanical properties compared to Populus x Euramericana clone due to their higher density and fiber length values. S.307-26 clone had the highest and I-214 had the lowest properties among three hybrid poplar clones. The physical and mechanical properties of LVLs were higher than those of solid woods. This increase may be due to compaction factor (densification, manufacturing techniques, and the use of adhesives. The degree of contribution of solid wood properties to the LVLs’ properties was explained by using a contribution factor. Two Populus deltoides clones were found to be more suitable for LVLs manufacturing compared to Populus x Euramericana clone.

  6. Changes in sulphur metabolism of grey poplar (Populus x canescens) leaves during salt stress: a metabolic link to photorespiration.

    Science.gov (United States)

    Herschbach, Cornelia; Teuber, Markus; Eiblmeier, Monika; Ehlting, Barbara; Ache, Peter; Polle, Andrea; Schnitzler, Jörg-Peter; Rennenberg, Heinz

    2010-09-01

    The poplar hybrid Populus x canescens (syn. Populus tremula x Populus alba) was subjected to salt stress by applying 75 mM NaCl for 2 weeks in hydroponic cultures. Decreasing maximum quantum yield (Fv/Fm) indicated damage of photosystem II (PS II), which was more pronounced under nitrate compared with ammonium nutrition. In vivo staining with diaminobenzidine showed no accumulation of H(2)O(2) in the leaf lamina; moreover, staining intensity even decreased. But at the leaf margins, development of necrotic tissue was associated with a strong accumulation of H(2)O(2). Glutathione (GSH) contents increased in response to NaCl stress in leaves but not in roots, the primary site of salt exposure. The increasing leaf GSH concentrations correlated with stress-induced decreases in transpiration and net CO(2) assimilation rates at light saturation. Enhanced rates of photorespiration could also be involved in preventing reactive oxygen species formation in chloroplasts and, thus, in protecting PS II from damage. Accumulation of Gly and Ser in leaves indeed indicates increasing rates of photorespiration. Since Ser and Gly are both immediate precursors of GSH that can limit GSH synthesis, it is concluded that the salt-induced accumulation of leaf GSH results from enhanced photorespiration and is thus probably restricted to the cytosol.

  7. Cadmium phytoextraction potential of poplar clones (Populus spp.)

    Energy Technology Data Exchange (ETDEWEB)

    Pilipovic, A.; Orlovic, S.; Petrovic, N. [Faculty of Agriculture, Inst. of Lowland Forestry and Environment, Novi Sad (Czechoslovakia); Nikolic, N.; Krstic, B. [Faculty of Natural Sciences, Dept. of Biology and Ecology, Novi Sad (Czechoslovakia)

    2005-04-01

    Biomass production, leaf number and area, photosynthetic and dark respiration rates, leaf concentration of photosynthetic pigments, nitrate reductase activity, as well as cadmium concentrations in leaves, stem, and roots were measured in poplar clones PE 4/68, B-229, 665, and 45/51. Plants were grown hydroponically under controlled conditions and treated with two different cadmium (Cd) concentrations (10{sup -5} and 10{sup -7} M) in the same background solution (Hoagland's solution). The presence of Cd did not cause serious disturbance of growth and physiological parameters in the studied poplar clones. Cd concentrations in plant tissues reflected external concentrations. In treated plants, root contents increased from 38.57 to 511.51 ppm, leaf contents from 0.91 to 7.50, while stem contents ranged from 1.37 to 9.50 ppm. (orig.)

  8. Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba).

    Science.gov (United States)

    Ehlting, B; Dluzniewska, P; Dietrich, H; Selle, A; Teuber, M; Hänsch, R; Nehls, U; Polle, A; Schnitzler, J-P; Rennenberg, H; Gessler, A

    2007-07-01

    Salinity represents an increasing environmental problem in managed ecosystems. Populus spp. is widely used for wood production by short-rotation forestry in fertilized plantations and can be grown on saline soil. Because N fertilization plays an important role in salt tolerance, we analysed Grey poplar (Populus tremula x alba, syn. Populus canescens) grown with either 1 mM nitrate or ammonium subjected to moderate 75 mM NaCl. The impact of N nutrition on amelioration of salt tolerance was analysed on different levels of N metabolism such as N uptake, assimilation and N (total N, proteins and amino compounds) accumulation. Na concentration increased in all tissues over time of salt exposure. The N nutrition-dependent effects of salt exposure were more intensive in roots than in leaves. Application of salt reduced root increment as well as stem height increase and, at the same time, increased the concentration of total amino compounds more intensively in roots of ammonium-fed plants. In leaves, salt treatment increased concentrations of total N more intensively in nitrate-fed plants and concentrations of amino compounds independently of N nutrition. The major changes in N metabolism of Grey poplar exposed to moderate salt concentrations were detected in the significant increase of amino acid concentrations. The present results indicate that N metabolism of Grey poplar exposed to salt performed better when the plants were fed with nitrate instead of ammonium as sole N source. Therefore, nitrate fertilization of poplar plantations grown on saline soil should be preferred.

  9. In Silico Identification and Characterization of N-Terminal Acetyltransferase Genes of Poplar (Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Hang-Yong Zhu

    2014-01-01

    Full Text Available N-terminal acetyltransferase (Nats complex is responsible for protein N-terminal acetylation (Nα-acetylation, which is one of the most common covalent modifications of eukaryotic proteins. Although genome-wide investigation and characterization of Nat catalytic subunits (CS and auxiliary subunits (AS have been conducted in yeast and humans they remain unexplored in plants. Here we report on the identification of eleven genes encoding eleven putative Nat CS polypeptides, and five genes encoding five putative Nat AS polypeptides in Populus. We document that the expansion of Nat CS genes occurs as duplicated blocks distributed across 10 of the 19 poplar chromosomes, likely only as a result of segmental duplication events. Based on phylogenetic analysis, poplar Nat CS were assigned to six subgroups, which corresponded well to the Nat CS types (CS of Nat A–F, being consistent with previous reports in humans and yeast. In silico analysis of microarray data showed that in the process of normal development of the poplar, their Nat CS and AS genes are commonly expressed at one relatively low level but share distinct tissue-specific expression patterns. This exhaustive survey of Nat genes in poplar provides important information to assist future studies on their functional role in poplar.

  10. Variation in the Growth Traits and Wood Properties of Hybrid White Poplar Clones

    Directory of Open Access Journals (Sweden)

    Huandi Ma

    2015-04-01

    Full Text Available The physical and chemical properties of poplar clones largely determine their suitability for different applications. The main objective of this study was to investigate clonal variation in four hybrid poplar clones grown at three sites in North China and identify the superior clone. Study materials were collected from four clones of hybrid white poplar: Populus tomentosa “LM50”, used as the control; two clones (Yiyang-1 and Yiyang-2, new hybrids of (P. tomentosa × P. bolleana × P. tomentosa “Truncata”; and Yiyang-3, a new hybrid of (P. tomentosa × P. bolleana × P. tomentosa “LM50”. In total, 192 individuals from four hybrid clones were randomly chosen for sampling. The growth traits of four 7-year-old clones were examined at three sites. We also measured the wood properties of four 6-year-old clones at the Fengfeng nursery. Variation in the growth traits and the ranking of stem volumes differed among sites. Fiber traits and wood chemical components showed significant interclonal variation. With regard to the comprehensive growth rate, cellulose content, holocellulose content, and fiber traits, Yiyang-1 exhibited the best performance among the four hybrid poplar clones, indicating its utility as a raw material for pulp and papermaking.

  11. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding.

    Directory of Open Access Journals (Sweden)

    Birgit Kersten

    Full Text Available Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca and for chloroplasts (seven species, but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus. The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4 from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52 and 783,513 bp (717-1B4 in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future.

  12. Use of Sulfometuron in Hybrid Poplar Energy Plantations

    Science.gov (United States)

    Daniel A. Netzer

    1995-01-01

    Reports that low rates of sulfometuron, 70 grams per hactare (1 ounce product or 0.75 ounces active ingredient per acre), applied when hybrid poplars are completely dormant, can provide season-long weed control and increase hybrid poplar growth. If plantation access is not possible before growth activity begins in the spring, late fall application of this herbicide...

  13. Influence of Climate on the Growth of Hybrid Poplar in Michigan

    Directory of Open Access Journals (Sweden)

    Sophan Chhin

    2010-11-01

    Full Text Available This study examined the influence of climate on cumulative and interannual growth patterns of 18 full-sib families of hybrid poplars (Populus × smithii Boivin derived from different geographical locations (state counties of natural stands of aspen parents (trembling aspen (Populus tremuloides Michx. and bigtooth aspen (Populus grandidentata Michx.. The hybrids were subsequently planted in 1982 in southern mid-Michigan at Michigan State University (MSU Sandhill Research Area. Cumulative measures of hybrid poplar productivity (diameter, height, basal area, and stem volume in 2009 (28 years since plantation establishment were related via correlation analysis to geographical distances and climatic variables (temperature and precipitation between parental county locations and between parental locations and the plantation site. Tree-ring analysis methods (dendrochronology were also used to quantify the influence of climate (i.e., mean temperature and total precipitation at monthly and 3-month seasonal scales on interannual basal area growth rates of hybrid poplars. Analyses of cumulative measures of growth indicated a maternal effect: full-sib families had higher productivity if they had a maternal parent originating from a state county that was close to or had higher temperature (annual and summer and summer precipitation than corresponding parameters of the planting site. Principal component analysis indicated that 17 of the 18 full-sib families shared a large amount of common growth variation. Dendrochronological analyses of interannual growth-climate relationships indicated that growth was mainly affected by the degree of late summer to fall moisture stress in both the current and previous growth season, and the degree of winter harshness.

  14. Sexual dimorphism floral microRNA profiling and target gene expression in andromonoecious poplar (Populus tomentosa.

    Directory of Open Access Journals (Sweden)

    Yuepeng Song

    Full Text Available Although the molecular basis of poplar sex-specific flower development remains largely unknown, increasing evidence indicates an essential role for microRNAs (miRNAs. The specific miRNA types and precise miRNA expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. This system, combined with high-throughput sequencing and computational analysis, allowed us to characterize sex-specific miRNAomes from female and male flowers. Comparative miRNAome analysis combined with quantitative real-time PCR revealed the expression patterns of 27 miRNAs in poplar flower and showed that the targets of these miRNAs are involved in flower organogenesis, Ca(2+ transport, phytohormone synthesis and metabolism, and DNA methylation. This paper describes a complex regulatory network consisting of these miRNAs expressed in sex-specific flower development in a dioecious plant. The conserved and novel miRNA locations were annotated in the Populus trichocarpa genome. Among these, miRNA Pto-F70 and 4 targets are located in the sex-determination regions of chromosome XIX. Furthermore, two novel miRNAs, Pto-F47 and Pto-F68, were shown for the first time to be regulatory factors in phytohormone interactions. To our knowledge, this report is the first systematic investigation of sex-specific flower-related miRNAs and their targets in poplar, and it deepens our understanding of the important regulatory functions of miRNAs in female and male flower development in this dioecious plant.

  15. Aboveground dendromass allometry of hybrid black poplars for energy crops

    Directory of Open Access Journals (Sweden)

    Tatiana Stankova

    2016-06-01

    Full Text Available Cultivation of energy crops is concerned with estimation of the total lignified biomass (dendromass production, which is based on the plantation density and individual plant dendromass. The main objective of this study was to investigate the allometry of aboveground leafless biomass of juvenile black poplar hybrids (Populus deltoides x P. nigra , traditionally used for timber and cellulose production, and to derive generic allometric models for dendromass prediction, relevant to energy crop cultivation in Bulgaria. The study material comprised a variety of growth sites, tree ages and clones, specific to poplar plantings in Bulgaria. We used three principal quantitative predictors: diameter at breast height, total tree height and mean stand (stock height. The models were not differentiated by clone, because the black poplar hybrids tested were not equally represented in the data, and the inclusion of tree age as a predictor variable seemed unreliable, because of the significant, up to 3 years, variation, which was possible within the narrow age range investigated. We defined the mean stand (stock height as a composite quantitative variable, which reflected the interaction between the time since planting (age, site quality and the intrinsic growth potential. Stepwise and backward multiple regression analyses were applied to these quantitative variables and their products and sets of adequacy and goodnessof-fit criteria were used to derive individual biomass models for stem and branches. Then we developed compatible additive systems of models for stem, branch and total lignified biomass in log-transformed form. Finally, the prediction data were back-transformed, applying correction for bias, and were cross-validated. Three systems of generic equations were derived to enable flexible model implementation. Equation system M1 proposes a stem biomass model based on tree and stand heights and stem diameter, and a model for

  16. Aboveground dendromass allometry of hybrid black poplars for energy crops

    Directory of Open Access Journals (Sweden)

    Tatiana Stankova

    2016-06-01

    Full Text Available Cultivation of energy crops is concerned with estimation of the total lignified biomass (dendromass production, which is based on the plantation density and individual plant dendromass. The main objective of this study was to investigate the allometry of aboveground leafless biomass of juvenile black poplar hybrids (Populus deltoides x P. nigra , traditionally used for timber and cellulose production, and to derive generic allometric models for dendromass prediction, relevant to energy crop cultivation in Bulgaria. The study material comprised a variety of growth sites, tree ages and clones, specific to poplar plantings in Bulgaria. We used three principal quantitative predictors: diameter at breast height, total tree height and mean stand (stock height. The models were not differentiated by clone, because the black poplar hybrids tested were not equally represented in the data, and the inclusion of tree age as a predictor variable seemed unreliable, because of the significant, up to 3 years, variation, which was possible within the narrow age range investigated. We defined the mean stand (stock height as a composite quantitative variable, which reflected the interaction between the time since planting (age, site quality and the intrinsic growth potential. Stepwise and backward multiple regression analyses were applied to these quantitative variables and their products and sets of adequacy and goodnessof-fit criteria were used to derive individual biomass models for stem and branches. Then we developed compatible additive systems of models for stem, branch and total lignified biomass in log-transformed form. Finally, the prediction data were back-transformed, applying correction for bias, and were cross-validated. Three systems of generic equations were derived to enable flexible model implementation. Equation system M1 proposes a stem biomass model based on tree and stand heights and stem diameter, and a model for

  17. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron

    Science.gov (United States)

    Wetland mesocosms were constructed to assess two salt- and B-tolerant hybrid poplar clones (Populus trichocarpa ×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se). In addition, a hydroponic experiment was performed to test the B tolerance and B...

  18. Biomass and nitrogen dynamics in an irrigated hybrid poplar plantation

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, R.A.

    1985-01-01

    A 3-year study measured the effects of ground cover treatments and nitrogen fertilization on biomass and nitrogen dynamics in an irrigated hybrid poplar (Populus deltoides Bartr. x P. trichocarpa Torr. and Gray, clone NC-9922) plantation in northern Wisconsin. Annually fertilized (112 kg N/ha/yr) and unfertilized plots were either maintained weed-free (bare soil), allowed to revegetate with native weeds, or seeded to birdsfoot trefoil (Lotus corniculatus L.). Trees in bare soil plots responded to fertilization primarily in the third growing season, but total biomass of 3-year-old trees was not increased by annual fertilization. High nitrate-nitrogen concentrations in the soil solution suggested significant leaching in both unfertilized and fertilized bare soil plots in the first growing season, and in fertilized plots the second season. Nitrate-nitrogen concentrations declined sharply in fertilized bare soil plots during the third growing season. Cover crop biomass was greatest in the second year and declined thereafter due to declines in below-ground components. Fertilization increased tree growth in these plots, but cover crop treatments had no effect. Results of this study suggest that, under irrigated conditions, a cover crop can substantially reduce leaching losses of nutrients and serve as a slow-release pool of nitrogen after the trees achieve crown closure. Fertilization is not recommended in these plantations until the second growing season if a cover crop is present and the third growing season if complete weed control is practiced.

  19. Land use and wind direction drive hybridization between cultivated poplar and native species in a Mediterranean floodplain environment.

    Science.gov (United States)

    Paffetti, Donatella; Travaglini, Davide; Labriola, Mariaceleste; Buonamici, Anna; Bottalico, Francesca; Materassi, Alessandro; Fasano, Gianni; Nocentini, Susanna; Vettori, Cristina

    2018-01-01

    Deforestation and intensive land use management with plantations of fast-growing tree species, like Populus spp., may endanger native trees not only by eliminating or reducing their habitats, but also by diminishing their species integrity via hybridization and introgression. The genus Populus has persistent natural hybrids because clonal and sexual reproduction is common. The objective of this study was to assess the effect of land use management of poplar plantations on the spatial genetic structure and species composition in poplar stands. Specifically, we studied the potential breeding between natural and cultivated poplar populations in the Mediterranean environment to gain insight into spontaneous hybridization events between exotic and native poplars; we also used a GIS-based model to evaluate the potential threats related to an intensive land use management. Two study areas, both near to poplar plantations (P.×euramericana), were designated in the native mixed stands of P. alba, P. nigra and P.×canescens within protected areas. We found that the spatial genetic structure differed between the two stands and their differences depended on their environmental features. We detected a hybridization event with P.×canescens that was made possible by the synchrony of flowering between the poplar plantation and P.×canescens and facilitated by the wind intensity and direction favoring the spread of pollen. Taken together, our results indicate that natural and artificial barriers are crucial to mitigate the threats, and so they should be explicitly considered in land use planning. For example, our results suggest the importance of conserving rows of trees and shrubs along rivers and in agricultural landscapes. In sum, it is necessary to understand, evaluate, and monitor the spread of exotic species and genetic material to ensure effective land use management and mitigation of their impact on native tree populations. Copyright © 2017 Elsevier B.V. All rights

  20. Mycorrhizae of poplars

    Science.gov (United States)

    R. C. Schultz; J. G. Isebrands; P. P. Kormanik

    1983-01-01

    Poplar hybrids, being screened for short-rotation intensive culture, can form ecto-, endo-, or ectendo-mycorrhizae or may be autotrophic. Different sections of the genus Populus tend to be selective in the type of mycorrhizae formed. Knowledge of which types are formed influences the kinds of propagule production, site preparation, and herbicide...

  1. Thidiazuron: A potent cytokinin for efficient plant regeneration in Himalayan poplar (Populus ciliata Wall. using leaf explants

    Directory of Open Access Journals (Sweden)

    Gaurav Aggarwal

    2012-11-01

    Full Text Available Populus species are important resource for certain branches of industry and have special roles for scientific study on biological and agricultural systems. The present investigation was undertaken with an objective of enhancing the frequency of plant regeneration in Himalayan poplar (Populus ciliata Wall.. The effect of Thiadizuron (TDZ alone and in combination with adenine and α-Naphthalene acetic acid (NAA were studied on the regeneration potential of leaf explants. A high efficiency of shoot regeneration was observed in leaf (80.00% explants on MS basal medium supplemented with 0.024 mg/l TDZ and 79.7 mg/l adenine. Elongation and multiplication of shoots were obtained on Murashige and Skoog (MS basal medium, containing 0.5 mg/l 6. Benzyl aminopurine (BAP + 0.2mg/l Indole 3-acetic acid (IAA + 0.3 mg/l Gibberellic acid (GA3. High frequency root regeneration from in vitro developed shoots was observed on MS basal medium supplemented with 0.10 mg/l Indole 3-butyric acid(IBA. Maximum of the in vitro rooted plantlets were well accomplished to the mixture of sand: soil (1:1 and exhibited similar morphology with the field plants. A high efficiency plant regeneration protocol has been developedfrom leaf explants in Himalayan poplar (Populus ciliata Wall..

  2. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento'.

    Directory of Open Access Journals (Sweden)

    Xiaohua Su

    Full Text Available Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento' harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although

  3. QTLs for Woolly Poplar Aphid (Phloeomyzus passerinii L. Resistance Detected in an Inter-Specific Populus deltoides x P. nigra Mapping Population.

    Directory of Open Access Journals (Sweden)

    Giorgia Carletti

    Full Text Available The genus Populus represents one of the most economically important groups of forest trees. It is composed by approximately 30 species used for wood and non-wood products, phytoremediation and biomass. Poplar is subjected to several biological and environmental threats although, compared to annual crops, we know far less about the genetic bases of biotic stress resistance. Woolly poplar aphid (Phloeomyzus passerinii is considered a main pest of cultivated poplars in European and American countries. In this work we present two high density linkage maps in poplar obtained by a genotyping by sequencing (GBS approach and the identification of QTLs involved in Ph. passerinii resistance. A total of 5,667 polymorphic markers (5,606 SNPs and 61 SSRs identified on expressed sequences have been used to genotype 131 plants of an F1 population P ×canadensis obtained by an interspecific mate between Populus deltoides (resistant to woolly poplar aphid and Populus nigra (susceptible to woolly poplar aphid. The two linkage maps, obtained following the two-way pseudo-testcross mapping strategy, have been used to investigate the genetic bases of woolly poplar aphid resistance. One major QTL and two QTLs with minor effects (mapped on LGV, LGXVI and LG XIX explaining the 65.8% of the genetic variance observed in the progeny in response to Ph. passerinii attack were found. The high density coverage of functional markers allowed the identification of three genes belonging to disease resistance pathway as putative candidates for P. deltoides resistance to woolly poplar aphid. This work is the first report on genetic of woolly poplar aphid genetic resistance and the resistant loci associated markers identified represent a valuable tool in resistance poplar breeding programs.

  4. Exploring the Role of Plant Genetics to Enhance Soil Carbon Sequestration in Hybrid Poplar Plantations

    Science.gov (United States)

    Wullschleger, S. D.; Garten, C. T.; Classen, A. T.

    2008-12-01

    Atmospheric CO2 concentrations have increased in recent decades and are projected to increase even further during the coming century. These projections have prompted scientists and policy-makers to consider how plants and soils can be used to stabilize CO2 concentrations. Although storing carbon in terrestrial ecosystems represents an attractive near-term option for mitigating rising atmospheric CO2 concentrations, enhancing the sequestration potential of managed systems will require advancements in understanding the fundamental mechanisms that control rates of carbon transfer and turnover in plants and soils. To address this challenge, a mathematical model was constructed to evaluate how changes in particular plant traits and management practices could affect soil carbon storage beneath hybrid poplar (Populus) plantations. The model was built from four sub-models that describe aboveground biomass, root biomass, soil carbon dynamics, and soil nitrogen transformations for trees growing throughout a user-defined rotation. Simulations could be run over one or multiple rotations. A sensitivity analysis of the model indicated changes in soil carbon storage were affected by variables that could be linked to hybrid poplar traits like rates of aboveground production, partitioning of carbon to coarse and fine roots, and rates of root decomposition. A higher ratio of belowground to aboveground production was especially important and correlated directly with increased soil carbon storage. Faster decomposition rates for coarse and fine dead roots resulted in a greater loss of carbon to the atmosphere as CO2 and less residual organic carbon for transfer to the fast soil carbon pool. Hence, changes in root chemistry that prolonged dead root decomposition rates, a trait that is under potential genetic control, were predicted to increase soil carbon storage via higher soil carbon inputs. Nitrogen limitation of both aboveground biomass production and soil carbon sequestration was

  5. DIMENSIONAL STABILITY OF METHYL METHACRYLATE HARDENED HYBRID POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Wei-Dan Ding,

    2011-11-01

    Full Text Available This study examines the dimensional stability of fast-growing poplar clones wood after treatment by impregnation with methyl methacrylate (MMA. Six hybrid poplar clones from one plantation in Quebec were sampled. The effects of hardening with MMA on density as well as longitudinal, radial, tangential, and volumetric swelling properties (S, water uptake capacity (D, anti-swelling efficiency (ASE, and water repellent efficiency (WRE after soaking were investigated. Hardening treatment increased the density of all poplar woods by 1.2 to 1.6 and decreased the inner water migration rate during soaking. S and D values of hardened woods were significantly lower than those of controls, depending on the clone type. ASE and WRE values suggested that incorporating MMA effectively improved the dimensional stability of poplar wood at the early soaking stage, but was less effective in the long term.

  6. Co-pyrolysis of different type coals with hybrid poplar

    Energy Technology Data Exchange (ETDEWEB)

    Hanzade Haykiri-Acma; Serdar Yaman [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

    2007-07-01

    The aim of this study is to investigate the co-pyrolysis characteristics of different rank coals such as peat, lignite, and anthracite in the presence of hybrid poplar. For this purpose, non-isothermal thermogravimetry technique was applied up to 900{sup o}C with a heating rate of 40{sup o}C/min under dynamic nitrogen flow of 40 mL/min. Hybrid poplar was added into each coal as much as 10 wt % of the coal sample and the experiments were repeated. Pyrolytic properties such as the char yields, gasification rates, and reactivity of the original samples and the blends were compared from the thermal analysis data, and interpreted. Addition of hybrid poplar to coal had some influences on the pyrolytic properties of coals that might be explained by the synergistic interaction approach. 15 refs., 3 figs., 4 tabs.

  7. Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra).

    Science.gov (United States)

    Chu, Yanguang; Huang, Qinjun; Zhang, Bingyu; Ding, Changjun; Su, Xiaohua

    2014-01-01

    Environmental stresses such as low temperature, drought, and high salinity significantly affect plant growth and yield. As selective forces, these adverse factors play essential roles in shaping phenotypic variation in plant populations. Black poplar (Populus nigra) is an economically and ecologically important forest tree species with widely distributed populations and is thus suitable for experiments detecting evolutionary footprints left by stress. Here, we performed expression and evolutionary analysis of two duplicated DREB A1-subgroup (DREB1) genes, PnDREB68 and PnDREB69, encoding transcription factors that are involved in stress responses. The two genes showed partially overlapping but distinct expression patterns in response to stresses. These genes were strongly and rapidly induced by cold stress in leaves, stems, and roots. In leaf tissue, dehydration stress induced the expression of PnDREB68 but not PnDREB69. PnDREB69 displayed more rapid responses and longer expression durations than PnDREB68 under salt and ABA stress, respectively. Based on single nucleotide polymorphism (SNP) analysis, we found significant population genetic differentiation, with a greater FST value (0.09189) for PnDREB69 than for PnDREB68 (0.07743). Nucleotide diversity analysis revealed a two-fold higher πT for PnDREB68 than for PnDREB69 (0.00563 vs. 0.00243), reflecting strong purifying selection acting on the former. The results suggest that positive selection acted on PnDREB69, as evidenced by neutral testing using Tajima's D statistic. The distinct selective forces to which each of the genes was subjected may be associated with expression divergence. Linkage disequilibrium (LD) was low for the sequenced region, with a higher level for PnDREB68 than for PnDREB69. Additionally, analysis of the relationship among carbon isotope ratios, SNP classes and gene expression, together with motif and domain analysis, suggested that 14 polymorphisms within the two genes may be candidates

  8. Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra.

    Directory of Open Access Journals (Sweden)

    Yanguang Chu

    Full Text Available Environmental stresses such as low temperature, drought, and high salinity significantly affect plant growth and yield. As selective forces, these adverse factors play essential roles in shaping phenotypic variation in plant populations. Black poplar (Populus nigra is an economically and ecologically important forest tree species with widely distributed populations and is thus suitable for experiments detecting evolutionary footprints left by stress. Here, we performed expression and evolutionary analysis of two duplicated DREB A1-subgroup (DREB1 genes, PnDREB68 and PnDREB69, encoding transcription factors that are involved in stress responses. The two genes showed partially overlapping but distinct expression patterns in response to stresses. These genes were strongly and rapidly induced by cold stress in leaves, stems, and roots. In leaf tissue, dehydration stress induced the expression of PnDREB68 but not PnDREB69. PnDREB69 displayed more rapid responses and longer expression durations than PnDREB68 under salt and ABA stress, respectively. Based on single nucleotide polymorphism (SNP analysis, we found significant population genetic differentiation, with a greater FST value (0.09189 for PnDREB69 than for PnDREB68 (0.07743. Nucleotide diversity analysis revealed a two-fold higher πT for PnDREB68 than for PnDREB69 (0.00563 vs. 0.00243, reflecting strong purifying selection acting on the former. The results suggest that positive selection acted on PnDREB69, as evidenced by neutral testing using Tajima's D statistic. The distinct selective forces to which each of the genes was subjected may be associated with expression divergence. Linkage disequilibrium (LD was low for the sequenced region, with a higher level for PnDREB68 than for PnDREB69. Additionally, analysis of the relationship among carbon isotope ratios, SNP classes and gene expression, together with motif and domain analysis, suggested that 14 polymorphisms within the two genes may be

  9. A Novel Moderate Constitutive Promoter Derived from Poplar (Populus tomentosa Carrière

    Directory of Open Access Journals (Sweden)

    Xin-Min An

    2013-03-01

    Full Text Available A novel sequence that functions as a promoter element for moderate constitutive expression of transgenes, designated as the PtMCP promoter, was isolated from the woody perennial Populus tomentosa. The PtMCP promoter was fused to the GUS reporter gene to characterize its expression pattern in different species. In stable Arabidopsis transformants, transcripts of the GUS reporter gene could be detected by RT-PCR in the root, stem, leaf, flower and silique. Further histochemical and fluorometric GUS activity assays demonstrated that the promoter could direct transgene expression in all tissues and organs, including roots, stems, rosette leaves, cauline leaves and flowers of seedlings and maturing plants. Its constitutive expression pattern was similar to that of the CaMV35S promoter, but the level of GUS activity was significantly lower than in CaMV35S promoter::GUS plants. We also characterized the promoter through transient expression in transgenic tobacco and observed similar expression patterns. Histochemical GUS staining and quantitative analysis detected GUS activity in all tissues and organs of tobacco, including roots, stems, leaves, flower buds and flowers, but GUS activity in PtMCP promoter::GUS plants was significantly lower than in CaMV35S promoter::GUS plants. Our results suggested that the PtMCP promoter from poplar is a constitutive promoter with moderate activity and that its function is presumably conserved in different species. Therefore, the PtMCP promoter may provide a practical choice to direct moderate level constitutive expression of transgenes and could be a valuable new tool in plant genetic engineering.

  10. Tree-based intercropping systems increase growth and nutrient status of hybrid poplar: a case study from two Northeastern American experiments.

    Science.gov (United States)

    Rivest, David; Cogliastro, Alain; Olivier, Alain

    2009-01-01

    Tree-based intercropping is considered to be a potentially useful land use system for mitigating negative environmental impacts from intensive agriculture such as nutrient leaching and greenhouse gas emissions. Rapid early growth of trees is critical for rapidly accruing environmental benefits provided by the trees. We tested the hypothesis that intercropping increases the growth and nutrient status of young hybrid poplars (Populus spp.), compared to a harrowing alley treatment (i.e., no intercrop), in two experimental sites (St-Rémi and St-Edouard) in southern Québec, Canada. Three hybrid poplar clones (TD3230, Populus trichocarpa x deltoides; DN3308, P. deltoides x nigra; and NM3729, P. nigra x maximowiczii) were planted at St-Rémi. Clones DN3333 and DN3570 were planted at St-Edouard. At St-Rémi, intercropping comprised a 4-year succession of three crops of soybean (Glycine max (L.) Merr.) and barley (Hordeum vulgare L.). At St-Edouard, intercropping comprised a 3-year succession of buckwheat (Fagopyrum esculentum Moench), winter rye (Secale cereale L.), and winter wheat (Triticum aestivum L.). At St-Rémi, four years after treatment began, leafless aboveground biomass of hybrid poplars in the intercropping treatment was 37% higher compared to that in the harrowing treatment. At St-Edouard, after the third growing season, leafless aboveground biomass of hybrid poplars in the intercropping treatment was significantly higher by 40%. Vector analysis of foliar nutrient concentrations and comparison with critical concentration values showed that N (both sites) and K (St-Edouard) were the most limiting nutrients. Hybrid poplar clones responded similarly to treatments, with no consistent differences in tree growth observed between clones. We conclude that tree-based intercropping systems may offer an effective means of improving the early growth of hybrid poplars planted to provide both environmental services and high-value timber.

  11. Economic investigations of short rotation intensively cultured hybrid poplars

    Science.gov (United States)

    David C. Lothner

    1983-01-01

    The history of the economic analyses is summarized for short rotation intensively cultured hybrid poplar at the North Central Forest Experiment Station. Early break-even analyses with limited data indicated that at a price of $25-30 per dry ton for fiber and low to medium production costs, several systems looked profitable. Later cash flow analyses indicated that two...

  12. Summer is the best time to thin hybrid poplar plantations

    Science.gov (United States)

    Harold F. Ford; Albert G., Jr. Snow

    1954-01-01

    Hybrid poplar plantations are established by planting dormant cuttings in close spacing, usually 4 x 4 feet. They are cultivated during the first growing season to eliminate competition from grasses and weeds. After the first year, the more vigorous trees effectively shade out lower vegetation. But rapid tree growth often makes thinning necessary after 2 or 3 growing...

  13. Uptake and Translocation of Lesser-Chlorinated Polychlorinated Biphenyls (PCBs) in Whole Hybrid Poplar Plants after Hydroponic Exposure

    Science.gov (United States)

    Liu, Jiyan; Schnoor, Jerald L.

    2009-01-01

    Mono-, di-, tri-, and tetra-chlorinated polychlorinated biphenyls (PCBs) are congeners with greater volatility which remain in air, soils and sediments requiring treatment. In this study, the fate of these PCBs was investigated within whole poplar plants (Populus deltoides x nigra, DN34) with application for a treatment system such as a confined disposal facility for dredged material. Whole hybrid poplars were exposed hydroponically to a mixture of five congeners, common in the environment, having one to four chlorine atoms per molecule. Results indicated that PCB 3, 15, 28, 52, and 77 were initially sorbed to the root systems. The Root Concentration Factor (RCF) of PCBs during the exposure was calculated and correlated with Kow. PCB congeners were taken up by the roots of hybrid poplar, and the translocation of PCBs to stems was inversely related to congener hydrophobicity (Log Kow). PCB 3 and 15 were translocated to the upper stem at small but significant rates. PCB 28 was translocated to the wood of the main stem but no farther; translocation from the roots was not detected for PCB 52 and 77. The distribution of PCBs within poplars was determined, and mass balances were completed to within 15% for each chemical except for PCB 3, the most volatile congener. This is the first report on the transport of PCBs through whole plants designed for use in treatment at disposal facilities. PMID:18793792

  14. Geochemical peculiarities of black poplar leaves (Populus nigra L.) in the sites with heavy metals intensive fallouts

    Science.gov (United States)

    Yalaltdinova, Albina; Baranovskaya, Natalya; Rikhvanov, Leonid; Matveenko, Irina

    2013-04-01

    The article deals with the content of 28 chemical elements in the leaves ash of black poplar (Populus nigra L.) growing in Ust-Kamenogorsk city area. It is the major industrial center of Kazakhstan Republic on the territory where the industrial giants of non-ferrous metallurgy and nuclear energy are situated. Comparative analysis with the similar data obtained from leaves ash of Populus nigra L. in Tomsk, Ekibastuz, and Pavlodar cities has revealed that in comparison with other urban areas, leaves ash of black poplar (Populus nigra L.) from Ust-Kamenogorsk city is characterized by elevated concentration rates of Ta, U, Zn, Ag, As, Sb, Br, Sr and Na. Within the city, the sites and areas with abnormal contents of typomorphic pollutants have been revealed. In the central part of the city, in the vicinity of lead-zinc plant and Ulba metallurgical plant, the highest concentrations of Ta, U, Zn, Ag, Au, As, Sb, Cr and Fe were marked. In the northeast, where the titanium-magnesium plant is located, elevated concentrations of Br and Sr were stated. Thus, the impact of major city enterprises which are the main sources of heavy metals is reflected in the element composition. Zn, As, Sb, Ag and Au comes from lead-zinc plant and its refinery plants, while Ulba metallurgical plant can be considered source of Ta and U in the environment, producing tantalum and fuel pellets for nuclear power plants. These companies, due to the current objective circumstances, are located in the central part of the city, have a significant negative effect on the environment and form the risk factors for human health.

  15. Determination of As in tree-rings of poplar (Populus alba L.) by U-shaped DC arc.

    Science.gov (United States)

    Marković, D M; Novović, I; Vilotić, D; Ignjatović, Lj

    2009-04-01

    An argon-stabilized U-shaped DC arc with a system for aerosol introduction was used for determination of As in poplar (Populus alba L.) tree-rings. After optimization of the operating parameters and selection of the most appropriate signal integration time (30 s), the limit of detection for As was reduced to 15.0 ng/mL. This detection limit obtained with the optimal integration time was compared with those for other methods: inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasma-atomic emission spectrometry (DCP-AES), microwave induced plasma-atomic emission spectrometry (MIP-AES) and improved thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Arsenic is toxic trace element which can adversely affect plant, animal and human health. As an indicator of environment pollution we collected poplar tree-rings from two locations. The first area was close to the "Nikola Tesla" (TENT-A) power plant, Obrenovac, while the other was in the urban area of Novi Sad. In all cases elevated average concentrations of As were registered in poplar tree-rings from the Obrenovac location.

  16. Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services in Three Watersheds with Contrasting Agricultural Land Use

    Directory of Open Access Journals (Sweden)

    Julien Fortier

    2016-02-01

    Full Text Available In temperate agricultural watersheds, the rehabilitation of tree vegetation in degraded riparian zones can provide many ecosystem services. This study evaluated ecosystem service provision potential following the conversion of non-managed herbaceous buffers to hybrid poplar (Populus spp. buffers in three watersheds (555–771 km2 of southern Québec (Canada, with contrasting agricultural land uses. To extrapolate services at the watershed level, total stream length where hybrid poplars could be established was calculated using GIS data from hydrological and land cover maps. After nine years, a 100% replacement of herbaceous buffers by hybrid poplar buffers along farm streams could lead to the production of 5280–76,151 tons of whole tree (stems + branches biomass, which could heat 0.5–6.5 ha of greenhouses for nine years, with the potential of displacing 2–29 million litres of fuel oil. Alternatively, the production of 3887–56,135 tons of stem biomass (fuelwood could heat 55–794 new farmhouses or 40–577 old farmhouses for nine years. Producing fuelwood in buffers rather than in farm woodlots could create forest conservation opportunities on 300–4553 ha. Replacing all herbaceous buffers by poplar buffers could provide potential storage of 2984–42,132 t C, 29–442 t N and 3–56 t P in plant biomass, if woody biomass is not harvested. The greatest potential for services provision was in the Pike River watershed where agriculture is the dominant land use. A review of the potential services of poplar buffers is made, and guidelines for managing services and disservices are provided.

  17. Somatic embryogenesis and plant regeneration from cell suspension and tissue cultures of mature himalayan poplar (Populus ciliata).

    Science.gov (United States)

    Cheema, G S

    1989-02-01

    Somatic embryogenesis and plantlet formation were obtained from callus and cell suspension cultures of 40-year- old Himalayan Poplar (Populus ciliata Wall ex Royle). Callus and cell suspensions were obtained by transfer of inoculum of semiorganized leaf cultures, which were maintained on Murashige and Skoog (MS) medium supplemented with benzylaminopurine (BAP), to MS with 2,4-dichlorophenoxyacetic acid (2,4-D). Reduction of 2,4-D concentration during subsequent subculture of cell suspensions resulted in the formation of embryoids. These embryoids developed further only after being transferred to agar-based MS medium supplemented with BAP and naphthalene acetic acid. Loss of embryogenic potential was observed in cell suspensions after 6 subcultures. However, callus cultures retained the embryogenic potential even after repeated subcultures for more than a year. Plantlets could be successfully hardened and grown in natural outdoor conditions.

  18. Early differentiation in biomass production and carbon sequestration of white poplar and its two hybrids in Central Iran

    Institute of Scientific and Technical Information of China (English)

    Hormoz Sohrabi; Mohammad Kazem Parsapour; Ali Soltani; Yaghoub Iranmanesh

    2015-01-01

    We assessed the potential of white poplar (Populus alba L.) and its inter-sectional hybridization with euphrates poplar (P. euphratica Oliv.) for carbon storage and sequestration in central Iran. Trials were established at planting density of 2,500 trees per hectare in block ran-domized design with three replicates. After 6 years, we measured the above-ground biomass of tree components (trunk, branch, bark, twig and leaf), and assessed soil carbon at three depths. P. alba × euphratica plantation stored significantly more carbon (22.3 t ha-1) than P. alba (16.7 t ha-1) and P. euphratica × alba (13.1 t ha-1). Most of the carbon was accumulated in the above-ground biomass (61.1%in P. alba, 72.4%in P. alba × euphra-tica and 56.0% in P. euphratica × alba). There was no significant difference in soil carbon storage. Also, biomass allocation was different between white poplar P. alba and its inter-sectional hybridization. Therefore, there was a yield difference due to genomic imprinting, which increased the possibility that paternally and maternally inherited wood production alleles would be differentially expressed in the new crossing.

  19. Natural hybridization between Populus nigra L. and P. x canadensis Moench. Hybrid offspring competes for niches along the Rhine river in the Netherlands

    NARCIS (Netherlands)

    Smulders, M.J.M.; Beringen, R.; Volosyanchuk, R.; Vanden Broeck, A.; Schoot, van der J.; Arens, P.F.P.; Vosman, B.

    2008-01-01

    Black poplar (Populus nigra L.) is a major species for European riparian forests but its abundance has decreased over the decades due to human influences. For restoration of floodplain woodlands, the remaining black poplar stands may act as source population. A potential problem is that P. nigra and

  20. Biomass productivity and water use relation in short rotation poplar coppice (Populus nigra x P. maximowiczii in the conditions of Czech Moravian Highlands

    Directory of Open Access Journals (Sweden)

    Milan Fischer

    2011-01-01

    Full Text Available The plantations of short rotation coppice (SRC usually based on poplar or willow species are promising source of biomass for energy use. To contribute to decision-making process where to establish the plantations we evaluated the water consumption and its relation to biomass yields of poplar hybrid clone J-105 (Populus nigra x P. maximowiczii in representative conditions for Czech-Moravian Highlands. Water availability is usually considered as one of the main constraints of profitable SRC culture and therefore we focused on analyzing of the linkage between the aboveground biomass increments and the total stand actual evapotranspiration (ETa and on water use efficiency of production (WUEP. During the seasons 2008 and 2009 the total stand ETa measured by Bowen ratio energy balance system constructed above poplar canopy and the stem diameter increments of randomly chosen sample trees were examined. The stem diameters were subsequently converted to total aboveground biomass (AB by allometric equation obtained by destructive analysis at the beginning of 2010. The biomass volume and its increment of particular trees were subsequently converted to the whole canopy growth and correlated with the ETa values. Our results revealed that there was a statistically significant relation between water lost and biomass growth with coefficients of determination r2 0.96 and 0.51 in 2008 and 2009 respectively. By using multiple linear regression analysis additionally accounting for effect of precipitation events and thermal time (sums of effective temperatures above +5 °C the AB growth was explained from 98 and 87% in 2008 and 2009, respectively. Therefore for further analysis the multiple linear regression model was applied. The dynamic of seasonal WUEP (expressed as gram of AB dry matter per thousand grams of water reached up to 6.2 and 6.8 g kg−1 with means 3.13 and 3.54 g kg−1 in both executed years respectively. These values are situated in higher

  1. Hybrid poplar and forest soil response to municipal and industrial by-products: a greenhouse study.

    Science.gov (United States)

    Cavaleri, Molly A; Gilmore, Daniel W; Mozaffari, Morteza; Rosen, Carl J; Halbach, Thomas R

    2004-01-01

    Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers.

  2. Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula x P. alba) overexpressing gsh 1.

    Science.gov (United States)

    Samuilov, Sladjana; Lang, Friedericke; Djukic, Matilda; Djunisijevic-Bojovic, Danijela; Rennenberg, Heinz

    2016-09-01

    Growth and development of plants largely depends on their adaptation ability in a changing climate. This is particularly true on heavy metal contaminated soils, but the interaction of heavy metal stress and climate on plant performance has not been intensively investigated. The aim of the present study was to elucidate if transgenic poplars (Populus tremula x P. alba) with enhanced glutathione content possess an enhanced tolerance to drought and lead (Pb) exposure (single and in combination) and if they are good candidates for phytoremediation of Pb contaminated soil. Lead exposure reduced growth and biomass accumulation only in above-ground tissue of wild type poplar, although most of lead accumulated in the roots. Drought caused a decline of the water content rather than reduced biomass production, while Pb counteracted this decline in the combined exposure. Apparently, metals such as Pb possess a protective function against drought, because they interact with abscisic acid dependent stomatal closure. Lead exposure decreased while drought increased glutathione content in leaves of both plant types. Lead accumulation was higher in the roots of transgenic plants, presumably as a result of chelation by glutathione. Water deprivation enhanced Pb accumulation in the roots, but Pb was subject to leakage out of the roots after re-watering. Transgenic plants showed better adaptation under mild drought plus Pb exposure partially due to improved glutathione synthesis. However, the transgenic plants cannot be considered as a good candidate for phytoremediation of Pb, due to its small translocation to the shoots and its leakage out of the roots upon re-watering.

  3. Reduced expression of the SHORT-ROOT gene increases the rates of growth and development in hybrid poplar and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jiehua Wang

    Full Text Available SHORT-ROOT (SHR is a well characterized regulator of cell division and cell fate determination in the Arabidopsis primary root. However, much less is known about the functions of SHR in the aerial parts of the plant. In this work, we cloned SHR gene from Populus trichocarpa (PtSHR1 as an AtSHR ortholog and down-regulated its expression in hybrid poplar (Populus tremula×P. tremuloides Michx-clone T89 in order to determine its physiological functions in shoot development. Sharing a 90% similarity to AtSHR at amino acid level, PtSHR1 was able to complement the Arabidopsis shr mutant. Down regulation of PtSHR1 led to a strong enhancement of primary (height and secondary (girth growth rates in the transgenic poplars. A similar approach in Arabidopsis showed a comparable accelerated growth and development phenotype. Our results suggest that the response to SHR could be dose-dependent and that a partial down-regulation of SHR could lead to enhanced meristem activity and a coordinated acceleration of plant growth in woody species. Therefore, SHR functions in plant growth and development as a regulator of cell division and meristem activity not only in the roots but also in the shoots. Reducing SHR expression in transgenic poplar was shown to lead to significant increases in primary and secondary growth rates. Given the current interest in bioenergy crops, SHR has a broader role as a key regulator of whole plant growth and development and SHR suppression has considerable potential for accelerating biomass accumulation in a variety of species.

  4. Effect of Alnus glutinosa on hybrid populus growth and soil nitrogen concentration in a mixed plantation

    Science.gov (United States)

    Jeffrey O. Dawson; Edward A. Hansen

    1983-01-01

    Height growth of hybrid Populusand soil nitrogen concentration around Alnus glutinosa stems differed significantly both spatially and with the Alnus/Populus mixture in a short-rotation intensively cultured mixed planting. Populus height growth comparable to that obtained from optimal rates of...

  5. Cross Breeding of Populus and Its Hybrids for Cold Resistance

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Populus tomentosa was crossed with P. tremuloidis, P. grandidentata, P. alba × P. grandidentata and P. alba × Ulmus pumila in order to maintain its rapid growth and high wood quality and improve its resistance to cold. Two methods were used to increase the germination rate from 1.5% to 41.1% and the remaining rate from 1.7% to 44.2%. Forty crossing combinations were conducted and 2 744 hybrid seedlings were obtained. MX4 × P. grandidentata (G-1-58), MX3 × P. tremuloidis (T-44-60), MX2 × P. tremuloidis (l-13-87-37) and MX2 × (P. alba × P. grandidentata) were regarded as superior combinations after analysis and selection. Thirty seedlings of these combinations and 11 triploid seedlings identified by counting their chromosomes were selected as super plants.

  6. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling.

    Science.gov (United States)

    Barchet, Genoa L H; Dauwe, Rebecca; Guy, Robert D; Schroeder, William R; Soolanayakanahally, Raju Y; Campbell, Malcolm M; Mansfield, Shawn D

    2014-11-01

    Drought stress is perhaps the most commonly encountered abiotic stress plants experience in the natural environment, and it is one of the most important factors limiting plant productivity. Here, we employed untargeted metabolite profiling to examine four drought-stressed hybrid poplar (Populus spp.) genotypes for their metabolite content, using gas chromatography coupled to mass spectrometry. The primary objective of these analyses was to characterize the metabolite profile of poplar trees to assess relative drought resistance and to investigate the underlying biochemical mechanisms employed by the genotypes to combat drought. Metabolite profiling identified key metabolites that increased or decreased in relative abundance upon exposure to drought stress. Overall, amino acids, the antioxidant phenolic compounds catechin and kaempferol, as well as the osmolytes raffinose and galactinol exhibited increased abundance under drought stress, whereas metabolites involved in photorespiration, redox regulation and carbon fixation showed decreased abundance under drought stress. One clone in particular, Okanese, displayed unique responses to the imposed drought conditions. This clone was found to have higher leaf water potential, but lower growth rate relative to the other clones tested. Okanese also had lower accumulation of osmolytes such as raffinose, galactinol and proline, but higher overall levels of antioxidants such as catechin and dehydroascorbic acid. As such, it was proposed that osmotic adjustment as a mechanism for drought avoidance in this clone is not as well developed in comparison with the other clones investigated in this study, and that a possible alternative mechanism for the enhanced drought avoidance displayed by Okanese may be due to differential allocation of resources or better retention of water.

  7. Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis.

    Directory of Open Access Journals (Sweden)

    Yunqiang Yang

    Full Text Available Excess amounts of heavy metals are important environmental pollutants with significant ecological and nutritional effects. Cdmium (Cd is of particular concern because of its widespread occurrence and high toxicity. We conducted physiological and proteomic analyses to improve our understanding of the responses of Populus yunnanensis to Cd stress. The plantlets experienced two apparent stages in their response to Cd stress. During the first stage, transiently induced defense-response molecules, photosynthesis- and energy-associated proteins, antioxidant enzymes and heat shock proteins (HSPs accumulated to enhance protein stability and establish a new cellular homeostasis. This activity explains why plant photosynthetic capability during this period barely changed. During the second stage, a decline of ribulose-1, 5-bisphosphate carboxylase (RuBisCO and HSP levels led to imbalance of the plant photosynthetic system. Additionally, the expression of Mitogen-activated protein kinase 3 (MPK3, Mitogen-activated protein kinase 6 (MPK6 and a homeobox-leucine zipper protein was higher in the second stage. Higher expression of caffeoyl-CoA O-methyltransferase (CCoAOMT may regulate plant cell wall synthesis for greater Cd storage. These genes may be candidates for further research and use in genetic manipulation of poplar tolerance to Cd stress.

  8. Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens Trees.

    Directory of Open Access Journals (Sweden)

    Bin Liu

    Full Text Available The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this purpose, an experiment was conducted in which hydroponically grown young poplar trees were exposed to hypoxic and normoxic (control conditions for 14 days. 15N-labelled NO3- and NH4+ were used to elucidate N uptake and distribution of currently absorbed N and N allocation rates in the plants. Whereas shoot biomass was not affected by soil O2 deficiency, it significantly reduced root biomass and, consequently, the root-to-shoot ratio. Uptake of NO3- but not of NH4+ by the roots of the trees was severely impaired by hypoxia. As a consequence of reduced N uptake, the N content of all poplar tissues was significantly diminished. Under normoxic control conditions, the spatial distribution of currently absorbed N and N allocation rates differed depending on the N source. Whereas NO3- derived N was mainly transported to the younger parts of the shoot, particularly to the developing and young mature leaves, N derived from NH4+ was preferentially allocated to older parts of the shoot, mainly to wood and bark. Soil O2 deficiency enhanced this differential allocation pattern. From these results we assume that NO3- was assimilated in developing tissues and preferentially used to maintain growth and ensure plant survival under hypoxia, whereas NH4+ based N was used for biosynthesis of storage proteins in bark and wood of the trees. Still, further studies are needed to understand the mechanistic basis as well as the eco-physiological advantages of such differential allocation patterns.

  9. Establishment of high frequency shoot regeneration system in Himalayan poplar (Populus ciliata Wall. ex Royle) from petiole explants using Thidiazuron cytokinin as plant growth regulator

    Institute of Scientific and Technical Information of China (English)

    G Aggarwal; A Gaur; D K Srivastava

    2015-01-01

    Populus species are important resources for industry and in scientific study on biological and agricul-tural systems. Our objective was to enhance the frequency of plant regeneration in Himalayan poplar (Populus ciliata wall. ex Royle). The effect of TDZ alone and in combi-nation with adenine and NAA was studied on the regen-eration potential of petiole explants. The explants were excised from Himalayan poplar plants grown in glass-houses. After surface sterilization the explants were cul-tured on shoot induction medium. High percentage shoot regeneration (86%) was recorded on MS medium sup-plemented with 0.004 mg L-1 TDZ and 79.7 mg L-1 adenine. The regenerated shoots for elongation and multi-plication were transferred to MS ? 0.5 mg L-1 BAP ? 0.2 mg L-1 IAA ? 0.3 mg L-1 GA3. Root re-generation from shoots developed in vitro was observed on MS medium supplemented with 0.10 mg L-1 IBA. Hi-malayan poplar plantlets could be produced within 2 months after acclimatization in a sterile mixture of sand and soil. We developed a high efficiency plant regeneration protocol from petiole explants of P. ciliata.

  10. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity.

    Science.gov (United States)

    Pan, Xuejun; Kadla, John F; Ehara, Katsunobu; Gilkes, Neil; Saddler, Jack N

    2006-08-09

    Twenty-one organosolv ethanol lignin samples were prepared from hybrid poplar (Populus nigra xP. maximowiczii) under varied conditions with an experimental matrix designed using response surface methodology (RSM). The lignin preparations were evaluated as potential antioxidants. Results indicated that the lignins with more phenolic hydroxyl groups, less aliphatic hydroxyl groups, low molecular weight, and narrow polydispersity showed high antioxidant activity. Processing conditions affected the functional groups and molecular weight of the extracted organosolv ethanol lignins, and consequently influenced the antioxidant activity of the lignins. In general, the lignins prepared at elevated temperature, longer reaction time, increased catalyst, and diluted ethanol showed high antioxidant activity. Regression models were developed to enable the quantitative prediction of lignin characteristics and antioxidant activity based on the processing conditions.

  11. Habituation to thaxtomin A in hybrid poplar cell suspensions provides enhanced and durable resistance to inhibitors of cellulose synthesis

    Directory of Open Access Journals (Sweden)

    Beaulieu Carole

    2010-12-01

    Full Text Available Abstract Background Thaxtomin A (TA, a phytotoxin produced by the phytopathogen Streptomyces scabies, is essential for the development of potato common scab disease. TA inhibits cellulose synthesis but its actual mode of action is unknown. Addition of TA to hybrid poplar (Populus trichocarpa x Populus deltoides cell suspensions can activate a cellular program leading to cell death. In contrast, it is possible to habituate hybrid poplar cell cultures to grow in the presence of TA levels that would normally induce cell death. The purpose of this study is to characterize TA-habituated cells and the mechanisms that may be involved in enhancing resistance to TA. Results Habituation to TA was performed by adding increasing levels of TA to cell cultures at the time of subculture over a period of 12 months. TA-habituated cells were then cultured in the absence of TA for more than three years. These cells displayed a reduced size and growth compared to control cells and had fragmented vacuoles filled with electron-dense material. Habituation to TA was associated with changes in the cell wall composition, with a reduction in cellulose and an increase in pectin levels. Remarkably, high level of resistance to TA was maintained in TA-habituated cells even after being cultured in the absence of TA. Moreover, these cells exhibited enhanced resistance to two other inhibitors of cellulose biosynthesis, dichlobenil and isoxaben. Analysis of gene expression in TA-habituated cells using an Affymetrix GeneChip Poplar Genome Array revealed that durable resistance to TA is associated with a major and complex reprogramming of gene expression implicating processes such as cell wall synthesis and modification, lignin and flavonoid synthesis, as well as DNA and chromatin modifications. Conclusions We have shown that habituation to TA induced durable resistance to the bacterial toxin in poplar cells. TA-habituation also enhanced resistance to two other structurally

  12. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

    Science.gov (United States)

    Elias, Ani A; Busov, Victor B; Kosola, Kevin R; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W; Rood, Stewart B; Strauss, Steven H

    2012-10-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.

  13. Anti-inflammatory effects of ethanol extracts of Chinese propolis and buds from poplar (Populus×canadensis).

    Science.gov (United States)

    Wang, Kai; Zhang, Jianglin; Ping, Shun; Ma, Quanxin; Chen, Xuan; Xuan, Hongzhuan; Shi, Jinhu; Zhang, Cuiping; Hu, Fuliang

    2014-08-08

    Propolis is used widely in a number of cultures as a folk medicine and is gaining wider recognition for its potential therapeutic use, due to its wide range of biological properties and pharmacological activities, especially its anti-inflammatory effects. Despite an increasing number of studies focused on the biological activities of propolis together with its botanical sources, studies on Chinese propolis are insufficient. This study was designed to investigate the anti-inflammatory properties of ethanol extracts from Chinese propolis (EECP) and poplar buds (EEPB) from Populus×canadensis Moench (Salicaceae family). Phytochemical analysis of EECP and EEPB was performed via total phenolic and flavonoid content measurements followed by high-performance liquid chromatography (HPLC) analysis. DPPH and ABTS free-radical scavenging methods were used to evaluate their anti-oxidant properties. The anti-inflammatory effects of EECP and EEPB were investigated in vitro by evaluating their modulating effects on the key inflammatory cytokines and mediators in LPS/IFN-γ co-stimulated RAW 264.7 cells and by measuring nuclear factor (NF)-κB activation in TNF-α or IL-1β stimulation HEK 293 cells using reporter gene assays. Their effects on acute inflammatory symptoms (LPS-induced endotoxemia and acute pulmonary damage) were also examined in mice. EECP and EEPB exhibited strong free-radical scavenging activity and significant in vitro anti-inflammatory effects by modulating key inflammatory mediators of mRNA transcription, inhibiting the production of specific inflammatory cytokines, and blocking the activation of nuclear factor (NF)-κB. The administration of EECP and EEPB (25 and 100 mg/kg) provided significant protective effects by attenuating lung histopathological changes and suppressing the secretion of LPS-stimulated inflammatory cytokines, such as interleukin-6 (IL-6), IL-10, MCP-1, TNF-α and IL-12p70 production in endotoxemic mice. The results presented here reveal

  14. Seedling test and genetic analysis of white poplar hybrid clones

    Institute of Scientific and Technical Information of China (English)

    LI Bo; JIANG Xi-bing; ZHANG You-hui; ZHANG Zhi-yi; LI Shan-wen; AN Xin-min

    2008-01-01

    Cross breeding strategies are very efficient for gaining new and superior genotypes. Ninety-eight new white poplar hybrid clones produced from 12 cross combinations within the Section Leuce Duby were studied using genetic analysis and seedling tests. We exploited the wide variation that exists in this population and found that the differences among diameter at breast height (DBH), root collar diameter (RCD) and height (H) were statistically extremely significant. The repeatability of clones of these measured traits ranged from 0.947-0.967, which indicated that these Waits were strongly controlled by genetic factors. Based on multiple comparisons, a total of 25 clones showed better performance in growth than the conlrol cultivar. These 25 clones were from six different cross combinations, which can guarantee a larger genetic background for future new clone promotion projects. This study provides a simple overview on these clones and can guide us to carry out subsequent selection plans.

  15. Spatial variability of soil carbon and nitrogen in two hybrid poplar-hay crop systems in southern Quebec, Canada

    Science.gov (United States)

    Winans, K. S.

    2013-12-01

    Canadian agricultural operations contribute approximately 8% of national GHG emissions each year, mainly from fertilizers, enteric fermentation, and manure management (Environment Canada, 2010). With improved management of cropland and forests, it is possible to mitigate GHG emissions through carbon (C) sequestration while enhancing soil and crop productivity. Tree-based intercropped (TBI) systems, consisting of a fast-growing woody species such as poplar (Populus spp.) planted in widely-spaced rows with crops cultivated between tree rows, were one of the technologies prioritized for investigation by the Agreement for the Agricultural Greenhouse Gases Program (AAGGP), because fast growing trees can be a sink for atmospheric carbon-dioxide (CO2) as well as a long-term source of farm income (Montagnini and Nair, 2004). However, there are relatively few estimates of the C sequestration in the trees or due to tree inputs (e.g., fine root turnover, litterfall that gets incorporated into SOC), and hybrid poplars grow exponentially in the first 8-10 years after planting. With the current study, our objectives were (1) to evaluate spatial variation in soil C and nitrogen (N) storage, CO2 and nitrogen oxide (N20), and tree and crop productivity for two hybrid poplar-hay intercrop systems at year 9, comparing TBI vs. non-TBI systems, and (2) to evaluate TBI systems in the current context of C trading markets, which value C sequestration in trees, unharvested crop components, and soils of TBI systems. The study results will provide meaningful measures that indicate changes due to TBI systems in the short-term and in the long-term, in terms of GHG mitigation, enhanced soil and crop productivity, as well as the expected economic returns in TBI systems.

  16. Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.).

    Science.gov (United States)

    Soolanayakanahally, Raju Y; Guy, Robert D; Silim, Salim N; Song, Minghua

    2013-01-01

    Plant phenology is expected to be sensitive to climate warming. In boreal trees, spring flush is primarily temperature driven, whereas height growth cessation and autumn leaf senescence are predominantly controlled by photoperiod. Cuttings of 525 genotypes from the full range of balsam poplar were planted into two common gardens (Vancouver and Indian Head, Canada) at similar latitudes, but with differing winter temperatures and growing seasons. There was clinal variation in spring and, particularly, summer and fall phenology. Bud flush and, despite milder climate, bud set and leaf drop were earlier at Vancouver than at Indian Head by 44, 28 and 7 d, respectively. Although newly flushed growth is insensitive to photoperiod, many genotypes at both sites became competent before the summer solstice. At Vancouver, high-latitude genotypes set dormant terminal buds in mid-spring. Most other genotypes grew until midsummer or set bud temporarily and then experienced a second flush. In both gardens and in a growth chamber experiment, earlier bud set was associated with reduced height growth and higher root/shoot ratios. Shoots attained competency ~5 weeks after flushing, which would normally prevent dormancy induction before the solstice, but may be insufficient if spring advances by more than a few weeks.

  17. Comparative physiological and proteomic analyses of poplar (Populus yunnanensis plantlets exposed to high temperature and drought.

    Directory of Open Access Journals (Sweden)

    Xiong Li

    Full Text Available Plantlets of Populus yunnanensis Dode were examined in a greenhouse for 48 h to analyze their physiological and proteomic responses to sustained heat, drought, and combined heat and drought. Compared with the application of a single stress, simultaneous treatment with both stresses damaged the plantlets more heavily. The plantlets experienced two apparent response stages under sustained heat and drought. During the first stage, malondialdehyde and reactive oxygen species (ROS contents were induced by heat, but many protective substances, including antioxidant enzymes, proline, abscisic acid (ABA, dehydrin, and small heat shock proteins (sHSPs, were also stimulated. The plants thus actively defended themselves against stress and exhibited few pathological morphological features, most likely because a new cellular homeostasis was established through the collaborative operation of physiological and proteomic responses. During the second stage, ROS homeostasis was overwhelmed by substantial ROS production and a sharp decline in antioxidant enzyme activities, while the synthesis of some protective elements, such as proline and ABA, was suppressed. As a result, photosynthetic levels in P. yunnanensis decreased sharply and buds began to die, despite continued accumulation of sHSPs and dehydrin. This study supplies important information about the effects of extreme abiotic environments on woody plants.

  18. Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.

    Science.gov (United States)

    Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J

    2007-03-01

    Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of

  19. Determination of Fe, Hg, Mn, and Pb in three-rings of poplar (Populus alba L.) by U-shaped DC arc

    Science.gov (United States)

    Marković, D. M.; Novović, I.; Vilotić, D.; Ignjatović, Lj.

    2007-09-01

    The U-shaped DC arc with aerosol supply was applied for the determination of Fe, Hg, Mn, and Pb in poplar (Populus alba L.) tree-rings. By optimization of the operating parameters and by selection of the most appropriate signal integration time (20 s for Fe, Mn, and Pb and 30 s for Hg), the obtained limits of detection for Fe, Hg, Mn, and Pb are 5.8, 2.6, 1.6, and 2.0 ng/ml, respectively. The detection limits achieved by this method for Fe, Hg, Mn, and Pb are comparable with the detection limits obtained for these elements by such methods as inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasmatomic emission spectrometry (DCP-AES), and microwave-induced plasma-atomic emission spectrometry (MIP-AES). We used the tree-rings of poplar from two different locations. The first one is in the area close to the power plant “Nikola Tesla” TENT A, Obrenovac, while the other one is in the urban area of Novi Sad. In almost all cases, samples from the location at Obrenovac registered elevated average concentrations of Fe, Hg, Mn, and Pb in the tree-rings of poplar.

  20. Underground riparian wood: Buried stem and coarse root structures of Black Poplar (Populus nigra L.)

    Science.gov (United States)

    Holloway, James V.; Rillig, Matthias C.; Gurnell, Angela M.

    2017-02-01

    Despite the potential importance of tree species in influencing the processes of wood recruitment, transport, retention, and decay that control river wood budgets, focus has been relatively limited on this theme within fluvial wood research. Furthermore, one of the least investigated topics is the belowground living wood component of riparian trees. This paper presents observations of the morphology and age of buried stem and coarse root structures of eight Populus nigra individuals located in the riparian woodland of two sites on the middle to lower Tagliamento River, Italy. This species was selected because of its wide distribution along European rivers and its frequent dominance of riparian woodland. Each tree was excavated by hand to expose a minimum of half of the root system with complete exposure of the main axis. Smaller roots were then removed and larger protruding roots cut back to permit access to the main axis. The excavated structures were photographed from multiple angles for photogrammetric modelling; the structure and character of the exposed sediments around the tree's main axis were recorded; and wood samples were taken from the main aboveground stem(s), sections of the main buried axis, and major roots for dendrochronological analysis. Results from these field observations and laboratory dating of the wood samples were combined to describe the belowground morphology of each tree and to draw inferences concerning the impact of fluvial disturbances. Common features of these excavated structures included: (i) rooting depths to below the bar surface where the original tree established, with many young roots also existing at depth; (ii) translocation of the main buried axis in a downstream direction; (iii) a main buried axis comprised mainly of stems that have become buried and then generated new shoots, including multistem patches, and adventitious roots; (iv) the presence of steps and bends in the main buried axis associated with the generation of

  1. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress

    Directory of Open Access Journals (Sweden)

    Anne eHennig

    2015-05-01

    Full Text Available Woody crops such as poplars (Populus can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested nine-month-old plants of four tetraploid Populus tremula (L. x P. tremuloides (Michx. lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites.

  2. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress.

    Science.gov (United States)

    Hennig, Anne; Kleinschmit, Jörg R G; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea

    2015-01-01

    Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites.

  3. Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen.

    Science.gov (United States)

    Schreiber, Stefan G; Hacke, Uwe G; Hamann, Andreas; Thomas, Barb R

    2011-04-01

    Intensive forestry systems and breeding programs often include either native aspen or hybrid poplar clones, and performance and trait evaluations are mostly made within these two groups. Here, we assessed how traits with potential adaptive value varied within and across these two plant groups. Variation in nine hydraulic and wood anatomical traits as well as growth were measured in selected aspen and hybrid poplar genotypes grown at a boreal planting site in Alberta, Canada. Variability in these traits was statistically evaluated based on a blocked experimental design. We found that genotypes of trembling aspen were more resistant to cavitation, exhibited more negative water potentials, and were more water-use-efficient than hybrid poplars. Under the boreal field test conditions, which included major regional droughts, height growth was negatively correlated with branch vessel diameter (Dv ) in both aspen and hybrid poplars and differences in Dv were highly conserved in aspen trees from different provenances. Differences between the hybrid poplars and aspen provenances suggest that these two groups employ different water-use strategies. The data also suggest that vessel diameter may be a key trait in evaluating growth performance in a boreal environment.

  4. Early events in Populus hybrid and Fagus sylvatica leaves exposed to ozone.

    Science.gov (United States)

    Desotgiu, R; Bussotti, F; Faoro, F; Iriti, M; Agati, G; Marzuoli, R; Gerosa, G; Tani, C

    2010-04-01

    This paper aims to investigate early responses to ozone in leaves of Fagus sylvatica (beech) and Populus maximowiczii x Populus berolinensis (poplar). The experimental setup consisted of four open-air (OA) plots, four charcoal-filtered (CF) open-top chambers (OTCs), and four nonfiltered (NF) OTCs. Qualitative and quantitative analyses were carried out on nonsymptomatic (CF) and symptomatic (NF and OA) leaves of both species. Qualitative analyses were performed applying microscopic techniques: Evans blue staining for detection of cell viability, CeCl3 staining of transmission electron microscope (TEM) samples to detect the accumulation of H2O2, and multispectral fluorescence microimaging and microspectrofluorometry to investigate the accumulation of fluorescent phenolic compounds in the walls of the damaged cells. Quantitative analyses consisted of the analysis of the chlorophyll a fluorescence transients (fast kinetics). The early responses to ozone were demonstrated by the Evans blue and CeCl3 staining techniques that provided evidence of plant responses in both species 1 month before foliar symptoms became visible. The fluorescence transients analysis, too, demonstrated the breakdown of the oxygen evolving system and the inactivation of the end receptors of electrons at a very early stage, both in poplar and in beech. The accumulation of phenolic compounds in the cell walls, on the other hand, was a species-specific response detected in poplar, but not in beech. Evans blue and CeCl3 staining, as well as the multispectral fluorescence microimaging and microspectrofluorometry, can be used to support the field diagnosis of ozone injury, whereas the fast kinetics of chlorophyll fluorescence provides evidence of early physiological responses.

  5. Early Events in Populus Hybrid and Fagus sylvatica Leaves Exposed to Ozone

    Directory of Open Access Journals (Sweden)

    R. Desotgiu

    2010-01-01

    Full Text Available This paper aims to investigate early responses to ozone in leaves of Fagus sylvatica (beech and Populus maximowiczii x Populus berolinensis (poplar. The experimental setup consisted of four open-air (OA plots, four charcoal-filtered (CF open-top chambers (OTCs, and four nonfiltered (NF OTCs. Qualitative and quantitative analyses were carried out on nonsymptomatic (CF and symptomatic (NF and OA leaves of both species. Qualitative analyses were performed applying microscopic techniques: Evans blue staining for detection of cell viability, CeCl3 staining of transmission electron microscope (TEM samples to detect the accumulation of H2O2, and multispectral fluorescence microimaging and microspectrofluorometry to investigate the accumulation of fluorescent phenolic compounds in the walls of the damaged cells. Quantitative analyses consisted of the analysis of the chlorophyll a fluorescence transients (fast kinetics. The early responses to ozone were demonstrated by the Evans blue and CeCl3 staining techniques that provided evidence of plant responses in both species 1 month before foliar symptoms became visible. The fluorescence transients analysis, too, demonstrated the breakdown of the oxygen evolving system and the inactivation of the end receptors of electrons at a very early stage, both in poplar and in beech. The accumulation of phenolic compounds in the cell walls, on the other hand, was a species-specific response detected in poplar, but not in beech. Evans blue and CeCl3 staining, as well as the multispectral fluorescence microimaging and microspectrofluorometry, can be used to support the field diagnosis of ozone injury, whereas the fast kinetics of chlorophyll fluorescence provides evidence of early physiological responses.

  6. Transgenic hybrid poplar for sustainable and scalable production of the commodity/specialty chemical, 2-phenylethanol.

    Directory of Open Access Journals (Sweden)

    Michael A Costa

    Full Text Available Fast growing hybrid poplar offers the means for sustainable production of specialty and commodity chemicals, in addition to rapid biomass production for lignocellulosic deconstruction. Herein we describe transformation of fast-growing transgenic hybrid poplar lines to produce 2-phenylethanol, this being an important fragrance, flavor, aroma, and commodity chemical. It is also readily converted into styrene or ethyl benzene, the latter being an important commodity aviation fuel component. Introducing this biochemical pathway into hybrid poplars marks the beginnings of developing a platform for a sustainable chemical delivery system to afford this and other valuable specialty/commodity chemicals at the scale and cost needed. These modified plant lines mainly sequester 2-phenylethanol via carbohydrate and other covalently linked derivatives, thereby providing an additional advantage of effective storage until needed. The future potential of this technology is discussed. MALDI metabolite tissue imaging also established localization of these metabolites in the leaf vasculature.

  7. Epigenetic Diversity of Clonal White Poplar (Populus alba L. Populations: Could Methylation Support the Success of Vegetative Reproduction Strategy?

    Directory of Open Access Journals (Sweden)

    Francesco Guarino

    Full Text Available The widespread poplar populations of Sardinia are vegetatively propagated and live in different natural environments forming large monoclonal stands. The main goals of the present study were: i to investigate/measure the epigenetic diversity of the poplar populations by determining their DNA methylation status; ii to assess if and how methylation status influences population clustering; iii to shed light on the changes that occur in the epigenome of ramets of the same poplar clone. To these purposes, 83 white poplar trees were sampled at different locations on the island of Sardinia. Methylation sensitive amplified polymorphism analysis was carried out on the genomic DNA extracted from leaves at the same juvenile stage. The study showed that the genetic biodiversity of poplars is quite limited but it is counterbalanced by epigenetic inter-population molecular variability. The comparison between MspI and HpaII DNA fragmentation profiles revealed that environmental conditions strongly influence hemi-methylation of the inner cytosine. The variable epigenetic status of Sardinian white poplars revealed a decreased number of population clusters. Landscape genetics analyses clearly demonstrated that ramets of the same clone were differentially methylated in relation to their geographic position. Therefore, our data support the notion that studies on plant biodiversity should no longer be restricted to genetic aspects, especially in the case of vegetatively propagated plant species.

  8. Short and mid-term effects of artificial defoliation on the growth of euramerican poplar (Populus × canadensis clone I-214 in poplar stands in relation to the intensity and seasonal timing of defoliation.

    Directory of Open Access Journals (Sweden)

    Allegro G

    2017-08-01

    Full Text Available The impact of artificial defoliations on the growth of euramerican poplar (Populus × canadensis clone I-214 was investigated in three field assays. Young poplar trees (1st-3rd cultivation year were subjected to 25%, 50%, 75% and 100% defoliation either in the early or in the late growing season (or in both periods, and their growth was measured in the same year and during the following 2-3 years. Only trees treated to 75% and 100% defoliation exhibited a significant growth decrease compared to control trees: the diametric growth of early defoliated trees was reduced up to 20-40% in the year of defoliation, whereas trees defoliated at the same rates late in the season, or defoliated twice in a single year, suffered the heaviest damage, showing a growth loss up to 50% in the year following the defoliation events. In the latter cases, a delayed sprouting at spring and the death of branchlets were observed. A financial analysis showed that the economic damage caused by the highest defoliation rates, mainly when occurring late in the season, definitely exceeds the cost of treatments, thus suggesting the adoption of appropriate control strategies.

  9. Changes in swelling properties and moisture uptake rate of oil-heat-treated poplar (Populus x euramericana cv. Pannónia wood

    Directory of Open Access Journals (Sweden)

    Miklós Bak

    2012-11-01

    Full Text Available In this work, the effect of oil heat treatment (OHT on the swelling properties and changes in the rate of moisture uptake of poplar wood (Populus × euramericana cv. Pannónia were investigated. Eighteen different treatments (combinations of three vegetable oils, two temperatures, and three durations were studied. The results showed that OHT decreases the equilibrium moisture content (EMC and the swelling of poplar wood. The degree of swelling and the EMC are influenced by both the duration and temperature of treatment. With an increase in duration and temperature, the EMC decreased. Consequently, the anti-swelling efficiency (ASE increased. OHT wood adsorbs less moisture than natural wood, but it reaches a maximum – EMC at the momentary climate – at the same time under all the investigated treatments. The moisture uptake is fastest in the beginning and thereafter it slows significantly. Decreasing the moisture uptake by OHT wood is due to the decreasing of its water storage capacity.

  10. Interpreting genotype‐by‐environment interaction for biomass production in hybrid poplars under short‐rotation coppice in Mediterranean environments

    National Research Council Canada - National Science Library

    Sixto, Hortensia; Gil, Paula M; Ciria, Pilar; Camps, Francesc; Cañellas, Isabel; Voltas, Jordi

    2016-01-01

    ...‐rotation coppice poplar plantations. Hybrid poplars are grown for biomass production under a wide range of climatic and edaphic conditions, but their adaptive performance in Mediterranean areas remains poorly characterized...

  11. Evaluating hybrid poplar rooting. I. genotype x environment interactions in three contrasting sites

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Don E. Riemenschneider; Richard B. Hall

    2002-01-01

    We need to learn more about environmental conditions that promote or hinder rooting of unrooted dormant hybrid poplar cuttings. Planting cuttings and recording survival after the growing season is not suitable to keep up with industrial demands for improved stock. This method does not provide information about specific genotype x environment interactions. We know very...

  12. Response of the Gypsy Moth, Lymantria dispar to Transgenic Poplar, Populus simonii x P. nigra, Expressing Fusion Protein Gene of the Spider Insecticidal Peptide and Bt-toxin C-peptide

    OpenAIRE

    Cao, Chuan-Wang; Liu, Gui-Feng; Wang, Zhi-Ying; Yan, Shan-Chun; Ma, Ling; Yang, Chuan-Ping

    2010-01-01

    The response of the Asian gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) to a fusion gene consisting of the spider, Atrax robustus Simon (Araneae: Hexanthelidae) ω?-ACTX-Ar1 sequence coding for an ω?-atracotoxin and a sequence coding for the Bt-toxin C-peptide, expressed in transgenic poplar Populus simonii x P. nigra L. (Malphigiales: Salicaceae) was investigated. Individual performance, feeding selection, midgut proteinase activity and nutrition utilization were monitored. The...

  13. The effect of mycorrhizal inoculation on hybrid poplar fine root dynamics in hydrocarbon contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, J.; Knight, J.D.; Van Rees, K.C.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science

    2006-07-01

    The biological remediation of contaminated soils using plants was discussed. Hybrid poplars are good candidates for phytoremediation because they root deeply, cycle large amounts of water and grow quickly. Their fine root system is pivotal in nutrient and water acquisition. Therefore, in order to maximize the phytoremediation potential, it is important to understand the response of the fine root system. In addition to degrading organic chemicals, ectomycorrhizal (ECM) fungi provide the host with greater access to nutrients. This study determined the relationship between residual soil hydrocarbons and soil properties at a field site. The effects of residual contamination on hybrid poplar fine root dynamics was also examined along with the effect of ectomycorrhizal colonization on hybrid poplar fine root dynamics when grown in diesel contaminated soil under controlled conditions. A minirhizotron camera inside a growth chamber captured images of mycorrhizal inoculation on hybrid poplar fine root production. Walker hybrid poplar seedlings were grown for 12 weeks in a control soil and also in a diesel contaminated soil. Seedlings were also grown in control and diesel contaminated, ectomycorrhizal inoculated soils. The inoculum was a mycorrhizal mix containing Pisolithus tinctorius and Rhizopogon spp. The images showed that colonization by ECM fungi increased hybrid poplar fine root production and aboveground biomass in a diesel contaminated soil compared to non-colonized trees in the same soil. Root:shoot ratios were much higher in the diesel contaminated/non-inoculated treatment than in either of the control soil treatments. Results of phytoremediation in diesel contaminated soil were better in the non-colonized treatment than in the colonized treatment. Both treatments removed more contaminants from the soil than the unplanted control. Much higher quantities of hydrocarbons were found sequestered in the roots from the inoculated treatment than from the non

  14. Perturbed lignification impacts tree growth in hybrid poplar--a function of sink strength, vascular integrity, and photosynthetic assimilation.

    Science.gov (United States)

    Coleman, Heather D; Samuels, A Lacey; Guy, Robert D; Mansfield, Shawn D

    2008-11-01

    The effects of reductions in cell wall lignin content, manifested by RNA interference suppression of coumaroyl 3'-hydroxylase, on plant growth, water transport, gas exchange, and photosynthesis were evaluated in hybrid poplar trees (Populus alba x grandidentata). The growth characteristics of the reduced lignin trees were significantly impaired, resulting in smaller stems and reduced root biomass when compared to wild-type trees, as well as altered leaf morphology and architecture. The severe inhibition of cell wall lignification produced trees with a collapsed xylem phenotype, resulting in compromised vascular integrity, and displayed reduced hydraulic conductivity and a greater susceptibility to wall failure and cavitation. In the reduced lignin trees, photosynthetic carbon assimilation and stomatal conductance were also greatly reduced, however, shoot xylem pressure potential and carbon isotope discrimination were higher and water-use efficiency was lower, inconsistent with water stress. Reductions in assimilation rate could not be ascribed to increased stomatal limitation. Starch and soluble sugars analysis of leaves revealed that photosynthate was accumulating to high levels, suggesting that the trees with substantially reduced cell wall lignin were not carbon limited and that reductions in sink strength were, instead, limiting photosynthesis.

  15. Effects of irrigating poplar energy crops with landfill leachate on soil micro- and meso-fauna

    Science.gov (United States)

    Jill A. Zalesny; David R. Coyle; Ronald S. Jr. Zalesny; Adam H. Wiese

    2009-01-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization for the trees. Populus species and hybrids (i.e., poplars) are ideal for such systems given their fast...

  16. Comparing growth and fine root distribution in monocultures and mixed plantations of hybrid poplar and spruce

    Institute of Scientific and Technical Information of China (English)

    Lahcen Benomar; Annie DesRochers; Guy R.Larocque

    2013-01-01

    Disease prevention,biodiversity,productivity improvement and ecological considerations are all factors that contribute to increasing interest in mixed plantations.The objective of this study was to evaluate early growth and productivity of two hybrid poplar clones,P.balsamifera x trichocarpa (PBT) and P.maximowiczii x balsamifera (PMB),one improved family of Norway spruce (Picea glauca (PA)) and one improved family of white spruce (Picea abies (PG)) growing under different spacings in monocultures and mixed plots.The plantations were established in 2003 in Abitibi-Témiscamingue,Quebec,Canada,in a split plot design with spacing as the whole plot factor (1 × 1 m,3 × 3 m and 5 × 5 m) and mixture treatments as subplot factor (pure:PBT,PMB,PA and PG,and 1:1 mixture PBT:PA,PBT:PG,PMB:PA and PMB:PG).Results showed a beneficial effect of the hybrid poplar-spruce mixture on diameter growth for hybrid poplar clones,but not for the 5 × 5 m spacing because of the relatively young age of the plantations.Diameter growth of the spruces decreased in mixed plantings in the 1 × 1 m,while their height growth increased,resulting in similar aboveground biomass per tree across treatments.Because of the large size differences between spruces and poplars,aboveground biomass in the mixed plantings was generally less than that in pure poplar plots.Leaf nitrogen concentration for the two spruce families and hybrid poplar clone PMB was greater in mixed plots than in monocultures,while leaf nitrogen concentration of clone PBT was similar among mixture treatments.Because of its faster growth rate and greater soil resources demands,clone PMB was the only one showing an increase in leaf N with increased spacing between trees.Fine roots density was greater for both hybrid poplars than spruces.The vertical distribution of fine roots was insensitive to mixture treatment.

  17. NON DESTRUCTIVE EVALUATION OF HEARTWOOD DIAMETER AT BREAST HEIGHT FOR EUCALYPTUS GLOBULUS AND POPULUS EURAMERICANA HYBRID

    OpenAIRE

    Hugo Alexandre Jóia; Teresa Fonseca; Maria Emília Silva; Carlos Pacheco Marques

    2006-01-01

    The objective of this study was the evaluation of the heartwood diameter (dcerne) at breast height on stand trees, for Eucalyptus globulus Labill and the hybrid Populus euramericana. The data used was collected in eucalyptus and popular pure plantations in Central and North Portugal.The non destructive methods tested in the evaluation of heartwood diameter at breast height were [1] visual identification of the heartwood on core samples and [2] indirect estimation using mathematic models. The...

  18. Dinamica şi caracteristicile creşterii a şase clone de plop hibrid pe parcursul unui ciclu de producţie într-o plantație comparativă din Depresiunea Rădăuţi [The dynamics and growth characteristics of six hybrid poplar clones during a production cycle in a comparative plantation from Rădăuți Depression

    Directory of Open Access Journals (Sweden)

    Dănilă Iulian

    2015-08-01

    Full Text Available The poplar (Populus spp. plays an important role in worldwide forest economy, responding to the necessities of obtaining high biomass production in a short time. Short rotation forests (SRF are developing continuously in Romania. Several studies have been undertaken to identify the clones with high productivity and suitable technologies. The aim of this study was to register the annual increments in diameter, height and volume in an experimental poplar crops with a short-term rotation of 5 years. The poplar cultures are composed from 6 types of hybrid poplar clones (AF2, AF6, Monviso, A4A, Pannonia and Max4 with a density of 2667 trees ha-1. The research results show a clear differentiation among clones’ increments. The highest increments were obtained with AF2 and AF6 clones in five years, with almost 0.038 m3 an-1. The lowest increment was observed for Max4 clone with 0.028 m3.

  19. The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid.

    Science.gov (United States)

    Ma, Kaifeng; Song, Yuepeng; Huang, Zhen; Lin, Liyuan; Zhang, Zhiyi; Zhang, Deqiang

    2013-03-01

    KEY MESSAGE : We report that low fertility during intraspecific hybridization in Chinese white poplar was caused by prefertilization barriers, reduced ovules, and embryonic abortion. Hormone concentrations and gene expression patterns were also evaluated during the fertilization process. Hybrid vigor holds tremendous potential for yield increases and trait improvement; however, some hybridization combinations within Populus show very low fertility. To explore the causes of this low fertility in intraspecific hybridization of Chinese white poplar, we examined anatomical structure, hormone levels and expression of key genes in two unique crossing combinations of Populus × tomentosa "Pt02" × P. × tomentosa "LM50", and (P. × tomentosa × P. alba cv. bolleana "Ptb") × P. × tomentosa "LM50". The seed set potential in the intraspecific hybridization P. × tomentosa "Pt02" × P. × tomentosa "LM50" was quite low, which was likely caused by prefertilization barriers, reduced ovule numbers, and embryonic abortion in ovaries. During intraspecific hybridization, we found reduced indoleacetic acid (IAA) in pistils, which may cause pollen tube deformations and increased IAA in heart-stage embryos, which may affect embryo development. Gibberellin A3 (GA3) decreased from the zygote dormancy stage to globular-stage embryos, which may be caused by failure of fertilization in specific embryos. The maximum zeatin (Z) concentration was found in heart-stage embryos, but Z concentrations quickly decreased, which may affect endosperm development. Increasing concentrations of abscisic acid (ABA) during zygote dormancy and eight-cell proembryo stages likely induced abscission of the infructescence. High ABA concentrations also regulated embryo maturity. Measurement of genes expression showed that high expression of SRK and/or SLG may result in rejection of pollen by stigmatic papillae through a mechanism, reminiscent of self-incompatibility. Also, low expression of

  20. Biomass and Volume Yield in Mature Hybrid Poplar Plantations on Temperate Abandoned Farmland

    Directory of Open Access Journals (Sweden)

    Benoit Truax

    2014-12-01

    Full Text Available In this study, we developed clone-specific allometric relationships, with the objective of calculating volume and biomass production after 13 years in 8 poplar plantations, located across an environmental gradient, and composed of 5 unrelated hybrid poplar clones. Allometry was found to be very similar for clones MxB-915311, NxM-3729 and DNxM-915508, all having P. maximoviczii parentage. Clones DxN-3570 and TxD-3230 also had a similar allometry; for a given DBH they have a lower stem volume, stem biomass and branch biomass than P. maximoviczii hybrids. Strong Site × Clone interactions were observed for volume and woody biomass growth, with DxN and TxD hybrids only productive on low elevation fertile sites, whereas P. maximovizcii hybrids were also very productive on higher elevation sites with moderate to high soil fertility. At the site level (5 clones mean, yield reached 27.5 and 22.7 m3/ha/yr. on the two best sites (high fertility and low elevation, confirming the great potential of southern Québec (Canada for poplar culture. The productivity gap between the most and least productive sites has widened from year 8 to year 13, highlighting the need for high quality abandoned farmland site selection in terms of climate and soil fertility. Although clone selection could optimize yield across the studied environmental gradient, it cannot fully compensate for inadequate site selection.

  1. Comparative Proteomic Analyses of the Hybrid Yellow-Poplar Stigma upon Pollination

    Institute of Scientific and Technical Information of China (English)

    Ming Li; Kun Wang; Pingfang Yang

    2012-01-01

    As basal angiosperm,Liriodendron chinense (Hemsl.) Sarg.and Liriodendron tulipifera Linn.are two species belong to Liriodendron genus.Hybrid yellowpoplar was obtained through crossing between Liriodendron tulipifera Linn.x L.chinense(Hemsl.) Sarg.Although hybrid yellow-poplar was strong in both growth and adaptation,its fruiting rate was as low as its parents.In this study,we profiled the proteome in hybrid yellow-poplar stigma before and after pollination.Comparative analyses of two dimensional gel electrophoresis maps from un-pollinated and pollinated stigmas showed that 30 proteins were increased and 27 proteins decreased after pollination.Functional categorization showed that most of them were metabolism-related,stress response related and protein biosynthesis,degradation and destinationrelated proteins.Also there were some redox-related and cell signaling-related proteins.All these changed proteins might involve in or affect the pollen and stigma interaction in hybrid yellow-poplar.This study will be helpful in understanding the regulation of Liriodendron genus sexual reproduction.

  2. NON DESTRUCTIVE EVALUATION OF HEARTWOOD DIAMETER AT BREAST HEIGHT FOR EUCALYPTUS GLOBULUS AND POPULUS EURAMERICANA HYBRID

    Directory of Open Access Journals (Sweden)

    Hugo Alexandre Jóia

    2006-12-01

    Full Text Available The objective of this study was the evaluation of the heartwood diameter (dcerne at breast height on stand trees, for Eucalyptus globulus Labill and the hybrid Populus euramericana. The data used was collected in eucalyptus and popular pure plantations in Central and North Portugal.The non destructive methods tested in the evaluation of heartwood diameter at breast height were [1] visual identification of the heartwood on core samples and [2] indirect estimation using mathematic models. The results allow to consider that visual determination of dcerne is appropriate for Populus, and development of prediction models based diameter at breast height (d, total height (h and age (t, give better results for eucalyptus.

  3. Response of the gypsy moth, Lymantria dispar to transgenic poplar, Populus simonii x P. nigra, expressing fusion protein gene of the spider insecticidal peptide and Bt-toxin C-peptide.

    Science.gov (United States)

    Cao, Chuan-Wang; Liu, Gui-Feng; Wang, Zhi-Ying; Yan, Shan-Chun; Ma, Ling; Yang, Chuan-Ping

    2010-01-01

    The response of the Asian gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) to a fusion gene consisting of the spider, Atrax robustus Simon (Araneae: Hexanthelidae) ω-ACTX-Ar1 sequence coding for an ω-atracotoxin and a sequence coding for the Bt-toxin C-peptide, expressed in transgenic poplar Populus simonii x P. nigra L. (Malphigiales: Salicaceae) was investigated. Individual performance, feeding selection, midgut proteinase activity and nutrition utilization were monitored. The growth and development of L. dispar were significantly affected by continually feeding on the transgenic poplar, with the larval instars displaying significantly shorter developmental times than those fed on nontransgenic poplar, but pupation was delayed. Mortality was higher in populations fed transgenic poplar leaves, than for larvae fed nontransgenic poplar leaves. The cumulative mortality during all stages of larvae fed transgenic leaves was 92% compared to 16.7% of larvae on nontransgenic leaves. The highest mortality observed was 71.7% in the last larval instar stage. A two-choice test showed that fifth-instar larvae preferred to feed on nontransgenic leaves at a ratio of 1:1.4. Feeding on transgenic leaves had highly significant negative effects on relative growth of larvae, and the efficiency of conversion of ingested and digested food. Activity of major midgut proteinases was measured using substrates TAME and BTEE showed significant increases in tryptase and chymotrypsinlike activity (9.2- and 9.0-fold, respectively) in fifth-instar larvae fed on transgenic leaves over control. These results suggest transgenic poplar is resistant to L. dispar, and the mature L. dispar may be weakened by the transgenic plants due to Bt protoxins activated by elevated major midgut proteinase activity. The new transgenic poplar expressing fusion protein genes of Bt and a new spider insecticidal peptide are good candidates for managing gypsy moth.

  4. Field performance of Populus in short-rotation intensive culture plantations in the north-central U.S.

    Science.gov (United States)

    Edward A. Hansen; Michael E. Ostry; Wendell D. Johnson; David N. Tolsted; Daniel A. Netzer; William E. Berguson; Richard B. Hall

    1994-01-01

    Describes a network of short-rotation, Populus research and demonstration plantations that has been established across a 5-state region in the north-central U.S. to identify suitable hybrid poplar clones for large-scale biomass plantations in the region. Reports 6-year results.

  5. A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides

    Directory of Open Access Journals (Sweden)

    Takata Naoki

    2012-08-01

    Full Text Available Abstract Background The genus Populus is accepted as a model system for molecular tree biology. To investigate gene functions in Populus spp. trees, generating stable transgenic lines is the common technique for functional genetic studies. However, a limited number of genes have been targeted due to the lengthy transgenic process. Transient transformation assays complementing stable transformation have significant advantages for rapid in vivo assessment of gene function. The aim of this study is to develop a simple and efficient transient transformation for hybrid aspen and to provide its potential applications for functional genomic approaches. Results We developed an in planta transient transformation assay for young hybrid aspen cuttings using Agrobacterium-mediated vacuum infiltration. The transformation conditions such as the infiltration medium, the presence of a surfactant, the phase of bacterial growth and bacterial density were optimized to achieve a higher transformation efficiency in young aspen leaves. The Agrobacterium infiltration assay successfully transformed various cell types in leaf tissues. Intracellular localization of four aspen genes was confirmed in homologous Populus spp. using fusion constructs with the green fluorescent protein. Protein-protein interaction was detected in transiently co-transformed cells with bimolecular fluorescence complementation technique. In vivo promoter activity was monitored over a few days in aspen cuttings that were transformed with luciferase reporter gene driven by a circadian clock promoter. Conclusions The Agrobacterium infiltration assay developed here is a simple and enhanced throughput method that requires minimum handling and short transgenic process. This method will facilitate functional analyses of Populus genes in a homologous plant system.

  6. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Michael Jourdes; Chanyoung Ki; Ann M. Patten; Laurence B. Davin; Norman G. Lewis; Gerald A. Tuskan; Lee Gunter; Stephen R. Decker; Michael J. Selig; Robert Sykes; Michael E. Himmel; Peter Kitin; Olga Shevchenko; Steven H. Strauss

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula...

  7. Biochemical characterisation of isoprene synthase from poplar (Populus x canescens (Ait.) Sm.) and its expression in Arabidopsis thaliana L.; Biochemische Charakterisierung der Isoprensynthase aus der Graupappel (Populus x canescens (Ait.) Sm.) und ihre Expression in Arabidopsis thaliana L.

    Energy Technology Data Exchange (ETDEWEB)

    Bachl, A.

    2005-04-01

    It is known that a lot of plant species emit high amounts of isoprene, especially during high temperature periods. The physiological impact of isoprene biosynthesis and emission is currently still unknown. An enhanced heat tolerance as well as an antioxidant action of isoprene is mainly discussed. One of the main goals of this work was therefore to produce transgenic plants differing from the corresponding wildtype in their ability to synthesize and emit isoprene. Therefore, the isoprene synthase (ispS) gene from poplar (Populus x canescens), which was isolated by Miller et al. (2001) was used to transform Arabidopsis thaliana L., which is not a significant isoprene emitter. Prior to transformation the original DNA-sequence was extended by two different epitops, a nonapeptide HA epitope and six triplets for histidine resulting in a C-terminal His-tag, in order to get a labelled enzyme, which can be detected and cleaned up more easily afterwards. For proving the efficiency of the resulting proteins, the core enzymes without the transit peptide needed for the import of the protein, which is encoded in the nucleus, into the chloroplasts were expressed heterologous in E. coli. The HA epitope resulted in a complete loss of enzyme activity, while the His-tag led to a decreased enzyme activity of about 20%. For the Agrobacterium mediated transformation of A. thaliana the ispS with the C-terminal His-tag was used and cloned into the binary vector pBinAR under the control of a 35S promoter. 40 transgenic lines, which were selected by kanamycine resistance, have been achieved. The stable integration of ispS was confirmed on DNA- as well as on RNA level. The expression of ispS was proved in 38 of the 40 lines by PCR from cDNA. Furthermore the emission of the transgenic lines was studied by measuring whole plants for several hours. Five of the 40 lines showed significant higher isoprene emission rates being more than 2,5 fold higher than in the measured non emitting A

  8. Effects of two iron sources on iron and cadmium allocation in poplar (populus alba) plants exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Fodor, F.; Gaspar, L.; Cseh, E.; Sarvari, E. [Eotvos Univ., Budapest (Hungary). Dept. of Plant Physiology; Morales, F.; Gogorcena, Y.; Abadia, J. [Consejo Superior de Investigaciones Cientificas, Zaragoza (Spain). Dept. de Nutricion Vegetal; Lucena, J.J. [Madrid Univ., Madrid (Spain). Dept. de Quimica Agricola; Kropfl, K. [Eotvos Univ., Budapest (Hungary). Dept. of Technology and Environmental Chemistry

    2005-09-01

    The phytotoxicity of heavy metals is often manifested as inhibition of plant growth, nitrate assimilation and photosynthesis, as well as disturbances in plant ion and water balances. Many of these plant responses are a result of inhibition of enzyme activity caused by the binding of heavy metal ions to sulfhydryl groups in the active sites of enzymes and by substitution of essential metals. This study investigated the effects of cadmium (Cd) nitrate on the utilization and allocation of iron (Fe) in poplar plants grown in a nutrient solution with Fe(III)-EDTA or Fe(III)-citrate as the Fe source. The effects of Cd were also compared with those of Fe deprivation. Results indicated that the accumulation of Fe in roots was 10-fold higher in plants grown with Fe-citrate than with Fe-ETDA. In addition, cadmium increased leaf chlorophyll concentrations and photosynthetic rates, and these decreases were more marked in plants grown with Fe-citrate than with Fe-EDTA. In both treatments, addition of Cd caused large increases in root and shoot apoplasmic and non-apoplasmic Cd contents and increases in root Fe content. However, Cd decreased shoot Fe content, especially in plants grown with Fe-citrate. New leaves of plants grown with Fe-citrate had small cellular Fe pools, whereas these pools were large in new leaves of plants grown with Fe-EDTA. Non-apoplasmic Cd pools in new leaves were smaller in plants grown with Fe-citrate than with Fe-EDTA, which indicated that inactivation of non-apoplasmic Cd pools is facilitated more by Fe-EDTA than by Fe-citrate. In the presence of Cd, Fe-EDTA was also superior to Fe-citrate in maintaining an adequate Fe supply to poplar shoots. It was concluded that because the amount of non-apoplasmic root Fe was higher in plants grown with Fe-citrate than with Fe-EDTA, the observed differences in plant responses to Fe-EDTA and Fe-citrate may reflect distances in long-distance transport of Fe rather than its acquisition of Fe by roots. 42 refs., 6

  9. Effect of technological parameters and wood properties on cutting power in plane milling of juvenile poplar wood

    Directory of Open Access Journals (Sweden)

    Barcík Štefan

    2008-10-01

    Full Text Available This paper presents the results of experimental measurements aimed at observing the effect of technological parameters (cutting speed vc and feed speed vf , type of wood (juvenile wood and mature wood andwood species (aspen Populus tremula, L. and hybrid poplar Populus x Euramericana „Serotina“ on cutting power during plane milling of poplar wood. The results showed the reduction of cutting power with the decrease of cutting speed and feed speed. Lower cutting power was also measured in milling hybrid poplar than in milling aspen. The test also confirmed the effect of different anatomical and chemical structure of juvenile wood in relation to mature wood on different physical and mechanical properties of such wood and hence also on the cutting power in processing juvenile wood.

  10. Hybrid poplar plantations are suitable habitat for reintroduced forest herbs with conservation status.

    Science.gov (United States)

    Boothroyd-Roberts, Kathleen; Gagnon, Daniel; Truax, Benoit

    2013-01-01

    Plantations of fast-growing tree species may be of use in conservation by accelerating the restoration of forest habitat on abandoned farmland and increasing connectivity in fragmented landscapes. The objective of this study was to determine if hybrid poplar plantations can be suitable habitats for the reintroduction of native forest plant species and, if so, which abiotic factors predict successful reintroduction. Four species of forest herb species (Trillium grandiflorum, Sanguinaria canadensis, Maianthemum racemosum, Asarum canadense), of which three have legal conservation status, were transplanted into experimental plantations of two hybrid poplar clones and nearby second-growth woodlots at six sites in southern Quebec, Canada. The transplanted individuals were protected from deer browsing with exclusion cages. After two years, the plant responses of all four species were stable or increased over two years in both types of hybrid poplar plantations. Sanguinaria showed a better response in the plantations than in the woodlots, preferring the rich post-agricultural soils of the plantations with low C:N ratios. Asarum and Maianthemum showed no significant difference between stand types, while Trillium grew better in the woodlots than in the plantations. Much of the variability in the response of the latter three species was unexplained by the measured environmental variables. These results suggest that certain forest herb species can be reintroduced as juvenile plants into plantations, knowing that their spontaneous recolonization is often limited by dispersal and/or seedling establishment. Plantations could also contribute to the conservation of biodiversity by providing an environment for the cultivation of forest herb species as an alternative to their destructive harvest from natural populations.

  11. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Seol Ah, E-mail: s6022029@korea.ac.kr; Choi, Young-Im, E-mail: yichoi99@forest.go.kr; Cho, Jin-Seong, E-mail: jinsung3932@gmail.com; Lee, Hyoshin, E-mail: hslee@forest.go.kr

    2015-06-19

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem.

  12. Genomic and functional approaches reveal a case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood).

    Science.gov (United States)

    Suarez-Gonzalez, Adriana; Hefer, Charles A; Christe, Camille; Corea, Oliver; Lexer, Christian; Cronk, Quentin C B; Douglas, Carl J

    2016-06-01

    Natural hybrid zones in forest trees provide systems to study the transfer of adaptive genetic variation by introgression. Previous landscape genomic studies in Populus trichocarpa, a keystone tree species, indicated genomic footprints of admixture with its sister species Populus balsamifera and identified candidate genes for local adaptation. Here, we explored the patterns of introgression and signals of local adaptation in P. trichocarpa and P. balsamifera, employing genome resequencing data from three chromosomes in pure species and admixed individuals from wild populations. Local ancestry analysis in admixed P. trichocarpa revealed a telomeric region in chromosome 15 with P. balsamifera ancestry, containing several candidate genes for local adaptation. Genomic analyses revealed signals of selection in certain genes in this region (e.g. PRR5, COMT1), and functional analyses based on gene expression variation and correlations with adaptive phenotypes suggest distinct functions of the introgressed alleles. In contrast, a block of genes in chromosome 12 paralogous to the introgressed region showed no signs of introgression or signatures of selection. We hypothesize that the introgressed region in chromosome 15 has introduced modular or cassette-like variation into P. trichocarpa. These linked adaptive mutations are associated with a block of genes in chromosome 15 that appear to have undergone neo- or subfunctionalization relative to paralogs in a duplicated region on chromosome 12 that show no signatures of adaptive variation. The association between P. balsamifera introgressed alleles with the expression of adaptive traits in P. trichocarpa supports the hypothesis that this is a case of adaptive introgression in an ecologically important foundation species.

  13. Effects of apical meristem loss on sylleptic branching and growth of hybrid poplar

    Energy Technology Data Exchange (ETDEWEB)

    Zeleznik, Joseph D. [North Dakota State University, Fargo, ND (United States). Plant Sciences Department

    2007-07-15

    The effects of apical meristem loss on the growth and development of hybrid poplar trees was investigated. This was done by clipping back either the apical meristem alone (dividing cells), or the apical meristem plus a small amount of additional stem tissue (expanding cells, <1 cm), at various times during the first growing season. Two clones (NM6-nonsylleptic habit, and DN34-slightly sylleptic habit) were tested at close spacing (0.6 m) in the nursery. Clipping generally increased the number of sylleptic branches formed. Clipping 69 days after planting resulted in the largest number of sylleptic branches while clipping 4 weeks later gave no increase in syllepsis. Clipping temporarily reduced height growth of both clones but total height at the end of the first growing season was not affected by any treatment. There were some slight differences in growth during the second growing season; despite these differences, total stem biomass and total tree biomass after 2 years were not affected by temporary loss of the apical meristem in the first growing season. Results suggest that death or removal of hybrid poplar apical meristems by tip borers or ungulates has no long-term effects on aboveground growth as measured by height or biomass. (author)

  14. Soil Carbon Stocks in Two Hybrid Poplar-Hay Crop Systems in Southern Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Kiara Winans

    2014-08-01

    Full Text Available Tree-based intercropping (TBI systems, consisting of a medium to fast-growing woody species planted in widely-spaced rows with crops cultivated between tree rows, are a potential sink for atmospheric carbon dioxide (CO2. TBI systems contribute to farm income in the long-term by improving soil quality, as indicated by soil carbon (C storage, generating profits from crop plus tree production and potentially through C credit trading. The objectives of the current study were: (1 to evaluate soil C and nitrogen (N stocks in soil depth increments in the 0–30 cm layer between tree rows of nine-year old hybrid poplar-hay intercropping systems, to compare these to C and N stocks in adjacent agricultural systems; and (2 to determine how hay yield, litterfall and percent total light transmittance (PTLT were related to soil C and N stocks between tree rows and in adjacent agricultural systems. The two TBI study sites (St. Edouard and St. Paulin had a hay intercrop with alternating rows of hybrid poplar clones and hardwoods and included an adjacent agricultural system with no trees (i.e., the control plots. Soil C and N stocks were greater in the 0–5 cm depth increment of the TBI system within 1 m of the hardwood row, to the west of the poplar row, compared to the sampling point 1 m east of poplar at St. Edouard (p = 0.02. However, the agricultural system stored more soil C than the nine-year old TBI system in the 20–30 cm and 0–30 cm depth increments. Accumulation of soil C in the 20–30 cm depth increment could be due to tillage-induced burial of non-harvested crop residues at the bottom of the plow-pan. Soil C and N stocks were similar at all depth increments in TBI and agricultural systems at St. Paulin. Soil C and N stocks were not related to hay yield, litterfall and PTLT at St. Paulin, but hay yield and PTLT were significantly correlated (R = 0.87, p < 0.05, n = 21, with lower hay yield in proximity to trees in the TBI system and similar hay

  15. Sequencing the genome of Marssonina brunnea reveals fungus-poplar co-evolution

    Directory of Open Access Journals (Sweden)

    Zhu Sheng

    2012-08-01

    Full Text Available Abstract Background The fungus Marssonina brunnea is a causal pathogen of Marssonina leaf spot that devastates poplar plantations by defoliating susceptible trees before normal fall leaf drop. Results We sequence the genome of M. brunnea with a size of 52 Mb assembled into 89 scaffolds, representing the first sequenced Dermateaceae genome. By inoculating this fungus onto a poplar hybrid clone, we investigate how M. brunnea interacts and co-evolves with its host to colonize poplar leaves. While a handful of virulence genes in M. brunnea, mostly from the LysM family, are detected to up-regulate during infection, the poplar down-regulates its resistance genes, such as nucleotide binding site domains and leucine rich repeats, in response to infection. From 10,027 predicted proteins of M. brunnea in a comparison with those from poplar, we identify four poplar transferases that stimulate the host to resist M. brunnea. These transferas-encoding genes may have driven the co-evolution of M. brunnea and Populus during the process of infection and anti-infection. Conclusions Our results from the draft sequence of the M. brunnea genome provide evidence for genome-genome interactions that play an important role in poplar-pathogen co-evolution. This knowledge could help to design effective strategies for controlling Marssonina leaf spot in poplar.

  16. Effects of mechanical damage and herbivore wounding on H2O2 metabolism and antioxidant enzyme activities in hybrid poplar leaves

    Institute of Scientific and Technical Information of China (English)

    AN Yu; SHEN Ying-bai; ZHANG Zhi-xiang

    2009-01-01

    The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii ×P. pyramidalis ‘Opera 8277') in response to mechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses.

  17. 合作杨、新疆杨等杨树品种在晋西北地区的适应性研究%Studies on adaptability of Populus bolleana and other Poplar trees in northwest Shanxi Province

    Institute of Scientific and Technical Information of China (English)

    吕皎

    2001-01-01

    Through five years (1996-2000) experiment, the growth characteristics and resistance to insect and cold of the seven poplar varieties including P. popularis, P. opera, P. pseudo-simonii, P. beijinensis, P. bolleana, P. ′ euramericana and P. simonii, which were planted in loess hilly land in northwest Shanxi Province, were tested under different planting densities and site conditions. A randomized block design and three times repetition were adopted in the test. Based on the test results in arid and cold area of the northwest Shanxi, the hybrid poplar trees taking Populus cathaysna as their female parent could be selected for afforestation, such as P. popularis and P. opera, and the growing space of single plant should be larger than 20 m2. P. bolleana as an introduced tree speci-es grows well in this area, but its growth is likely affected by ground water condition. On the site with relatively abundant soil water, P. bolleana usually suffer from frost crack at its trunk base. As a result, P. bolleara is suited to planting in the site where is short of soil water. P. x euramericana is not suitable for large-scale afforestation, espe-cially in arid slopes and ridges of loess hilly land.%在山西省西北部黄土丘陵区,通过对7个杨树品种:群众杨(P.popularis)、合作杨(P.opera)、小青杨(P.pseudosimonii)、北京杨(P.beijingensis)、新疆杨(P.opulus bolleana)、沙兰杨(P.×euramericana)、小叶杨(P.simonii)的引种栽培试验,随机区组3次重复,研究其在不同立地条件下的生长量及对虫害、冻害的抗性,通过5年观测分析,提出了在干旱寒冷的晋西北地区,应选择以青杨为母本的杂交杨,如群众杨、合作杨、小黑杨等进行造林,单株营养面积应大于20 m2。新疆杨作为引进树种在该地区生长表现良好,但树木的生长受地下水影响明显。在土壤水分比较充沛的地方,新疆杨树干基部则易冻裂。因此,此树种最宜

  18. Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.

    Science.gov (United States)

    Ríos, Gabino; Naranjo, Miguel A; Iglesias, Domingo J; Ruiz-Rivero, Omar; Geraud, Marion; Usach, Antonio; Talón, Manuel

    2008-08-09

    Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in

  19. Characterization of hemizygous deletions in Citrus using array-Comparative Genomic Hybridization and microsynteny comparisons with the poplar genome

    Directory of Open Access Journals (Sweden)

    Usach Antonio

    2008-08-01

    Full Text Available Abstract Background Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Results Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. Conclusion In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected

  20. Clone-Specific Response in Leaf Nitrate Reductase Activity among Unrelated Hybrid Poplars in relation to Soil Nitrate Availability

    Directory of Open Access Journals (Sweden)

    Julien Fortier

    2012-01-01

    Full Text Available In this field study, we used in vivo NRA activity in hybrid poplar leaves as an indicator of NO3- assimilation for five unrelated hybrid poplar clones. We also examined if leaf NRA of these clones is influenced to the same extent by different levels of soil NO3- availability in two riparian agroforestry systems located in pastures. Leaf NRA differences of more than one order of magnitude were observed between the clones, clearly showing their different abilities to reduce NO3- in leaves. Clone DxN-3570, a P. deltoides x P. nigra hybrid (Aigeiros intrasectional hybrid, always had the highest leaf NRA during the field assays. This clone was also the only one to increase its leaf NRA with increasing NO3- soil availability, which resulted in a significant Site x Clone interaction and a positive relationship between soil NO3- concentration and NRA. All of the four other clones studied had one or both parental species from the Tacamahaca section. They had relatively low leaf NRA and they did not increase their leaf NRA when grown on the NO3- rich site. These results provide evidence that NO3- assimilation in leaves varies widely among hybrid poplars of different parentages, suggesting potential preferences for N forms.

  1. ADVANCING PROTOCOLS FOR POPLARS in vitro PROPAGATION, REGENERATION AND SELECTION OF TRANSFORMANTS

    Directory of Open Access Journals (Sweden)

    Nataliia Kutsokon

    2013-02-01

    Full Text Available Poplars (genus Populus have emerged as a model organism for forest biotechnology, and genetic modification is more advanced for this genus than for any other tree. So far several protocols for microclonal propagation and regeneration for Populus species have been developed. However it is well known that these protocols differ for various species and need to be adapted even for different clones of the same species. This work was focused on developing of protocols for propagation, regeneration and putative transformant´s selection of aspen Populus tremula L. and other two fast-growing Populus species (P. nigra L., P. x canadensis Moench. The regeneration ability for black poplar explants was demonstrated to be three times higher compared to those for aspen and hybrid poplar. It was found that concentration 1 mg/L of phosphinothricin and 25 mg/L of kanamycin is toxic for non- transgenic plant tissues of P. x canadensis and can be applied in transformation experiments when genes of resistance to the corresponding selective agents into the plant genome are introduced.

  2. Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves.

    Science.gov (United States)

    Bagard, Matthieu; Le Thiec, Didier; Delacote, Emilien; Hasenfratz-Sauder, Marie-Paule; Banvoy, Jacques; Gérard, Joëlle; Dizengremel, Pierre; Jolivet, Yves

    2008-12-01

    Young poplar trees (Populus tremula Michx. x Populus alba L. clone INRA 717-1B4) were subjected to 120 ppb of ozone for 35 days in phytotronic chambers. Treated trees displayed precocious leaf senescence and visible symptoms of injury (dark brown/black upper surface stippling) exclusively observed on fully expanded leaves. In these leaves, ozone reduced parameters related to photochemistry (Chl content and maximum rate of photosynthetic electron transport) and photosynthetic CO(2) fixation [net CO(2) assimilation, Rubisco (ribulose-1,5-bisphosphate carboxylase oxygenase) activity and maximum velocity of Rubisco for carboxylation]. In fully expanded leaves, the rate of photorespiration as estimated from Chl fluorescence was markedly impaired by the ozone treatment together with the activity of photorespiratory enzymes (Rubisco and glycolate oxidase). Immunoblot analysis revealed a decrease in the content of serine hydroxymethyltransferase in treated mature leaves, while the content of the H subunit of the glycine decarboxylase complex was not modified. Leaves in the early period of expansion were exempt from visible symptoms of injury and remained unaffected as regards all measured parameters. Leaves reaching full expansion under ozone exposure showed potential responses of protection (stimulation of mitochondrial respiration and transitory stomatal closure). Our data underline the major role of leaf phenology in ozone sensitivity of photosynthetic processes and reveal a marked ozone-induced inhibition of photorespiration.

  3. Investigation on effect of Populus alba stands distance on density of pests and their natural enemies population under poplar/alfalfa agroforestry system.

    Science.gov (United States)

    Khabir, Z H; Sadeghi, S E; Hanifeh, S; Eivazi, A

    2009-01-15

    This study was carried out in order to distinguish the effect of agroforestry system (combination of agriculture and forestry) on pests and natural enemy's population in poplar research station. Wood is one of the first substances that naturally was used for a long period of time. Forage is an important production of natural resources too. Some factors such as proper lands deficit, lack of economy, pest and disease attacks and faced production of these materials with serious challenges. Agroforestry is a method for decrease of the mentioned problems. The stands of poplar had have planted by complete randomized design with 4 treatments (stand distance) of poplar/alfalfa include 3x4, 3x6.7, 3x8, 3x10 m and 2 control treatments, alfalfa and poplar. The results showed that Chaitophorus populeti had the highest density in poplar and 3x10 m treatments. Monosteira unicostata is another insect pest that had most density in 3x10 m treatment. And alfalfa had high density of Chrysoperla carnea. The density of Coccinella septempunctata, were almost equal in all treatments.

  4. Biochemical, physiological and climatic influence on the emission of isoprenoides from Grey Poplar (Populus x canescens (Aiton) Sm.) and Holm Oak (Quercus ilex L.); Biochemische, physiologische und klimatische Einfluesse auf die Isoprenoidemission der Graupappel (Populus x canescens (Aiton) Sm.) und der Steineiche (Quercus ilex L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, S.

    2007-05-15

    Because of their important role for the atmospheric chemistry, global daily and seasonal emission rates of isoprene and monoterpenes have to be estimated with accuracy. Therefore, detailed knowledge of biochemical and physiological processes within the plant metabolism has to be gathered. Afterwards the gained cognitions are used as information for process-based model calculations. The major scope of the work was therefore to enlarge basic knowledge of the regulation of isoprenoid emission, which is known to be dependent on several environmental factors, especially light and temperature. Measurements of diurnal isoprene emission have been performed in parallel on physiological, translational and transcriptional level on leaves of Grey Poplar (Populus x canescens), a strong isoprene emitting species. Additionally, examinations of diurnal monoterpene emission in connection to physiologic and enzymatic processes was conducted in leaves of Holm Oak (Quercus ilex), which emits a large spectrum of monoterpenes. Furthermore a hypothesis was tested, whether isoprene emission may serve the plant as antioxidative protection mechanism in order to overcome oxidative stress. In main parts, the following results have been reached: 1. In the first part of this work, isolation of PcDXR (DXR of Grey Poplar) from a cDNA-Genbank and heterologous expression of the isolated gene was accomplished. 2. Daytime variation of physiological and biochemical parameters of the isoprene emission of Grey Poplar was measured twice on 2 following days in 2 years. All together, measurements have been performed on 8 representative plants. 3. Quantitative RT-PCR elucidated the gene expression pattern of PcDXR and PcISPS in parallel to diurnal gas exchange measurements. Gene expression of PcISPS showed distinct diurnal courses with maximum values on the late morning, whereas PcDXR transcript levels stayed consistent over the day. No short-term influence of PPFD and leaf temperature has been observed on

  5. Photosynthesis, water relations, and growth of two hybrid Populus genotypes during a severe drought

    Energy Technology Data Exchange (ETDEWEB)

    Dickmann, D.I.; Liu, Zuijun; Nguyen, Phu V.; Pregitzer, K.S. (Michigan State Univ., East Lansing, MI (USA))

    1992-01-01

    During the 1988 growing season in East Lansing, Michigan, only 1.53 cm of rain fell from mid-May to mid-July, causing a severe drought. Then, a period of near record precipitation commenced; 30.4 cm of rain fell from July 19 to October 4. Growth, photosynthesis, and water relations of hybrid poplar cultivars Eugenei and Tristis, which had been established in the spring of 1987 in plastic pots buried in the ground, were measured on several sunny days during the 1988 growing season. Pots were irrigated at two different rates, and half the pots received supplemental nitrogen fertilizer. On a seasonal basis, photosynthesis and water-use efficiency in both genotypes peaked in early July and declined thereafter. Stomatal conductances were low during the drought but increased substantially when the rains commenced. Whereas nitrogen level had little effect on leaf physiology, the low water treatment produced significant reductions in photosynthesis and conductance. Diurnal measurements were made on June 17 and July 12. On both days photosynthesis and conductances were higher in Tristis than in Eugenei, especially for plants in the high water treatments and on July 12, the most extreme period of the drought. Drought produced both stomatal and mesophyll limitations to photosynthesis in both clones, though these responses were more pronounced in Eugenei. This clone also showed very low water-use efficiencies in the low water treatment on July 12. Even though the physiology of Eugenei was more impacted by drought than Tristis, it still produced two to three times more biomass over the 2-year period of the study than did Tristis. 41 refs., 10 figs., 5 tabs.

  6. Responses of hybrid poplar clones and red maple seedlings to ambient O(3) under differing light within a mixed hardwood forest.

    Science.gov (United States)

    Wei, C; Skelly, J M; Pennypacker, S P; Ferdinand, J A; Savage, J E; Stevenson, R E; Davis, D D

    2004-07-01

    The responses of ramets of hybrid poplar (Populus spp.) (HP) clones NE388 and NE359, and seedlings of red maple (Acer rubrum, L.) to ambient ozone (O(3)) were studied during May-September of 2000 and 2001 under natural forest conditions and differing natural sunlight exposures (sun, partial shade and full shade). Ambient O(3) concentrations at the study site reached hourly peaks of 109 and 98 ppb in 2000 and 2001, respectively. Monthly 12-h average O(3) concentrations ranged from 32.3 to 52.9 ppb. Weekly 12-h average photosynthetically active radiation (PAR) within the sun, partial shade and full shade plots ranged from 200 to 750, 50 to 180, and 25 to 75 micromol m(-2) s(-1), respectively. Ambient O(3) exposure induced visible foliar symptoms on HP NE388 and NE359 in both growing seasons, with more severe injury observed on NE388 than on NE359. Slight foliar symptoms were observed on red maple seedlings during the 2001 growing season. Percentage of total leaf area affected (%LAA) was positively correlated with cumulative O(3) exposures. More severe foliar injury was observed on plants grown within the full shade and partial shade plots than those observed on plants grown within the sun plot. Lower light availability within the partial shade and full shade plots significantly decreased net photosynthetic rate (Pn) and stomatal conductance (g(wv)). The reductions in Pn were greater than reductions in g(wv), which resulted in greater O(3) uptake per unit Pn in plants grown within the partial shade and full shade plots. Greater O(3) uptake per unit Pn was consistently associated with more severe visible foliar injury in all species and/or clones regardless of differences in shade tolerance. These studies suggest that plant physiological responses to O(3) exposure are likely complicated due to multiple factors under natural forest conditions.

  7. An efficient Agrobacterium-mediated transformation system for poplar.

    Science.gov (United States)

    Movahedi, Ali; Zhang, Jiaxin; Amirian, Rasoul; Zhuge, Qiang

    2014-06-13

    Poplar is a model system for the regeneration and genetic transformation of woody plants. To shorten the time required for studies of transgenic poplar, efforts have been made to optimize transformation methods that use Agrobacterium tumefaciens. In this study, an Agrobacterium infective suspension was treated at 4 °C for at least 10 h before infecting explants. By transforming the Populus hybrid clone "Nanlin895" (Populus deltoides×P. euramericana) with Agrobacterium harboring the PBI121:CarNAC6 binary vector, we showed that the transformation efficiency was improved significantly by multiple independent factors, including an Agrobacterium infective suspension with an OD600 of 0.7, an Agrobacterium infection for 120 min, an Agrobacterium infective suspension at a pH of 5.0, an acetosyringone concentration of 200 µM, a cocultivation at 28 °C, a cocultivation for 72 h and a sucrose concentration of 30 g/L in the cocultivation medium. We also showed that preculture of wounded leaf explants for two days increased the regeneration rate. The integration of the desired gene into transgenic poplars was detected using selective medium containing kanamycin, followed by southern blot analysis. The expression of the transgene in the transgenic lines was confirmed by northern blot analysis.

  8. An Efficient Agrobacterium-Mediated Transformation System for Poplar

    Directory of Open Access Journals (Sweden)

    Ali Movahedi

    2014-06-01

    Full Text Available Poplar is a model system for the regeneration and genetic transformation of woody plants. To shorten the time required for studies of transgenic poplar, efforts have been made to optimize transformation methods that use Agrobacterium tumefaciens. In this study, an Agrobacterium infective suspension was treated at 4 °C for at least 10 h before infecting explants. By transforming the Populus hybrid clone “Nanlin895” (Populus deltoides × P. euramericana with Agrobacterium harboring the PBI121:CarNAC6 binary vector, we showed that the transformation efficiency was improved significantly by multiple independent factors, including an Agrobacterium infective suspension with an OD600 of 0.7, an Agrobacterium infection for 120 min, an Agrobacterium infective suspension at a pH of 5.0, an acetosyringone concentration of 200 µM, a cocultivation at 28 °C, a cocultivation for 72 h and a sucrose concentration of 30 g/L in the cocultivation medium. We also showed that preculture of wounded leaf explants for two days increased the regeneration rate. The integration of the desired gene into transgenic poplars was detected using selective medium containing kanamycin, followed by southern blot analysis. The expression of the transgene in the transgenic lines was confirmed by northern blot analysis.

  9. Allometric Biomass, Biomass Expansion Factor and Wood Density Models for the OP42 Hybrid Poplar in Southern Scandinavia

    DEFF Research Database (Denmark)

    Nielsen, Anders Tærø; Nord-Larsen, Thomas; Stupak, Inge

    2015-01-01

    Biomass and biomass expansion factor functions are important in wood resource assessment, especially with regards to bioenergy feedstocks and carbon pools. We sampled 48 poplar trees in seven stands with the purpose of estimating allometric models for predicting biomass of individual tree...... components, stem-to-aboveground biomass expansion factors (BEF) and stem basic densities of the OP42 hybrid poplar clone in southern Scandinavia. Stand age ranged from 3 to 31 years, individual tree diameter at breast height (dbh) from 1.2 to 41 cm and aboveground tree biomass from 0.39 to 670 kg. Models...... for predicting total aboveground leafless, stem and branch biomass included dbh and tree height as predictor variables and explained more than 97 % of the total variation. The BEF was approaching 2.0 for the smallest trees but declined with increasing tree size and stabilized around 1.2 for trees with dbh >10 cm...

  10. Post-treatment mechanical refining as a method to improve overall sugar recovery of steam pretreated hybrid poplar.

    Science.gov (United States)

    Dou, Chang; Ewanick, Shannon; Bura, Renata; Gustafson, Rick

    2016-05-01

    This study investigates the effect of mechanical refining to improve the sugar yield from biomass processed under a wide range of steam pretreatment conditions. Hybrid poplar chips were steam pretreated using six different conditions with or without SO2. The resulting water insoluble fractions were subjected to mechanical refining. After refining, poplar pretreated at 205°C for 10min without SO2 obtained a 32% improvement in enzymatic hydrolysis and achieved similar overall monomeric sugar recovery (539kg/tonne) to samples pretreated with SO2. Refining did not improve hydrolyzability of samples pretreated at more severe conditions, nor did it improve the overall sugar recovery. By maximizing overall sugar recovery, refining could partially decouple the pretreatment from other unit operations, and enable the use of low temperature, non-sulfur pretreatment conditions. The study demonstrates the possibility of using post-treatment refining to accommodate potential pretreatment process upsets without sacrificing sugar yields.

  11. Assessment of Rhizospheric Microorganisms of Transgenic Populus tomentosa with Cowpea Trypsin Inhibitor (CpTI) Gene

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To have a preliminary insight into biosafety of genetically transformed hybrid triploid poplars (Populus tomentosa × P. bolleana) × P. tomentosa with the cowpea trypsin inhibitor (CpTI) gene, two layers of rhizospheric soil (from 0 to 20 cm deep and from 20 to 40 cm deep, respectively) were collected for microorganism culture, counting assay and PCR analysis to assess the potential impact of transgenic poplars on non-target microorganism population and transgene dispersal. When the same soil layer of suspension stock solution was diluted at both 1:1 000 and 1:10 000 rates, there were no significant differences in bacterium colony numbers between the inoculation plates of both transgenic and non-transgenic poplars. The uniform results were revealed for both soil layer suspension solutions of identical poplars at both dilution rates except for non-transgenic poplars at 1:10 000 dilution rates from the same type of soil. No significant variation in morphology of both Gram-positive and Gram-negative bacteria was observed under the microscope. The potential transgene dispersal from root exudates or fallen leaves to non-target microbes was repudiated by PCR analysis, in which no CpTI gene specific DNA band was amplified for 15 sites of transgenic rhizospheric soil samples. It can be concluded that transgenic poplar with the CpTI gene has no severe impact on rhizospheric microorganisms and is tentatively safe to surrounding soil micro-ecosystem.

  12. Enhancement of Lignin Biopolymer Isolation from Hybrid Poplar by Organosolv Pretreatments

    Directory of Open Access Journals (Sweden)

    Miao Wu

    2014-01-01

    Full Text Available Lignocellulosic biomass is an abundant renewable resource that has the potential to displace petroleum in the production of biomaterials and biofuels. In the present study, the fractionation of different lignin biopolymers from hybrid poplar based on organosolv pretreatments using 80% aqueous methanol, ethanol, 1-propanol, and 1-butanol at 220°C for 30 min was investigated. The isolated lignin fractions were characterized by Fourier transform infrared spectroscopy (FT-IR, high-performance anion exchange chromatography (HPAEC, 2D nuclear magnetic resonance (2D NMR, and thermogravimetric analysis (TGA. The results showed that the lignin fraction obtained with aqueous ethanol (EOL possessed the highest yield and the strongest thermal stability compared with other lignin fractions. In addition, other lignin fractions were almost absent of neutral sugars (1.16–1.46% though lignin preparation extracted with 1-butanol (BOL was incongruent (7.53%. 2D HSQC spectra analysis revealed that the four lignin fractions mainly consisted of β-O-4′ linkages combined with small amounts of β-β′ and β-5′ linkages. Furthermore, substitution of Cα in β-O-4′ substructures had occurred due to the effects of dissolvent during the autocatalyzed alcohol organosolv pretreatments. Therefore, aqueous ethanol was found to be the most promising alcoholic organic solvent compared with other alcohols to be used in noncatalyzed processes for the pretreatment of lignocellulosic biomass in biorefinery.

  13. Molecular Dissection of Xylan Biosynthesis during Wood Formation in Poplar

    Institute of Scientific and Technical Information of China (English)

    Chanhui Lee; Quincy Teng; Ruiqin Zhong; Zheng-Hua Ye

    2011-01-01

    Xylan, being the second most abundant polysaccharide in dicot wood, is considered to be one of the factors contributing to wood biomass recalcitrance for biofuel production. To better utilize wood as biofuel feedstock, it is crucial to functionally characterize all the genes involved in xylan biosynthesis during wood formation. In this report, we inves-tigated roles of poplar families GT43 and GT8 glycosyltransferases in xylan biosynthesis during wood formation. There exist seven GT43 genes in the genome of poplar (Populus trichocarpa), five of which, namely PtrGT43A, PtrGT43B,PtrGT43C, PtrGT43D, and PtrGT43E, were shown to be highly expressed in the developing wood and their encoded proteins were localized in the Golgi. Comprehensive genetic complementation coupled with chemical analyses demonstrated that overexpression of PtrGT43A/B/E but not PtrGT43C/D was able to rescue the xylan defects conferred by the Arabidopsis irx9mutant, whereas overexpression of PtrGT43C/D but not PtrGT43A/B/E led to a complementation of the xyian defects in the Arabidopsis irx14 mutant. The essential roles of poplar GT43 members in xylan biosynthesis was further substantiated by RNAi down-regulation of GT43B in the hybrid poplar (Populus alba x tremula)leading to reductions in wall thickness and xylan content in wood, and an elevation in the abundance of the xylan reducing end sequence. Wood digestibility analysis revealed that cellulase digestion released more glucose from the wood of poplar GT43B RNAi lines than the control wood, indicating a decrease in wood biomass recalcitrance. Furthermore, RNAi down-regulation of another poplar wood-associated glycosyltransferase, PoGT8D, was shown to cause decreases in wall thickness and xylan content as well as in the abundance of the xylan reducing end sequence. Together, these findings demonstrate that the poplar GT43 mem-bers form two functionally non-redundant groups, namely PtrGT43A/B/E as functional orthologs of Arabidopsis IRX9 and Ptr

  14. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra.

    Directory of Open Access Journals (Sweden)

    Weidong Gao

    Full Text Available Late embryogenesis abundant (LEA genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA was transformed into Xiaohei poplar (Populussimonii × P. nigra via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR and ribonucleic acid (RNA gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11 showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.

  15. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification.

    Science.gov (United States)

    Yıldırım, Kubilay; Uylaş, Senem

    2016-12-01

    Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation responses of these trees to B toxicity have not been investigated yet. Here, B accumulation and tolerance level of black poplar clones were firstly tested in the current study. Rooted cutting of these clones were treated with elevated B toxicity to select the most B accumulator and tolerant genotype. Then we carried out a microarray based transcriptome experiment on the leaves and roots of this genotype to find out transcriptional networks, genes and molecular mechanisms behind B toxicity tolerance. The results of the study indicated that black poplar is quite suitable for phytoremediation of B pollution. It could resist 15 ppm soil B content and >1500 ppm B accumulation in leaves, which are highly toxic concentrations for almost all agricultural plants. Transcriptomics results of study revealed totally 1625 and 1419 altered probe sets under 15 ppm B toxicity in leaf and root tissues, respectively. The highest induction were recorded for the probes sets annotated to tyrosine aminotransferase, ATP binding cassette transporters, glutathione S transferases and metallochaperone proteins. Strong up regulation of these genes attributed to internal excretion of B into the cell vacuole and existence of B detoxification processes in black poplar. Many other candidate genes functional in signalling, gene regulation, antioxidation, B uptake and transport processes were also identified in this hyper B accumulator plant for the first time with the current study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility.

    Science.gov (United States)

    Zeng, Yan-Fei; Zhang, Jian-Guo; Duan, Ai-Guo; Abuduhamiti, Bawerjan

    2016-06-16

    In plants, the maintenance of species integrity despite hybridization has often been explained by the co-adaption of nuclear gene complexes. However, the interaction between plastid and nuclear sub-genomes has been underestimated. Here, we analyzed the genetic structure of a Populus alba and P. tremula hybrid zone along the Irtysh River system in the Altai region, northwest China, using both nuclear microsatellites and plastid DNA sequences. We found high interspecific differentiation, although the hybrid P. × canescens was prevalent. Bayesian inference classified most hybrids into F1, followed by a few back-crosses to P. alba, and fewer F2 hybrids and back-crosses to P. tremula, indicating a few introgressions but preference toward P. alba. When plastid haplotypes in parental species were distinct, P. × canescens carried the haplotypes of both parents, but showed significant linkage between intraspecific haplotype and nuclear genotypes at several microsatellite loci. Selection, rather than migration and assortative mating, might have contributed to such plastid-nuclear disequilibria. By removing later-generated hybrids carrying interspecific combinations of haplotype and nuclear genotypes, plastid-nuclear incompatibility has greatly limited the gene exchange between P. alba and P. tremula via backcrossing with hybrids, demonstrating a significant association between plastid haplotype and the proportion of nuclear admixture.

  17. Tissue Culture Technology for Populus × euramericana Hybrids: Effect of Genotype on in Vitro Regeneration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to select a suitable genotype for the studies on genetic transformation, the difference among three genotypes (DN04-18, DN04-25 and DN04-26) of Populus × euramericana (Populus deltoides × P. nigra) in terms of shoot regeneration was investigated in this paper. An efficient in vitro micropropagation method was successfully established for genotype DN04-18. The high frequency shoot regeneration (90.0%) from leaf discs was obtained in genotype DN04-18 on the modified Murashige and Skoog (mMS) medium w...

  18. Histological characterization of gell formation and lesion development on leaves of Phaseolus vulgaris and clones of hybrid poplar after exposure to simulated sulfate acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Dacosta, F.

    1978-01-01

    Histological investigations with leaves of several hybrid poplar clones illustrate gall formations in response to simulated acid rain that result from hyperplasia and hypertrophy of mesophyll cells. Similar experiments with phaseolus vulgaris and clones of hybrid poplar show a sequence of events that follow a general pattern of adaxial epidermis destruction, injury to palisade parenchyma and eventual destruction of more interior tissues after continued exposure to one, six-minute, rain event daily. Results show that most (95%) lesions on Phaseolus vulgaris developed near trichomes and stomata after exposure to the simulated acid rain.

  19. Increasing the productivity of biomass plantations of Populus species and hybrids in the Pacific Northwest. Final report, September 14, 1981--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W. [USDA Forest Service, Olympia, WA (United States)] [and others

    1997-08-01

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies described herein provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns thereof differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. The work was accomplished in three research plantations, all established cooperatively with the Washington State Department of Natural Resources (DNR) and located at the DNR Tree Improvement Center near Olympia. The first plantation was established in Spring 1986 to evaluate the highly touted {open_quotes}woodgrass{close_quotes} concept and compare it with more conventional short-rotation management regimes, using two Populus hybrid clones planted at five spacings. Besides providing scientific data to resolve the politicized {open_quotes}wood-grass{close_quotes} dispute, this plantation has furnished excellent data on stand dynamics and woody biomass yield. A second plantation was established at the same time; groups of trees therein received two levels of irrigation and different amounts of four fertilizer amendments, resulting in microsites with diverse moisture and nutrient conditions.

  20. Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F1 poplar cross and differential expression of genes in ectomycorrhizas of the two parents: Populus deltoides and Populus trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Jorge, Veronique [INRA, Nancy, France; Vion, Patrice [INRA, Nancy, France; Marcais, Benoit [INRA, Nancy, France; Bastien, Catherine [INRA, Orleans, France; Tuskan, Gerald A [ORNL; Martin, Francis [INRA, Nancy, France; Le Tacon, F [UMR, France

    2011-01-01

    A Populus deltoides Populus trichocarpa F1 pedigree was analyzed for quantitative trait loci (QTLs) affecting ectomycorrhizal development and for microarray characterization of gene networks involved in this symbiosis. A 300 genotype progeny set was evaluated for its ability to form ectomycorrhiza with the basidiomycete Laccaria bicolor. The percentage of mycorrhizal root tips was determined on the root systems of all 300 progeny and their two parents. QTL analysis identified four significant QTLs, one on the P. deltoides and three on the P. trichocarpa genetic maps. These QTLs were aligned to the P. trichocarpa genome and each contained several megabases and encompass numerous genes. NimbleGen whole-genome microarray, using cDNA from RNA extracts of ectomycorrhizal root tips from the parental genotypes P. trichocarpa and P. deltoides, was used to narrow the candidate gene list. Among the 1,543 differentially expressed genes (p value 0.05; 5.0-fold change in transcript level) having different transcript levels in mycorrhiza of the two parents, 41 transcripts were located in the QTL intervals: 20 in Myc_d1, 14 in Myc_t1, and seven in Myc_t2, while no significant differences among transcripts were found in Myc_t3. Among these 41 transcripts, 25 were overrepresented in P. deltoides relative to P. trichocarpa; 16 were overrepresented in P. trichocarpa. The transcript showing the highest overrepresentation in P. trichocarpa mycorrhiza libraries compared to P. deltoides mycorrhiza codes for an ethylene-sensitive EREBP-4 protein which may repress defense mechanisms in P. trichocarpa while the highest overrepresented transcripts in P. deltoides code for proteins/genes typically associated with pathogen resistance.

  1. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, T.J.; Tuskan, G.A. [Oak Ridge National Lab., TN (United States); Wierman, C. [Boise Cascade Corp., Wallula, WA (United States)

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  2. Field Supervisory Test of DREB-Transgenic Populus: Salt Tolerance, Long-Term Gene Stability and Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2014-05-01

    Full Text Available Improving saline resistance may be useful for reducing environmental susceptibility and improving yields in poplar plantations. However, the instability of genetically engineered traits and gene transfer reduce their usefulness and commercial value. To investigate whether the foreign gene is still present in the genome of receptor plants after seven years (i.e., long-term foreign gene stability and gene transfer, we randomly analyzed ten field-grown transgenic hybrid Populus ((Populus tomentosa × Populus bolleana × P. tomentosa carrying the DREB1 gene from Atriplex hortensis. The results of PCR and tissue culture experiments showed that AhDREB1 was present in the transgenic trees and was still expressed. However, the transcriptional expression level had decreased compared with that four years earlier. The PCR results also indicated no foreign gene in the genomic DNA of microorganisms in the soil near the transgenic poplars, indicating that no significant gene transfer had occurred from the transgenic poplars to the microorganisms at seven years after planting.

  3. Specific gravity of hybrid poplars in the north-central region, USA: within-tree variability and site × genotype effects

    Science.gov (United States)

    William L. Headlee; Ronald S. Jr. Zalesny; Richard B. Hall; Edmund O. Bauer; Bradford Bender; Bruce A. Birr; Raymond O. Miller; Jesse A. Randall; Adam H. Wiese

    2013-01-01

    Specific gravity is an important consideration for traditional uses of hybrid poplars for pulp and solid wood products, as well as for biofuels and bioenergy production. While specific gravity has been shown to be under strong genetic control and subject to within-tree variability, the role of genotype × environment interactions is poorly understood. Most...

  4. GROWTH AND PRODUCTIVITY OF POPLAR SPECIES IN SOUTHEASTERN KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Dani Sarsekova

    2015-09-01

    Full Text Available A small area of forestation and an acute shortage of timber are reasons to seek ways to improve  productivity and the rational use of forests in the territory of Kazakhstan. A deficit in timber can be compensated, to some extent, by planting stands of fast-growing plantation species, including top and hybrid Populus spp, which are commonly referred to as “poplar”.There is an increased interest in poplar, globally, due to its organic traits and the economic value it provides, including:rapid growth and ability to produce wood that is technically suitable for cutting within 20 years of planting;a source of suitable timber for use in most industries;the ability to grow in soils that are not  generally suitable for agricultural use;a potential source of timber for widespread use in screening, landscape and recreational plantings; andthe ability of most poplar species and hybrids to asexually propagate.There has been extensive planting of poplar trees in Kazakhstan, especially in the south and south-east. Poplar trees have been planted in populated areas, along roads and in forest stands. However, these plantings are unsuitable as a source of timber for commercial or ornamental purposes. Hence, there is a need to establish plantations of poplar for timber supply in Kazakhstan.The  most common types of poplar in this country are the deltoid, Algerian, and Bolle, which were used in the extensive greenery planting of southeastern Kazakhstan. The main factors ensuring high productivity of poplar plantations are the soil conditions of fertility, good aeration and adequate moisture. Results of this study indicate that the greatest height increase occurs in these trees between the age of 5 and 10 years, and for trunk diameter, between the age of 4 and 9 years. After this age, the growth rate gradual declines, with a sharp fall off in the rate noticeable between years 14 and 16. Additionally, results of this study show the high productivity of poplar

  5. Poplar MYB115 and MYB134 Transcription Factors Regulate Proanthocyanidin Synthesis and Structure.

    Science.gov (United States)

    James, Amy Midori; Ma, Dawei; Mellway, Robin; Gesell, Andreas; Yoshida, Kazuko; Walker, Vincent; Tran, Lan; Stewart, Don; Reichelt, Michael; Suvanto, Jussi; Salminen, Juha-Pekka; Gershenzon, Jonathan; Séguin, Armand; Constabel, C Peter

    2017-05-01

    The accumulation of proanthocyanidins is regulated by a complex of transcription factors composed of R2R3 MYB, basic helix-loop-helix, and WD40 proteins that activate the promoters of biosynthetic genes. In poplar (genus Populus), MYB134 is known to regulate proanthocyanidin biosynthesis by activating key flavonoid genes. Here, we characterize a second MYB regulator of proanthocyanidins, MYB115. Transgenic poplar overexpressing MYB115 showed a high-proanthocyanidin phenotype and reduced salicinoid accumulation, similar to the effects of MYB134 overexpression. Transcriptomic analysis of MYB115- and MYB134-overexpressing poplar plants identified a set of common up-regulated genes encoding proanthocyanidin biosynthetic enzymes and several novel uncharacterized MYB transcriptional repressors. Transient expression experiments demonstrated the capacity of both MYB134 and MYB115 to activate flavonoid promoters, but only in the presence of a basic helix-loop-helix cofactor. Yeast two-hybrid experiments confirmed the direct interaction of these transcription factors. The unexpected identification of dihydromyricetin in leaf extracts of both MYB115- and MYB134-overexpressing poplar led to the discovery of enhanced flavonoid B-ring hydroxylation and an increased proportion of prodelphinidins in proanthocyanidin of the transgenics. The dramatic hydroxylation phenotype of MYB115 overexpressors is likely due to the up-regulation of both flavonoid 3',5'-hydroxylases and cytochrome b5 Overall, this work provides new insight into the complexity of the gene regulatory network for proanthocyanidin synthesis in poplar. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Genome anchored QTLs for biomass productivity in hybrid Populus grown under contrasting environments.

    Directory of Open Access Journals (Sweden)

    Wellington Muchero

    Full Text Available Traits related to biomass production were analyzed for the presence of quantitative trait loci (QTLs in a Populus trichocarpa × P. deltoides F(2 population. A genetic linkage map composed of 841 SSR, AFLP, and RAPD markers and phenotypic data from 310 progeny were used to identify genomic regions harboring biomass QTLs. Twelve intervals were identified, of which BM-1, BM-2, and BM-7 were identified in all three years for both height and diameter. One putative QTL, BM-7, and one suggestive QTL exhibited significant evidence of over-dominance in all three years for both traits. Conversely, QTLs BM-4 and BM-6 exhibited evidence of under-dominance in both environments for height and diameter. Seven of the nine QTLs were successfully anchored, and QTL peak positions were estimated for each one on the P. trichocarpa genome assembly using flanking SSR markers with known physical positions. Of the 3,031 genes located in genome-anchored QTL intervals, 1,892 had PFAM annotations. Of these, 1,313, representing 255 unique annotations, had at least one duplicate copy in a QTL interval identified on a separate scaffold. This observation suggests that some QTLs identified in this study may have shared the same ancestral sequence prior to the salicoid genome duplication in Populus.

  7. The response of Populus spp. to cadmium stress: chemical, morphological and proteomics study.

    Science.gov (United States)

    Marmiroli, Marta; Imperiale, Davide; Maestri, Elena; Marmiroli, Nelson

    2013-10-01

    Poplar (Populus) species are seen as candidates for removing heavy metal contamination from polluted soil. A bottom-up multidisciplinary approach was utilized to compare the performances of clones 58-861 and Poli (Populus nigra) and A4A, a Populus nigra × Populus deltoides hybrid to Cd toxicity. Qualitative and quantitative differences in their tolerance to Cd exposure and the uptake, accumulation and translocation of Cd were noted following the hydroponic exposure of rooted cuttings to 20 μM CdSO₄ for either 48 h or 14 d. Cadmium was less toxic for the hybrid clone A4A as compared to Poli and 58-861. Cd uptake and root to shoot translocation were determined by AAS, and its compartmentation was analyzed using SEM/EDX. A comparative proteomic approach was utilized to identify changes in proteins expression according to dose and time of exposure. Toxicity to Cd mainly influenced proteins related to general defense, stress response and carbohydrate metabolism.

  8. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products.

    Science.gov (United States)

    Devappa, Rakshit K; Rakshit, Sudip K; Dekker, Robert F H

    2015-11-01

    The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  9. Phasing Variants in Poplar Trees using a Hybrid of Short & Long Read Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schackwitz, Wendy; Martin, Joel; Lipzen, Anna; Pennacchio, Len; Tuskan, Gerald

    2013-03-26

    Poplar grow throughout the West coast & are adapted to extremely variable conditions. To examine what allows for this wide range of growth conditions, Jerry Tuskan's team has collected 1000 different individuals from British Columbia to California. In 2009, three Common Gardens were established where each individual was cloned in triplicate. Nearly all of these trees have been sequenced using short read technology, revealing a huge degree of variation in genotype. Correlating this genomic variation to phenotype would be greatly be strengthened if the variants could be phased into long haplotype blocks.

  10. 毛白杨花粉败育机制的研究%STUDY ON MECHANISM OF POLLEN ABORTION IN CHINESE WHITE POPLAR (\\%POPULUS TOMENTOSA\\% CARR.)

    Institute of Scientific and Technical Information of China (English)

    康向阳

    2001-01-01

    从细胞遗传学角度较为系统地揭示了毛白杨花粉败育的机制,即主要是毛白杨异质性遗传基础与环境相互作用的结果。(1)在减数分裂中有数目不等的联合程度较差的单价体以及落后染色体出现,这种与异质性相关的染色体行为异常,导致同源染色体向子细胞的不均衡分配,造成具功能染色体的缺失,从而引起毛白杨一定比率的败育花粉的产生;(2)遗传上的不平衡与温度等环境因子相互作用,进一步引发毛白杨生理乃至结构上的不平衡,花粉母细胞(或孢原细胞)和绒毡层细胞发育异常,从而造成不产粉或产粉较少;环境与基因型互作的差异性导致了花粉败育的年度不稳定性。(3)易位、倒位等染色体结构变异和天然三倍体株系的存在也是造成毛白杨花粉败育的原因。%The mechanism of pollen abortion in Chinese white poplar was revealed systematically from the observation of cytogenetics in this paper,that is,principally,resulted from interactions between environment and genetic heterogenetic basis of the species.(1)Unequal number of univalents with decreased degree of synapsis and lagging chromosomes occurred in meiosis.The abnormal chromosomal behavior correlated with heterogenicity gave rise to unequal allocation of homogenous chromosomes to daughter cells and resulted in the deletion of functional chromosoms,thus led to the occurence of a certion proportion of aborted pollens.(2)The interaction between genetic imbalance and such environmental factors as temperature,etc.,further drew forth physiological and even structrural imbalance,with abnormal development of pollen mother cells (orsporogonium) and tapetal cells,and consequently resulted in no or very few production of pollens.The difference in the interaction between environment and genotype reflected on the unstability of pollen abortion in different years.(3)The esistence of chromosome structrural

  11. Rooting of hybrid clones of Populus tremula L. x P. tremuloides Michx. by stem cuttings derived from micropropagated plants

    Energy Technology Data Exchange (ETDEWEB)

    Qibin Yu [Univ. of Helsinki (Finland). Dept. of Plant Biology; Maentylae, N. [Univ. of Turku (Finland). Dept. of Biology, Plant Physiology and Molecular Biology; Salonen, M. [Finnish Forest Research Inst., Laeyliaeinen (Finland). Haapastensyrjae Breeding Station

    2001-07-01

    Propagation costs could be cut by replacing part of the micropropagation process with steps involving more traditional techniques. This study explored possibilities for improving existing vegetative propagation techniques for aspen using stem cuttings obtained from micropropagated plants. Vegetative propagation through stem cuttings was studied in 10 micropropagated hybrid aspen clones (Populus tremula L. x P. tremuloides Michx). Cuttings containing one axillary bud were harvested from the same donor plants twice during the growing season: the first harvest in May and the second harvest in July. Rooting percentage was correlated positively with root length, number of roots and height of cutting plant but negatively with length of rooting. The average rooting percentage was 53% in the first harvest and 27% in second harvest. Indole-3-butyric acid treatments (1.2 mM) significantly improved rooting in the second harvest, but not in the first harvest, suggesting different endogenous auxin levels in the cuttings. A significant variation for most traits related to rooting ability was found among the clones, indicating that clonal effects play an important role in the propagation of aspen. Thus, clones with a good response in shoot growth and rooting could be exploited in large-scale propagation using stem cuttings.

  12. Specific Gravity of Hybrid Poplars in the North-Central Region, USA: Within-Tree Variability and Site × Genotype Effects

    Directory of Open Access Journals (Sweden)

    Jesse A. Randall

    2013-04-01

    Full Text Available Specific gravity is an important consideration for traditional uses of hybrid poplars for pulp and solid wood products, as well as for biofuels and bioenergy production. While specific gravity has been shown to be under strong genetic control and subject to within-tree variability, the role of genotype × environment interactions is poorly understood. Most specific gravity reports are for a limited number of locations, resulting in a lack of information about the interactions between clones and sites over a wide range of climate and soil conditions. The objective of the current study was to characterize the effects of bole position, site, clone, and site × clone interactions for twelve hybrid poplar genotypes grown in Iowa, Minnesota, Wisconsin, and Michigan, USA. Observed specific gravities ranged from 0.267 to 0.495 (mean = 0.352 ± 0.001 for 612 samples taken from 204 trees, with bole position and site × clone interactions having significant effects on specific gravity. Further investigation of the site × clone interactions indicated that environmental conditions related to water stress were key predictors of specific gravity. These data are important for informing genotypic selection and silvicultural management decisions associated with growing hybrid poplars.

  13. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus.

    Science.gov (United States)

    Grant, Emily H; Fujino, Takeshi; Beers, Eric P; Brunner, Amy M

    2010-07-01

    Wood has a wide variety of uses and is arguably the most important renewable raw material. The composition of xylem cell types in wood determines the utility of different types of wood for distinct commercial applications. Using expression profiling and phylogenetic analysis, we identified many xylem-associated regulatory genes that may control the differentiation of cells involved in wood formation in Arabidopsis and poplar. Prominent among these are NAC domain transcription factors (NACs). We studied NACs with putative involvement as negative (XND1 from Arabidopsis and its poplar orthologs PopNAC118, PopNAC122, PopNAC128, PopNAC129), or positive (SND2 and SND3 from Arabidopsis and their poplar orthologs PopNAC105, PopNAC154, PopNAC156, PopNAC157) regulators of secondary cell wall synthesis. Using quantitative PCR and in situ hybridization, we evaluated expression of these Populus NACs in a developmental gradient and in association with reaction wood and found that representatives from both groups were associated with wood-forming tissue and phloem fibers. Additionally, XND1 orthologs were expressed in mesophyll cells of developing leaves. We prepared transgenic Arabidopsis and poplar plants for overexpression of selected NACs. XND1 overexpression in poplar resulted in severe stunting. Additionally, poplar XND1 overexpressors lacked phloem fibers and showed reductions in cell size and number, vessel number, and frequency of rays in the xylem. Overexpression of PopNAC122, an XND1 ortholog, yielded an analogous phenotype in Arabidopsis. Overexpression of PopNAC154 in poplar reduced height growth and increased the relative proportion of bark versus xylem.

  14. Ozone-induced changes in carotenoids and chlorophylls in three Populus clones

    OpenAIRE

    Keski-Saari, Sarita; Dumont, Jennifer; Keinänen, Markku; Kontunen-Soppela, Sari; Oksanen, Elina; Le Thiec, Didier

    2011-01-01

    Ozone is a phytotoxic air pollutant causing oxidative stress. We studied the effect of ozone on carotenoids, chlorophylls and polyisoprenoid alcohols in three euramerican poplar clones (Populus deltoides x Populus nigra: 'Carpaccio', 'Cima' and 'Robusta'). Poplars originating from cuttings were grown for 6 weeks and exposed to ozone in fumigation chambers (120 ppb each day for 13h). Leaf samples were collected 2, 4, 11, 15 and 17 days after the start of ozone treatment. Chemical analyses were...

  15. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land.

    Science.gov (United States)

    Fortier, Julien; Truax, Benoit; Gagnon, Daniel; Lambert, France

    2015-05-01

    In many temperate agricultural areas, riparian forests have been converted to cultivated land, and only narrow strips of herbaceous vegetation now buffer many farm streams. The afforestation of these riparian zones has the potential to increase carbon (C) storage in agricultural landscapes by creating a new biomass sink for atmospheric CO2. Occurring at the same time, the storage of nitrogen (N) and phosphorus (P) in plant biomass, is an important water quality function that may greatly vary with types of riparian vegetation. The objectives of this study were (1) to compare C, N and P storage in aboveground, belowground and detrital biomass for three types of riparian vegetation cover (9-year-old hybrid poplar buffers, herbaceous buffers and natural woodlots) across four agricultural sites and (2) to determine potential vegetation cover effects on soil nutrient supply rate in the riparian zone. Site level comparisons suggest that 9-year-old poplar buffers have stored 9-31 times more biomass C, 4-10 times more biomass N, and 3-7 times more biomass P than adjacent non managed herbaceous buffers, with the largest differences observed on the more fertile sites. The conversion of these herbaceous buffers to poplar buffers could respectively increase C, N and P storage in biomass by 3.2-11.9 t/ha/yr, 32-124 kg/ha/yr and 3.2-15.6 kg/ha/yr, over 9 years. Soil NO3 and P supply rates during the summer were respectively 57% and 66% lower in poplar buffers than in adjacent herbaceous buffers, potentially reflecting differences in nutrient storage and cycling between the two buffer types. Biomass C ranged 49-160 t/ha in woodlots, 33-110 t/ha in poplar buffers and 3-4 t/ha in herbaceous buffers. Similar biomass C stocks were found in the most productive poplar buffer and three of the four woodlots studied. Given their large and varied biomass C stocks, conservation of older riparian woodlots is equally important for C balance management in farmland. In addition, the

  16. Stomatal factors and vulnerability of stem xylem to cavitation in poplars.

    Science.gov (United States)

    Arango-Velez, Adriana; Zwiazek, Janusz J; Thomas, Barb R; Tyree, Melvin T

    2011-10-01

    The relationships between the vulnerability of stem xylem to cavitation, stomatal conductance, stomatal density, and leaf and stem water potential were examined in six hybrid poplar (P38P38, Walker, Okanese, Northwest, Assiniboine and Berlin) and balsam poplar (Populus balsamifera) clones. Stem xylem cavitation resistance was examined with the Cavitron technique in well-watered plants grown in the greenhouse. To investigate stomatal responses to drought, plants were subjected to drought stress by withholding watering for 5 (mild drought) and 7 (severe drought) days and to stress recovery by rewatering severely stressed plants for 30 min and 2 days. The clones varied in stomatal sensitivity to drought and vulnerability to stem xylem cavitation. P38P38 reduced stomatal conductance in response to mild stress while the balsam poplar clone maintained high leaf stomatal conductance under more severe drought stress conditions. Differences between the severely stressed clones were also observed in leaf water potentials with no or relatively small decreases in Assiniboine, P38P38, Okanese and Walker. Vulnerability to drought-induced stem xylem embolism revealed that balsam poplar and Northwest clones reached loss of conductivity at lower stem water potentials compared with the remaining clones. There was a strong link between stem xylem resistance to cavitation and stomatal responsiveness to drought stress in balsam poplar and P38P38. However, the differences in stomatal responsiveness to mild drought suggest that other drought-resistant strategies may also play a key role in some clones of poplars exposed to drought stress. Copyright © Physiologia Plantarum 2011.

  17. Growth and carbohydrate status of coppice shoots of hybrid poplar following shoot pruning.

    Science.gov (United States)

    Tschaplinski, T J; Blake, T J

    1995-05-01

    Fifteen, 1-year-old Populus maximowiczii Henry x P. nigra L. 'MN9' trees were decapitated and allowed to sprout. After 8 weeks, all had 6 to 10 coppice shoots. All shoots, except the tallest (dominant) shoot, were removed from five of the trees (pruned treatment), and shoot growth, gas exchange and carbohydrate status were compared in the pruned and unpruned trees. Although photosynthetic rate of recently mature leaves of pruned trees was approximately 50% greater than that of leaves on the dominant shoot of unpruned trees, and the dry weight of leaves of pruned trees was 37% greater than that of the leaves on the dominant shoot of unpruned trees, the shoot dry matter relative growth rate did not differ between treatments. Concentrations of water-soluble carbohydrates and starch in the uppper stem and leaves of the dominant shoot were similar in pruned and unpruned trees. However, relative to that of the dominant shoot in unpruned trees, the lower stem in pruned trees was depleted in both soluble carbohydrates and starch. Starch deposition, assessed as the quantity of (14)C-starch in tissues 24 h after a fully expanded source leaf was labeled with (14)CO(2), was 3.9 times greater in roots of pruned trees than in roots of unpruned trees. We conclude that early removal of all but the dominant shoot reduces the carbohydrate status of the roots and the lower portion of the stem by eliminating the excised shoots as a source of photosynthate.

  18. Analysis of 4,664 high-quality sequence-finished poplar full-length

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, S. [University of British Columbia, Vancouver; Gunter, Lee E [ORNL; Tuskan, Gerald A [ORNL; Douglas, Carl [University of British Columbia, Vancouver; Holt, Robert A. [Genome Sciences Centre, Vancouver, BC, Canada; Jones, Steven [Genome Sciences Centre, Vancouver, BC, Canada; Marra, Marco [Genome Sciences Centre, Vancouver, BC, Canada; Bohlmann, J. [University of British Columbia, Vancouver

    2008-01-01

    The genus Populus includes poplars, aspens and cottonwoods, which will be collectively referred to as poplars hereafter unless otherwise specified. Poplars are the dominant tree species in many forest ecosystems in the Northern Hemisphere and are of substantial economic value in plantation forestry. Poplar has been established as a model system for genomics studies of growth, development, and adaptation of woody perennial plants including secondary xylem formation, dormancy, adaptation to local environments, and biotic interactions. As part of the poplar genome sequencing project and the development of genomic resources for poplar, we have generated a full-length (FL)-cDNA collection using the biotinylated CAP trapper method. We constructed four FLcDNA libraries using RNA from xylem, phloem and cambium, and green shoot tips and leaves from the P. trichocarpa Nisqually-1 genotype, as well as insect-attacked leaves of the P. trichocarpa x P. deltoides hybrid. Following careful selection of candidate cDNA clones, we used a combined strategy of paired end reads and primer walking to generate a set of 4,664 high-accuracy, sequence-verified FLcDNAs, which clustered into 3,990 putative unique genes. Mapping FLcDNAs to the poplar genome sequence combined with BLAST comparisons to previously predicted protein coding sequences in the poplar genome identified 39 FLcDNAs that likely localize to gaps in the current genome sequence assembly. Another 173 FLcDNAs mapped to the genome sequence but were not included among the previously predicted genes in the poplar genome. Comparative sequence analysis against Arabidopsis thaliana and other species in the non-redundant database of GenBank revealed that 11.5% of the poplar FLcDNAs display no significant sequence similarity to other plant proteins. By mapping the poplar FLcDNAs against transcriptome data previously obtained with a 15.5 K cDNA microarray, we identified 153 FLcDNA clones for genes that were differentially expressed in

  19. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    Science.gov (United States)

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  20. Dinamica şi caracteristicile creşterii a şase clone de plop hibrid pe parcursul unui ciclu de producţie într-o plantație comparativă din Depresiunea Rădăuţi [The dynamics and growth characteristics of six hybrid poplar clones during a production cycle in a comparative plantation from Rădăuți Depression

    OpenAIRE

    Dănilă Iulian; Avăcăriței Daniel; Savin Alexei; Roibu Cătălin Constantin; Bouriaud Olivier; Duduman Mihai-Leonard; Bouriaud Laura

    2015-01-01

    The poplar (Populus spp.) plays an important role in worldwide forest economy, responding to the necessities of obtaining high biomass production in a short time. Short rotation forests (SRF) are developing continuously in Romania. Several studies have been undertaken to identify the clones with high productivity and suitable technologies. The aim of this study was to register the annual increments in diameter, height and volume in an experimental poplar crops with a short-term rotation of...

  1. Contribution factor of wood properties of three poplar clones to strength of laminated veneer lumber

    Science.gov (United States)

    Fucheng Bao; Feng Fu; Elvin Choong; Chung-Yun Hse

    2001-01-01

    The term "Contribution Factor" (c.) was introduced in this paper to indicate the contribution ratio of solid wood properties to laminated veneer lumber (LVL) strength. Three poplar (Populus sp.) clones were studied, and the results showed that poplar with good solid wood properties has high Contribution Factor. The average Contribution...

  2. Field test of new poplar clone in Shangdong Province

    Institute of Scientific and Technical Information of China (English)

    QIN Guang-hua; JIANG Yue-zhong; QIAO Yu-ling; B.Nottola

    2003-01-01

    Poplar is one of the dominant tree species for the establishment of fast growing plantations in Shandong Province. Eighteen poplar clones belonging to Populus aigeiros section were introduced from Italy, Turkey and domestic regions. Populus deltoides cv. 'Lux' I-69/55 (I-69), which was widely used in Shandong Province, China, was taken as control clone (I-69). Following a randomized complete block design, seedling test and controlled afforestation trials were carried out at Juxian County, Caoxian County and Laiyang City. The results showed that the poplar clone (Populus × euramericana cv. '102/74'), namely 102/74, performed well both in terms of adaptability and growth rate. The mean height of 13.9 m (H), diameter at breast height of 18.0 cm (DBH) and volume growth of 0.1445 m3 (V) were 2.2 %, 21.6% and 52.9 % higher than those of I-69 (CK), respectively, at the age of 5 years at three experimental sites. Moreover, the clone can be propagated easily and showed high resistance to poplar disease, pest as well as salinity and had longer growing period. Furthermore, wood basic density and fiber length of new poplar clone (102/74) were as same as I-69 (CK). It was concluded that the selected clone (102/74) was ideal for the establishment of fast-growing poplar plantations, especially for the pulpwood plantations in Shandong Province.

  3. Comparative analysis of growth and photosynthetic characteristics of (Populus simonii × P. nigra × (P. nigra × P. simonii hybrid clones of different ploidides.

    Directory of Open Access Journals (Sweden)

    Xiyang Zhao

    Full Text Available To evaluate differences among poplar clones of various ploidies, 12 hybrid poplar clones (P. simonii × P. nigra × (P. nigra × P. simonii with different ploidies were used to study phenotypic variation in growth traits and photosynthetic characteristics. Analysis of variance showed remarkable differences for each of the investigated traits among these clones (P < 0.01. Coefficients of phenotypic variation (PCV ranged from 2.38% to 56.71%, and repeatability ranged from 0.656 to 0.987. The Pn (photosynthetic rate photosynthetic photon flux density (PPFD curves of the 12 clones were S-shaped, but the Pn-ambient CO2 (Ca curves were shaped like an inverted "V". The stomatal conductance (Gs-PPFD and transpiration rate (Tr-PPFD curves had an upward tendency; however, with increasing PFFD, the intercellular CO2 concentration (Ci-PPFD curves had a downward tendency in all of the clones. The Pn-PPFD and Pn-Ca curves followed the pattern of a quadratic equation. The average light saturation point and light compensation point of the triploid clones were the highest and lowest, respectively, among the three types of clones. For Pn-Ca curves, diploid clones had a higher average CO2 saturation point and average CO2 compensation point compared with triploid and tetraploid clones. Correlation analyses indicated that all investigated traits were strongly correlated with each other. In future studies, molecular methods should be used to analyze poplar clones of different ploidies to improve our understanding of the growth and development mechanisms of polyploidy.

  4. Nitrogen removal and its determinants in hybrid Populus clones for bioenergy plantations after two biennial rotations in two temperate sites in northern Italy

    Directory of Open Access Journals (Sweden)

    Paris P

    2015-10-01

    Full Text Available The sustainability of bioenergy coppice plantations is strongly affected by the Nitrogen (N balance, whose removal is very high due to the frequent harvest of large quantities of biomass composed of small-sized shoots. Poplar bioenergy coppice plantations could have a Nitrogen removal comparable to herbaceous crops. In this study, five hybrid poplar genotypes (“AF2”, “AF6”, “Monviso”, “83.148.041”, “I214” were compared for tree morphological traits related to yield, N removal in the harvested biomass and Nitrogen wood concentration (N% after two biennial coppice rotations in two experimental plantations located in northern Italy. N removal was primarily influenced by biomass production, and linear positive relationships between biomass yield and N removal were established. N removal also varied greatly among genotypes due to clonal differences in yield and in N%, in relation to significant differences among clones for their branching and sprouting habits. In the first rotation, branchiness was positively correlated to N% with a significant coefficient of determination (R2=0.813, while at the end of the second rotation it was also significantly correlated to the shoots per stool ratio (R2=0.804. “Monviso” and “83.148.041” were the clones showing the highest yield, but also a high N% associated to an high level of branchiness and shoots per stool ratio. Our results highlight that poplar genotype selection for sustainable N management should be aimed at genotypes with low wood N concentration, coupling high yield with low branching and sprouting habits as in the case of the clone “AF2”.

  5. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    Science.gov (United States)

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  6. Transgenic manipulation of the metabolism of polyamines in poplar cells

    Science.gov (United States)

    Pratiksha Bhatnagar; Bernadette M. Glasheen; Suneet K. Bains; Stephanie L. Long; Rakesh Minocha; Christian Walter; Subhash C. Minocha

    2001-01-01

    The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra 3 maximowiczii) expressing a...

  7. Pulping performance of transgenic poplar with depressed Caffeoyl-CoA O-methyltransferase

    Institute of Scientific and Technical Information of China (English)

    WEI JianHua; WANG YanZhen; WANG HongZhi; LI RuiFen; LIN Nan; MA RongCai; QU LeQing; SONG YanRu

    2008-01-01

    This paper evaluated pulping performance of 3-year-old field-grown transgenic poplar (Populus tremula × Populus alba). The transgenic poplar with anti-sense CCoAOMT had an about 13% decreased lignin content, in which a slight increment was found in S/G ratio. Chemical analysis showed that the trans-genic poplar had significantly less benezene-ethanol extractive than that of control wood, but no sig-nificant differences were found in contents of ash, cold water extractive, hot water extractive, 1% NaOH extractive, holocellulose, pentosans and cellulose. Fiber assay demonstrated that down-regulation of CCoAOMTexpression improved the fiber quality in transgenic poplar. Kraft pulping showed that lower lignin in transgenic poplar led to remarkable improved pulp quality and increased pulp yield.

  8. Mycorrhizal formation of nine ectomycorrhizal fungi on poplar cuttings

    Institute of Scientific and Technical Information of China (English)

    Lei MA; Xiaoqin WU; Ling ZHENG

    2008-01-01

    In order to discover which ectomycorrhizal-(ECM) fungi have better growth-promoting effects on poplars, cuttings from four poplar species were inoculated with nine species of ECM fungi by three methods. We investigated the status of mycorrhizal formation and the effects of these fungi on the growth of the poplars. The results show that Xrocomus chrysentero (Xc), Boletus edu-lis (Be), Pisolithus tinctorius (Pt) and Laccaria amethystea (La) formed clear ectomycorrhizal symbiosis with the poplar seedlings. Among these four ECM fungi, Xc had the greatest ability to develop mycorrhizae with all four poplar species. Be shows a greater ability to form mycor-rhizae with Populus deltoides Bartr cv. 'Lux' (Poplar I-69). Pt and La had relatively weaker abilities of colonization. The other five ECM fungal species, i.e., Scleroderma luteus (S1), Leeeinum scabrum (Ls), Boletus speeiosus (Bs), Calvatia eraniiformis (Cc) and Rhizopogen luteous (RI) could not easily form mycorrhizae with poplar seed-lings grown in sterilized substrates, but could do so in non-sterilized soil. With the method of drilling and inject-ing liquid inoculum, a simple operation, the mycorrhizal infection rates were higher than with the other two meth-ods, applying solid inoculum as fertilizer at the bottom of the pots and dipping roots in the inoculum slurry. P. simonii Carr. formed mycorrhizae with most of the nine ECM fungi. P. × euramericana (Dode) Guinier cv. 'San Martino' (Poplar 1-72) and P. deltoids Harvard × P. del-toids Lux (Poplar NL-351) had the highest compatibility with Pt. Poplar I-69 shows the highest compatibility with Xc. The study indicates that the optimal ECM fungi for poplars I-69, I-72 and NL-351 were Be, Xc and Pt, respectively. The optimal fungi for P. simonii Carr. were Xc and Be. These ECM fungi promoted the growth of the poplar seedlings significantly.

  9. Clone history shapes Populus drought responses.

    Science.gov (United States)

    Raj, Sherosha; Bräutigam, Katharina; Hamanishi, Erin T; Wilkins, Olivia; Thomas, Barb R; Schroeder, William; Mansfield, Shawn D; Plant, Aine L; Campbell, Malcolm M

    2011-07-26

    Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids.

  10. Abaxial Greening Phenotype in Hybrid Aspen

    Directory of Open Access Journals (Sweden)

    Julia S. Nowak

    2013-04-01

    Full Text Available The typical angiosperm leaf, as in Arabidopsis, is bifacial consisting of top (adaxial and bottom (abaxial surfaces readily distinguishable by the underlying cell type (palisade and spongy mesophyll, respectively. Species of the genus Populus have leaves that are either conventionally bifacial or isobilateral. Isobilateral leaves have palisade mesophyll on the top and bottom of the leaf, making the two sides virtually indistinguishable at the macroscopic level. In poplars this has been termed the “abaxial greening” phenotype. Previous work has implicated ASYMMETRIC LEAVES1 (AS1 as an essential determinant of palisade mesophyll development. This gene, as well as other genes (84 in all putatively involved in setting the dorsiventral axis of leaves, were investigated in two Populus species: black cottonwood (Populus trichocarpa and hybrid aspen (P. tremula x tremuloides, representative of each leaf type (bifacial and isobilateral, respectively. Poplar orthologs of AS1 have significantly higher expression in aspen leaf blade and lower in the petiole, suggestive of a potential role in the isobilateral leaf phenotype consistent with the previously observed phenotypes. Furthermore, an ABERRANT TESTA SHAPE (ATS ortholog has significantly lower expression in aspen leaf tissue, also suggesting a possible contribution of this gene to abaxial greening.

  11. Abaxial Greening Phenotype in Hybrid Aspen.

    Science.gov (United States)

    Nowak, Julia S; Douglas, Carl J; Cronk, Quentin C B

    2013-04-24

    The typical angiosperm leaf, as in Arabidopsis, is bifacial consisting of top (adaxial) and bottom (abaxial) surfaces readily distinguishable by the underlying cell type (palisade and spongy mesophyll, respectively). Species of the genus Populus have leaves that are either conventionally bifacial or isobilateral. Isobilateral leaves have palisade mesophyll on the top and bottom of the leaf, making the two sides virtually indistinguishable at the macroscopic level. In poplars this has been termed the "abaxial greening" phenotype. Previous work has implicated ASYMMETRIC LEAVES1 (AS1) as an essential determinant of palisade mesophyll development. This gene, as well as other genes (84 in all) putatively involved in setting the dorsiventral axis of leaves, were investigated in two Populus species: black cottonwood (Populus trichocarpa) and hybrid aspen (P. tremula x tremuloides), representative of each leaf type (bifacial and isobilateral, respectively). Poplar orthologs of AS1 have significantly higher expression in aspen leaf blade and lower in the petiole, suggestive of a potential role in the isobilateral leaf phenotype consistent with the previously observed phenotypes. Furthermore, an ABERRANT TESTA SHAPE (ATS) ortholog has significantly lower expression in aspen leaf tissue, also suggesting a possible contribution of this gene to abaxial greening.

  12. Raw material quality of short-rotation, intensively cultured populus clones. I. A comparison of stem and branch properties at three spacings

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, J.E.; Isebrands, J.G.; Jowett, D.

    1982-01-01

    Raw material properties (specific gravity, cell lengths, cell type percentages, and bark percentages) were examined in trees from nine Populus hybrid clones growing under short-rotation, intensive culture (SRIC) for 4 years. Statistical analyses were conducted to determine clonal, spacing, branch, and stem effects on wood and bark properties. The analysis indicated significant clonal and parental effects on some of the properties. Aigeiros-Tacamahaca hybrids generally had higher-specific gravity (SG) than those composed of only Aigeiros parentage. Branch properties influenced this difference. Within the Aigeiros-Tacamahaca clones, the P. candicans x P. berolinensis hybrids had shorter fibre lengths and lower stem wood SG. No spacing effects were observed. Significant differences wer found between stem samples and branch samples - the stem wood samples had longer cells and less bark. The variation in raw material properties observed in this study indicate that these properties have potential for improving poplar clones for SRIC. (Refs. 35).

  13. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar.

    Science.gov (United States)

    Yuan, Xiangyang; Calatayud, Vicent; Gao, Feng; Fares, Silvano; Paoletti, Elena; Tian, Yuan; Feng, Zhaozhong

    2016-10-01

    The combined effects of ozone (O3 ) and drought on isoprene emission were studied for the first time. Young hybrid poplars (clone 546, Populus deltoides cv. 55/56 x P. deltoides cv. Imperial) were exposed to O3 (charcoal-filtered air, CF, and non-filtered air +40 ppb, E-O3 ) and soil water stress (well-watered, WW, and mild drought, MD, one-third irrigation) for 96 days. Consistent with light-saturated photosynthesis (Asat ), intercellular CO2 concentration (Ci ) and chlorophyll content, isoprene emission depended on drought, O3 , leaf position and sampling time. Drought stimulated emission (+38.4%), and O3 decreased it (-40.4%). Ozone increased the carbon cost per unit of isoprene emission. Ozone and drought effects were stronger in middle leaves (13th-15th from the apex) than in upper leaves (6th-8th). Only Asat showed a significant interaction between O3 and drought. When the responses were up-scaled to the entire-plant level, however, drought effects on total leaf area translated into around twice higher emission from WW plants in clean air than in E-O3 . Our results suggest that direct effects on plant emission rates and changes in total leaf area may affect isoprene emission from intensively cultivated hybrid poplar under combined MD and O3 exposure, with important feedbacks for air quality.

  14. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.

    Science.gov (United States)

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming

    2016-06-27

    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the "salicoid" duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants.

  15. Populus seed fibers as a natural source for production of oil super absorbents.

    Science.gov (United States)

    Likon, Marko; Remškar, Maja; Ducman, Vilma; Švegl, Franc

    2013-01-15

    The genus Populus, which includes poplars, cottonwoods and aspen trees, represents a huge natural source of fibers with exceptional physical properties. In this study, the oil absorption properties of poplar seed hair fibers obtained from Populus nigra italica when tested with high-density motor oil and diesel fuel are reported. Poplar seed hair fibers are hollow hydrophobic microtubes with an external diameter between 3 and 12 μm, an average length of 4±1 mm and average tube wall thickness of 400±100 nm. The solid skeleton of the hollow fibers consists of lignocellulosic material coated by a hydrophobic waxy coating. The exceptional chemical, physical and microstructural properties of poplar seed hair fibers enable super-absorbent behavior with high absorption capacity for heavy motor oil and diesel fuel. The absorption values of 182-211 g heavy oil/g fiber and 55-60 g heavy oil/g fiber for packing densities of 0.005 g/cm(3) and 0.02 g/cm(3), respectively, surpass all known natural absorbents. Thus, poplar seed hair fibers obtained from Populus nigra italica and other trees of the genus Populus are an extremely promising natural source for the production of oil super absorbents.

  16. Improvement of controlled pollination techniques of poplar

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhong-cheng; LIU Zong-you; HOU Kai-ju; SUN Xian-meng; ZHANG Ji-he; SHEN Bao-xian

    2008-01-01

    Over a number of years, in order to find substitutes for two traditional poplar pollination techniques: outdoor bridging trees and indoor cutting with water culture, research into two new pollination methods of uprooted outdoor seed trees and outdoor cutting branches was carried out. The advantages of two new and improved techniques were of efficiency, economy, safety and ease of operation. The methods can be applied in hybridization and breeding of poplar and other easy-to-root trees.

  17. Energy sensitivity and variability analysis of Populus hybrid short-rotation plantations in northeastern United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bowersox, T.W.; Blankenhorn, P.R.

    1979-10-24

    Production of biomass by corn-like plantations has been demonstrated by a number of researchers. These forest analogs of agronomic cropping systems have the potential to yield substantially more biomass per unit area than traditional forests. Care is needed in choosing the appropriate sites, species, spacing, and harvesting strategies. Opportunities for increased yields have been suggested for fertilization and irrigation. Utilization of the biomass from these dense plantations for energy was the focus of this study. Although the amount of energy potential of the biomass is important, the energy output must be greater than the energy input for biomass to have a positive benefit to society. Further, in order to completely evaluate the net energy of the system it is necessary to examine the energy out-to-in ratios on the basis of usable energy (for example, usable heat, process steam and electricity), as well as all of the energies expended in producing, harvesting, transporting and processing the biomass. The objective of this study is to establish and analyze the energy inputs for selected management strategies in order to evaluate the sensitivity and variability of the energy inputs in the net energy analysis, and based on the net energy analysis to recommend a management strategy that minimizes energy inputs while maximizing biomass yield for short-rotation systems of Populus spp. in the northeastern United States.

  18. Understanding the role of the cytoskeleton in wood formation in angiosperm trees: hybrid aspen (Populus tremula x P. tremuloides) as a model species

    Energy Technology Data Exchange (ETDEWEB)

    Chaffey, N.; Barlow, P. [Bristol Univ., Dept. of Agricultural Sciences, Long Ashton, (United Kingdom); Sundberg, B. [Swedish Univ. of Agricultural Sciences, Dept. of Forest Genetics and Plant Physiology, Umea (Sweden)

    2002-03-01

    The involvement of microfilaments (MFs) and microtubules (MTs) in the development of the radial and axial components of secondary wood in hybrid aspen (Populus tremula X P. tremuloides) was studied by indirect immunofluorescent localization techniques in order to elucidate a consensus view of the roles of the cytoskeleton during wood formation in angiosperm trees. Early and late vessel elements, axial parenchyma, normal-wood fibres and contact and isolation cells were included in addition to cambial cells. Microfilaments were found to be rare in cambial cells, but were abundant and axially arranged in their derivatives once cell elongation begun. Microtubules were randomly oriented in ray and fusiform cells of the cambial zone. Ellipses of microfilaments were associated with pit development in fiber cells and isolation ray cells. Rings of localized microtubules and microfilaments were associated with developing inter-vessel bordered pits and vessel-contact ray cell contact pits. Although only microtubules were seen in the periphery of the perforation plate of vessel elements, a prominent meshwork of microfilaments overlaid the perforation plate itself. These observations indicate that there are corresponding subcellular control points whose manipulation could lead to the development of 'designer wood'. However, such development would require a better understanding of the physiological basis for the behaviour of microtubule and microfibre cytoskeletons during wood formation. 44 refs., 6 figs.

  19. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations.

    Science.gov (United States)

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Lai, Ben S K; Geraldes, Armando; Muchero, Wellington; Tuskan, Gerald A; Douglas, Carl J; El-Kassaby, Yousry A; Mansfield, Shawn D

    2013-02-01

    The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations. Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44° to 58.6°. In these individuals, 9342 SNPs that conformed to Hardy-Weinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits. The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified. The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use.

  20. Growing poplars for research with and without mycorrhizas

    Directory of Open Access Journals (Sweden)

    Anna eMüller

    2013-08-01

    Full Text Available During the last decades the importance of the genus Populus increased because the poplar genome has been sequenced and molecular tools for basic research are available. Furthermore, poplar species occur in different habitats and harbour large genetic variation, which can be exploited for economic applications and for increasing our knowledge on the basic molecular mechanisms of the woody life style. Poplars are, therefore, employed to unravel the molecular mechanisms of wood formation, stress tolerance, tree nutrition and interaction with other organisms such as pathogens or mycorrhiza. The basis of these investigations is the reproducible production of homogeneous plant material. In this method paper we describe techniques and growth conditions for the in vitro propagation of different poplar species (Populus × canescens, P. trichocarpa, P. tremula and P. euphratica and ectomycorrhizal fungi (Laccaria bicolor, Paxillus involutus as well as for their co-cultivation for ectomycorrhizal synthesis. Maintenance and plant preparation require different multiplication and rooting media. Growth systems to cultivate poplars under axenic conditions in agar and sand cultures with and without mycorrhizal fungi are described. Transfer of the plants from in vitro to in situ conditions is critical and hardening is important to prevent high mortality. Growth and vitality of the trees in vitro and outdoors with and without ectomycorrhizas are reported.

  1. Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment

    NARCIS (Netherlands)

    Liberloo, M.; Lukac, M.; Calfapietra, C.; Hoosbeek, M.R.; Gielen, B.; Miglietta, F.; Mugnozza, G.S.; Ceulemans, R.

    2009-01-01

    A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar (Populus) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show tha

  2. Phytoextraction of risk elements by willow and poplar trees.

    Science.gov (United States)

    Kacálková, Lada; Tlustoš, Pavel; Száková, Jiřina

    2015-01-01

    To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4-2.0 mg Cd.kg(-1), 78-313 mg Zn.kg(-1), 21.3-118 mg Cu.kg(-1)). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg(-1), 909 mg Zn.kg(-1), and 17.7 mg Cu.kg(-1)) compared to Populus clones (maximum 2.06 mg Cd.kg(-1), 463 mg Zn.kg(-1), and 11.8 mg Cu.kg(-1)). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.

  3. Performance and variability patterns in wood properties and growth traits in the parents, F1 and F2 generation hybrid clones of Populus deltoides

    Institute of Scientific and Technical Information of China (English)

    P. K. Pande; R. C. Dhiman

    2011-01-01

    The performance and variability patterns in the wood ele- ment's dimensions, specific gravity and growth parameters namely ramet height and GBH were evaluated in 16 clones of parents, F1 and F2 hy- brids of Populus deltoides Bartr. Ex Marsh. Ramet radial variations were non-significant, while inter-clonal variations due to interaction of clone/replication were significant for all the wood traits except vessel element length. Inter-clonal variations were significant only for fiber length and fiber wall thickness. Fiber length and specific gravity were significantly higher in female, while wall thickness and vessel element length were higher in male clones. Female parents (G48 and S7C8) showed higher flber length and specific gravity than of the male parent (G3), while vessel diameter and wall thickness were higher in male par- ent (G3). There is not much difference in fiber length and vessel ele- ment's dimensions among the parents, F1 and F2 generation hybrid clones. Specific gravity did not showed any trend for parents, F1 and F2 generations. Generally female clones showed higher growth rate. Broad sense heritability for wood traits ranged from 0.143 (fiber length) to 0.505 (fiber wall thickness), while for growth Waits it was 0.374 (GBH) and 0.418 (height). Genetic gain for all the wood and growth traits was positive for most of the wood waits. The highly divergent male clone (78) and female clones (S7C8, G48, W/A 49) in number of combinations could be used for developing new hybrids of desired wood traits to de- velop new clones.

  4. Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing gamma-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S

    NARCIS (Netherlands)

    Herschbach, C; van der Zalm, E; Schneider, A; Jouanin, L; De Kok, LJ; Rennenberg, H

    This study with poplar (Populus tremula x Populus alba) cuttings was aimed to test the hypothesis that sulfate uptake is regulated by demand-driven control and that this regulation is mediated by phloem-transported glutathione as a shoot-to-root signal. Therefore, sulfur nutrition was investigated

  5. Impact of Drying Methods on Wettability of Populus tomentosa

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Plantation poplar is one of the most important resources for wood industry, its utilization field is vast. The wettability of Populus tomentosa with different drying methods was judged by measurement of contact angle using distilled water in this paper. The results showed that the specimens from conventional drying have the biggest contact angle, and the air dried have the smallest contact angle, air dried lumbers have a better wettability than the kiln dried. The changes of contact angle in a period of tim...

  6. Sulfate Metabolites of 4-Monochlorobiphenyl in Whole Poplar Plants

    OpenAIRE

    Zhai, Guangshu; Lehmler, Hans-Joachim; Schnoor, Jerald L.

    2012-01-01

    4-Monochlorobiphenyl (PCB3) has been proven to be transformed into hydroxylated metabolites of PCB3 (OH-PCB3s) in whole poplar plants in our previous work. However, hydroxylated metabolites of PCBs, including OH-PCB3s, as the substrates of sulfotransferases have not been studied in many organisms including plants in vivo. Poplar (Populus deltoides × nigra, DN34) was used to investigate the further metabolism from OH-PCB3s to PCB3 sulfates because it is a model plant and one that is frequently...

  7. Selection of black poplars for water use efficiency

    Directory of Open Access Journals (Sweden)

    Orlović Saša S.

    2002-01-01

    Full Text Available Photosynthesis, transpiration, water use efficiency (WUE and biomass production have been investigated in nine black poplar clones (section Aigeiros in three field experiments. Eastern cottonwood clones (Populus deltoides had the highest net photosynthesis and water use efficiency. European black poplar clones had the highest transpiration intensity. Correlation analysis showed that net photosynthesis was in a high positive correlation with biomass. Medium negative correlations existed between WUE and net photosynthesis, transpiration and biomass and WUE and biomass. The study showed a pronounced interclonal variability of the physiological and growth characters under study.

  8. The glutamine synthetase gene family in Populus

    Directory of Open Access Journals (Sweden)

    Cánovas Francisco M

    2011-08-01

    Full Text Available Abstract Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1 and 1 which codes for the choroplastic GS isoform (GS2. Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types.

  9. The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes.

    Science.gov (United States)

    Djerbi, Soraya; Lindskog, Mats; Arvestad, Lars; Sterky, Fredrik; Teeri, Tuula T

    2005-07-01

    The genome sequence of Populus trichocarpa was screened for genes encoding cellulose synthases by using full-length cDNA sequences and ESTs previously identified in the tissue specific cDNA libraries of other poplars. The data obtained revealed 18 distinct CesA gene sequences in P. trichocarpa. The identified genes were grouped in seven gene pairs, one group of three sequences and one single gene. Evidence from gene expression studies of hybrid aspen suggests that both copies of at least one pair, CesA3-1 and CesA3-2, are actively transcribed. No sequences corresponding to the gene pair, CesA6-1 and CesA6-2, were found in Arabidopsis or hybrid aspen, while one homologous gene has been identified in the rice genome and an active transcript in Populus tremuloides. A phylogenetic analysis suggests that the CesA genes previously associated with secondary cell wall synthesis originate from a single ancestor gene and group in three distinct subgroups. The newly identified copies of CesA genes in P. trichocarpa give rise to a number of new questions concerning the mechanism of cellulose synthesis in trees.

  10. 混栽模式下转基因741杨抗虫性的初步研究%Studies on the insect resistance of mixed cultivating model of transgenic insect- resistance hybrid poplar 741

    Institute of Scientific and Technical Information of China (English)

    李超丽; 刘军侠; 姜文虎

    2011-01-01

    采用随机取样的方法,对河北省保定市大激店混栽模式下不同株系的转基因741杨pb29、pb00、pb17及对照741杨试验林进行了节肢动物群落调查,并初步分析了其群落组成、物种数量随时间的变化及优势种的发生发展规律.结果表明:混栽模式F的转基因741杨pb29、pb11和pb17的节肢动物种类组成基本一致,其群落多样性、均匀性均高于对照杨树,优势集中性均低于对照杨树,稳定性较好.混栽转基因741杨林内的优势种异色瓢虫、白毛蚜和杨白潜叶蛾在不同株系卜发生趋势基本一致,且在对照杨树上虫口数量较高.%The arthropod community structure was investigated in different transgenic hybrid poplar 741 varieties including pb29,pbll,pb17 and check741 using random sampling method in the paper. The purpose of this study is to analysis the changes over time about the structure of the arthropod community and the species quantity , the law of development of dominant species. The results showed that eompositive species were similar among the different transgenic hybrid poplar 741 varieties in this mixed cultivating model, the diversity indexes and evenness indexes of arthropod community in transgenic 741 poplar were higher than the control 741 poplar. The dominant value indexes were lower than the control 741 poplar,and the stability was better. The dominant species in this arthropod connunity including Harmonia axyridis Pallas, Chaitophoms populialbae Boyer de Fonscolombe and Leucoptera susinella Herrich- Sch ffer had similarly changing tendency, though they had a large quantity in the control 741 poplar.

  11. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.

    Science.gov (United States)

    Koch, J R; Creelman, R A; Eshita, S M; Seskar, M; Mullet, J E; Davis, K R

    2000-06-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.

  12. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral

  13. Epigenomics of Development in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Steve; Freitag, Michael; Mockler, Todd

    2013-01-10

    We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from eleven target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue

  14. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  15. Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding

    Directory of Open Access Journals (Sweden)

    Douglas Carl J

    2008-01-01

    Full Text Available Abstract Background The genus Populus includes poplars, aspens and cottonwoods, which will be collectively referred to as poplars hereafter unless otherwise specified. Poplars are the dominant tree species in many forest ecosystems in the Northern Hemisphere and are of substantial economic value in plantation forestry. Poplar has been established as a model system for genomics studies of growth, development, and adaptation of woody perennial plants including secondary xylem formation, dormancy, adaptation to local environments, and biotic interactions. Results As part of the poplar genome sequencing project and the development of genomic resources for poplar, we have generated a full-length (FL-cDNA collection using the biotinylated CAP trapper method. We constructed four FLcDNA libraries using RNA from xylem, phloem and cambium, and green shoot tips and leaves from the P. trichocarpa Nisqually-1 genotype, as well as insect-attacked leaves of the P. trichocarpa × P. deltoides hybrid. Following careful selection of candidate cDNA clones, we used a combined strategy of paired end reads and primer walking to generate a set of 4,664 high-accuracy, sequence-verified FLcDNAs, which clustered into 3,990 putative unique genes. Mapping FLcDNAs to the poplar genome sequence combined with BLAST comparisons to previously predicted protein coding sequences in the poplar genome identified 39 FLcDNAs that likely localize to gaps in the current genome sequence assembly. Another 173 FLcDNAs mapped to the genome sequence but were not included among the previously predicted genes in the poplar genome. Comparative sequence analysis against Arabidopsis thaliana and other species in the non-redundant database of GenBank revealed that 11.5% of the poplar FLcDNAs display no significant sequence similarity to other plant proteins. By mapping the poplar FLcDNAs against transcriptome data previously obtained with a 15.5 K cDNA microarray, we identified 153 FLcDNA clones

  16. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Jin; Chen, Xingling; Lv, Jinhui; Jia, Huixia; Zhao, Shutang; Lu, Mengzhu

    2017-01-01

    To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  17. Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1

    Science.gov (United States)

    Adams, Joshua P.; Adeli, Ardeshir; Hsu, Chuan-Yu; Harkess, Richard L.; Page, Grier P.; dePamphilis, Claude W.; Schultz, Emily B.; Yuceer, Cetin

    2011-01-01

    Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation. PMID:21504875

  18. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass.

    Science.gov (United States)

    Negro, Maria José; Manzanares, Paloma; Ballesteros, Ignacio; Oliva, Jose Miguel; Cabañas, Araceli; Ballesteros, Mercedes

    2003-01-01

    Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210 C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.

  19. Energy partitioning and surface resistance of a poplar plantation in northern China

    Science.gov (United States)

    M. Kang; Z. Zhang; A. Noormets; X. Fang; T. Zha; J. Zhou; G. Sun; S. G. McNulty; J. Chen

    2015-01-01

    Poplar (Populus sp.) plantations have been, on the one hand, broadly used in northern China for urban greening, combating desertification, as well as for paper and wood production. On the other hand, such plantations have been questioned occasionally for their possible negative impacts on water availability due to the higher water-use nature of...

  20. Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism

    Science.gov (United States)

    Pratiksha Bhatnagar; Rakesh Minocha; Subhash C. Minocha

    2002-01-01

    We investigated the catabolism of putrescine (Put) in a non-transgenic (NT) and a transgenic cell line of poplar (Populus nigra x maximowiczii) expressing a mouse (Mus musculus) ornithine (Orn) decarboxylase (odc) cDNA. The transgenic cells produce 3- to 4-fold higher amounts of Put than the NT...

  1. Above- and Below-ground Biomass, Net Ecosystem Carbon Exchange, and Soil Respiration in a Poplar Populus deltoides Bartr.) stand : Changes after 3 years of Growth under Elevated CO2

    Science.gov (United States)

    Barron-Gafford, G. A.; Grieve, K.; Bil, K.; Kudeyarov, V.; Handley, L.; Murthy, R.

    2003-12-01

    Stands of cottonwood (Populus deltoides Bartr.) trees were grown as a coppiced system under ambient (40 Pa), twice ambient (80 Pa), and three times ambient (120 Pa) partial pressure CO2 for the past three years in the Intensively-managed Forest Mesocosm (IFM) of the Biosphere 2 Center. Over three years Net Ecosystem CO2 exchange (NECE) was measured continuously and in the third year, nine whole trees were harvested from each CO2 treatment over the growing season. Both above- and below-ground parameters were measured. Three years of growth under elevated CO2 showed the expected stimulation in foliar biomass (8.7, 11.9, and 13.1 kg for the 40, 80, and 120 Pa treatments, respectively). Rates of NECE also followed an expected increase with elevated atmospheric CO2 concentrations, with maximum CO2 uptake rates reaching 10.5, 15.6, and 19.6 μ moles m-2 s-1 in the 40, 80, and 120 Pa treatments, respectively. However, above ground woody biomass and root biomass were not much stimulated beyond 80 Pa CO2. Wood/foliage and above/below ground biomass ratios reflect this decline. Under conditions of non-limiting nutrients and water, we found consistent increases in the above/below ground biomass ratio and wood to foliage biomass ratios in the 80 compared to the 40 Pa pCO2. Woody biomass production and the above/below ground biomass ratio were lower under the 120 Pa than any other treatment. Although biomass production did not change appreciably between 80 and 120 Pa CO2 treatments, both substrate induced and in-situ soil respiration values are also significantly higher in the 120Pa treatment, though no differences were present prior to CO2 treatments (Murthy et al. 2003). The unique closed-system operation of the IFM allowed for measures of soil CO2 efflux to be measured at both the soil collar and stand scales using a box model that takes into account all inputs and outputs from the stand. In-situ soil respiration rates increased significantly with increased atmospheric CO2

  2. Importance of crown architecture for leaf area index of different Populus genotypes in a high-density plantation.

    Science.gov (United States)

    Broeckx, L S; Verlinden, M S; Vangronsveld, J; Ceulemans, R

    2012-10-01

    Crown architecture is an important determinant of biomass production and yield of any bio-energy plantation since it determines leaf area display and hence light interception. Four Populus genotypes-of different species and hybrids and with contrasting productivity and leaf area-were examined in terms of their branch characteristics in relation to crown architecture during the first and second growing seasons after plantation establishment. The trees were planted at high density (8000 ha(-1)) on two different former land use types, cropland and pasture. We documented significant differences in branch architecture among the genotypes and for the first year among the former land use types. Land use effects only affected factors not related to canopy closure and wood production, and decreased after the first growing season. This suggested that both former land use types were equally suited for the establishment success of a poplar bio-energy plantation. Tree height and branch dimensions-branch diameter and branch length-were the most important determinants of wood production and maximum leaf area index. Despite the secondary importance of the number of sylleptic branches, these branches contributed significantly to the total leaf area in three out of the four studied genotypes. This indicated that enhanced syllepsis accelerates leaf area development and hence carbon assimilation, especially in the early stages of a high-density plantation with poplar.

  3. Gender determination in populus

    Energy Technology Data Exchange (ETDEWEB)

    McLetchie, D.N. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Biological Sciences; Tuskan, G.A. [Oak Ridge National Lab., TN (United States)

    1994-12-31

    Gender, the expression of maleness or femaleness, in dioecious plants has been associated with changes in morphology, physiology, ecological position, and commercial importance of several species, including members of the Salicaceae family. Various mechanisms have been proposed to explain the expression of gender in Salicaceae, including sex chromosomes, simple Mendelian genes, quantitative genes, environment, and genotype-by-environment interactions. Published reports would favor a genetic basis for gender. The objective of this study was to identify molecular markers associated with gender in a segregating family of hybrid poplars. Bulked segregant analysis and chi-squared analysis were used to test for the occurrence of sex chromosomes, individual loci, and chromosome ratios (i.e., ploidy levels) as the mechanisms for gender determination. Examination of 2488 PCR based RAPD markers from 1219 primers revealed nine polymorphic bands between male and female bulked samples. However, linkage analysis indicated that none of these markers were significantly associated with gender. Chisquared results for difference in male-to-female ratios between diploid and triploid genotypes also revealed no significant differences. These findings suggest gender is not controlled via sex chromosomes, simple Mendelian loci or ratios of autosome to gender-determining loci. It is possible that gender is determined genetically by regions of the genome not sampled by the tested markers or by a complex of loci operating in an additive threshold manner or in an epistatic manner. It is also possible that gender is determined environmentally at an early zygote stage, canalizing gender expression.

  4. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  5. Stomata morphological traits in two different genotypes of Populus nigra L.

    Directory of Open Access Journals (Sweden)

    Russo G

    2015-08-01

    Full Text Available Populus nigra L. (black poplar possesses amphistomatic leaves, with large (giant and normal sized stomata. The role of giant stomata in leaf development, and the consequences on stomatal density in adult leaves remains elusive. This paper describes the characteristics of ordinary and giant stomata in leaves of two black poplar genotypes (58-861 with large leaves from northern Italy, and Poli with small leaves from southern Italy. Stomatal traits in both genotypes were studied using light microscopy on mature leaf adaxial and abaxial epidermal impressions. Moreover, scanning electron microscopy was applied to study giant and normal stomata in early, young, and mature leaves. Leaf abaxial surfaces in the two genotypes revealed variable sizes and patterns of stomata related to differences in intrinsic water use efficiency (Wi. These observations provided evidence of different stomatal types in mature black poplar leaves, and new information regarding the presence and potential role of giant stomata in black poplar leaves.

  6. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  7. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar.

    Science.gov (United States)

    Jeon, Hyung-Woo; Cho, Jin-Seong; Park, Eung-Jun; Han, Kyung-Hwan; Choi, Young-Im; Ko, Jae-Heung

    2016-04-01

    Woody biomass has gained popularity as an environmentally friendly, renewable and sustainable resource for liquid fuel production. Here, we demonstrate biotechnological improvement of the quantity and quality of woody biomass by employing developing xylem (DX)-preferential production of gibberellin (GA), a phytohormone that positively regulates stem growth. First, for the proof of concept experiment, we produced transgenic Arabidopsis plants expressing GA20-oxidase, a key enzyme in the production of bioactive GAs, from Pinus densiflora (PdGA20ox1) under the control of either a constitutive 35S promoter, designated 35S::PdGA20ox1, or a DX-specific promoter (originated from poplar), designated DX15::PdGA20ox1. As we hypothesized, both transgenic Arabidopsis plants (35S::PdGA20ox1 and DX15::PdGA20ox1) exhibited an accelerated stem growth that resulted in a large increase of biomass, up to 300% compared to wild-type control plants, together with increased secondary wall thickening and elongation of fibre cells. Next, we applied our concept to the production of transgenic poplar trees. Both transgenic poplar trees (35S::PdGA20ox1 and DX15::PdGA20ox1) showed dramatic increases in biomass, up to 300%, with accelerated stem growth and xylem differentiation. Cell wall monosaccharide composition analysis revealed that in both Arabidopsis and poplar, glucose and xylose contents were significantly increased. However, undesirable phenotypes of 35S::PdGA20ox1 poplar, including poor root growth and leaf development, were found. Interestingly, DX15::PdGA20ox1 poplar resulted in a reduction of undesirable phenotypes. Our results indicate that the controlled production of GAs through a tissue-specific promoter can be utilized as an efficient biotechnological tool for producing enhanced plant biomass, minimizing unwanted effects.

  8. Investigating the Role of Extensin Proteins in Poplar Biomass Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Margaret Brigham; Decker, Stephen R.; Bedinger, Patricia A.

    2016-04-13

    The biological conversion of cellulosic biomass to biofuel is hindered by cell wall recalcitrance, which can limit the ability of cellulases to access and break down cellulose. The purpose of this study was to investigate whether hydroxyproline-rich cell wall proteins (extensins) are present in poplar stem biomass, and whether these proteins may contribute to recalcitrance. Three classical extensin genes were identified in Populus trichocarpa through bioinformatic analysis of poplar genome sequences, with the following proposed names: PtEXTENSIN1 (Potri.001G019700); PtEXTENSIN2 (Potri.001G020100); PtEXTENSIN3 (Potri.018G050100). Tissue print immunoblots localized the extensin proteins in poplar stems to regions near the vascular cambium. Different thermochemical pretreatments reduced but did not eliminate hydroxyproline (Hyp, a proxy for extensins) from the biomass. Protease treatment of liquid hot water-pretreated poplar biomass reduced Hyp content by a further 16% and increased subsequent glucose yield by 20%. These data suggest that extensins may contribute to recalcitrance in pretreated poplar biomass, and that incorporating protease treatment into pretreatment protocols could result in a small but significant increase in the yield of fermentable glucose.

  9. Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis.

    Science.gov (United States)

    Danielsen, Lara; Lohaus, Gertrud; Sirrenberg, Anke; Karlovsky, Petr; Bastien, Catherine; Pilate, Gilles; Polle, Andrea

    2013-01-01

    Wood from biomass plantations with fast growing tree species such as poplars can be used as an alternative feedstock for production of biofuels. To facilitate utilization of lignocellulose for saccharification, transgenic poplars with modified or reduced lignin contents may be useful. However, the potential impact of poplars modified in the lignification pathway on ectomycorrhizal (EM) fungi, which play important roles for plant nutrition, is not known. The goal of this study was to investigate EM colonization and community composition in relation to biomass and nutrient status in wildtype (WT, Populus tremula × Populus alba) and transgenic poplar lines with suppressed activities of cinnamyl alcohol dehydrogenase, caffeate/5-hydroxyferulate O-methyltransferase, and cinnamoyl-CoA reductase in a biomass plantation. In different one-year-old poplar lines EM colonization varied from 58% to 86%, but the EM community composition of WT and transgenic poplars were indistinguishable. After two years, the colonization rate of all lines was increased to about 100%, but separation of EM communities between distinct transgenic poplar genotypes was observed. The differentiation of the EM assemblages was similar to that found between different genotypes of commercial clones of Populus × euramericana. The transgenic poplars exhibited significant growth and nutrient element differences in wood, with generally higher nutrient accumulation in stems of genotypes with lower than in those with higher biomass. A general linear mixed model simulated biomass of one-year-old poplar stems with high accuracy (adjusted R(2) = 97%) by two factors: EM colonization and inverse wood N concentration. These results imply a link between N allocation and EM colonization, which may be crucial for wood production in the establishment phase of poplar biomass plantations. Our data further support that multiple poplar genotypes regardless whether generated by transgenic approaches or conventional

  10. Inducing chromosome doubling of embryo sac in Populus tomentosa with high temperature exposure for hybrid triploids%高温诱导胚囊染色体加倍获得毛白杨杂种三倍体

    Institute of Scientific and Technical Information of China (English)

    康宁; 白凤莹; 张平冬; 康向阳

    2015-01-01

    advantageous over other methods of breeding in Populus. Given the problem that cross breeding was very difficult in P. tomentosa when using those serious abortive gametes as female parents, P. tomentosa clones 3119, 3532 and 8212 with higher seed setting rate from many years of field observations were selected as female parents, and P. alba × P. glandulosa YX1 as male parent. Before chromosome doubling was carried out, female flower branches should be cultured in water while their pistil development was approaching receptive period, which can overcome the problem that gamete abortion was likely to happen because of malnutrition. During chromosome doubling of embryo sac, female catkins, 4, 16, 28 and 52 h after pollination, were treated for continuous 2 and 4 h by 39 and 42 ℃ high temperature exposure, respectively. And control groups were set without high temperature treatment. In addition, female catkins of P. tomentosa clone 3119 with the same conditions were fixed for paraffin sectioning, sections were observed and the percentages of embryo sac at different developmental stages were statistically counted for determining the correlation between chromosome doubling in embryo sac of P. tomentosa clone 3119 and the development of embryo sac. The results showed that, in total, 458 triploids were produced from the treatments of three cross breeding. Among them, 211 triploids were derived from the cross breeding between clone 3119 and P. alba × P. glandulosa, and the average rate of triploid production was 57. 97% with a total of 230 triploids came from the cross breeding between clone 3532 and P. alba × P. glandulosa, and the average rate of triploid production reached 65. 71%. However, only 17 triploids were screened from the cross breeding between clone 8212 and P. alba × P. glandulosa, with an average rate of triploid production of 70. 83%. No hybrid triploids were obtained in control groups. From the view of effective treating period, P. tomentosa clone 3119 female

  11. Seed development in Phaseolus vulgaris L., Populus nigra L., and Ranunculus sceleratus L. with special reference to the microtubular cytoskeleton

    NARCIS (Netherlands)

    XuHan, X.

    1995-01-01

    In this thesis, seed development is investigated in celery-leafed buttercup ( Ranunculus sceleratus L.), bean ( Phaseolus vulgaris L.) and poplar ( Populus nigra L.). Developing embryos, endosperms and seed coats are investigate

  12. Gaseous NO2 effects on epidermis and stomata related physiochemical characteristics of hybrid poplar leaves: chemical elements composition, stomatal functions, photosynthesis and respiration

    Science.gov (United States)

    Mechanisms controlling effects of gaseous nitrogen dioxide on epidermis and stomata dynamics, and photosynthesis and respirations processes are still not fully understood. In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (4 microliters per lite...

  13. Variable Nitrogen Fixation in Wild Populus.

    Directory of Open Access Journals (Sweden)

    Sharon L Doty

    Full Text Available The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees.

  14. Overexpression of gibberellin 20-oxidase1 from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar.

    Science.gov (United States)

    Park, Eung-Jun; Kim, Hyun-Tae; Choi, Young-Im; Lee, Chanhui; Nguyen, Van Phap; Jeon, Hyung-Woo; Cho, Jin-Seong; Funada, Ryo; Pharis, Richard P; Kurepin, Leonid V; Ko, Jae-Heung

    2015-11-01

    Gibberellins (GAs) are important regulators of plant shoot biomass growth, and GA 20-oxidase (GA20ox) is one of the major regulatory enzymes in the GA biosynthetic pathway. Previously, we showed that the expression levels of a putative GA20ox1 (i.e., PdGA20ox1) in stem tissue of 3-month-old seedlings of 12 families of Pinus densiflora were positively correlated with stem diameter growth across those same families growing in an even-aged 32-year-old pine forest (Park EJ, Lee WY, Kurepin LV, Zhang R, Janzen L, Pharis RP (2015) Plant hormone-assisted early family selection in Pinus densiflora via a retrospective approach. Tree Physiol 35:86-94). To further investigate the molecular function of this gene in the stem wood growth of forest trees, we produced transgenic poplar lines expressing PdGA20ox1 under the control of the 35S promoter (designated as 35S::PdGA20ox1). By age 3 months, most of the 35S::PdGA20ox1 poplar trees were showing an exceptional enhancement of stem wood growth, i.e., up to fourfold increases in stem dry weight, compared with the nontransformed control poplar plants. Significant increases in endogenous GA1, its immediate precursor (GA20) and its catabolite (GA8) in elongating internode tissue accompanied the increased stem growth in the transgenic lines. Additionally, the development of gelatinous fibers occurred in vertically grown stems of the 35S::PdGA20ox1 poplars. An analysis of the cell wall monosaccharide composition of the 35S::PdGA20ox1 poplars showed significant increases in xylose and glucose contents, indicating a qualitative increase in secondary wall depositions. Microarray analyses led us to find a total of 276 probe sets that were upregulated (using threefold as a threshold) in the stem tissues of 35S::PdGA20ox1 poplars relative to the controls. 'Cell organization or biogenesis'- and 'cell wall'-related genes were overrepresented, including many of genes that are involved in cell wall modification. Several transcriptional

  15. Multiple factors affect pest and pathogen damage on 31 Populus clones in South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David R.; Coleman, Mark D. [USDA Forest Service, Southern Research Station, P.O. Box 700, New Ellenton, SC 29809 (United States); Durant, Jaclin A.; Newman, Lee A. [Arnold School of Public Health, Department of Environmental Health Sciences, University of South Carolina, 800 Sumter St., Columbia, SC 29208 (United States)

    2006-08-15

    Populus species and hybrids have many practical applications, but there is a paucity of data regarding selections that perform well in the southeastern US. We compared pest susceptibility of 31 Populus clones over 3 years in South Carolina, USA. Cuttings were planted in spring 2001 on two study sites. Clones planted in the bottomland site received granular fertilizer yearly and irrigation the first two years only, while those on the sandy, upland site received irrigation and fertilization throughout each growing season. Foliar damage by the cottonwood leaf beetle (Chrysomela scripta), cottonwood leafcurl mite (Tetra lobulifera), and poplar leaf rust (Melampsora medusae) was visually monitored several times each growing season. Damage ratings differed significantly among clones, and clonal rankings changed from year to year. Irrigation increased C. scripta and M. medusae damage, but had no effect on T. lobulifera damage. Certain clones received greater pest damage at a particular study site. Temporal damage patterns were evident among individual clones and on each site. At the upland site, OP367 and 7300502 were highly resistant to all three pests; I45/51 was highly resistant to C. scripta and M. medusae; NM6 and 15-29 were highly resistant to M. medusae; and 7302801 was highly resistant to T. lobulifera and M. medusae. At the bottomland site, NM6, Eridano, I45/51, and 7302801 were highly resistant to all three pests; clone 7300502 was highly resistant to M. medusae only. Based on this preliminary 3-year study of pest damage levels, we would recommend clones NM6, Eridano, I45/51, OP367, 15-29, 7302801, 7300502, and Kentucky 8 for use in this region. (author)

  16. Studies on genetic diversity in poplar (Populus deltoides Bartr) using ...

    African Journals Online (AJOL)

    hp

    2012-05-22

    May 22, 2012 ... random amplified polymorphic DNA (RAPD) marker. Lakshmi ... loci were detected out of which 20 were monomorphic and 354 were polymorphic. ... molecular study revealed that genotypes from different geographical region clustered in one group, ..... was the least informative for clone fingerprinting and.

  17. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees.

    Science.gov (United States)

    Taghavi, Safiyh; Garafola, Craig; Monchy, Sébastien; Newman, Lee; Hoffman, Adam; Weyens, Nele; Barac, Tanja; Vangronsveld, Jaco; van der Lelie, Daniel

    2009-02-01

    The association of endophytic bacteria with their plant hosts has a beneficial effect for many different plant species. Our goal is to identify endophytic bacteria that improve the biomass production and the carbon sequestration potential of poplar trees (Populus spp.) when grown in marginal soil and to gain an insight in the mechanisms underlying plant growth promotion. Members of the Gammaproteobacteria dominated a collection of 78 bacterial endophytes isolated from poplar and willow trees. As representatives for the dominant genera of endophytic gammaproteobacteria, we selected Enterobacter sp. strain 638, Stenotrophomonas maltophilia R551-3, Pseudomonas putida W619, and Serratia proteamaculans 568 for genome sequencing and analysis of their plant growth-promoting effects, including root development. Derivatives of these endophytes, labeled with gfp, were also used to study the colonization of their poplar hosts. In greenhouse studies, poplar cuttings (Populus deltoides x Populus nigra DN-34) inoculated with Enterobacter sp. strain 638 repeatedly showed the highest increase in biomass production compared to cuttings of noninoculated control plants. Sequence data combined with the analysis of their metabolic properties resulted in the identification of many putative mechanisms, including carbon source utilization, that help these endophytes to thrive within a plant environment and to potentially affect the growth and development of their plant hosts. Understanding the interactions between endophytic bacteria and their host plants should ultimately result in the design of strategies for improved poplar biomass production on marginal soils as a feedstock for biofuels.

  18. Increasing the productivity of short-rotation Populus plantations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Radwan, M.A.; Zasada, J.C. [Forest Service, Olympia, WA (United States). Pacific Northwest Research Station

    1997-12-31

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. Seven research papers are included which provide detailed methods, results, and interpretations on these topics.

  19. Wood Properties of Poplar from Stand Affected by Acid Rain

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Wood properties from 28 trees (Populus euramericana) selected from healthy and acid rain damaged forest were measured to evaluate the possible impacts on wood quality and utilization. On the heavily damaged location, the pH value of precipitation ranged from 3.7-5.0, and sulfate loading ranged from 20-40 kg·ha-2.y-1. Quantitative and qualitative studies on ring width, physical properties and mechanical properties indicated that changes of wood properties between diseased and healthy poplar occurred. Aci...

  20. Functional Gene Discovery and Characterization of Genes and Alleles Affecting Wood Biomass Yield and Quality in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor [Michigan Technological Univ., Houghton, MI (United States)

    2017-02-12

    Adoption of biofuels as economically and environmentally viable alternative to fossil fuels would require development of specialized bioenergy varieties. A major goal in the breeding of such varieties is the improvement of lignocellulosic biomass yield and quality. These are complex traits and understanding the underpinning molecular mechanism can assist and accelerate their improvement. This is particularly important for tree bioenergy crops like poplars (species and hybrids from the genus Populus), for which breeding progress is extremely slow due to long generation cycles. A variety of approaches have been already undertaken to better understand the molecular bases of biomass yield and quality in poplar. An obvious void in these undertakings has been the application of mutagenesis. Mutagenesis has been instrumental in the discovery and characterization of many plant traits including such that affect biomass yield and quality. In this proposal we use activation tagging to discover genes that can significantly affect biomass associated traits directly in poplar, a premier bioenergy crop. We screened a population of 5,000 independent poplar activation tagging lines under greenhouse conditions for a battery of biomass yield traits. These same plants were then analyzed for changes in wood chemistry using pyMBMS. As a result of these screens we have identified nearly 800 mutants, which are significantly (P<0.05) different when compared to wild type. Of these majority (~700) are affected in one of ten different biomass yield traits and 100 in biomass quality traits (e.g., lignin, S/G ration and C6/C5 sugars). We successfully recovered the position of the tag in approximately 130 lines, showed activation in nearly half of them and performed recapitulation experiments with 20 genes prioritized by the significance of the phenotype. Recapitulation experiments are still ongoing for many of the genes but the results are encouraging. For example, we have shown successful

  1. Isoprene emission-free poplars--a chance to reduce the impact from poplar plantations on the atmosphere.

    Science.gov (United States)

    Behnke, Katja; Grote, Rüdiger; Brüggemann, Nicolas; Zimmer, Ina; Zhou, Guanwu; Elobeid, Mudawi; Janz, Dennis; Polle, Andrea; Schnitzler, Jörg-Peter

    2012-04-01

    • Depending on the atmospheric composition, isoprene emissions from plants can have a severe impact on air quality and regional climate. For the plant itself, isoprene can enhance stress tolerance and also interfere with the attraction of herbivores and parasitoids. • Here, we tested the growth performance and fitness of Populus × canescens in which isoprene emission had been knocked down by RNA interference technology (PcISPS-RNAi plants) for two growing seasons under outdoor conditions. • Neither the growth nor biomass yield of the PcISPS-RNAi poplars was impaired, and they were even temporarily enhanced compared with control poplars. Modelling of the annual carbon balances revealed a reduced carbon loss of 2.2% of the total gross primary production by the absence of isoprene emission, and a 6.9% enhanced net growth of PcISPS-RNAi poplars. However, the knock down in isoprene emission resulted in reduced susceptibility to fungal infection, whereas the attractiveness for herbivores was enhanced. • The present study promises potential for the use of non- or low-isoprene-emitting poplars for more sustainable and environmentally friendly biomass production, as reducing isoprene emission will presumably have positive effects on regional climate and air quality. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  2. Biochemical and Physiological Studies on the Effects of Senescence Leaves of Populus deltoides on Triticum vulgare

    Directory of Open Access Journals (Sweden)

    Tejinder Pal Khaket

    2014-01-01

    Full Text Available Triticum vulgare (Wheat based products are the major dietary source of food in developing countries. In India, it grows in association with boundary plantations of Populus deltoids (poplar. During winter, poplar enters in dormancy which cause a heavy leaf fall at the time of wheat seed germination. Large number of poplar senescence leaves may adversely affect the wheat. Therefore, the present study was performed to examine the effect of senescence poplar leaves on wheat germ and some other biochemical parameters. Seed’s germination rate was determined by measuring root and shoot lengths, percent germination, germination index, and inhibition percentage. Biochemical parameters, namely, pigment, carbohydrate, protein, and phenol content, were estimated. Activities of catalase and polyphenol oxidase which are stress marker enzymes were also measured. Results revealed that germination and other biochemical parameters of wheat were severely affected by senescence poplar leaves even at very low concentration. So, intercropping of poplar along with wheat may be chosen carefully as wheat is the major dietary staple.

  3. Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides × P. nigra: evidence from herbivore damage for subfunctionalization and functional divergence

    Directory of Open Access Journals (Sweden)

    Frost Christopher J

    2010-05-01

    Full Text Available Abstract Background Cinnamyl Alcohol Dehydrogenase (CAD proteins function in lignin biosynthesis and play a critical role in wood development and plant defense against stresses. Previous phylogenetic studies did not include genes from seedless plants and did not reflect the deep evolutionary history of this gene family. We reanalyzed the phylogeny of CAD and CAD-like genes using a representative dataset including lycophyte and bryophyte sequences. Many CAD/CAD-like genes do not seem to be associated with wood development under normal growth conditions. To gain insight into the functional evolution of CAD/CAD-like genes, we analyzed their expression in Populus plant tissues in response to feeding damage by gypsy moth larvae (Lymantria dispar L.. Expression of CAD/CAD-like genes in Populus tissues (xylem, leaves, and barks was analyzed in herbivore-treated and non-treated plants by real time quantitative RT-PCR. Results CAD family genes were distributed in three classes based on sequence conservation. All the three classes are represented by seedless as well as seed plants, including the class of bona fide lignin pathway genes. The expression of some CAD/CAD-like genes that are not associated with xylem development were induced following herbivore damage in leaves, while other genes were induced in only bark or xylem tissues. Five of the CAD/CAD-like genes, however, showed a shift in expression from one tissue to another between non-treated and herbivore-treated plants. Systemic expression of the CAD/CAD-like genes was generally suppressed. Conclusions Our results indicated a correlation between the evolution of the CAD gene family and lignin and that the three classes of genes may have evolved in the ancestor of land plants. Our results also suggest that the CAD/CAD-like genes have evolved a diversity of expression profiles and potentially different functions, but that they are nonetheless co-regulated under stress conditions.

  4. Genetic variation of the bud and leaf phenology of seventeen poplar clones in a short rotation coppice culture.

    Science.gov (United States)

    Pellis, A; Laureysens, I; Ceulemans, R

    2004-01-01

    Leaf phenology of 17 poplar ( Populus spp.) clones, encompassing spring phenology, length of growth period and end-of-year phenology, was examined over several years of different rotations. The 17 poplar clones differed in their latitude of origin (45 degrees 30'N to 51 degrees N) and were studied on a short rotation experimental field plantation, situated in Boom (province of Antwerpen, Belgium; 51 degrees 05'N, 04 degrees 22'E). A similar, clear pattern of bud burst was observed during the different years of study for all clones. Clones Columbia River, Fritzi Pauley, Trichobel (Populus trichocarpa) and Balsam Spire (Populus trichocarpa x Populus balsamifera) from 45 degrees 30'N to 49 degrees N reached bud burst (expressed as day of the year or degree day sums) almost every year earlier than clones Wolterson (Populus nigra), Gaver, Gibecq and Primo (Populus deltoides x Populus nigra) (50 degrees N to 51 degrees N). This observation could not be generalised to end-of-season phenology, for which a yearly returning pattern for all clones was lacking. Late bud burst and early leaf fall of some clones (Beaupré, Boelare, IBW1, IBW2, IBW3) was brought about by increasing rust incidence during the years of observation. For these clones, the variability in leaf phenology was reflected in high coefficients of variation among years. The patterns of genetic variation in leaf phenology have implications for short rotation intensive culture forestry and management of natural populations. Moreover, the variation in phenology reported here is relevant with regard to the genetic mapping of poplar.

  5. Genotypic Variation in Nutrient Selectivity in Populus under NaCl Stress

    Institute of Scientific and Technical Information of China (English)

    Chen Shaoliang; Bai Genben; Liu Xiangfen; Li Jinke; Wang Shasheng; Andrea Polle; Aloys Huttermann

    2003-01-01

    We used a salt-resistant poplar genotype Populus euphratica and two salt-sensitive genotypes, Populus ‘popularis35-44' (P. popularis) and the hybrid P. talassica Kom × (P. euphratica + Salix alba L.) to examine genotypic differences in nutrientselectivity under NaCl stress. One-year-old seedlings ofP. euphratica and one-year-old hardwood cuttings ofP. popularis were usedin a short-term study (24 hours), while in a long-term study, up to 4 weeks, two-year-old seedlings ofP. euphratica and the hybrid P.talassica Kom × (P. euphratica + Salix alba L.) were compared. In the short-term study, K+ concentration in the xylem sap ([K+]xylem)of P. euphratica significantly increased after salt stress was initiated, and maintained 1-2 fold higher than control levels during theperiod of salt stress (24 hours). Xylem Ca2+ and Mg2+ concentrations ([Ca2+]xylem, [Mg2+]xylem) in P. euphratica resembled the patternof K+ despite a lesser magnitude in elevation. However, [K+]xylem, [Ca2+]xylem and [Mg2+]xylem in P. popularis exhibited a transient in-crease at the beginning of salt treatment, thereafter, they all returned to control levels at 4 hours and no further rise was observed inthe following hours. Xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in P. popularis increased sharply upon NaCl stress and steadily reachedthe maximum at 24 hours. In contrast, xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in NaCl-treated plants of P. euphratica did not signifi-cantly increase during the period of salt stress (24 hours). Noteworthy, Na+/K+ markedly declined after the onset of stress. These re-sults suggest that P. euphratica had a higher nutrient selectivity in face of salinity. A same trend was observed in a 4-week study.Xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in salinised plants of the hybrid abruptly increased after 4 days of stress, and then continu-ously increased to reach the highest level at day 8 or day 15. In comparison, the magnitude of Na+/K+, Na+/Ca2+ and Na+/Mg2+ eleva-tion in the xylem of P

  6. Towards a map of the Populus biomass protein-protein interaction network

    Energy Technology Data Exchange (ETDEWEB)

    Beers, Eric [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brunner, Amy [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Helm, Richard [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dickerman, Allan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2015-07-31

    Biofuels can be produced from a variety of plant feedstocks. The value of a particular feedstock for biofuels production depends in part on the degree of difficulty associated with the extraction of fermentable sugars from the plant biomass. The wood of trees is potentially a rich source fermentable sugars. However, the sugars in wood exist in a tightly cross-linked matrix of cellulose, hemicellulose, and lignin, making them largely recalcitrant to release and fermentation for biofuels production. Before breeders and genetic engineers can effectively develop plants with reduced recalcitrance to fermentation, it is necessary to gain a better understanding of the fundamental biology of the mechanisms responsible for wood formation. Regulatory, structural, and enzymatic proteins are required for the complicated process of wood formation. To function properly, proteins must interact with other proteins. Yet, very few of the protein-protein interactions necessary for wood formation are known. The main objectives of this project were to 1) identify new protein-protein interactions relevant to wood formation, and 2) perform in-depth characterizations of selected protein-protein interactions. To identify relevant protein-protein interactions, we cloned a set of approximately 400 genes that were highly expressed in the wood-forming tissue (known as secondary xylem) of poplar (Populus trichocarpa). We tested whether the proteins encoded by these biomass genes interacted with each other in a binary matrix design using the yeast two-hybrid (Y2H) method for protein-protein interaction discovery. We also tested a subset of the 400 biomass proteins for interactions with all proteins present in wood-forming tissue of poplar in a biomass library screen design using Y2H. Together, these two Y2H screens yielded over 270 interactions involving over 75 biomass proteins. For the second main objective we selected several interacting pairs or groups of interacting proteins for in

  7. Contrasting colonization and plant growth promoting capacity between wild type and gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar

    Energy Technology Data Exchange (ETDEWEB)

    Weyens N.; van der Lelie D.; Boulet, J.; Adriaensen, D.; Timmermans, J.-P.; Prinsen, E.; Van Oevelen, S.; D" Haen, J.; Smeets, K.; Taghavi, S.; Vangronsveld, J.

    2011-06-09

    This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promote growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.

  8. Investment appraisal of a poplar plantation aged 42 years

    Directory of Open Access Journals (Sweden)

    Keča Ljiljana

    2013-01-01

    Full Text Available Commercial profitability of poplar cultivation was analyzed in an artificial poplar plantation in Serbia. The aim of this study was to validate the invested financial means in the artificial poplar plantation, on the basis of the analysis of costs and receipts during a 42-year rotation, on alluvial semigley, at a discount rate of 12%. Methods of dynamic investment calculation (net present value - NPV, internal rate of return - IRR, benefit-cost method - B/C and payback period - PBP were used. The investigated plantations were established from Populus x euramericana cl. I-214, with a planting spacing of 6 x 3 m. At the calculation discount rate of 12%, the project for the production cycle of 42 years was not cost-effective from the economic aspect. The discount rate of 6% can be accepted in the studied plot because of the better site (alluvial semigley, but the oldness of the stand is unfavourable. For the studied sample plot, IRR was 5.51 %. B/C at r=12% in the study compartment was 0.24. The analysis shows that PBP is practically unacceptable for the investor at the discount rate of 6%. In practice, it is necessary to improve the position of producers in getting financial means for investment in poplar cultivation, so as to stimulate the establishment of artificial poplar plantations, especially in the private sector (on private land. [Projekat Ministarstva nauke Republike Srbije, br. TR 37008, TR 31041 and Value chain of non-wood forest products and its role in development of forestry sector in Serbia

  9. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones

    Energy Technology Data Exchange (ETDEWEB)

    Lingua, Guido [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy)], E-mail: guido.lingua@mfn.unipmn.it; Franchin, Cinzia [Dipartimento di Biologia evoluzionistica sperimentale, Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Todeschini, Valeria [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy); Castiglione, Stefano [Dipartimento di Biologia, Universita di Milano, Via Celoria 25, I-20100 Milano (Italy); Biondi, Stefania [Dipartimento di Biologia evoluzionistica sperimentale, Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Burlando, Bruno [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy); Parravicini, Valerio [Dipartimento di Biologia, Universita di Milano, Via Celoria 25, I-20100 Milano (Italy); Torrigiani, Patrizia [Dipartimento di Biologia evoluzionistica sperimentale, Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Berta, Graziella [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy)

    2008-05-15

    The effects of a high concentration of zinc on two registered clones of poplar (Populus alba Villafranca and Populus nigra Jean Pourtet), inoculated or not with two arbuscular mycorrhizal fungi (Glomus mosseae or Glomus intraradices) before transplanting them into polluted soil, were investigated, with special regard to the extent of root colonization by the fungi, plant growth, metal accumulation in the different plant organs, and leaf polyamine concentration. Zinc accumulation was lower in Jean Pourtet than in Villafranca poplars, and it was mainly translocated to the leaves; the metal inhibited mycorrhizal colonization, compromised plant growth, and, in Villafranca, altered the putrescine profile in the leaves. Most of these effects were reversed or reduced in plants pre-inoculated with G. mosseae. Results indicate that poplars are suitable for phytoremediation purposes, confirming that mycorrhizal fungi can be useful for phytoremediation, and underscore the importance of appropriate combinations of plant genotypes and fungal symbionts. - Inoculation with arbuscular mycorrhizal fungi can improve poplar tolerance to heavy metals in phytoremediation programmes.

  10. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome.

    Science.gov (United States)

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Van Acker, Rebecca; Van Montagu, Marc; Boerjan, Wout; Vangronsveld, Jaco

    2016-02-23

    Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.

  11. Improvement of production of high-yield poplar varieties seedlings by mycorrhiza application

    Directory of Open Access Journals (Sweden)

    Galić Zoran A.

    2007-01-01

    Full Text Available Research related to the effects of treatment by mycorrhiza preparations Ectovit, Rhodovit (preparations Symbio-m Ltd., Czech Rep. and their combination on growth of four high-yield poplar clones of Populus deltoides and one variety of Populus x euramericana are presented in this paper. In order to make more accurate assessment of mycorrhiza effect, soil characteristics such as morphology, texture and chemical composition were determined. The study results indicate that mycorrhized cuttings had the same or the better survival in all the study clones compared to the control. The application of the preparation Ectovit and Rhodovit resulted averagely in the first class planting stock of all the study clones. The combination of the preparations Ectovit and Rhodovit produced averagely the first class planting stock only of the clone Populus x euramericana.

  12. Physiological responses of wild type and putrescine-overproducing transgenic cells of poplar to variations in the form and concentration of nitrogen in the medium

    Science.gov (United States)

    Rakesh Minocha; Jae Soon Lee; Stephanie Long; Pratiksha Bhatnagar; Subhash C. Minocha

    2004-01-01

    We determined: (a) the physiological consequences of overproduction of putrescine in transgenic poplar (Populus nigra x mnrimoviczir) cells expressing an omithine decarboxylase transgene; and (b) effects of variation in nitrogen (N) concentration of the medium on cellular polyamine concentration in transgenic and non-transgenic cells. Cells grown in...

  13. Root proteome response to growth on tannery waste in three different poplar species with various adaptation abilities

    Directory of Open Access Journals (Sweden)

    Zemleduch-Barylska A.

    2013-04-01

    Full Text Available In our study we compared growth of three poplar clones (Populus tremula ×alba, P. alba ‘Villafranca” and P. nigra on chromium-containing solid tannery waste. Tolerance index of saplings ranged from only 25% for P. nigra up to 80% for P. tremula x alba. Standard morphological, chemical and biochemical analyses also confirmed significant differences in reaction of all tested clones to such growth conditions. Preliminary proteomic study showed an unequal level of changes in protein profiles from roots in different poplars.

  14. Shipping coal to Newcastle: are SRIC populus plantations a viable fiber production option for the central hardwoods region?

    Science.gov (United States)

    C.H. Strauss

    1991-01-01

    Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the eastern U.S. Populus hybrid planted on good quality plantation sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year....

  15. A genomics investigation of partitioning into and among flavonoid-derived condensed tannins for carbon sequestration in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Scott, A; Tsai, Chung-jui; Lindroth, Richard, L

    2013-03-24

    conserved. Overall phenylpropanoid composition exhibited changes due to large effects on phenolic glycosides containing a salicin moiety. There were no effects on lignin content. Efforts to publish this work continue, and depend on additional data which we are still collecting. This ongoing work is expected to strengthen our most provocative metabolic profiling data which suggests as yet unreported links controlling the balance between the two major leaf phenylpropanoid sinks, the CTs and the salicin-PGs. Objective 2: Ontogenic effects on leaf CT accrual and phenylpropanoid complexity (Objective 2) have been reported in the past and we contributed two manuscripts on how phenylpropanoid sinks in roots and stems could have an increasing effect on leaf CT as plants grow larger and plant proportions of stem, root and leaf change. Tsai C.-J., El Kayal W., Harding S.A. (2006) Populus, the new model system for investigating phenylpropanoid complexity. International Journal of Applied Science and Engineering 4: 221-233. We presented evidence that flavonoid precursors of CT rapidly decline in roots under conditions that favor CT accrual in leaves. Harding SA, Jarvie MM, Lindroth RL, Tsai C-J (2009) A comparative analysis of phenylpropanoid metabolism, N utilization and carbon partitioning in fast- and slow-growing Populus hybrid clones. Journal of Experimental Botany. 60:3443-3452. We presented evidence that nitrogen delivery to leaves as a fraction of nitrogen taken up by the roots is lower in high leaf CT genotypes. We presented a hypothesis from our data that N was sequestered in proportion to lignin content in stem tissues. Low leaf N content and high leaf CT in genotypes with high stem lignin was posited to be a systemic outcome of N demand in lignifiying stem tissues. Thereby, stem lignin and leaf CT accrual might be systemically linked, placing control of leaf phenylpropanoids under systemic rather than solely organ specific determinants. Analyses of total structural and non

  16. Productivitatea clonelor de plop hibrid instalate în culturi intensive în nord-estul României [ Poplar clones productivity managed for biomass production in North-Eastern Romania

    Directory of Open Access Journals (Sweden)

    Dănilă I.C.

    2016-08-01

    Full Text Available Poplar (Populus spp. is a fast-growing species in temperate conditions, with potential to substitute fossil fuels by obtaining energy from biomass. The aim of this work was to study the productivity of 6 hybrid poplar clone from a hilly region of NE Romania, after a growing season of 4 and, respectively, 5 years. Rods were used as planting material, planted at a density of 2667 trees per ha, with between-row spacing of 3 m and interior-row distances of 1.25 m. Generally, significant differences appear between clones, for all analysed biometric characteristics (p≤0.05. Results show that, in the fifth growing season, diameter increases on average with 15.1%, reaching 11.89 cm, height increases in average with 13.9%, reaching 11.89 m, and volume increases with 33.3%, reaching 0.172 m3. The total biomass after 4 years vegetation varies from 32.8 t/ha to 39.4 t/ha, and after 5 years from 47.7 t/ha to 60.2 t/ha, having an average increase in the latest growing season of 35% and an average yield of 11.3 t/ha/year. The most productive clones in the given growing conditions and crop characteristics are the clone Pannonia after 4 growing seasons and the clone AF6 after 5 years.

  17. Leaf Morphology Variation of Populus nigra L. in Natural Populations along the Rivers in Croatia and Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Davorin Kajba

    2015-06-01

    Full Text Available Background and Purpose: The aim was to determine the morphological differences between the hairy type of European black poplar (Populus nigra subsp. caudina and the typical type from the riparian forests populations as well as between the river systems. Hairy black poplar spreads in a mosaic pattern across the Submediterranean climatic type along the River Neretva and the typical European black poplar is growing on alluvial soils along large rivers in the territory of Croatia and Bosnia and Herzegovina. Material and Methods: Samples for leaf morphometric analysis were collected in 17 natural populations of European black poplar along six rivers in Croatia and Bosnia and Herzegovina. Results: Discriminant analyses have determined that in the differentiation of population groups largely contribute some characters such as the distance between the leaf widest part and the leaf base (DBW and the petiole length (PL. The differences between populations and analysed groups, as well as the differences between populations belonging to a particular river system, were confirmed for all studied characteristics. Conclusions: Significant differences have been determined between the typical and the hairy type of European black poplar in the studied morphological traits and these dissimilarities are in accordance with the climatic differences in respective habitats of continental riparian forests and the Submediterranean type of climate. Populations sampled in the lower course of the River Neretva, which correspond to the hairy type of the European black poplar, have smaller leaves and a greater angle between the first lower lateral vein and the midrib.

  18. Efectul aplicării lucrărilor de întreținere a terenului asupra acumulărilor de biomasă din culturile de plop hibrid [The effect of harrowing and weed control on biomass yields of hybrid poplar crops

    Directory of Open Access Journals (Sweden)

    Avăcăriței D

    2016-12-01

    Full Text Available Intensive hybrid poplar crops can produce an important biomass if adequate measures of management are being used. During the last years, there is a constant involvement on refining poplar cultivation technology, regarding installation, maintenance and harvesting, in order to obtain superior production at lower costs. The present study has analysed the effect of an experimental maintaining treatment (TI (harrowing and weed control on poplar crops’ biomass yields. The results were obtained after two vegetation seasons and compared with the results recorded in a control plot where no maintaining practices (TN were used. The experimental crop was set up in the spring of 2013, in the vicinity of Dornești site (Suceava County. Three hybrid poplar clones were tested (AF2, AF8 and Pannonia in each plot, and there were installed by long rods, using the 3.0 x 1.5 m spacing. The biomass was assessed for all the harvested individuals and every tree component using the gravimetric method. The experimental maintaining treatment (TI led to important differences between the two plots. The total biomass in TI plot was nearly eight-times superior to the biomass obtained in the control plot. All the three clones reacted significantly to the experimental treatment TI, even though minor differences were observed between the clones’ productivity. The effect of TI treatment was also substantial to the biomass’ structure on tree components. It is considered that the massive biomass increase was encouraged by a consistent shift of biomass proportion in the favour of the crown proportion (branches biomass, rather than subterranean elements.

  19. Investigation on the Effect of Kenaf Core and Stalk Fiber on the Medium Density Fiber Board Properties Made of Poplar Fibers

    Directory of Open Access Journals (Sweden)

    Fahimeh SH.Alizadeh

    2012-01-01

    Full Text Available In order to optimize the use of material non-forest resources, in this study the possibility of using the kenaf stalk fibers mixed with poplar fibers in producing medium density fiber board was considered. Variable factors such as density at two levels (0.55, 0.75 g/cm3 and the percentage incorporation of fiber (%50 poplar fibers, - %50 kenaf core fiber, %50 poplar fiber, -% 50 kenaf stalk fiber and %100 poplar fibers were considered. Steaming time and temperature (175°C, 10min, press time and temperature (5 min, 175°C, Pressing pressure (30 kg/cm3, fiber cake moisture (%12 and urea-formaldehyde resin with Concentration of %50 of the study factors were fixed. Results show that adding kenaf core fibers to the poplar fibers increases modulus of elasticity and water absorption but thickness swelling reduces. Increased density in board made with kenaf core has caused increase in bending strength, modulus of elasticity and internal bond strength and their water absorption and thickness swelling after 2 and 24 hours were competitive with poplar (MDF. On the other hand Populus fiber– kenaf stalk board mechanical and physical properties were competitive with (MDF board made of %100 poplar fibers. Finally we can say that according to the statistical analysis, the best treatment in this study was using kenaf core fibers, in making poplar (MDF with 0.75 g/cm3 density.

  20. Obtaining the transgenic poplars with low lignin content through down-regulation of 4CL

    Institute of Scientific and Technical Information of China (English)

    JIA Caihong; ZHAO Huayan; WANG Hongzhi; XING Zhifeng; DU Kejiu; SONG Yanru; WEI Jianhua

    2004-01-01

    The antisense 4CL (4-coumarate: CoA ligase) gene was transformed into triploid Chinese white poplar (Populus tomentosa) mediated by Agrobacterium tumefaciens. PCR and Southern blot analysis indicated that antisense 4CL gene had been integrated into the genome of the transgenic Chinese white poplars. The antisense gene had also been expressed, which was indicated by RT-PCR and Western analysis. Klason lignin content assay showed that repression of 4CL expression could result in remarkable reduction of lignin content in transgenic poplars, with most reduction of 41.73% compared with that of wild type in this paper. But there is no significant difference in holocellulose content between trans- genic and wild poplars. We considered that 4CL might not be the metabolism control point between lignin and carbohy- drate biosynthesis. The stems of transgenic poplars displayed red-brown color with different levels after the bark was peeled, while those of untransformed plants were white. No visible differences in growth and development were observed between transgenic and wild plants. Wiesner reaction analysis of the transgenic plant stems with reduced lignin content exhibited red color, while that of untransformed plant was typically purple-red.

  1. Two Highly Similar Poplar Paleo-subgenomes Suggest an Autotetraploid Ancestor of Salicaceae Plants.

    Science.gov (United States)

    Liu, Yinzhe; Wang, Jinpeng; Ge, Weina; Wang, Zhenyi; Li, Yuxian; Yang, Nanshan; Sun, Sangrong; Zhang, Liwei; Wang, Xiyin

    2017-01-01

    As a model plant to study perennial trees in the Salicaceae family, the poplar (Populus trichocarpa) genome was sequenced, revealing recurrent paleo-polyploidizations during its evolution. A comparative and hierarchical alignment of its genome to a well-selected reference genome would help us better understand poplar's genome structure and gene family evolution. Here, by adopting the relatively simpler grape (Vitis vinifera) genome as reference, and by inferring both intra- and inter-genomic gene collinearity, we produced a united alignment of these two genomes and hierarchically distinguished the layers of paralogous and orthologous genes, as related to recursive polyploidizations and speciation. We uncovered homologous blocks in the grape and poplar genomes and also between them. Moreover, we characterized the genes missing and found that poplar had two considerably similar subgenomes (≤0.05 difference in gene deletion) produced by the Salicaceae-common tetraploidization, suggesting its autotetraploid nature. Taken together, this work provides a timely and valuable dataset of orthologous and paralogous genes for further study of the genome structure and functional evolution of poplar and other Salicaceae plants.

  2. Transcriptome Analysis of Poplar during Leaf Spot Infection with Sphaerulina spp.

    Science.gov (United States)

    Foster, Adam J; Pelletier, Gervais; Tanguay, Philippe; Séguin, Armand

    2015-01-01

    Diseases of poplar caused by the native fungal pathogen Sphaerulina musiva and related species are of growing concern, particularly with the increasing interest in intensive poplar plantations to meet growing energy demands. Sphaerulina musiva is able to cause infection on leaves, resulting in defoliation and canker formation on stems. To gain a greater understanding of the different responses of poplar species to infection caused by the naturally co-evolved Sphaerulina species, RNA-seq was conducted on leaves of Populus deltoides, P. balsamifera and P. tremuloides infected with S. musiva, S. populicola and a new undescribed species, Ston1, respectively. The experiment was designed to contain the pathogen in a laboratory environment, while replicating disease development in commercial plantations. Following inoculation, trees were monitored for disease symptoms, pathogen growth and host responses. Genes involved in phenylpropanoid, terpenoid and flavonoid biosynthesis were generally upregulated in P. balsamifera and P. tremuloides, while cell wall modification appears to play an important role in the defense of P. deltoides. Poplar defensive genes were expressed early in P. balsamifera and P. tremuloides, but their expression was delayed in P. deltoides, which correlated with the rate of disease symptoms development. Also, severe infection in P. balsamifera led to leaf abscission. This data gives an insight into the large differences in timing and expression of genes between poplar species being attacked by their associated Sphaerulina pathogen.

  3. Transcriptome Analysis of Poplar during Leaf Spot Infection with Sphaerulina spp.

    Directory of Open Access Journals (Sweden)

    Adam J Foster

    Full Text Available Diseases of poplar caused by the native fungal pathogen Sphaerulina musiva and related species are of growing concern, particularly with the increasing interest in intensive poplar plantations to meet growing energy demands. Sphaerulina musiva is able to cause infection on leaves, resulting in defoliation and canker formation on stems. To gain a greater understanding of the different responses of poplar species to infection caused by the naturally co-evolved Sphaerulina species, RNA-seq was conducted on leaves of Populus deltoides, P. balsamifera and P. tremuloides infected with S. musiva, S. populicola and a new undescribed species, Ston1, respectively. The experiment was designed to contain the pathogen in a laboratory environment, while replicating disease development in commercial plantations. Following inoculation, trees were monitored for disease symptoms, pathogen growth and host responses. Genes involved in phenylpropanoid, terpenoid and flavonoid biosynthesis were generally upregulated in P. balsamifera and P. tremuloides, while cell wall modification appears to play an important role in the defense of P. deltoides. Poplar defensive genes were expressed early in P. balsamifera and P. tremuloides, but their expression was delayed in P. deltoides, which correlated with the rate of disease symptoms development. Also, severe infection in P. balsamifera led to leaf abscission. This data gives an insight into the large differences in timing and expression of genes between poplar species being attacked by their associated Sphaerulina pathogen.

  4. Relationship between plant hormone level excreted by ectomycorrhizal fungi and growth of poplar NL-895

    Institute of Scientific and Technical Information of China (English)

    Lei MA; Xiaoqin WU; Ling ZHENG

    2009-01-01

    To explore the effects of plant hormones levels excreted by ectomycorrhizal (ECM) fungi on the growth of poplars, Populus x euramericana cv. NL-895 seedlings were inoculated with nine species of ECM fungi. We investigated the status of ectomycorrhizal formation and the effects of these fungi on poplar growth, and using the HPLC method, we measured the contents of four kinds of plant hormones, indole acetic acid (IAA), zeatin (Z), gibberellin (GA) and abscisic acid (ABA) in both the culture filtrate and the mycelium of these fungi. The results showed that the effects of nine ECM fungi on the growth of poplar NL-895 varied. The inoculated seedlings, whether or not obvious mycorrhizas were developed, grew better than those non-inoculated ones. All nine ectomycorrhizal fungi excreted the four plant hormones, but at different levels. The hormone contents in culture filtrate were higher than that in mycelium, which showed a definite relationship with poplar growth. Significantly, correlation analysis suggested the height and stem diameter of the poplar were positively correlated with zeatin contents in the mycelium, and were negatively correlated with the levels of ABA or IAA in the mycelium.

  5. [Application of Populus Nigra preparations at experimental parodontitis].

    Science.gov (United States)

    Kipiani, N V; Kuchukhidze, Dzh K; Chichua, Z Dzh; Kipiani, V A; Datunashvili, I V

    2007-09-01

    Severe oxidative stress, developed under experimental periodontitis is accompanied by disturbances in mitochondrial respiration in tissue cells of gingiva, membrane damage and release of Fe(2+) and Mn(2+), leading to the worsening of inflammation process and gingival tissue necrosis. Reduction of free nitric oxide in gingival tissue appeared to be characteristic for experimental parodontitis: decreases local immunity, antimicrobial resistance, and tissue regeneration, disturbs blood supply and tissue trophism, which forwards important role in deepening of inflammation process and wasting of gingival tissue. Application of preparations derived from black poplar (Populus Nigra) gemma standardizes mitochondrial respiration, reduces presentation of inflammation, and considerably improves EPR-spectrum of gingival tissue. Though the complete normalization is not achieved--hazard of peroxidation still remains, the applied preparations, due to their strong anti- oxidative and anti-inflammatory activities is as an effective and rehabilitative means to tackle gingivitis and peiodontitis.

  6. 转抗虫基因杨树对土壤微生物影响分析%Effects of transgenic insect-resistance hybrid poplar 741 groves on soil microorganisms

    Institute of Scientific and Technical Information of China (English)

    甄志先; 王进茂; 杨敏生

    2011-01-01

    In order to evaluate ecologic safety of transgenic insect-resistance hybrid poplar 741,the diversity of soil microflora and Bt toxin protein were systematically studied in the growth season. 4-year-old transgenic poplar 741 in the Heneshui district and Baoding district were examined. The toxin protein was found in the soil of 4-year-old test groves, whose peak content appeared in rhizosphere, and the longer the distances off the roots, the lower the contents.The distribution of toxin protein showed a descending trend: root tissue> root surface soil>rhizosphere soil> surface soil. The concentration of toxin protein decreased by degree of 10 times among different parts of soil. No toxin protein was found in rhizosphere of non-transformed clones. In the rhizosphere and roots surface soil of 4-year-old test groves, the amount of bacteria and actinomycetes and fungi varied with the changes of season. In spring, their amount began to increase gradually, reaching the maximum in June and July, and then decreased gradually. Between different transgenic clones and nontransgenic controls, during different seasons there were differences but no significant difference of their amounts appeared in rhizosphere and roots surface soil. The existence of toxin protein in soil showed no significant influence on the amounts of fungi, bacteria and actinomycetes. The result showed that distribution of Bt toxin protein was not related to the amount of microorganism. Transgenic poplar is ecofriendly in the grittiness soil.%以4年生转双抗虫基因741杨试验林为对象,研究了土壤中Bt毒蛋白的分布,及其在生长季节中土壤微生物种群数量的变化.结果表明:试验林土壤中发现了毒蛋白的存在,在转基因植株根围含量最高,距根系越远,含量逐渐降低.其毒蛋白分布趋势是根组织>根际土壤>根围土壤>地表土,其浓度一般呈10倍的等级降低,在非转基因对照植株根系周围未检

  7. Populus (Salicaceae plantations

    Directory of Open Access Journals (Sweden)

    Gonzalo M. Romano

    2013-01-01

    Full Text Available Aunque los cultivos forestales son comunidades artificiales, modifican condiciones ambientales que pueden alterar la diversidad fúngica nativa. Se estudiaron los efectos del manejo forestal de una plantación de sauces (Salix y álamos (Populus sobre la biodiversidad de Agaromycetes durante un año en una isla del Delta del Paraná, Argentina. Se midieron el peso seco y el número de basidiomas. Se identificaron 28 especies pertenecientes a los Agaricomycetes: 26 especies de Agaricales, una de Polyporales y una de Russulales. Nuestros resultados sugieren que el manejo forestal de dicha plantación no afecta la abundancia ni la diversidad de basidiomas de Agaricomycetes.

  8. Nutrient Dynamics of Fine Roots in the Mixed Plantation of Poplar and Black Locust

    Institute of Scientific and Technical Information of China (English)

    Zhai Mingpu; Jiang Sannai; Jia Liming

    2006-01-01

    The mixed plantation of poplar (Populus spp.)and black locust (Robinia pseudoacacia) is one of the typical mixed stands with nitrogen-fixing and non-nitrogen-fixing species.Interaction between the two species in the mixed stand is harmonious and productivity is high,making this kind of mixed plantation a very successful pattern on poor sandy sites in north China.In this study,the fine root decomposition of the two species was investigated in the mixed plantation of 27-year-old Canadian poplar (P.canadansis)and 22-year-old black locust on sandy sites along the Chaobai River in Beijing.Mechanism of harmonious interaction between the two species was observed in the view of the nutrient cycle of fine roots.Results showed that:(1) the fine root decomposition of Canadian poplar and black locust trees was different.Concentrations of N,Ca and Mg gradually increased and those of P and K gradually decreased in the fine roots of poplar during the period of decomposition.Concentrations of N,P and K gradually decreased in the fine roots of black locust during decomposition.The speed of nutrient decomposition in mixed fine roots of the two species fell between the speed of the two pure samples.(2) During decomposition,the annual return amount of N,K and Mg in fine roots of black locust was highest,followed by the mixed fine roots of the two species,and then the fine roots of poplar.(3) The increased return amount of N in mixed fine roots could improve the N nutrient condition of poplar trees.The return amount of P in poplar Fine roots was greater than that of black locust,which could improve the P nutrient of black locust trees.The interaction of mutual supplements of N and P nutrient cycle of fine roots between these two species formed.

  9. Responses of energy partitioning and surface resistance to drought in a poplar plantation in northern China

    Science.gov (United States)

    Kang, M.; Zhang, Z.; Noormets, A.; Fang, X.; Zha, T.; Zhou, J.; Sun, G.; McNulty, S.; Chen, J.

    2015-01-01

    Poplar (Populus sp.) plantations have been used broadly for combating desertification, urban greening, and paper and wood production in northern China. However, given the high water use by the species and the regional dry environment, the long-term sustainability of these plantations needs to be evaluated. Currently, the understanding of energy partitioning and canopy resistance to water vapor and CO2 in poplar plantations is limited, impeding an accurate assessment of their true ecosystem functions. This study examined the variability of canopy bulk resistance parameters and energy partitioning over a four-year period encompassing both dry and wet conditions in a poplar (Populus euramericana CV. "74 / 76") plantation ecosystem located in northern China. Available energy (Net radiation Rn minus Soil Heat Flux, G) partitioning to latent (LE) and sensible (H) heat was responsive to climatological drought, with LE/(Rn-G) ranging from 62% in wet years (e.g. 2007 and 2008) to 53% in dry years (e.g. 2006 and 2009), and H/(Rn-G) from 25 to 33% between wet and dry years. Correspondingly, the Bowen ratio (β=H/LE) were 0.83 and 1.57. Surface resistance (Rs) had the greatest response to drought (+43%), but the aerodynamic and climatological resistances did not change significantly (p > 0.05). Partial correlation analysis indicated that Rs was the dominant factor in controlling the Bowen ratio. Furthermore, Rs was the major factor controlling LE during the growing season, even in wet years, as indicated by the decoupling coefficient (Ω = 0.45 and 0.39 in wet and dry years, respectively), and the LE / LEeq ratio ranged from 0.81 and 0.68 in wet and dry years, respectively. In general, the dry surface conditions dominated in this poplar plantation ecosystem regardless of soil water availability suggesting that fast-growing and water use-intensive species like poplar plantations are poorly adapted for the water limited region.

  10. Responses of energy partitioning and surface resistance to drought in a poplar plantation in northern China

    Directory of Open Access Journals (Sweden)

    M. Kang

    2015-01-01

    Full Text Available Poplar (Populus sp. plantations have been used broadly for combating desertification, urban greening, and paper and wood production in northern China. However, given the high water use by the species and the regional dry environment, the long-term sustainability of these plantations needs to be evaluated. Currently, the understanding of energy partitioning and canopy resistance to water vapor and CO2 in poplar plantations is limited, impeding an accurate assessment of their true ecosystem functions. This study examined the variability of canopy bulk resistance parameters and energy partitioning over a four-year period encompassing both dry and wet conditions in a poplar (Populus euramericana CV. "74 / 76" plantation ecosystem located in northern China. Available energy (Net radiation Rn minus Soil Heat Flux, G partitioning to latent (LE and sensible (H heat was responsive to climatological drought, with LE/(Rn-G ranging from 62% in wet years (e.g. 2007 and 2008 to 53% in dry years (e.g. 2006 and 2009, and H/(Rn-G from 25 to 33% between wet and dry years. Correspondingly, the Bowen ratio (β=H/LE were 0.83 and 1.57. Surface resistance (Rs had the greatest response to drought (+43%, but the aerodynamic and climatological resistances did not change significantly (p > 0.05. Partial correlation analysis indicated that Rs was the dominant factor in controlling the Bowen ratio. Furthermore, Rs was the major factor controlling LE during the growing season, even in wet years, as indicated by the decoupling coefficient (Ω = 0.45 and 0.39 in wet and dry years, respectively, and the LE / LEeq ratio ranged from 0.81 and 0.68 in wet and dry years, respectively. In general, the dry surface conditions dominated in this poplar plantation ecosystem regardless of soil water availability suggesting that fast-growing and water use-intensive species like poplar plantations are poorly adapted for the water limited region.

  11. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought

    Directory of Open Access Journals (Sweden)

    Riccardo Ludovisi

    2017-09-01

    Full Text Available Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level HTFP approach to investigate the response to drought of a full-sib F2 partially inbred population (termed here ‘POP6’, whose F1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought on a population of 4603 trees (503 genotypes hosted in two adjacent experimental plots (1.67 ha by conducting low-elevation (25 m flights with an aerial drone and capturing 7836 thermal infrared (TIR images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature (Tc was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype

  12. Proteome Analysis of Poplar Seed Vigor.

    Science.gov (United States)

    Zhang, Hong; Wang, Wei-Qing; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Seed vigor is a complex property that determines the seed's potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30 °C and 75 ± 5% relative humidity for different periods of time (0-90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue.

  13. Above-ground biomass characteristics of young hybrid aspen (Populus tremula L. x P. tremuloides Michx.) plantations on former agricultural land in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Tullus, Arvo; Tullus, Hardi; Soo, Tea; Paern, Linnar [Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu (Estonia)

    2009-11-15

    Fifty biomass production model trees were analysed in 7-yr-old commercial hybrid aspen plantations established on abandoned agricultural land in Estonia. Above-ground leafless biomass (ALB) of the model trees varied from 0.1 to 9.8 kg DM. The ALB of plantations with a density of 880-1340 trees ha{sup -1} growing on former field soils was between 2.18 and 8.54 t DM ha{sup -1}. The amount of nitrogen accumulated in the ALB varied between 14.4 and 48.5 kg ha{sup -1}, the amount of phosphorus, between 1.7 and 5.9 kg ha{sup -1}, and the amount of potassium, between 6.5 and 21.9 kg ha{sup -1}. The removal of major mineral nutrients from the site with the removal of woody biomass in 7-yr-old plantations would be relatively small, constituting 0.5-3.4% of the nutrient pool in the humus layer of the previously fertilized field soils. The stembark content decreases rapidly until the DBH reaches 4 cm, which can be considered a target diameter for the hybrid aspen coppicing system. (author)

  14. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level

    Science.gov (United States)

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-09-01

    The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health.

  15. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level

    Science.gov (United States)

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-01-01

    The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health. PMID:27615148

  16. Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions.

    Science.gov (United States)

    Brüggemann, Nicolas; Meier, Rudolf; Steigner, Dominik; Zimmer, Ina; Louis, Sandrine; Schnitzler, Jörg-Peter

    2009-06-01

    The aerobic formation of methane in plants has been reported previously, but has been questioned by a number of researchers. Recently, isotopic evidence demonstrated that ultraviolet irradiation and heating lead to photochemical or thermal aerobic methane formation mainly from plant pectin in the absence of microbial methane production. However, the origin of aerobic methane formation from plant material observed under low temperature and low-light/dark conditions is still unclear. Here we show that Grey poplar (Populus × canescens, syn. Populus tremula × Populus alba) plants derived from cell cultures under sterile conditions released 13C-labeled methane under low-light conditions after feeding the plants with 13CO2. Molecular biological analysis proved the absence of any microbial contamination with known methanogenic microorganisms and ruled out the possibility that methane emission from our poplar shoot cultures under aerobic low-light/dark and ambient temperature conditions could be of microbial origin. The CH4 release rates in our experiment were in the range of 0.16-0.7 ng g-1 DW h-1, adding evidence to the growing opinion that the quantitative role of aerobic methane emissions from plants in the global methane budget, at least from cold temperate or boreal regions, is only of minor importance.

  17. Non-destructive Analysis Chlorophyll Content of Different Genotypes of Poplars Based on Hyperspectral Reflectance Data

    Science.gov (United States)

    Jin, S.; Dian, Y.; Wang, R.; Peng, L.; Liu, X.; Zhou, Z.; Zhong, S.; Wang, Y.

    2016-11-01

    Leaf Chlorophyll content (Ct) indicates plant physiological status and can be detected by hyperspectral measurements. However, it is difficult to conclude that different genotypes of same species have the same relationship with the hyperspectral data. The aim of this paper was to test that whether the different genotypes of same species have the similar relationship with hyperspectral reflectance. First of all, spectral reflectance of populus simonii (Populus simonii Carr) and I-72 poplar (Populus euramericana cv. ‘San Martino I-72/58’) were collected by spectrometric meter, and then extract chlorophyll index (CI) and other 11 types of vegetation indices from the hyperspectral reflectance data. At last, relationships between different vegetation indices and Ct of the two genotypes of poplar were compared. Results show that (1) the relationships between SPAD value and Ct are different in the low and high Ct level, we can choose proper vegetation index, REPIG, mSR705 and SDr/SDb et al to predict the Ct value. (2) Meanwhile, we can use PSSRb and PRI to distinguish fine difference between different genotypes.

  18. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-11-01

    Full Text Available In order to adopt strategies for forest conservation and development,it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in termof polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province.These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.

  19. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-12-01

    Full Text Available In order to adopt strategies for forest conservation and development, it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in term of polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province. These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.  

  20. Significance of stigma receptivity in intergeneric cross-pollination of Salix × Populus

    Directory of Open Access Journals (Sweden)

    Elżbieta Zenkteler

    2016-09-01

    Full Text Available The pollen–stigma interaction plays an important role in reproductive process and has been continuously studied in many interspecific and intergeneric crossing experiments. The aim of this study was to investigate stigma receptivity (SR of willow in order to determine the most suitable period for its pollination with poplar pollen and improve the effectiveness of Salix × Populus crosses. Tissue samples were examined histologically using light, epifluorescent, scanning, and transmission electron microscopy. Willow SR was determined by stigma morphological traits, test of pollen germination rate, Peroxtesmo test of peroxidase and esterase activity on stigma surface as well as papilla ultrastructure at anthesis. We have ascertained that the SR duration in willow is short, lasting from 1 to 2 DA. The poplar pollen germination rate on willow stigmas on 1 DA ranged from 26.3 to 11.2%.

  1. Effect of drought on fine roots productivity in poplar-based short rotation coppice

    Science.gov (United States)

    Mani Tripathi, Abhishek; Fischer, Milan; Berhongaray, Gonzalo; Orság, Matěj; Trnka, Miroslav

    2015-04-01

    Short rotation woody crops (SRWC) are alternative source of bioenergy, which apart from their 'carbon neutrality' have potential to store carbon (C) into soil and mitigate the increasing CO2 emission. Studies of below ground biomass of trees are divided into two types according to root diameter - analysis of fine roots (less than 2 mm) and coarse roots (more than 2 mm). Trees roots are spatially highly heterogeneous and it requires large number of samples to obtain a representative estimate of belowground biomass. For this study we used hybrid poplar clone J-105 (Populus nigra x P. maximowiczii) grown under short rotation coppice system in the region of Bohemian-Moravian Highland (49o32'N, 16o15'E and altitude 530 m a.s.l.) since April 2000. The plantation with planting density of 9,216 trees ha-1 was established on the former agricultural land and the length of the rotation cycle was set to 6-8 years. While mean annual rainfall was 609 mm with mean annual temperature 7.2oC during 1981-2013 significant increase of temperature and more frequent droughts are expected. In 2011, we established drought experiment based on throughfall exclusion system, reducing up to 70 % of throughfall precipitation. Thus 2 treatments with normal and lowered soil moisture levels were introduced. In January and February 2014, we cored 18 places including drought and control using root bipartite auger. The main goal of the study is to assess the response of fine roots productivity and fine roots vertical distribution on the reduced soil water availability. Results will be presented at the conference. Acknowledgements: This study was funded by research project IGA Mendel University 2014 "Study of below ground biomass in short rotation poplar coppice (J-105) in the Czech-Moravian Highlands", project PASED (KONTAKT II LH12037 ʺDevelopment of models for the assessment of abiotic stresses in selected energy woody plantsʺ and "Building up a multidisciplinary scientific team focused on drought

  2. Map and analysis of microsatellites in the genome of Populus: The first sequenced perennial plant

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We mapped and analyzed the microsatellites throughout 284295605 base pairs of the unambiguously assembled sequence scaffolds along 19 chromosomes of the haploid poplar genome. Totally, we found 150985 SSRs with repeat unit lengths between 2 and 5 bp. The established microsatellite physical map demonstrated trat SSRs were distributed relatively evenly across the genome of Populus. On average, These SSRs occurred every 1883 bp within the poplar genome and the SSR densities in intergenic regions, introns, exons and UTRs were 85.4%, 10.7%, 2.7% and 1.2%, respectively. We took di-, tri-, tetra-and pentamers as the four classes of repeat units and found that the density of each class of SSRs decreased with the repeat unit lengths except for the tetranucleotide repeats. It was noteworthy that the length diversification of microsatellite sequences was negatively correlated with their repeat unit length and the SSRs with shorter repeat units gained repeats faster than the SSRs with longer repeat units. We also found that the GC content of poplar sequence significantly correlated with densities of SSRs with uneven repeat unit lengths (tri- and penta-), but had no significant correlation with densities of SSRs with even repeat unit lengths (di- and tetra-). In poplar genome, there were evidences that the occurrence of different microsatellites was under selection and the GC content in SSR sequences was found to significantly relate to the functional importance of microsatellites.

  3. Isolation and analysis of a TIR-specific promoter from poplar

    Institute of Scientific and Technical Information of China (English)

    Zheng Hui-quan; Lin Shan-zhi; Zhang Qian; Zhang Zhen-zhen; Zhang Zhi-yi; Lei Yang; Hou Lu

    2007-01-01

    A 5'flanking region of the well-conserved Toll/interleukin-1 receptor domain (TIR)-encoding sequence was isolated from the genomic DNA of Melampsora magnusiana Wagner resistant clones of hybrid triploid poplars [(Populus tomentosa × P. bolleana)× P. tomentosa]. Sequencing results and alignment analysis show that the obtained TIR-specific promoter (named as PtTIRp01) was 1,732 bp in length; moreover 3'region of the PtTIRp01 contains a 398 bp complete TIR-encoding sequence, which significantly corresponds to the 5'composition of TIR-NBS type gene PtDRG02, indicating that the obtained TIR-specific promoter region consists of 747 bp long 5'region of TIR-NBS type gene PtDRG02 and its upstream region of promoter (985 bp). It was found that the 5'region of TIR-NBS type gene PtDRG02 was characterized in the downstream region of the transcriptional start, named as 5'-untranslated region (5'UTR), consisting of one 93 bp 5'-untranslation exon, one 213 bp intron and one 441 bp TIR-encoding open reading frame (ORF). In addition, several putative cis-acting motifs were present in the obtained TIR-specific promoter of PtDRG02,including one TATA box, one GC-rich, one AT-rich, one P-box, one 3-AF1 binding site, two CAAT boxes, two GT-1 motifs, three typical W-boxes, four Ⅰ-boxes, and one multi-cis-acting fragment (MCF). The latter contains five types of regulatory elements (E4,G-box, ABRE motif, boxl and HVAls), most of which were homologous to the cis-acting regulatory elements involved in the activation of defense genes in plants. Thus, it can be suggested that TIR-specific promoter might be a pathogen-inducible promoter and be necessary for the inducible expression of defense-related genes.

  4. Dechlorination of PCBs in the rhizosphere of switchgrass and poplar.

    Science.gov (United States)

    Meggo, Richard E; Schnoor, Jerald L; Hu, Dingfei

    2013-07-01

    Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products.

  5. Wood Microstructure Effects on Chinese White Poplar Dyeing

    Institute of Scientific and Technical Information of China (English)

    DUANXinfang; BAOFucheng

    2004-01-01

    In order to study the influence of wood microstructure on wood dyeing, eleven parameters of wood microstructure and 5 parameters of wood dyeing effects for 34 pieces of wood boards from 5 trees of Chinese white poplar (Populus tornentosa) were determined and the multiple regression analysis between the factors of wood microstructures and the parameters of wood dyeing effects were made. The regression results show that each variable of wood dyeing effects has higher relationship with wood microstructures,and multiple correlation coefficients between each variable of wood dyeing effects and wood microstructures are 0.483 6-0.799 8. The main factors of wood microstructures influencing wood dyeing of Chinese whitep oplar are proportion of wood ray, proportion of vessel and proportion of wood fiber according to comparing the standardized regression coefficients of multiple regression equation.

  6. Quantification of carbon sources for isoprene emission in poplar leaves

    Science.gov (United States)

    Kreutzwieseer, J.; Graus, M.; Schnitzler, J. P.; Heizmann, U.; Rennenberg, H.; Hansel, A.

    2003-12-01

    Isoprene is the most abundant volatile organic compound emitted by plants and in particular by trees. Current interest in understanding its biosynthesis in chloroplasts is forced by the important role isoprene plays in atmospheric chemistry. Leaf isoprene formation is closely linked to photosynthesis by a dynamic use of recently fixed photosynthetic precursors in the chloroplast. Under steady state conditions in [13C]CO2 atmosphere approximately 75 % of isoprene became labeled within minutes. The source of unlabeled C is suggested to be of extra-chloroplastidic and/or from starch degradation. In order to test whether these alternative carbon sources - leaf internal C-pools and xylem-transported carbohydrates, contribute to leaf isoprene formation in poplar (Populus tremula x P. alba) on-line proton-transfer-reaction-mass spectrometry (PTR-MS) was used to follow 13C-labeling kinetics.

  7. Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar

    Directory of Open Access Journals (Sweden)

    Lawrence Amanda M

    2010-11-01

    Full Text Available Abstract Background Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development. Results We report that poplar (Populus spp. has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast. Conclusion These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.

  8. Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees

    DEFF Research Database (Denmark)

    Trapp, Stefan; Köhler, A.; Larsen, L.C.

    2001-01-01

    The toxicity of fresh and weathered gasoline and diesel fuel to willow and poplar trees was studied using a tree transpiration toxicity test. Soils were taken from an abandoned filling station. Concentrations in the samples were measured as the sum of hydrocarbons from C5 to C10 (gasoline) and C12...... to C28 (diesel). Concentrations ranged from 145 to 921 mg/kg gasoline and 143 to 18231 mg/kg diesel. The correlation between log soil concentration and toxicity to willows (Salix viminalis x schwerinii) was highly significant for the diesel fraction (r2=0.81, n=19) and for the sum of hydrocarbons (r2...... diesel and gasoline contaminated soils, and two willow and one poplar species (S. viminalis, S. alba and Populus nigra). Fresh diesel at about 1000 mg/kg showed no effect on S. alba, although P. nigra was more sensitive. 10000 mg/kg seriously affected the transpiration of all species, silver willow (S...

  9. 杂交杨木纤维中碳水化合物的稀酸催化分离%Dilute Acid-catalyzed Fractionation of Carbohydrates in Hybrid Poplar Fibers

    Institute of Scientific and Technical Information of China (English)

    张春辉; Troy Runge; 詹怀宇

    2012-01-01

    In this paper, the acid-catalyzed fractionation of pentosans and hexosans from hybrid poplar fibers was studied using a circulation reactor. Kinetic models of both pentosan and hexosan hydrolysis/degradation were crea- ted to predict the hydrolysis yield of both substances. The extraction conditions were varied, including a tempera- ture range of 140 - 170℃ , a sulfuric acid concentration range of 0.1% - 0.9% wt with a constant liquor-to-wood ratio of 6: 1. The yields of both substances were favored at high acid concentration and temperature, while pentosan being considerable more reactive. Under optimal conditions, 91 percent of pentosan could be separated from the fi- ber, while more than 93 percent of hexosan was retained in the solids. This study demonstrates that pentosan and hexosans could be fractionated from poplar fibers using acid hydrolysis and converted into liquid fuel and valued chemicals separately.%本文采用循环式反应器研究了杂交杨木纤维中聚戊糖和聚己糖在稀酸条件下的催化分离,分别得出了聚戊糖和聚己糖稀酸水解/降解的动力学模型,以预测在不同反应条件下戊糖和己糖的水解得率。反应条件为温度140~170℃,硫酸浓度0.1%~0.9%wt,液比为6:1。研究发现,较高的酸浓和温度对提高戊糖和己糖的得率都有利,但相同条件下聚戊糖的反应活性更高。经动力学模型优化得出,在较佳条件下有91%的聚戊糖可以以单体、低聚体及其降解产物的形式从杨木纤维中分离出来,同时超过93%的聚己糖可以以固体的形式保留在纤维中。研究表明,在适宜的稀酸催化条件下杂交杨木纤维中的碳水化合物可以得到很好的分离,为下一步戊糖和聚己糖的分别单独转化打下了基础,不仅可以充分利用木材生物质资源,而且为反应提供了相对均一的条件,从而提高反应选择性和产物的纯度。

  10. Association analysis identifies Melampsora ×columbiana poplar leaf rust resistance SNPs.

    Directory of Open Access Journals (Sweden)

    Jonathan La Mantia

    Full Text Available Populus species are currently being domesticated through intensive time- and resource-dependent programs for utilization in phytoremediation, wood and paper products, and conversion to biofuels. Poplar leaf rust disease can greatly reduce wood volume. Genetic resistance is effective in reducing economic losses but major resistance loci have been race-specific and can be readily defeated by the pathogen. Developing durable disease resistance requires the identification of non-race-specific loci. In the presented study, area under the disease progress curve was calculated from natural infection of Melampsora ×columbiana in three consecutive years. Association analysis was performed using 412 P. trichocarpa clones genotyped with 29,355 SNPs covering 3,543 genes. We found 40 SNPs within 26 unique genes significantly associated (permutated P<0.05 with poplar rust severity. Moreover, two SNPs were repeated in all three years suggesting non-race-specificity and three additional SNPs were differentially expressed in other poplar rust interactions. These five SNPs were found in genes that have orthologs in Arabidopsis with functionality in pathogen induced transcriptome reprogramming, Ca²⁺/calmodulin and salicylic acid signaling, and tolerance to reactive oxygen species. The additive effect of non-R gene functional variants may constitute high levels of durable poplar leaf rust resistance. Therefore, these findings are of significance for speeding the genetic improvement of this long-lived, economically important organism.

  11. Effects of Direct Application of Fertilizers and Hydrogel on the Establishment of Poplar Cuttings

    Directory of Open Access Journals (Sweden)

    Henrik Böhlenius

    2014-12-01

    Full Text Available The aim of poplar plantations is to achieve high biomass production over a short rotation period. This requires low mortality and fast development of the transplants. The experiment described in this paper examines methods aimed at enhancing survival and development of Populus trichocarpa plants by application of fertilizers, a hydrogel or a combination of both to dormant cuttings just before planting. The experiment was carried out at two agricultural sites with different soil characteristics, a loamy sand and a silty loam. It was demonstrated that none of the treatments influenced survival or early growth at the silty loam soil site, and plant development was delayed by the solid fertilizer. At the site with loamy sand, the solid fertilizer negatively affected both survival and early growth. Hydrogel and the combination of hydrogel and the solid fertilizer also hampered early growth. Overall, treatments of poplar cuttings with hydrogel or fertilizers alone, or in combination, may not be a method to reduce poplar cutting mortality or to enhance early plant development on agricultural land. However, our results demonstrate that establishing poplar with cuttings as transplants can be used on both loamy sand and silty loam soils.

  12. A method for describing the canopy architecture of coppice poplar with allometric relationships.

    Science.gov (United States)

    Casella, Eric; Sinoquet, Hervé

    2003-12-01

    A multi-scale biometric methodology for describing the architecture of fast-growing short-rotation woody crops is used to describe 2-year-old poplar clones during the second rotation. To allow for expressions of genetic variability observed within this species (i.e., growth potential, leaf morphology, coppice and canopy structure), the method has been applied to two clones: Ghoy (Gho) (Populus deltoides Bartr. ex Marsh. x Populus nigra L.) and Trichobel (Tri) (Populus trichocarpa Torr. & A. Gray x Populus trichocarpa). The method operates at the stool level and describes the plant as a collection of components (shoots and branches) described as a collection of metameric elements, themselves defined as a collection of elementary units (internode, petiole, leaf blade). Branching and connection between the plant units (i.e., plant topology) and their spatial location, orientation, size and shape (i.e., plant geometry) describe the plant architecture. The methodology has been used to describe the plant architecture of 15 selected stools per clone over a 5-month period. On individual stools, shoots have been selected from three classes (small, medium and large) spanning the diameter distribution range. Using a multi-scale approach, empirical allometric relationships were used to parameterize elementary units of the plant, topological relationships and geometry (e.g., distribution of shoot diameters on stool, shoot attributes from shoot diameter). The empirical functions form the basis of the 3-D Coppice Poplar Canopy Architecture model (3-D CPCA), which recreates the architecture and canopy structure of fast-growing coppice crops at the plot scale. Model outputs are assessed through visual and quantitative comparisons between actual photographs of the coppice canopy and simulated images. Overall, results indicate a good predictive ability of the 3-D CPCA model.

  13. Hydroponic screening of poplar for trace element tolerance and accumulation.

    Science.gov (United States)

    Migeon, Aude; Richaud, Pierre; Guinet, Frédéric; Blaudez, Damien; Chalot, Michel

    2012-04-01

    Using the nutrient film technique, we screened 21 clones of poplar for growth in the presence of a mix of trace elements (TE) and for TE accumulation capacities. Poplar cuttings were exposed for four weeks to a multipollution solution consisting in 10 microM Cd, Cu, Ni, and Pb, and 200 microM Zn. Plant biomass and TE accumulation patterns in leaves varied greatly between clones. The highest Cd and Zn concentrations in leaves were detected in P. trichocarpa and P. trichocarpa hybrids, with the clone Skado (P. trichocarpa x P. maximowiczii) accumulating up to 108 mg Cd kg(-1) DW and 1510 mg Zn kg(-1) DW when exposed to a multipollution context. Our data also confirm the importance of pH and multipollution, as these factors greatly affect TE accumulation in above ground biomass. The NFT technique applied here to a large range of poplar clones also revealed the potential of the Rochester, AFO662 and AFO678 poplar clones for use in phytostabilization programs and bioenergy production, where production of less contaminated above ground biomass is suitable.

  14. 欧美杨107正常木与应拉木纤维形态和化学组成比较%Comparison of fiber morphological properties and chemical compositions between normal wood and tension wood in poplar clone 107 (Populus×Euramericanacv.‘Neva') tree

    Institute of Scientific and Technical Information of China (English)

    周亮; 刘盛全; 高慧; 钱良存

    2012-01-01

    【目的】对欧美杨107(以下简称107杨)应拉木与正常木的纤维形态及化学组成进行全面比较和分析,为杨树应拉木的合理高效利用提供依据。【方法】以直立生长和倾斜生长的107杨为研究材料,通过合理方法区分正常木和应拉木,再对应拉木的解剖构造进行电镜观察,着重比较了107杨正常木和应拉木在纤维形态及化学组成的差异。【结果】107杨应拉木具有典型的应拉木解剖构造,即细胞壁中存在明显的胶质层。正常木与应拉木纤维形态比较结果表明,应拉木的双壁厚、壁腔比、木射线比量和纤维比量均高于正常木,而正常木的纤维长度、纤维宽度、纤维长宽比、胞腔径、微纤丝角、导管比量均大于应拉木。引用单因素方差分析比较正常木与应拉木之间纤维形态的差异,结果表明,正常木与应拉木纤维宽度、胞腔径、双壁厚、壁腔比在P=0.001水平上差异显著,纤维长度和微纤丝角在P=0.01水平上差异显著,其余形态指标差异均不显著。正常木与应拉木化学组成比较结果表明,应拉木的综纤维素、纤维素、α-纤维素含量均高于正常木,而正常木的半纤维素、木质素、苯醇抽提物含量、10g/L氢氧化钠抽提物含量均高于应拉木;单因素方差分析表明,正常木与应拉木纤维素、α-纤维素、半纤维素、木素、10g/L氢氧化钠抽提物含量的差异在P=0.001水上显著,其余指标差异均不显著。【结论】107杨正常木与应拉木的主要纤维形态指标和化学组成存在明显差异,在木材加工利用时需要区别对待。%【Objective】 In order to provide information for effective utilization of tension wood,both fiber morphological properties and chemical compositions of normal wood and tension wood of poplar clone 107 were determined for implementing comprehensive comparison between them.【Method】 Straight and inclining poplar

  15. Soils organic C sequestration under poplar and willow agroforestry systems

    Science.gov (United States)

    Gunina, Anna; Tariq, Azeem; Lamersdorf, Norbert

    2015-04-01

    Short rotation coppices (SRC) as monocultures or as agroforestry (AF) applications (e.g. alley cropping) are two techniques to implement forest into agricultural practices. Despite afforestation promotes soil carbon (C) accumulation, age and type of the tree stand can affect the C accumulation in different degrees. Here, we studied the impact of afforestation on C accumulation for: i) pure SCR of willow (Salix viminalis x Salix schwerinii) and poplar (Populus nigra x Populus maximowiczii) and ii) AF cropping system with willow. Forest systems have been established within the BEST agroforestry project in Germany. Adjacent agricultural field have been used as a control. Soil samples were collected in 2014, three years after plantation establishment, from three soil depths: 0-3, 3-20, and 20-30 cm. Total organic C, labile C (incubation of 20 g soil during 100 days with measuring of CO2) and aggregate structure were analysed. Additionally, density fractionation of the samples from 0-3 cm was applied to separate particulate organic matter (POM) and mineral fractions. Aggregates and density fractions were analyzed for C content. High input of plant litter as well as root exudates have led to increases of organic C in AF and SRC plots compare to cropland, mainly in the top 0-3 cm. The highest C content was found for willow SRC (18.2 g kg-1 soil), followed by willow-AF (15.6 g kg-1 soil), and poplar SRC (13.7 g kg-1 soil). Carbon content of cropland was 12.5 g kg-1 soil. Absence of ploughing caused increase portion of macroaggregates (>2000 μm) under SRC and AF in all soil layers as well as the highest percentage of C in that aggregate size class (70-80%). In contrast, C in cropland soil was mainly accumulated in small macroaggregates (250-2000 μm). Intensive mineralisation of fresh litter and old POM, taking place during first years of trees development, resulted to similar portions of free POM for willow AF, willow SRC and cropland (8%), and even lower ones for poplar

  16. Control tactics of poplar diseases in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the present studies and literatures about the poplar diseases in China, the present study situation of poplar disease was introduced in this paper. 31 kinds of poplar diseases were collected of which there were 14 kinds of leaves disease, 11 kinds of branch disease, 4 kinds of root disease, 2 kinds of stand rot. Each poplar species was studied on the harm, distribution, symptom, pathogens, occurrence regulation and control measures. According to previously studies, the sustained control tactics of poplar disease were summarized in this paper.

  17. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.

    Science.gov (United States)

    Yang, X H; Li, X G; Li, B L; Zhang, D Q

    2014-11-11

    Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

  18. Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar

    Energy Technology Data Exchange (ETDEWEB)

    Quoreshi, A.M.; Khasa, D.P. [Symbiotech Research Inc. 201, 509-11 Avenue, Nisku, AB (Canada); Forest Biology Research Centre, University of Laval, Quebec (Canada)

    2008-05-15

    Aspen and balsam poplar seedlings were inoculated with six species of ectomycorrhizal fungi (Hebeloma longicaudum, Laccaria bicolor, Paxillus involutus, Pisolithus tinctorius, Rhizopogon vinicolor, and Suillus tomentosus), one species of endomycorrhizal fungus (Glomus intraradices), two species of bacteria (Agrobacterium sp. and Burkholderia cepacia), treated with a growth hormone (SR3), and co-inoculated with a combination of Paxillus and Burkholderia. The seedlings were grown in a greenhouse under three different fertility regimes. Bacterial inoculation alone did not affect seedling growth and nutrition as observed when co-inoculated with ectomycorrhizal fungus. The biomass and root collar diameter of aspen and balsam poplar were significantly increased when adequate mycorrhizas are formed and more prominent when co-inoculated with P. involutus and B. cepacia and grown at the 67% fertilizer level. Except for R. vinicolor and S. tomentosus, the other four species of ectomycorrhizal fungi and G. intraradices formed symbiotic associations with both plant species. Both ectomycorrhizal and endomycorrhizal colonization were observed at all fertilizer levels and fertilizer applications did not affect the colonization rates. Nitrogen and phosphorus concentrations were significantly improved in both aspen and balsam poplar compared with control only when co-inoculated with P. involutus and B. cepacia. However, plant net nitrogen uptake (content) increased significantly in all successful inoculation treatments and co-inoculated treatment when compared with control. These results hold promise for incorporation of inoculation of Populus sp. with appropriate mycorrhizal fungi and selected bacteria into commercial nursery system to improve the establishment of Populus in various sites. (author)

  19. High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus

    Directory of Open Access Journals (Sweden)

    Öst Torbjörn

    2010-02-01

    Full Text Available Abstract Background Salix (willow and Populus (poplar are members of the Salicaceae family and they share many ecological as well as genetic and genomic characteristics. The interest of using willow for biomass production is growing, which has resulted in increased pressure on breeding of high yielding and resistant clones adapted to different environments. The main purpose of this work was to develop dense genetic linkage maps for mapping of traits related to yield and resistance in willow. We used the Populus trichocarpa genome to extract evenly spaced markers and mapped the orthologous loci in the willow genome. The marker positions in the two genomes were used to study genome evolution since the divergence of the two lineages some 45 mya. Results We constructed two linkage maps covering the 19 linkage groups in willow. The most detailed consensus map, S1, contains 495 markers with a total genetic distance of 2477 cM and an average distance of 5.0 cM between the markers. The S3 consensus map contains 221 markers and has a total genetic distance of 1793 cM and an average distance of 8.1 cM between the markers. We found high degree of synteny and gene order conservation between willow and poplar. There is however evidence for two major interchromosomal rearrangements involving poplar LG I and XVI and willow LG Ib, suggesting a fission or a fusion in one of the lineages, as well as five intrachromosomal inversions. The number of silent substitutions were three times lower (median: 0.12 between orthologs than between paralogs (median: 0.37 - 0.41. Conclusions The relatively slow rates of genomic change between willow and poplar mean that the genomic resources in poplar will be most useful in genomic research in willow, such as identifying genes underlying QTLs of important traits. Our data suggest that the whole-genome duplication occurred long before the divergence of the two genera, events which have until now been regarded as contemporary

  20. SLAH3-type anion channel expressed in poplar secretory epithelia operates in calcium kinase CPK-autonomous manner.

    Science.gov (United States)

    Jaborsky, Mario; Maierhofer, Tobias; Olbrich, Andrea; Escalante-Pérez, María; Müller, Heike M; Simon, Judy; Krol, Elzbieta; Cuin, Tracey Ann; Fromm, Jörg; Ache, Peter; Geiger, Dietmar; Hedrich, Rainer

    2016-05-01

    Extrafloral nectaries secrete a sweet sugar cocktail that lures predator insects for protection from foraging herbivores. Apart from sugars and amino acids, the nectar contains the anions chloride and nitrate. Recent studies with Populus have identified a type of nectary covered by apical bipolar epidermal cells, reminiscent of the secretory brush border epithelium in animals. Border epithelia operate transepithelial anion transport, which is required for membrane potential and/or osmotic adjustment of the secretory cells. In search of anion transporters expressed in extrafloral nectaries, we identified PttSLAH3 (Populus tremula × Populus tremuloides SLAC1 Homologue3), an anion channel of the SLAC/SLAH family. When expressed in Xenopus oocytes, PttSLAH3 displayed the features of a voltage-dependent anion channel, permeable to both nitrate and chloride. In contrast to the Arabidopsis SLAC/SLAH family members, the poplar isoform PttSLAH3 is independent of phosphorylation activation by protein kinases. To understand the basis for the autonomous activity of the poplar SLAH3, we generated and expressed chimera between kinase-independent PttSLAH3 and kinase-dependent Arabidopsis AtSLAH3. We identified the N-terminal tail and, to a lesser extent, the C-terminal tail as responsible for PttSLAH3 kinase-(in)dependent action. This feature of PttSLAH3 may provide the secretory cell with a channel probably controlling long-term nectar secretion.

  1. Comparative Genomic Study of the Thioredoxin Family in Photosynthetic Organisms with Emphasis on Populus trichocarpa

    Institute of Scientific and Technical Information of China (English)

    Kamel Chibani; Gunnar Wingsle; Jean-Pierre Jacquot; Eric Gelhaye; Nicolas Rouhier

    2009-01-01

    The recent genome sequencing of Populus trichocarpa and Vitis vinifera, two models of woody plants, of Sorghum bicolor, a model of monocot using C4 metabolism, and of the moss Physcomitrella patens, together with the availability of photosynthetic organism genomes allows performance of a comparative genomic study with organisms having different ways of life, reproduction modes, biological traits, and physiologies. Thioredoxins (Trxs) are small ubiq-uitous proteins involved in the reduction of disulfide bridges in a variety of target enzymes present in all sub-cellular compartments and involved in many biochemical reactions. The genes coding for these enzymes have been identified in these newly sequenced genomes and annotated. The gene content, organization and distribution were compared to other photosynthetic organisms, leading to a refined classification. This analysis revealed that higher plants and bryo-phytes have a more complex family compared to algae and cyanobacteria and to non-photosynthetic organisms, since poplar exhibits 49 genes coding for typical and atypical thioredoxins and thioredoxin reductases, namely one-third more than monocots such as Oryza sativa and S. bicolor. The higher number of Trxs in poplar is partially explained by gene duplication in the Trx m, h, and nucleoredoxin classes. Particular attention was paid to poplar genes with emphasis on Trx-like classes called Clot, thioredoxin-like, thioredoxins of the lilium type and nucleoredoxins, which were not described in depth in previous genomic studies.

  2. Plants remember past weather: a study for atmospheric pollen concentrations of Ambrosia, Poaceae and Populus

    Science.gov (United States)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Sümeghy, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Tusnády, Gábor

    2015-10-01

    After extreme dry (wet) summers or years, pollen production of different taxa may decrease (increase) substantially. Accordingly, studying effects of current and past meteorological conditions on current pollen concentrations for different taxa have of major importance. The purpose of this study is separating the weight of current and past weather conditions influencing current pollen productions of three taxa. Two procedures, namely multiple correlations and factor analysis with special transformation are used. The 11-year (1997-2007) data sets include daily pollen counts of Ambrosia (ragweed), Poaceae (grasses) and Populus (poplar), as well as daily values of four climate variables (temperature, relative humidity, global solar flux and precipitation). Multiple correlations of daily pollen counts with simultaneous values of daily meteorological variables do not show annual course for Ambrosia, but do show definite trends for Populus and Poaceae. Results received using the two methods revealed characteristic similarities. For all the three taxa, the continental rainfall peak and additional local showers in the growing season can strengthen the weight of the current meteorological elements. However, due to the precipitation, big amount of water can be stored in the soil contributing to the effect of the past climate elements during dry periods. Higher climate sensitivity (especially water sensitivity) of the herbaceous taxa ( Ambrosia and Poaceae) can be definitely established compared to the arboreal Populus. Separation of the weight of the current and past weather conditions for different taxa involves practical importance both for health care and agricultural production.

  3. Drought-induced xylem pit membrane damage in aspen and balsam poplar.

    Science.gov (United States)

    Hillabrand, Rachel M; Hacke, Uwe G; Lieffers, Victor J

    2016-10-01

    Drought induces an increase in a tree's vulnerability to a loss of its hydraulic conductivity in many tree species, including two common in western Canada, trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera). Termed 'cavitation fatigue' or 'air-seeding fatigue', the mechanism of this phenomenon is not well understood, but hypothesized to be a result of damage to xylem pit membranes. To examine the validity of this hypothesis, the effect of drought on the porosity of pit membranes in aspen and balsam poplar was investigated. Controlled drought and bench dehydration treatments were used to induce fatigue and scanning electron microscopy (SEM) was used to image pit membranes for relative porosity evaluations from air-dried samples after ethanol dehydration. A significant increase in the diameter of the largest pore was found in the drought and dehydration treatments of aspen, while an increase in the percentage of porous pit membranes was found in the dehydration treatments of both species. Additionally, the location of the largest pore per pit membrane was observed to tend toward the periphery of the membrane.

  4. Genome-Wide Identification and in Silico Analysis of Poplar Peptide Deformylases

    Directory of Open Access Journals (Sweden)

    Chuan-Ping Yang

    2012-04-01

    Full Text Available Peptide deformylases (PDF behave as monomeric metal cation hydrolases for the removal of the N-formyl group (Fo. This is an essential step in the N-terminal Met excision (NME that occurs in these proteins from eukaryotic mitochondria or chloroplasts. Although PDFs have been identified and their structure and function have been characterized in several herbaceous species, it remains as yet unexplored in poplar. Here, we report on the first identification of two genes (PtrPDF1A and PtrPDF1B respectively encoding two putative PDF polypeptides in Populus trichocarpa by genome-wide investigation. One of them (XP_002300047.1 encoded by PtrPDF1B (XM_002300011.1 was truncated, and then revised into a complete sequence based on its ESTs support with high confidence. We document that the two PDF1s of Populus are evolutionarily divergent, likely as a result of independent duplicated events. Furthermore, in silico simulations demonstrated that PtrPDF1A and PtrPDF1B should act as similar PDF catalytic activities to their corresponding PDF orthologs in Arabidopsis. This result would be value of for further assessment of their biological activities in poplar, and further experiments are now required to confirm them.

  5. Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel.

    Science.gov (United States)

    Velikova, Violeta; Tsonev, Tsonko; Loreto, Francesco; Centritto, Mauro

    2011-05-01

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 μM Ni (Ni30 and Ni200). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO2] than in control leaves. However chloroplastic [CO2] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-β-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Research Progress on the Salt-tolerance of Populus spp.%杨树耐盐性研究进展

    Institute of Scientific and Technical Information of China (English)

    陈必胜; 汪晓沙; 黄梅; 朱继军; 林登贵; 李梅玲; 李萍; 曾丽

    2012-01-01

    杨树生长迅速、生物产量高,是一种世界性的造林树种,一些杨树具有较强的耐盐性,对盐碱化土地的利用和开发具有重要价值.对盐胁迫下杨树的植物学特征、生理生化指标变化、耐盐分子机制和遗传改良策略进行了综述,并对深入地解析杨树耐盐分子机制应采取策略和在生产中应用前景进行了讨论,以期为筛选和培育耐盐杨树品种提供借鉴和参考.%Populus spp. is a world-wide tree species for forestation with rapid growth and higher biomass. Due to stronger salt-tolerance of some Populus spp. varieties, they may be used to exploit the potential value of the salinized land. Several properties of Populus spp. under salt stress were reviewed, including the botanical features, physiological and biochemical indexes, and molecular response; furthermore, the molecular mechanism and genetic improvement strategies for poplar salt-tolerance were outlined and discussed, so as to provide reference for screening and developing Populus spp. variety with slat tolerance.

  7. GENOME ENABLED MODIFICATION OF POPLAR ROOT DEVELOPMENT FOR INCREASED CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor

    2013-03-05

    DR5 as a reporter system to study auxin response in Populus Plant Cell Reports 32:453-463 Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar. The Populus AINTEGUMENTA LIKE 1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia. Plant Physiol. 160: 1996-2006 Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to

  8. Identification of five B-type response regulators as members of a multistep phosphorelay system interacting with histidine-containing phosphotransfer partners of Populus osmosensor

    Directory of Open Access Journals (Sweden)

    Bertheau Lucie

    2012-12-01

    Full Text Available Abstract Background In plants, the multistep phosphorelay signaling pathway mediates responses to environmental factors and plant hormones. This system is composed of three successive partners: hybrid Histidine-aspartate Kinases (HKs, Histidine-containing Phosphotransfer proteins (HPts, and Response Regulators (RRs. Among the third partners, B-type RR family members are the final output elements of the pathway; they act as transcription factors and clearly play a pivotal role in the early response to cytokinin in Arabidopsis. While interactions studies between partners belonging to the multistep phosphorelay system are mainly focused on protagonists involved in cytokinin or ethylene pathways, very few reports are available concerning partners of osmotic stress signaling pathway. Results In Populus, we identified eight B-type RR proteins, RR12-16, 19, 21 and 22 in the Dorskamp genotype. To assess HPt/B-type RR interactions and consequently determine potential third partners in the osmosensing multistep phosphorelay system, we performed global yeast two-hybrid (Y2H assays in combination with Bimolecular Fluorescence Complementation (BiFC assays in plant cells. We found that all B-type RRs are able to interact with HPt predominant partners (HPt2, 7 and 9 of HK1, which is putatively involved in the osmosensing pathway. However, different profiles of interaction are observed depending on the studied HPt. HPt/RR interactions displayed a nuclear localization, while the nuclear and cytosolic localization of HPt and nuclear localization of RR proteins were validated. Although the nuclear localization of HPt/RR interaction was expected, this work constitutes the first evidence of such an interaction in plants. Furthermore, the pertinence of this partnership is reinforced by highlighting a co-expression of B-type RR transcripts and the other partners (HK1 and HPts belonging to a potential osmosensing pathway. Conclusion Based on the interaction studies

  9. Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants

    Science.gov (United States)

    Ma, Xuan; Ou, Yong-Bin; Gao, Yong-Feng; Lutts, Stanley; Li, Tao-Tao; Wang, Yang; Chen, Yong-Fu; Sun, Yu-Fang; Yao, Yin-An

    2016-09-01

    The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.

  10. Prototype wood chunker used on Populus 'Tristis'

    Science.gov (United States)

    Rodger A. Arola; Roger C. Radcliffe; Sharon A. Winsauer

    1983-01-01

    Populus 'Tristis' trees grown under short-rotation, intensive culture were sampled and chunked in a prototype experimental wood chunking machine. Data presented describe the character of the trees chunked, the energy and power requirements for chunking, and the chunking rates Specific energy requirements for chunking Populus 'Tristis...

  11. Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    François Héricourt

    2016-12-01

    Full Text Available Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.

  12. Dense poplar plantations as the raw material for the production of energy

    Directory of Open Access Journals (Sweden)

    Klašnja Bojana

    2006-01-01

    Full Text Available The higher heating value of wood and bark was determined for several poplar (Populus spp clones. The study included the juvenile one year old plants of the following clones: P.×euramericana cl. ostia, P. nigra cl.53/86, P. deltoides cl. PE 19/66, P.×euramericana cl. I-214, P. deltoides cl. S6-7 and P.×euramericana cv. robusta. By using FVI which takes into account ash content, wood bulk density, and moisture content, it was determined that poplar wood can be a significant energy raw material, primarily thanks to its short rotation cycle and a very high wood volume increment. Significant differences were determined in the values of wood basic density which affect the higher heating value of the study poplar clones, and consequently the yield (weight of biomass produced per unit area of dense plantations. This is reflected also on the estimated amount of energy that can be produced by the combustion of biomass of the whole one year old plants.

  13. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK.

    Science.gov (United States)

    Aylott, Matthew J; Casella, E; Tubby, I; Street, N R; Smith, P; Taylor, Gail

    2008-01-01

    Limited information on likely supply and spatial yield of bioenergy crops exists for the UK. Here, productivities are reported of poplar (Populus spp.) and willow (Salix spp.) grown as short-rotation coppice (SRC), using data from a large 49-site yield trial network. A partial least-squares regression technique was used to upscale actual field trial observations across England and Wales. Spatial productivity was then assessed under different land-use scenarios. Mean modelled yields ranged between 4.9 and 10.7 oven-dry tonnes (odt) ha(-1) yr(-1). Yields were generally higher in willow than in poplar, reflecting the susceptibility of older poplar genotypes to rust and their tendency for single stem dominance. Replacing 10% of arable land, 20% of improved grassland and 100% of set-aside grassland in England and Wales with the three most productive genotypes would yield 13 Modt of biomass annually (supplying 7% of UK electricity production or 48% of UK combined heat and power (CHP) production). Results show existing SRC genotypes have the immediate potential to be an important component of a mixed portfolio of renewables and that, in future, as new and improved genotypes become available, higher yields could extend this potential further.

  14. Overexpression of poplar cellulase accelerates growth and disturbs the closing movements of leaves in sengon.

    Science.gov (United States)

    Hartati, Sri; Sudarmonowati, Enny; Park, Yong Woo; Kaku, Tomomi; Kaida, Rumi; Baba, Kei'ichi; Hayashi, Takahisa

    2008-06-01

    In this study, poplar (Populus alba) cellulase (PaPopCel1) was overexpressed in a tropical Leguminosae tree, sengon (Paraserianthes falcataria), by the Agrobacterium tumefaciens method. PaPopCel1 overexpression increased the length and width of stems with larger leaves, which showed a moderately higher density of green color than leaves of the wild type. The pairs of leaves on the transgenic plants closed more slowly during sunset than those on the wild-type plants. When main veins from each genotype were excised and placed on a paper towel, however, the leaves of the transgenic plants closed more rapidly than those of the wild-type plant. Based on carbohydrate analyses of cell walls, the leaves of the transgenic plants contained less wall-bound xyloglucan than those of the wild-type plants. In situ xyloglucan endotransglucosylase activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, occurred in the parenchyma cells (motor cells) of the petiolule pulvinus attached to the main vein, although the transgenic plant incorporated less whole xyloglucan than the wild-type plant. These observations support the hypothesis that the paracrystalline sites of cellulose microfibrils are attacked by poplar cellulase, which loosens xyloglucan intercalation, resulting in an irreversible wall modification. This process could be the reason why the overexpression of poplar cellulase both promotes plant growth and disturbs the biological clock of the plant by altering the closing movements of the leaves of the plant.

  15. Effect of epiphytes on the extent of necrotic injuries of resistant and susceptible poplar clones infected with Dothichiza populea.

    Science.gov (United States)

    Weyman-Kaczmarkowa, W; Pedziwilk, Z

    2001-01-01

    Poplar cuttings of a resistant clone, Populus 'Grandis', and susceptible clones, Populus nigra 'Italica' and Populus 'Robusta', were infected with the pathogenic fungus Dothichiza populea alone, or with the pathogen and one of five strains of epiphytes antagonistic towards it (in vitro), isolated from poplar bark. The extent of injury was examined for 28 days after infection by determining the length of necrotic patches and their area as expressed in per cent of the total area of a cutting or the area of necrotic injuries caused by the pathogen alone. All the poplar cuttings of both the resistant and susceptible clones became diseased when infected with the pathogen alone. Surprisingly enough, however, the least affected clone was the susceptible P. 'Robusta', in which necrotic injuries covered 28% of the total area, as against 40% and 70% in the resistant P. 'Grandis' and the susceptible P. nigra 'Italica', respectively. When the cuttings were infected simultaneously with Dothichiza populea and its antagonistic epiphytes, the diseased area in the resistant clone diminished by as much as two-thirds, and in the susceptible P nigra 'Italica', by one-third in comparison with the area affected by the pathogen alone. In turn, in the susceptible P. 'Robusta' the introduction of three out of five epiphytes stimulated the growth of the pathogenic fungus producing on average a double increase in the necrotic area. The differences in the response of the pathogen to the presence of epiphytes recorded in the susceptible clones indicate a marked influence of the plant on the nature of interactions between its epiphytic microflora and the pathogen.

  16. Progress and Strategies in Cross Breeding of Poplars in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The advance in intrasection and intersection cross breeding of poplars in China over the past 50 years is reviewed. Great progress has been made in Sections Leuce and Aigeiros, and satisfactory results of intersection hybridization have been achieved in the crossing between Sections Tacamahaca and Aigeiros. The modes of hybridization include single cross, double cross, triple cross, backcross, etc. It is known that using hybrids as parents to cross with other species or hybrids is an effective and easy way to obtain heterosis. Fast growth, cold and drought tolerance, pest and disease resistance, narrow crowns and rootage, etc. are breeding goals. The conventional artificial crossing is still a major breeding method, and a combination of the conventional artificial crossing with physical radiation and chemical induction can create new triploid individuals that possess higher yield potential. The super clones cultivated have already displayed enormous socioeconomic and ecological benefits in practice. Finally, the problems that investigators have to face at present are discussed as well as some strategies in poplar cross breeding in China.

  17. Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar.

    Science.gov (United States)

    Wang, Lei; Su, Hongyan; Han, Liya; Wang, Chuanqi; Sun, Yanlin; Liu, Fenghong

    2014-07-15

    Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play essential roles in plant growth, development and stress response. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), are integral in mediating various stress responses in plants. However, to date few data about the roles of poplar MAPKKs in stress signal transduction are available. In this study, we performed a systemic analysis of poplar MAPKK gene family expression profiles in response to several abiotic stresses and stress-associated hormones. Furthermore, Populus trichocarpa MAPKK4 (PtMKK4) was chosen for functional characterization. Transgenic analysis showed that overexpression of the PtMKK4 gene remarkably enhanced drought stress tolerance in the transgenic poplar plants. The PtMKK4-overexpressing plants also exhibited much lower levels of H2O2 and higher antioxidant enzyme activity after exposure to drought stress compared to the wide type lines. Besides, some drought marker genes including PtP5CS, PtSUS3, PtLTP3 and PtDREB8 exhibited higher expression levels in the transgenic lines than in the wide type under drought conditions. This study provided valuable information for understanding the putative functions of poplar MAPKKs involved in important signaling pathways under different stress conditions.

  18. 欧美杨107杨正常木与应拉木制浆造纸性能比较%Comparison of Quality of Pulping and Paper-Making between Normal Wood and Tension Wood of Poplar Clone 107 ( Populus × euramericana ' Neva' ) Tree

    Institute of Scientific and Technical Information of China (English)

    周亮; 高慧; 张利萍; 刘盛全

    2012-01-01

    选取直立和倾斜欧美杨107杨为研究材料,根据正交试验确定正常木和应拉木最佳制浆条件,比较正常木和应拉木的制浆造纸性能,通过提高打浆转数对应拉木纸张性能的提高进行探讨.结果表明:正常木的最佳制浆条件为用碱量15%、最高温度164℃、最高温度保温时间75 min;而应拉木最佳制浆条件为用碱量13%、最高温度160℃、最高温度保温时间40 min.用碱量对正常木和应拉木制浆得率和卡伯值影响的通径系数在不同水平上显著.通过对正常木和应拉木制浆造纸性能比较发现,应拉木比正常木制浆得率高、卡伯值低、纸张力学性能均低,且抗张指数和耐破指数差距较大(约2倍),而撕裂指数差距较小.正常木和应拉木之间卡伯值、制浆得率、抗张指数、耐破指数均在0.001水平上差异显著,撕裂指数在0.05水平上差异显著.结合纸张断口形貌分析认为,胶质层的存在使得应拉木纤维成纸时不容易扁平坍陷,极大地阻碍了成纸时纤维之间的结合,因此降低了纸张力学性能;但是,由于其胶质层纤维素含量很高,因此其制浆性能优于正常木.随着打浆转数的提高,应拉木纸张力学性能增强,且接近正常木纸张水平,但过高会降低纸张力学性能.%Both of straight and inclining poplar clone 107 tree were selected for studying materials in this paper. The optimal pulping conditions was established by orthogonal experimental design both for normal wood and tension wood, and the quality of pulping and paper-making between normal wood and tension wood was compared with each other. Finally, potential application for improving paper quality of tension wood through increasing beating revolutions was discussed. The result showed that the optimal cooking condition for normal wood was alkali concentration 15% , the highest temperature 164 ℃, time at highest temperature 75 min, and for tension wood it

  19. Plant growth regulators in poplar clones differing in resistance to the fungus Ceratocystis fimbriata Ell. et Haist

    Directory of Open Access Journals (Sweden)

    Jadwiga Stopińska

    2014-02-01

    Full Text Available In poplar clones with different resistance to the fungus Ceratocystis fimbriata growth of shoots, intensity of transpiration and the level of endogenous growth regulators were determined. More resistant clones, Populus 'Robusta' and P. 'PK-136-2' (P. nigra 'Italica': x P. laurifolia had more intensive growth of shoots, higher water content in leaves and a lower intensity of transpiration than the more susceptible clone, - P. 'NE-42' (P. maximowiczi x P. trichocarpa. The leaves of the more resistant clones contained more auxins (IAA and cytokinins, especially zeatin, and less growth inhibitors (ABA than those of the susceptible one. The level of plant growth regulators and/or the relations betweeen them may be responsible for the different poplar resistance to C. fimbriata.

  20. Plasmodesmatal Dynamics in Both Woody Poplar and Herbaceous Winter Wheat Under Controlled Short Day and in Field Winter Period

    Institute of Scientific and Technical Information of China (English)

    JIANLing-Cheng; WANGHong

    2004-01-01

    Electron microscopic observation revealed that poplar (Populus deltoides Marsh.) and winterwheat ( Triticum aestivum L. cv. Seward 80004) plasmodesmatal structures significantly changed undershort day (SD, 8 h light) and in winter period, and such changes differed also noticeably between these twowoody and herbaceous plants. Under long day (LD, 16 h light), many plasmodesmata with strong stainappeared in the cell wall of both poplar apical buds and winter wheat young leaf tissues, and connections ofcytoplasmic endoplasmic reticulum (ER) with the ER in some plasmodesmata were observed. In addition,the typical “neck type” plasmodesmata were observed in winter wheat young leaf tissues, and their centraldesmotubules (appressed-ER) could be clearly identified. Under SD, many poplar plasmodesmata showedonly a partial structure in the cell wall and appeared to be discontinued; some plasmodesmata swelled in themid-wall, forming the cavity, and no appressed-ER appeared, in winter wheat, however, no noticeablealterations of plasmodesmata occurred, and the plasmodesmatal structure essentially remained the sameas it was under LD. In winter period, poplar plasmodesmata had a similar morphology as those observedunder SD, however, winter wheat manifested at least two types of significant plasmodesmatal alterations:one plugged by electron-dense materials and the other of reduced neck region compared to those underLD. The above dynamic difference of the two species plasmodesmata under SD and winter period revealedthe difference of their dormancy development under those environmental conditions.

  1. [Seasonal dynamics of quantitative and morphological traits of poplar fine roots and their differences between successive rotation plantations].

    Science.gov (United States)

    Wang, Yan-ping; Xu, Tan; Zhu, Wan-rui; Wang, Qi-tong; Liu, Meng-ling; Wang, Hua-tian; Li, Chuan-rong; Dong, Yu-feng

    2016-02-01

    Based on the fine root samples of the first and second generations of poplar (Populus x euramericana ' Neva'), this study examined the response of quantitative and morphological traits of fine roots of different orders and the difference between generations. The results showed that, the quantitative traits of fine roots, such as root length, root surface area and root biomass, presented obvious seasonal variation, and the fine root traits had obvious difference among root orders. The quantitative traits of lower-order fine roots showed significant seasonal difference, and the fine root biomass increased in the growing season and then decreased significantly. The specific root length (SRL) of higher-order roots also showed significant change with season, while the root length density (RLD) and root tissue density (RTD) changed a little. The successive rotation resulted in the significant increase of root length, root biomass, SRL and RLD of 1-2 orders in the growing season. The quantitative traits of first order root significantly positively correlated with soil temperature and moisture, and significantly negatively correlated with the soil organic matter and soil available nitrogen content. However, the quantitative traits of second order root only showed significant correlation with soil nutrient content. The seasonal dynamics of poplar fine roots and the difference between successive rotation plantations implied carbon investment change of poplar to roots. Soil nutrient deficiency induced more carbon investment into roots, and this carbon allocation pattern might affect the aboveground productivity of poplar plantation.

  2. Ecophysiological Competence of Populus alba L., Fraxinus angustifolia Vahl., and Crataegus monogyna Jacq. Used in Plantations for the Recovery of Riparian Vegetation

    Science.gov (United States)

    Manzanera, Jose A.; Martínez-Chacón, Maria F.

    2007-12-01

    In many semi-arid environments of Mediterranean ecosystems, white poplar ( Populus alba L.) is the dominant riparian tree and has been used to recover degraded areas, together with other native species, such as ash ( Fraxinus angustifolia Vahl.) and hawthorn ( Crataegus monogyna Jacq.). We addressed three main objectives: (1) to gain an improved understanding of some specific relationships between environmental parameters and leaf-level physiological factors in these riparian forest species, (2) to compare the leaf-level physiology of these riparian species to each other, and (3) to compare leaf-level responses within native riparian plots to adjacent restoration plots, in order to evaluate the competence of the plants used for the recovery of those degraded areas. We found significant differences in physiological performance between mature and young white poplars in the natural stand and among planted species. The net assimilation and transpiration rates, diameter, and height of white poplar plants were superior to those of ash and hawthorn. Ash and hawthorn showed higher water use efficiency than white poplar. White poplar also showed higher levels of stomatal conductance, behaving as a fast-growing, water-consuming species with a more active gas exchange and ecophysiological competence than the other species used for restoration purposes. In the restoration zones, the planted white poplars had higher rates of net assimilation and water use efficiency than the mature trees in the natural stand. We propose the use of white poplar for the rapid restoration of riparian vegetation in semi-arid Mediterranean environments. Ash and hawthorn can also play a role as accompanying species for the purpose of biodiversity.

  3. 杨树人工林边缘效应的初步研究%Preliminary Study on Edge Effects for Poplar Plantation

    Institute of Scientific and Technical Information of China (English)

    吴生广

    2013-01-01

      The influences of edge effects within different directions on different places on growth of poplar in Liaoyang Region were studied .The result shows that :in three plots of 12-year-old Populus liaoningensis ,9-year-old Popu-lus × euramericana cv .N3930 ,8-year-old Populus × euramericana cv .N3930 ,depth of the edge in east direction are all maximum ;the edge effect is also shown by the largest ,followed by northern direction .In practice ,increas-ing the poplar trees in the eastern direction not only can increase the proportion of poplar in eastern edge of the woods in the entire forest ,but also can significantly improve biomass production & economic benefits of the poplar .%  通过辽阳地区不同杨树林地不同方向上的边缘效应对杨树生长影响的研究,结果表明:在12年生辽宁杨、9年生3930杨和8年生3930杨3个样地中,皆以东部方向上的边缘深度最大,表现出的边缘效应亦最大,北部方向次之。实践中,可通过增加东部方向上杨树的株数,使杨树林东部边缘部分在整个林子中的比例增大,可显著提高杨树的生物产量和经济效益。

  4. Hydrologic Evaluation of a Humid Climate Poplar Phytoremediation Barrier

    Science.gov (United States)

    Swensen, K.; Rabideau, A. J.

    2016-12-01

    The emplacement of hybrid poplar trees to function as phytoremediation barriers is an appealing and sustainable groundwater management strategy because of low maintenance costs and the potential to extract large amounts of groundwater without pumping. While the effectiveness of poplar barriers has been assessed by groundwater quality monitoring, less attention has been given to physical hydrologic evaluations needed to improve barrier designs. In this research, a five year hydrologic evaluation was conducted at a poplar phytoremediation site in western NY, with the goal of quantifying ETg (evapotranspiration from groundwater) as a measure of the barrier's effectiveness in a humid climate. To consider transpiration from both vadose zone and groundwater, the hydrologic evaluation included four components: physical ET measurements, theoretical ET calculations, analysis of diurnal groundwater table fluctuations, and vadose zone modeling. The direct measurements of ETT (total) were obtained using sap flow meters installed on multiple trees within the barrier. These data were interpreted using a regression model that included theoretical ET calculations and site-specific measurements of weather parameters and poplar trunk area. Application of this model was challenged by the spatial variation in rooting depth as determined by tree excavations. To further quantify the removal of groundwater by the phytobarrier (ETg), the White Method was applied to interpret diurnal groundwater fluctuations from monitoring wells located within the barrier, in conjunction with a variably saturated-saturated flow model configured to confirm water extraction from ETg. Taken together, the results of this five year hydrologic evaluation highlight the complexity in quantifying humid climate groundwater extraction, as a large number of variables were found to influence these rates. Improved understanding of these controls will contribute to improved barrier designs that maximize ETg.

  5. Structure and Expression Profile of the Phosphate Pht1 Transporter Gene Family in Mycorrhizal Populus trichocarpa1[W

    Science.gov (United States)

    Loth-Pereda, Verónica; Orsini, Elena; Courty, Pierre-Emmanuel; Lota, Frédéric; Kohler, Annegret; Diss, Loic; Blaudez, Damien; Chalot, Michel; Nehls, Uwe; Bucher, Marcel; Martin, Francis

    2011-01-01

    Gene networks involved in inorganic phosphate (Pi) acquisition and homeostasis in woody perennial species able to form mycorrhizal symbioses are poorly known. Here, we describe the features of the 12 genes coding for Pi transporters of the Pht1 family in poplar (Populus trichocarpa). Individual Pht1 transporters play distinct roles in acquiring and translocating Pi in different tissues of mycorrhizal and nonmycorrhizal poplar during different growth conditions and developmental stages. Pi starvation triggered the up-regulation of most members of the Pht1 family, especially PtPT9 and PtPT11. PtPT9 and PtPT12 showed a striking up-regulation in ectomycorrhizas and endomycorrhizas, whereas PtPT1 and PtPT11 were strongly down-regulated. PtPT10 transcripts were highly abundant in arbuscular mycorrhiza (AM) roots only. PtPT8 and PtPT10 are phylogenetically associated to the AM-inducible Pht1 subfamily I. The analysis of promoter sequences revealed conserved motifs similar to other AM-inducible orthologs in PtPT10 only. To gain more insight into gene regulatory mechanisms governing the AM symbiosis in woody plant species, the activation of the poplar PtPT10 promoter was investigated and detected in AM of potato (Solanum tuberosum) roots. These results indicated that the regulation of AM-inducible Pi transporter genes is conserved between perennial woody and herbaceous plant species. Moreover, poplar has developed an alternative Pi uptake pathway distinct from AM plants, allowing ectomycorrhizal poplar to recruit PtPT9 and PtPT12 to cope with limiting Pi concentrations in forest soils. PMID:21705655

  6. Tree water use and rainfall partitioning in a mature poplar-pasture system.

    Science.gov (United States)

    Guevara-Escobar, A.; Edwards, W. R. N.; Morton, R. H.; Kemp, P. D.; Mackay, A. D.

    2000-01-01

    Traditionally, poplars (Populus) have been planted to control erosion on New Zealand's hill-slopes, because of their capacity to dry out and bind together the soil, by reducing effective rainfall and increasing evapotranspiration and soil strength. However, the effect of widely spaced poplars on the partitioning of soil water and rainfall has not been reported. This study determined rainfall partitioning for 18 mid-spring days in a mature P. deltoides (Bart. ex Marsh, Clone I78)-pasture association (37 stems per hectare, unevenly spaced at 16.4 +/- 0.4 m) and compared it with a traditional open pasture system in grazed areas of a hill environment. Tree transpiration was measured by the heat pulse technique. A time-driven mathematical model was used to set a zero offset, adjust anomalous values and describe simultaneous sap velocity time courses of trees. The model showed that daylight sap flow velocities can be represented with a nonlinear Beta function (R(2) > 0.98), and differences in the parameters representing the initiation, duration and conformation of the sap velocity can be tested statistically to discern tree transpiration differences during the day. Evapotranspiration was greater for the poplar-pasture association than for the open pasture (2.7-3.0 versus 2.2 mm day(-1)). The tree canopy alone contributed 0.92 mm day(-1) as transpiration and 1.37 mm day(-1) as interception, whereas evapotranspiration of the pasture understory was only 0.4-0.6 mm day(-1). Despite the higher water use of the poplar-pasture association, soil water in the 0-300 mm soil stratum was higher than, or similar to, that of the open pasture. Tree shading decreased evapotranspiration and pasture accumulation under the trees.

  7. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2015-04-15

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  8. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2014-04-14

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  9. Feeding performance of Clostera fulgurita on three clones of Populus deltoides

    Institute of Scientific and Technical Information of China (English)

    K.S.Sangha

    2011-01-01

    Poplar leaf defoliator, Closterafulgurita (Walker) larvae were reared on three Populus deltoides clones (PLI, PL5 and PL7) in the laboratory. The nutritional indices were computed for working out the relationship between food consumption and growth rate of 3rd, 4th and 5th instar larvae on three clones. The result showed that the consumption index (CI), approximate digestibility (AD), growth rate (GR), relative growth rate (RGR) and efficiency of conversion of ingested food (ECl)decreased with the increase in the age of the larvae. Efficiency of conversion of digested food (ECD) increased with increase in age of the larvae. GR and RGR varied significantly, indicating that larval development was enhanced on PLI as compared to PL5 & PL7. The values of AD, ECl and ECD were not affected by the different clones. Feeding and growth indices could be useful to define a defoliation prediction model.

  10. Genomics Mechanisms of Carbon Allocation and Partitioning in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias; Peter, Gary; Martin, Timothy

    2009-07-30

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration. It is also unclear how environmental cues such as nitrogen availability impact the genes that regulate growth, and biomass allocation and wood composition in trees. To address these questions we phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above and below ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Fifty-seven quantitative trait loci (QTL) were identified for twenty traits analyzed. The majority of QTL are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and QTL co-localization identified the genomic position of potential pleiotropic regulators. Gene expression analysis of all poplar genes was also characterized in differentiating xylem, whole-roots and developing leaves of 192 of the segregating population. By integrating the QTL and gene expression information we identified genes that regulate carbon partitioning and several biomass growth related properties. The work developed in this project resulted in the publication of three book chapters, four scientific articles (three others currently in preparation), 17 presentations in international conferences and two provisional patent applications.

  11. Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus.

    Science.gov (United States)

    Spicer, Rachel; Tisdale-Orr, Tracy; Talavera, Christian

    2013-01-01

    Polar auxin transport (PAT) is a major determinant of plant morphology and internal anatomy with important roles in vascular patterning, tropic growth responses, apical dominance and phyllotactic arrangement. Woody plants present a highly complex system of vascular development in which isolated bundles of xylem and phloem gradually unite to form concentric rings of conductive tissue. We generated several transgenic lines of hybrid poplar (Populus tremula x alba) with the auxin-responsive DR5 promoter driving GUS expression in order to visualize an auxin response during the establishment of secondary growth. Distinct GUS expression in the cambial zone and developing xylem-side derivatives supports the current view of this tissue as a major stream of basipetal PAT. However, we also found novel sites of GUS expression in the primary xylem parenchyma lining the outer perimeter of the pith. Strands of primary xylem parenchyma depart the stem as a leaf trace, and showed GUS expression as long as the leaves to which they were connected remained attached (i.e., until just prior to leaf abscission). Tissue composed of primary xylem parenchyma strands contained measurable levels of free indole-3-acetic acid (IAA) and showed basipetal transport of radiolabeled auxin ((3)H-IAA) that was both significantly faster than diffusion and highly sensitive to the PAT inhibitor NPA. Radiolabeled auxin was also able to move between the primary xylem parenchyma in the interior of the stem and the basipetal stream in the cambial zone, an exchange that was likely mediated by ray parenchyma cells. Our results suggest that (a) channeling of leaf-derived IAA first delineates isolated strands of pre-procambial tissue but then later shifts to include basipetal transport through the rapidly expanding xylem elements, and (b) the transition from primary to secondary vascular development is gradual, with an auxin response preceding the appearance of a unified and radially-organized vascular cambium.

  12. Comparative study of plant growth of two poplar tree species irrigated with treated wastewater, with particular reference to accumulation of heavy metals (Cd, Pb, As, and Ni).

    Science.gov (United States)

    Houda, Zarati; Bejaoui, Zoubeir; Albouchi, Ali; Gupta, Dharmendra K; Corpas, Francisco J

    2016-02-01

    Water is a scarce natural resource around the world which can hamper the socio-economic development of many countries. The Mediterranean area, especially north Africa, is known for its semi-arid to arid climate, causing serious water supply problems. Treated wastewater (TWW) is being used as an alternative strategy for recycling wastewater. It is also a potential source of nutrients for reforestation with certain plant species such as poplar trees, a useful wood resource, and even for phytoremediation purposes. In the present study, we used treated wastewater to irrigate two clones of 1-year-old poplar trees (Populus nigra cv. I-488 and Populus alba cv. MA-104) for 90 days. After a stipulated time, a comparative study was made of the effects of TWW on growth parameters, acquisition of essential minerals (Na, Fe and Zn) and pollutants (Cd, Pb, As and Ni) as well as the enrichment of secondary metabolites such as polyphenolic, flavonoid and tannin compounds which could contribute to the growth and development of poplar plants. The results of this study show that the use of TWW increased P. alba's biomass production by 36% and also enhanced its Cd and Pb accumulation capacity. We also found that P. alba has considerable potential to be used as an alternative plant species for reforestation and/or phytoremediation of toxic metals from contaminated water or effluent.

  13. Effects of root pruning on the growth and rhizosphere soil characteristics of short-rotation closed-canopy poplar

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z. Y.; Xing, S. J.; Ma, B. Y.; Liu, F. C.; Ma, H. L.; Wang, Q. H.

    2012-11-01

    When poplar trees planted at a high density are canopy-closed in plantation after 4-5 years of growth, the roots of adjacent trees will inevitably intermingle together, which possibly restricts the nutrient uptake by root system. Root pruning might stimulate the emergence of fine roots and benefit the tree growth of short-rotation poplar at the stage of canopy closing. The aim of this study is to evaluate the effects of root pruning on DBH (diameter at breast height, 1.3 m), tree height, nutrients (N, P and K) and hormones (indoleacetic acid and cytokinin) in poplar leaves, gas exchange variables (photosynthetic rate and stomatal conductance), and rhizosphere soil characteristics. Field experiment was carried out with four-yearold poplar (Populus × euramericana cv. ‘Neva’) planted in a fluvo-aquic loam soil in Shandong province, China in early April, 2008. Three root pruning treatments (severe, moderate and light degree) were conducted at the distances of 6, 8 and 10 times DBH on both inter-row sides of the trees to the depth of 30 cm, respectively. The results showed that the growth performance was obtained in the following order of treatments: moderate > light = control > severe. In the rhizophere soil, moderate and light pruning increased the microbial populations, enzymatic activities, and the concentrations of available N, P, K and organic matter. Generally, root pruning to improve tree growth and rhizosphere soil fertility can be recommended in canopy-closed poplar plantation. The appropriate selection of root pruning intensity is a pivotal factor for the effectiveness of this technique. (Author) 35 refs.

  14. Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements.

    Science.gov (United States)

    Baldantoni, Daniela; Cicatelli, Angela; Bellino, Alessandro; Castiglione, Stefano

    2014-12-15

    Plant biodiversity and intra-population genetic variability have not yet been properly exploited in the framework of phytoremediation and soil reclamation. For this reason, iron and other metal accumulation capacity of two Cu and Zn tolerant poplar clones, namely AL22 (Populus alba L.) and N12 (Populus nigra L.), was investigated in a pot experiment. Cuttings of the two clones were planted in iron rich soil collected from an urban-industrial area. Concentrations of Cd, Cu, Fe, Pb and Zn were analysed in leaves (at different times), as well as in stems and in roots (at the end of the experiment), both in control plants and in plants grown on a soil whose Fe availability was artificially enhanced. Results showed that Cd and Zn were preferentially accumulated in leaves, whereas Cu, Fe and Pb were mainly accumulated in roots. The main differences in metal accumulation between clones were related to Cd (about tenfold higher concentrations in N12) and Cu (higher concentrations in AL22). Once soil Fe availability was enhanced, the uptake and accumulation of all metals declined, with the exception of Fe at the first sampling time in AL22 leaves. The different behaviour of the two poplar clones suggests that a thoughtful choice should be made for their use in relation to soil heavy metal remediation.

  15. FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars

    Directory of Open Access Journals (Sweden)

    Taylor Gail

    2011-04-01

    Full Text Available Abstract Background There is an increasing demand for renewable resources to replace fossil fuels. However, different applications such as the production of secondary biofuels or combustion for energy production require different wood properties. Therefore, high-throughput methods are needed for rapid screening of wood in large scale samples, e.g., to evaluate the outcome of tree breeding or genetic engineering. In this study, we investigated the intra-specific variability of lignin and energy contents in extractive-free wood of hybrid poplar progenies (Populus trichocarpa × deltoides and tested if the range was sufficient for the development of quantitative prediction models based on Fourier transform infrared spectroscopy (FTIR. Since lignin is a major energy-bearing compound, we expected that the energy content of wood would be positively correlated with the lignin content. Results Lignin contents of extractive-free poplar wood samples determined by the acetyl bromide method ranged from 23.4% to 32.1%, and the calorific values measured with a combustion calorimeter varied from 17260 to 19767 J g-1. For the development of calibration models partial least square regression and cross validation was applied to correlate FTIR spectra determined with an attenuated total reflectance (ATR unit to measured values of lignin or energy contents. The best models with high coefficients of determination (R2 (calibration = 0.91 and 0.90; R2 (cross-validation = 0.81 and 0.79 and low root mean square errors of cross validation (RMSECV = 0.77% and 62 J g-1 for lignin and energy determination, respectively, were obtained after data pre-processing and automatic wavenumber restriction. The calibration models were validated by analyses of independent sets of wood samples yielding R2 = 0.88 and 0.86 for lignin and energy contents, respectively. Conclusions These results show that FTIR-ATR spectroscopy is suitable as a high-throughput method for lignin and energy

  16. Inositol Hexakis Phosphate is the Seasonal Phosphorus Reservoir in the Deciduous Woody Plant Populus alba L.

    Science.gov (United States)

    Kurita, Yuko; Baba, Kei'ichi; Ohnishi, Miwa; Matsubara, Ryosuke; Kosuge, Keiko; Anegawa, Aya; Shichijo, Chizuko; Ishizaki, Kimitsune; Kaneko, Yasuko; Hayashi, Masahiko; Suzaki, Toshinobu; Fukaki, Hidehiro; Mimura, Tetsuro

    2017-09-01

    Seasonal recycling of nutrients is an important strategy for deciduous perennials. Deciduous perennials maintain and expand their nutrient pools by the autumn nutrient remobilization and the subsequent winter storage throughout their long life. Phosphorus (P), one of the most important elements in living organisms, is remobilized from senescing leaves during autumn in deciduous trees. However, it remains unknown how phosphate is stored over winter. Here we show that in poplar trees (Populus alba L.), organic phosphates are accumulated in twigs from late summer to winter, and that IP6 (myo-inositol-1,2,3,4,5,6-hexakis phosphate: phytic acid) is the primary storage form. IP6 was found in high concentrations in twigs during winter and quickly decreased in early spring. In parenchyma cells of winter twigs, P was associated with electron-dense structures, similar to globoids found in seeds of higher plants. Various other deciduous trees were also found to accumulate IP6 in twigs during winter. We conclude that IP6 is the primary storage form of P in poplar trees during winter, and that it may be a common strategy for seasonal P storage in deciduous woody plants. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Differential transcriptome analysis between Populus and its synthesized allotriploids driven by second-division restitution.

    Science.gov (United States)

    Cheng, Shiping; Huang, Zhen; Li, Yun; Liao, Ting; Suo, Yujing; Zhang, Pingdong; Wang, Jun; Kang, Xiangyang

    2015-12-01

    In this report, we compared transcriptomic differences between a synthetic Populus section Tacamahaca triploid driven by second-division restitution and its parents using a high-throughput RNA-seq method. A total of 4,080 genes were differentially expressed between the high-growth vigor allotriploids (SDR-H) and their parents, and 719 genes were non-additively expressed in SDR-H. Differences in gene expression between the allotriploid and male parent were more significant than those between the allotriploid and female parent, which may be caused by maternal effects. We observed 3,559 differentially expressed genes (DEGs) between the SDR-H and male parent. Notably, the genes were mainly involved in metabolic process, cell proliferation, DNA methylation, cell division, and meristem and developmental growth. Among the 1,056 DEGs between SDR-H and female parent, many genes were associated with metabolic process and carbon utilization. In addition, 1,789 DEGs between high- and low-growth vigor allotriploid were mainly associated with metabolic process, auxin poplar transport, and regulation of meristem growth. Our results indicated that the higher poplar ploidy level can generate extensive transcriptomic diversity compared with its parents. Overall, these results increased our understanding of the driving force for phenotypic variation and adaptation in allopolyploids driven by second-division restitution.

  18. THE FIBER MORPHOLOGY VARIATION OF TRIPLOID CLONE OF POPULUS TOMENTOSA CARR.AND ITS SUPPOSED HARVESTING AGE FOR THE PAPER INDUSTRY

    Institute of Scientific and Technical Information of China (English)

    Yongming Fan; Zhiyi Zhang; Yimin Xie; dakai Ren; yuanyuan Luo; yuying Wu; jing He

    2004-01-01

    The fiber morphology variation of triploid clone of Populus tomentosa Carr. and the supposed harvesting age for the paper industry were investigated in this paper. The results shows that in the first few years,2-4 years for example, the fiber length at breast high grows faster than it does in the later years. But the standard deviation of distribution in fiber length at breast high in mature wood is larger than in the young tree. The technologically harvestable age of triploid clone of Populus tomentosa Carr., BL304could be 4-7 year old to meet the requirement for paper industry. The distribution of fiber length become concentrated within an annual ring as the tree grows. The test results also show that the cloned poplar has a small Runkel ratio value (less than 0.4,generally about 0.3), and this ratio increases slightly with the tree grows.

  19. THE FIBER MORPHOLOGY VARIATION OF TRIPLOID CLONE OF POPULUS TOMENTOSA CARR.AND ITS SUPPOSED HARVESTING AGE FOR THE PAPER INDUSTRY

    Institute of Scientific and Technical Information of China (English)

    YongmingFan; ZhiyiZhang; YiminXie; dakaiRen; yuanyuanLuo; yuyingWu; jingHe

    2004-01-01

    The fiber morphology variation of triploid clone of Populus tomentosa Cart. and the supposed harvesting age for the paper industry were investigated in this paper. The results shows that in the first few years, 2-4 years for example, the fiber length at breast highg rows faster than it does in the later years. But the standard deviation of distribution in fiber length at breast high in mature wood is larger than in the young tree. The technologically harvestable age of triploid clone of Populus tomentosa Carr., BL304 could be 4-7 year old to meet the requirement for paper industry. The distribution of fiber length become concentrated within an annual ring as the tree grows. The test results also show that the cloned poplar has a small Runkel ratio value (less than 0.4, generally about 0.3), and this ratio increases slightly with the tree grows.

  20. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees.

    Science.gov (United States)

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Kong, Fanjing; Li, Bei; Zhang, Hong-Xia

    2017-03-04

    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyze the conversion of castasterone (CS) to brassinolide (BL), a final rate-limiting step in the BR biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d(x) mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type (WT), plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggest that PtCYP85A3 could be used as a potential candidate gene for engineering fast growing trees with improved wood production. This article is protected by copyright. All rights reserved.

  1. Cytogenetic analysis of Populus trichocarpa--ribosomal DNA, telomere repeat sequence, and marker-selected BACs.

    Science.gov (United States)

    Islam-Faridi, M N; Nelson, C D; DiFazio, S P; Gunter, L E; Tuskan, G A

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  2. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Gunter, Lee E [ORNL; DiFazio, Stephen P [West Virginia University

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis -type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  3. Diversification in the genetic architecture of gene expression and transcriptional networks in organ differentiation of Populus

    OpenAIRE

    Drost, Derek R.; Benedict, Catherine I.; Berg, Arthur; Novaes, Evandro; Novaes, Carolina R. D. B.; Yu, Qibin; Dervinis, Christopher; Jessica M Maia; Yap, John; Miles, Brianna; Kirst, Matias

    2010-01-01

    A fundamental goal of systems biology is to identify genetic elements that contribute to complex phenotypes and to understand how they interact in networks predictive of system response to genetic variation. Few studies in plants have developed such networks, and none have examined their conservation among functionally specialized organs. Here we used genetical genomics in an interspecific hybrid population of the model hardwood plant Populus to uncover transcriptional networks in xylem, leav...

  4. Impact of RAV1-engineering on poplar biomass production: a short-rotation coppice field trial.

    Science.gov (United States)

    Moreno-Cortés, Alicia; Ramos-Sánchez, José Manuel; Hernández-Verdeja, Tamara; González-Melendi, Pablo; Alves, Ana; Simões, Rita; Rodrigues, José Carlos; Guijarro, Mercedes; Canellas, Isabel; Sixto, Hortensia; Allona, Isabel

    2017-01-01

    Early branching or syllepsis has been positively correlated with high biomass yields in short-rotation coppice (SRC) poplar plantations, which could represent an important lignocellulosic feedstock for the production of second-generation bioenergy. In prior work, we generated hybrid poplars overexpressing the chestnut gene RELATED TO ABI3/VP1 1 (CsRAV1), which featured c. 80% more sylleptic branches than non-modified trees in growth chambers. Given the high plasticity of syllepsis, we established a field trial to monitor the performance of these trees under outdoor conditions and a SRC management. We examined two CsRAV1-overexpression poplar events for their ability to maintain syllepsis and their potential to enhance biomass production. Two poplar events with reduced expression of the CsRAV1 homologous poplar genes PtaRAV1 and PtaRAV2 were also included in the trial. Under our culture conditions, CsRAV1-overexpression poplars continued developing syllepsis over two cultivation cycles. Biomass production increased on completion of the first cycle for one of the overexpression events, showing unaltered structural, chemical, or combustion wood properties. On completion of the second cycle, aerial growth and biomass yields of both overexpression events were reduced as compared to the control. These findings support the potential application of CsRAV1-overexpression to increase syllepsis in commercial elite trees without changing their wood quality. However, the syllepsis triggered by the introduction of this genetic modification appeared not to be sufficient to sustain and enhance biomass production.

  5. Identification of CpTI Gene Integration for 2-year-old Transgenic Poplars at DNA Level

    Institute of Scientific and Technical Information of China (English)

    Zhang Qian; Lin Shanzhi; Lin Yuanzhen; Zhang Zhiyi; Liu Haijun; Zou Yening; Wang Zeliang

    2004-01-01

    The putative transgenic hybrid triploid poplars [(P. Tomentosa × P. Bolleana) × P. Tomentosa] with CpTI gene have been outplanted in test field for 2 years. Although the authors' previous studies have proved that they are highly resistant to 3 species of poplar-threatening insect pests and contain high content of CpTI protein in foliage, incorporation status of foreign CpTI gene in poplar genome is uncertain. In this present study, the incorporation of foreign CpTI gene in genome of 5 transgenic poplars was confirmed by PCR and Southern blotting analysis. DNA amplification showed that there were clear DNA bands of about 450bp specific to CpTI gene in transgenic lanes, while no corresponding band in non-transgenic lane was observed. Correspondingly, clear DNA hybridization signals and no signal were exhibited on film for DNA Southern blotting analysis in transgenic lanes and non-transgenic lane, respectively, which further confirmed the stable integration of foreign CpTI gene in genome of 2-year-old transgenic poplar.

  6. Protease gene families in Populus and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jansson Stefan

    2006-12-01

    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  7. Continuous steam hydrolysis of tulip poplar

    Energy Technology Data Exchange (ETDEWEB)

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  8. Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress.

    Science.gov (United States)

    Ke, Qingbo; Wang, Zhi; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Kwak, Sang-Soo

    2015-09-01

    YUCCA6, a member of the YUCCA family of flavin monooxygenase-like proteins, is involved in the tryptophan-dependent IAA biosynthesis pathway and responses to environmental cues in Arabidopsis. However, little is known about the role of the YUCCA pathway in auxin biosynthesis in poplar. Here, we generated transgenic poplar (Populus alba × P. glandulosa) expressing the Arabidopsis YUCCA6 gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SY plants). Three SY lines (SY7, SY12 and SY20) were selected based on the levels of AtYUCCA6 transcript. SY plants displayed auxin-overproduction morphological phenotypes, such as rapid shoot growth and retarded main root development with increased root hair formation. In addition, SY plants had higher levels of free IAA and early auxin-response gene transcripts. SY plants exhibited tolerance to drought stress, which was associated with reduced levels of reactive oxygen species. Furthermore, SY plants showed delayed hormone- and dark-induced senescence in detached leaves due to higher photosystem II efficiency and less membrane permeability. These results suggest that the conserved IAA biosynthesis pathway mediated by YUCCA family members exists in poplar.

  9. EFFECTS OF SOME IMPREGNATION CHEMICALS ON COMBUSTION CHARACTERISTICS OF LAMINATED VENEER LUMBER (LVL PRODUCED WITH OAK AND POPLAR VENEERS

    Directory of Open Access Journals (Sweden)

    Seref Kurt

    2010-02-01

    Full Text Available The objective of this research was to investigate the effects of impregnation chemicals on the combustion properties of 3-ply laminated veneer lumber (LVL made of Oak (Quercus petraea subsp. İberica and Poplar (Populus tremula L.. For this purpose, oak wood was used as the outer ply and poplar used for the core ply in LVL. Borax (BX, boric acid (BA, borax+boric acid (BX+BA, and di-ammonium phosphate (DAP were used as impregnation chemicals, and urea formaldehyde (UF, phenol formaldehyde (PF, and melamine-urea-formaldehyde (MUF adhesives as bonding agent were used to produce LVLs. The vacuum – pressure method was used for the impregnation process. The combustion test was performed according to the procedure defined in the ASTM–E 69 standards, and during the test the mass reduction, temperature, and released gas (CO, O2 were determined for each 30 seconds. As a result, di-ammonium phosphate was found to be the most successful fire retardant chemical in LVL with MUF adhesive. LVL produced from a combination of oak and poplar veneers with MUF adhesive and impregnated with DAP can be recommended to be used as a fire resistant building material where required.

  10. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations.

    Science.gov (United States)

    Laureysens, I; Blust, R; De Temmerman, L; Lemmens, C; Ceulemans, R

    2004-10-01

    The use of plants to decontaminate soils polluted by heavy metals has received considerable attention in recent years as a low-cost technique. Poplars (Populus spp.) can accumulate relatively high levels of certain metals, and have the added advantage of producing biomass that can be used for energy production. A short rotation coppice culture with 13 poplar clones was established on a former waste disposal site, which was moderately polluted with heavy metals. Total content of metals in leaves, wood and bark were determined in August and October/November. Significant clonal differences in accumulation were found for most metals, although clones with the highest concentration of all metals were not found. Cadmium, zinc and aluminium were most efficiently taken up. The lowest concentration was found in wood; the highest concentrations were generally found in senescing leaves, making removal and treatment of fallen leaves necessary.

  11. Effect of water regime on poplar cultivation

    Directory of Open Access Journals (Sweden)

    Letić Ljubomir

    2006-01-01

    Full Text Available The effect of water regime on the growth and development of plantations of hydrologically conditioned species, poplars was researched in the alluvial plain of the river Tamiš. The investigations were carried out during the period 2000-2003 on the area of FA "Opovo", KO Sakule, and the study results elucidate the very complex relationships between the hydrological conditions of the site and the growth and increment of the study poplar plantations, cl. I-214. .

  12. GENOME ENABLED MODIFICATION OF POPLAR ROOT DEVELOPMENT FOR INCREASED CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor

    2013-03-05

    DR5 as a reporter system to study auxin response in Populus Plant Cell Reports 32:453-463 Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar. The Populus AINTEGUMENTA LIKE 1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia. Plant Physiol. 160: 1996-2006 Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to

  13. Metabolomics study of Populus type propolis.

    Science.gov (United States)

    Anđelković, Boban; Vujisić, Ljubodrag; Vučković, Ivan; Tešević, Vele; Vajs, Vlatka; Gođevac, Dejan

    2017-02-20

    Herein, we propose rapid and simple spectroscopic methods to determine the chemical composition of propolis derived from various Populus species using a metabolomics approach. In order to correlate variability in Populus type propolis composition with the altitude of its collection, NMR, IR, and UV spectroscopy followed by OPLS was conducted. The botanical origin of propolis was established by comparing propolis spectral data to those of buds of various Populus species. An O2PLS method was utilized to integrate two blocks of data. According to OPLS and O2PLS, the major compounds in propolis samples, collected from temperate continental climate above 500m, were phenolic glycerides originating from P. tremula buds. Flavonoids were predominant in propolis samples collected below 400m, originating from P. nigra and P. x euramericana buds. Samples collected at 400-500m were of mixed origin, with variable amounts of all detected metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Science.gov (United States)

    Ariani, Andrea; Di Baccio, Daniela; Romeo, Stefania; Lombardi, Lara; Andreucci, Andrea; Lux, Alexander; Horner, David Stephen; Sebastiani, Luca

    2015-01-01

    Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE) genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated) and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO) terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1) probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS) that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  15. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Directory of Open Access Journals (Sweden)

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  16. EVALUATION AND IDENTIFICATION OF WALNUT HEARTWOOD EXTRACTIVES FOR PROTECTION OF POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Seyyed Khalil Hosseini Hashemi

    2011-02-01

    Full Text Available Walnut (Juglans regia L. heartwood extractives were identified and their potential for protection of poplar wood was evaluated. Test specimens were prepared from poplar wood (Populus nigra L. to meet BS 838:1961 requirements. Samples were impregnated with heartwood extractive solution (1.5, 2.5, and 3.5% w/w in ethanol-toluene, followed by 5 hours vacuum desiccator technique to reach complete saturation. Impregnated specimens were exposed to white-rot fungus (Trametes versicolor for 14 weeks according to BS 838:1961 applying the kolle-flask method. The weight loss of samples was determined after exposure to white-rot fungus. The highest weight loss (36.96% was observed for untreated control samples and the lowest weight loss (30.40% was measured in samples treated with 1.5% extractives solution. The analyses of the extracts using GC/MS indicated that major constituents are benzoic acid,3,4,5-tri(hydroxyl and gallic acid (44.57 %. The two toxic components in the heartwood are juglone (5.15 % and 2,7-dimethylphenantheren (5.81 %.

  17. Chemical Profiles of Wood Components of Poplar Clones for Their Energy Utilization

    Directory of Open Access Journals (Sweden)

    Danica Kačíková

    2012-12-01

    Full Text Available Selected and tested poplar clones are very suitable biomass resources for various applications such as biofuels, the pulp and paper industry as well as chemicals production. In this study, we determined the content of lignin, cellulose, holocellulose, and extractives, syringyl to guaiacyl (S/G ratio in lignin, and also calculated higher heating values (HHV among eight examined clones of Populus grown on three different experimental sites. The highest lignin content for all the examined sites was determined in ‘I-214’ and ‘Baka 5’ clones, whereas the highest content of extractives was found in ‘Villafranca’ and ‘Baka 5’ clones. The highest S/G ratio for all the examined sites was determined in ‘Villafranca’ and ‘Agathe F’ clones. The chemical profiles of main wood components, extractives, and the S/G ratio in lignin were also influenced by both the experimental site and the clone × site interaction. Higher heating values, derived from calculations based on the contents of lignin and extractives (or lignin only, were in close agreement with the previously published data. The highest heating values were found for ‘Baka 5’ and ‘I-214’ clones. The optimal method of poplar biomass utilization can be chosen on basis of the lignocellulosics chemical composition and the S/G ratio in lignin.

  18. S-nitroso-proteome in poplar leaves in response to acute ozone stress.

    Directory of Open Access Journals (Sweden)

    Elisa Vanzo

    Full Text Available Protein S-nitrosylation, the covalent binding of nitric oxide (NO to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = -3.6 and caffeic acid O-methyltransferase (-3.4, key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.

  19. Computer Simulation of Fiber Length and Width Distribution for Two Poplar Woods

    Institute of Scientific and Technical Information of China (English)

    ZHANGDongmei; HOUZhuqiang; GUANNing

    2004-01-01

    Computer simulation was carried out on fiber length and width for plantation-grown Chinese white poplar (Populus tomentosa Cart. clone) and plantation-grown poplar 1-72 (P. x eurumericana (Dode) Guiner cv.). Skewness and kurtosis of measured results exhibited that distributions of the fiber length and width departured from normal distribution. Three-parameter Weibull density function was used in this investigation and the corresponding program was written with Turbo C. The results showed that profiles of simulated length and width histograms were similar to ones of measured histograms, and that there was a pretty good agreement between simulated and measured means of fiber length and width. There was a little influence on the simulated means from seed used in random number generator and number of simulated variables. That indicated that the simulation was steady when the seed and the number were altered. Different histograms can be obtained with different values of the location, the shape, and the scale parameter corresponding to different values of the minimum, the mean, and the standard deviation for fiber length and width. The simulation presented here can be used as a tool for the studies on the variations in fiber morphology.

  20. Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies.

    Science.gov (United States)

    Clavijo McCormick, Andrea; Irmisch, Sandra; Reinecke, Andreas; Boeckler, G Andreas; Veit, Daniel; Reichelt, Michael; Hansson, Bill S; Gershenzon, Jonathan; Köllner, Tobias G; Unsicker, Sybille B

    2014-08-01

    After herbivory, plants release volatile organic compounds from damaged foliage as well as from nearby undamaged leaves that attract herbivore enemies. Little is known about what controls the volatile emission differences between damaged and undamaged tissues and how these affect the orientation of herbivore enemies. We investigated volatile emission from damaged and adjacent undamaged foliage of black poplar (Populus nigra) after herbivory by gypsy moth (Lymantria dispar) caterpillars and determined the compounds mediating the attraction of the gypsy moth parasitoid Glyptapanteles liparidis (Braconidae). Female parasitoids were more attracted to gypsy moth-damaged leaves than to adjacent non-damaged leaves. The most characteristic volatiles of damaged versus neighbouring undamaged leaves included terpenes, green leaf volatiles and nitrogen-containing compounds, such as aldoximes and nitriles. Electrophysiological recordings and olfactometer bioassays demonstrated the importance of nitrogenous volatiles. Under field conditions, parasitic Hymenoptera were more attracted to traps baited with these substances than most other compounds. The differences in volatile emission profiles between damaged and undamaged foliage appear to be regulated by jasmonate signalling and the local activation of volatile biosynthesis. We conclude that characteristic volatiles from damaged black poplar foliage are essential cues enabling parasitoids to find their hosts.

  1. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar

    Science.gov (United States)

    Yang, Li; Zhao, Xin; Ran, Lingyu; Li, Chaofeng; Fan, Di; Luo, Keming

    2017-01-01

    Some R2R3 MYB transcription factors have been shown to be major regulators of phenylpropanoid biosynthetic pathway and impact secondary wall formation in plants. In this study, we describe the functional characterization of PtoMYB156, encoding a R2R3-MYB transcription factor, from Populus tomentosa. Expression pattern analysis showed that PtoMYB156 is widely expressed in all tissues examined, but predominantly in leaves and developing wood cells. PtoMYB156 localized to the nucleus and acted as a transcriptional repressor. Overexpression of PtoMYB156 in poplar repressed phenylpropanoid biosynthetic genes, leading to a reduction in the amounts of total phenolic and flavonoid compounds. Transgenic plants overexpressing PtoMYB156 also displayed a dramatic decrease in secondary wall thicknesses of xylem fibers and the content of cellulose, lignin and xylose compared with wild-type plants. Transcript accumulation of secondary wall biosynthetic genes was down-regulated by PtoMYB156 overexpression. Transcriptional activation assays revealed that PtoMYB156 was able to repress the promoter activities of poplar CESA17, C4H2 and GT43B. By contrast, knockout of PtoMYB156 by CRISPR/Cas9 in poplar resulted in ectopic deposition of lignin, xylan and cellulose during secondary cell wall formation. Taken together, these results show that PtoMYB156 may repress phenylpropanoid biosynthesis and negatively regulate secondary cell wall formation in poplar. PMID:28117379

  2. RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis.

    Science.gov (United States)

    Behnke, Katja; Kaiser, Andreas; Zimmer, Ina; Brüggemann, Nicolas; Janz, Dennis; Polle, Andrea; Hampp, Rüdiger; Hänsch, Robert; Popko, Jennifer; Schmitt-Kopplin, Philippe; Ehlting, Barbara; Rennenberg, Heinz; Barta, Csengele; Loreto, Francesco; Schnitzler, Jörg-Peter

    2010-09-01

    In plants, isoprene plays a dual role: (a) as thermo-protective agent proposed to prevent degradation of enzymes/membrane structures involved in photosynthesis, and (b) as reactive molecule reducing abiotic oxidative stress. The present work addresses the question whether suppression of isoprene emission interferes with genome wide transcription rates and metabolite fluxes in grey poplar (Populus x canescens) throughout the growing season. Gene expression and metabolite profiles of isoprene emitting wild type plants and RNAi-mediated non-isoprene emitting poplars were compared by using poplar Affymetrix microarrays and non-targeted FT-ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry). We observed a transcriptional down-regulation of genes encoding enzymes of phenylpropanoid regulatory and biosynthetic pathways, as well as distinct metabolic down-regulation of condensed tannins and anthocyanins, in non-isoprene emitting genotypes during July, when high temperature and light intensities possibly caused transient drought stress, as indicated by stomatal closure. Under these conditions leaves of non-isoprene emitting plants accumulated hydrogen peroxide (H(2)O(2)), a signaling molecule in stress response and negative regulator of anthocyanin biosynthesis. The absence of isoprene emission under high temperature and light stress resulted transiently in a new chemo(pheno)type with suppressed production of phenolic compounds. This may compromise inducible defenses and may render non-isoprene emitting poplars more susceptible to environmental stress.

  3. Evaluation of management tools for the control of poplar leaf defoliators (Lepidoptera: notodontidae) in northwestern India

    Institute of Scientific and Technical Information of China (English)

    K.S.Sangha

    2011-01-01

    Populus suffers from multiple insect damage throughout its distributional range in northwestern India. The evaluation of various management tools was done based on the hypothesis that manipulation of insect habitat can provide tangible results. Manipulation of cultural practices, ploughing of field during December, and growing of crops (wheat,Trifolium alexandrinum and others) results in lower adult emergence,reduced leaf infestation, number of larvae and pupae per meter branch length of poplar leaf defoliators (PLD). Fallow plantations were more prone to attack of PLD than intercropped plantations. Higher incidence of Clostera restitura was recorded in southwestern dry zones due to unsuitability of the site, poor quality of irrigation water and dry weather conditions. Complete stripping of Populus trees does not occur in low temperature & high humidity, submountaneous zones of Punjab. Chemical control studies were conducted in laboratory & field conditions, and among the five insecticides tested, Profenophos 50 EC, Quinalphos 25 EC and Carbaryl 50 WP @ 0.05 and 0.1 percent concentration gave consistently high mortality of PLD larvae up to 21 days after spraying.Use of insecticides prior to peak activity periods & during evening hours enhances the efficiency of management options.

  4. Study on Poplar Industrialization in Jiangsu:(3)Conclusions and Recommendations on Poplar Industrialization Management

    Institute of Scientific and Technical Information of China (English)

    SHEN Wenxing; ZHOU Dingguo; XU Xinping

    2006-01-01

    This article concludes that the creation of a new industrial management,including the innovation of management institution,operation system,industrial policies and industrial technology,is a solution to the management optimization of the poplar industry.The further development of the poplar industry is beneficial to the sustainable development of the society,economy and ecological environment in Jiangsu province.

  5. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray)

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev,I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R.R.; Bhalerao, R.P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.-L.; Cooper, D.; Coutinho,P.M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Dejardin, A.; dePamphillis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehiting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjarvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leple, J.-C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin,F.; Montanini, B.; Napoli, C.; Nelson, D.R.; Nelson, D.; Nieminen, K.; Nilsson, O.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouze, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui,A.; Sterky, F.; Terry, A.; Tsai, C.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra,M.; Sandberg, G.; Van der Peer, Y.; Rokhsar, D.

    2006-09-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. Over 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event, with approximately 8,000 pairs of duplicated genes from that event surviving in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication and gross chromosomal rearrangement appear to proceed substantially slower in Populus relative to Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average between 1.4-1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with disease resistance, meristem development, metabolite transport and lignocellulosic wall biosynthesis.

  6. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; DiFazio, Stephen P [ORNL; Jansson, Bo S [ORNL; Bohlmann, J. [University of British Columbia, Vancouver; Grigoriev, I. [U.S. Department of Energy, Joint Genome Institute; Hellsten, U. [U.S. Department of Energy, Joint Genome Institute; Putman, N. [U.S. Department of Energy, Joint Genome Institute; Ralph, S. [University of British Columbia, Vancouver; Rombauts, S. [Ghent University, Belgium; Salamov, A. [U.S. Department of Energy, Joint Genome Institute; Schein, J. [Genome Sciences Centre, Vancouver, BC, Canada; Sterck, L. [Ghent University, Belgium; Aerts, A. [U.S. Department of Energy, Joint Genome Institute; Bhalerao, R. R. [Umea Plant Science Centre, Dept. of Plant Physiology, Sweden; Bhalerao, Rishikesh P [ORNL; Blaudez, D. [Institut National de la Recherche Agronomique, France; Boerjan, W. [Ghent University, Belgium; Brun, A. [Institut National de la Recherche Agronomique, France; Brunner, A. [Virginia Polytechnic Institute and State University (Virginia Tech); Busov, V. [Michigan Technological University; Campbell, M. [University of Toronto; Larimer, Frank W [ORNL; Detter, J C [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Chen, Gwo-Liang [ORNL; Gunter, Lee E [ORNL; Kalluri, Udaya C [ORNL; LoCascio, Philip F [ORNL; Uberbacher, Edward C [ORNL; Yin, Tongming [ORNL

    2006-01-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

  7. Terra Populus and DataNet Collaboration

    Science.gov (United States)

    Kugler, T.; Ruggles, S.; Fitch, C. A.; Clark, P. D.; Sobek, M.; Van Riper, D.

    2012-12-01

    Terra Populus, part of NSF's new DataNet initiative, is developing organizational and technical infrastructure to integrate, preserve, and disseminate data describing changes in the human population and environment over time. Terra Populus will incorporate large microdata and aggregate census datasets from the United States and around the world, as well as land use, land cover, climate and other environmental datasets. These data are widely dispersed, exist in a variety of data structures, have incompatible or inadequate metadata, and have incompatible geographic identifiers. Terra Populus is developing methods of integrating data from different domains and translating across data structures based on spatio-temporal linkages among data contents. The new infrastructure will enable researchers to identify and merge data from heterogeneous sources to study the relationships between human behavior and the natural world. Terra Populus will partner with data archives, data producers, and data users to create a sustainable international organization that will guarantee preservation and access over multiple decades. Terra Populus is also collaborating with the other projects in the DataNet initiative - DataONE, the DataNet Federation Consortium (DFC) and Sustainable Environment-Actionable Data (SEAD). Taken together, the four projects address aspects of the entire data lifecycle, including planning, collection, documentation, discovery, integration, curation, preservation, and collaboration; and encompass a wide range of disciplines including earth sciences, ecology, social sciences, hydrology, oceanography, and engineering. The four projects are pursuing activities to share data, tools, and expertise between pairs of projects as well as collaborating across the DataNet program on issues of cyberinfrastructure and community engagement. Topics to be addressed through program-wide collaboration include technical, organizational, and financial sustainability; semantic

  8. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs with an emphasis on poplar

    Directory of Open Access Journals (Sweden)

    Duplessis Sébastien

    2011-02-01

    Full Text Available Abstract Background Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs, which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. Results Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling. Conclusion Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem

  9. Degradation of poplar bark by Panaeolus

    Energy Technology Data Exchange (ETDEWEB)

    Scurti, J.C.; Fiussello, N.; Gullino, M.L.; Ferrara, R.

    1978-01-01

    Pure cultures of 41 strains of Paneolus were tested for their ability to break down poplar bark with a view to their possible use for biodegradation of this waste product of paper manufacture. Most strains were able to grow (slowly) on sterilized poplar bark and showed high ligninolytic activity. Some strains also showed cellulolytic action. Almost all the strains showed phenol-oxidase activity, but there was no correlation between lignin decomposition and phenol-oxidase activity. The amounts of bark degraded by the fungi were relatively small (3.2 - 13.0% loss of dry weight after six months incubation).

  10. Some new and noteworthy diseases of poplars in India. [Botryodiplodia sett-rot; Alternaria tip blight; Cladosporium leaf spot; Fusarium pink incrustation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.

    1983-09-01

    Four new diseases of poplars namely Botryodiplodia sett-rott, Alternaria tip blight, Cladosporium leaf spot and Fusarium pink incrustation are described in this paper. Botryodiplodia palmarum causes sett-rott of poplars both at pre-sprouting and post-sprouting stage. The pathogen also causes mortality of poplar plants in the field within 4-6 weeks after planting. Alternaria stage of Pleuspora infectoria has been found as the cause of blackening and dying of growing tips and young leaves of a Populus sp. and P. deltoides in nurseries. Cladosporium humile has been recorded as the cause of brown spot followed by crumpling and premature shedding of leaves in P. ciliata, P. nigra and P. alba. The cause of Fusarium incrustation disease on P. cilata has been identified as Fusarium sp. of Gibbosum group. Pathogenicity of Botryodiplodia palmarum and Alternaria stage of Pleospora infectoria was confirmed by artificial inoculations. Brief descriptions of Alternaria, Cladosporium and Fusarium are also given. The paper also gives a short account of some noteworthy diseases recorded on poplars namely Ganoderma root rot, foliage ruts and stem cankers. Ganoderma root-rot is found to reach alarming proportions in closely spaced poplar plantations. Melampsora ciliata, an indigenous rust, is found to attack mainly clones of P. deltoides, P. yunnanensis, P. trichocarpa, P. alba and some cultivars of P. x euramericana in nurseries. A brief account of three types of stem cankers i.e. cankers due to pink disease fungus, Corticium salmonicolor, sun-scaled cankers and cankers associated with slime flux on various clones of P. deltoides is also given.

  11. 741杨生长与木材品质特性%Growth and Wood Property of Poplar 741

    Institute of Scientific and Technical Information of China (English)

    田晓明; 谢进; 屈龙; 刘士畅; 李建梅; 杜洪双; 蒋湘宁; 盖颖

    2013-01-01

    Growth rhythm, cell wall composition, anatomical structure, physical and mechanical properties of poplar 741 were observed and measured. The results showed that, poplar 741 had a long growth period, high growth rate, and plant height, stem diameter and the growth rate of individual volume in growing season had the obvious characteristics of fast-growing. With the scanning electro microscope analysis, we found that fiber cell wall was thin, the shape of its cross section was circular or polygonal, the vessel cells were pitted vessel, wood rays were usually uniseriate; S-lignin content in stem cell wall of poplar 741 was markedly higher than the G-lignin, moreover, with the growing of the poplar 741 , the S-lignin content increased year by year. Basic density of poplar 741 was less than Populus wood, volume shrinkage rate was in a low level, the flexural strength was higher than other kind of Populus wood. According to national standard of impact toughness in wood, the impact toughness of poplar 741 was medium among the main timber tree species. Poplar 741 could be widely applied in green, construction, furniture, plywood, paper and other industries.%对741杨的生长节律、细胞壁化学组成、解剖结构、物理力学性质进行观察和测定.结果表明:741杨生长持续期长,生长速度快,株高、茎粗和单株材积生长量在生长旺季具有速生的特点;在扫描电子显微镜下观察,741杨纤维细胞壁较薄,断面形状多为圆形或多边形,导管多为孔纹型导管,木射线为单列;741杨茎细胞壁中S-木质素含量明显高于G-木质素,随着树龄的增加,S-木质素的含量逐年增加.741杨基本密度小于毛白杨成熟材,体积干缩率在杨属中处于较低水平,抗弯强度与同类型杨树木材相比处于较高水平,冲击韧性按我国主要用材树种冲击韧性大小的分类属中等.741杨可广泛应用于绿化、建筑、家具、胶合板、造纸等行业.

  12. Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany - Model development and application.

    Science.gov (United States)

    Quinkenstein, A; Jochheim, H

    2016-03-01

    In the temperate zone short rotation coppice systems for the production of woody biomass (SRC) have gained great interest as they offer a pathway to both sustainable bioenergy production and the potential sequestration of CO2 within the biomass and the soil. This study used the carbon model SHORTCAR to assess the carbon cycle of a poplar (Populus suaveolens Fisch. x Populus trichocarpa Torr. et Gray cv. Androscoggin) and a black locust (Robinia pseudoacacia L.) SRC. The model was calibrated using data from established SRC plantations on reclaimed mine sites in northeast Germany and validated through the determination of uncertainty ranges of selected model parameters and a sensitivity analysis. In addition to a 'reference scenario', representing the actual site conditions, 7 hypothetical scenarios, which varied in climate conditions, rotation intervals, runtimes, and initial soil organic carbon (SOC) stocks, were defined for each species. Estimates of carbon accumulation within the biomass, the litter layer, and the soil were compared to field data and previously published results. The model was sensitive to annual stem growth and initial soil organic carbon stocks. In the reference scenario net biome production for SRC on reclaimed sites in Lusatia, Germany amounted to 64.5 Mg C ha(-1) for R. pseudoacacia and 8.9 Mg C ha(-1) for poplar, over a period of 36 years. These results suggest a considerable potential of SRC for carbon sequestration at least on marginal sites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: A large-scale field trial on heavily polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Castiglione, S. [Dipartimento di Biologia, Universita di Milano, Via Celoria 25, I-20100 Milano (Italy); Todeschini, V. [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale, via Bellini 25/G, I-15100 Alessandria (Italy); Franchin, C. [Dipartimento di Biologia e.s., Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Torrigiani, P. [Dipartimento di Colture Arboree, Universita di Bologna, Via Fanin 46, I-40127 Bologna (Italy); Gastaldi, D. [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale, via Bellini 25/G, I-15100 Alessandria (Italy); Cicatelli, A. [Dipartimento di Chimica, Universita di Salerno, Stecca 7, Via Ponte don Melillo, I-84084 Fisciano (Saudi Arabia) (Italy); Rinaudo, C.; Berta, G. [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale, via Bellini 25/G, I-15100 Alessandria (Italy); Biondi, S. [Dipartimento di Biologia e.s., Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Lingua, G., E-mail: guido.lingua@mfn.unipmn.i [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale, via Bellini 25/G, I-15100 Alessandria (Italy)

    2009-07-15

    Three ex situ collections of poplar clones from natural populations of Populus alba and P. nigra growing in northern Italy were assessed for their genetic dissimilarity (GD) by means of amplified fragment length polymorphism (AFLP). The high GD evidenced within populations was exploited for screening 168 clones in a field trial on heavy metal-polluted soil. After one growth season, clonal differences in plant survival and growth were observed. On the basis of performance, six clones were singled out, and used to evaluate copper and zinc accumulation in different organs. Clonal differences in metal concentrations were most evident for leaves and stems; one clone of P. alba (AL35) had a distinctly higher concentration of both metals in the roots. Leaf polyamine (putrescine, spermidine, spermine) profiles correlated with tissue metal concentrations, depending on the clone, plant organ and metal. In particular, the high metal-accumulating clone AL35 exhibited a dramatically higher concentration of free and conjugated putrescine. Overall, the results indicate that, given the high GD of Populus even within populations, it is possible to identify genotypes best suited for soil clean-up, and useful also for investigating physiological markers associated with high metal accumulation/tolerance - High survival rate and heavy metal accumulation are associated with high polyamine concentration in an elite poplar clone.

  14. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    OpenAIRE

    Labbé, Jessy L.; Weston, David J; Nora eDunkirk; Pelletier, Dale A.; Tuskan, Gerald A.

    2014-01-01

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two additional Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing colle...

  15. Energy dynamics in Populus deltoides G{sub 3} Marsh agroforestry systems in eastern India

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, O.P. [National Research Centre for Agroforestry, Jhansi (India); Das, D.K. [Rajendra Agricultural Univ., Dept. of Forestry, Bihar (India)

    2005-08-01

    Energy efficiency of Populus deltoides G{sub 3} Marsh agroforestry of a 3-year-old system with intercropping of maize-wheat in crop I and pigeonpea in crop II and of a 9-year-old system with turmeric, a shade loving crop was studied at Pusa, Bihar in eastern India. Energy fixation, storage, net allocation in agronomic yield and energy released and exit from the 9-year-old system was 1.53, 4.30, 0.43 and 3.37 times in crop I and 1.67, 4.60, 0.53 and 3.30 times in crop II of the 3-year-old agroforestry system. The energy conservation efficiency in the 9-year-old system was higher (1.91%) as compared to crop I (1.24%) and crop II (1.15%) of the 3-year-old agroforestry system. The energy accumulation ratio in the 9-year-old system was 2.82 and 2.77 times higher in crop I and crop II, respectively, of the 3-year-old agroforestry system. The 3-year-old agroforestry system showed lower energy accumulation ratio resulting from less energy accumulation in perennial turnover in the form of leaf of tree and agricultural crops. The crop II system of the 3-year-old poplar agroforestry was more efficient system of management due to higher quanta of energy and higher cash return but one has to opt for shade loving intercrop turmeric with increase in age of the poplar plantation and more canopy closure. (Author)

  16. Targeted enrichment of the black cottonwood (Populus trichocarpa gene space using sequence capture

    Directory of Open Access Journals (Sweden)

    Zhou Lecong

    2012-12-01

    Full Text Available Abstract Background High-throughput re-sequencing is rapidly becoming the method of choice for studies of neutral and adaptive processes in natural populations across taxa. As re-sequencing the genome of large numbers of samples is still cost-prohibitive in many cases, methods for genome complexity reduction have been developed in attempts to capture most ecologically-relevant genetic variation. One of these approaches is sequence capture, in which oligonucleotide baits specific to genomic regions of interest are synthesized and used to retrieve and sequence those regions. Results We used sequence capture to re-sequence most predicted exons, their upstream regulatory regions, as well as numerous random genomic intervals in a panel of 48 genotypes of the angiosperm tree Populus trichocarpa (black cottonwood, or ‘poplar’. A total of 20.76Mb (5% of the poplar genome was targeted, corresponding to 173,040 baits. With 12 indexed samples run in each of four lanes on an Illumina HiSeq instrument (2x100 paired-end, 86.8% of the bait regions were on average sequenced at a depth ≥10X. Few off-target regions (>250bp away from any bait were present in the data, but on average ~80bp on either side of the baits were captured and sequenced to an acceptable depth (≥10X to call heterozygous SNPs. Nucleotide diversity estimates within and adjacent to protein-coding genes were similar to those previously reported in Populus spp., while intergenic regions had higher values consistent with a relaxation of selection. Conclusions Our results illustrate the efficiency and utility of sequence capture for re-sequencing highly heterozygous tree genomes, and suggest design considerations to optimize the use of baits in future studies.

  17. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    Science.gov (United States)

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  18. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza saliva and Populus trichocarpa

    Institute of Scientific and Technical Information of China (English)

    JI Qian; ZHANG Liang-sheng; WANG Yi-fei; WANG Jian

    2009-01-01

    The basic leucine zipper (bZIP) transcription factors form a large gene family that is important in pathogen defense, light and stress signaling, etc. The Completed whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana), rice (Oryza saliva) and poplar (Populus trichocarpa) constitute a valuable resource for genome-wide analysis and genomic comparative analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. In this study, bioinformatics analysis identified 74, 89 and 88 bZIP genes respectively in Arabidopsis, rice and poplar. Moreover, a comprehensive overview of this gene family is presented, including the gene structure, phylogeny, chromosome distribution, conserved motifs. As a result, the plant bZIPs were organized into 10 subfamilies on basis of phylogenetic relationship. Gene duplication events during the family evolution history were also investigated. And it was further concluded that chromosomal/segmental duplication might have played a key role in gene expansion of bZIP gene family.

  19. Transgenic modification of gai or rg/1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, Timothy J [ORNL; Busov, V. [Michigan Technological University; Meilan, R [Purdue University; Pearce, D [University of Lethbridge; Rood, s [University of Lethbridge; Ma, C [Oregon State University; Strauss, S [Oregon State University

    2006-01-01

    In Arabidopsis and other plants, gibberellin (GA)-regulated responses are mediated by proteins including GAI, RGA and RGL1-3 that contain a functional DELLA domain. Through transgenic modification, we found that DELLA-less versions of GAI (gai) and RGL1 (rgl1) in a Populus tree have profound, dominant effects on phenotype, producing pleiotropic changes in morphology and metabolic profiles. Shoots were dwarfed, likely via constitutive repression of GA-induced elongation, whereas root growth was promoted two- to threefold in vitro. Applied GA{sub 3} inhibited adventitious root production in wild-type poplar, but gai/rgl1 poplars were unaffected by the inhibition. The concentrations of bioactive GA{sub 1} and GA{sub 4} in leaves of gai- and rgl1-expressing plants increased 12- to 64-fold, while the C{sub 19} precursors of GA{sub 1} (GA{sub 53}, GA{sub 44} and GA{sub 19}) decreased three- to ninefold, consistent with feedback regulation of GA 20-oxidase in the transgenic plants. The transgenic modifications elicited significant metabolic changes. In roots, metabolic profiling suggested increased respiration as a possible mechanism of the increased root growth. In leaves, we found metabolite changes suggesting reduced carbon flux through the lignin biosynthetic pathway and a shift towards allocation of secondary storage and defense metabolites, including various phenols, phenolic glucosides, and phenolic acid conjugates.

  20. Genome-wide Identification of TCP Family Transcription Factors from Populus euphratica and Their Involvement in Leaf Shape Regulation.

    Science.gov (United States)

    Ma, Xiaodong; Ma, Jianchao; Fan, Di; Li, Chaofeng; Jiang, Yuanzhong; Luo, Keming

    2016-09-08

    Higher plants have been shown to experience a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase during its postembryonic development and distinct lateral organ morphologies have been observed at the different development stages. Populus euphratica, commonly known as a desert poplar, has developed heteromorphic leaves during its development. The TCP family genes encode a group of plant-specific transcription factors involved in several aspects of plant development. In particular, TCPs have been shown to influence leaf size and shape in many herbaceous plants. However, whether these functions are conserved in woody plants remains unknown. In the present study, we carried out genome-wide identification of TCP genes in P. euphratica and P. trichocarpa, and 33 and 36 genes encoding putative TCP proteins were found, respectively. Phylogenetic analysis of the poplar TCPs together with Arabidopsis TCPs indicated a biased expansion of the TCP gene family via segmental duplications. In addition, our results have also shown a correlation between different expression patterns of several P. euphratica TCP genes and leaf shape variations, indicating their involvement in the regulation of leaf shape development.

  1. Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera

    Science.gov (United States)

    Bräutigam, Katharina; Soolanayakanahally, Raju; Champigny, Marc; Mansfield, Shawn; Douglas, Carl; Campbell, Malcolm M.; Cronk, Quentin

    2017-01-01

    Methylation has frequently been implicated in gender determination in plants. The recent discovery of the sex determining region (SDR) of balsam poplar, Populus balsamifera, pinpointed 13 genes with differentiated X and Y copies. We tested these genes for differential methylation using whole methylome sequencing of xylem tissue of multiple individuals grown under field conditions in two common gardens. The only SDR gene to show a marked pattern of gender-specific methylation is PbRR9, a member of the two component response regulator (type-A) gene family, involved in cytokinin signalling. It is an ortholog of Arabidopsis genes ARR16 and ARR17. The strongest patterns of differential methylation (mostly male-biased) are found in the putative promoter and the first intron. The 4th intron is strongly methylated in both sexes and the 5th intron is unmethylated in both sexes. Using a statistical learning algorithm we find that it is possible accurately to assign trees to gender using genome-wide methylation patterns alone. The strongest predictor is the region coincident with PbRR9, showing that this gene stands out against all genes in the genome in having the strongest sex-specific methylation pattern. We propose the hypothesis that PbRR9 has a direct, epigenetically mediated, role in poplar sex determination. PMID:28345647

  2. Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: Biomass and growth response.

    Science.gov (United States)

    Justin, Maja Zupancic; Pajk, Nastja; Zupanc, Vesna; Zupancic, Marija

    2010-06-01

    A pot experiment is described with a fast-growing poplar clone and two native willows (Populus deltoides Bartr. cl. I-69/55 (Lux)), Salix viminalis L. and Salix purpurea L.), irrigated with landfill leachate and compost wastewater over a 1-year growing period. The use of leachate resulted in up to 155% increased aboveground biomass compared to control water treatments and in up to 28% reduced aboveground biomass compared to a complete nutrient solution. The use of compost wastewater resulted in up to 62% reduced aboveground biomass compared to the control treatments and in up to 86% reduced aboveground biomass compared to the complete nutrient solution. Populus was the most effective in biomass production due to the highest leaf production, whereas S. purpurea was the least effective in biomass accumulation, but less sensitive to high ionic strength of the irrigation water compared to S. viminalis. The results showed a high potential for landfill leachate application (with up to 2144 kg N ha(-1), 144 kg P ha(-1), 709 kg K ha(-1), 1010 kg Cl ha(-1), and 1678 kg Na ha(-1) average mass load in the experiment). High-strength compost wastewater demonstrated less potential for application as irrigation and fertilization source even in high water-diluted treatments (1:8 by volume). Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Moderate drought did not affect the effectiveness of ethylenediurea (EDU) in protecting Populus cathayana from ambient ozone.

    Science.gov (United States)

    Xin, Yue; Yuan, Xiangyang; Shang, Bo; Manning, William J; Yang, Aizhen; Wang, Younian; Feng, Zhaozhong

    2016-11-01

    A field study was conducted to evaluate the effects of ambient ozone (O3) on an O3-sensitive poplar (Populus cathayana) by using ethylenediurea (EDU) as a chemical protectant under two soil water treatments (well-watered (WW) and moderate drought (MD, 50-60% of WW in volumetric soil water content). EDU was applied as foliar spray at 0, 300, 450, and 600ppm. Photosynthetic parameters, pigment contents, leaf nitrogen, antioxidant capacity, growth, and biomass were measured. The 8h (9:00-17:00) average ambient O3 concentration was 71.7ppb, and AOT40 was 29.2ppmh during the experimental period (9 June to 21 September), which was high enough to cause plant injury. MD had significantly negative effects on P. cathayana, as indicated by reduced photosynthesis, growth, and biomass, and higher MDA contents. On the other hand, EDU significantly increased photosynthesis rate, chlorophyll a fluorescence, Vcmax and Jmax, photosynthetic pigments, total antioxidant capacity, tree growth and biomass accumulation, and reduced lipid peroxidation, but there was no significant interaction between EDU and drought for most parameters, indicating that EDU can efficiently protect Populus cathayana against ambient O3 and the protection was not affected by soil water contents when soil water reached moderate drought level. Among all doses, EDU at 450ppm provided maximum protection. Comparison of EDU-treated and non-treated P. cathayana could be used as a biomarker system in risk assessment of the effects of ambient O3 on forest health.

  4. Increase of xylan synthetase activity during xylem differentiation of the vascular cambium of sycamore and poplar trees.

    Science.gov (United States)

    Dalessandro, G; Northcote, D H

    1981-01-01

    The activity of a β-(1-4)-xylan synthetase, a membrane-bound enzymic system, was measured in particulate enzymic preparations (1,000 g and 1,000-100,000 g pellets) obtained from homogenates of cambial cells, differentiating xylem cells and differentiated xylem cells isolated from actively growing trees of sycamore (Acer pseudoplatamus) and poplar (Populus robusta). The specific activity (nmol of xylan formed min(-1) mg(-1) of protein) as well as the activity calculated on a per cell basis (nmol of xylan formed min(-1) cell(-1)) of this enzymic system, markedly increased as cells differentiate from the vascular cambium to xylem. This increase is closely correlated with the enhanced deposition of xylan occurring during the formation of secondary thickening. The possible control of xylan synthesis during the biogenesis of plant cell wall is discussed.

  5. Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis

    Directory of Open Access Journals (Sweden)

    Song Yuepeng

    2012-06-01

    Full Text Available Abstract Background Drought is one of the main environmental factors limiting tree growth and productivity of plantation forests worldwide. Populus hopeiensis Hu et Chow is one of the most important commercial plantation tree species in China. However, the genes controlling drought tolerance in this species have not been identified or characterized. Here, we conducted differential expression analyses and identified a number of genes that were up- or downregulated in P. hopeiensis during water stress. To the best of our knowledge, this is the first comprehensive study of differentially expressed genes in water-stressed P. hopeiensis. Results Using the cDNA-AFLP detection technique, we used 256 primer combinations to identify differentially expressed genes in P. hopeiensis during water stress. In total, 415 transcript derived-fragments (TDFs were obtained from 10× deep sequencing of 473 selected TDFs. Of the 415 TDFs, 412 were annotated by BLAST searches against various databases. The majority of these genes encoded products involved in ion transport and compartmentalization, cell division, metabolism, and protein synthesis. The TDFs were clustered into 12 groups on the basis of their expression patterns. Of the 415 reliable TDFs, the sequences of 35 were homologous to genes that play roles in short or long-term resistance to drought stress. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR analyses. The results confirmed the expression patterns that were detected using the cDNA-AFLP technique. Conclusion The cDNA-AFLP technique is an effective and powerful tool for identifying candidate genes that are differentially expressed under water stress. We demonstrated that 415 TDFs were differentially expressed in water-stressed poplar. The products of these genes are involved in various biological processes in the drought response of poplar. The results of this study will aid in the identification of

  6. Establishment of Alleycropped Hybrid Aspen “Crandon” in Central Iowa, USA: Effects of Topographic Position and Fertilizer Rate on Aboveground Biomass Production and Allocation

    Directory of Open Access Journals (Sweden)

    Richard B. Hall

    2013-07-01

    Full Text Available Hybrid poplars have demonstrated high productivity as short rotation woody crops (SRWC in the Midwest USA, and the hybrid aspen “Crandon” (Populus alba L. × P. grandidenta Michx. has exhibited particularly promising yields on marginal lands. However, a key obstacle for wider deployment is the lack of economic returns early in the rotation. Alleycropping has the potential to address this issue, especially when paired with crops such as winter triticale which complete their growth cycle early in the summer and therefore are expected to exert minimal competition on establishing trees. In addition, well-placed fertilizer in low rates at planting has the potential to improve tree establishment and shorten the rotation, which is also economically desirable. To test the potential productivity of “Crandon” alleycropped with winter triticale, plots were established on five topographic positions with four different rates of fertilizer placed in the planting hole. Trees were then harvested from the plots after each of the first three growing seasons. Fertilization resulted in significant increases in branch, stem, and total aboveground biomass across all years, whereas the effects of topographic position varied by year. Allocation between branches and stems was found to be primarily a function of total aboveground biomass.

  7. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  8. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Shen-Jie; Peng, Yi-Shu; Liu, Rui-Na; Chen, Xi; Zhao, Ping; Xu, Ping; Zhu, Jian-Bo; Jiao, Gai-Li; Pei, Yan; Xiang, Cheng-Bin

    2016-01-01

    Drought and salinity are two major environmental factors limiting crop production worldwide. Improvement of drought and salt tolerance of crops with transgenic approach is an effective strategy to meet the demand of the ever-growing world population. Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a homeodomain-START transcription factor, has been demonstrated to significantly improve drought tolerance in Arabidopsis, tobacco, tall fescue and rice. Here we report that AtHDG11 also confers drought and salt tolerance in upland cotton (Gossypium hirsutum) and woody plant poplar (Populus tomentosa Carr.). Our results showed that both the transgenic cotton and poplar exhibited significantly enhanced tolerance to drought and salt stress with well-developed root system. In the leaves of the transgenic cotton plants, proline content, soluble sugar content and activities of reactive oxygen species-scavenging enzymes were significantly increased after drought and salt stress compared with wild type. Leaf stomatal density was significantly reduced, whereas stomatal and leaf epidermal cell size were significantly increased in both the transgenic cotton and poplar plants. More importantly, the transgenic cotton showed significantly improved drought tolerance and better agronomic performance with higher cotton yield in the field both under normal and drought conditions. These results demonstrate that AtHDG11 is not only a promising candidate for crops improvement but also for woody plants.

  9. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    Science.gov (United States)

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes in poplars exposed to high temperature and drought

    Science.gov (United States)

    Jia, Jingbo; Zhou, Jing; Shi, Wenguang; Cao, Xu; Luo, Jie; Polle, Andrea; Luo, Zhi-Bin

    2017-01-01

    High temperature (HT) and drought are both critical factors that constrain tree growth and survival under global climate change, but it is surprising that the transcriptomic reprogramming and physiological relays involved in the response to HT and/or drought remain unknown in woody plants. Thus, Populus simonii saplings were exposed to either ambient temperature or HT combined with sufficient watering or drought. RNA-sequencing analysis showed that a large number of genes were differentially expressed in poplar roots and leaves in response to HT and/or desiccation, but only a small number of these genes were identified as overlapping heat-/drought-responsive genes that are mainly involved in RNA regulation, transport, hormone metabolism, and stress. Furthermore, the overlapping heat-/drought-responsive genes were co-expressed and formed hierarchical genetic regulatory networks under each condition compared. HT-/drought-induced transcriptomic reprogramming is linked to physiological relays in poplar roots and leaves. For instance, HT- and/or drought-induced abscisic acid accumulation and decreases in auxin and other phytohormones corresponded well with the differential expression of a few genes involved in hormone metabolism. These results suggest that overlapping heat-/drought-responsive genes will play key roles in the transcriptional and physiological reconfiguration of poplars to HT and/or drought under future climatic scenarios. PMID:28233854

  12. Stress Responsive Zinc-finger Protein Gene of Populus euphratica in Tobacco Enhances Salt Tolerance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Populus euphratica stress responsive zinc-finger protein gene PSTZ, which encodes a protein including typical Cys2/His2 zinc finger structure, was isolated by reverse transcription-polymerase chain reaction from P. euphratica.Northern hybridization revealed that its expression was induced under drought and salt stress conditions. To examine its function, cDNA of the PSTZ gene, driven by the cauliflower mosaic virus 35S promoter, was cloned into a plant expression vector pBin438 and introduced into tobacco plants. Transgenic tobacco showed an enhanced salt tolerance, suggesting that PSTZ may play a role in plant responsiveness to salt stress.

  13. Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel?

    Science.gov (United States)

    Guo, Miao; Li, Changsheng; Facciotto, Gianni; Bergante, Sara; Bhatia, Rakesh; Comolli, Roberto; Ferré, Chiara; Murphy, Richard

    2015-01-01

    Environmental issues, e.g. climate change, fossil resource depletion have triggered ambitious national/regional policies to develop biofuel and bioenergy roles within the overall energy portfolio to achieve decarbonising the global economy and increase energy security. With the 10 % binding target for the transport sector, the Renewable Energy Directive confirms the EU's commitment to renewable transport fuels especially advanced biofuels. Imola is an elite poplar clone crossed from Populus deltoides Bartr. and Populus nigra L. by Research Units for Intensive Wood Production, Agriculture Research Council in Italy. This study examines its suitability for plantation cultivation under short or very short rotation coppice regimes as a potential lignocellulosic feedstock for the production of ethanol as a transport biofuel. A life cycle assessment (LCA) approach was used to model the cradle-to-gate environmental profile of Imola-derived biofuel benchmarked against conventional fossil gasoline. Specific attention was given to analysing the agroecosystem fluxes of carbon and nitrogen occurring in the cultivation of the Imola biomass in the biofuel life cycle using a process-oriented biogeochemistry model (DeNitrification-DeComposition) specifically modified for application to 2G perennial bioenergy crops and carbon and nitrogen cycling. Our results demonstrate that carbon and nitrogen cycling in perennial crop-soil ecosystems such as this example can be expected to have significant effects on the overall environmental profiles of 2G biofuels. In particular, soil carbon accumulation in perennial biomass plantations is likely to be a significant component in the overall greenhouse gas balance of future biofuel and other biorefinery products and warrants ongoing research and data collection for LCA models. We conclude that bioethanol produced from Imola represents a promising alternative transport fuel offering some savings ranging from 35 to 100 % over petrol in global

  14. Arbuscular mycorrhizal colonization in black poplar roots after defoliation by a non-native and a native insect

    Directory of Open Access Journals (Sweden)

    Zampieri E

    2016-08-01

    Full Text Available A major goal in ecology is to understand how interactions among organisms influence ecosystem services. This work compares the effects of two Lepidoptera defoliators, one non-native (Hyphantria cunea and one native (Lymantria dispar to Europe, on the colonization of black poplar (the Populus nigra clone “Jean Pourtet” roots by an arbuscular mycorrhizal (AM symbiotic fungus (Funneliformis mosseae in a pot experiment. The effects of defoliation have also been assessed on the expression of fungal and plant genes playing a role during symbiosis. Both control and defoliated poplars have shown a low level of mycorrhization. Additionally, neither the non-native nor the native insect seem to strongly affect the AM colonization, at least at the time of observation (eight days from the end of the defoliation. Concerning the gene expression analysis, our results suggest that defoliation does not influence neither the expression of genes coding for a fungal and a plant phosphate transporter nor that of a gene coding for a fungal ATPase, and that there were no differences between defoliation carried out by the non-native and the native insect.

  15. First vs. second rotation of a poplar short rotation coppice: leaf area development, light interception and radiation use efficiency

    Directory of Open Access Journals (Sweden)

    Broeckx LS

    2015-10-01

    Full Text Available Given the high expectations for lignocellulosic biomass as one of the potential solutions for energy security and climate change mitigation, commercial scale studies over several rotations are crucial to assess the potential and the sustainability of short rotation coppice (SRC cultures for bioenergy. The first and the second rotation of the SRC poplar (Populus plantation of the present study differed significantly in biomass yield and in productivity determinants and their relationships. Coppicing enhanced leaf area development, radiation interception and woody biomass productivity. High total leaf area and radiation use efficiency (RUE equally contributed to the high biomass yield during the establishment rotation, while RUE became the most important determinant of biomass yield after coppice. The study confirmed the significant genotypic variation in biomass productivity and its underlying determinants, also among more recently selected poplar genotypes. The absence of a correlation between intercepted radiation and RUE suggests the potential of selecting for genotypes combining high total leaf area and photosynthetic carbon uptake in future breeding programs for yield maximization towards sustainable bioenergy cultivation.

  16. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess.

    Science.gov (United States)

    Luo, Jie; Zhou, Jing; Li, Hong; Shi, Wenguang; Polle, Andrea; Lu, Mengzhu; Sun, Xiaomei; Luo, Zhi-Bin

    2015-12-01

    Nitrogen (N) starvation and excess have distinct effects on N uptake and metabolism in poplars, but the global transcriptomic changes underlying morphological and physiological acclimation to altered N availability are unknown. We found that N starvation stimulated the fine root length and surface area by 54 and 49%, respectively, decreased the net photosynthetic rate by 15% and reduced the concentrations of NH4+, NO3(-) and total free amino acids in the roots and leaves of Populus simonii Carr. in comparison with normal N supply, whereas N excess had the opposite effect in most cases. Global transcriptome analysis of roots and leaves elucidated the specific molecular responses to N starvation and excess. Under N starvation and excess, gene ontology (GO) terms related to ion transport and response to auxin stimulus were enriched in roots, whereas the GO term for response to abscisic acid stimulus was overrepresented in leaves. Common GO terms for all N treatments in roots and leaves were related to development, N metabolism, response to stress and hormone stimulus. Approximately 30-40% of the differentially expressed genes formed a transcriptomic regulatory network under each condition. These results suggest that global transcriptomic reprogramming plays a key role in the morphological and physiological acclimation of poplar roots and leaves to N starvation and excess.

  17. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species.

    Science.gov (United States)

    Li, Hong; Li, Mengchun; Luo, Jie; Cao, Xu; Qu, Long; Gai, Ying; Jiang, Xiangning; Liu, Tongxian; Bai, Hua; Janz, Dennis; Polle, Andrea; Peng, Changhui; Luo, Zhi-Bin

    2012-10-01

    To investigate how N-fertilization affects the growth, carbon and nitrogen (N) physiology, and wood properties of poplars with contrasting growth characteristics, slow-growing (Populus popularis, Pp) and fast-growing (P. alba×P. glandulosa, Pg) poplar saplings were exposed to different N levels. Above-ground biomass, leaf area, photosynthetic rates (A), instantaneous photosynthetic nitrogen use efficiency (PNUE (i)), chlorophyll and foliar sugar concentrations were higher in Pg than in Pp. Foliar nitrate reductase (NR) activities and root glutamate synthase (GOGAT) activities were higher in Pg than in Pp as were the N amount and NUE of new shoots. Lignin contents and calorific values of Pg wood were less than that of Pp wood. N-fertilization reduced root biomass of Pg more than of Pp, but increased leaf biomass, leaf area, A, and PNUE(i) of Pg more than of Pp. Among 13 genes involved in the transport of ammonium or nitrate or in N assimilation, transcripts showed more pronounced changes to N-fertilization in Pg than in Pp. Increases in NR activities and N contents due to N-fertilization were larger in Pg than in Pp. In both species, N-fertilization resulted in lower calorific values as well as shorter and wider vessel elements/fibres. These results suggest that growth, carbon and N physiology, and wood properties are more sensitive to increasing N availability in fast-growing poplars than in slow-growing ones, which is probably due to prioritized resource allocation to the leaves and accelerated N physiological processes in fast-growing poplars under higher N levels.

  18. Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements.

    Science.gov (United States)

    Feng, Feng; Ding, Fei; Tyree, Melvin T

    2015-05-01

    Both drought and freezing-thawing of stems induce a loss of hydraulic conductivity (percentage loss of conductivity [PLC]) in woody plants. Drought-induced PLC is often accompanied by physical damage to pit membranes, causing a shift in vulnerability curves (cavitation fatigue). Hence, if cavitated stems are flushed to remove embolisms, the next vulnerability curve is different (shifted to lower tensions). The 84K poplar (Populus alba × Populus glandulosa) clone has small vessels that should be immune from frost-induced PLC, but results demonstrated that freezing-thawing in combination with tension synergistically increased PLC. Frost fatigue has already been defined, which is similar to cavitation fatigue but induced by freezing. Frost fatigue caused a transition from a single to a dual Weibull curve, but drought-fatigued stems had single Weibull curves shifted to lower tensions. Studying the combined impact of tension plus freezing on fatigue provided evidence that the mechanism of frost fatigue may be the extra water tension induced by freezing or thawing while spinning stems in a centrifuge rather than direct ice damage. A hypothesis is advanced that tension is enhanced as ice crystals grow or melt during the freeze or thaw event, respectively, causing a nearly identical fatigue event to that induced by drought. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Investigations Concerning Cavitation and Frost Fatigue in Clonal 84K Poplar Using High-Resolution Cavitron Measurements1[OPEN

    Science.gov (United States)

    Feng, Feng; Ding, Fei; Tyree, Melvin T.

    2015-01-01

    Both drought and freezing-thawing of stems induce a loss of hydraulic conductivity (percentage loss of conductivity [PLC]) in woody plants. Drought-induced PLC is often accompanied by physical damage to pit membranes, causing a shift in vulnerability curves (cavitation fatigue). Hence, if cavitated stems are flushed to remove embolisms, the next vulnerability curve is different (shifted to lower tensions). The 84K poplar (Populus alba × Populus glandulosa) clone has small vessels that should be immune from frost-induced PLC, but results demonstrated that freezing-thawing in combination with tension synergistically increased PLC. Frost fatigue has already been defined, which is similar to cavitation fatigue but induced by freezing. Frost fatigue caused a transition from a single to a dual Weibull curve, but drought-fatigued stems had single Weibull curves shifted to lower tensions. Studying the combined impact of tension plus freezing on fatigue provided evidence that the mechanism of frost fatigue may be the extra water tension induced by freezing or thawing while spinning stems in a centrifuge rather than direct ice damage. A hypothesis is advanced that tension is enhanced as ice crystals grow or melt during the freeze or thaw event, respectively, causing a nearly identical fatigue event to that induced by drought. PMID:25786827

  20. Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase.

    Science.gov (United States)

    Van Acker, Rebecca; Leplé, Jean-Charles; Aerts, Dirk; Storme, Véronique; Goeminne, Geert; Ivens, Bart; Légée, Frédéric; Lapierre, Catherine; Piens, Kathleen; Van Montagu, Marc C E; Santoro, Nicholas; Foster, Clifton E; Ralph, John; Soetaert, Wim; Pilate, Gilles; Boerjan, Wout

    2014-01-14

    Lignin is one of the main factors determining recalcitrance to enzymatic processing of lignocellulosic biomass. Poplars (Populus tremula x Populus alba) down-regulated for cinnamoyl-CoA reductase (CCR), the enzyme catalyzing the first step in the monolignol-specific branch of the lignin biosynthetic pathway, were grown in field trials in Belgium and France under short-rotation coppice culture. Wood samples were classified according to the intensity of the red xylem coloration typically associated with CCR down-regulation. Saccharification assays under different pretreatment conditions (none, two alkaline, and one acid pretreatment) and simultaneous saccharification and fermentation assays showed that wood from the most affected transgenic trees had up to 161% increased ethanol yield. Fermentations of combined material from the complete set of 20-mo-old CCR-down-regulated trees, including bark and less efficiently down-regulated trees, still yielded ∼ 20% more ethanol on a weight basis. However, strong down-regulation of CCR also affected biomass yield. We conclude that CCR down-regulation may become a successful strategy to improve biomass processing if the variability in down-regulation and the yield penalty can be overcome.

  1. The poplar phi class glutathione transferase: expression, activity and structure of GSTF1

    Directory of Open Access Journals (Sweden)

    Henri ePégeot

    2014-12-01

    Full Text Available Glutathione transferases (GSTs constitute a superfamily of enzymes with essential roles in cellular detoxification and secondary metabolism in plants as in other organisms. Several plant GSTs, including those of the Phi class (GSTFs, require a conserved catalytic serine residue to perform glutathione (GSH-conjugation reactions. Genomic analyses revealed that terrestrial plants have around 10 GSTFs, 8 in the Populus trichocarpa genome, but their physiological functions and substrates are mostly unknown. Transcript expression analyses showed a predominant expression of all genes both in reproductive (female flowers, fruits, floral buds and vegetative organs (leaves, petioles. Here, we show that the recombinant poplar GSTF1 (PttGSTF1 possesses peroxidase activity towards cumene hydroperoxide and GSH-conjugation activity towards model substrates such as 2,4-dinitrochlorobenzene, benzyl and phenetyl isothiocyanate, 4-nitrophenyl butyrate and 4-hydroxy-2-nonenal but interestingly not on previously identified GSTF-class substrates. In accordance to analytical gel filtration data, crystal structure of PttGSTF1 showed a canonical dimeric organization with bound GSH or MES molecules. The structure of these protein-substrate complexes allowed delineating the residues contributing to both the G and H sites that form the active site cavity. In sum, the presence of GSTF1 transcripts and proteins in most poplar organs especially those rich in secondary metabolites such as flowers and fruits, together with its GSH-conjugation activity and its documented stress-responsive expression suggest that its function is associated with the catalytic transformation of metabolites and/or peroxide removal rather than with ligandin properties as previously reported for other GSTFs.

  2. Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    Full Text Available BACKGROUND: The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques. PRINCIPAL FINDINGS: Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana ×P. tomentosa leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes. CONCLUSIONS: Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.

  3. Effects of soil contamination by trace elements on white poplar progeny: seed germination and seedling vigour.

    Science.gov (United States)

    Madejón, Paula; Cantos, Manuel; Jiménez-Ramos, María C; Marañón, Teodoro; Murillo, José M

    2015-11-01

    Seed germination is considered a critical phase in plant development and relatively sensitive to heavy metals. White poplar (Populus alba) trees tend to accumulate Cd and Zn in their tissues. We tested if soil contamination can affect P. alba progeny, reduced seed germination and explored the distribution of mineral elements in the seed. For this purpose, fruits and seeds from female P. alba trees were selected from two contaminated and one non-contaminated areas. Seeds from all the sites were germinated using only water or a nutritive solution (in vitro). Concentrations of nutrients and trace elements in the fruits and seeds were analysed. Seedling growth in vitro was also analysed. Finally, a mapping of different elements within the poplar seed was obtained by particle-induced X-ray emission (PIXE). Germination was similar between different progenies, refuting our hypothesis that seeds from a contaminated origin would have reduced germination capacity compared to those from a non-contaminated site. Seedling growth was not affected by the contaminated origin. Cadmium and Zn concentrations in fruits produced by P. alba trees in the contaminated sites were higher than by those from the non-contaminated site. However, the nutritional status of the trees was adequate in both cases. Cd in seedlings was higher in those from contaminated soils although lower than in fruits, indicating a certain exclusion from seeds. Preliminary results of the PIXE technique showed that Al and Zn were distributed uniformly in the seeds (Cd was not detected with this technique), while the nutrients P and S were concentrated in the cotyledons.

  4. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones.

    Science.gov (United States)

    Gou, Jiqing; Strauss, Steven H; Tsai, Chung Jui; Fang, Kai; Chen, Yiru; Jiang, Xiangning; Busov, Victor B

    2010-03-01

    The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response.

  5. Genome-Wide Analysis of BURP Domain-Containing Genes in Populus trichocarpa

    Institute of Scientific and Technical Information of China (English)

    Yuanhua Shao; Guo Wei; Ling Wang; Qing Dong; Yang Zhao; Beijiu Chen; Yan Xiang

    2011-01-01

    BURP domain-containing proteins have a conserved structure and are found extensively in plants.The functions of the proteins in this family are diverse,but remain unknown in Populus trichocarpa.In the present study,a complete genome of P.trichocarpa was analyzed bioinformatically.A total of 18 BURP family genes,named PtBURPs,were identified and characterized according to their physical positions on the P.trichocarpa chromosomes.A phylogenetic tree was generated from alignments of PtBURP protein sequences,while phylogenetic relationships were also examined between PtBURPs and BURP family genes in other plants,including rice,soybean,maize and sorghum.BURP genes in P.trichocarpa were classified into five classes,namely PG1β-Iike,BNM2-like,USP-like,RD22-like and BURP V.The multiple expectation maximization for motif elicitation (MEME) and multiple protein sequence alignments of PtBURPs were also performed.Results from the transcript level analyses of 10 PtBURP genes under different stress conditions revealed the expression patterns in poplar and led to a discussion on genome duplication and evolution,expression profiles and function of PtBURP genes.

  6. Identification and characterization of nuclear genes involved in photosynthesis in Populus.

    Science.gov (United States)

    Wang, Bowen; Du, Qingzhang; Yang, Xiaohui; Zhang, Deqiang

    2014-03-27

    The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses.

  7. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    Science.gov (United States)

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  8. Different Proteome Profiles between Male and Female Populus cathayana Exposed to UV-B Radiation

    Science.gov (United States)

    Zhang, Yunxiang; Feng, Lihua; Jiang, Hao; Zhang, Yuanbin; Zhang, Sheng

    2017-01-01

    With increasing altitude, solar UV-B radiation is enhanced. Based on the phenomenon of male-biased sex ratio of Populus cathayana Rehder in high altitude alpine area, we hypothesized that males have a faster and more sophisticated responsive mechanism to high UV-B radiation than that of females. Our previous studies have shown sexually different responses to high UV-B radiation were existed in P. cathayana at the morphological, physiological, and transcriptomic levels. However, the responses at the proteomic level remain unclear. In this study, an isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteome analysis was performed in P. cathayana females and males. A total of 2,405 proteins were identified, with 331 proteins defined as differentially expressed proteins (DEPs). Among of these, 79 and 138 DEPs were decreased and 47 and 107 DEPs were increased under high solar UV-B radiation in females and males, respectively. A bioinformatics analysis categorized the common responsive proteins in the sexes as related to carbohydrate and energy metabolism, translation/transcription/post-transcriptional modification, photosynthesis, and redox reactions. The responsive proteins that showed differences in sex were mainly those involved in amino acid metabolism, stress response, and translation/transcription/post-transcriptional modification. This study provides proteomic profiles that poplars responding to solar UV-B radiation, and it also provides new insights into differentially sex-related responses to UV-B radiation.

  9. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    Science.gov (United States)

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  10. Facing the Future: Effects of Short-Term Climate Extremes on Isoprene-Emitting and Nonemitting Poplar1

    Science.gov (United States)

    Vanzo, Elisa; Jud, Werner; Li, Ziru; Albert, Andreas; Domagalska, Malgorzata A.; Ghirardo, Andrea; Niederbacher, Bishu; Frenzel, Juliane; Beemster, Gerrit T.S.; Asard, Han; Rennenberg, Heinz; Sharkey, Thomas D.; Hansel, Armin; Schnitzler, Jörg-Peter

    2015-01-01

    Isoprene emissions from poplar (Populus spp.) plantations can influence atmospheric chemistry and regional climate. These emissions respond strongly to temperature, [CO2], and drought, but the superimposed effect of these three climate change factors are, for the most part, unknown. Performing predicted climate change scenario simulations (periodic and chronic heat and drought spells [HDSs] applied under elevated [CO2]), we analyzed volatile organic compound emissions, photosynthetic performance, leaf growth, and overall carbon (C) gain of poplar genotypes emitting (IE) and nonemitting (NE) isoprene. We aimed (1) to evaluate the proposed beneficial effect of isoprene emission on plant stress mitigation and recovery capacity and (2) to estimate the cumulative net C gain under the projected future climate. During HDSs, the chloroplastidic electron transport rate of NE plants became impaired, while IE plants maintained high values similar to unstressed controls. During recovery from HDS episodes, IE plants reached higher daily net CO2 assimilation rates compared with NE genotypes. Irrespective of the genotype, plants undergoing chronic HDSs showed the lowest cumulative C gain. Under control conditions simulating ambient [CO2], the C gain was lower in the IE plants than in the NE plants. In summary, the data on the overall C gain and plant growth suggest that the beneficial function of isoprene emission in poplar might be of minor importance to mitigate predicted short-term climate extremes under elevated [CO2]. Moreover, we demonstrate that an analysis of the canopy-scale dynamics of isoprene emission and photosynthetic performance under multiple stresses is essential to understand the overall performance under proposed future conditions. PMID:26162427

  11. Facing the Future: Effects of Short-Term Climate Extremes on Isoprene-Emitting and Nonemitting Poplar.

    Science.gov (United States)

    Vanzo, Elisa; Jud, Werner; Li, Ziru; Albert, Andreas; Domagalska, Malgorzata A; Ghirardo, Andrea; Niederbacher, Bishu; Frenzel, Juliane; Beemster, Gerrit T S; Asard, Han; Rennenberg, Heinz; Sharkey, Thomas D; Hansel, Armin; Schnitzler, Jörg-Peter

    2015-09-01

    Isoprene emissions from poplar (Populus spp.) plantations can influence atmospheric chemistry and regional climate. These emissions respond strongly to temperature, [CO2], and drought, but the superimposed effect of these three climate change factors are, for the most part, unknown. Performing predicted climate change scenario simulations (periodic and chronic heat and drought spells [HDSs] applied under elevated [CO2]), we analyzed volatile organic compound emissions, photosynthetic performance, leaf growth, and overall carbon (C) gain of poplar genotypes emitting (IE) and nonemitting (NE) isoprene. We aimed (1) to evaluate the proposed beneficial effect of isoprene emission on plant stress mitigation and recovery capacity and (2) to estimate the cumulative net C gain under the projected future climate. During HDSs, the chloroplastidic electron transport rate of NE plants became impaired, while IE plants maintained high values similar to unstressed controls. During recovery from HDS episodes, IE plants reached higher daily net CO2 assimilation rates compared with NE genotypes. Irrespective of the genotype, plants undergoing chronic HDSs showed the lowest cumulative C gain. Under control conditions simulating ambient [CO2], the C gain was lower in the IE plants than in the NE plants. In summary, the data on the overall C gain and plant growth suggest that the beneficial function of isoprene emission in poplar might be of minor importance to mitigate predicted short-term climate extremes under elevated [CO2]. Moreover, we demonstrate that an analysis of the canopy-scale dynamics of isoprene emission and photosynthetic performance under multiple stresses is essential to understand the overall performance under proposed future conditions.

  12. The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity.

    Science.gov (United States)

    Miguel, Andreia; Milhinhos, Ana; Novák, Ondřej; Jones, Brian; Miguel, Célia M

    2016-03-01

    SHORT-ROOT (SHR) is a GRAS transcription factor first characterized for its role in the specification of the stem cell niche and radial patterning in Arabidopsis thaliana (At) roots. Three SHR-like genes have been identified in Populus trichocarpa (Pt). PtSHR1 shares high similarity with AtSHR over the entire length of the coding sequence. The two other Populus SHR-like genes, PtSHR2A and PtSHR2B, are shorter in their 5' ends when compared with AtSHR. Unlike PtSHR1, that is expressed throughout the cambial zone of greenhouse-grown Populus trees, PtSHR2Bprom:uidA expression was detected in the phellogen. Additionally, PtSHR1 and PtSHR2B expression patterns markedly differ in the shoot apex and roots of in vitro plants. Transgenic hybrid aspen expressing PtSHR2B under the 35S constitutive promoter showed overall reduced tree growth while the proportion of bark increased relative to the wood. Reverse transcription-quantitative PCR (RT-qPCR) revealed increased transcript levels of cytokinin metabolism and response-related genes in the transgenic plants consistent with an increase of total cytokinin levels. This was confirmed by cytokinin quantification by LC-MS/MS. Our results indicate that PtSHR2B appears to function in the phellogen and therefore in the regulation of phellem and periderm formation, possibly acting through modulation of cytokinin homeostasis. Furthermore, this work points to a functional diversification of SHR after the divergence of the Populus and Arabidopsis lineages. This finding may contribute to selection and breeding strategies of cork oak in which, unlike Populus, the phellogen is active throughout the entire tree lifespan, being at the basis of a highly profitable cork industry.

  13. Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa

    Directory of Open Access Journals (Sweden)

    Lingyu eZheng

    2015-09-01

    Full Text Available Populus tomentosa (Chinese white poplar is well adapted to various extreme environments, and is considered an important species to study the effects of salinity stress on poplar trees. To decipher the mechanism of poplar’s rapid response to short-term salinity stress, we firstly detected the changes in H2O2 and hormone, and then profiled the gene expression pattern of ten-week-old seedling roots treated with 200 mM NaCl for 0, 6, 12 and 24 hours (h by RNA-seq on the Illumina-Solexa platform. Physiological determination showed that the significant increase in H2O2 began at 6 h, while that in hormone ABA was at 24 h, under salt stress. Compared with controls (0 h, 3991, 4603 and 4903 genes were up regulated, and 1408, 2206 and 3461 genes were down regulated (adjusted P-value ≤ 0.05 and |log2Ratio|≥1 at 6, 12, and 24 h time points, respectively. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway annotation revealed that the differentially expressed genes (DEGs were highly enriched in hormone- and reactive oxygen species-related biological processes, including ‘response to oxidative stress or abiotic stimulus’, ‘peroxidase activity’, ‘regulation of transcription’, ‘hormone synthetic and metabolic process’, ‘hormone signal transduction’, ‘antioxidant activity’ and ‘transcription factor activity’. Moreover, K-means clustering demonstrated that DEGs (total RPKM value>12 from four time points could be categorized into four kinds of expression trends: quick up/down over 6 h or 12 h, and slow up/down over 24 h. Of these, DEGs involved in H2O2- and hormone- producing and signal-related genes were further enriched in this analysis, which indicated that the two kinds of small molecules, hormones and H2O2, play pivotal roles in the short-term salt stress response in poplar. This study provides a basis for future studies of the molecular adaptation of poplar and other tree species to salinity

  14. Identification and Characterization of the Populus AREB/ABF Subfamily

    Institute of Scientific and Technical Information of China (English)

    Lexiang Ji; Jia Wang; Meixia Ye; Ying Li; Bin Guo; Zhong Chen; Hao Li; Xinmin An

    2013-01-01

    Abscisic acid (ABA) is a major plant hormone that plays an important role in responses to abiotic stresses.The ABA-responsive element binding proteinlABRE-binding factor (AREB/ABF) gene subfamily contains crucial transcription factors in the ABA-mediated signaling pathway.In this study,a total of 14 putative AREB/ABF members were identified in the Populus trichocarpa Torr.& Gray.genome using five AREB/ABF amino acid sequences from Arabidopsis thaliana L.as probes.The 14 putative Populus subfamily members showed high protein similarities,especially in the basic leucine zipper (bZlP) domain region.A neighbor-joining analysis combined with gene structure data revealed homology among the 14 genes.The expression patterns of the Populus AREB/ABF subfamily suggested that the most abundant transcripts of 11 genes occurred in leaf tissues,while two genes were most transcribed in root tissues.Significantly,eight Populus AREB/ABF gene members were upregulated after treatment with 100 μM exogenous ABA,while the other six members were downregulated.We identified the expression profiles of the subfamily members in Populus tissues and elucidated different response patterns of Populus AREB/ABF members to ABA stress.This study provided insight into the roles of Populus AREB/ABF homologues in plant response to abiotic stresses.

  15. Overexpression of CONSTANS homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar.

    Directory of Open Access Journals (Sweden)

    Chuan-Yu Hsu

    Full Text Available CONSTANS (CO is an important flowering-time gene in the photoperiodic flowering pathway of annual Arabidopsis thaliana in which overexpression of CO induces early flowering, whereas mutations in CO cause delayed flowering. The closest homologs of CO in woody perennial poplar (Populus spp. are CO1 and CO2. A previous report showed that the CO2/FLOWERING LOCUS T1 (FT1 regulon controls the onset of reproduction in poplar, similar to what is seen with the CO/FLOWERING LOCUS T (FT regulon in Arabidopsis. The CO2/FT1 regulon was also reported to control fall bud set. Our long-term field observations show that overexpression of CO1 and CO2 individually or together did not alter normal reproductive onset, spring bud break, or fall dormancy in poplar, but did result in smaller trees when compared with controls. Transcripts of CO1 and CO2 were normally most abundant in the growing season and rhythmic within a day, peaking at dawn. Our manipulative experiments did not provide evidence for transcriptional regulation being affected by photoperiod, light intensity, temperature, or water stress when transcripts of CO1 and CO2 were consistently measured in the morning. A genetic network analysis using overexpressing trees, microarrays, and computation demonstrated that a majority of functionally known genes downstream of CO1 and CO2 are associated with metabolic processes, which could explain their effect on tree size. In conclusion, the function of CO1 and CO2 in poplar does not appear to overlap with that of CO from Arabidopsis, nor do our data support the involvement of CO1 and CO2 in spring bud break or fall bud set.

  16. An Elite Variety of Populus deltoides‘Beiyang’%杨树良种‘北杨’

    Institute of Scientific and Technical Information of China (English)

    曹国玉; 李继祥; 买买提库尔班·阿力; 李开花; 胡建军

    2016-01-01

    The‘Beiyang’,male clone and intraspecific hybrid of Populus deltoides hybrid,was selected from the progeny of Populus deltoides‘Nankang’× P. deltoides‘D175’by the way of artificial control cross pollination. Average DBH,height and volume of nine-year-old‘Beiyang’were 21. 3 cm,20. 4 m and 0. 250 m3 ,which were 49. 9% greater than the control‘2025’. The elite variety has the fine characteristics such as straight trunk,middle crown,fast-growing, strong resistance to Anoplophora glaberipennis and soil barren tolerance.%‘北杨’是通过人工控制授粉选育而成,雄株,为美洲黑杨种内杂种,其母本为南抗杨,父本为‘D175’。9年生平均胸径21.3 cm,平均树高20.4 m,单株材积0.250 m3,比对照‘中林2025杨’材积生长量提高49.9%。树冠长卵形,干形通直,冠幅中等,早期速生,抗光肩星天牛,耐瘠薄。

  17. Gene Response to Salt Stress in Populus euphratica

    Institute of Scientific and Technical Information of China (English)

    Shen Xin; Thomas Teichmenn; Wang Yiqin; Bai Genben; Yu Guangjun; Wang Shasheng

    2003-01-01

    Through construction of a subtracted cDNA library and library screening, a number of salt-induced cDNA fragmentshave been cloned from Populus euphratica. Based on the results of DNA sequencing and Northern analysis, the gene response ofPopulus euphratica to salt stress is discussed. It is indicated that in response to salt treatment the transcription level for some genes ofPopulus euphratica increases by about 1.5 times and significant difference between the responses to osmotic stress and to ion stresshas been observed in gene activity.

  18. Growth, Gas Exchange, Abscisic Acid, and Calmodulin Response to Salt Stress in Three Poplars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we investigated the effects of increasing salinity on growth, gas exchange, abscisic acid(ABA), calmodulin (CAM), and the relevance to salt tolerance in seedlings of Populus euphratica Oliv. and cuttings of P. "pupularis 35-44" (P. popularis) and P. x euramericana cv. 1-214 (P. cv. Italica). The relative growth rates of shoot height (RGRH) for P. cv. Italica and P. popularis were severely reduced by increasing salt stress,whereas the growth reduction was relatively less in P. euphratica. Similarly, P. euphratica maintained higher net photosynthetic rates (Pn) and unit transpiration rates (TRN) than P. cv. Italica and P. popularis under conditions of higher salinity. Salinity caused a significant increase in leaf ABA and CaM in the three genotypes after the onset of stress, but NaCl-induced ABA and CaM accumulation was more pronounced in P. euphratica,suggesting that P. euphratica plants are more sensitive in sensing soil salinity than the other two poplars.Furthermore, P. euphratica maintained relatively higher ABA and CaM concentrations under conditions of high salinity. The higher capacity to synthesize stress signals, namely ABA and CaM, in P. euphratica and the contribution of this to the salt resistance of P. euphratica are discussed.

  19. High titer ethanol and lignosulfonate production from SPORL pretreated poplar at pilot-scale

    Directory of Open Access Journals (Sweden)

    Junyong (J.Y. eZhu

    2015-04-01

    Full Text Available Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L. wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH  1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS. An estimated combined hydrolysis factor (CHF of 3.3 was used to scale the pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L-1 with a yield of 247 L tonne wood-1 was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from SPORL-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH content although it is less sulfonated and has a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing.

  20. Variation in genomic methylation in natural populations of chinese white poplar.

    Science.gov (United States)

    Ma, Kaifeng; Song, Yuepeng; Yang, Xiaohui; Zhang, Zhiyi; Zhang, Deqiang

    2013-01-01

    It is thought that methylcytosine can be inherited through meiosis and mitosis, and that epigenetic variation may be under genetic control or correlation may be caused by neutral drift. However, DNA methylation also varies with tissue, developmental stage, and environmental factors. Eliminating these factors, we analyzed the levels and patterns, diversity and structure of genomic methylcytosine in the xylem of nine natural populations of Chinese white poplar. On average, the relative total methylation and non-methylation levels were approximately 26.567% and 42.708% (Pdifferentiation (GST  = 0.159) were assessed by Shannon's diversity index. Co-inertia analysis indicated that methylation-sensitive polymorphism (MSP) and genomic methylation pattern (CG-CNG) profiles gave similar distributions. Using a between-group eigen analysis, we found that the Hebei and Shanxi populations were independent of each other, but the Henan population intersected with the other populations, to some degree. Genome methylation in Populus tomentosa presented tissue-specific characteristics and the relative 5'-CCGG methylation level was higher in xylem than in leaves. Meanwhile, the genome methylation in the xylem shows great epigenetic variation and could be fixed and inherited though mitosis. Compared to genetic structure, data suggest that epigenetic and genetic variation do not completely match.

  1. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response.

    Science.gov (United States)

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-09-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation.

  2. Transpiration by two poplar varieties grown as coppice for biomass production.

    Science.gov (United States)

    Allen, Simon J.; Hall, Robin L.; Rosier, Paul T. W.

    1999-07-01

    Fast-growing tree clones selected for biomass plantations are highly productive and therefore likely to use more water than the agricultural crops they replace. We report field measurements of transpiration through the summer of 1994 from two poplar clones, Beaupré (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh.) and Dorschkamp (P. deltoides x P. nigra L.), grown as unirrigated short-rotation coppice in southern England. Stand transpiration was quantified by scaling up from sap flow measurements made with the heat balance method in a sample of stems. Leaf conductances, leaf area development, meteorological variables and soil water deficit were also measured to investigate the response of the trees to the environment. High rates of transpiration were found for Beaupré. In June, when soil water was plentiful, the mean (+/- SD) transpiration rate over an 18-day period was 5.0 +/- 1.8 mm day(-1), reaching a maximum of 7.9 mm day(-1). Transpiration rates from Dorschkamp were lower, as a result of its lower leaf area index. High total leaf conductances were measured for both Beaupré (0.34 +/- 0.17 mol m(-2) s(-1)) and Dorschkamp (0.39 +/- 0.16 mol m(-2) s(-1)). Leaf conductance declined slightly with increasing atmospheric vapor pressure deficit in both clones, but only in Beaupré did leaf conductance decrease as soil water deficit increased.

  3. Identification and Validation of Single Nucleotide Polymorphisms in Poplar Using Publicly Expressed Sequence Tags

    Institute of Scientific and Technical Information of China (English)

    Bo ZHANG; Yan ZHOU; Liang ZHANG; Qiang ZHUGE; Ming-Xiu WANG; Min-Ren HUANG

    2005-01-01

    By using assembled expressed sequence tags (ESTs) from 14 different cDNA libraries that contain 84 132 sequences reads, 556 Populus candidate single nucleotide polymorphisms (SNPs) were identified. Because traces were not available from dbEST (http://www.ncbi.nlm.nih.gov/dbEST/index.html),stringent filters were used to identify reliable candidate SNPs. Sequences analysis indicated that the main types of substitutions among candidate SNPs were A/G and T/C transitions, which accounted for 22.0% and 30.8%, respectively. One hundred and ten candidate SNPs were tested. As a result, 38 candidate SNPs were confirmed by directed sequencing of PCR products amplified from six different individuals. Thirteen new SNPs in intron regions were found and multiple SNPs were found to be located in both intron and exon regions of four contigs. Heterozygosis was found in all 47 candidate sites and five SNP sites were heterozygous in all six samples. This is the first report of SNP identification in a tree species which reveals that assembled ESTs from multiple libraries of the public database may provide a rich source of comparative sequences for an SNP search in the poplar genome.

  4. Structural features of lignin macromolecules extracted with ionic liquid from poplar wood.

    Science.gov (United States)

    Kim, Jae-Young; Shin, Eun-Jin; Eom, In-Yong; Won, Keehoon; Kim, Yong Hwan; Choi, Donha; Choi, In-Gyu; Choi, Joon Weon

    2011-10-01

    1-Ethyl-3-methylimidazolium acetate ([Emim][CH₃COO]) was used for the extraction of lignin from poplar wood (Populus albaglandulosa), which was called to ionic liquid lignin (ILL) and structural features of ILL were compared with the corresponding milled wood lignin (MWL). Yields of ILL and MWL were 5.8±0.3% and 4.4±0.4%, respectively. The maximum decomposition rate (V(M)) and temperature (T(M)) corresponding to V(M) were 0.25%/ °C and 308.2 °C for ILL and 0.30%/ °C and 381.3 °C for MWL. The amounts of functional groups (OMe and phenolic OH) appeared to be similar for both lignins; approximately 15.5% and 6.7% for ILL and 14.4% and 6.3% for MWL. However, the weight average molecular weight (M(w)) of ILL (6347 Da) was determined to be 2/3-fold of that of MWL (10,002 Da) and polydispersity index (PDI: M(w)/M(n)) suggested that the lignin fragments were more uniform in the ILL (PDI 1.62) than in the MWL (PDI 2.64). Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.

    Science.gov (United States)

    Mohapatra, Sridev; Minocha, Rakesh; Long, Stephanie; Minocha, Subhash C

    2010-04-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and gamma-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra x maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and gamma-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.

  6. Study on Poplar Industrialization in Jiangsu: (2) Present Status and Problems of Poplar Industrialization

    Institute of Scientific and Technical Information of China (English)

    SHEN Wenxing; ZHOU Dingguo; XU Xinping

    2006-01-01

    This paper lists the existing main problems that poplar industry faces in Jiangsu and analyses the causes and the activities of different industry related to management institution and system according to the factors of knowledge infrastructure, institutional setups, government policies and production structure.

  7. Changes in photosynthesis, mesophyll conductance to CO{sub 2}, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    Energy Technology Data Exchange (ETDEWEB)

    Velikova, Violeta, E-mail: violet@obzor.bio21.bas.bg [Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia (Bulgaria); Tsonev, Tsonko [Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia (Bulgaria); Loreto, Francesco [Consiglio Nazionale delle Ricerche, Istituto per la Protezione delle Piante, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Centritto, Mauro [Consiglio Nazionale delle Ricerche, Istituto di Biologia Agroambientale e Forestale, 00015 Monterotondo Scalo (RM) (Italy)

    2011-05-15

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 {mu}M Ni (Ni{sub 30} and Ni{sub 200}). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO{sub 2}] than in control leaves. However chloroplastic [CO{sub 2}] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-{beta}-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni{sub 0} (control plants); 2 - Ni{sub 200}; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: > We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. > Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. > Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  8. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning.

    Science.gov (United States)

    Payyavula, Raja S; Tay, Kate H C; Tsai, Chung-Jui; Harding, Scott A

    2011-03-01

    Plasma membrane, proton-coupled Group II sucrose symporters (SUT) mediate apoplastic phloem loading and sucrose efflux from source leaves in Arabidopsis and agricultural crop species that have been studied to date. We now report that the most abundantly expressed SUT isoform in Populus tremula×alba, PtaSUT4, is a tonoplast (Group IV) symporter. PtaSUT4 transcripts were readily detected in conducting as well as mesophyll cells in stems and source leaves. In comparison, Group II orthologs PtaSUT1 and PtaSUT3 were very weakly expressed in leaves. Both Group II and Group IV SUT genes were expressed in secondary stem xylem of Populus. Transgenic poplars with RNAi-suppressed PtaSUT4 exhibited increased leaf-to-stem biomass ratios, elevated sucrose content in source leaves and stems, and altered phenylpropanoid metabolism. Transcript abundance of several carbohydrate-active enzymes and phenylalanine ammonia-lyases was also altered in transgenic source leaves. Nitrogen-limitation led to a down-regulation of vacuolar invertases in all plants, which resulted in an augmentation of sucrose pooling and hexose depletion in source leaves and secondary xylem of the transgenic plants. These results are consistent with a major role for PtaSUT4 in orchestrating the intracellular partitioning, and consequently, the efflux of sucrose from source leaves and the utilization of sucrose by lateral and terminal sinks. Our findings also support the idea that PtaSUT4 modulates sucrose efflux and utilization in concert with plant N-status.

  9. Stress hardening under long-term cadmium treatment is correlated with the activation of antioxidative defence and iron acquisition of chloroplasts in Populus.

    Science.gov (United States)

    Solti, Ádám; Sárvári, Éva; Szöllősi, Erzsébet; Tóth, Brigitta; Mészáros, Ilona; Fodor, Ferenc; Szigeti, Zoltán

    2016-09-01

    Cadmium (Cd), a highly toxic heavy metal affects growth and metabolic pathways in plants, including photosynthesis. Though Cd is a transition metal with no redox capacity, it generates reactive oxygen species (ROS) indirectly and causes oxidative stress. Nevertheless, the mechanisms involved in long-term Cd tolerance of poplar, candidate for Cd phytoremediation, are not well known. Hydroponically cultured poplar (Populus jacquemontiana var. glauca cv. 'Kopeczkii') plants were treated with 10 μM Cd for 4 weeks. Following a period of functional decline, the plants performed acclimation to the Cd induced oxidative stress as indicated by the decreased leaf malondialdehyde (MDA) content and the recovery of most photosynthetic parameters. The increased activity of peroxidases (PODs) could have a great impact on the elimination of hydrogen peroxide, and thus the recovery of photosynthesis, while the function of superoxide dismutase (SOD) isoforms seemed to be less important. Re-distribution of the iron content of leaf mesophyll cells into the chloroplasts contributed to the biosynthesis of the photosynthetic apparatus and some antioxidative enzymes. The delayed increase in photosynthetic activity in relation to the decline in the level of lipid peroxidation indicates that elimination of oxidative stress damage by acclimation mechanisms is required for the restoration of the photosynthetic apparatus during long-term Cd treatment.

  10. 不同杨树无性系幼龄材和成熟材化学成分的比较%Comparative study on the chemical composition between juvenile and mature wood of different poplar clones

    Institute of Scientific and Technical Information of China (English)

    武恒; 刘盛全; 查朝生; 于一苏

    2011-01-01

    【目的】研究5个杨树无性系幼龄材和成熟材的化学成分,为杨树优良无性系的选择和杨树制浆造纸利用提供依据。【方法】选择欧美杨107杨(Populus×euramericana‘Neva’)、中汉22杨(P.×deltoidescv.‘Zhonghan-22’)、皖林1号杨(P.×deltoidscv.‘Wanlin-1’)、Z9(P.×deltoidscv.‘Z9’)和B3(P.×deltoidscv.‘B3’)5个杨树无性系为研究材料,参照有关国家标准,分别测定其幼龄材和成熟材的化学成分,通过单因素方差分析%【Objective】 This paper is aimed at analyzing the chemical composition of juvenile and mature wood of five different poplar clones so as to work out some helpful and necessary data to select quality poplar clones and to lay basis for the technology of employing poplar pulp as raw materials in paper industry.【Method】 With poplar clone 107(Populus×euramericana'Neva'),poplar clone Zhonghan-22(P.×deltoides cv.'Zhonghan-22'),poplar clone Wanlin-1(P.×deltoids cv.'Wanlin-1'),poplar clone Z9(P.×deltoids cv.'Z9') and poplar clone B3(P.×deltoids cv.'B3') as samples and national standards as reference,the research determines the chemical composition of the five sample poplars and,with one way ANOVA,analyzes the differences among the selected poplar clones and among poplar ages.【Result】 The research concludes that,in all tested samples,the content of holo-cellulose,cellulose content,lignin content,benzene-ethanol extracts and 10 g/L NaOH extracts vary respectively from 749.7-830.7,398.1-434.1,177.1-198.0,8.8-14.8 and 190.2-237.2 g/kg.The contents of holo-cellulose and cellulose in mature wood of all five poplar clones are higher than those in juvenile wood,and as for lignin,the result is just the opposite.The content of benzene-ethanol extracts in the selected poplar clones excluding Wanlin-1 is higher in mature wood than that in juvenile wood.There is inconsistent result for comparison of 10 g/L Na

  11. 杨树内生真菌群落多样性1)%Communicy Diversities of Endophytic Fungi in Poplar

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    An experiment was conducted to isolate 992 strains of endophytic fungi from leaves, twigs, tree barks and roots of Poplar by tissue isolation to discuss the community diversity of endophytic fungi in Poplar.Through classification identifica-tion, these fungi belong to two subphylum, four class, four orders, five families and thirteen genera.Alternaria spp.andPhoma spp.are the prevailing genus in Populus.The number and component of endophytic fungi in different parts, ages and species of Populus are different, so the endophytic fungi are specific to the parasitifer and tissue.The diversity index can be applied to manifest the level of community diversity of the endophytic fungi quantitatively and intuitively.%  为了探究杨树内生真菌的群落多样性,采用组织分离法,从杨树的叶、枝、干皮及根中分离出992个真菌菌株,经过鉴定,这些菌株分别归属于2亚门、4纲、4目、5科、13属。研究表明,链格孢属(Alternaria spp.)和茎点霉属(Phoma spp.)为优势菌种。不同部位、不同树龄、不同品种的杨树内生真菌的数量和种类具有一定的差异,说明内生真菌具有一定的宿主和组织专一性。运用多样性指数可以定量的直观地体现内生真菌群落多样性的高低。

  12. Rooting greenwood tip cuttings of several Populus clones hydroponically (hydroponic rooting of Populus cuttings)

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, H.M.; Hansen, E.A.; Tolsted, D.N.

    1980-01-01

    Greenwood cuttings of several Populus clones were successfully rooted with a relatively simple hydroponic method. Indolebutyric acid and naphthaleneacetic acid at concentrations of 500 to 5000 ppM applied as a quick dip to the cutting bases, a complete nutrient solution at 20 to 40% of full strength, and a solution temperature between 27 and 30/sup 0/C generally produced the best rooting performance of most clones. Cuttings propagated by the hydroponic procedure rooted faster and generally outgrew those produced by a standard method after being transplanted to pots and grown in the greenhouse.

  13. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus.

    Science.gov (United States)

    Labbé, Jessy L; Weston, David J; Dunkirk, Nora; Pelletier, Dale A; Tuskan, Gerald A

    2014-01-01

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two additional Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were included for comparative purposes. We analyzed the effect of co-cultivation of these 23 individual Pseudomonas strains on Laccaria bicolor "S238N" growth rate, mycelial architecture and transcriptional changes. Nineteen of the 23 Pseudomonas strains tested had positive effects on L. bicolor S238N growth, as well as on mycelial architecture, with strains GM41 and GM18 having the most significant effect. Four of seven L. bicolor reporter genes, Tra1, Tectonin2, Gcn5, and Cipc1, thought to be regulated during the interaction with MHB strain BBc6R8, were induced or repressed, while interacting with Pseudomonas strains GM17, GM33, GM41, GM48, Pf-5, and BBc6R8. Strain GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve L. bicolor root colonization on Populus. This tripartite relationship could be exploited for Populus species/genotypes nursery production as a means of improving establishment and survival in marginal lands.

  14. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    Directory of Open Access Journals (Sweden)

    Jessy L Labbé

    2014-10-01

    Full Text Available Mycorrhiza helper bacteria (MHB are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two additional Pseudomonas strains (i.e., Pf-5 and BBc6R8 from existing collections were included for comparative purposes. We analyzed the effect of co-cultivation of these 23 individual Pseudomonas strains on Laccaria bicolor ‘S238N’ growth rate, mycelial architecture and transcriptional changes. Nineteen of the 23 Pseudomonas strains tested had positive effects on L. bicolor S238N growth, as well as on mycelial architecture, with strains GM41 and GM18 having the most significant effect. Four of seven L. bicolor reporter genes, Tra1, Tectonin2, Gcn5 and Cipc1, thought to be regulated during the interaction with MHB strain BBc6R8, were induced or repressed, while interacting with Pseudomonas strains GM17, GM33, GM41, GM48, Pf-5 and BBc6R8. Strain GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve L. bicolor root colonization on Populus. This tripartite relationship could be exploited for Populus species/genotypes nursery production as a means of improving establishment and survival in marginal lands.

  15. Differential detection of genetic Loci underlying stem and root lignin content in Populus.

    Directory of Open Access Journals (Sweden)

    Tongming Yin

    Full Text Available In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.

  16. Underground riparian wood: Reconstructing the processes influencing buried stem and coarse root structures of Black Poplar (Populus nigra L.)

    Science.gov (United States)

    Holloway, James V.; Rillig, Matthias C.; Gurnell, Angela M.

    2017-02-01

    Following analysis of morphological (including dendrochronological and sedimentological) aspects of buried stem and coarse root structures of eight mature P. nigra individuals located within two sites along the middle to lower Tagliamento River, Italy (Holloway et al., 2017), this paper introduces information on the historical processes of vegetation development and river flow and links this to the form of these eight trees. Aerial images and flow time series are assembled to reconstruct the flood history, potential recruitment periods, and vegetation cover development in the vicinity of the studied trees. This information is combined with previous morphological evidence to reconstruct the development history of each tree via three-element summary diagrams showing (i) a time series of floods, aerial imagery dates, and potential recruitment periods, with colour-coded bars indicating likely key stages in the development of the tree; (ii) colour-coded overlays on an SfM photogrammetric model of each tree; and (iii) colour-coded text boxes providing explanatory annotations. The combined morphology-process analysis reveals complex three-dimensional underground structures, incorporating buried stems, shoots, and adventitious roots that are sometimes joined by grafting, linking the standing tree with the buried gravel surface on which it was recruited. Analysis of process data provides a firm basis for identifying and dating influential flow disturbance events and recruitment windows and shows that a relatively small number of flood events have significantly impacted the studied trees, which are mainly but not exclusively the largest floods in the record. Nevertheless, we stress that all suggested dates are best estimates in the light of the combined evidence. There is undoubted potential for building different interpretations of belowground woody structure development in light of such evidence, but we feel that the form and timing of the developmental trajectories we have proposed are reasonable and give balanced insights into the many possible ways in which this hidden component of riparian trees may develop. Our results are relevant to river research and management issues concerning riparian woodland, fluvial wood dynamics, and wood budgets, as they indicate (i) a large hidden volume of wood that is often ignored; (ii) complex, deep, coarse anchorage structures that have relevance for rates of fluvial wood recruitment associated with lateral bank erosion/stability or wind throw; and (iii) a wood element that may significantly affect wood transport and retention within fluvial systems.

  17. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. METHODOLOGY/PRINCIPAL FINDINGS: We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. CONCLUSIONS/SIGNIFICANCE: This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.

  18. Highly Efficient Isolation of Populus Mesophyll Protoplasts and Its Application in Transient Expression Assays

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jianjun [ORNL; Morrell-Falvey, Jennifer L [ORNL; Labbe, Jessy L [ORNL; Muchero, Wellington [ORNL; Kalluri, Udaya C [ORNL; Tuskan, Gerald A [ORNL; Chen, Jay [ORNL

    2012-01-01

    Background: Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. Methodology/Principal Findings: We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. Conclusions/Significance: This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.

  19. Genetic differentiation and delimitation between ecologically diverged Populus euphratica and P. pruinosa.

    Directory of Open Access Journals (Sweden)

    Juan Wang

    Full Text Available BACKGROUND: The fixed genetic differences between ecologically divergent species were found to change greatly depending on the markers examined. With such species it is difficult to differentiate between shared ancestral polymorphisms and past introgressions between the diverging species. In order to disentangle these possibilities and provide a further case for DNA barcoding of plants, we examine genetic differentiation between two ecologically divergent poplar species, Populus euphratica Oliver and P. pruinosa Schrenk using three different types of genetic marker. METHODOLOGY/PRINCIPAL FINDINGS: We genotyped 290 individuals from 29 allopatric and sympatric populations, using chloroplast (cp DNA, nuclear (nr ITS sequences and eight simple sequence repeat (SSR loci. Three major cpDNA haplotypes were widely shared between the two species and between-species cpDNA differentiation (F(CT was very low, even lower than among single species populations. The average SSR F(CT values were higher. Bayesian clustering analysis of all loci allowed a clear delineation of the two species. Gene flow, determined by examining all SSR loci, was obvious but only slightly asymmetrical. However, the two species were almost fixed for two different nrITS genotypes that had the highest F(CT, although a few introgressed individuals were detected both in allopatric and sympatric populations. CONCLUSIONS: The two species shared numerous ancestral polymorphisms at cpDNA and a few SSR loci. Both ITS and a combination of nuclear SSR data could be used to differentiate between the two species. Introgressions and gene flow were obvious between the two species either during or after their divergence. Our findings underscore the complex genetic differentiations between ecologically diverged species and highlight the importance of nuclear DNA (especially ITS differentiation for delimiting closely related plant species.

  20. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [ORNL; Yao, Jianzhuang [University of Tennessee, Knoxville (UTK); Chaiprasongsuk, Minta [University of Tennessee, Knoxville (UTK); Li, Guanglin [University of Tennessee, Knoxville (UTK); Guan, Ju [University of Tennessee, Knoxville (UTK); Tschaplinski, Timothy J [ORNL; Guo, Hong [University of Tennessee, Knoxville (UTK); Chen, Feng [University of Tennessee, Knoxville (UTK)

    2013-01-01

    Methyl jasmonate is a metabolite known to be produced by many plants and has roles in diverse biological processes. It is biosynthesized by the action of S-adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase (JMT), which belongs to the SABATH family of methyltransferases. Herein is reported the isolation and biochemical characterization of a JMT gene from black cottonwood (Populus trichocarpa). The genome of P. trichocarpa contains 28 SABATH genes (PtSABATH1 to PtSABATH28). Recombinant PtSABATH3 expressed in Escherichia coli showed the highest level of activity with jasmonic acid (JA) among carboxylic acids tested. It was therefore renamed PtJMT1. PtJMT1 also displayed activity with benzoic acid (BA), with which the activity was about 22% of that with JA. PtSABATH2 and PtSABATH4 were most similar to PtJMT1 among all PtSABATHs. However, neither of them had activity with JA. The apparent Km values of PtJMT1 using JA and BA as substrate were 175 lM and 341 lM, respectively. Mutation of Ser-153 and Asn-361, two residues in the active site of PtJMT1, to Tyr and Ser respectively, led to higher specific activity with BA than with JA. Homology-based structural modeling indicated that substrate alignment, in which Asn-361 is involved, plays a role in determining the substrate specificity of PtJMT1. In the leaves of young seedlings of black cottonwood, the expression of PtJMT1 was induced by plant defense signal molecules methyl jasmonate and salicylic acid and a fungal elicitor alamethicin, suggesting that PtJMT1 may have a role in plant defense against biotic stresses. Phylogenetic analysis suggests that PtJMT1 shares a common ancestor with the Arabidopsis JMT, and functional divergence of these two apparent JMT orthologs has occurred since the split of poplar and Arabidopsis lineages.

  1. Yield physiology of short rotation intensively cultured poplars

    Science.gov (United States)

    J. G. Isebrands; N. D. Nelson; D. I. Dickmann; D. A. Michael

    1983-01-01

    An integrated research approach is described for studying yield physiology of short rotation intensively cultured (SRIC) poplar plantations. Branch architecture differs with clone and stand density, but the clonal ranking of important branch characteristics does not change with spacing.

  2. Preliminary Functional-Structural Modeling on Poplar (Salicaceae)

    CERN Document Server

    Liu, Dongxiang; Letort, Véronique; Xing, Meijun; Gang, Yang; Huang, Xinyuan; Cao, Weiqun

    2010-01-01

    Poplar is one of the best fast-growing trees in the world, widely used for windbreak and wood product. Although architecture of poplar has direct impact on its applications, it has not been descried in previous poplar models, probably because of the difficulties raised by measurement, data processing and parameterization. In this paper, the functional-structural model GreenLab is calibrated by using poplar data of 3, 4, 5, 6 years old. The data was acquired by simplifying measurement. The architecture was also simplified by classifying the branches into several types (physiological age) using clustering analysis, which decrease the number of parameters. By multi-fitting the sampled data of each tree, the model parameters were identified and the plant architectures at different tree ages were simulated.

  3. Poplar: A Java Extension for Evolvable Component Integration

    CERN Document Server

    Nyström-Persson, Johan

    2011-01-01

    The Java programming language contains many features that aid component-based software development (CBSD), such as interfaces, visibility levels, and strong support for encapsulation. However, component evolution often causes so-called breaking changes, largely because of the rigidity of component interconnections in the form of explicit method calls and field accesses. We present a Java extension, Poplar, which we are currently developing. In Poplar, inter-component dependencies are expressed using declarative queries; concrete linking code, generated using a planning algorithm, replaces these at compile time. Poplar includes a minimal specification language based on typestate-like protocols and labels, and a lightweight effect system, which ensures the absence of unwanted interference between hand-written code and generated code. We give several examples of fully automatic component integration using Poplar, and demonstrate its potential to simplify object-oriented software development greatly through evolv...

  4. RNA-Seq of early-infected poplar leaves by the rust pathogen Melampsora larici-populina uncovers PtSultr3;5, a fungal-induced host sulfate transporter.

    Directory of Open Access Journals (Sweden)

    Benjamin Petre

    Full Text Available Biotroph pathogens establish intimate interactions with their hosts that are conditioned by the successful secretion of effectors in infected tissues and subsequent manipulation of host physiology. The identification of early-expressed pathogen effectors and early-modulated host functions is currently a major goal to understand the molecular basis of biotrophy. Here, we report the 454-pyrosequencing transcriptome analysis of early stages of poplar leaf colonization by the rust fungus Melampsora larici-populina. Among the 841,301 reads considered for analysis, 616,879 and 649 were successfully mapped to Populus trichocarpa and M. larici-populina genome sequences, respectively. From a methodological aspect, these results indicate that this single approach is not appropriate to saturate poplar transcriptome and to follow transcript accumulation of the pathogen. We identified 19 pathogen transcripts encoding early-expressed small-secreted proteins representing candidate effectors of interest for forthcoming studies. Poplar RNA-Seq data were validated by oligoarrays and quantitatively analysed, which revealed a highly stable transcriptome with a single transcript encoding a sulfate transporter (herein named PtSultr3;5, POPTR_0006s16150 showing a dramatic increase upon colonization by either virulent or avirulent M. larici-populina strains. Perspectives connecting host sulfate transport and biotrophic lifestyle are discussed.

  5. Comparative analysis of the transcriptomes of Populus

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Davis, John M [University of Florida

    2008-01-01

    Sequencing of the Populus trichocarpa genome creates an opportunity to describe the transcriptome of a woody perennial species and establish an atlas of gene expression. A comparison with the transcriptomes of other species can also define genes that are conserved or diverging in plant species. Here, the transcriptome in vegetative organs of the P. trichocarpa reference genotype Nisqually-1 was characterized. A comparison with Arabidopsis thaliana orthologs was used to distinguish gene functional categories that may be evolving differently in a woody perennial and an annual herbaceous species. A core set of genes expressed in common among vegetative organs was detected, as well as organ-specific genes. Statistical tests identified chromatin domains, where adjacent genes were expressed more frequently than expected by chance. Extensive divergence was detected in the expression patterns of A. thaliana and P. trichocarpa orthologs, but transcription of a small number of genes appeared to have remained conserved in the two species. Despite separation of lineages for over 100 million yr, these results suggest that selection has limited transcriptional divergence of genes associated with some essential functions in A. thaliana and P. trichocarpa. However, extensive remodeling of transcriptional networks indicates that expression regulation may be a key determinant of plant diversity.

  6. Growth of Populus and Salix Species under Compost Leachate Irrigation

    Directory of Open Access Journals (Sweden)

    Tooba Abedi

    2014-12-01

    Full Text Available According to the known broad variation in remediation capacity, three plant species were used in the experiment: two fast growing poplar’s clones - Populus deltoides, Populus euramericana, and willows Salix alba. Populus and Salix cuttings were collected from the nursery of the Populus Research Center of Safrabasteh in the eastern part of Guilan province at north of Iran. The Populus clones were chosen because of their high biomass production capacity and willow- because it is native in Iran. The highest diameter growth rate was exhibited for all three plant species by the 1:1 treatment with an average of 0.26, 0.22 and 0.16 cm in eight months period for P. euroamericana, P. deltoides and S. alba, respectively. Over a period of eight months a higher growth rate of height was observed in (P and (1:1 treatment for S. alba (33.70 and 15.77 cm, respectively and in (C treatment for P. deltoides (16.51 cm. P. deltoides and S. alba produced significantly (p<0.05 smaller aboveground biomass in (P treatment compared to all species. P. deltoides exhibited greater mean aboveground biomass in the (1:1 treatment compared to other species. There were significant differences (p<0.05 in the growth of roots between P. deltoides, P. euramericana and S. alba in all of the treatments.

  7. Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various beta-glucan synthases in the stem.

    Science.gov (United States)

    Konishi, Teruko; Ohmiya, Yasunori; Hayashi, Takahisa

    2004-03-01

    Sucrose (Suc) synthase (SuSy) is believed to function in channeling UDP-Glc from Suc to various beta-glucan synthases. We produced transgenic poplars (Populus alba) overexpressing a mutant form (S11E) of mung bean (Vigna radiata) SuSy, which appeared in part in the microsomal membranes of the stems. Expression of SuSy in these membranes enhanced the incorporation of radioactive Suc into cellulose, together with the metabolic recycling of fructose (Fru), when dual-labeled Suc was fed directly into the phloem of the leaf. This overexpression also enhanced the direct incorporation of the glucosyl moiety of Suc into the glucan backbone of xyloglucan and increased recycling of Fru, although the Fru recycling system for cellulose synthesis at the plasma membrane might differ from that for xyloglucan synthesis in the Golgi network. These findings suggest that some of the Suc loaded into the phloem of a poplar leaf is used directly by SuSys associated with xyloglucan and cellulose synthases in the stem. This may be a key function of SuSy because the high-energy bond between the Glc and Fru moieties of Suc is conserved and used for polysaccharide syntheses in this sink tissue.

  8. Comparative genomic analysis of the GRF genes in Chinese pear (Pyrus bretschneideri Rehd, poplar (Populous, grape (Vitis vinifera, Arabidopsis and rice (Oryza sativa

    Directory of Open Access Journals (Sweden)

    Yun Peng Cao

    2016-11-01

    Full Text Available Growth-regulating factors (GRFs are plant-specific transcription factors that have important functions in regulating plant growth and development. Previous studies on GRF family members focused either on a single or a small set of genes. Here, a comparative genomic analysis of the GRF gene family was performed in poplar (a model tree species, Arabidopsis (a model plant for annual herbaceous dicots, grape (one model plant for perennial dicots, rice (a model plant for monocots and Chinese pear (one of the economical fruit crops. In total, 58 GRF genes were identified, 12 genes in rice (Oryza sativa, 8 genes in grape (Vitis vinifera, 9 genes in Arabidopsis thaliana, 19 genes in poplar (Populus trichocarpa and 10 genes in Chinese pear (Pyrus bretschneideri. The GRF genes were divided into five subfamilies based on the phylogenetic analysis, which was supported by their structural analysis. Furthermore, microsynteny analysis indicated that highly conserved regions of microsynteny were identified in all of the five species tested. And Ka/Ks analysis revealed that purifying selection play an important role in the maintenance of GRF genes. Our results provide basic information on GRF genes in five plant species and lay the foundation for future research on the functions of these genes.

  9. Leaf-associated bacteria from transgenic white poplar producing resveratrol-like compounds: isolation, molecular characterization, and evaluation of oxidative stress tolerance.

    Science.gov (United States)

    Balestrazzi, Alma; Bonadei, Martina; Calvio, Cinzia; Mattivi, Fulvio; Carbonera, Daniela

    2009-07-01

    The aim of this study was the isolation and characterization of the culturable bacteria inhabiting the leaves of transgenic white poplars (Populus alba L. 'Villafranca') engineered with the StSy gene for the production of resveratrol-like compounds. Resveratrol glucosides are available in small amounts from natural sources or by expensive chemical synthesis procedures. An alternative approach for the large-scale production of these relevant pharmaceuticals is the use of transgenic plants as bioreactors, although the occurrence of novel molecules in plants growing under field conditions might interfere, to some extent, with the associated microbial population. Both epiphytes and endophytes were isolated from the leaves of 2 StSy transgenic lines producing resveratrol glucosides and from an untransformed plant line grown in a greenhouse. Eleven isolates were recovered and classified as members of the genus Bacillus by 16S rDNA-based analysis. In addition, 2 isolates were classified as members of the Curtobacterium and Kocuria genera, respectively. Tolerance to hydrogen peroxide, UV-C, and paraquat was evaluated, as were the swimming and swarming motility of the leaf-associated bacteria. Interestingly, the isolates recovered from transgenic tissues showed the ability to withstand oxidative stress compared with isolates recovered from the untransformed poplar line. In vitro bioassays showed that trans-resveratrol inhibited both the swarming and swimming motilities in all the tested bacteria. The effects of trans-resveratrol on flagellin production, required for motility, were also investigated by immunoblot analysis.

  10. Poplar and its bacterial endophytes: coexistence and harmony

    Energy Technology Data Exchange (ETDEWEB)

    van der Lelie, D.; Taghavi, S.; Monchy, S.; Schwender, J.; Miller, L.; Ferrieri, R.; Rogers, A.; Zhu, W.; Weyens, N.; Vangronsveld, J.; Newman, L.

    2009-09-01

    Associations between plants and microorganisms are very complex and are the subject of an increasing number of studies. Here, we specifically address the relationship between poplar and its endophytic bacteria. The role and importance of endophytic bacteria in growth and development of their host plants is still underestimated. However, since many endophytes have a beneficial effect on their host, an improved understanding of the interaction between poplar and its endophytic bacteria has the potential to provide major breakthroughs that will improve the productivity of poplar. Endophytic bacteria can improve plant growth and development in a direct or indirect way. Direct plant growth promoting mechanisms may involve nitrogen fixation, production of plant growth regulators such as auxins, cytokinins and gibberellins, and suppression of stress ethylene synthesis by 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Endophytic bacteria can indirectly benefit the plant by preventing the growth or activity of plant pathogens through competition for space and nutrients, antibiosis, production of hydrolytic enzymes, inhibition of pathogen-produced enzymes or toxins, and through systemic induction of plant defense mechanisms. Examples of applications for custom endophyte-host partnerships include improved productivity and establishment of poplar trees on marginal soils and the phytoremediation of contaminated soils and groundwater. A systems biology approach to understand the synergistic interactions between poplar and its beneficial endophytic bacteria represents an important field of research, which is facilitated by the recent sequencing of the genomes of poplar and several of its endophytic bacteria.

  11. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil.

    Science.gov (United States)

    Castiglione, S; Todeschini, V; Franchin, C; Torrigiani, P; Gastaldi, D; Cicatelli, A; Rinaudo, C; Berta, G; Biondi, S; Lingua, G

    2009-07-01

    Three ex situ collections of poplar clones from natural populations of Populus alba and P. nigra growing in northern Italy were assessed for their genetic dissimilarity (GD) by means of amplified fragment length polymorphism (AFLP). The high GD evidenced within populations was exploited for screening 168 clones in a field trial on heavy metal-polluted soil. After one growth season, clonal differences in plant survival and growth were observed. On the basis of performance, six clones were singled out, and used to evaluate copper and zinc accumulation in different organs. Clonal differences in metal concentrations were most evident for leaves and stems; one clone of P. alba (AL35) had a distinctly higher concentration of both metals in the roots. Leaf polyamine (putrescine, spermidine, spermine) profiles correlated with tissue metal concentrations, depending on the clone, plant organ and metal. In particular, the high metal-accumulating clone AL35 exhibited a dramatically higher concentration of free and conjugated putrescine. Overall, the results indicate that, given the high GD of Populus even within populations, it is possible to identify genotypes best suited for soil clean-up, and useful also for investigating physiological markers associated with high metal accumulation/tolerance.

  12. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    Science.gov (United States)

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  13. Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones.

    Science.gov (United States)

    Pietrini, F; Zacchini, M; Iori, V; Pietrosanti, L; Ferretti, M; Massacci, A

    2010-03-01

    The interaction of cadmium (Cd) with photosynthesis was investigated in poplar (Populus x canadensis Mönch., clone A4A, Populus nigra L., clone Poli) and willow (Salix alba L., clone SS5) clones that had different leaf metal concentrations in preliminary experiments. Plants grown in the presence of 50 microm CdSO(4) for 3 weeks under hydroponic conditions were used to examine leaf gas exchange, chlorophyll fluorescence parameters and images, and for Cd detection using energy dispersive X-ray fluorescence (ED-XRF). Leaves were finally analysed for Cd and phytochelatin concentrations. Results showed that SS5 had the highest leaf Cd concentration and high gas exchange activity similar to that of Poli, which had the lowest Cd concentration. Leaf fluorescence images evidenced in large undamaged areas of SS5 corresponded to high values of F(v)/F(m), F(o), PhiPSII, qP and NPQ, while patches of dark colour (visible necrosis) close to the main vein corresponded to low values of these parameters. In A4A, these necrotic patches were more diffuse on the leaf blade and associated with a range of fluorescence parameter values. ED-XRF analysis indicated that Cd was only detectable in necroses of SS5 leaves, while in A4A it was relatively more diffuse. Phytochelatins (PCs) were not detected in SS5, while their concentration was high in both Poli and A4A. The absence of these molecules in SS5 is thought to favour confinement of high accumulations of Cd to necrotic areas and gives SS5 the ability to maintain high photosynthesis and transpiration in remaining parts of the leaf.

  14. Continuous steam hydrolysis of tulip poplar

    Energy Technology Data Exchange (ETDEWEB)

    Fieber, C.; Colcord, A.R.; Faass, S.; Muzzy, J.D.; Roberts, R.S.

    1982-08-01

    To produce ethanol from hardwood it is desirable to fractionate the hardwood in order to produce a relatively pure cellulosic pulp for dilute acid hydrolysis. An experimental investigation of continuous steam hydrolysis of tulip poplar wood chips indicates that over 90% of the lignin present can be extracted by 0.1N sodium hydroxide, resulting in a cellulose pulp containing over 90% hexosan. The study was performed using a Stake Technology, Ltd., continuous digester rated at one oven dry ton per hour of wood chips. The yields of hexosans, hexoses, xylan, xylose, lignin, furfural, acetic acid and methanol were determined as a function of residence time and steam pressure in the digester. The information provides a basis for establishing a material and energy balance for a hardwood to ethanol plant.

  15. Comparing growth rate in a mixed plantation (walnut, poplar and nurse trees with different planting designs: results from an experimental plantation in northern Italy

    Directory of Open Access Journals (Sweden)

    Francesco Pelleri

    2013-12-01

    Full Text Available 800x600 Results of a mixed plantation with poplar, walnut and nurse trees established in winter 2003 in Northern Italy, are reported. Main tree species (poplar and walnut were planted according to a rectangular design (10 x 11m, with different spacings and alternate lines. The experimental trial was carried out to verify the following working hypotheses: (i possibility to combine main trees with different growth levels (common walnut, hybrid walnut, and different poplar clones and test two different poplar and walnut spacings (5.0 and 7.4 m in the same plantation; (ii opportunity to reduce cultivation’s workload, in comparison with poplar monoculture, using mixtures with different poplar clones and N-fixing nurse trees; (iii verifying the growth pattern of two new poplar clones in comparison with the traditional clones cultivated for different purposes in Italy.The use of different valuable crop trees’ mixtures intercropped with nurse trees and shrubs (including N-fixing trees allows to decrease the cultivation’s workload. In fact, a heavy reduction of cultural practices - fertilizers, weed control, irrigation and pesticides applications (-61% are the main concurrent, supplementary benefits. The best growth performances (DBH and tree height, associated with the higher competition towards walnuts, were recorded with the new clones Lena and Neva in comparison with the I214 and Villafranca. The closer spacing (5 m between poplar and walnut trees was found to be unsuited to get merchantable poplars sized 30 cm without developing a heavy competition towards walnut trees. The wider spacing (7.4 m resulted vice versa suitable to get poplar trees sized as requested by veneer factories and to maintain an acceptable competitive level with walnut. Within this plantation design, a shorter rotation (8 yrs is needed for Lena and Neva clones in comparison with I214 and Villafranca (10 yrs. Walnut intercropped with poplar showed cone-shaped crowns, light

  16. Control of trichome formation in Arabidopsis by poplar single-repeat R3 MYB transcription factors

    Directory of Open Access Journals (Sweden)

    Limei eZhou

    2014-06-01

    Full Text Available In Arabidopsis, trichome formation is regulated by the interplay of R3 MYBs and several others transcription factors including the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1, the R2R3 MYB transcription factor GLABRA1 (GL1, the bHLH transcription factor GLABRA3 (GL3 or ENHANCER OF GLABRA3 (EGL3, and the homeodomain protein GLABRA2 (GL2. R3 MYBs including TRICHOMELESS1 (TCL1, TRYPTICHON (TRY, CAPRICE (CPC, ENHANCER OF TRY AND CPC1 (ETC1, ETC2 and ETC3 negatively regulate trichome formation by competing with GL1 for binding GL3 or EGL3, thus blocking the formation of TTG1-GL3/EGL3-GL1, an activator complex required for the activation of the trichome positive regulator gene GL2. However, it is largely unknown if R3 MYBs in other plant species especially woody plants have similar functions. By BLASTing the Populus trichocarpa protein database using the entire amino acid sequence of TCL1, an Arabidopsis R3 MYB transcription factor, we identified a total of eight R3 MYB transcription factor genes in poplar, namely Populus trichocarpa TRICHOMELESS1through 8 (PtrTCL1-PtrTCL8. The amino acid signature required for interacting with bHLH transcription factors and the amino acids required for cell-to-cell movement of R3 MYBs are not fully conserved in all PtrTCLs. When tested in Arabidopsis protoplasts, however, all PtrTCL interacted with GL3. Expressing each of the eight PtrTCLs genes in Arabidopsis resulted in either glabrous phenotypes or plants with reduced trichome numbers, and expression levels of GL2 in all transgenic plants tested were greatly reduced. Expression of PtrTCL1 under the control of TCL1 native promoter almost completely complemented the mutant phenotype of tcl. In contrast, expression of PtrTCL1 under the control of TRY native promoter in the try mutant, or under the control of CPC native promoter in the cpc mutant resulted in glabrous phenotypes, suggesting that PtrTCL1 functions similarly to TCL1, but not TRY and CPC.

  17. The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome.

    Science.gov (United States)

    Sjödin, Andreas; Street, Nathaniel Robert; Sandberg, Göran; Gustafsson, Petter; Jansson, Stefan

    2009-06-01

    Populus has become an important model plant system. However, utilization of the increasingly extensive collection of genetics and genomics data created by the community is currently hindered by the lack of a central resource, such as a model organism database (MOD). Such MODs offer a single entry point to the collection of resources available within a model system, typically including tools for exploring and querying those resources. As a starting point to overcoming the lack of such an MOD for Populus, we present the Populus Genome Integrative Explorer (PopGenIE), an integrated set of tools for exploring the Populus genome and transcriptome. The resource includes genome, synteny and quantitative trait locus (QTL) browsers for exploring genetic data. Expression tools include an electronic fluorescent pictograph (eFP) browser, expression profile plots, co-regulation within collated transcriptomics data sets, and identification of over-represented functional categories and genomic hotspot locations. A number of collated transcriptomics data sets are made available in the eFP browser to facilitate functional exploration of gene function. Additional homology and data extraction tools are provided. PopGenIE significantly increases accessibility to Populus genomics resources and allows exploration of transcriptomics data without the need to learn or understand complex statistical analysis methods. PopGenIE is available at www.popgenie.org or via www.populusgenome.info.

  18. Two Poplar Glycosyltransferase Genes, PdGATL1.1 and PdGATL1.2, Are Functional Orthologs to PARVUS/AtGATL 1 in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yingzhen Kong; Gongke Zhou; Utku Avci; Xiaogang Gu; Chelsea Jones; Yanbin Yin; Ying Xu; Michael G. Hahn

    2009-01-01

    Several genes in Arabidopsis, including PARVUS/AtGATL1, have been implicated in xylan synthesis. However, the biosynthesis of xylan in woody plants, where this polysaccharide is a major component of wood, is poorly understood. Here, we characterize two Populus genes, PdGATL1.1 and PdGATL1.2, the closest orthologs to the Arabidopsis PARVUS/GATL 1 gene, with respect to their gene expression in poplar, their sub-cellular localization, and their ability to complement the parvus mutation in Arabidopsis. Overexpression of the two poplar genes in the parvus mutant rescued most of the defects caused by the parvus mutation, including morphological changes, collapsed xylem, and altered cell wall mono-saccharide composition. Quantitative RT-PCR showed that PdGATL1.1 is expressed most strongly in developing xylem of poplar. In contrast, PdGATL1.2 is expressed much more uniformly in leaf, shoot tip, cortex, phloem, and xylem, and the transcript level of PdGATL1.2 is much lower than that of PdGATL1.1 in all tissues examined. Sub-cellular localization experi-ments showed that these two proteins are localized to both ER and Golgi in comparison with marker proteins resident to these sub-cellular compartments. Our data indicate that PdGATLI.1 and PdGATL1.2 are functional orthologs of PARVUS/ GATL1 and can play a role in xylan synthesis, but may also have role(s) in the synthesis of other wall polymers.

  19. The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.

    Science.gov (United States)

    Du, Juan; Miura, Eriko; Robischon, Marcel; Martinez, Ciera; Groover, Andrew

    2011-02-28

    The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody stems. Transgenic Populus (poplar) trees expressing either a miRNA-resistant POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants. Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth. POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during secondary growth.

  20. Determination ecotypes of Populus caspica Bornm. in plain communities of Caspian forests using morphological markers of leaf and peroxidase isoenzymes

    Directory of Open Access Journals (Sweden)

    Hassan Fallah

    2011-06-01

    Full Text Available In order to determine ecotypes of Persian poplar (Populus caspica in plain communities, 40 tree individuals were selected in provinces of Guilan (Roodbar, Astane Ashrafieh and Mazandaran (Noor, Amol. Samples of two-year branches were taken in similar height and direction of tree crown to assess the quality of peroxidase activity using polyacrilamide gel electrophoresis (PAGE. Also, in numerical taxonomy study of morphology, 13 leaf morphologal traits were measured. Peroxidase banding pattern showed 11 individual bands in two zones of polyacrilamide gel. First zone included 5 polymorphism bands and the second zone represented 6 bands. The results of isoenzyme bands classification and leaf morphological traits showed high isoenzymes and morphological differentiation among populations of these species showing three separated ecotypes including Roodbar, Astaneh Ashrafieh and Noor-Amol. Also, peroxidase band pattern and leaf morphology trait between male and female individuals showed no difference within the population. The results emphasize the used of effective methods of in situ and ex situ to maintain genetic diversity of this species as an endangered and valuable in Hyrcanian forests.

  1. A comparative study of four approaches to assess phenology of Populus in a short-rotation coppice culture

    Directory of Open Access Journals (Sweden)

    Vanbeveren SPP

    2016-10-01

    Full Text Available We compared four approaches to assess phenology in a short-rotation coppice culture with 12 poplar (Populus genotypes. The four approaches quantified phenology at different spatial scales and with different temporal resolutions: (i visual observations of bud phenology; (ii measurements of leaf area index; (iii webcam images; and (iv satellite images. For validation purposes we applied the four approaches during two years: the year preceding a coppice event and the year following the coppice event. The delayed spring greenup and the faster canopy development in the year after coppicing (as compared to the year before coppicing were similarly quantified by the four approaches. The four approaches detected very similar seasonal changes in phenology, although they had different spatial scales and a different temporal resolution. The onset of autumn senescence after coppicing remained the same as in the year before coppicing according to the bud set observations, but it started earlier according to the webcam images, and later according to the MODIS images. In comparison to the year before coppicing, the growing season - in terms of leaf area duration - was shorter in the year after coppicing, while the leaf area index was higher.

  2. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis.

    Science.gov (United States)

    Han, Xiao; Tang, Sha; An, Yi; Zheng, Dong-Chao; Xia, Xin-Li; Yin, Wei-Lun

    2013-11-01

    Water deficit is a serious environmental factor limiting the growth and productivity of plants worldwide. Improvement of drought tolerance and efficient water use are significant strategies to overcome this dilemma. In this study, a drought-responsive transcription factor, nuclear factor Y subunit B 7 (PdNF-YB7), induced by osmotic stress (PEG6000) and abscisic acid, was isolated from fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Ectopic overexpression of PdNF-YB7 (oxPdB7) in Arabidopsis enhanced drought tolerance and whole-plant and instantaneous leaf water-use efficiency (WUE, the ratio of biomass produced to water consumed). Overexpressing lines had an increase in germination rate and root length and decrease in water loss and displayed higher photosynthetic rate, instantaneous leaf WUE, and leaf water potential to exhibit enhanced drought tolerance under water scarcity. Additionally, overexpression of PdNF-YB7 in Arabidopsis improved whole-plant WUE by increasing carbon assimilation and reducing transpiration with water abundance. These drought-tolerant, higher WUE transgenic Arabidopsis had earlier seedling establishment and higher biomass than controls under normal and drought conditions. In contrast, Arabidopsis mutant nf-yb3 was more sensitive to drought stress with lower WUE. However, complementation analysis indicated that complementary lines (nf-yb3/PdB7) had almost the same drought response and WUE as wild-type Col-0. Taken together, these results suggest that PdNF-YB7 positively confers drought tolerance and improves WUE in Arabidopsis; thus it could potentially be used in breeding drought-tolerant plants with increased production even under water deficiency.

  3. Evolutionary Quantitative Genomics of Populus trichocarpa.

    Science.gov (United States)

    Porth, Ilga; Klápště, Jaroslav; McKown, Athena D; La Mantia, Jonathan; Guy, Robert D; Ingvarsson, Pär K; Hamelin, Richard; Mansfield, Shawn D; Ehlting, Jürgen; Douglas, Carl J; El-Kassaby, Yousry A

    2015-01-01

    Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing QST-FST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate

  4. Genomics of Secondary Metabolism in Populus: Interactions with Biotic and Abiotic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Liu, C.; Tschaplinski, T. J.; Zhao, N.

    2009-09-01

    Populus trees face constant challenges from the environment during their life cycle. To ensure their survival and reproduction, Populus trees deploy various types of defenses, one of which is the production of a myriad of secondary metabolites. Compounds derived from the shikimate-phenylpropanoid pathway are the most abundant class of secondary metabolites synthesized in Populus. Among other major classes of secondary metabolites in Populus are terpenoids and fatty acid-derivatives. Some of the secondary metabolites made by Populus trees have been functionally characterized. Some others have been associated with certain biological/ecological processes, such as defense against insects and microbial pathogens or acclimation or adaptation to abiotic stresses. Functions of many Populus secondary metabolites remain unclear. The advent of various novel genomic tools will enable us to explore in greater detail the complexity of secondary metabolism in Populus. Detailed data mining of the Populus genome sequence can unveil candidate genes of secondary metabolism. Metabolomic analysis will continue to identify new metabolites synthesized in Populus. Integrated genomics that combines various 'omics' tools will prove to be the most powerful approach in revealing the molecular and biochemical basis underlying the biosynthesis of secondary metabolites in Populus. Characterization of the biological/ecological functions of secondary metabolites as well as their biosynthesis will provide knowledge and tools for genetically engineering the production of seconday metabolites that can lead to the generation of novel, improved Populus varieties.

  5. Assessment of Populus Wood Chemistry Following the Introduction of a Bt Toxin Gene

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M. F.; Tuskan, G. A.; Payne, P.; Tschaplinski, T. J.; Meilan, R.

    2006-01-01

    Unintended changes in plant physiology, anatomy and metabolism as a result of genetic engineering are a concern as more transgenic plants are commercially deployed in the ecosystem. We compared the cell wall chemical composition of three Populus lines (Populus trichocarpa Torr. and A. Gray x Populus deltoides Bartr. ex Marsh., Populus trichocarpa x Populus nigra L. and Populus deltoides x Populus nigra) genetically modified to express the Cry3A or Cry3B2 protein of Bacillus thuringiensis (Bt) with the cellwall chemistry of non-transformed isogenic control lines. Three genetically modified clones, each represented by 10 independent transgenic lines, were analyzed by pyrolysis molecular beam mass spectrometry, gas chromatography/mass spectrometry and traditional wet chemical analytical methods to assess changes in cell wall composition. Based on the outcome of these techniques, there were no comprehensive differences in chemical composition between the transgenic and control lines for any of the studied clones.

  6. Assessment of Populus wood chemistry following the introduction of a Bt toxin gene

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, Timothy J [ORNL; Davis, M F [National Energy Renewable Laboratory; Tuskan, Gerald A [ORNL; Payne, M M [Boise Cascade LLC; Meilan, R [Purdue University

    2006-01-01

    Unintended changes in plant physiology, anatomy and metabolism as a result of genetic engineering are a concern as more transgenic plants are commercially deployed in the ecosystem. We compared the cell wall chemical composition of three Populus lines (Populus trichocarpa Torr. & A. Gray x Populus trichocarpa Bartr. ex Marsh., Populus trichocarpa x Populus nigra L. and Populus deltoides x Populus nigra) genetically modified to express the Cry3A or Cry3B2 protein of Bacillus thuringiensis (Bt) with the cell wall chemistry of non-transformed isogenic control lines. Three genetically modified clones, each represented by 10 independent transgenic lines, were analyzed by pyrolysis molecular beam mass spectrometry, gas chromatography/mass spectrometry and traditional wet chemical analytical methods to assess changes in cell wall composition. Based on the outcome of these techniques, there were no comprehensive differences in chemical composition between the transgenic and control lines for any of the studied clones.

  7. Variation in genomic methylation in natural populations of chinese white poplar.

    Directory of Open Access Journals (Sweden)

    Kaifeng Ma

    Full Text Available BACKGROUND: It is thought that methylcytosine can be inherited through meiosis and mitosis, and that epigenetic variation may be under genetic control or correlation may be caused by neutral drift. However, DNA methylation also varies with tissue, developmental stage, and environmental factors. Eliminating these factors, we analyzed the levels and patterns, diversity and structure of genomic methylcytosine in the xylem of nine natural populations of Chinese white poplar. PRINCIPAL FINDINGS: On average, the relative total methylation and non-methylation levels were approximately 26.567% and 42.708% (P<0.001, respectively. Also, the relative CNG methylation level was higher than the relative CG methylation level. The relative methylation/non-methylation levels were significantly different among the nine natural populations. Epigenetic diversity ranged from 0.811 (Gansu to 1.211 (Shaanxi, and the coefficients of epigenetic differentiation (GST  = 0.159 were assessed by Shannon's diversity index. Co-inertia analysis indicated that methylation-sensitive polymorphism (MSP and genomic methylation pattern (CG-CNG profiles gave similar distributions. Using a between-group eigen analysis, we found that the Hebei and Shanxi populations were independent of each other, but the Henan population intersected with the other populations, to some degree. CONCLUSIONS: Genome methylation in Populus tomentosa presented tissue-specific characteristics and the relative 5'-CCGG methylation level was higher in xylem than in leaves. Meanwhile, the genome methylation in the xylem shows great epigenetic variation and could be fixed and inherited though mitosis. Compared to genetic structure, data suggest that epigenetic and genetic variation do not completely match.

  8. Dissecting nutrient-related co-expression networks in phosphate starved poplars

    Science.gov (United States)

    Kavka, Mareike; Polle, Andrea

    2017-01-01

    Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term “response to P starvation” was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category “galactolipid synthesis”. Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating “DNA modification” and “cell division” as well as “defense” and “RNA modification” and “signaling” were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented

  9. Genome-Wide Analysis of WOX Gene Family in Rice,Sorghum,Maize,Arabidopsis and Poplar

    Institute of Scientific and Technical Information of China (English)

    Xin