WorldWideScience

Sample records for hybrid poplar cloning

  1. Seedling test and genetic analysis of white poplar hybrid clones

    Institute of Scientific and Technical Information of China (English)

    LI Bo; JIANG Xi-bing; ZHANG You-hui; ZHANG Zhi-yi; LI Shan-wen; AN Xin-min

    2008-01-01

    Cross breeding strategies are very efficient for gaining new and superior genotypes. Ninety-eight new white poplar hybrid clones produced from 12 cross combinations within the Section Leuce Duby were studied using genetic analysis and seedling tests. We exploited the wide variation that exists in this population and found that the differences among diameter at breast height (DBH), root collar diameter (RCD) and height (H) were statistically extremely significant. The repeatability of clones of these measured traits ranged from 0.947-0.967, which indicated that these Waits were strongly controlled by genetic factors. Based on multiple comparisons, a total of 25 clones showed better performance in growth than the conlrol cultivar. These 25 clones were from six different cross combinations, which can guarantee a larger genetic background for future new clone promotion projects. This study provides a simple overview on these clones and can guide us to carry out subsequent selection plans.

  2. Variation in the Growth Traits and Wood Properties of Hybrid White Poplar Clones

    Directory of Open Access Journals (Sweden)

    Huandi Ma

    2015-04-01

    Full Text Available The physical and chemical properties of poplar clones largely determine their suitability for different applications. The main objective of this study was to investigate clonal variation in four hybrid poplar clones grown at three sites in North China and identify the superior clone. Study materials were collected from four clones of hybrid white poplar: Populus tomentosa “LM50”, used as the control; two clones (Yiyang-1 and Yiyang-2, new hybrids of (P. tomentosa × P. bolleana × P. tomentosa “Truncata”; and Yiyang-3, a new hybrid of (P. tomentosa × P. bolleana × P. tomentosa “LM50”. In total, 192 individuals from four hybrid clones were randomly chosen for sampling. The growth traits of four 7-year-old clones were examined at three sites. We also measured the wood properties of four 6-year-old clones at the Fengfeng nursery. Variation in the growth traits and the ranking of stem volumes differed among sites. Fiber traits and wood chemical components showed significant interclonal variation. With regard to the comprehensive growth rate, cellulose content, holocellulose content, and fiber traits, Yiyang-1 exhibited the best performance among the four hybrid poplar clones, indicating its utility as a raw material for pulp and papermaking.

  3. PROPERTIES OF PARALLEL STRAND LUMBER FROM TWO HYBRID POPLAR CLONES USING MELAMINE UREA FORMALDEHYDE ADHESIVE

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt,

    2012-06-01

    Full Text Available Experimental parallel strand lumbers (PSLs were manufactured from fast growing rotary peeled I-214 (Populus x euramericana and I-77/51 (Populus deltoides hybrid poplar clones veneer strands with melamine urea formaldehyde (MUF adhesive. The results showed that hybrid poplar clones can be used in PSLs manufacturing. Physical and mechanical properties of PSLs were affected by clone types. The I-77/51 clone had better properties and was found to be more suitable for PSLs manufacturing compared to the I-214 clone. PSLs properties were higher than those of solid woods (SWs and laminated veneer lumbers (LVLs of the same poplar clones. This increase may be due to materials, densification as a result of high pressure use, and the manufacturing techniques. The degree of contribution of SWs properties to the PSLs properties was lower than that of LVLs. This indicated that factors other than SWs properties played more important roles in the strength increase of PSLs.

  4. SUITABILITY OF THREE HYBRID POPLAR CLONES FOR LAMINATED VENEER LUMBER MANUFACTURING USING MELAMINE UREA FORMALDEHYDE ADHESIVE

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt

    2010-07-01

    Full Text Available Experimental laminated veneer lumbers (LVLs from rotary peeled I-214 (Populus x Euramericana and two Populus deltoides I-77/51 and S.307-26 fast growing hybrid poplar clones were manufactured with a melamine urea formaldehyde (MUF adhesive successfully. Two Populus deltoides clones that are grown in Turkey were used for the first time in LVLs manufacturing. The results showed that clone types affected physical and mechanical properties of LVLs. Populus deltoides clones had better physical and mechanical properties compared to Populus x Euramericana clone due to their higher density and fiber length values. S.307-26 clone had the highest and I-214 had the lowest properties among three hybrid poplar clones. The physical and mechanical properties of LVLs were higher than those of solid woods. This increase may be due to compaction factor (densification, manufacturing techniques, and the use of adhesives. The degree of contribution of solid wood properties to the LVLs’ properties was explained by using a contribution factor. Two Populus deltoides clones were found to be more suitable for LVLs manufacturing compared to Populus x Euramericana clone.

  5. Clone-Specific Response in Leaf Nitrate Reductase Activity among Unrelated Hybrid Poplars in relation to Soil Nitrate Availability

    Directory of Open Access Journals (Sweden)

    Julien Fortier

    2012-01-01

    Full Text Available In this field study, we used in vivo NRA activity in hybrid poplar leaves as an indicator of NO3- assimilation for five unrelated hybrid poplar clones. We also examined if leaf NRA of these clones is influenced to the same extent by different levels of soil NO3- availability in two riparian agroforestry systems located in pastures. Leaf NRA differences of more than one order of magnitude were observed between the clones, clearly showing their different abilities to reduce NO3- in leaves. Clone DxN-3570, a P. deltoides x P. nigra hybrid (Aigeiros intrasectional hybrid, always had the highest leaf NRA during the field assays. This clone was also the only one to increase its leaf NRA with increasing NO3- soil availability, which resulted in a significant Site x Clone interaction and a positive relationship between soil NO3- concentration and NRA. All of the four other clones studied had one or both parental species from the Tacamahaca section. They had relatively low leaf NRA and they did not increase their leaf NRA when grown on the NO3- rich site. These results provide evidence that NO3- assimilation in leaves varies widely among hybrid poplars of different parentages, suggesting potential preferences for N forms.

  6. Histological characterization of gell formation and lesion development on leaves of Phaseolus vulgaris and clones of hybrid poplar after exposure to simulated sulfate acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Dacosta, F.

    1978-01-01

    Histological investigations with leaves of several hybrid poplar clones illustrate gall formations in response to simulated acid rain that result from hyperplasia and hypertrophy of mesophyll cells. Similar experiments with phaseolus vulgaris and clones of hybrid poplar show a sequence of events that follow a general pattern of adaxial epidermis destruction, injury to palisade parenchyma and eventual destruction of more interior tissues after continued exposure to one, six-minute, rain event daily. Results show that most (95%) lesions on Phaseolus vulgaris developed near trichomes and stomata after exposure to the simulated acid rain.

  7. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron

    Science.gov (United States)

    Wetland mesocosms were constructed to assess two salt- and B-tolerant hybrid poplar clones (Populus trichocarpa ×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se). In addition, a hydroponic experiment was performed to test the B tolerance and B...

  8. DIMENSIONAL STABILITY OF METHYL METHACRYLATE HARDENED HYBRID POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Wei-Dan Ding,

    2011-11-01

    Full Text Available This study examines the dimensional stability of fast-growing poplar clones wood after treatment by impregnation with methyl methacrylate (MMA. Six hybrid poplar clones from one plantation in Quebec were sampled. The effects of hardening with MMA on density as well as longitudinal, radial, tangential, and volumetric swelling properties (S, water uptake capacity (D, anti-swelling efficiency (ASE, and water repellent efficiency (WRE after soaking were investigated. Hardening treatment increased the density of all poplar woods by 1.2 to 1.6 and decreased the inner water migration rate during soaking. S and D values of hardened woods were significantly lower than those of controls, depending on the clone type. ASE and WRE values suggested that incorporating MMA effectively improved the dimensional stability of poplar wood at the early soaking stage, but was less effective in the long term.

  9. Tree and stand water fluxes of hybrid poplar clone (Populus nigra x P. maximowiczii) in short rotation coppice culture

    Science.gov (United States)

    Fischer, M.; Trnka, M.; Kucera, J.; Zalud, Z.

    2010-09-01

    This study reports on evapotranspiration and tree water use in short rotation coppice culture of hybrid poplar (Populus nigra x P. maximowiczii) for biomass energy in the Czech Republic. The high density poplar plantation (10 000 trees per ha) was established in 2003 on arable land in Czech-Moravian Highland (49°32´ N, 16°15´ E, 530 m a.s.l.) and has been coppiced in rotation period of 7 years. Firstly, evapotranspiration of the stand has been estimated by applying the Bowen ratio-energy budget method, which is considered as reliable, robust, quite simple and inexpensive technique with comparable results to eddy covariance and lysimeters. The gaps in evapotranspiration diurnal patterns caused by limitation of the bowen ratio method were filled with simple linear regression model based on relation between potential and actual evapotranspiration with regard to soil water availability and leaf area index and thus the daily, monthly and seasonal totals could be calculated. The amount of evapotranspiration during the growing season 2009 (1 March - 31 October) was 593 mm with highest monthly total 116 mm in June. Mean daily water loss over the season reached 2.43 mm per day. During the hot summer day, the maximal value 5.73 mm per day, which presented 89 % of potential evapotranspiration calculated by Penman equation, was recorded with a peak rate 0.94 mm per hour. Secondly, the transpiration was measured by sap flow tissue heat balance techniques on four individual trees with greatest stem diameters (11 - 12 cm d.b.h.) and height of 12 - 12.5 m. Relatively high transpiration values by the poplars were found during the measured part of growing season (18 June - 31 October), with maximum and mean daily transpiration of 44.41 dm3 and 16.69 dm3 per day, respectively. The seasonal transpiration of the most vigorous from the investigated individuals amounted 2542 dm3. Because in this study we didńt evaluate the transpiration of thinner trees (technical features of sap

  10. Effects of in vitro ozone treatment on proteolysis of purified rubisco from two hybrid poplar clones. [Populus maximowizii x trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Landry, L.G.; Pell, E.J. (Pennsylvania State Univ., University Park (USA))

    1989-04-01

    Plants exposed to ozone (O{sub 3}) exhibited symptoms of premature senescence, including early decline in quantity of rubisco. O{sub 3}-induced oxidation may cause changes in protein conformation of rubisco, resulting in enhanced proteolysis. To test this hypothesis, rubisco was purified from two hybrid clones of Populus maximowizii x trichocarpa, clones 388 and 245, and treated in vitro with O{sub 3} or air. Rubisco was then challenged with bromelain, papain, chymotrypsin, carboxypeptidase A, or endoproteinase Glu-C and percent degradation measured by SDS-PAGE and densitometric scanning of the gels. Degree of rubisco sensitivity to oxidation may be related to available sulfhydryl (SH) groups on the protein. The number of SH groups in native and denatured rubisco was measured for purified rubisco of both clones by DTNB titration method. The relationship between sensitivity to proteolysis and number and availability of SH groups is discussed.

  11. Responses of hybrid poplar clones and red maple seedlings to ambient O(3) under differing light within a mixed hardwood forest.

    Science.gov (United States)

    Wei, C; Skelly, J M; Pennypacker, S P; Ferdinand, J A; Savage, J E; Stevenson, R E; Davis, D D

    2004-07-01

    The responses of ramets of hybrid poplar (Populus spp.) (HP) clones NE388 and NE359, and seedlings of red maple (Acer rubrum, L.) to ambient ozone (O(3)) were studied during May-September of 2000 and 2001 under natural forest conditions and differing natural sunlight exposures (sun, partial shade and full shade). Ambient O(3) concentrations at the study site reached hourly peaks of 109 and 98 ppb in 2000 and 2001, respectively. Monthly 12-h average O(3) concentrations ranged from 32.3 to 52.9 ppb. Weekly 12-h average photosynthetically active radiation (PAR) within the sun, partial shade and full shade plots ranged from 200 to 750, 50 to 180, and 25 to 75 micromol m(-2) s(-1), respectively. Ambient O(3) exposure induced visible foliar symptoms on HP NE388 and NE359 in both growing seasons, with more severe injury observed on NE388 than on NE359. Slight foliar symptoms were observed on red maple seedlings during the 2001 growing season. Percentage of total leaf area affected (%LAA) was positively correlated with cumulative O(3) exposures. More severe foliar injury was observed on plants grown within the full shade and partial shade plots than those observed on plants grown within the sun plot. Lower light availability within the partial shade and full shade plots significantly decreased net photosynthetic rate (Pn) and stomatal conductance (g(wv)). The reductions in Pn were greater than reductions in g(wv), which resulted in greater O(3) uptake per unit Pn in plants grown within the partial shade and full shade plots. Greater O(3) uptake per unit Pn was consistently associated with more severe visible foliar injury in all species and/or clones regardless of differences in shade tolerance. These studies suggest that plant physiological responses to O(3) exposure are likely complicated due to multiple factors under natural forest conditions.

  12. Dinamica şi caracteristicile creşterii a şase clone de plop hibrid pe parcursul unui ciclu de producţie într-o plantație comparativă din Depresiunea Rădăuţi [The dynamics and growth characteristics of six hybrid poplar clones during a production cycle in a comparative plantation from Rădăuți Depression

    Directory of Open Access Journals (Sweden)

    Dănilă Iulian

    2015-08-01

    Full Text Available The poplar (Populus spp. plays an important role in worldwide forest economy, responding to the necessities of obtaining high biomass production in a short time. Short rotation forests (SRF are developing continuously in Romania. Several studies have been undertaken to identify the clones with high productivity and suitable technologies. The aim of this study was to register the annual increments in diameter, height and volume in an experimental poplar crops with a short-term rotation of 5 years. The poplar cultures are composed from 6 types of hybrid poplar clones (AF2, AF6, Monviso, A4A, Pannonia and Max4 with a density of 2667 trees ha-1. The research results show a clear differentiation among clones’ increments. The highest increments were obtained with AF2 and AF6 clones in five years, with almost 0.038 m3 an-1. The lowest increment was observed for Max4 clone with 0.028 m3.

  13. Field test of new poplar clone in Shangdong Province

    Institute of Scientific and Technical Information of China (English)

    QIN Guang-hua; JIANG Yue-zhong; QIAO Yu-ling; B.Nottola

    2003-01-01

    Poplar is one of the dominant tree species for the establishment of fast growing plantations in Shandong Province. Eighteen poplar clones belonging to Populus aigeiros section were introduced from Italy, Turkey and domestic regions. Populus deltoides cv. 'Lux' I-69/55 (I-69), which was widely used in Shandong Province, China, was taken as control clone (I-69). Following a randomized complete block design, seedling test and controlled afforestation trials were carried out at Juxian County, Caoxian County and Laiyang City. The results showed that the poplar clone (Populus × euramericana cv. '102/74'), namely 102/74, performed well both in terms of adaptability and growth rate. The mean height of 13.9 m (H), diameter at breast height of 18.0 cm (DBH) and volume growth of 0.1445 m3 (V) were 2.2 %, 21.6% and 52.9 % higher than those of I-69 (CK), respectively, at the age of 5 years at three experimental sites. Moreover, the clone can be propagated easily and showed high resistance to poplar disease, pest as well as salinity and had longer growing period. Furthermore, wood basic density and fiber length of new poplar clone (102/74) were as same as I-69 (CK). It was concluded that the selected clone (102/74) was ideal for the establishment of fast-growing poplar plantations, especially for the pulpwood plantations in Shandong Province.

  14. Analysis of genetic and environmental effects on hybrid poplar rooting in Central and Northern Minnesota, USA

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Don Riemenschneider; Edmund Bauer

    2000-01-01

    We studied genetic and environmental effects on adventitious root initiation and growth because rooting is biologically prerequisite to the establishment of hybrid poplar plantations. Six clones from two pedigrees (pure Populus deltoides "cottonwoods" and P. deltoides x P. maximowiczii hybrids) were...

  15. Use of Sulfometuron in Hybrid Poplar Energy Plantations

    Science.gov (United States)

    Daniel A. Netzer

    1995-01-01

    Reports that low rates of sulfometuron, 70 grams per hactare (1 ounce product or 0.75 ounces active ingredient per acre), applied when hybrid poplars are completely dormant, can provide season-long weed control and increase hybrid poplar growth. If plantation access is not possible before growth activity begins in the spring, late fall application of this herbicide...

  16. Biomass and Volume Yield in Mature Hybrid Poplar Plantations on Temperate Abandoned Farmland

    Directory of Open Access Journals (Sweden)

    Benoit Truax

    2014-12-01

    Full Text Available In this study, we developed clone-specific allometric relationships, with the objective of calculating volume and biomass production after 13 years in 8 poplar plantations, located across an environmental gradient, and composed of 5 unrelated hybrid poplar clones. Allometry was found to be very similar for clones MxB-915311, NxM-3729 and DNxM-915508, all having P. maximoviczii parentage. Clones DxN-3570 and TxD-3230 also had a similar allometry; for a given DBH they have a lower stem volume, stem biomass and branch biomass than P. maximoviczii hybrids. Strong Site × Clone interactions were observed for volume and woody biomass growth, with DxN and TxD hybrids only productive on low elevation fertile sites, whereas P. maximovizcii hybrids were also very productive on higher elevation sites with moderate to high soil fertility. At the site level (5 clones mean, yield reached 27.5 and 22.7 m3/ha/yr. on the two best sites (high fertility and low elevation, confirming the great potential of southern Québec (Canada for poplar culture. The productivity gap between the most and least productive sites has widened from year 8 to year 13, highlighting the need for high quality abandoned farmland site selection in terms of climate and soil fertility. Although clone selection could optimize yield across the studied environmental gradient, it cannot fully compensate for inadequate site selection.

  17. Cadmium phytoextraction potential of poplar clones (Populus spp.)

    Energy Technology Data Exchange (ETDEWEB)

    Pilipovic, A.; Orlovic, S.; Petrovic, N. [Faculty of Agriculture, Inst. of Lowland Forestry and Environment, Novi Sad (Czechoslovakia); Nikolic, N.; Krstic, B. [Faculty of Natural Sciences, Dept. of Biology and Ecology, Novi Sad (Czechoslovakia)

    2005-04-01

    Biomass production, leaf number and area, photosynthetic and dark respiration rates, leaf concentration of photosynthetic pigments, nitrate reductase activity, as well as cadmium concentrations in leaves, stem, and roots were measured in poplar clones PE 4/68, B-229, 665, and 45/51. Plants were grown hydroponically under controlled conditions and treated with two different cadmium (Cd) concentrations (10{sup -5} and 10{sup -7} M) in the same background solution (Hoagland's solution). The presence of Cd did not cause serious disturbance of growth and physiological parameters in the studied poplar clones. Cd concentrations in plant tissues reflected external concentrations. In treated plants, root contents increased from 38.57 to 511.51 ppm, leaf contents from 0.91 to 7.50, while stem contents ranged from 1.37 to 9.50 ppm. (orig.)

  18. Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen.

    Science.gov (United States)

    Schreiber, Stefan G; Hacke, Uwe G; Hamann, Andreas; Thomas, Barb R

    2011-04-01

    Intensive forestry systems and breeding programs often include either native aspen or hybrid poplar clones, and performance and trait evaluations are mostly made within these two groups. Here, we assessed how traits with potential adaptive value varied within and across these two plant groups. Variation in nine hydraulic and wood anatomical traits as well as growth were measured in selected aspen and hybrid poplar genotypes grown at a boreal planting site in Alberta, Canada. Variability in these traits was statistically evaluated based on a blocked experimental design. We found that genotypes of trembling aspen were more resistant to cavitation, exhibited more negative water potentials, and were more water-use-efficient than hybrid poplars. Under the boreal field test conditions, which included major regional droughts, height growth was negatively correlated with branch vessel diameter (Dv ) in both aspen and hybrid poplars and differences in Dv were highly conserved in aspen trees from different provenances. Differences between the hybrid poplars and aspen provenances suggest that these two groups employ different water-use strategies. The data also suggest that vessel diameter may be a key trait in evaluating growth performance in a boreal environment.

  19. The arbuscular mycorrhizal status of poplar clones selected for phytoremediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, T.; Radimszky, L.; Nemeth, T. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The aim of this work was to study the colonization of indigenous arbuscular mycorrhizal fungi (AMF) species in fine-roots of poplar clones. Roots of 7 poplar clones were sampled from a 1-year-old trial established at an industrial site strongly polluted with heavy metals at Balatonfuezfoe, Hungary. The poplar clones have shown variable degrees of colonization by AMF, suggesting differential host susceptibility or mycorrhizal dependency. After outplanting the percentage of poplar survival was strongly correlated with the frequency of AMF infection. Two clones that survived at the lowest ratio after outplanting had not been colonized by AMF in contrast to those which survived to a much higher extent. (orig.)

  20. Comparing growth and fine root distribution in monocultures and mixed plantations of hybrid poplar and spruce

    Institute of Scientific and Technical Information of China (English)

    Lahcen Benomar; Annie DesRochers; Guy R.Larocque

    2013-01-01

    Disease prevention,biodiversity,productivity improvement and ecological considerations are all factors that contribute to increasing interest in mixed plantations.The objective of this study was to evaluate early growth and productivity of two hybrid poplar clones,P.balsamifera x trichocarpa (PBT) and P.maximowiczii x balsamifera (PMB),one improved family of Norway spruce (Picea glauca (PA)) and one improved family of white spruce (Picea abies (PG)) growing under different spacings in monocultures and mixed plots.The plantations were established in 2003 in Abitibi-Témiscamingue,Quebec,Canada,in a split plot design with spacing as the whole plot factor (1 × 1 m,3 × 3 m and 5 × 5 m) and mixture treatments as subplot factor (pure:PBT,PMB,PA and PG,and 1:1 mixture PBT:PA,PBT:PG,PMB:PA and PMB:PG).Results showed a beneficial effect of the hybrid poplar-spruce mixture on diameter growth for hybrid poplar clones,but not for the 5 × 5 m spacing because of the relatively young age of the plantations.Diameter growth of the spruces decreased in mixed plantings in the 1 × 1 m,while their height growth increased,resulting in similar aboveground biomass per tree across treatments.Because of the large size differences between spruces and poplars,aboveground biomass in the mixed plantings was generally less than that in pure poplar plots.Leaf nitrogen concentration for the two spruce families and hybrid poplar clone PMB was greater in mixed plots than in monocultures,while leaf nitrogen concentration of clone PBT was similar among mixture treatments.Because of its faster growth rate and greater soil resources demands,clone PMB was the only one showing an increase in leaf N with increased spacing between trees.Fine roots density was greater for both hybrid poplars than spruces.The vertical distribution of fine roots was insensitive to mixture treatment.

  1. Biochar as a substitute for vermiculite in potting mix for hybrid poplar

    Science.gov (United States)

    William L. Headlee; Catherine E. Brewer; Richard B. Hall

    2014-01-01

    The purpose of this study was to evaluate biochar as a substitute for vermiculite in potting mixes for unrooted vegetative cuttings of hybrid poplar as represented by the clone ‘NM6’ (Populus nigra L. × Populus suaveolens Fischer subsp. maximowiczii A. Henry). We compared three treatments (peat moss (control), peat moss mixed with vermiculite, and peat moss mixed with...

  2. Aboveground dendromass allometry of hybrid black poplars for energy crops

    Directory of Open Access Journals (Sweden)

    Tatiana Stankova

    2016-06-01

    Full Text Available Cultivation of energy crops is concerned with estimation of the total lignified biomass (dendromass production, which is based on the plantation density and individual plant dendromass. The main objective of this study was to investigate the allometry of aboveground leafless biomass of juvenile black poplar hybrids (Populus deltoides x P. nigra , traditionally used for timber and cellulose production, and to derive generic allometric models for dendromass prediction, relevant to energy crop cultivation in Bulgaria. The study material comprised a variety of growth sites, tree ages and clones, specific to poplar plantings in Bulgaria. We used three principal quantitative predictors: diameter at breast height, total tree height and mean stand (stock height. The models were not differentiated by clone, because the black poplar hybrids tested were not equally represented in the data, and the inclusion of tree age as a predictor variable seemed unreliable, because of the significant, up to 3 years, variation, which was possible within the narrow age range investigated. We defined the mean stand (stock height as a composite quantitative variable, which reflected the interaction between the time since planting (age, site quality and the intrinsic growth potential. Stepwise and backward multiple regression analyses were applied to these quantitative variables and their products and sets of adequacy and goodnessof-fit criteria were used to derive individual biomass models for stem and branches. Then we developed compatible additive systems of models for stem, branch and total lignified biomass in log-transformed form. Finally, the prediction data were back-transformed, applying correction for bias, and were cross-validated. Three systems of generic equations were derived to enable flexible model implementation. Equation system M1 proposes a stem biomass model based on tree and stand heights and stem diameter, and a model for

  3. Aboveground dendromass allometry of hybrid black poplars for energy crops

    Directory of Open Access Journals (Sweden)

    Tatiana Stankova

    2016-06-01

    Full Text Available Cultivation of energy crops is concerned with estimation of the total lignified biomass (dendromass production, which is based on the plantation density and individual plant dendromass. The main objective of this study was to investigate the allometry of aboveground leafless biomass of juvenile black poplar hybrids (Populus deltoides x P. nigra , traditionally used for timber and cellulose production, and to derive generic allometric models for dendromass prediction, relevant to energy crop cultivation in Bulgaria. The study material comprised a variety of growth sites, tree ages and clones, specific to poplar plantings in Bulgaria. We used three principal quantitative predictors: diameter at breast height, total tree height and mean stand (stock height. The models were not differentiated by clone, because the black poplar hybrids tested were not equally represented in the data, and the inclusion of tree age as a predictor variable seemed unreliable, because of the significant, up to 3 years, variation, which was possible within the narrow age range investigated. We defined the mean stand (stock height as a composite quantitative variable, which reflected the interaction between the time since planting (age, site quality and the intrinsic growth potential. Stepwise and backward multiple regression analyses were applied to these quantitative variables and their products and sets of adequacy and goodnessof-fit criteria were used to derive individual biomass models for stem and branches. Then we developed compatible additive systems of models for stem, branch and total lignified biomass in log-transformed form. Finally, the prediction data were back-transformed, applying correction for bias, and were cross-validated. Three systems of generic equations were derived to enable flexible model implementation. Equation system M1 proposes a stem biomass model based on tree and stand heights and stem diameter, and a model for

  4. Co-pyrolysis of different type coals with hybrid poplar

    Energy Technology Data Exchange (ETDEWEB)

    Hanzade Haykiri-Acma; Serdar Yaman [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

    2007-07-01

    The aim of this study is to investigate the co-pyrolysis characteristics of different rank coals such as peat, lignite, and anthracite in the presence of hybrid poplar. For this purpose, non-isothermal thermogravimetry technique was applied up to 900{sup o}C with a heating rate of 40{sup o}C/min under dynamic nitrogen flow of 40 mL/min. Hybrid poplar was added into each coal as much as 10 wt % of the coal sample and the experiments were repeated. Pyrolytic properties such as the char yields, gasification rates, and reactivity of the original samples and the blends were compared from the thermal analysis data, and interpreted. Addition of hybrid poplar to coal had some influences on the pyrolytic properties of coals that might be explained by the synergistic interaction approach. 15 refs., 3 figs., 4 tabs.

  5. Contribution factor of wood properties of three poplar clones to strength of laminated veneer lumber

    Science.gov (United States)

    Fucheng Bao; Feng Fu; Elvin Choong; Chung-Yun Hse

    2001-01-01

    The term "Contribution Factor" (c.) was introduced in this paper to indicate the contribution ratio of solid wood properties to laminated veneer lumber (LVL) strength. Three poplar (Populus sp.) clones were studied, and the results showed that poplar with good solid wood properties has high Contribution Factor. The average Contribution...

  6. Biomass and nitrogen dynamics in an irrigated hybrid poplar plantation

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, R.A.

    1985-01-01

    A 3-year study measured the effects of ground cover treatments and nitrogen fertilization on biomass and nitrogen dynamics in an irrigated hybrid poplar (Populus deltoides Bartr. x P. trichocarpa Torr. and Gray, clone NC-9922) plantation in northern Wisconsin. Annually fertilized (112 kg N/ha/yr) and unfertilized plots were either maintained weed-free (bare soil), allowed to revegetate with native weeds, or seeded to birdsfoot trefoil (Lotus corniculatus L.). Trees in bare soil plots responded to fertilization primarily in the third growing season, but total biomass of 3-year-old trees was not increased by annual fertilization. High nitrate-nitrogen concentrations in the soil solution suggested significant leaching in both unfertilized and fertilized bare soil plots in the first growing season, and in fertilized plots the second season. Nitrate-nitrogen concentrations declined sharply in fertilized bare soil plots during the third growing season. Cover crop biomass was greatest in the second year and declined thereafter due to declines in below-ground components. Fertilization increased tree growth in these plots, but cover crop treatments had no effect. Results of this study suggest that, under irrigated conditions, a cover crop can substantially reduce leaching losses of nutrients and serve as a slow-release pool of nitrogen after the trees achieve crown closure. Fertilization is not recommended in these plantations until the second growing season if a cover crop is present and the third growing season if complete weed control is practiced.

  7. Economic investigations of short rotation intensively cultured hybrid poplars

    Science.gov (United States)

    David C. Lothner

    1983-01-01

    The history of the economic analyses is summarized for short rotation intensively cultured hybrid poplar at the North Central Forest Experiment Station. Early break-even analyses with limited data indicated that at a price of $25-30 per dry ton for fiber and low to medium production costs, several systems looked profitable. Later cash flow analyses indicated that two...

  8. Summer is the best time to thin hybrid poplar plantations

    Science.gov (United States)

    Harold F. Ford; Albert G., Jr. Snow

    1954-01-01

    Hybrid poplar plantations are established by planting dormant cuttings in close spacing, usually 4 x 4 feet. They are cultivated during the first growing season to eliminate competition from grasses and weeds. After the first year, the more vigorous trees effectively shade out lower vegetation. But rapid tree growth often makes thinning necessary after 2 or 3 growing...

  9. Ovipositional preference and larval performance of poplar defoliator,Clostera restitura on different poplar clones in north-western India

    Institute of Scientific and Technical Information of China (English)

    Gurmail Singh; K.S. Sangha

    2012-01-01

    We evaluated ten poplar clones (G-3,G-48,L-50/88,L154/84,L-156/89,S7C8,S7C15.WSL-22,WSL-29 and Uday) for ovipositional preference and larval performance of Clostera restitura.Female moths did not show any preference with respect to clones for oviposition.Significant differences were observed for number of eggs laid on different plant parts.C.restitura laid eggs in clusters,preferably on upper surface of leaf and size of the egg cluster varied from 15 to 167 eggs.Clones varied for their relative resistance and susceptibility to C.restitura.L-50/88; L-156/89 were identified as most resistant clone based on minimum leaf consumption,whereas S7C15 was found to be most susceptible clone to C.restitura.In multiple choice experiments,no feeding preference by C restitura larvae was detected amongst different poplar clones.After initial settlement of larvae on a particular clone,the larvae remained confined to that clone and negligible inter-clonal movement was noticed subsequently.The fresh pupal weight was correlated negatively (r =-0.37) with percentage surface leaf area eaten and positively (r =0.47) with length of larval period,measured on different clones.Relationship between percentage leaf area eaten and length of larval period was negative (r =-0.23).Owing to relative resistance of L50/88 and L-156/89 against C.restitura,these clones can be recommended for plantation in defoliator prone areas in north-western India.

  10. Tree-based intercropping systems increase growth and nutrient status of hybrid poplar: a case study from two Northeastern American experiments.

    Science.gov (United States)

    Rivest, David; Cogliastro, Alain; Olivier, Alain

    2009-01-01

    Tree-based intercropping is considered to be a potentially useful land use system for mitigating negative environmental impacts from intensive agriculture such as nutrient leaching and greenhouse gas emissions. Rapid early growth of trees is critical for rapidly accruing environmental benefits provided by the trees. We tested the hypothesis that intercropping increases the growth and nutrient status of young hybrid poplars (Populus spp.), compared to a harrowing alley treatment (i.e., no intercrop), in two experimental sites (St-Rémi and St-Edouard) in southern Québec, Canada. Three hybrid poplar clones (TD3230, Populus trichocarpa x deltoides; DN3308, P. deltoides x nigra; and NM3729, P. nigra x maximowiczii) were planted at St-Rémi. Clones DN3333 and DN3570 were planted at St-Edouard. At St-Rémi, intercropping comprised a 4-year succession of three crops of soybean (Glycine max (L.) Merr.) and barley (Hordeum vulgare L.). At St-Edouard, intercropping comprised a 3-year succession of buckwheat (Fagopyrum esculentum Moench), winter rye (Secale cereale L.), and winter wheat (Triticum aestivum L.). At St-Rémi, four years after treatment began, leafless aboveground biomass of hybrid poplars in the intercropping treatment was 37% higher compared to that in the harrowing treatment. At St-Edouard, after the third growing season, leafless aboveground biomass of hybrid poplars in the intercropping treatment was significantly higher by 40%. Vector analysis of foliar nutrient concentrations and comparison with critical concentration values showed that N (both sites) and K (St-Edouard) were the most limiting nutrients. Hybrid poplar clones responded similarly to treatments, with no consistent differences in tree growth observed between clones. We conclude that tree-based intercropping systems may offer an effective means of improving the early growth of hybrid poplars planted to provide both environmental services and high-value timber.

  11. Effects of apical meristem loss on sylleptic branching and growth of hybrid poplar

    Energy Technology Data Exchange (ETDEWEB)

    Zeleznik, Joseph D. [North Dakota State University, Fargo, ND (United States). Plant Sciences Department

    2007-07-15

    The effects of apical meristem loss on the growth and development of hybrid poplar trees was investigated. This was done by clipping back either the apical meristem alone (dividing cells), or the apical meristem plus a small amount of additional stem tissue (expanding cells, <1 cm), at various times during the first growing season. Two clones (NM6-nonsylleptic habit, and DN34-slightly sylleptic habit) were tested at close spacing (0.6 m) in the nursery. Clipping generally increased the number of sylleptic branches formed. Clipping 69 days after planting resulted in the largest number of sylleptic branches while clipping 4 weeks later gave no increase in syllepsis. Clipping temporarily reduced height growth of both clones but total height at the end of the first growing season was not affected by any treatment. There were some slight differences in growth during the second growing season; despite these differences, total stem biomass and total tree biomass after 2 years were not affected by temporary loss of the apical meristem in the first growing season. Results suggest that death or removal of hybrid poplar apical meristems by tip borers or ungulates has no long-term effects on aboveground growth as measured by height or biomass. (author)

  12. Hybrid poplar plantations are suitable habitat for reintroduced forest herbs with conservation status.

    Science.gov (United States)

    Boothroyd-Roberts, Kathleen; Gagnon, Daniel; Truax, Benoit

    2013-01-01

    Plantations of fast-growing tree species may be of use in conservation by accelerating the restoration of forest habitat on abandoned farmland and increasing connectivity in fragmented landscapes. The objective of this study was to determine if hybrid poplar plantations can be suitable habitats for the reintroduction of native forest plant species and, if so, which abiotic factors predict successful reintroduction. Four species of forest herb species (Trillium grandiflorum, Sanguinaria canadensis, Maianthemum racemosum, Asarum canadense), of which three have legal conservation status, were transplanted into experimental plantations of two hybrid poplar clones and nearby second-growth woodlots at six sites in southern Quebec, Canada. The transplanted individuals were protected from deer browsing with exclusion cages. After two years, the plant responses of all four species were stable or increased over two years in both types of hybrid poplar plantations. Sanguinaria showed a better response in the plantations than in the woodlots, preferring the rich post-agricultural soils of the plantations with low C:N ratios. Asarum and Maianthemum showed no significant difference between stand types, while Trillium grew better in the woodlots than in the plantations. Much of the variability in the response of the latter three species was unexplained by the measured environmental variables. These results suggest that certain forest herb species can be reintroduced as juvenile plants into plantations, knowing that their spontaneous recolonization is often limited by dispersal and/or seedling establishment. Plantations could also contribute to the conservation of biodiversity by providing an environment for the cultivation of forest herb species as an alternative to their destructive harvest from natural populations.

  13. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling.

    Science.gov (United States)

    Barchet, Genoa L H; Dauwe, Rebecca; Guy, Robert D; Schroeder, William R; Soolanayakanahally, Raju Y; Campbell, Malcolm M; Mansfield, Shawn D

    2014-11-01

    Drought stress is perhaps the most commonly encountered abiotic stress plants experience in the natural environment, and it is one of the most important factors limiting plant productivity. Here, we employed untargeted metabolite profiling to examine four drought-stressed hybrid poplar (Populus spp.) genotypes for their metabolite content, using gas chromatography coupled to mass spectrometry. The primary objective of these analyses was to characterize the metabolite profile of poplar trees to assess relative drought resistance and to investigate the underlying biochemical mechanisms employed by the genotypes to combat drought. Metabolite profiling identified key metabolites that increased or decreased in relative abundance upon exposure to drought stress. Overall, amino acids, the antioxidant phenolic compounds catechin and kaempferol, as well as the osmolytes raffinose and galactinol exhibited increased abundance under drought stress, whereas metabolites involved in photorespiration, redox regulation and carbon fixation showed decreased abundance under drought stress. One clone in particular, Okanese, displayed unique responses to the imposed drought conditions. This clone was found to have higher leaf water potential, but lower growth rate relative to the other clones tested. Okanese also had lower accumulation of osmolytes such as raffinose, galactinol and proline, but higher overall levels of antioxidants such as catechin and dehydroascorbic acid. As such, it was proposed that osmotic adjustment as a mechanism for drought avoidance in this clone is not as well developed in comparison with the other clones investigated in this study, and that a possible alternative mechanism for the enhanced drought avoidance displayed by Okanese may be due to differential allocation of resources or better retention of water.

  14. Dinamica şi caracteristicile creşterii a şase clone de plop hibrid pe parcursul unui ciclu de producţie într-o plantație comparativă din Depresiunea Rădăuţi [The dynamics and growth characteristics of six hybrid poplar clones during a production cycle in a comparative plantation from Rădăuți Depression

    OpenAIRE

    Dănilă Iulian; Avăcăriței Daniel; Savin Alexei; Roibu Cătălin Constantin; Bouriaud Olivier; Duduman Mihai-Leonard; Bouriaud Laura

    2015-01-01

    The poplar (Populus spp.) plays an important role in worldwide forest economy, responding to the necessities of obtaining high biomass production in a short time. Short rotation forests (SRF) are developing continuously in Romania. Several studies have been undertaken to identify the clones with high productivity and suitable technologies. The aim of this study was to register the annual increments in diameter, height and volume in an experimental poplar crops with a short-term rotation of...

  15. Effects of Cutting Density on Growth,Yield and Quality of Poplar Clone Seedlings

    Institute of Scientific and Technical Information of China (English)

    Fang Shengzuo; Tian Ye; Yuan Fayin

    2006-01-01

    In order to identify the optimum cutting density for producing the highest number of plantable seedlings of poplar clones,a split-plot randomized block design was used to establish four cutting densities in plots.Based on data on the survival,leaf area,seedling height,caliper,and biomass of 1-year-old seedlings of clones Nanlin-95,Nanlin-895,Nanlin-1388 and NL-80351,the growth characteristics and seedling quality under four cutting densities were analyzed.Results indicated that the leaf area,stern and leaf biomass,and caliper of seedlings of all four poplar clones increased with the decrease in cutting density.Leaf area index reached its highest level at the spacing of 40 cm×40 cm,while the aboveground biomass of the seedling on an area basis increased as the cutting density increased.Seedling quality at low cutting density was higher than that at closer cutting density.The quantity of first-grade seedlings (grade Ⅰ) for clones Nanlin-95 and Nanlin-895 was achieved at the spacing of 40 cm×50 cm;for NL-1388 and NL-80351,it was 50 cm×50 cm.According to the seedling quality and the number of plantable seedlings produced,the suggested cutting density for these four poplar clones was 50,000 stems/hm2.

  16. Biomass production and carbon sequestration of a short-rotation forest with different poplar clones in northwest China.

    Science.gov (United States)

    Meifang, Yan; Lu, Wang; Honghui, Ren; Xinshi, Zhang

    2017-05-15

    Short Rotation Forestry (SRF) is of interest as producers of biomass for bio-energy, but also as carbon (C) sinks to mitigate CO2 emission. To investigate biomass production and C sequestration of SRF, ecosystem C stock (including C stored in tree biomass, litter and soil), NPP (net primary productivity), heterotrophic respiration (Rh) and NEP (net ecosystem productivity) of three poplar clone plantations were estimated by repeated field sampling in northwest China. Ecosystem C stock (105.62MgCha(-1)) was significantly lower in PB (P. balsamifera) stand than in PD (P. deltoids) and PE (P.×euramericana) stands (Pplantations all acted as C sinks, averagely absorbing 3.45MgCha(-1) during a year. Our results suggest that clone type is a main factor influencing C sequestration capacity of a plantation, along with determining the amount of biomass yield. The success of poplar plantations as a bio-energy resource largely depends on the selection of hybrid varieties. Copyright © 2017. Published by Elsevier B.V.

  17. Chemical Profiles of Wood Components of Poplar Clones for Their Energy Utilization

    Directory of Open Access Journals (Sweden)

    Danica Kačíková

    2012-12-01

    Full Text Available Selected and tested poplar clones are very suitable biomass resources for various applications such as biofuels, the pulp and paper industry as well as chemicals production. In this study, we determined the content of lignin, cellulose, holocellulose, and extractives, syringyl to guaiacyl (S/G ratio in lignin, and also calculated higher heating values (HHV among eight examined clones of Populus grown on three different experimental sites. The highest lignin content for all the examined sites was determined in ‘I-214’ and ‘Baka 5’ clones, whereas the highest content of extractives was found in ‘Villafranca’ and ‘Baka 5’ clones. The highest S/G ratio for all the examined sites was determined in ‘Villafranca’ and ‘Agathe F’ clones. The chemical profiles of main wood components, extractives, and the S/G ratio in lignin were also influenced by both the experimental site and the clone × site interaction. Higher heating values, derived from calculations based on the contents of lignin and extractives (or lignin only, were in close agreement with the previously published data. The highest heating values were found for ‘Baka 5’ and ‘I-214’ clones. The optimal method of poplar biomass utilization can be chosen on basis of the lignocellulosics chemical composition and the S/G ratio in lignin.

  18. Specific Gravity of Hybrid Poplars in the North-Central Region, USA: Within-Tree Variability and Site × Genotype Effects

    Directory of Open Access Journals (Sweden)

    Jesse A. Randall

    2013-04-01

    Full Text Available Specific gravity is an important consideration for traditional uses of hybrid poplars for pulp and solid wood products, as well as for biofuels and bioenergy production. While specific gravity has been shown to be under strong genetic control and subject to within-tree variability, the role of genotype × environment interactions is poorly understood. Most specific gravity reports are for a limited number of locations, resulting in a lack of information about the interactions between clones and sites over a wide range of climate and soil conditions. The objective of the current study was to characterize the effects of bole position, site, clone, and site × clone interactions for twelve hybrid poplar genotypes grown in Iowa, Minnesota, Wisconsin, and Michigan, USA. Observed specific gravities ranged from 0.267 to 0.495 (mean = 0.352 ± 0.001 for 612 samples taken from 204 trees, with bole position and site × clone interactions having significant effects on specific gravity. Further investigation of the site × clone interactions indicated that environmental conditions related to water stress were key predictors of specific gravity. These data are important for informing genotypic selection and silvicultural management decisions associated with growing hybrid poplars.

  19. Soil Carbon Stocks in Two Hybrid Poplar-Hay Crop Systems in Southern Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Kiara Winans

    2014-08-01

    Full Text Available Tree-based intercropping (TBI systems, consisting of a medium to fast-growing woody species planted in widely-spaced rows with crops cultivated between tree rows, are a potential sink for atmospheric carbon dioxide (CO2. TBI systems contribute to farm income in the long-term by improving soil quality, as indicated by soil carbon (C storage, generating profits from crop plus tree production and potentially through C credit trading. The objectives of the current study were: (1 to evaluate soil C and nitrogen (N stocks in soil depth increments in the 0–30 cm layer between tree rows of nine-year old hybrid poplar-hay intercropping systems, to compare these to C and N stocks in adjacent agricultural systems; and (2 to determine how hay yield, litterfall and percent total light transmittance (PTLT were related to soil C and N stocks between tree rows and in adjacent agricultural systems. The two TBI study sites (St. Edouard and St. Paulin had a hay intercrop with alternating rows of hybrid poplar clones and hardwoods and included an adjacent agricultural system with no trees (i.e., the control plots. Soil C and N stocks were greater in the 0–5 cm depth increment of the TBI system within 1 m of the hardwood row, to the west of the poplar row, compared to the sampling point 1 m east of poplar at St. Edouard (p = 0.02. However, the agricultural system stored more soil C than the nine-year old TBI system in the 20–30 cm and 0–30 cm depth increments. Accumulation of soil C in the 20–30 cm depth increment could be due to tillage-induced burial of non-harvested crop residues at the bottom of the plow-pan. Soil C and N stocks were similar at all depth increments in TBI and agricultural systems at St. Paulin. Soil C and N stocks were not related to hay yield, litterfall and PTLT at St. Paulin, but hay yield and PTLT were significantly correlated (R = 0.87, p < 0.05, n = 21, with lower hay yield in proximity to trees in the TBI system and similar hay

  20. Allometric Biomass, Biomass Expansion Factor and Wood Density Models for the OP42 Hybrid Poplar in Southern Scandinavia

    DEFF Research Database (Denmark)

    Nielsen, Anders Tærø; Nord-Larsen, Thomas; Stupak, Inge

    2015-01-01

    Biomass and biomass expansion factor functions are important in wood resource assessment, especially with regards to bioenergy feedstocks and carbon pools. We sampled 48 poplar trees in seven stands with the purpose of estimating allometric models for predicting biomass of individual tree...... components, stem-to-aboveground biomass expansion factors (BEF) and stem basic densities of the OP42 hybrid poplar clone in southern Scandinavia. Stand age ranged from 3 to 31 years, individual tree diameter at breast height (dbh) from 1.2 to 41 cm and aboveground tree biomass from 0.39 to 670 kg. Models...... for predicting total aboveground leafless, stem and branch biomass included dbh and tree height as predictor variables and explained more than 97 % of the total variation. The BEF was approaching 2.0 for the smallest trees but declined with increasing tree size and stabilized around 1.2 for trees with dbh >10 cm...

  1. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones

    Energy Technology Data Exchange (ETDEWEB)

    Lingua, Guido [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy)], E-mail: guido.lingua@mfn.unipmn.it; Franchin, Cinzia [Dipartimento di Biologia evoluzionistica sperimentale, Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Todeschini, Valeria [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy); Castiglione, Stefano [Dipartimento di Biologia, Universita di Milano, Via Celoria 25, I-20100 Milano (Italy); Biondi, Stefania [Dipartimento di Biologia evoluzionistica sperimentale, Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Burlando, Bruno [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy); Parravicini, Valerio [Dipartimento di Biologia, Universita di Milano, Via Celoria 25, I-20100 Milano (Italy); Torrigiani, Patrizia [Dipartimento di Biologia evoluzionistica sperimentale, Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Berta, Graziella [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' Amedeo Avogadro' , Via Bellini 25/G, I-15100 Alessandria (Italy)

    2008-05-15

    The effects of a high concentration of zinc on two registered clones of poplar (Populus alba Villafranca and Populus nigra Jean Pourtet), inoculated or not with two arbuscular mycorrhizal fungi (Glomus mosseae or Glomus intraradices) before transplanting them into polluted soil, were investigated, with special regard to the extent of root colonization by the fungi, plant growth, metal accumulation in the different plant organs, and leaf polyamine concentration. Zinc accumulation was lower in Jean Pourtet than in Villafranca poplars, and it was mainly translocated to the leaves; the metal inhibited mycorrhizal colonization, compromised plant growth, and, in Villafranca, altered the putrescine profile in the leaves. Most of these effects were reversed or reduced in plants pre-inoculated with G. mosseae. Results indicate that poplars are suitable for phytoremediation purposes, confirming that mycorrhizal fungi can be useful for phytoremediation, and underscore the importance of appropriate combinations of plant genotypes and fungal symbionts. - Inoculation with arbuscular mycorrhizal fungi can improve poplar tolerance to heavy metals in phytoremediation programmes.

  2. Interclonal and within-tree variation in wood properties of poplar clones

    Institute of Scientific and Technical Information of China (English)

    FANGSheng-zuo; YANGWen-zhong

    2003-01-01

    The wood basic density, cellulose content and fiber form were investigated for all sample trees at breast height (1.3m) in seven poplar clones, and at 0 (butt), 5.6, 9.6, 13.6, 17.6, 19.6 and 21.6 m for clone Nanlin-95 and Nanlin-895, respectively,for providing information on variation patterns of wood density, fiber characteristics and holocellulose content within trees and among clones. The results showed that significant variations about wood density, cellulose content, fiber diameter and the ratio of fiber length to diameter existed among poplar clones examined. Variance analysis indicated that there were significant differences in wood basic density, fiber length, fiber diameter and cellulose content among the growth rings, which had an increasing tendency along the direction from pith to bark. The significant differences also existed in wood basic density, fiber length and fiber diameter at different tree height. The mean wood basic density had a general increase trend with increasing height of trees and the lowest was found at the base, while fiber length and fiber diameter had a general decline pattern with increasing height of trees and the biggest value was observed at the height of 5.6 m. Regression analysis indicated that the relationship between examined wood properties and growth ring number (cambial age), and the relationship between examined wood properties and tree height can be described by polynomial functions.

  3. Hybrid poplar and forest soil response to municipal and industrial by-products: a greenhouse study.

    Science.gov (United States)

    Cavaleri, Molly A; Gilmore, Daniel W; Mozaffari, Morteza; Rosen, Carl J; Halbach, Thomas R

    2004-01-01

    Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers.

  4. Transgenic hybrid poplar for sustainable and scalable production of the commodity/specialty chemical, 2-phenylethanol.

    Directory of Open Access Journals (Sweden)

    Michael A Costa

    Full Text Available Fast growing hybrid poplar offers the means for sustainable production of specialty and commodity chemicals, in addition to rapid biomass production for lignocellulosic deconstruction. Herein we describe transformation of fast-growing transgenic hybrid poplar lines to produce 2-phenylethanol, this being an important fragrance, flavor, aroma, and commodity chemical. It is also readily converted into styrene or ethyl benzene, the latter being an important commodity aviation fuel component. Introducing this biochemical pathway into hybrid poplars marks the beginnings of developing a platform for a sustainable chemical delivery system to afford this and other valuable specialty/commodity chemicals at the scale and cost needed. These modified plant lines mainly sequester 2-phenylethanol via carbohydrate and other covalently linked derivatives, thereby providing an additional advantage of effective storage until needed. The future potential of this technology is discussed. MALDI metabolite tissue imaging also established localization of these metabolites in the leaf vasculature.

  5. Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.

    Science.gov (United States)

    Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J

    2007-03-01

    Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of

  6. Plant growth regulators in poplar clones differing in resistance to the fungus Ceratocystis fimbriata Ell. et Haist

    Directory of Open Access Journals (Sweden)

    Jadwiga Stopińska

    2014-02-01

    Full Text Available In poplar clones with different resistance to the fungus Ceratocystis fimbriata growth of shoots, intensity of transpiration and the level of endogenous growth regulators were determined. More resistant clones, Populus 'Robusta' and P. 'PK-136-2' (P. nigra 'Italica': x P. laurifolia had more intensive growth of shoots, higher water content in leaves and a lower intensity of transpiration than the more susceptible clone, - P. 'NE-42' (P. maximowiczi x P. trichocarpa. The leaves of the more resistant clones contained more auxins (IAA and cytokinins, especially zeatin, and less growth inhibitors (ABA than those of the susceptible one. The level of plant growth regulators and/or the relations betweeen them may be responsible for the different poplar resistance to C. fimbriata.

  7. Reduced expression of the SHORT-ROOT gene increases the rates of growth and development in hybrid poplar and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jiehua Wang

    Full Text Available SHORT-ROOT (SHR is a well characterized regulator of cell division and cell fate determination in the Arabidopsis primary root. However, much less is known about the functions of SHR in the aerial parts of the plant. In this work, we cloned SHR gene from Populus trichocarpa (PtSHR1 as an AtSHR ortholog and down-regulated its expression in hybrid poplar (Populus tremula×P. tremuloides Michx-clone T89 in order to determine its physiological functions in shoot development. Sharing a 90% similarity to AtSHR at amino acid level, PtSHR1 was able to complement the Arabidopsis shr mutant. Down regulation of PtSHR1 led to a strong enhancement of primary (height and secondary (girth growth rates in the transgenic poplars. A similar approach in Arabidopsis showed a comparable accelerated growth and development phenotype. Our results suggest that the response to SHR could be dose-dependent and that a partial down-regulation of SHR could lead to enhanced meristem activity and a coordinated acceleration of plant growth in woody species. Therefore, SHR functions in plant growth and development as a regulator of cell division and meristem activity not only in the roots but also in the shoots. Reducing SHR expression in transgenic poplar was shown to lead to significant increases in primary and secondary growth rates. Given the current interest in bioenergy crops, SHR has a broader role as a key regulator of whole plant growth and development and SHR suppression has considerable potential for accelerating biomass accumulation in a variety of species.

  8. Efficient Agrobacterium-Mediated Transformation of Hybrid Poplar Populus davidiana Dode × Populus bollena Lauche

    Directory of Open Access Journals (Sweden)

    Xue Han

    2013-01-01

    Full Text Available Poplar is a model organism for high in vitro regeneration in woody plants. We have chosen a hybrid poplar Populus davidiana Dode × Populus bollena Lauche. By optimizing the Murashige and Skoog medium with (0.3 mg/L 6-benzylaminopurine and (0.08 mg/L naphthaleneacetic acid, we have achieved the highest frequency (90% for shoot regeneration from poplar leaves. It was also important to improve the transformation efficiency of poplar for genetic breeding and other applications. In this study, we found a significant improvement of the transformation frequency by controlling the leaf age. Transformation efficiency was enhanced by optimizing the Agrobacterium concentration (OD600 = 0.8–1.0 and an infection time (20–30 min. According to transmission electron microscopy observations, there were more Agrobacterium invasions in the 30-day-old leaf explants than in 60-day-old and 90-day-old explants. Using the green fluorescent protein (GFP marker, the expression of MD–GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode × P. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants. Our results suggest that younger leaves had higher transformation efficiency (~30% than older leaves (10%.

  9. Interpreting genotype‐by‐environment interaction for biomass production in hybrid poplars under short‐rotation coppice in Mediterranean environments

    National Research Council Canada - National Science Library

    Sixto, Hortensia; Gil, Paula M; Ciria, Pilar; Camps, Francesc; Cañellas, Isabel; Voltas, Jordi

    2016-01-01

    ...‐rotation coppice poplar plantations. Hybrid poplars are grown for biomass production under a wide range of climatic and edaphic conditions, but their adaptive performance in Mediterranean areas remains poorly characterized...

  10. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    Science.gov (United States)

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  11. Evaluating hybrid poplar rooting. I. genotype x environment interactions in three contrasting sites

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Don E. Riemenschneider; Richard B. Hall

    2002-01-01

    We need to learn more about environmental conditions that promote or hinder rooting of unrooted dormant hybrid poplar cuttings. Planting cuttings and recording survival after the growing season is not suitable to keep up with industrial demands for improved stock. This method does not provide information about specific genotype x environment interactions. We know very...

  12. Sapflow of hybrid poplar (Populus nigra L. x P. maximowiczii A. Henry 'NM6') during phytoremediation of landfill leachate

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Don E. Riemenschneider

    2006-01-01

    Poplars are ideal for phytoremediation because of their high water usage, fast growth, and deep root systems. We measured in 2002 and 2003 the sapflow of hybrid poplars (Populus nigra L. x P. maximowiczii A. Henry 'NM6') planted in 1999 for phytoremediation of a landfill in Rhinelander, WI, USA (45.6?N, 89.4?W).

  13. The effect of mycorrhizal inoculation on hybrid poplar fine root dynamics in hydrocarbon contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, J.; Knight, J.D.; Van Rees, K.C.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science

    2006-07-01

    The biological remediation of contaminated soils using plants was discussed. Hybrid poplars are good candidates for phytoremediation because they root deeply, cycle large amounts of water and grow quickly. Their fine root system is pivotal in nutrient and water acquisition. Therefore, in order to maximize the phytoremediation potential, it is important to understand the response of the fine root system. In addition to degrading organic chemicals, ectomycorrhizal (ECM) fungi provide the host with greater access to nutrients. This study determined the relationship between residual soil hydrocarbons and soil properties at a field site. The effects of residual contamination on hybrid poplar fine root dynamics was also examined along with the effect of ectomycorrhizal colonization on hybrid poplar fine root dynamics when grown in diesel contaminated soil under controlled conditions. A minirhizotron camera inside a growth chamber captured images of mycorrhizal inoculation on hybrid poplar fine root production. Walker hybrid poplar seedlings were grown for 12 weeks in a control soil and also in a diesel contaminated soil. Seedlings were also grown in control and diesel contaminated, ectomycorrhizal inoculated soils. The inoculum was a mycorrhizal mix containing Pisolithus tinctorius and Rhizopogon spp. The images showed that colonization by ECM fungi increased hybrid poplar fine root production and aboveground biomass in a diesel contaminated soil compared to non-colonized trees in the same soil. Root:shoot ratios were much higher in the diesel contaminated/non-inoculated treatment than in either of the control soil treatments. Results of phytoremediation in diesel contaminated soil were better in the non-colonized treatment than in the colonized treatment. Both treatments removed more contaminants from the soil than the unplanted control. Much higher quantities of hydrocarbons were found sequestered in the roots from the inoculated treatment than from the non

  14. Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding

    Directory of Open Access Journals (Sweden)

    Douglas Carl J

    2008-01-01

    Full Text Available Abstract Background The genus Populus includes poplars, aspens and cottonwoods, which will be collectively referred to as poplars hereafter unless otherwise specified. Poplars are the dominant tree species in many forest ecosystems in the Northern Hemisphere and are of substantial economic value in plantation forestry. Poplar has been established as a model system for genomics studies of growth, development, and adaptation of woody perennial plants including secondary xylem formation, dormancy, adaptation to local environments, and biotic interactions. Results As part of the poplar genome sequencing project and the development of genomic resources for poplar, we have generated a full-length (FL-cDNA collection using the biotinylated CAP trapper method. We constructed four FLcDNA libraries using RNA from xylem, phloem and cambium, and green shoot tips and leaves from the P. trichocarpa Nisqually-1 genotype, as well as insect-attacked leaves of the P. trichocarpa × P. deltoides hybrid. Following careful selection of candidate cDNA clones, we used a combined strategy of paired end reads and primer walking to generate a set of 4,664 high-accuracy, sequence-verified FLcDNAs, which clustered into 3,990 putative unique genes. Mapping FLcDNAs to the poplar genome sequence combined with BLAST comparisons to previously predicted protein coding sequences in the poplar genome identified 39 FLcDNAs that likely localize to gaps in the current genome sequence assembly. Another 173 FLcDNAs mapped to the genome sequence but were not included among the previously predicted genes in the poplar genome. Comparative sequence analysis against Arabidopsis thaliana and other species in the non-redundant database of GenBank revealed that 11.5% of the poplar FLcDNAs display no significant sequence similarity to other plant proteins. By mapping the poplar FLcDNAs against transcriptome data previously obtained with a 15.5 K cDNA microarray, we identified 153 FLcDNA clones

  15. Diameter structure modeling and the calculation of plantation volume of black poplar clones

    Directory of Open Access Journals (Sweden)

    Andrašev Siniša

    2004-01-01

    Full Text Available A method of diameter structure modeling was applied in the calculation of plantation (stand volume of two black poplar clones in the section Aigeiros (Duby: 618 (Lux and S1-8. Diameter structure modeling by Weibull function makes it possible to calculate the plantation volume by volume line. Based on the comparison of the proposed method with the existing methods, the obtained error of plantation volume was less than 2%. Diameter structure modeling and the calculation of plantation volume by diameter structure model, by the regularity of diameter distribution, enables a better analysis of the production level and assortment structure and it can be used in the construction of yield and increment tables.

  16. Genetic variation of the bud and leaf phenology of seventeen poplar clones in a short rotation coppice culture.

    Science.gov (United States)

    Pellis, A; Laureysens, I; Ceulemans, R

    2004-01-01

    Leaf phenology of 17 poplar ( Populus spp.) clones, encompassing spring phenology, length of growth period and end-of-year phenology, was examined over several years of different rotations. The 17 poplar clones differed in their latitude of origin (45 degrees 30'N to 51 degrees N) and were studied on a short rotation experimental field plantation, situated in Boom (province of Antwerpen, Belgium; 51 degrees 05'N, 04 degrees 22'E). A similar, clear pattern of bud burst was observed during the different years of study for all clones. Clones Columbia River, Fritzi Pauley, Trichobel (Populus trichocarpa) and Balsam Spire (Populus trichocarpa x Populus balsamifera) from 45 degrees 30'N to 49 degrees N reached bud burst (expressed as day of the year or degree day sums) almost every year earlier than clones Wolterson (Populus nigra), Gaver, Gibecq and Primo (Populus deltoides x Populus nigra) (50 degrees N to 51 degrees N). This observation could not be generalised to end-of-season phenology, for which a yearly returning pattern for all clones was lacking. Late bud burst and early leaf fall of some clones (Beaupré, Boelare, IBW1, IBW2, IBW3) was brought about by increasing rust incidence during the years of observation. For these clones, the variability in leaf phenology was reflected in high coefficients of variation among years. The patterns of genetic variation in leaf phenology have implications for short rotation intensive culture forestry and management of natural populations. Moreover, the variation in phenology reported here is relevant with regard to the genetic mapping of poplar.

  17. Comparative Proteomic Analyses of the Hybrid Yellow-Poplar Stigma upon Pollination

    Institute of Scientific and Technical Information of China (English)

    Ming Li; Kun Wang; Pingfang Yang

    2012-01-01

    As basal angiosperm,Liriodendron chinense (Hemsl.) Sarg.and Liriodendron tulipifera Linn.are two species belong to Liriodendron genus.Hybrid yellowpoplar was obtained through crossing between Liriodendron tulipifera Linn.x L.chinense(Hemsl.) Sarg.Although hybrid yellow-poplar was strong in both growth and adaptation,its fruiting rate was as low as its parents.In this study,we profiled the proteome in hybrid yellow-poplar stigma before and after pollination.Comparative analyses of two dimensional gel electrophoresis maps from un-pollinated and pollinated stigmas showed that 30 proteins were increased and 27 proteins decreased after pollination.Functional categorization showed that most of them were metabolism-related,stress response related and protein biosynthesis,degradation and destinationrelated proteins.Also there were some redox-related and cell signaling-related proteins.All these changed proteins might involve in or affect the pollen and stigma interaction in hybrid yellow-poplar.This study will be helpful in understanding the regulation of Liriodendron genus sexual reproduction.

  18. Production potential of 36 poplar clones grown at medium length rotation in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Brauner; Madsen, Palle; Hansen, Jon Kehlet

    2014-01-01

    group's potential for use in Northern Europe and comparable growth conditions. Based on two trials with randomized block designs, 36 clones from 4 species and 5 groups of species hybrids, measurements of height and diameter were used for estimating biomass production for rotation lengths of 5 and 13...

  19. Exploring the Role of Plant Genetics to Enhance Soil Carbon Sequestration in Hybrid Poplar Plantations

    Science.gov (United States)

    Wullschleger, S. D.; Garten, C. T.; Classen, A. T.

    2008-12-01

    Atmospheric CO2 concentrations have increased in recent decades and are projected to increase even further during the coming century. These projections have prompted scientists and policy-makers to consider how plants and soils can be used to stabilize CO2 concentrations. Although storing carbon in terrestrial ecosystems represents an attractive near-term option for mitigating rising atmospheric CO2 concentrations, enhancing the sequestration potential of managed systems will require advancements in understanding the fundamental mechanisms that control rates of carbon transfer and turnover in plants and soils. To address this challenge, a mathematical model was constructed to evaluate how changes in particular plant traits and management practices could affect soil carbon storage beneath hybrid poplar (Populus) plantations. The model was built from four sub-models that describe aboveground biomass, root biomass, soil carbon dynamics, and soil nitrogen transformations for trees growing throughout a user-defined rotation. Simulations could be run over one or multiple rotations. A sensitivity analysis of the model indicated changes in soil carbon storage were affected by variables that could be linked to hybrid poplar traits like rates of aboveground production, partitioning of carbon to coarse and fine roots, and rates of root decomposition. A higher ratio of belowground to aboveground production was especially important and correlated directly with increased soil carbon storage. Faster decomposition rates for coarse and fine dead roots resulted in a greater loss of carbon to the atmosphere as CO2 and less residual organic carbon for transfer to the fast soil carbon pool. Hence, changes in root chemistry that prolonged dead root decomposition rates, a trait that is under potential genetic control, were predicted to increase soil carbon storage via higher soil carbon inputs. Nitrogen limitation of both aboveground biomass production and soil carbon sequestration was

  20. Effect of epiphytes on the extent of necrotic injuries of resistant and susceptible poplar clones infected with Dothichiza populea.

    Science.gov (United States)

    Weyman-Kaczmarkowa, W; Pedziwilk, Z

    2001-01-01

    Poplar cuttings of a resistant clone, Populus 'Grandis', and susceptible clones, Populus nigra 'Italica' and Populus 'Robusta', were infected with the pathogenic fungus Dothichiza populea alone, or with the pathogen and one of five strains of epiphytes antagonistic towards it (in vitro), isolated from poplar bark. The extent of injury was examined for 28 days after infection by determining the length of necrotic patches and their area as expressed in per cent of the total area of a cutting or the area of necrotic injuries caused by the pathogen alone. All the poplar cuttings of both the resistant and susceptible clones became diseased when infected with the pathogen alone. Surprisingly enough, however, the least affected clone was the susceptible P. 'Robusta', in which necrotic injuries covered 28% of the total area, as against 40% and 70% in the resistant P. 'Grandis' and the susceptible P. nigra 'Italica', respectively. When the cuttings were infected simultaneously with Dothichiza populea and its antagonistic epiphytes, the diseased area in the resistant clone diminished by as much as two-thirds, and in the susceptible P nigra 'Italica', by one-third in comparison with the area affected by the pathogen alone. In turn, in the susceptible P. 'Robusta' the introduction of three out of five epiphytes stimulated the growth of the pathogenic fungus producing on average a double increase in the necrotic area. The differences in the response of the pathogen to the presence of epiphytes recorded in the susceptible clones indicate a marked influence of the plant on the nature of interactions between its epiphytic microflora and the pathogen.

  1. Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel?

    Science.gov (United States)

    Guo, Miao; Li, Changsheng; Facciotto, Gianni; Bergante, Sara; Bhatia, Rakesh; Comolli, Roberto; Ferré, Chiara; Murphy, Richard

    2015-01-01

    Environmental issues, e.g. climate change, fossil resource depletion have triggered ambitious national/regional policies to develop biofuel and bioenergy roles within the overall energy portfolio to achieve decarbonising the global economy and increase energy security. With the 10 % binding target for the transport sector, the Renewable Energy Directive confirms the EU's commitment to renewable transport fuels especially advanced biofuels. Imola is an elite poplar clone crossed from Populus deltoides Bartr. and Populus nigra L. by Research Units for Intensive Wood Production, Agriculture Research Council in Italy. This study examines its suitability for plantation cultivation under short or very short rotation coppice regimes as a potential lignocellulosic feedstock for the production of ethanol as a transport biofuel. A life cycle assessment (LCA) approach was used to model the cradle-to-gate environmental profile of Imola-derived biofuel benchmarked against conventional fossil gasoline. Specific attention was given to analysing the agroecosystem fluxes of carbon and nitrogen occurring in the cultivation of the Imola biomass in the biofuel life cycle using a process-oriented biogeochemistry model (DeNitrification-DeComposition) specifically modified for application to 2G perennial bioenergy crops and carbon and nitrogen cycling. Our results demonstrate that carbon and nitrogen cycling in perennial crop-soil ecosystems such as this example can be expected to have significant effects on the overall environmental profiles of 2G biofuels. In particular, soil carbon accumulation in perennial biomass plantations is likely to be a significant component in the overall greenhouse gas balance of future biofuel and other biorefinery products and warrants ongoing research and data collection for LCA models. We conclude that bioethanol produced from Imola represents a promising alternative transport fuel offering some savings ranging from 35 to 100 % over petrol in global

  2. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars

    Energy Technology Data Exchange (ETDEWEB)

    Santos Utmazian, Maria Noel dos [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Wieshammer, Gerlinde [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Vega, Rosa [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Wenzel, Walter W. [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria)]. E-mail: walter.wenzel@boku.ac.at

    2007-07-15

    We screened 20 different clones of willow and poplar species in hydroponic experiments for their metal resistance and accumulation properties. Plants were exposed for 4 weeks either to single additions of ({mu}M) 4.45 Cd or 76.5 Zn, or a metal cocktail containing the same amounts of Cd and Zn along with 7.87 Cu and 24.1 Pb. Plant biomass, metal tolerance and metal accumulation pattern in roots and leaves varied greatly between clones. The leaf:root ratio of metal concentrations was clearly underestimated compared to soil experiments. The largest metal concentrations in leaves were detected in Salix dasyclados (315 mg Cd kg{sup -1} d.m.) and a Salix smithiana clone (3180 mg Zn kg{sup -1} d.m.) but these species showed low metal tolerance. In spite of smaller Cd and Zn concentrations, the metal-tolerant clones Salix matsudana, Salix fragilis-1, and Salix purpurea-1 hold promise for phytoextraction as they produced large biomass and metal contents in leaves. - Hydroponically grown willows and poplar clones accumulate up to (mg kg{sup -1} d.w.) 315 Cd and 3180 Zn in leaves.

  3. Criteria For Felling Maturity Of Poplar Clones Grown For Energy Use

    Directory of Open Access Journals (Sweden)

    Petráš Rudolf

    2015-11-01

    Full Text Available Poplar clones reach a big advantage over other forest tree species in the production of large amounts of above-ground biomass in a relatively short time. To increase the efficiency of production during their short life cycle, it is necessary to optimize age of their felling maturity. It should be carried out in the stands age when its average production is highest. Mathematical models of yield tables were used to derive this production. Above-ground biomass production was expressed in natural units, volume (m3 ha−1 and the capacity of calorific value (GJ ha−1, but also in financial yield (€ ha−1 from the sale of timber assortments including energy chips from smallwood. In terms of financial yield, Robusta stands are mature between 23 and 35 years and I-214 stands between 18 and 32 years. Main financial yield per year, on average 200–1900 € ha−1, is expected from the production of assortments designed for classic industrial processing. Its increase by 50 to 100 € ha−1 is expected to be achieved by supplemental smallwood processing to energy chips. In terms of volume production and capacity of combustion heat, stands are mature about 5–7 years earlier.

  4. Comparative Studies on the Growth of Different Poplar Clones on Beach Land of Yangtse River%长江滩地不同杨树无性系的生长比较

    Institute of Scientific and Technical Information of China (English)

    唐罗忠; 吴麟; 葛晓敏; 田野; 囤兴建; 刘东; 方升佐

    2013-01-01

    In order to select the poplar clones suitable to be planted on the beach land of Yangtse River, twenty clones of poplar were cultivated on the beach land in Ma' anshan City, Anhui province, China. The growth, survival rate and lodging situation of each clone were measured three years after planting, and their comprehensive performances were evaluated by improved Analytic Hierarchy Process (AHP). The result showed that the growth (including diameter at breast height, height and volume ) , survival rate, height under the branches and tilt angle were significantly different among these four-year-old poplar clones. The integrated evaluation showed that the comprehensive qualities of poplar clones were significantly different- The integrated values of poplar clone 895, clone 324 and clone 1388 were higher, and the integrated values of clones 447, clone 136 and clone 316 were lower than the others. This indicated that the performances of four-year-old clone 895, clone 324 and clone 1388 were better than that of the other clones, and the three poplar clones could be selected to plant on the beach land of Yangtse River.

  5. Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements.

    Science.gov (United States)

    Baldantoni, Daniela; Cicatelli, Angela; Bellino, Alessandro; Castiglione, Stefano

    2014-12-15

    Plant biodiversity and intra-population genetic variability have not yet been properly exploited in the framework of phytoremediation and soil reclamation. For this reason, iron and other metal accumulation capacity of two Cu and Zn tolerant poplar clones, namely AL22 (Populus alba L.) and N12 (Populus nigra L.), was investigated in a pot experiment. Cuttings of the two clones were planted in iron rich soil collected from an urban-industrial area. Concentrations of Cd, Cu, Fe, Pb and Zn were analysed in leaves (at different times), as well as in stems and in roots (at the end of the experiment), both in control plants and in plants grown on a soil whose Fe availability was artificially enhanced. Results showed that Cd and Zn were preferentially accumulated in leaves, whereas Cu, Fe and Pb were mainly accumulated in roots. The main differences in metal accumulation between clones were related to Cd (about tenfold higher concentrations in N12) and Cu (higher concentrations in AL22). Once soil Fe availability was enhanced, the uptake and accumulation of all metals declined, with the exception of Fe at the first sampling time in AL22 leaves. The different behaviour of the two poplar clones suggests that a thoughtful choice should be made for their use in relation to soil heavy metal remediation.

  6. Phasing Variants in Poplar Trees using a Hybrid of Short & Long Read Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schackwitz, Wendy; Martin, Joel; Lipzen, Anna; Pennacchio, Len; Tuskan, Gerald

    2013-03-26

    Poplar grow throughout the West coast & are adapted to extremely variable conditions. To examine what allows for this wide range of growth conditions, Jerry Tuskan's team has collected 1000 different individuals from British Columbia to California. In 2009, three Common Gardens were established where each individual was cloned in triplicate. Nearly all of these trees have been sequenced using short read technology, revealing a huge degree of variation in genotype. Correlating this genomic variation to phenotype would be greatly be strengthened if the variants could be phased into long haplotype blocks.

  7. Productivitatea clonelor de plop hibrid instalate în culturi intensive în nord-estul României [ Poplar clones productivity managed for biomass production in North-Eastern Romania

    Directory of Open Access Journals (Sweden)

    Dănilă I.C.

    2016-08-01

    Full Text Available Poplar (Populus spp. is a fast-growing species in temperate conditions, with potential to substitute fossil fuels by obtaining energy from biomass. The aim of this work was to study the productivity of 6 hybrid poplar clone from a hilly region of NE Romania, after a growing season of 4 and, respectively, 5 years. Rods were used as planting material, planted at a density of 2667 trees per ha, with between-row spacing of 3 m and interior-row distances of 1.25 m. Generally, significant differences appear between clones, for all analysed biometric characteristics (p≤0.05. Results show that, in the fifth growing season, diameter increases on average with 15.1%, reaching 11.89 cm, height increases in average with 13.9%, reaching 11.89 m, and volume increases with 33.3%, reaching 0.172 m3. The total biomass after 4 years vegetation varies from 32.8 t/ha to 39.4 t/ha, and after 5 years from 47.7 t/ha to 60.2 t/ha, having an average increase in the latest growing season of 35% and an average yield of 11.3 t/ha/year. The most productive clones in the given growing conditions and crop characteristics are the clone Pannonia after 4 growing seasons and the clone AF6 after 5 years.

  8. Influence of Climate on the Growth of Hybrid Poplar in Michigan

    Directory of Open Access Journals (Sweden)

    Sophan Chhin

    2010-11-01

    Full Text Available This study examined the influence of climate on cumulative and interannual growth patterns of 18 full-sib families of hybrid poplars (Populus × smithii Boivin derived from different geographical locations (state counties of natural stands of aspen parents (trembling aspen (Populus tremuloides Michx. and bigtooth aspen (Populus grandidentata Michx.. The hybrids were subsequently planted in 1982 in southern mid-Michigan at Michigan State University (MSU Sandhill Research Area. Cumulative measures of hybrid poplar productivity (diameter, height, basal area, and stem volume in 2009 (28 years since plantation establishment were related via correlation analysis to geographical distances and climatic variables (temperature and precipitation between parental county locations and between parental locations and the plantation site. Tree-ring analysis methods (dendrochronology were also used to quantify the influence of climate (i.e., mean temperature and total precipitation at monthly and 3-month seasonal scales on interannual basal area growth rates of hybrid poplars. Analyses of cumulative measures of growth indicated a maternal effect: full-sib families had higher productivity if they had a maternal parent originating from a state county that was close to or had higher temperature (annual and summer and summer precipitation than corresponding parameters of the planting site. Principal component analysis indicated that 17 of the 18 full-sib families shared a large amount of common growth variation. Dendrochronological analyses of interannual growth-climate relationships indicated that growth was mainly affected by the degree of late summer to fall moisture stress in both the current and previous growth season, and the degree of winter harshness.

  9. Transcriptome profiles of hybrid poplar (Populus trichocarpa × deltoides) reveal rapid changes in undamaged, systemic sink leaves after simulated feeding by forest tent caterpillar (Malacosoma disstria).

    Science.gov (United States)

    Philippe, Ryan N; Ralph, Steven G; Mansfield, Shawn D; Bohlmann, Jörg

    2010-11-01

    Poplar has been established as a model tree system for genomic research of the response to biotic stresses. This study describes a series of induced transcriptome changes and the associated physiological characterization of local and systemic responses in hybrid poplar (Populus trichocarpa × deltoides) after simulated herbivory. • Responses were measured in local source (LSo), systemic source (SSo), and systemic sink (SSi) leaves following application of forest tent caterpillar (Malacosoma disstria) oral secretions to mechanically wounded leaves. • Transcriptome analyses identified spatially and temporally dynamic, distinct patterns of local and systemic gene expression in LSo, SSo and SSi leaves. Galactinol synthase was strongly and rapidly upregulated in SSi leaves. Genome analyses and full-length cDNA cloning established an inventory of poplar galactinol synthases. Induced changes of galactinol and raffinose oligosaccharides were detected by anion-exchange high-pressure liquid chromatography. • The LSo leaves showed a rapid and strong transcriptome response compared with a weaker and slower response in adjacent SSo leaves. Surprisingly, the transcriptome response in distant, juvenile SSi leaves was faster and stronger than that observed in SSo leaves. Systemic transcriptome changes of SSi leaves have signatures of rapid change of metabolism and signaling, followed by later induction of defense genes.

  10. Chemical responses to modified lignin composition in tension wood of hybrid poplar (Populus tremula x Populus alba).

    Science.gov (United States)

    Al-Haddad, Jameel M; Kang, Kyu-Young; Mansfield, Shawn D; Telewski, Frank W

    2013-04-01

    The effect of altering the expression level of the F5H gene was investigated in three wood tissues (normal, opposite and tension wood) in 1-year-old hybrid poplar clone 717 (Populus tremula × Populus alba L.), containing the F5H gene under the control of the C4H promoter. Elevated expression of the F5H gene in poplar has been previously reported to increase the percent syringyl content of lignin. The wild-type and three transgenic lines were inclined 45° for 3 months to induce tension wood formation. Tension and opposite wood from inclined trees, along with normal wood from control trees, were analyzed separately for carbohydrates, lignin, cellulose crystallinity and microfibril angle (MFA). In the wild-type poplar, the lignin in tension wood contained a significantly higher percentage of syringyl than normal wood or opposite wood. However, there was no significant difference in the percent syringyl content of the three wood types within each of the transgenic lines. Increasing the F5H gene expression caused an increase in the percent syringyl content and a slight decrease in the total lignin in normal wood. In tension wood, the addition of a gelatinous layer in the fiber walls resulted in a consistently lower percentage of total lignin in the tissue. Acid-soluble lignin was observed to increase by up to 2.3-fold in the transgenic lines. Compared with normal wood and opposite wood, cell wall crystallinity in tension wood was higher and the MFA was smaller, as expected, with no evidence of an effect from modifying the syringyl monomer ratio. Tension wood in all the lines contained consistently higher total sugar and glucose percentages when compared with normal wood within the respective lines. However, both sugar and glucose percentages were lower in the tension wood of transgenic lines when compared with the tension wood of wild-type trees. Evaluating the response of trees with altered syringyl content to gravity will improve our understanding of the changes

  11. Land use and wind direction drive hybridization between cultivated poplar and native species in a Mediterranean floodplain environment.

    Science.gov (United States)

    Paffetti, Donatella; Travaglini, Davide; Labriola, Mariaceleste; Buonamici, Anna; Bottalico, Francesca; Materassi, Alessandro; Fasano, Gianni; Nocentini, Susanna; Vettori, Cristina

    2018-01-01

    Deforestation and intensive land use management with plantations of fast-growing tree species, like Populus spp., may endanger native trees not only by eliminating or reducing their habitats, but also by diminishing their species integrity via hybridization and introgression. The genus Populus has persistent natural hybrids because clonal and sexual reproduction is common. The objective of this study was to assess the effect of land use management of poplar plantations on the spatial genetic structure and species composition in poplar stands. Specifically, we studied the potential breeding between natural and cultivated poplar populations in the Mediterranean environment to gain insight into spontaneous hybridization events between exotic and native poplars; we also used a GIS-based model to evaluate the potential threats related to an intensive land use management. Two study areas, both near to poplar plantations (P.×euramericana), were designated in the native mixed stands of P. alba, P. nigra and P.×canescens within protected areas. We found that the spatial genetic structure differed between the two stands and their differences depended on their environmental features. We detected a hybridization event with P.×canescens that was made possible by the synchrony of flowering between the poplar plantation and P.×canescens and facilitated by the wind intensity and direction favoring the spread of pollen. Taken together, our results indicate that natural and artificial barriers are crucial to mitigate the threats, and so they should be explicitly considered in land use planning. For example, our results suggest the importance of conserving rows of trees and shrubs along rivers and in agricultural landscapes. In sum, it is necessary to understand, evaluate, and monitor the spread of exotic species and genetic material to ensure effective land use management and mitigation of their impact on native tree populations. Copyright © 2017 Elsevier B.V. All rights

  12. Predicting yields of short-rotation hybrid poplar (Populus spp.) for the United States through model-data synthesis.

    Science.gov (United States)

    Wang, Dan; LeBauer, David; Dietze, Michael

    2013-06-01

    Hybrid poplar (Populus spp.) is an important biomass crop being evaluated for cellulosic ethanol production. Predictions of poplar growth, rotation period, and soil carbon sequestration under various growing conditions, soils, and climates are critical for farmers and managers planning to establish short-rotation forestry (SRF) plantations. In this study, we used an ecoinformatics workflow, the Predictive Ecosystem Analyzer (PEcAn), to integrate literature data and field measurements into the Ecosystem Demography 2 (ED2) model to estimate yield potential of poplar plantations. Within PEcAn 164 records of seven different traits from the literature were assimilated using a Bayesian meta-analysis. Next, variance decomposition identified seven variables for further constraint that contributed > 80% to the uncertainty in modeled yields: growth respiration, dark respiration, quantum efficiency, mortality coefficient, water conductance, fine-root allocation, and root turnover rate. Assimilation of observed yields further constrained uncertainty in model parameters (especially dark respiration and root turnover rate) and biomass estimates. Additional measurements of growth respiration, mortality, water conductance, and quantum efficiency would provide the most efficient path toward further constraint of modeled yields. Modeled validation demonstrated that ED2 successfully captured the interannual and spatial variability of poplar yield observed at nine independent sites. Site-level analyses were conducted to estimate the effect of land use change to SRF poplar on soil C sequestration compared to alternate land uses. These suggest that poplar plantations became a C sink within 18 years of conversion from corn production or existing forest. Finally, poplar yields were estimated for the contiguous United States at a half degree resolution in order to determine potential productivity, estimate the optimal rotation period, and compare poplar to perennial grass yields. This

  13. Ozone exposure- and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones.

    Science.gov (United States)

    Shang, Bo; Feng, Zhaozhong; Li, Pin; Yuan, Xiangyang; Xu, Yansen; Calatayud, Vicent

    2017-12-15

    Poplar clones 546 (P. deltoides cv. '55/56'×P. deltoides cv. 'Imperial') and 107 (P. euramericana cv. '74/76') were exposed to five ozone concentrations in 15 open-top chambers (OTCs). Both ozone exposure (AOT40, Accumulation Over a Threshold hourly ozone concentration of 40ppb) and flux-based (POD7, Phytotoxic Ozone Dose above an hourly flux threshold of 7nmol O3 m(-2) PLA (projected leaf area) s(-1)) response relationships were established with photosynthesis, leaf morphology and biomass variables. Increases in both metrics showed significant negative relationships with light-saturated photosynthesis rate, chlorophyll content, leaf mass per area, actual photochemical efficiency of PSII in the light and root biomass but not with stomatal conductance (gs), leaf and stem biomass. Ozone had a greater impact on belowground than on aboveground biomass. The ranking of these indicators from higher to lower sensitivity to ozone was: photosynthetic parameters, morphological index, and biomass. Clone 546 had a higher sensitivity to ozone than clone 107. The coefficients of determination (R(2)) were similar between exposure- and flux-based dose-response relationships for each variable. The critical levels (CLs) for a 5% reduction in total biomass for the two poplar clones were 14.8ppmh for AOT40 and 9.8mmol O3 m(-2) PLA for POD7. In comparison, equivalent reduction occurred at much lower values in photosynthetic parameters (4ppmh for AOT40 and 3mmol O3 m(-2) PLA for POD7) and LMA (5.8ppmh for AOT40 and 4mmol O3 m(-2) PLA for POD7). While in recent decades different CLs have been proposed for several plant receptors especially in Europe, studies focusing on both flux-based dose-response relationships and CLs are still scarce in Asia. This study is therefore valuable for regional O3 risk assessment in Asia. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Variation among poplar clones for growth and crown traits under field conditions at two sites of North-western India

    Institute of Scientific and Technical Information of China (English)

    G.P.S.Dhillon; Avtar Singh; D.S.Sidhu; H.S.Brar

    2013-01-01

    We evaluated the growth and crown traits of 36 poplar clones at two distinct agro-climatic regions of Punjab (Ludhiana and Bathinda)in northwestern India,following randomized block design with three replications and plot size of four trees.Significant differences among clones (p<0.001) were observed for diameter at breast height (DBH),tree height,volume,crown width and number of branches under both the site conditions.Clones ‘G-3',‘25-N' and ‘41-N' at Ludhiana and ‘G-3',‘RD-01' and ‘S7C8' at Bathinda were found to be superior for volume production.All growth and crown traits registered significantly higher values at Ludhiana in comparison to those at Bathinda.Clone × site interaction was also significant (p<0.001).For volume,clones ‘L-62/84',‘113520',‘25-N' and ‘S4C2' witnessed huge fluctuations in ranking between sites.The correlations between growth traits were positive and highly significant (p<0.001) at both sites.The clonal mean heritability was moderate for DBH and volume both at Ludhiana (0.61-0.66) and Bathinda (0.61-0.62).Across sites,the genetic advance was the highest for volume (49.76%) and the lowest (6.50%) in case of height.

  15. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.

    Science.gov (United States)

    Koch, J R; Creelman, R A; Eshita, S M; Seskar, M; Mullet, J E; Davis, K R

    2000-06-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.

  16. Molecular evaluations of thirty one clones of poplar based on RAPD and SSR molecular markers

    Directory of Open Access Journals (Sweden)

    Singh M.K.

    2014-01-01

    Full Text Available Poplar is an important tree species valued all over the world for its wood importance. Despite limited knowledge of the levels of genetic diversity and relatedness, their cultivation as a source of plywood is widespread. In order to facilitate reasoned scientific decisions on its management and conservation and prepare for selective breeding programme, genetic analysis of 31 genotypes was performed using RAPD and SSR molecular markers. Twenty six RAPD primers and 14 SSR primers amplified a total of 236 and 85 scoreable bands of which 86.44% and 86.02% were polymorphic. The mean coefficient of gene differentiation (Gst was 0.388 and 0.341 indicating that 61.2% and 65.9% of the genetic variation resided within the populations. Analysis of molecular variance (AMOVA indicated that majority of genetic variation (94.6% using RAPD and 89% using SSR occurred among genotypes, while the variation between the three groups (categorized as tall, medium and small plants height was 5.4% (using RAPD and 11% (using SSR. The dendrogram obtained from NJ and STRUCTURE analysis revealed splitting of genotypes into four clusters with clear distinction between short, medium and tall height genotypes, indicated that genetic differentiations measure with respect to RAPD and SSR. However, both the markers were equally useful in providing some understanding about the genetic relationship of different genotypes of poplar that are important in the conservation and exploitation of poplar genetic resources.

  17. Uptake and Translocation of Lesser-Chlorinated Polychlorinated Biphenyls (PCBs) in Whole Hybrid Poplar Plants after Hydroponic Exposure

    Science.gov (United States)

    Liu, Jiyan; Schnoor, Jerald L.

    2009-01-01

    Mono-, di-, tri-, and tetra-chlorinated polychlorinated biphenyls (PCBs) are congeners with greater volatility which remain in air, soils and sediments requiring treatment. In this study, the fate of these PCBs was investigated within whole poplar plants (Populus deltoides x nigra, DN34) with application for a treatment system such as a confined disposal facility for dredged material. Whole hybrid poplars were exposed hydroponically to a mixture of five congeners, common in the environment, having one to four chlorine atoms per molecule. Results indicated that PCB 3, 15, 28, 52, and 77 were initially sorbed to the root systems. The Root Concentration Factor (RCF) of PCBs during the exposure was calculated and correlated with Kow. PCB congeners were taken up by the roots of hybrid poplar, and the translocation of PCBs to stems was inversely related to congener hydrophobicity (Log Kow). PCB 3 and 15 were translocated to the upper stem at small but significant rates. PCB 28 was translocated to the wood of the main stem but no farther; translocation from the roots was not detected for PCB 52 and 77. The distribution of PCBs within poplars was determined, and mass balances were completed to within 15% for each chemical except for PCB 3, the most volatile congener. This is the first report on the transport of PCBs through whole plants designed for use in treatment at disposal facilities. PMID:18793792

  18. Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services in Three Watersheds with Contrasting Agricultural Land Use

    Directory of Open Access Journals (Sweden)

    Julien Fortier

    2016-02-01

    Full Text Available In temperate agricultural watersheds, the rehabilitation of tree vegetation in degraded riparian zones can provide many ecosystem services. This study evaluated ecosystem service provision potential following the conversion of non-managed herbaceous buffers to hybrid poplar (Populus spp. buffers in three watersheds (555–771 km2 of southern Québec (Canada, with contrasting agricultural land uses. To extrapolate services at the watershed level, total stream length where hybrid poplars could be established was calculated using GIS data from hydrological and land cover maps. After nine years, a 100% replacement of herbaceous buffers by hybrid poplar buffers along farm streams could lead to the production of 5280–76,151 tons of whole tree (stems + branches biomass, which could heat 0.5–6.5 ha of greenhouses for nine years, with the potential of displacing 2–29 million litres of fuel oil. Alternatively, the production of 3887–56,135 tons of stem biomass (fuelwood could heat 55–794 new farmhouses or 40–577 old farmhouses for nine years. Producing fuelwood in buffers rather than in farm woodlots could create forest conservation opportunities on 300–4553 ha. Replacing all herbaceous buffers by poplar buffers could provide potential storage of 2984–42,132 t C, 29–442 t N and 3–56 t P in plant biomass, if woody biomass is not harvested. The greatest potential for services provision was in the Pike River watershed where agriculture is the dominant land use. A review of the potential services of poplar buffers is made, and guidelines for managing services and disservices are provided.

  19. Comparative analysis of growth and photosynthetic characteristics of (Populus simonii × P. nigra × (P. nigra × P. simonii hybrid clones of different ploidides.

    Directory of Open Access Journals (Sweden)

    Xiyang Zhao

    Full Text Available To evaluate differences among poplar clones of various ploidies, 12 hybrid poplar clones (P. simonii × P. nigra × (P. nigra × P. simonii with different ploidies were used to study phenotypic variation in growth traits and photosynthetic characteristics. Analysis of variance showed remarkable differences for each of the investigated traits among these clones (P < 0.01. Coefficients of phenotypic variation (PCV ranged from 2.38% to 56.71%, and repeatability ranged from 0.656 to 0.987. The Pn (photosynthetic rate photosynthetic photon flux density (PPFD curves of the 12 clones were S-shaped, but the Pn-ambient CO2 (Ca curves were shaped like an inverted "V". The stomatal conductance (Gs-PPFD and transpiration rate (Tr-PPFD curves had an upward tendency; however, with increasing PFFD, the intercellular CO2 concentration (Ci-PPFD curves had a downward tendency in all of the clones. The Pn-PPFD and Pn-Ca curves followed the pattern of a quadratic equation. The average light saturation point and light compensation point of the triploid clones were the highest and lowest, respectively, among the three types of clones. For Pn-Ca curves, diploid clones had a higher average CO2 saturation point and average CO2 compensation point compared with triploid and tetraploid clones. Correlation analyses indicated that all investigated traits were strongly correlated with each other. In future studies, molecular methods should be used to analyze poplar clones of different ploidies to improve our understanding of the growth and development mechanisms of polyploidy.

  20. Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones.

    Science.gov (United States)

    Pietrini, F; Zacchini, M; Iori, V; Pietrosanti, L; Ferretti, M; Massacci, A

    2010-03-01

    The interaction of cadmium (Cd) with photosynthesis was investigated in poplar (Populus x canadensis Mönch., clone A4A, Populus nigra L., clone Poli) and willow (Salix alba L., clone SS5) clones that had different leaf metal concentrations in preliminary experiments. Plants grown in the presence of 50 microm CdSO(4) for 3 weeks under hydroponic conditions were used to examine leaf gas exchange, chlorophyll fluorescence parameters and images, and for Cd detection using energy dispersive X-ray fluorescence (ED-XRF). Leaves were finally analysed for Cd and phytochelatin concentrations. Results showed that SS5 had the highest leaf Cd concentration and high gas exchange activity similar to that of Poli, which had the lowest Cd concentration. Leaf fluorescence images evidenced in large undamaged areas of SS5 corresponded to high values of F(v)/F(m), F(o), PhiPSII, qP and NPQ, while patches of dark colour (visible necrosis) close to the main vein corresponded to low values of these parameters. In A4A, these necrotic patches were more diffuse on the leaf blade and associated with a range of fluorescence parameter values. ED-XRF analysis indicated that Cd was only detectable in necroses of SS5 leaves, while in A4A it was relatively more diffuse. Phytochelatins (PCs) were not detected in SS5, while their concentration was high in both Poli and A4A. The absence of these molecules in SS5 is thought to favour confinement of high accumulations of Cd to necrotic areas and gives SS5 the ability to maintain high photosynthesis and transpiration in remaining parts of the leaf.

  1. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry.

    Science.gov (United States)

    Yevtushenko, Dmytro P; Misra, Santosh

    2010-03-01

    Many economically important species of Populus, especially those in sections Aigeiros and Tacamahaca, remain recalcitrant to genetic transformation. In this study, a simple and reliable protocol was developed for the efficient Agrobacterium-mediated transformation of a difficult-to-transform, but commercially viable, hybrid poplar Populus nigra L. x P. maximowiczii A. Henry (NM6). A plant transformation vector designed to express the beta-glucuronidase (GUS) gene was used to detect transformation events at early stages of plant regeneration and to optimize parameters affecting poplar transformation. The use of zeatin riboside in shoot-induction medium, regeneration of shoots via indirect organogenesis, and early selection pressure were the major modifications that drastically improved the efficiency of poplar transformation and minimized the number of untransformed regenerants. Transgenic shoots were routinely obtained 4-10 weeks after co-culture with A. tumefaciens, with a greater than 90% rate of plant recovery. Stable transgene integration, ranging from a single insertion to ten copies per genome, was confirmed by Southern blot analysis. The mean transformation frequency was 36.3% and about two-thirds of the lines had 1-2 transgene copies. Among the explants, petioles and leaves had a higher transformation frequency than did stem segments. Growth characteristics and the morphology of transgenic poplar plants were identical to untransformed controls. These findings will accelerate the development of P. nigra x P. maximowiczii plants with novel traits, and may also be useful to improve transformation procedures for other Populus species.

  2. Branch morphology in young poplar clones on floodplain sites in Missouri

    Science.gov (United States)

    Stephen G. Pallardy; Daniel E. Gibbins

    2003-01-01

    Four Populus clones were grown in central Missouri for 2 years at 1 x 1 m spacing to study total biomass production on floodplain sites previously in forage grasses. Branch morphology (living, first-order proleptic, and sylleptic shoots) was assessed for 2-year-old plants. All 2-year-old plants had lateral branches, and clones varied significantly in certain branch...

  3. Early differentiation in biomass production and carbon sequestration of white poplar and its two hybrids in Central Iran

    Institute of Scientific and Technical Information of China (English)

    Hormoz Sohrabi; Mohammad Kazem Parsapour; Ali Soltani; Yaghoub Iranmanesh

    2015-01-01

    We assessed the potential of white poplar (Populus alba L.) and its inter-sectional hybridization with euphrates poplar (P. euphratica Oliv.) for carbon storage and sequestration in central Iran. Trials were established at planting density of 2,500 trees per hectare in block ran-domized design with three replicates. After 6 years, we measured the above-ground biomass of tree components (trunk, branch, bark, twig and leaf), and assessed soil carbon at three depths. P. alba × euphratica plantation stored significantly more carbon (22.3 t ha-1) than P. alba (16.7 t ha-1) and P. euphratica × alba (13.1 t ha-1). Most of the carbon was accumulated in the above-ground biomass (61.1%in P. alba, 72.4%in P. alba × euphra-tica and 56.0% in P. euphratica × alba). There was no significant difference in soil carbon storage. Also, biomass allocation was different between white poplar P. alba and its inter-sectional hybridization. Therefore, there was a yield difference due to genomic imprinting, which increased the possibility that paternally and maternally inherited wood production alleles would be differentially expressed in the new crossing.

  4. Post-treatment mechanical refining as a method to improve overall sugar recovery of steam pretreated hybrid poplar.

    Science.gov (United States)

    Dou, Chang; Ewanick, Shannon; Bura, Renata; Gustafson, Rick

    2016-05-01

    This study investigates the effect of mechanical refining to improve the sugar yield from biomass processed under a wide range of steam pretreatment conditions. Hybrid poplar chips were steam pretreated using six different conditions with or without SO2. The resulting water insoluble fractions were subjected to mechanical refining. After refining, poplar pretreated at 205°C for 10min without SO2 obtained a 32% improvement in enzymatic hydrolysis and achieved similar overall monomeric sugar recovery (539kg/tonne) to samples pretreated with SO2. Refining did not improve hydrolyzability of samples pretreated at more severe conditions, nor did it improve the overall sugar recovery. By maximizing overall sugar recovery, refining could partially decouple the pretreatment from other unit operations, and enable the use of low temperature, non-sulfur pretreatment conditions. The study demonstrates the possibility of using post-treatment refining to accommodate potential pretreatment process upsets without sacrificing sugar yields.

  5. Enhancement of Lignin Biopolymer Isolation from Hybrid Poplar by Organosolv Pretreatments

    Directory of Open Access Journals (Sweden)

    Miao Wu

    2014-01-01

    Full Text Available Lignocellulosic biomass is an abundant renewable resource that has the potential to displace petroleum in the production of biomaterials and biofuels. In the present study, the fractionation of different lignin biopolymers from hybrid poplar based on organosolv pretreatments using 80% aqueous methanol, ethanol, 1-propanol, and 1-butanol at 220°C for 30 min was investigated. The isolated lignin fractions were characterized by Fourier transform infrared spectroscopy (FT-IR, high-performance anion exchange chromatography (HPAEC, 2D nuclear magnetic resonance (2D NMR, and thermogravimetric analysis (TGA. The results showed that the lignin fraction obtained with aqueous ethanol (EOL possessed the highest yield and the strongest thermal stability compared with other lignin fractions. In addition, other lignin fractions were almost absent of neutral sugars (1.16–1.46% though lignin preparation extracted with 1-butanol (BOL was incongruent (7.53%. 2D HSQC spectra analysis revealed that the four lignin fractions mainly consisted of β-O-4′ linkages combined with small amounts of β-β′ and β-5′ linkages. Furthermore, substitution of Cα in β-O-4′ substructures had occurred due to the effects of dissolvent during the autocatalyzed alcohol organosolv pretreatments. Therefore, aqueous ethanol was found to be the most promising alcoholic organic solvent compared with other alcohols to be used in noncatalyzed processes for the pretreatment of lignocellulosic biomass in biorefinery.

  6. In vitro shoot regeneration from leaf mesophyll protoplasts of hybrid poplar (Populus nigra x P. maximowiczii).

    Science.gov (United States)

    Park, Y G; Son, S H

    1992-02-01

    Protoplasts were isolated from leaf mesophyll of hybrid poplar (Populus nigra X P. maximowiczii) with a mean yield of 10.4 x 10(6) protoplasts per g fresh weight using 2.0% Cellulase 'Onozuka' R-10, 0.8% Macerozyme R-10, 1.2% Hemicellulase, 2.0% Driselase, and 0.05% Pectolyase Y-23 with CPW salts solution containing 0.6 M mannitol, 0.002 M DTT, 3 mM MES at pH 5.6. A liquid plating method produced the highest frequency of dividing protoplasts (48.6%) using an MS medium without NH4NO3. The highest percent of colony formation was 22.8%, produced with fabric supported semi-solid (0.5% w/v) agar plating method using the same culture medium. Growing cell colonies and/or micro-calli were transferred to a fresh semisolid agar medium containing 0.44 μM BAP and 9.0 μM 2,4-D. Multiple shoots were produced from protoplast-derived callus after culture on MS medium containing 6.8 μM zeatin. After root induction on half-strength MS medium that lacked growth regulators, shoots were transferred to pots containing artificial soil mix.

  7. Above Ground Leafless Woody Biomass and Nutrient Content within Different Compartments of a P. maximowicii × P. trichocarpa Poplar Clone

    Directory of Open Access Journals (Sweden)

    Heinrich Spiecker

    2013-06-01

    Full Text Available In this study the quantification of biomass within all relevant compartments of a three-year-old poplar clone (P. maximowicii × P. trichocarpa planted on abandoned agricultural land at a density of 5000 trees ha−1 is presented. A total of 30 trees within a diameter range of 1.8 cm to 8.9 cm, at breast height (dbh at 1.3 m, were destructively sampled. In order to analyze the biomass, the complete tree, stem, as well as all branches, were divided into 1 cm diameter classes and all buds from the trees were completely removed. Total yield was calculated as 11.7 odt ha−1 year−1 (oven dry tonnes per hectare and year. Branches constituted 22.2% of total dry leafless biomass and buds 2.0%. The analyses revealed a strong correlation of the dry weight for all the three compartments with diameter at breast height. Debarked sample discs were used to obtain a ratio between wood and bark. Derived from these results, a model was developed to calculate the biomass of bark with dbh as the predictor variable. Mean bark percentage was found to be 16.8% of above ground leafless biomass. The results concur that bark percentage decreases with increasing tree diameter, providing the conclusion that larger trees contain a lower bark proportion, and thus positively influence the quality of the end product while consequently reducing the export of nutrients from site.

  8. Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: a time course analysis.

    Directory of Open Access Journals (Sweden)

    Guido Lingua

    Full Text Available Arbuscular mycorrhizal (AM fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein.

  9. Effects of Heavy Metals and Arbuscular Mycorrhiza on the Leaf Proteome of a Selected Poplar Clone: A Time Course Analysis

    Science.gov (United States)

    Lingua, Guido; Bona, Elisa; Todeschini, Valeria; Cattaneo, Chiara; Marsano, Francesco; Berta, Graziella; Cavaletto, Maria

    2012-01-01

    Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein. PMID:22761694

  10. Physical-mechanical properties and bonding quality of heat treated poplar (I-214 clone and ceiba plywood

    Directory of Open Access Journals (Sweden)

    Goli G

    2015-10-01

    Full Text Available The present paper investigates the physical and mechanical modifications of both poplar (I-214 clone and ceiba veneers and plywood after heat treatments of different intensities (5 and 7 % of dry mass losses. Plywood panels were glued before and after heat treatment with urea-formaldehyde (UF and melamine-urea-formaldehyde (MUF resins. In order to assess the treatments’ effects on both the wood and the glues, the dry mass, the density, the bending strength, the Young’s modulus and the bonding quality were measured before and after heat treatment. The results of the different treatments were compared as well. Results showed that the loss in cell wall polymers due to the heat treatment caused a significant reduction of the equilibrium moisture content of the samples. From a mechanical point of view the treatment resulted in an important reduction of strength and in a small reduction of stiffness. Bonding quality as well as mechanical properties were widely affected by the heat treatment. The different intensities of the treatments (the treatment range was up to 5% and 7% of dry mass loss did not show significant differences for most of the features assessed. The mechanical performance as well as the bonding quality of treated samples suggested that veneers should be glued after heat treatment. Apparent cohesive wood failure showed that different degradations affect wood and glues with a prominent effect on the glues for UF resins and a prominent effect on the wood for MUF resins.

  11. Hydroponic screening of poplar for trace element tolerance and accumulation.

    Science.gov (United States)

    Migeon, Aude; Richaud, Pierre; Guinet, Frédéric; Blaudez, Damien; Chalot, Michel

    2012-04-01

    Using the nutrient film technique, we screened 21 clones of poplar for growth in the presence of a mix of trace elements (TE) and for TE accumulation capacities. Poplar cuttings were exposed for four weeks to a multipollution solution consisting in 10 microM Cd, Cu, Ni, and Pb, and 200 microM Zn. Plant biomass and TE accumulation patterns in leaves varied greatly between clones. The highest Cd and Zn concentrations in leaves were detected in P. trichocarpa and P. trichocarpa hybrids, with the clone Skado (P. trichocarpa x P. maximowiczii) accumulating up to 108 mg Cd kg(-1) DW and 1510 mg Zn kg(-1) DW when exposed to a multipollution context. Our data also confirm the importance of pH and multipollution, as these factors greatly affect TE accumulation in above ground biomass. The NFT technique applied here to a large range of poplar clones also revealed the potential of the Rochester, AFO662 and AFO678 poplar clones for use in phytostabilization programs and bioenergy production, where production of less contaminated above ground biomass is suitable.

  12. Microarray and suppression subtractive hybridization analyses of gene expression in hybrid poplar (Populus alba × Populus tremula var. glandulosa) cell suspension cultures after exposure to NaCl.

    Science.gov (United States)

    Bae, Eun-Kyung; Lee, Hyoshin; Lee, Jae-Soon; Noh, Eun-Woon; Choi, Young-Im; Lee, Byung-Hyun; Choi, Dong-Woog

    2012-09-01

    The gene expression profiles of hybrid poplar (Populus alba × Populus tremula var. glandulosa) cells in suspension culture after exposure to salinity (NaCl) induced stress were examined by constructing two suppression subtractive hybridization (SSH) libraries. cDNA from non-treated cells was used as a driver and cDNA samples from cell suspension cultures exposed to 150 mM NaCl for 2 or 10 h were used as testers. Randomly selected clones from each SSH library were sequenced and 727 high-quality expressed sequence tags (ESTs) were obtained and analyzed. Four novel ESTs were identified. Between the two libraries, 542 unique SSH clones were selected for placement on a cDNA microarray. In total, 18 differentially expressed genes were identified with 4 and 12 genes being significantly differentially expressed 2 and 10 h after the treatment, respectively. Genes related to metabolism and protein synthesis and several genes whose protein products are implicated in salt or other abiotic stress-related responses were expressed in the salt-stressed cells.

  13. Spatial variability of soil carbon and nitrogen in two hybrid poplar-hay crop systems in southern Quebec, Canada

    Science.gov (United States)

    Winans, K. S.

    2013-12-01

    Canadian agricultural operations contribute approximately 8% of national GHG emissions each year, mainly from fertilizers, enteric fermentation, and manure management (Environment Canada, 2010). With improved management of cropland and forests, it is possible to mitigate GHG emissions through carbon (C) sequestration while enhancing soil and crop productivity. Tree-based intercropped (TBI) systems, consisting of a fast-growing woody species such as poplar (Populus spp.) planted in widely-spaced rows with crops cultivated between tree rows, were one of the technologies prioritized for investigation by the Agreement for the Agricultural Greenhouse Gases Program (AAGGP), because fast growing trees can be a sink for atmospheric carbon-dioxide (CO2) as well as a long-term source of farm income (Montagnini and Nair, 2004). However, there are relatively few estimates of the C sequestration in the trees or due to tree inputs (e.g., fine root turnover, litterfall that gets incorporated into SOC), and hybrid poplars grow exponentially in the first 8-10 years after planting. With the current study, our objectives were (1) to evaluate spatial variation in soil C and nitrogen (N) storage, CO2 and nitrogen oxide (N20), and tree and crop productivity for two hybrid poplar-hay intercrop systems at year 9, comparing TBI vs. non-TBI systems, and (2) to evaluate TBI systems in the current context of C trading markets, which value C sequestration in trees, unharvested crop components, and soils of TBI systems. The study results will provide meaningful measures that indicate changes due to TBI systems in the short-term and in the long-term, in terms of GHG mitigation, enhanced soil and crop productivity, as well as the expected economic returns in TBI systems.

  14. Short and mid-term effects of artificial defoliation on the growth of euramerican poplar (Populus × canadensis clone I-214 in poplar stands in relation to the intensity and seasonal timing of defoliation.

    Directory of Open Access Journals (Sweden)

    Allegro G

    2017-08-01

    Full Text Available The impact of artificial defoliations on the growth of euramerican poplar (Populus × canadensis clone I-214 was investigated in three field assays. Young poplar trees (1st-3rd cultivation year were subjected to 25%, 50%, 75% and 100% defoliation either in the early or in the late growing season (or in both periods, and their growth was measured in the same year and during the following 2-3 years. Only trees treated to 75% and 100% defoliation exhibited a significant growth decrease compared to control trees: the diametric growth of early defoliated trees was reduced up to 20-40% in the year of defoliation, whereas trees defoliated at the same rates late in the season, or defoliated twice in a single year, suffered the heaviest damage, showing a growth loss up to 50% in the year following the defoliation events. In the latter cases, a delayed sprouting at spring and the death of branchlets were observed. A financial analysis showed that the economic damage caused by the highest defoliation rates, mainly when occurring late in the season, definitely exceeds the cost of treatments, thus suggesting the adoption of appropriate control strategies.

  15. Habituation to thaxtomin A in hybrid poplar cell suspensions provides enhanced and durable resistance to inhibitors of cellulose synthesis

    Directory of Open Access Journals (Sweden)

    Beaulieu Carole

    2010-12-01

    Full Text Available Abstract Background Thaxtomin A (TA, a phytotoxin produced by the phytopathogen Streptomyces scabies, is essential for the development of potato common scab disease. TA inhibits cellulose synthesis but its actual mode of action is unknown. Addition of TA to hybrid poplar (Populus trichocarpa x Populus deltoides cell suspensions can activate a cellular program leading to cell death. In contrast, it is possible to habituate hybrid poplar cell cultures to grow in the presence of TA levels that would normally induce cell death. The purpose of this study is to characterize TA-habituated cells and the mechanisms that may be involved in enhancing resistance to TA. Results Habituation to TA was performed by adding increasing levels of TA to cell cultures at the time of subculture over a period of 12 months. TA-habituated cells were then cultured in the absence of TA for more than three years. These cells displayed a reduced size and growth compared to control cells and had fragmented vacuoles filled with electron-dense material. Habituation to TA was associated with changes in the cell wall composition, with a reduction in cellulose and an increase in pectin levels. Remarkably, high level of resistance to TA was maintained in TA-habituated cells even after being cultured in the absence of TA. Moreover, these cells exhibited enhanced resistance to two other inhibitors of cellulose biosynthesis, dichlobenil and isoxaben. Analysis of gene expression in TA-habituated cells using an Affymetrix GeneChip Poplar Genome Array revealed that durable resistance to TA is associated with a major and complex reprogramming of gene expression implicating processes such as cell wall synthesis and modification, lignin and flavonoid synthesis, as well as DNA and chromatin modifications. Conclusions We have shown that habituation to TA induced durable resistance to the bacterial toxin in poplar cells. TA-habituation also enhanced resistance to two other structurally

  16. Sequencing the genome of Marssonina brunnea reveals fungus-poplar co-evolution

    Directory of Open Access Journals (Sweden)

    Zhu Sheng

    2012-08-01

    Full Text Available Abstract Background The fungus Marssonina brunnea is a causal pathogen of Marssonina leaf spot that devastates poplar plantations by defoliating susceptible trees before normal fall leaf drop. Results We sequence the genome of M. brunnea with a size of 52 Mb assembled into 89 scaffolds, representing the first sequenced Dermateaceae genome. By inoculating this fungus onto a poplar hybrid clone, we investigate how M. brunnea interacts and co-evolves with its host to colonize poplar leaves. While a handful of virulence genes in M. brunnea, mostly from the LysM family, are detected to up-regulate during infection, the poplar down-regulates its resistance genes, such as nucleotide binding site domains and leucine rich repeats, in response to infection. From 10,027 predicted proteins of M. brunnea in a comparison with those from poplar, we identify four poplar transferases that stimulate the host to resist M. brunnea. These transferas-encoding genes may have driven the co-evolution of M. brunnea and Populus during the process of infection and anti-infection. Conclusions Our results from the draft sequence of the M. brunnea genome provide evidence for genome-genome interactions that play an important role in poplar-pathogen co-evolution. This knowledge could help to design effective strategies for controlling Marssonina leaf spot in poplar.

  17. Specific gravity of hybrid poplars in the north-central region, USA: within-tree variability and site × genotype effects

    Science.gov (United States)

    William L. Headlee; Ronald S. Jr. Zalesny; Richard B. Hall; Edmund O. Bauer; Bradford Bender; Bruce A. Birr; Raymond O. Miller; Jesse A. Randall; Adam H. Wiese

    2013-01-01

    Specific gravity is an important consideration for traditional uses of hybrid poplars for pulp and solid wood products, as well as for biofuels and bioenergy production. While specific gravity has been shown to be under strong genetic control and subject to within-tree variability, the role of genotype × environment interactions is poorly understood. Most...

  18. 不同杨树无性系幼龄材和成熟材化学成分的比较%Comparative study on the chemical composition between juvenile and mature wood of different poplar clones

    Institute of Scientific and Technical Information of China (English)

    武恒; 刘盛全; 查朝生; 于一苏

    2011-01-01

    【目的】研究5个杨树无性系幼龄材和成熟材的化学成分,为杨树优良无性系的选择和杨树制浆造纸利用提供依据。【方法】选择欧美杨107杨(Populus×euramericana‘Neva’)、中汉22杨(P.×deltoidescv.‘Zhonghan-22’)、皖林1号杨(P.×deltoidscv.‘Wanlin-1’)、Z9(P.×deltoidscv.‘Z9’)和B3(P.×deltoidscv.‘B3’)5个杨树无性系为研究材料,参照有关国家标准,分别测定其幼龄材和成熟材的化学成分,通过单因素方差分析%【Objective】 This paper is aimed at analyzing the chemical composition of juvenile and mature wood of five different poplar clones so as to work out some helpful and necessary data to select quality poplar clones and to lay basis for the technology of employing poplar pulp as raw materials in paper industry.【Method】 With poplar clone 107(Populus×euramericana'Neva'),poplar clone Zhonghan-22(P.×deltoides cv.'Zhonghan-22'),poplar clone Wanlin-1(P.×deltoids cv.'Wanlin-1'),poplar clone Z9(P.×deltoids cv.'Z9') and poplar clone B3(P.×deltoids cv.'B3') as samples and national standards as reference,the research determines the chemical composition of the five sample poplars and,with one way ANOVA,analyzes the differences among the selected poplar clones and among poplar ages.【Result】 The research concludes that,in all tested samples,the content of holo-cellulose,cellulose content,lignin content,benzene-ethanol extracts and 10 g/L NaOH extracts vary respectively from 749.7-830.7,398.1-434.1,177.1-198.0,8.8-14.8 and 190.2-237.2 g/kg.The contents of holo-cellulose and cellulose in mature wood of all five poplar clones are higher than those in juvenile wood,and as for lignin,the result is just the opposite.The content of benzene-ethanol extracts in the selected poplar clones excluding Wanlin-1 is higher in mature wood than that in juvenile wood.There is inconsistent result for comparison of 10 g/L Na

  19. Cellulose and lignin biosynthesis is altered by ozone in wood of hybrid poplar (Populus tremula × alba).

    Science.gov (United States)

    Richet, Nicolas; Afif, Dany; Huber, Françoise; Pollet, Brigitte; Banvoy, Jacques; El Zein, Rana; Lapierre, Catherine; Dizengremel, Pierre; Perré, Patrick; Cabané, Mireille

    2011-06-01

    Wood formation in trees is a dynamic process that is strongly affected by environmental factors. However, the impact of ozone on wood is poorly documented. The objective of this study was to assess the effects of ozone on wood formation by focusing on the two major wood components, cellulose and lignin, and analysing any anatomical modifications. Young hybrid poplars (Populus tremula × alba) were cultivated under different ozone concentrations (50, 100, 200, and 300 l l(-1)). As upright poplars usually develop tension wood in a non-set pattern, the trees were bent in order to induce tension wood formation on the upper side of the stem and normal or opposite wood on the lower side. Biosynthesis of cellulose and lignin (enzymes and RNA levels), together with cambial growth, decreased in response to ozone exposure. The cellulose to lignin ratio was reduced, suggesting that cellulose biosynthesis was more affected than that of lignin. Tension wood was generally more altered than opposite wood, especially at the anatomical level. Tension wood may be more susceptible to reduced carbon allocation to the stems under ozone exposure. These results suggested a coordinated regulation of cellulose and lignin deposition to sustain mechanical strength under ozone. The modifications of the cellulose to lignin ratio and wood anatomy could allow the tree to maintain radial growth while minimizing carbon cost.

  20. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress

    Directory of Open Access Journals (Sweden)

    Anne eHennig

    2015-05-01

    Full Text Available Woody crops such as poplars (Populus can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested nine-month-old plants of four tetraploid Populus tremula (L. x P. tremuloides (Michx. lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites.

  1. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress.

    Science.gov (United States)

    Hennig, Anne; Kleinschmit, Jörg R G; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea

    2015-01-01

    Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites.

  2. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity.

    Science.gov (United States)

    Pan, Xuejun; Kadla, John F; Ehara, Katsunobu; Gilkes, Neil; Saddler, Jack N

    2006-08-09

    Twenty-one organosolv ethanol lignin samples were prepared from hybrid poplar (Populus nigra xP. maximowiczii) under varied conditions with an experimental matrix designed using response surface methodology (RSM). The lignin preparations were evaluated as potential antioxidants. Results indicated that the lignins with more phenolic hydroxyl groups, less aliphatic hydroxyl groups, low molecular weight, and narrow polydispersity showed high antioxidant activity. Processing conditions affected the functional groups and molecular weight of the extracted organosolv ethanol lignins, and consequently influenced the antioxidant activity of the lignins. In general, the lignins prepared at elevated temperature, longer reaction time, increased catalyst, and diluted ethanol showed high antioxidant activity. Regression models were developed to enable the quantitative prediction of lignin characteristics and antioxidant activity based on the processing conditions.

  3. Stomatal factors and vulnerability of stem xylem to cavitation in poplars.

    Science.gov (United States)

    Arango-Velez, Adriana; Zwiazek, Janusz J; Thomas, Barb R; Tyree, Melvin T

    2011-10-01

    The relationships between the vulnerability of stem xylem to cavitation, stomatal conductance, stomatal density, and leaf and stem water potential were examined in six hybrid poplar (P38P38, Walker, Okanese, Northwest, Assiniboine and Berlin) and balsam poplar (Populus balsamifera) clones. Stem xylem cavitation resistance was examined with the Cavitron technique in well-watered plants grown in the greenhouse. To investigate stomatal responses to drought, plants were subjected to drought stress by withholding watering for 5 (mild drought) and 7 (severe drought) days and to stress recovery by rewatering severely stressed plants for 30 min and 2 days. The clones varied in stomatal sensitivity to drought and vulnerability to stem xylem cavitation. P38P38 reduced stomatal conductance in response to mild stress while the balsam poplar clone maintained high leaf stomatal conductance under more severe drought stress conditions. Differences between the severely stressed clones were also observed in leaf water potentials with no or relatively small decreases in Assiniboine, P38P38, Okanese and Walker. Vulnerability to drought-induced stem xylem embolism revealed that balsam poplar and Northwest clones reached loss of conductivity at lower stem water potentials compared with the remaining clones. There was a strong link between stem xylem resistance to cavitation and stomatal responsiveness to drought stress in balsam poplar and P38P38. However, the differences in stomatal responsiveness to mild drought suggest that other drought-resistant strategies may also play a key role in some clones of poplars exposed to drought stress. Copyright © Physiologia Plantarum 2011.

  4. Efectul aplicării lucrărilor de întreținere a terenului asupra acumulărilor de biomasă din culturile de plop hibrid [The effect of harrowing and weed control on biomass yields of hybrid poplar crops

    Directory of Open Access Journals (Sweden)

    Avăcăriței D

    2016-12-01

    Full Text Available Intensive hybrid poplar crops can produce an important biomass if adequate measures of management are being used. During the last years, there is a constant involvement on refining poplar cultivation technology, regarding installation, maintenance and harvesting, in order to obtain superior production at lower costs. The present study has analysed the effect of an experimental maintaining treatment (TI (harrowing and weed control on poplar crops’ biomass yields. The results were obtained after two vegetation seasons and compared with the results recorded in a control plot where no maintaining practices (TN were used. The experimental crop was set up in the spring of 2013, in the vicinity of Dornești site (Suceava County. Three hybrid poplar clones were tested (AF2, AF8 and Pannonia in each plot, and there were installed by long rods, using the 3.0 x 1.5 m spacing. The biomass was assessed for all the harvested individuals and every tree component using the gravimetric method. The experimental maintaining treatment (TI led to important differences between the two plots. The total biomass in TI plot was nearly eight-times superior to the biomass obtained in the control plot. All the three clones reacted significantly to the experimental treatment TI, even though minor differences were observed between the clones’ productivity. The effect of TI treatment was also substantial to the biomass’ structure on tree components. It is considered that the massive biomass increase was encouraged by a consistent shift of biomass proportion in the favour of the crown proportion (branches biomass, rather than subterranean elements.

  5. Nitrogen removal and its determinants in hybrid Populus clones for bioenergy plantations after two biennial rotations in two temperate sites in northern Italy

    Directory of Open Access Journals (Sweden)

    Paris P

    2015-10-01

    Full Text Available The sustainability of bioenergy coppice plantations is strongly affected by the Nitrogen (N balance, whose removal is very high due to the frequent harvest of large quantities of biomass composed of small-sized shoots. Poplar bioenergy coppice plantations could have a Nitrogen removal comparable to herbaceous crops. In this study, five hybrid poplar genotypes (“AF2”, “AF6”, “Monviso”, “83.148.041”, “I214” were compared for tree morphological traits related to yield, N removal in the harvested biomass and Nitrogen wood concentration (N% after two biennial coppice rotations in two experimental plantations located in northern Italy. N removal was primarily influenced by biomass production, and linear positive relationships between biomass yield and N removal were established. N removal also varied greatly among genotypes due to clonal differences in yield and in N%, in relation to significant differences among clones for their branching and sprouting habits. In the first rotation, branchiness was positively correlated to N% with a significant coefficient of determination (R2=0.813, while at the end of the second rotation it was also significantly correlated to the shoots per stool ratio (R2=0.804. “Monviso” and “83.148.041” were the clones showing the highest yield, but also a high N% associated to an high level of branchiness and shoots per stool ratio. Our results highlight that poplar genotype selection for sustainable N management should be aimed at genotypes with low wood N concentration, coupling high yield with low branching and sprouting habits as in the case of the clone “AF2”.

  6. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

    Science.gov (United States)

    Elias, Ani A; Busov, Victor B; Kosola, Kevin R; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W; Rood, Stewart B; Strauss, Steven H

    2012-10-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.

  7. Mycorrhizae of poplars

    Science.gov (United States)

    R. C. Schultz; J. G. Isebrands; P. P. Kormanik

    1983-01-01

    Poplar hybrids, being screened for short-rotation intensive culture, can form ecto-, endo-, or ectendo-mycorrhizae or may be autotrophic. Different sections of the genus Populus tend to be selective in the type of mycorrhizae formed. Knowledge of which types are formed influences the kinds of propagule production, site preparation, and herbicide...

  8. Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves.

    Science.gov (United States)

    Bagard, Matthieu; Le Thiec, Didier; Delacote, Emilien; Hasenfratz-Sauder, Marie-Paule; Banvoy, Jacques; Gérard, Joëlle; Dizengremel, Pierre; Jolivet, Yves

    2008-12-01

    Young poplar trees (Populus tremula Michx. x Populus alba L. clone INRA 717-1B4) were subjected to 120 ppb of ozone for 35 days in phytotronic chambers. Treated trees displayed precocious leaf senescence and visible symptoms of injury (dark brown/black upper surface stippling) exclusively observed on fully expanded leaves. In these leaves, ozone reduced parameters related to photochemistry (Chl content and maximum rate of photosynthetic electron transport) and photosynthetic CO(2) fixation [net CO(2) assimilation, Rubisco (ribulose-1,5-bisphosphate carboxylase oxygenase) activity and maximum velocity of Rubisco for carboxylation]. In fully expanded leaves, the rate of photorespiration as estimated from Chl fluorescence was markedly impaired by the ozone treatment together with the activity of photorespiratory enzymes (Rubisco and glycolate oxidase). Immunoblot analysis revealed a decrease in the content of serine hydroxymethyltransferase in treated mature leaves, while the content of the H subunit of the glycine decarboxylase complex was not modified. Leaves in the early period of expansion were exempt from visible symptoms of injury and remained unaffected as regards all measured parameters. Leaves reaching full expansion under ozone exposure showed potential responses of protection (stimulation of mitochondrial respiration and transitory stomatal closure). Our data underline the major role of leaf phenology in ozone sensitivity of photosynthetic processes and reveal a marked ozone-induced inhibition of photorespiration.

  9. Extreme Environments Facilitate Hybrid Superiority – The Story of a Successful Daphnia galeata × longispina Hybrid Clone

    Science.gov (United States)

    Griebel, Johanna; Gießler, Sabine; Poxleitner, Monika; Navas Faria, Amanda; Yin, Mingbo; Wolinska, Justyna

    2015-01-01

    Hybridization within the animal kingdom has long been underestimated. Hybrids have often been considered less fit than their parental species. In the present study, we observed that the Daphnia community of a small lake was dominated by a single D. galeata × D. longispina hybrid clone, during two consecutive years. Notably, in artificial community set-ups consisting of several clones representing parental species and other hybrids, this hybrid clone took over within about ten generations. Neither the fitness assay conducted under different temperatures, or under crowded and non-crowded environments, nor the carrying capacity test revealed any outstanding life history parameters of this hybrid clone. However, under simulated winter conditions (i.e. low temperature, food and light), the hybrid clone eventually showed a higher survival probability and higher fecundity compared to parental species. Hybrid superiority in cold-adapted traits leading to an advantage of overwintering as parthenogenetic lineages might consequently explain the establishment of successful hybrids in natural communities of the D. longispina complex. In extreme cases, like the one reported here, a superior hybrid genotype might be the only clone alive after cold winters. Overall, superiority traits, such as enhanced overwintering here, might explain hybrid dominance in nature, especially in extreme and rapidly changing environments. Although any favoured gene complex in cyclic parthenogens could be frozen in successful clones independent of hybridization, we did not find similarly successful clones among parental species. We conclude that the emergence of the observed trait is linked to the production of novel recombined hybrid genotypes. PMID:26448651

  10. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land.

    Science.gov (United States)

    Fortier, Julien; Truax, Benoit; Gagnon, Daniel; Lambert, France

    2015-05-01

    In many temperate agricultural areas, riparian forests have been converted to cultivated land, and only narrow strips of herbaceous vegetation now buffer many farm streams. The afforestation of these riparian zones has the potential to increase carbon (C) storage in agricultural landscapes by creating a new biomass sink for atmospheric CO2. Occurring at the same time, the storage of nitrogen (N) and phosphorus (P) in plant biomass, is an important water quality function that may greatly vary with types of riparian vegetation. The objectives of this study were (1) to compare C, N and P storage in aboveground, belowground and detrital biomass for three types of riparian vegetation cover (9-year-old hybrid poplar buffers, herbaceous buffers and natural woodlots) across four agricultural sites and (2) to determine potential vegetation cover effects on soil nutrient supply rate in the riparian zone. Site level comparisons suggest that 9-year-old poplar buffers have stored 9-31 times more biomass C, 4-10 times more biomass N, and 3-7 times more biomass P than adjacent non managed herbaceous buffers, with the largest differences observed on the more fertile sites. The conversion of these herbaceous buffers to poplar buffers could respectively increase C, N and P storage in biomass by 3.2-11.9 t/ha/yr, 32-124 kg/ha/yr and 3.2-15.6 kg/ha/yr, over 9 years. Soil NO3 and P supply rates during the summer were respectively 57% and 66% lower in poplar buffers than in adjacent herbaceous buffers, potentially reflecting differences in nutrient storage and cycling between the two buffer types. Biomass C ranged 49-160 t/ha in woodlots, 33-110 t/ha in poplar buffers and 3-4 t/ha in herbaceous buffers. Similar biomass C stocks were found in the most productive poplar buffer and three of the four woodlots studied. Given their large and varied biomass C stocks, conservation of older riparian woodlots is equally important for C balance management in farmland. In addition, the

  11. Perturbed lignification impacts tree growth in hybrid poplar--a function of sink strength, vascular integrity, and photosynthetic assimilation.

    Science.gov (United States)

    Coleman, Heather D; Samuels, A Lacey; Guy, Robert D; Mansfield, Shawn D

    2008-11-01

    The effects of reductions in cell wall lignin content, manifested by RNA interference suppression of coumaroyl 3'-hydroxylase, on plant growth, water transport, gas exchange, and photosynthesis were evaluated in hybrid poplar trees (Populus alba x grandidentata). The growth characteristics of the reduced lignin trees were significantly impaired, resulting in smaller stems and reduced root biomass when compared to wild-type trees, as well as altered leaf morphology and architecture. The severe inhibition of cell wall lignification produced trees with a collapsed xylem phenotype, resulting in compromised vascular integrity, and displayed reduced hydraulic conductivity and a greater susceptibility to wall failure and cavitation. In the reduced lignin trees, photosynthetic carbon assimilation and stomatal conductance were also greatly reduced, however, shoot xylem pressure potential and carbon isotope discrimination were higher and water-use efficiency was lower, inconsistent with water stress. Reductions in assimilation rate could not be ascribed to increased stomatal limitation. Starch and soluble sugars analysis of leaves revealed that photosynthate was accumulating to high levels, suggesting that the trees with substantially reduced cell wall lignin were not carbon limited and that reductions in sink strength were, instead, limiting photosynthesis.

  12. Altering carbon allocation in hybrid poplar (Populus alba × grandidentata) impacts cell wall growth and development.

    Science.gov (United States)

    Unda, Faride; Kim, Hoon; Hefer, Charles; Ralph, John; Mansfield, Shawn D

    2016-12-20

    Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. Hybrid poplar (Populus alba × grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sections of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. In addition, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. The results suggest that the overexpression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood.

  13. Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia.

    Science.gov (United States)

    Knoth, Jenny L; Kim, Soo-Hyung; Ettl, Gregory J; Doty, Sharon L

    2014-01-01

    Sustainable production of biomass for bioenergy relies on low-input crop production. Inoculation of bioenergy crops with plant growth-promoting endophytes has the potential to reduce fertilizer inputs through the enhancement of biological nitrogen fixation (BNF). Endophytes isolated from native poplar growing in nutrient-poor conditions were selected for a series of glasshouse and field trials designed to test the overall hypothesis that naturally occurring diazotrophic endophytes impart growth promotion of the host plants. Endophyte inoculations contributed to increased biomass over uninoculated control plants. This growth promotion was more pronounced with multi-strain consortia than with single-strain inocula. Biological nitrogen fixation was estimated through (15)N isotope dilution to be 65% nitrogen derived from air (Ndfa). Phenotypic plasticity in biomass allocation and branch production observed as a result of endophyte inoculations may be useful in bioenergy crop breeding and engineering programs.

  14. Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states

    Science.gov (United States)

    Haw, Jing Yan; Zhao, Jie; Dias, Josephine; Assad, Syed M.; Bradshaw, Mark; Blandino, Rémi; Symul, Thomas; Ralph, Timothy C.; Lam, Ping Koy

    2016-10-01

    The no-cloning theorem states that an unknown quantum state cannot be cloned exactly and deterministically due to the linearity of quantum mechanics. Associated with this theorem is the quantitative no-cloning limit that sets an upper bound to the quality of the generated clones. However, this limit can be circumvented by abandoning determinism and using probabilistic methods. Here, we report an experimental demonstration of probabilistic cloning of arbitrary coherent states that clearly surpasses the no-cloning limit. Our scheme is based on a hybrid linear amplifier that combines an ideal deterministic linear amplifier with a heralded measurement-based noiseless amplifier. We demonstrate the production of up to five clones with the fidelity of each clone clearly exceeding the corresponding no-cloning limit. Moreover, since successful cloning events are heralded, our scheme has the potential to be adopted in quantum repeater, teleportation and computing applications.

  15. Analysis of 4,664 high-quality sequence-finished poplar full-length

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, S. [University of British Columbia, Vancouver; Gunter, Lee E [ORNL; Tuskan, Gerald A [ORNL; Douglas, Carl [University of British Columbia, Vancouver; Holt, Robert A. [Genome Sciences Centre, Vancouver, BC, Canada; Jones, Steven [Genome Sciences Centre, Vancouver, BC, Canada; Marra, Marco [Genome Sciences Centre, Vancouver, BC, Canada; Bohlmann, J. [University of British Columbia, Vancouver

    2008-01-01

    The genus Populus includes poplars, aspens and cottonwoods, which will be collectively referred to as poplars hereafter unless otherwise specified. Poplars are the dominant tree species in many forest ecosystems in the Northern Hemisphere and are of substantial economic value in plantation forestry. Poplar has been established as a model system for genomics studies of growth, development, and adaptation of woody perennial plants including secondary xylem formation, dormancy, adaptation to local environments, and biotic interactions. As part of the poplar genome sequencing project and the development of genomic resources for poplar, we have generated a full-length (FL)-cDNA collection using the biotinylated CAP trapper method. We constructed four FLcDNA libraries using RNA from xylem, phloem and cambium, and green shoot tips and leaves from the P. trichocarpa Nisqually-1 genotype, as well as insect-attacked leaves of the P. trichocarpa x P. deltoides hybrid. Following careful selection of candidate cDNA clones, we used a combined strategy of paired end reads and primer walking to generate a set of 4,664 high-accuracy, sequence-verified FLcDNAs, which clustered into 3,990 putative unique genes. Mapping FLcDNAs to the poplar genome sequence combined with BLAST comparisons to previously predicted protein coding sequences in the poplar genome identified 39 FLcDNAs that likely localize to gaps in the current genome sequence assembly. Another 173 FLcDNAs mapped to the genome sequence but were not included among the previously predicted genes in the poplar genome. Comparative sequence analysis against Arabidopsis thaliana and other species in the non-redundant database of GenBank revealed that 11.5% of the poplar FLcDNAs display no significant sequence similarity to other plant proteins. By mapping the poplar FLcDNAs against transcriptome data previously obtained with a 15.5 K cDNA microarray, we identified 153 FLcDNA clones for genes that were differentially expressed in

  16. Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.

    Science.gov (United States)

    Ríos, Gabino; Naranjo, Miguel A; Iglesias, Domingo J; Ruiz-Rivero, Omar; Geraud, Marion; Usach, Antonio; Talón, Manuel

    2008-08-09

    Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in

  17. Characterization of hemizygous deletions in Citrus using array-Comparative Genomic Hybridization and microsynteny comparisons with the poplar genome

    Directory of Open Access Journals (Sweden)

    Usach Antonio

    2008-08-01

    Full Text Available Abstract Background Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Results Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. Conclusion In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected

  18. Growth Characteristics and Leaf Ultrastructures of Evergreen Poplar Clone Under Aluminum Stress%铝胁迫对常绿杨生长及叶肉细胞超微结构的影响

    Institute of Scientific and Technical Information of China (English)

    钱莲文; 吴文杰; 孙境蔚; 冯莹

    2016-01-01

    【目的】对酸性条件下铝在常绿杨‘A-61/186’体内积累和分布的规律以及铝胁迫下叶片超微结构与生长生理指标的响应变化进行初步研究,以揭示常绿杨对酸性土壤铝胁迫的响应机制,从而对常绿杨在亚热带地区的推广提供理论依据。【方法】以常绿杨‘A-61/186’为试验材料,在水培溶液中进行铝胁迫试验,对铝胁迫下‘A-61/186’杨的生长量及生物量、植株各组织中的铝含量、叶片叶绿素荧光指标进行测定,并利用透射电镜对叶肉细胞超微结构做系统研究。【结果】酸铝胁迫对常绿杨‘A-61/186’生长状况产生影响,根、茎、叶各组织生长量及生物量均显著下降,生物量分配结构上表现出铝对‘A-61/186’地下部分的影响大于地上;铝胁迫下‘A-61/186’根系较茎、叶组织积累更大量的铝。铝胁迫下‘A-61/186’叶绿素荧光参数显示出叶片通过非光化学的途径将过多的光能进行耗散,因而可降低植物的光合效率,影响生长量和生物量,叶肉细胞超微结构损伤程度的变化与生长量及叶绿素荧光参数的变化相一致,说明铝胁迫下‘A-61/186’生长量和生物量的降低与铝对光合系统的直接损伤有关。【结论】从常绿杨‘A-61/186’体内铝含量及初始生长受抑制的铝浓度来看,相比喜酸性树种茶树、龙眼、桉树等,‘A-61/186’对铝胁迫更为敏感,在酸性富铝化土壤上种植要采用一定的铝毒害防治措施。%Objective]Poplar are a sort of plants that are usually for planting in neutral to partially alkaline soil, however the fast development of new varieties for cultivation has expanded its planting range. A-61/186 ( Populus × euramericana cv. A-61/186) is a evergreen poplar clone that is suitable for low-latitude tropical and subtropical areas,and it has been introduced to Fujian Province of China and presents evergreen

  19. A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2011-03-01

    Full Text Available Abstract Background Unisexual vertebrates have been demonstrated to reproduce by gynogenesis, hybridogenesis, parthenogenesis, or kleptogenesis, however, it is uncertain how the reproduction mode contributes to the clonal diversity. Recently, polyploid gibel carp has been revealed to possess coexisting dual modes of unisexual gynogenesis and sexual reproduction and to have numerous various clones. Using sexual reproduction mating between clone D female and clone A male and subsequent 7 generation multiplying of unisexual gynogenesis, we have created a novel clone strain with more than several hundred millions of individuals. Here, we attempt to identify genetic background of the novel clone and to explore the significant implication for clonal diversity contribution. Methods Several nuclear genome markers and one cytoplasmic marker, the mitochondrial genome sequence, were used to identify the genetic organization of the randomly sampled individuals from different generations of the novel clone. Results Chromosome number, Cot-1 repetitive DNA banded karyotype, microsatellite patterns, AFLP profiles and transferrin alleles uniformly indicated that nuclear genome of the novel clone is identical to that of clone A, and significantly different from that of clone D. However, the cytoplasmic marker, its complete mtDNA genome sequence, is same to that of clone D, and different from that of clone A. Conclusions The present data indicate that the novel clone is a nucleo-cytoplasmic hybrid between the known clones A and D, because it originates from the offspring of gonochoristic sexual reproduction mating between clone D female and clone A male, and contains an entire nuclear genome from the paternal clone A and a mtDNA genome (cytoplasm from the maternal clone D. It is suggested to arise via androgenesis by a mechanism of ploidy doubling of clone A sperm in clone D ooplasm through inhibiting the first mitotic division. Significantly, the selected nucleo

  20. Progress and Strategies in Cross Breeding of Poplars in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The advance in intrasection and intersection cross breeding of poplars in China over the past 50 years is reviewed. Great progress has been made in Sections Leuce and Aigeiros, and satisfactory results of intersection hybridization have been achieved in the crossing between Sections Tacamahaca and Aigeiros. The modes of hybridization include single cross, double cross, triple cross, backcross, etc. It is known that using hybrids as parents to cross with other species or hybrids is an effective and easy way to obtain heterosis. Fast growth, cold and drought tolerance, pest and disease resistance, narrow crowns and rootage, etc. are breeding goals. The conventional artificial crossing is still a major breeding method, and a combination of the conventional artificial crossing with physical radiation and chemical induction can create new triploid individuals that possess higher yield potential. The super clones cultivated have already displayed enormous socioeconomic and ecological benefits in practice. Finally, the problems that investigators have to face at present are discussed as well as some strategies in poplar cross breeding in China.

  1. 转抗虫基因杨树对土壤微生物影响分析%Effects of transgenic insect-resistance hybrid poplar 741 groves on soil microorganisms

    Institute of Scientific and Technical Information of China (English)

    甄志先; 王进茂; 杨敏生

    2011-01-01

    In order to evaluate ecologic safety of transgenic insect-resistance hybrid poplar 741,the diversity of soil microflora and Bt toxin protein were systematically studied in the growth season. 4-year-old transgenic poplar 741 in the Heneshui district and Baoding district were examined. The toxin protein was found in the soil of 4-year-old test groves, whose peak content appeared in rhizosphere, and the longer the distances off the roots, the lower the contents.The distribution of toxin protein showed a descending trend: root tissue> root surface soil>rhizosphere soil> surface soil. The concentration of toxin protein decreased by degree of 10 times among different parts of soil. No toxin protein was found in rhizosphere of non-transformed clones. In the rhizosphere and roots surface soil of 4-year-old test groves, the amount of bacteria and actinomycetes and fungi varied with the changes of season. In spring, their amount began to increase gradually, reaching the maximum in June and July, and then decreased gradually. Between different transgenic clones and nontransgenic controls, during different seasons there were differences but no significant difference of their amounts appeared in rhizosphere and roots surface soil. The existence of toxin protein in soil showed no significant influence on the amounts of fungi, bacteria and actinomycetes. The result showed that distribution of Bt toxin protein was not related to the amount of microorganism. Transgenic poplar is ecofriendly in the grittiness soil.%以4年生转双抗虫基因741杨试验林为对象,研究了土壤中Bt毒蛋白的分布,及其在生长季节中土壤微生物种群数量的变化.结果表明:试验林土壤中发现了毒蛋白的存在,在转基因植株根围含量最高,距根系越远,含量逐渐降低.其毒蛋白分布趋势是根组织>根际土壤>根围土壤>地表土,其浓度一般呈10倍的等级降低,在非转基因对照植株根系周围未检

  2. The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid.

    Science.gov (United States)

    Ma, Kaifeng; Song, Yuepeng; Huang, Zhen; Lin, Liyuan; Zhang, Zhiyi; Zhang, Deqiang

    2013-03-01

    KEY MESSAGE : We report that low fertility during intraspecific hybridization in Chinese white poplar was caused by prefertilization barriers, reduced ovules, and embryonic abortion. Hormone concentrations and gene expression patterns were also evaluated during the fertilization process. Hybrid vigor holds tremendous potential for yield increases and trait improvement; however, some hybridization combinations within Populus show very low fertility. To explore the causes of this low fertility in intraspecific hybridization of Chinese white poplar, we examined anatomical structure, hormone levels and expression of key genes in two unique crossing combinations of Populus × tomentosa "Pt02" × P. × tomentosa "LM50", and (P. × tomentosa × P. alba cv. bolleana "Ptb") × P. × tomentosa "LM50". The seed set potential in the intraspecific hybridization P. × tomentosa "Pt02" × P. × tomentosa "LM50" was quite low, which was likely caused by prefertilization barriers, reduced ovule numbers, and embryonic abortion in ovaries. During intraspecific hybridization, we found reduced indoleacetic acid (IAA) in pistils, which may cause pollen tube deformations and increased IAA in heart-stage embryos, which may affect embryo development. Gibberellin A3 (GA3) decreased from the zygote dormancy stage to globular-stage embryos, which may be caused by failure of fertilization in specific embryos. The maximum zeatin (Z) concentration was found in heart-stage embryos, but Z concentrations quickly decreased, which may affect endosperm development. Increasing concentrations of abscisic acid (ABA) during zygote dormancy and eight-cell proembryo stages likely induced abscission of the infructescence. High ABA concentrations also regulated embryo maturity. Measurement of genes expression showed that high expression of SRK and/or SLG may result in rejection of pollen by stigmatic papillae through a mechanism, reminiscent of self-incompatibility. Also, low expression of

  3. An efficient Agrobacterium-mediated transformation system for poplar.

    Science.gov (United States)

    Movahedi, Ali; Zhang, Jiaxin; Amirian, Rasoul; Zhuge, Qiang

    2014-06-13

    Poplar is a model system for the regeneration and genetic transformation of woody plants. To shorten the time required for studies of transgenic poplar, efforts have been made to optimize transformation methods that use Agrobacterium tumefaciens. In this study, an Agrobacterium infective suspension was treated at 4 °C for at least 10 h before infecting explants. By transforming the Populus hybrid clone "Nanlin895" (Populus deltoides×P. euramericana) with Agrobacterium harboring the PBI121:CarNAC6 binary vector, we showed that the transformation efficiency was improved significantly by multiple independent factors, including an Agrobacterium infective suspension with an OD600 of 0.7, an Agrobacterium infection for 120 min, an Agrobacterium infective suspension at a pH of 5.0, an acetosyringone concentration of 200 µM, a cocultivation at 28 °C, a cocultivation for 72 h and a sucrose concentration of 30 g/L in the cocultivation medium. We also showed that preculture of wounded leaf explants for two days increased the regeneration rate. The integration of the desired gene into transgenic poplars was detected using selective medium containing kanamycin, followed by southern blot analysis. The expression of the transgene in the transgenic lines was confirmed by northern blot analysis.

  4. An Efficient Agrobacterium-Mediated Transformation System for Poplar

    Directory of Open Access Journals (Sweden)

    Ali Movahedi

    2014-06-01

    Full Text Available Poplar is a model system for the regeneration and genetic transformation of woody plants. To shorten the time required for studies of transgenic poplar, efforts have been made to optimize transformation methods that use Agrobacterium tumefaciens. In this study, an Agrobacterium infective suspension was treated at 4 °C for at least 10 h before infecting explants. By transforming the Populus hybrid clone “Nanlin895” (Populus deltoides × P. euramericana with Agrobacterium harboring the PBI121:CarNAC6 binary vector, we showed that the transformation efficiency was improved significantly by multiple independent factors, including an Agrobacterium infective suspension with an OD600 of 0.7, an Agrobacterium infection for 120 min, an Agrobacterium infective suspension at a pH of 5.0, an acetosyringone concentration of 200 µM, a cocultivation at 28 °C, a cocultivation for 72 h and a sucrose concentration of 30 g/L in the cocultivation medium. We also showed that preculture of wounded leaf explants for two days increased the regeneration rate. The integration of the desired gene into transgenic poplars was detected using selective medium containing kanamycin, followed by southern blot analysis. The expression of the transgene in the transgenic lines was confirmed by northern blot analysis.

  5. Improvement of controlled pollination techniques of poplar

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhong-cheng; LIU Zong-you; HOU Kai-ju; SUN Xian-meng; ZHANG Ji-he; SHEN Bao-xian

    2008-01-01

    Over a number of years, in order to find substitutes for two traditional poplar pollination techniques: outdoor bridging trees and indoor cutting with water culture, research into two new pollination methods of uprooted outdoor seed trees and outdoor cutting branches was carried out. The advantages of two new and improved techniques were of efficiency, economy, safety and ease of operation. The methods can be applied in hybridization and breeding of poplar and other easy-to-root trees.

  6. Yield physiology of short rotation intensively cultured poplars

    Science.gov (United States)

    J. G. Isebrands; N. D. Nelson; D. I. Dickmann; D. A. Michael

    1983-01-01

    An integrated research approach is described for studying yield physiology of short rotation intensively cultured (SRIC) poplar plantations. Branch architecture differs with clone and stand density, but the clonal ranking of important branch characteristics does not change with spacing.

  7. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    Science.gov (United States)

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  8. 混栽模式下转基因741杨抗虫性的初步研究%Studies on the insect resistance of mixed cultivating model of transgenic insect- resistance hybrid poplar 741

    Institute of Scientific and Technical Information of China (English)

    李超丽; 刘军侠; 姜文虎

    2011-01-01

    采用随机取样的方法,对河北省保定市大激店混栽模式下不同株系的转基因741杨pb29、pb00、pb17及对照741杨试验林进行了节肢动物群落调查,并初步分析了其群落组成、物种数量随时间的变化及优势种的发生发展规律.结果表明:混栽模式F的转基因741杨pb29、pb11和pb17的节肢动物种类组成基本一致,其群落多样性、均匀性均高于对照杨树,优势集中性均低于对照杨树,稳定性较好.混栽转基因741杨林内的优势种异色瓢虫、白毛蚜和杨白潜叶蛾在不同株系卜发生趋势基本一致,且在对照杨树上虫口数量较高.%The arthropod community structure was investigated in different transgenic hybrid poplar 741 varieties including pb29,pbll,pb17 and check741 using random sampling method in the paper. The purpose of this study is to analysis the changes over time about the structure of the arthropod community and the species quantity , the law of development of dominant species. The results showed that eompositive species were similar among the different transgenic hybrid poplar 741 varieties in this mixed cultivating model, the diversity indexes and evenness indexes of arthropod community in transgenic 741 poplar were higher than the control 741 poplar. The dominant value indexes were lower than the control 741 poplar,and the stability was better. The dominant species in this arthropod connunity including Harmonia axyridis Pallas, Chaitophoms populialbae Boyer de Fonscolombe and Leucoptera susinella Herrich- Sch ffer had similarly changing tendency, though they had a large quantity in the control 741 poplar.

  9. Effects of mechanical damage and herbivore wounding on H2O2 metabolism and antioxidant enzyme activities in hybrid poplar leaves

    Institute of Scientific and Technical Information of China (English)

    AN Yu; SHEN Ying-bai; ZHANG Zhi-xiang

    2009-01-01

    The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii ×P. pyramidalis ‘Opera 8277') in response to mechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses.

  10. Molecular cloning, expression and in situ hybridization of rat brain glutamic acid decarboxylase messenger RNA.

    Science.gov (United States)

    Julien, J F; Legay, F; Dumas, S; Tappaz, M; Mallet, J

    1987-01-14

    A cDNA library was generated in the expression vector lambda GT11 from rat brain poly(A)+ RNAs and screened with a GAD antiserum. Two clones reacted positively. One of them was shown to express a GAD activity which was specifically trapped on anti-GAD immunogel and was inhibited by gamma-acetylenic-GABA. Blot hybridization analysis of RNAs from rat brain revealed a single 4 kilobases band. Preliminary in situ hybridizations showed numerous cells labelled by the GAD probe such as the Purkinje and stellate cells in the cerebellar cortex and the cells of the reticular thalamic nucleus.

  11. Comparing growth rate in a mixed plantation (walnut, poplar and nurse trees with different planting designs: results from an experimental plantation in northern Italy

    Directory of Open Access Journals (Sweden)

    Francesco Pelleri

    2013-12-01

    Full Text Available 800x600 Results of a mixed plantation with poplar, walnut and nurse trees established in winter 2003 in Northern Italy, are reported. Main tree species (poplar and walnut were planted according to a rectangular design (10 x 11m, with different spacings and alternate lines. The experimental trial was carried out to verify the following working hypotheses: (i possibility to combine main trees with different growth levels (common walnut, hybrid walnut, and different poplar clones and test two different poplar and walnut spacings (5.0 and 7.4 m in the same plantation; (ii opportunity to reduce cultivation’s workload, in comparison with poplar monoculture, using mixtures with different poplar clones and N-fixing nurse trees; (iii verifying the growth pattern of two new poplar clones in comparison with the traditional clones cultivated for different purposes in Italy.The use of different valuable crop trees’ mixtures intercropped with nurse trees and shrubs (including N-fixing trees allows to decrease the cultivation’s workload. In fact, a heavy reduction of cultural practices - fertilizers, weed control, irrigation and pesticides applications (-61% are the main concurrent, supplementary benefits. The best growth performances (DBH and tree height, associated with the higher competition towards walnuts, were recorded with the new clones Lena and Neva in comparison with the I214 and Villafranca. The closer spacing (5 m between poplar and walnut trees was found to be unsuited to get merchantable poplars sized 30 cm without developing a heavy competition towards walnut trees. The wider spacing (7.4 m resulted vice versa suitable to get poplar trees sized as requested by veneer factories and to maintain an acceptable competitive level with walnut. Within this plantation design, a shorter rotation (8 yrs is needed for Lena and Neva clones in comparison with I214 and Villafranca (10 yrs. Walnut intercropped with poplar showed cone-shaped crowns, light

  12. Cloning

    Science.gov (United States)

    ... copies of whole animals Therapeutic cloning, which creates embryonic stem cells. Researchers hope to use these cells to grow healthy tissue to replace injured or diseased tissues in the human body. NIH: National Human Genome Research Institute

  13. 酸铝胁迫下常绿杨根冠超微结构变化%Acid and Aluminum Stress on Root Cap Ultrastructure of Evergreen Poplar Clone

    Institute of Scientific and Technical Information of China (English)

    钱莲文; 吴文杰

    2014-01-01

    The climate of China's subtropical area is warm humid, abundant rainfall, is fast-grown forest base. Forest soil is partial acidic or acidic, rich in aluminum. Which easily cause aluminum poisoning for the plant.A-61/186 (Populus x euramericana CV.) is the semi-evergreen poplar clone cultivated by Australian doctor L.D.Pryor, which female parent is Populus deltoids Marsh from the southern United States, and the male parent is originated Populus nigra CV. of Chile. It is one of three evergreen poplar clones and suitable for tropical and subtropical areas were introduced from Pakistan in 1987 by Mr. Shikai Zheng, who is a researcher of state forestry administration P.R.China. The changs in Ultrastructure of root cap cells were studied under controlled concentration and acting time by evergreen poplar clone A-61/186 (Populus euramericana CV.), using hydroponic experiment acid aluminum stress. Root cap cell ultrastructure were observed and shooting under the transmission electron microscopein in 30 d, 60 d and 90 d. Acid concentration and acted time under aluminum stress on its ultrastructure were explored. Used for revealing changes of poplar root cap cells ultrastructure under aluminum toxicity, then for aluminum toxicity submicroscopic level evaluation of root cap cells. The results showed that cellwall was dissolved and brokend with the increasing of stress concentration, and Al content 3 was obvious . Cell matrix changed from gel state to Scattered debris. Starch grain declined in the number and amyloplasts increased in the number. While the core deviation of starch grain heap were changed from non-clear to clear trend. With the development of acting time, Starch grain were sharply reduced in Al content 2 under 60 d stresse and amyloplasts in Al conten 3 under 90 d stress. The core of starch grain heap was not deviated obviously.%中国的亚热带地区气候温暖湿润、雨量充沛,是中国速生丰产林基地,森林土壤多呈偏酸性和酸性,为

  14. Selection of black poplars for water use efficiency

    Directory of Open Access Journals (Sweden)

    Orlović Saša S.

    2002-01-01

    Full Text Available Photosynthesis, transpiration, water use efficiency (WUE and biomass production have been investigated in nine black poplar clones (section Aigeiros in three field experiments. Eastern cottonwood clones (Populus deltoides had the highest net photosynthesis and water use efficiency. European black poplar clones had the highest transpiration intensity. Correlation analysis showed that net photosynthesis was in a high positive correlation with biomass. Medium negative correlations existed between WUE and net photosynthesis, transpiration and biomass and WUE and biomass. The study showed a pronounced interclonal variability of the physiological and growth characters under study.

  15. Cloning and characterization of an up-regulated GA 20-oxidase gene in hybrid maize

    Institute of Scientific and Technical Information of China (English)

    Jinkun Du; Yingyin Yao; Zhongfu Ni; Qixin Sun

    2009-01-01

    Previous studies revealed that GA content and metabolism are positively correlated with a faster shoot growth rate of hybrid, and recently, genes participating in both GA biosynthesis and GA response pathways were also found to be differentially expressed between wheat hybrid and its parental inbreds. In this study, an up-regulated GA 20-oxidase gene in a maize hybrid, designated ZmGA20, was cloned. ZmGA20 contains an open reading frame (ORF) encoding 391 amino acid residues. BLASTX searches in GenBank revealed that the ZmGA20 is homologous to the sequences of GA20ox proteins from different species, and analysis also indicated that ZmGA20 had typical features of GA 20-oxidase proteins, including a "LPWKET" sequence. Semi-quantitative RT-PCR analysis showed that ZmGA20 was expressed in different tissues and/or organs. The expression level of ZmGA20 in the hybrid was higher than that in two parents (in roots, leaves, stems and embryo, and ears). The abundance of ZmGA20 transcript was equal to that of the highly expressed parents, which provided molecular evidence for the observed GA content heterosis in maize hybrids.

  16. Parentage Analysis of Dongfang No.2, a Hybrid of a Female Gametophyte Clone of Laminariajaponica (Laminariales, Phaeophyta) and a Male Clone of L. longissima

    Institute of Scientific and Technical Information of China (English)

    SHI Yuanyuan; YANG Guanpin; LIAO Meijie; LI Xiaojie; CONG Yizhou; QU Shancun; WANG Tongyong

    2008-01-01

    The cultivation of the first filial generation of monoploid gametophyte clones of different Laminaria species (hybrid Laminaria) is an effective way of utilizing heterozygous vigor (heterosis). A female gametophyte clone of L. japonica and a male gametophyte clone of L. longissima were hybridized, generating Dongfang No.2 hybrid Laminaria. The parentage of this hybrid Laminaria was determined using AFLP of total DNA, SNP of the ITS region of ribosomal RNA transcription unit and microsatellite DNA variation at two loci. In addition to 167 AFLP bands shared by Dongfang No.2, L. japonica and L. longissima, Dongfang No.2 hybrid Laminaria shared another 70 and 55 bands with L. japonica and L. longissima, respectively, which were obviously more than 11 bands shared by L. japonica and L. longissima. Dongfang No.2 held both 'T' and 'C' at position 847 of the ITS region, while 'T' at this position was specific for L. japonica and 'C' for L. longissima, respectively. Dongfang No.2 also held the mierosatellite DNA alleles of two parents together at two microsatellite DNA marker loci. These observations dearly proved that Dongfang No.2 is a true hybrid of L. japonica and L. longissiuma. Unfortunately, the origin of the chloroplast of Dongfang No.2 was not determined based on the variation of RuBisCo spacer. More sequence variants of both ITS region and RuBisCo spacer were identified in Dongfang No.2 and most of them did not exist in either L. japonica or L. longissima. The unexpected variants may be due to the mutation of ga-metophyte clones occurring during their vegetative amplification.

  17. Transformation of spider neurotoxin gene with prospective insecticidal properties into hybrid poplar Populus simonii × P. nigra%向小黑杨转化蜘蛛杀虫毒素基因

    Institute of Scientific and Technical Information of China (English)

    林同; 王志英; 刘宽余; 景天忠; 张传溪

    2006-01-01

    In recent years, the pest insects on hybrid poplar Populus simonii × P. nigra broke out heavily, which caused great losses in forestry. In order to improve insect resistance of P. simonii × P. nigra and avoid pollution due to insecticides, the fused BGT gene consisting of the insecticidal toxin gene from the spider, Atrax robustus, and the C terminal of Cry Ⅰ A (b) gene from Bacillus thuringiensis was transferred into P. simonii × P. nigra by Agrobacteriumm-mediated transformation system. The results of PCR and Southern blotting analyses showed that the insecticidal gene of BGT was integrated into the genome of P. simonii × P. nigra. The corrected mortality of the second instar of Lymantria dispar in 6 days and 9 days after they were fed with the transgenic poplars was 37.0% and92.6% , respectively. Analysis of variance showed that there was significant difference in body weight between L. dispar larvae fed with the transformed poplars and those fed with untransformed poplars. The results indicated that the growth rate of L. dispar fed with the transgenic poplars was affected negatively.%近年来,危害小黑杨Populus simonii×P.nigra的害虫发生严重,给林业生产造成很大损失.为了提高小黑杨的抗虫能力,避免使用杀虫剂带来的污染,用农杆菌介导法将澳大利亚漏斗蛛Atrax robustus的毒蛋白基因和苏云金芽孢杆菌Cry Ⅰ A(b)基因C末端的融合基因BGT转化入小黑杨.PCR和Southern印记分析转基因植株,结果表明,BGT杀虫基因已经整合在小黑杨基因组上.活性实验表明,取食转基因杨树6天和9天后,舞毒蛾Lymantria dispar 2龄幼虫的校正死亡率分别是37.0%和92.6%.方差分析表明取食转基因和对照杨树的舞毒蛾幼虫体重差异显著.这些结果显示转基因杨树上的舞毒蛾的发育速率受到影响.

  18. ADVANCING PROTOCOLS FOR POPLARS in vitro PROPAGATION, REGENERATION AND SELECTION OF TRANSFORMANTS

    Directory of Open Access Journals (Sweden)

    Nataliia Kutsokon

    2013-02-01

    Full Text Available Poplars (genus Populus have emerged as a model organism for forest biotechnology, and genetic modification is more advanced for this genus than for any other tree. So far several protocols for microclonal propagation and regeneration for Populus species have been developed. However it is well known that these protocols differ for various species and need to be adapted even for different clones of the same species. This work was focused on developing of protocols for propagation, regeneration and putative transformant´s selection of aspen Populus tremula L. and other two fast-growing Populus species (P. nigra L., P. x canadensis Moench. The regeneration ability for black poplar explants was demonstrated to be three times higher compared to those for aspen and hybrid poplar. It was found that concentration 1 mg/L of phosphinothricin and 25 mg/L of kanamycin is toxic for non- transgenic plant tissues of P. x canadensis and can be applied in transformation experiments when genes of resistance to the corresponding selective agents into the plant genome are introduced.

  19. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar.

    Science.gov (United States)

    Jeon, Hyung-Woo; Cho, Jin-Seong; Park, Eung-Jun; Han, Kyung-Hwan; Choi, Young-Im; Ko, Jae-Heung

    2016-04-01

    Woody biomass has gained popularity as an environmentally friendly, renewable and sustainable resource for liquid fuel production. Here, we demonstrate biotechnological improvement of the quantity and quality of woody biomass by employing developing xylem (DX)-preferential production of gibberellin (GA), a phytohormone that positively regulates stem growth. First, for the proof of concept experiment, we produced transgenic Arabidopsis plants expressing GA20-oxidase, a key enzyme in the production of bioactive GAs, from Pinus densiflora (PdGA20ox1) under the control of either a constitutive 35S promoter, designated 35S::PdGA20ox1, or a DX-specific promoter (originated from poplar), designated DX15::PdGA20ox1. As we hypothesized, both transgenic Arabidopsis plants (35S::PdGA20ox1 and DX15::PdGA20ox1) exhibited an accelerated stem growth that resulted in a large increase of biomass, up to 300% compared to wild-type control plants, together with increased secondary wall thickening and elongation of fibre cells. Next, we applied our concept to the production of transgenic poplar trees. Both transgenic poplar trees (35S::PdGA20ox1 and DX15::PdGA20ox1) showed dramatic increases in biomass, up to 300%, with accelerated stem growth and xylem differentiation. Cell wall monosaccharide composition analysis revealed that in both Arabidopsis and poplar, glucose and xylose contents were significantly increased. However, undesirable phenotypes of 35S::PdGA20ox1 poplar, including poor root growth and leaf development, were found. Interestingly, DX15::PdGA20ox1 poplar resulted in a reduction of undesirable phenotypes. Our results indicate that the controlled production of GAs through a tissue-specific promoter can be utilized as an efficient biotechnological tool for producing enhanced plant biomass, minimizing unwanted effects.

  20. The Commercial Profitability of Growing Hybrid Eucalyptus Clones in The Coast Province, Kenya

    Directory of Open Access Journals (Sweden)

    Balozi Bekuta Kirongo

    2014-04-01

    Full Text Available Due to the current high demand for timber, fuelwood, and building poles and the realization that tree growing may pay dividends in the short and long term, many farmers are planting trees on their farms. Farmers are increasingly planting eucalyptus partly due to the fast growth rates of the hybrid clones as well as the opportunity to earn money within a short time. In this paper we report on the profitability of growing eucalyptus hybrid clones in the coastal region, Kenya. Tree growth and cost data was sourced from farmers in Malindi, Kilifi, and Msambweni. Market information was sourced from hardwares in North and South Coast while tree growth models were used to provide average tree sizes at various ages. Results showed that a farmer could make a net income of upto Kshs.500,000.00 (USD6,250 in 5 years. Farmers in the South Coast (Kwale and Msambweni spent more on transport than their counterparts in the North Coast (near Gede-KEFRI. This, added to the fact that trees in the South Coast (Msambweni grew less compared to those in North Coast meant that farmers in the south made less profits.

  1. Analysis of the volatile aroma constituents of parental and hybrid clones of pepino (Solanum muricatum).

    Science.gov (United States)

    Rodríguez-Burruezo, Adrián; Kollmannsberger, Hubert; Prohens, Jaime; Nitz, Siegfried; Nuez, Fernando

    2004-09-08

    The volatile constituents of 10 clones (4 parents with different flavors and 6 hybrids from selected crossings among these parents) of pepino fruit (Solanum muricatum) were isolated by simultaneous distillation-extraction and analyzed by gas chromatography-mass spectrometry (GC-MS). Odor-contributing volatiles (OCVs) were detected by GC-olfactometry-MS analyses and included 24 esters (acetates, 3-methylbutanoates, and 3-methylbut-2-enoates), 7 aldehydes (especially hexenals and nonenals), 6 ketones, 9 alcohols, 3 lactones, 2 terpenes, beta-damascenone, and mesifurane. Among these compounds, 17, of which 5 had not been reported previously in pepino, were found to contribute significantly to pepino aroma. OCVs can be assigned to three groups according to their odor quality: fruity fresh (acetates and prenol), green vegetable (C6 and C9 aldehydes), and exotic (lactones, mesifuran, and beta-damascenone). Quantitative and qualitative differences between clones for these compounds are clearly related to differences in their overall flavor impression. The positive value found for the hybrid-midparent regression coefficient for volatile composition indicates that an important fraction of the variation observed is inheritable, which has important implications in breeding for improving aroma. Significant and positive correlations were found between OCVs having common precursors or related pathways.

  2. Growth performance of selected eucalypt hybrid clones for SRWC in central and southern Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Mughini

    2014-06-01

    Full Text Available Normal 0 14 false false false IT X-NONE X-NONE st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Eucalypt short-rotation woody crop (SRWC is becoming an attractive option for energy biomass in Mediterranean dry environments. The present study is aimed at assessing growth performance of selected eucalypt hybrid clones for SRWC in three Italian sites (Massama, Sardinia; Mirto, Calabria; Rome, Latium compared with Eucalyptus camaldulensis, the most commonly cultivated eucalypt species in Italy. The study identified eucalypt clones with stable and high performance between several alternatives. Results pointed out the declining growth performance observed in the second rotation compared with the first cycle. This is due to the cultivation model, age rotation and harvesting method adopted, which negatively affect the available soil nutrients’ content. The clone/site interaction as for basal area growth at the three investigated sites, suggests a significantly different clones’ performance among sites. Viglio and Velino clones showed the best overall performance and are suggested to be used over the large scale SRWC in central and southern Italy.

  3. Axial variations in anatomical properties and basic density of Eucalypt urograndis hybrid (Eucalyptus grandis 3 E. urophylla) clones

    Institute of Scientific and Technical Information of China (English)

    S K Sharma; S R Shukla; S Shashikala; V Sri Poornima

    2015-01-01

    We studied two clones of Eucalypt urograndis hybrid (Eucalyptus grandis 9 E. urophylla), GR283 and GR330, grown in Tumkur district of Karnataka (India), and felled 5–6 years old three trees of each clone. We recorded axial variations in heartwood content, bark properties, wood density and anatomical characteristics of wood including fibre length, fibre diameter, fibre wall thickness, lumen diameter, vessel frequency, vessel diameter and vessel element length. Clone GR283 had about 10 % heartwood, significantly lower than for clone GR330 (37 %). Basic wood density along the tree height varied significantly within and between the clones. We observed significant variations in fibre length, fibre diameter and wall thickness within and between the two clones. Vessel frequency and vessel element length did not vary but vessel diameter differed significantly between the clones. With a greater proportion of sapwood, clone GR283 can be utilized for paper and pulp applications. Clone GR330 had a higher proportion of heartwood and lower wood density and, hence, is more suitable for light-weight material applications.

  4. Gaseous NO2 effects on epidermis and stomata related physiochemical characteristics of hybrid poplar leaves: chemical elements composition, stomatal functions, photosynthesis and respiration

    Science.gov (United States)

    Mechanisms controlling effects of gaseous nitrogen dioxide on epidermis and stomata dynamics, and photosynthesis and respirations processes are still not fully understood. In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (4 microliters per lite...

  5. Overexpression of gibberellin 20-oxidase1 from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar.

    Science.gov (United States)

    Park, Eung-Jun; Kim, Hyun-Tae; Choi, Young-Im; Lee, Chanhui; Nguyen, Van Phap; Jeon, Hyung-Woo; Cho, Jin-Seong; Funada, Ryo; Pharis, Richard P; Kurepin, Leonid V; Ko, Jae-Heung

    2015-11-01

    Gibberellins (GAs) are important regulators of plant shoot biomass growth, and GA 20-oxidase (GA20ox) is one of the major regulatory enzymes in the GA biosynthetic pathway. Previously, we showed that the expression levels of a putative GA20ox1 (i.e., PdGA20ox1) in stem tissue of 3-month-old seedlings of 12 families of Pinus densiflora were positively correlated with stem diameter growth across those same families growing in an even-aged 32-year-old pine forest (Park EJ, Lee WY, Kurepin LV, Zhang R, Janzen L, Pharis RP (2015) Plant hormone-assisted early family selection in Pinus densiflora via a retrospective approach. Tree Physiol 35:86-94). To further investigate the molecular function of this gene in the stem wood growth of forest trees, we produced transgenic poplar lines expressing PdGA20ox1 under the control of the 35S promoter (designated as 35S::PdGA20ox1). By age 3 months, most of the 35S::PdGA20ox1 poplar trees were showing an exceptional enhancement of stem wood growth, i.e., up to fourfold increases in stem dry weight, compared with the nontransformed control poplar plants. Significant increases in endogenous GA1, its immediate precursor (GA20) and its catabolite (GA8) in elongating internode tissue accompanied the increased stem growth in the transgenic lines. Additionally, the development of gelatinous fibers occurred in vertically grown stems of the 35S::PdGA20ox1 poplars. An analysis of the cell wall monosaccharide composition of the 35S::PdGA20ox1 poplars showed significant increases in xylose and glucose contents, indicating a qualitative increase in secondary wall depositions. Microarray analyses led us to find a total of 276 probe sets that were upregulated (using threefold as a threshold) in the stem tissues of 35S::PdGA20ox1 poplars relative to the controls. 'Cell organization or biogenesis'- and 'cell wall'-related genes were overrepresented, including many of genes that are involved in cell wall modification. Several transcriptional

  6. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar.

    Science.gov (United States)

    Cho, Jin-Seong; Nguyen, Van Phap; Jeon, Hyung-Woo; Kim, Min-Ha; Eom, Seok Hyun; Lim, You Jin; Kim, Won-Chan; Park, Eung-Jun; Choi, Young-Im; Ko, Jae-Heung

    2016-09-01

    Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120

  7. Wettability of poplar leaves influences dew formation and infection by Melampsora larici-populina

    National Research Council Canada - National Science Library

    Pinon, Jean; Frey, Pascal; Husson, Claude

    2006-01-01

    .... The frequency and duration of dew on these clones were recorded in two nurseries. Black poplar leaves had the highest wettability, with relatively flat-shaped water droplets and a short drying time, in both the laboratory and nursery...

  8. Human secreted carbonic anhydrase: cDNA cloning, nucleotide sequence, and hybridization histochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Aldred, P.; Fu, Ping; Barrett, G.; Penschow, J.D.; Wright, R.D.; Coghlan, J.P.; Fernley, R.T. (The Howard Florey Institute of Experimental Physiology and Medicine, Parkville, Victoria (Australia))

    1991-01-01

    Complementary DNA clones coding for the human secreted carbonic anhydrase isozyme (CAVI) have been isolated and their nucleotide sequences determined. These clones identify a 1.45-kb mRNA that is present in high levels in parotid submandibular salivary glands but absent in other tissues such as the sublingual gland, kidney, liver, and prostate gland. Hybridization histochemistry of human salivary glands shows mRNA for CA VI located in the acinar cells of these glands. The cDNA clones encode a protein of 308 amino acids that includes a 17 amino acid leader sequence typical of secreted proteins. The mature protein has 291 amino acids compared to 259 or 260 for the cytoplasmic isozymes, with most of the extra amino acids present as a carboxyl terminal extension. In comparison, sheep CA VI has a 45 amino acid extension. Overall the human CA VI protein has a sequence identity of 35 {percent} with human CA II, while residues involved in the active site of the enzymes have been conserved. The human and sheep secreted carbonic anhydrases have a sequence identity of 72 {percent}. This includes the two cysteine residues that are known to be involved in an intramolecular disulfide bond in the sheep CA VI. The enzyme is known to be glycosylated and three potential N-glycosylation sites (Asn-X-Thr/Ser) have been identified. Two of these are known to be glycosylated in sheep CA VI. Southern analysis of human DNA indicates that there is only one gene coding for CA VI.

  9. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones.

    Science.gov (United States)

    Fiegler, Heike; Carr, Philippa; Douglas, Eleanor J; Burford, Deborah C; Hunt, Sarah; Scott, Carol E; Smith, James; Vetrie, David; Gorman, Patricia; Tomlinson, Ian P M; Carter, Nigel P

    2003-04-01

    We have designed DOP-PCR primers specifically for the amplification of large insert clones for use in the construction of DNA microarrays. A bioinformatic approach was used to construct primers that were efficient in the general amplification of human DNA but were poor at amplifying E. coli DNA, a common contaminant of DNA preparations from large insert clones. We chose the three most selective primers for use in printing DNA microarrays. DNA combined from the amplification of large insert clones by use of these three primers and spotted onto glass slides showed more than a sixfold increase in the human to E. coli hybridization ratio when compared to the standard DOP-PCR primer, 6MW. The microarrays reproducibly delineated previously characterized gains and deletions in a cancer cell line and identified a small gain not detected by use of conventional CGH. We also describe a method for the bulk testing of the hybridization characteristics of chromosome-specific clones spotted on microarrays by use of DNA amplified from flow-sorted chromosomes. Finally, we describe a set of clones selected from the publicly available Golden Path of the human genome at 1-Mb intervals and a view in the Ensembl genome browser from which data required for the use of these clones in array CGH and other experiments can be downloaded across the Internet.

  10. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar.

    Science.gov (United States)

    Yuan, Xiangyang; Calatayud, Vicent; Gao, Feng; Fares, Silvano; Paoletti, Elena; Tian, Yuan; Feng, Zhaozhong

    2016-10-01

    The combined effects of ozone (O3 ) and drought on isoprene emission were studied for the first time. Young hybrid poplars (clone 546, Populus deltoides cv. 55/56 x P. deltoides cv. Imperial) were exposed to O3 (charcoal-filtered air, CF, and non-filtered air +40 ppb, E-O3 ) and soil water stress (well-watered, WW, and mild drought, MD, one-third irrigation) for 96 days. Consistent with light-saturated photosynthesis (Asat ), intercellular CO2 concentration (Ci ) and chlorophyll content, isoprene emission depended on drought, O3 , leaf position and sampling time. Drought stimulated emission (+38.4%), and O3 decreased it (-40.4%). Ozone increased the carbon cost per unit of isoprene emission. Ozone and drought effects were stronger in middle leaves (13th-15th from the apex) than in upper leaves (6th-8th). Only Asat showed a significant interaction between O3 and drought. When the responses were up-scaled to the entire-plant level, however, drought effects on total leaf area translated into around twice higher emission from WW plants in clean air than in E-O3 . Our results suggest that direct effects on plant emission rates and changes in total leaf area may affect isoprene emission from intensively cultivated hybrid poplar under combined MD and O3 exposure, with important feedbacks for air quality.

  11. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    Science.gov (United States)

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  12. Contrasting colonization and plant growth promoting capacity between wild type and gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar

    Energy Technology Data Exchange (ETDEWEB)

    Weyens N.; van der Lelie D.; Boulet, J.; Adriaensen, D.; Timmermans, J.-P.; Prinsen, E.; Van Oevelen, S.; D" Haen, J.; Smeets, K.; Taghavi, S.; Vangronsveld, J.

    2011-06-09

    This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promote growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.

  13. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers

    Energy Technology Data Exchange (ETDEWEB)

    Kandpal, R.P.; Kandpal, G.; Weissman, S.M. (Yale Univ. School of Medicine, New Haven, CT (United States))

    1994-01-04

    The authors describe a simple and rapid method for constructing small-insert genomic libraries highly enriched for dimeric, trimeric, and tetrameric nucleotide repeat motifs. The approach involves use of DNA inserts recovered by PCR amplification of a small-insert sonicated genomic phage library or by a single-primer PCR amplification of Mbo I-digested and adaptor-ligated genomic DNA. The genomic DNA inserts are heat denatured and hybridized to a biotinylated oligonucleotde. The biotinylated hybrids are retained on a Vectrex-avidin matrix and eluted specifically. The eluate is PCR amplified and cloned. More than 90% of the clones in a library enriched for (CA)[sub n] microsatellites with this approach contained clones with inserts containing CA repeats. They have also used this protocol for enrichment of (CAG)[sub n] and (AGAT)[sub n] sequence repeats and for Not I jumping clones. They have used the enriched libraries with an adaptation of the cDNA selection method to enrich for repeat motifs encoded in yeast artificial chromosomes.

  14. RDNA cloning vector pVE1, deletion and hybrid mutants and recombinant derivatives thereof products and processes

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, T.; Gibbons, P.H.

    1987-10-27

    This patent describes novel plasmid pVE1, deletion mutants thereof, recombinant derivatives thereof, which is the same as the genome or nucleic acid of such plasmids and derivatives of such genome, which are useful as recombinant DNA cloning vectors into host organisms, such as bacteria, for example, Streptomyces avermitilis. Portions of such plasmid genome are additionally useful as adjuncts in recombinant DNA cloning procedures, for examples: 1. to permit the maintenance of cloned DNA in the host, either in an integrated state or as an autonomous element; 2. to serve as promoters for increasing expression of endogenous or foreign genes wherein the promoters are ligated to such genes or otherwise serve as promoters; and 3. to serve as regulatory elements for achieving control over endogenous and foreign gene expression. As cloning vectors, pVE1 its deletion mutants, and other derivatives serve for the amplification and transfer of DNA sequences (genes) coding for useful functions. Such modified cloning vectors are introduced into the recipient organism by conjugation or transformation; wherein the hybrid DNA functions in an integrated mode and/or in plasmid mode.

  15. Progress in the Study of Molecular Genetic Improvements of Poplar in China

    Institute of Scientific and Technical Information of China (English)

    Shan-Zhi Lin; Zhi-Yi Zhang; Qian Zhang; Yuan-Zhen Lin

    2006-01-01

    The poplar is one of the most economically important and intensively studied tree species owing to its wide application in the timber industry and as a model material for the study of woody plants. The natural resource of poplars in China is replete. Over the past 10 years, the application of molecular biological techniques to genetic improvements in poplar species has been widely studied in China. Recent advances in molecular genetic improvements of poplar, including cDNA library construction, gene cloning and identification, genetic engineering, gene expression, genetic linkage map construction, mapping of quantitative trait loci (QTL) and molecular-assisted selection, are reviewed in the present paper. In addition, the application of modern biotechnology to molecular improvements in the genetic traits of the poplar and some unsolved problems are discussed.

  16. A CYTOGENETIC AND PHENOTYPIC CHARACTERIZATION OF SOMATIC HYBRID PLANTS OBTAINED AFTER FUSION OF 2 DIFFERENT DIHAPLOID CLONES OF POTATO (SOLANUM-TUBEROSUM L)

    NARCIS (Netherlands)

    WAARA, S; PIJNACKER, L; FERWERDA, MA; WALLIN, A; ERIKSSON, T

    1992-01-01

    Somatic hybrid plants of various ploidy levels obtained after chemical fusion between two dihaploid clones of potato Solanum tuberosum L. have been analysed by cytological, morphological and molecular methods. The hybrid nature of tetraploid and hexaploid plants and the genome dosage in hexaploid hy

  17. Hybridization study of developmental plastid gene expression in mustard (Sinapsis alba L.) with cloned probes for most plastid DNA regions.

    Science.gov (United States)

    Link, G

    1984-07-01

    An approach to assess the extent of developmental gene expression of various regions of plastid (pt)DNA in mustard (Sinapis alba L.) is described. It involves cloning of most ptDNA regions. The cloned regions then serve as hybridization probes to detect and assess the abundance of complementary RNA sequences represented in total plastid RNA. By comparison of the hybridization pattern observed with plastid RNA from either dark-grown or light-grown plants it was found that many ptDNA regions are constitutively expressed, while several 'inducible' regions account for much higher transcript levels in the chloroplast than in the etioplast stage. The reverse situation, i.e. 'repressed' regions which would account for higher transcript levels in the etioplast, was not observed. The hybridization results obtained with RNA from 'intermediatetype' plastids suggest that transient gene expression is a common feature during light-induced chloroplast development. The time-course of gene expression differs for various ptDNA regions.

  18. Raw material quality of short-rotation, intensively cultured populus clones. I. A comparison of stem and branch properties at three spacings

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, J.E.; Isebrands, J.G.; Jowett, D.

    1982-01-01

    Raw material properties (specific gravity, cell lengths, cell type percentages, and bark percentages) were examined in trees from nine Populus hybrid clones growing under short-rotation, intensive culture (SRIC) for 4 years. Statistical analyses were conducted to determine clonal, spacing, branch, and stem effects on wood and bark properties. The analysis indicated significant clonal and parental effects on some of the properties. Aigeiros-Tacamahaca hybrids generally had higher-specific gravity (SG) than those composed of only Aigeiros parentage. Branch properties influenced this difference. Within the Aigeiros-Tacamahaca clones, the P. candicans x P. berolinensis hybrids had shorter fibre lengths and lower stem wood SG. No spacing effects were observed. Significant differences wer found between stem samples and branch samples - the stem wood samples had longer cells and less bark. The variation in raw material properties observed in this study indicate that these properties have potential for improving poplar clones for SRIC. (Refs. 35).

  19. Screening and cloning of differentially expressed genes in placentas from patients of pregnancy-induced hypertension by suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    尹国武; 姜锋; 李东红; 姚元庆

    2003-01-01

    Suppresssion subtractive hybridization (SSH) was preformed to compare gene expression profiles of PIH patients and normal pregnancy placentas. The subtractive cDNA library of PIH placenta was set up and screedned. Differential cDNAs were cloned, and sequenced by T 7 primer methodology. One hundred and three differential cDNAs were isolated by SSH. Sequencing and BLAST analysis showed 90 inserts shared more than 95% homolog with sequences in the GenBank/EMBL database. We identified 36 putative genes including pregnancy-specific glycoprotein gene (BC005924), serine protease inhibitor gene(BC012868), VEGFR-1 gene(AF063657, etc.

  20. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation.

    Science.gov (United States)

    Eggan, K; Akutsu, H; Loring, J; Jackson-Grusby, L; Klemm, M; Rideout, W M; Yanagimachi, R; Jaenisch, R

    2001-05-22

    To assess whether heterozygosity of the donor cell genome was a general parameter crucial for long-term survival of cloned animals, we tested the ability of embryonic stem (ES) cells with either an inbred or F(1) genetic background to generate cloned mice by nuclear transfer. Most clones derived from five F(1) ES cell lines survived to adulthood. In contrast, clones from three inbred ES cell lines invariably died shortly after birth due to respiratory failure. Comparison of mice derived from nuclear cloning, in which a complete blastocyst is derived from a single ES cell, and tetraploid blastocyst complementation, in which only the inner cell mass is formed from a few injected ES cells, allows us to determine which phenotypes depend on the technique or on the characteristics of the ES cell line. Neonatal lethality also has been reported in mice entirely derived from inbred ES cells that had been injected into tetraploid blastocysts (ES cell-tetraploids). Like inbred clones, ES cell-tetraploid pups derived from inbred ES cell lines died shortly after delivery with signs of respiratory distress. In contrast, most ES cell-tetraploid neonates, derived from six F(1) ES cell lines, developed into fertile adults. Cloned pups obtained from both inbred and F(1) ES cell nuclei frequently displayed increased placental and birth weights whereas ES cell-tetraploid pups were of normal weight. The potency of F(1) ES cells to generate live, fertile adults was not lost after either long-term in vitro culture or serial gene targeting events. We conclude that genetic heterozygosity is a crucial parameter for postnatal survival of mice that are entirely derived from ES cells by either nuclear cloning or tetraploid embryo complementation. In addition, our results demonstrate that tetraploid embryo complementation using F(1) ES cells represents a simple, efficient procedure for deriving animals with complex genetic alterations without the need for a chimeric intermediate.

  1. Rooting of hybrid clones of Populus tremula L. x P. tremuloides Michx. by stem cuttings derived from micropropagated plants

    Energy Technology Data Exchange (ETDEWEB)

    Qibin Yu [Univ. of Helsinki (Finland). Dept. of Plant Biology; Maentylae, N. [Univ. of Turku (Finland). Dept. of Biology, Plant Physiology and Molecular Biology; Salonen, M. [Finnish Forest Research Inst., Laeyliaeinen (Finland). Haapastensyrjae Breeding Station

    2001-07-01

    Propagation costs could be cut by replacing part of the micropropagation process with steps involving more traditional techniques. This study explored possibilities for improving existing vegetative propagation techniques for aspen using stem cuttings obtained from micropropagated plants. Vegetative propagation through stem cuttings was studied in 10 micropropagated hybrid aspen clones (Populus tremula L. x P. tremuloides Michx). Cuttings containing one axillary bud were harvested from the same donor plants twice during the growing season: the first harvest in May and the second harvest in July. Rooting percentage was correlated positively with root length, number of roots and height of cutting plant but negatively with length of rooting. The average rooting percentage was 53% in the first harvest and 27% in second harvest. Indole-3-butyric acid treatments (1.2 mM) significantly improved rooting in the second harvest, but not in the first harvest, suggesting different endogenous auxin levels in the cuttings. A significant variation for most traits related to rooting ability was found among the clones, indicating that clonal effects play an important role in the propagation of aspen. Thus, clones with a good response in shoot growth and rooting could be exploited in large-scale propagation using stem cuttings.

  2. Genetic introgression and hybridization in Antillean freshwater turtles (Trachemys) revealed by coalescent analyses of mitochondrial and cloned nuclear markers.

    Science.gov (United States)

    Parham, James F; Papenfuss, Theodore J; Dijk, Peter Paul van; Wilson, Byron S; Marte, Cristian; Schettino, Lourdes Rodriguez; Brian Simison, W

    2013-04-01

    Determining whether a conflict between gene trees and species trees represents incomplete lineage sorting (ILS) or hybridization involving native and/or invasive species has implications for reconstructing evolutionary relationships and guiding conservation decisions. Among vertebrates, turtles represent an exceptional case for exploring these issues because of the propensity for even distantly related lineages to hybridize. In this study we investigate a group of freshwater turtles (Trachemys) from a part of its range (the Greater Antilles) where it is purported to have undergone reticulation events from both natural and anthropogenic processes. We sequenced mtDNA for 83 samples, sequenced three nuDNA markers for 45 samples, and cloned 29 polymorphic sequences, to identify species boundaries, hybridization, and intergrade zones for Antillean Trachemys and nearby mainland populations. Initial coalescent analyses of phased nuclear alleles (using (*)BEAST) recovered a Bayesian species tree that strongly conflicted with the mtDNA phylogeny and traditional taxonomy, and appeared to be confounded by hybridization. Therefore, we undertook exploratory phylogenetic analyses of mismatched alleles from the "coestimated" gene trees (Heled and Drummond, 2010) in order to identify potential hybrid origins. The geography, morphology, and sampling context of most samples with potential introgressed alleles suggest hybridization over ILS. We identify contact zones between different species on Jamaica (T. decussata × T. terrapen), on Hispaniola (T. decorata × T. stejnegeri), and in Central America (T. emolli × T. venusta). We are unable to determine whether the distribution of T. decussata on Jamaica is natural or the result of prehistoric introduction by Native Americans. This uncertainty means that the conservation status of the Jamaican T. decussata populations and contact zone with T. terrapen are unresolved. Human-mediated dispersal events were more conclusively implicated

  3. Cloning and Overproduction of Gibberellin 3-Oxidase in Hybrid Aspen Trees. Effects on Gibberellin Homeostasis and Development1

    Science.gov (United States)

    Israelsson, Maria; Mellerowicz, Ewa; Chono, Makiko; Gullberg, Jonas; Moritz, Thomas

    2004-01-01

    To broaden our understanding of gibberellin (GA) biosynthesis and the mechanism whereby GA homeostasis is maintained in plants, we have investigated the degree to which the enzyme GA 3-oxidase (GA3ox) limits the formation of bioactive GAs in elongating shoots of hybrid aspen (Populus tremula × Populus tremuloides). We describe the cloning of a hybrid aspen GA3ox and its functional characterization, which confirmed that it has 3β-hydroxylation activity and more efficiently converts GA9 to GA4 than GA20 to GA1. To complement previous studies, in which transgenic GA 20-oxidase (GA20ox) overexpressers were found to produce 20-fold higher bioactive GA levels and subsequently grew faster than wild-type plants, we overexpressed an Arabidopsis GA3ox in hybrid aspen. The generated GA3ox overexpresser lines had increased 3β-hydroxylation activity but exhibited no major changes in morphology. The nearly unaltered growth pattern was associated with relatively small changes in GA1 and GA4 levels, although tissue-dependent differences were observed. The absence of increases in bioactive GA levels did not appear to be due to feedback or feed-forward regulation of dioxygenase transcripts, according to semiquantitative reverse transcription polymerase chain reaction analysis of PttGA20ox1, PttGA3ox1, and two putative PttGA2ox genes. We conclude that 20-oxidation is the limiting step, rather than 3β-hydroxylation, in the formation of GA1 and GA4 in elongating shoots of hybrid aspen, and that ectopic GA3ox expression alone cannot increase the flux toward bioactive GAs. Finally, several lines of evidence now suggest that GA4 has a more pivotal role in the tree hybrid aspen than previously believed. PMID:15122019

  4. Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development.

    Science.gov (United States)

    Israelsson, Maria; Mellerowicz, Ewa; Chono, Makiko; Gullberg, Jonas; Moritz, Thomas

    2004-05-01

    To broaden our understanding of gibberellin (GA) biosynthesis and the mechanism whereby GA homeostasis is maintained in plants, we have investigated the degree to which the enzyme GA 3-oxidase (GA3ox) limits the formation of bioactive GAs in elongating shoots of hybrid aspen (Populus tremula x Populus tremuloides). We describe the cloning of a hybrid aspen GA3ox and its functional characterization, which confirmed that it has 3beta-hydroxylation activity and more efficiently converts GA9 to GA4 than GA20 to GA1. To complement previous studies, in which transgenic GA 20-oxidase (GA20ox) overexpressers were found to produce 20-fold higher bioactive GA levels and subsequently grew faster than wild-type plants, we overexpressed an Arabidopsis GA3ox in hybrid aspen. The generated GA3ox overexpresser lines had increased 3beta-hydroxylation activity but exhibited no major changes in morphology. The nearly unaltered growth pattern was associated with relatively small changes in GA1 and GA4 levels, although tissue-dependent differences were observed. The absence of increases in bioactive GA levels did not appear to be due to feedback or feed-forward regulation of dioxygenase transcripts, according to semiquantitative reverse transcription polymerase chain reaction analysis of PttGA20ox1, PttGA3ox1, and two putative PttGA2ox genes. We conclude that 20-oxidation is the limiting step, rather than 3beta-hydroxylation, in the formation of GA1 and GA4 in elongating shoots of hybrid aspen, and that ectopic GA3ox expression alone cannot increase the flux toward bioactive GAs. Finally, several lines of evidence now suggest that GA4 has a more pivotal role in the tree hybrid aspen than previously believed.

  5. GROWTH AND PRODUCTIVITY OF POPLAR SPECIES IN SOUTHEASTERN KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Dani Sarsekova

    2015-09-01

    Full Text Available A small area of forestation and an acute shortage of timber are reasons to seek ways to improve  productivity and the rational use of forests in the territory of Kazakhstan. A deficit in timber can be compensated, to some extent, by planting stands of fast-growing plantation species, including top and hybrid Populus spp, which are commonly referred to as “poplar”.There is an increased interest in poplar, globally, due to its organic traits and the economic value it provides, including:rapid growth and ability to produce wood that is technically suitable for cutting within 20 years of planting;a source of suitable timber for use in most industries;the ability to grow in soils that are not  generally suitable for agricultural use;a potential source of timber for widespread use in screening, landscape and recreational plantings; andthe ability of most poplar species and hybrids to asexually propagate.There has been extensive planting of poplar trees in Kazakhstan, especially in the south and south-east. Poplar trees have been planted in populated areas, along roads and in forest stands. However, these plantings are unsuitable as a source of timber for commercial or ornamental purposes. Hence, there is a need to establish plantations of poplar for timber supply in Kazakhstan.The  most common types of poplar in this country are the deltoid, Algerian, and Bolle, which were used in the extensive greenery planting of southeastern Kazakhstan. The main factors ensuring high productivity of poplar plantations are the soil conditions of fertility, good aeration and adequate moisture. Results of this study indicate that the greatest height increase occurs in these trees between the age of 5 and 10 years, and for trunk diameter, between the age of 4 and 9 years. After this age, the growth rate gradual declines, with a sharp fall off in the rate noticeable between years 14 and 16. Additionally, results of this study show the high productivity of poplar

  6. Hybridization of cloned Rhodopseudomonas capsulata photosynthesis genes with DNA from other photosynthetic bacteria.

    OpenAIRE

    Beatty, J T; Cohen, S N

    1983-01-01

    The homology of Rhodopseudomonas capsulata DNA segments carrying photosynthesis genes with sequences present in total DNA from certain other photosynthetic and non-photosynthetic bacterial species was determined by hybridization. R. capsulata DNA fragments that carry loci for production of peptide components of the photosynthetic reaction center and light-harvesting I antenna complex were found to hybridize to DNA from some photosynthetic species. However, fragments that carry carotenoid or b...

  7. Phytoextraction of risk elements by willow and poplar trees.

    Science.gov (United States)

    Kacálková, Lada; Tlustoš, Pavel; Száková, Jiřina

    2015-01-01

    To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4-2.0 mg Cd.kg(-1), 78-313 mg Zn.kg(-1), 21.3-118 mg Cu.kg(-1)). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg(-1), 909 mg Zn.kg(-1), and 17.7 mg Cu.kg(-1)) compared to Populus clones (maximum 2.06 mg Cd.kg(-1), 463 mg Zn.kg(-1), and 11.8 mg Cu.kg(-1)). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.

  8. 杂交杨木纤维中碳水化合物的稀酸催化分离%Dilute Acid-catalyzed Fractionation of Carbohydrates in Hybrid Poplar Fibers

    Institute of Scientific and Technical Information of China (English)

    张春辉; Troy Runge; 詹怀宇

    2012-01-01

    In this paper, the acid-catalyzed fractionation of pentosans and hexosans from hybrid poplar fibers was studied using a circulation reactor. Kinetic models of both pentosan and hexosan hydrolysis/degradation were crea- ted to predict the hydrolysis yield of both substances. The extraction conditions were varied, including a tempera- ture range of 140 - 170℃ , a sulfuric acid concentration range of 0.1% - 0.9% wt with a constant liquor-to-wood ratio of 6: 1. The yields of both substances were favored at high acid concentration and temperature, while pentosan being considerable more reactive. Under optimal conditions, 91 percent of pentosan could be separated from the fi- ber, while more than 93 percent of hexosan was retained in the solids. This study demonstrates that pentosan and hexosans could be fractionated from poplar fibers using acid hydrolysis and converted into liquid fuel and valued chemicals separately.%本文采用循环式反应器研究了杂交杨木纤维中聚戊糖和聚己糖在稀酸条件下的催化分离,分别得出了聚戊糖和聚己糖稀酸水解/降解的动力学模型,以预测在不同反应条件下戊糖和己糖的水解得率。反应条件为温度140~170℃,硫酸浓度0.1%~0.9%wt,液比为6:1。研究发现,较高的酸浓和温度对提高戊糖和己糖的得率都有利,但相同条件下聚戊糖的反应活性更高。经动力学模型优化得出,在较佳条件下有91%的聚戊糖可以以单体、低聚体及其降解产物的形式从杨木纤维中分离出来,同时超过93%的聚己糖可以以固体的形式保留在纤维中。研究表明,在适宜的稀酸催化条件下杂交杨木纤维中的碳水化合物可以得到很好的分离,为下一步戊糖和聚己糖的分别单独转化打下了基础,不仅可以充分利用木材生物质资源,而且为反应提供了相对均一的条件,从而提高反应选择性和产物的纯度。

  9. Molecular Dissection of Xylan Biosynthesis during Wood Formation in Poplar

    Institute of Scientific and Technical Information of China (English)

    Chanhui Lee; Quincy Teng; Ruiqin Zhong; Zheng-Hua Ye

    2011-01-01

    Xylan, being the second most abundant polysaccharide in dicot wood, is considered to be one of the factors contributing to wood biomass recalcitrance for biofuel production. To better utilize wood as biofuel feedstock, it is crucial to functionally characterize all the genes involved in xylan biosynthesis during wood formation. In this report, we inves-tigated roles of poplar families GT43 and GT8 glycosyltransferases in xylan biosynthesis during wood formation. There exist seven GT43 genes in the genome of poplar (Populus trichocarpa), five of which, namely PtrGT43A, PtrGT43B,PtrGT43C, PtrGT43D, and PtrGT43E, were shown to be highly expressed in the developing wood and their encoded proteins were localized in the Golgi. Comprehensive genetic complementation coupled with chemical analyses demonstrated that overexpression of PtrGT43A/B/E but not PtrGT43C/D was able to rescue the xylan defects conferred by the Arabidopsis irx9mutant, whereas overexpression of PtrGT43C/D but not PtrGT43A/B/E led to a complementation of the xyian defects in the Arabidopsis irx14 mutant. The essential roles of poplar GT43 members in xylan biosynthesis was further substantiated by RNAi down-regulation of GT43B in the hybrid poplar (Populus alba x tremula)leading to reductions in wall thickness and xylan content in wood, and an elevation in the abundance of the xylan reducing end sequence. Wood digestibility analysis revealed that cellulase digestion released more glucose from the wood of poplar GT43B RNAi lines than the control wood, indicating a decrease in wood biomass recalcitrance. Furthermore, RNAi down-regulation of another poplar wood-associated glycosyltransferase, PoGT8D, was shown to cause decreases in wall thickness and xylan content as well as in the abundance of the xylan reducing end sequence. Together, these findings demonstrate that the poplar GT43 mem-bers form two functionally non-redundant groups, namely PtrGT43A/B/E as functional orthologs of Arabidopsis IRX9 and Ptr

  10. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    Science.gov (United States)

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  11. Performance and variability patterns in wood properties and growth traits in the parents, F1 and F2 generation hybrid clones of Populus deltoides

    Institute of Scientific and Technical Information of China (English)

    P. K. Pande; R. C. Dhiman

    2011-01-01

    The performance and variability patterns in the wood ele- ment's dimensions, specific gravity and growth parameters namely ramet height and GBH were evaluated in 16 clones of parents, F1 and F2 hy- brids of Populus deltoides Bartr. Ex Marsh. Ramet radial variations were non-significant, while inter-clonal variations due to interaction of clone/replication were significant for all the wood traits except vessel element length. Inter-clonal variations were significant only for fiber length and fiber wall thickness. Fiber length and specific gravity were significantly higher in female, while wall thickness and vessel element length were higher in male clones. Female parents (G48 and S7C8) showed higher flber length and specific gravity than of the male parent (G3), while vessel diameter and wall thickness were higher in male par- ent (G3). There is not much difference in fiber length and vessel ele- ment's dimensions among the parents, F1 and F2 generation hybrid clones. Specific gravity did not showed any trend for parents, F1 and F2 generations. Generally female clones showed higher growth rate. Broad sense heritability for wood traits ranged from 0.143 (fiber length) to 0.505 (fiber wall thickness), while for growth Waits it was 0.374 (GBH) and 0.418 (height). Genetic gain for all the wood and growth traits was positive for most of the wood waits. The highly divergent male clone (78) and female clones (S7C8, G48, W/A 49) in number of combinations could be used for developing new hybrids of desired wood traits to de- velop new clones.

  12. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral

  13. Control tactics of poplar diseases in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the present studies and literatures about the poplar diseases in China, the present study situation of poplar disease was introduced in this paper. 31 kinds of poplar diseases were collected of which there were 14 kinds of leaves disease, 11 kinds of branch disease, 4 kinds of root disease, 2 kinds of stand rot. Each poplar species was studied on the harm, distribution, symptom, pathogens, occurrence regulation and control measures. According to previously studies, the sustained control tactics of poplar disease were summarized in this paper.

  14. Identification and Cloning of Differentially Expressed SOUL and ELIP Genes in Saffron Stigmas Using a Subtractive Hybridization Approach

    Science.gov (United States)

    Ahrazem, Oussama; Argandoña, Javier; Castillo, Raquel; Rubio-Moraga, Ángela

    2016-01-01

    Using a subtractive hybridization approach, differentially expressed genes involved in the light response in saffron stigmas were identified. Twenty-two differentially expressed transcript-derived fragments were cloned and sequenced. Two of them were highly induced by light and had sequence similarity to early inducible proteins (ELIP) and SOUL heme-binding proteins. Using these sequences, we searched for other family members expressed in saffron stigma. ELIP and SOUL are represented by small gene families in saffron, with four and five members, respectively. The expression of these genes was analyzed during the development of the stigma and in light and dark conditions. ELIP transcripts were detected in all the developmental stages showing much higher expression levels in the developed stigmas of saffron and all were up-regulated by light but at different levels. By contrast, only one SOUL gene was up-regulated by light and was highly expressed in the stigma at anthesis. Both the ELIP and SOUL genes induced by light in saffron stigmas might be associated with the structural changes affecting the chromoplast of the stigma, as a result of light exposure, which promotes the development and increases the number of plastoglobules, specialized in the recruitment of specific proteins, which enables them to act in metabolite synthesis and disposal under changing environmental conditions and developmental stages. PMID:28030614

  15. Cloning and characterization of the gene for L-amino acid oxidase in hybrid tilapia.

    Science.gov (United States)

    Shen, Yubang; Fu, Gui Hong; Liu, Feng; Yue, Gen Hua

    2015-12-01

    Tilapia is the common name for a group of cichlid fishes. Identification of DNA markers significantly associated with important traits in candidate genes may speed up genetic improvement. L-Amino acid oxidase (LAO) plays a crucial role in the innate immune defences of animals. Previously, whether LAO variants were associated with economic traits had not been studied in fish. We characterized the cDNA sequence of the LAO gene of hybrid tilapia (Oreochromis spp.). Its ORF was 1536 bp, encoding a flavoenzyme of 511 amino acids. This gene consisted of seven exons and six introns. Its expression was detected in the intestine, blood, kidney, skin, liver. It was highly expressed in the intestine. After a challenge with a bacterial pathogen, Streptococcus agalactiae, its expression was up-regulated significantly in the liver, intestine and spleen (P tilapia. The investigation of relationship between polymorphism of LAO gene and disease resistance and growth in tilapia showed that one SNP was associated significantly with body length. Further experiments on whether SNPs in the LAO gene are associated with growth in tilapia and other populations could be useful in understanding more functions of the LAO gene.

  16. Epigenetic Diversity of Clonal White Poplar (Populus alba L. Populations: Could Methylation Support the Success of Vegetative Reproduction Strategy?

    Directory of Open Access Journals (Sweden)

    Francesco Guarino

    Full Text Available The widespread poplar populations of Sardinia are vegetatively propagated and live in different natural environments forming large monoclonal stands. The main goals of the present study were: i to investigate/measure the epigenetic diversity of the poplar populations by determining their DNA methylation status; ii to assess if and how methylation status influences population clustering; iii to shed light on the changes that occur in the epigenome of ramets of the same poplar clone. To these purposes, 83 white poplar trees were sampled at different locations on the island of Sardinia. Methylation sensitive amplified polymorphism analysis was carried out on the genomic DNA extracted from leaves at the same juvenile stage. The study showed that the genetic biodiversity of poplars is quite limited but it is counterbalanced by epigenetic inter-population molecular variability. The comparison between MspI and HpaII DNA fragmentation profiles revealed that environmental conditions strongly influence hemi-methylation of the inner cytosine. The variable epigenetic status of Sardinian white poplars revealed a decreased number of population clusters. Landscape genetics analyses clearly demonstrated that ramets of the same clone were differentially methylated in relation to their geographic position. Therefore, our data support the notion that studies on plant biodiversity should no longer be restricted to genetic aspects, especially in the case of vegetatively propagated plant species.

  17. Root proteome response to growth on tannery waste in three different poplar species with various adaptation abilities

    Directory of Open Access Journals (Sweden)

    Zemleduch-Barylska A.

    2013-04-01

    Full Text Available In our study we compared growth of three poplar clones (Populus tremula ×alba, P. alba ‘Villafranca” and P. nigra on chromium-containing solid tannery waste. Tolerance index of saplings ranged from only 25% for P. nigra up to 80% for P. tremula x alba. Standard morphological, chemical and biochemical analyses also confirmed significant differences in reaction of all tested clones to such growth conditions. Preliminary proteomic study showed an unequal level of changes in protein profiles from roots in different poplars.

  18. 两种杨树矮林地上生物量及树皮比例早期测算%Biomass and Bark Content Estimation of Two Poplar Clones in Short Rotation Coppice

    Institute of Scientific and Technical Information of China (English)

    戴丽莉; 贾黎明; 高媛; 戴腾飞

    2015-01-01

    通过建立茎干离地22 cm的直径( D22)与单枝地上生物量的关系,估算林分地上生物量,并对三倍体毛白杨B301和欧美杨107在3种栽植密度下林分地上生物量及收获物质量进行早期测算。结果表明:三倍体毛白杨B301林分各栽植密度的单枝地上生物量和单枝树皮地上生物量差异均不显著;欧美杨107在20000株/hm2栽植密度下,单枝地上生物量和单枝树皮地上生物量均显著小于栽植密度为5000株/hm2;2种杨树林分地上生物量和林分树皮地上生物量均随着栽植密度的增大而增大,且各栽植密度间的差异达到了极显著水平。%In order to estimate the quality of biomass before harvesting, an allometric regression of bark percentage of total aboveground biomass and D22( diameter at 22 cm height) was developed in two poplar short-rotation coppice systems.There was no significant difference in shoot biomass and bark biomass of triploid Populus tometnos a B301 ( ( P.tomentosa ×P. bolleana) ×P.tomentosa) plantation, however, the shoot biomass and bark biomass of Populus×euramericana cv.‘74/76’ plantation in the density of 5 000 plants/hm2 were significantly higher than those in 20 000 plants/hm2 .Both triploid Popu-lus tomentosa B301 and Populus×euramericana cv.‘74/76’ showed significant difference in biomass and bark content be-tween different densities.

  19. Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis.

    Science.gov (United States)

    Danielsen, Lara; Lohaus, Gertrud; Sirrenberg, Anke; Karlovsky, Petr; Bastien, Catherine; Pilate, Gilles; Polle, Andrea

    2013-01-01

    Wood from biomass plantations with fast growing tree species such as poplars can be used as an alternative feedstock for production of biofuels. To facilitate utilization of lignocellulose for saccharification, transgenic poplars with modified or reduced lignin contents may be useful. However, the potential impact of poplars modified in the lignification pathway on ectomycorrhizal (EM) fungi, which play important roles for plant nutrition, is not known. The goal of this study was to investigate EM colonization and community composition in relation to biomass and nutrient status in wildtype (WT, Populus tremula × Populus alba) and transgenic poplar lines with suppressed activities of cinnamyl alcohol dehydrogenase, caffeate/5-hydroxyferulate O-methyltransferase, and cinnamoyl-CoA reductase in a biomass plantation. In different one-year-old poplar lines EM colonization varied from 58% to 86%, but the EM community composition of WT and transgenic poplars were indistinguishable. After two years, the colonization rate of all lines was increased to about 100%, but separation of EM communities between distinct transgenic poplar genotypes was observed. The differentiation of the EM assemblages was similar to that found between different genotypes of commercial clones of Populus × euramericana. The transgenic poplars exhibited significant growth and nutrient element differences in wood, with generally higher nutrient accumulation in stems of genotypes with lower than in those with higher biomass. A general linear mixed model simulated biomass of one-year-old poplar stems with high accuracy (adjusted R(2) = 97%) by two factors: EM colonization and inverse wood N concentration. These results imply a link between N allocation and EM colonization, which may be crucial for wood production in the establishment phase of poplar biomass plantations. Our data further support that multiple poplar genotypes regardless whether generated by transgenic approaches or conventional

  20. Repeated unidirectional introgression towards Populus balsamifera in contact zones of exotic and native poplars

    NARCIS (Netherlands)

    Thompson, S.L.; Lamothe, M.; Meirmans, P.G.; Périnet, P.; Isabel, N.

    2010-01-01

    As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus

  1. Effects of irrigating poplar energy crops with landfill leachate on soil micro- and meso-fauna

    Science.gov (United States)

    Jill A. Zalesny; David R. Coyle; Ronald S. Jr. Zalesny; Adam H. Wiese

    2009-01-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization for the trees. Populus species and hybrids (i.e., poplars) are ideal for such systems given their fast...

  2. 欧美杨107正常木与应拉木纤维形态和化学组成比较%Comparison of fiber morphological properties and chemical compositions between normal wood and tension wood in poplar clone 107 (Populus×Euramericanacv.‘Neva') tree

    Institute of Scientific and Technical Information of China (English)

    周亮; 刘盛全; 高慧; 钱良存

    2012-01-01

    【目的】对欧美杨107(以下简称107杨)应拉木与正常木的纤维形态及化学组成进行全面比较和分析,为杨树应拉木的合理高效利用提供依据。【方法】以直立生长和倾斜生长的107杨为研究材料,通过合理方法区分正常木和应拉木,再对应拉木的解剖构造进行电镜观察,着重比较了107杨正常木和应拉木在纤维形态及化学组成的差异。【结果】107杨应拉木具有典型的应拉木解剖构造,即细胞壁中存在明显的胶质层。正常木与应拉木纤维形态比较结果表明,应拉木的双壁厚、壁腔比、木射线比量和纤维比量均高于正常木,而正常木的纤维长度、纤维宽度、纤维长宽比、胞腔径、微纤丝角、导管比量均大于应拉木。引用单因素方差分析比较正常木与应拉木之间纤维形态的差异,结果表明,正常木与应拉木纤维宽度、胞腔径、双壁厚、壁腔比在P=0.001水平上差异显著,纤维长度和微纤丝角在P=0.01水平上差异显著,其余形态指标差异均不显著。正常木与应拉木化学组成比较结果表明,应拉木的综纤维素、纤维素、α-纤维素含量均高于正常木,而正常木的半纤维素、木质素、苯醇抽提物含量、10g/L氢氧化钠抽提物含量均高于应拉木;单因素方差分析表明,正常木与应拉木纤维素、α-纤维素、半纤维素、木素、10g/L氢氧化钠抽提物含量的差异在P=0.001水上显著,其余指标差异均不显著。【结论】107杨正常木与应拉木的主要纤维形态指标和化学组成存在明显差异,在木材加工利用时需要区别对待。%【Objective】 In order to provide information for effective utilization of tension wood,both fiber morphological properties and chemical compositions of normal wood and tension wood of poplar clone 107 were determined for implementing comprehensive comparison between them.【Method】 Straight and inclining poplar

  3. Insect-resistant mechanism of transgenic triploid of Chinese white poplar

    Institute of Scientific and Technical Information of China (English)

    Yuan Shengliang; Gao Baojia; Zhang Na

    2006-01-01

    The activities of antidotal enzymes and digestive enzymes of Clostera anachoreta (Fabricius) instar larvae,feeding on leaves of three kinds of insect-resistant clones of transgenic triploid of Chinese white poplar,after 4,12,24,48,72 and 96 h,were investigated.The results showed that,feeding on clone 7,the activity of esterase,carboxylesterase,and mixed-function oxidases in the midgut of the larvae was very much decreased.Feeding on clone 10,those results were less than those of clone 7 and there were few changes on the larvae,which fed on clone 26.The changes of the amylase in the midgut of larvae were the same as those described above.However,the activities of glutathione S-transferase and proteinase were complex,increased markedly after 24 h feeding on clone 7,and then declined rapidly.The same changes were taking place on the larvae feeding on clone 10.There were many slight changes in glutathione S-transferase of the larvae,feeding on clone 26;no changes occurred in the proteinases of the midgut.Thus,the antidotal enzymes and digestive enzymes in the midgut of the larvae were inhibited.This may be the main mechanism of the transgenic triploid of Chinese white poplar.

  4. Hydrologic Evaluation of a Humid Climate Poplar Phytoremediation Barrier

    Science.gov (United States)

    Swensen, K.; Rabideau, A. J.

    2016-12-01

    The emplacement of hybrid poplar trees to function as phytoremediation barriers is an appealing and sustainable groundwater management strategy because of low maintenance costs and the potential to extract large amounts of groundwater without pumping. While the effectiveness of poplar barriers has been assessed by groundwater quality monitoring, less attention has been given to physical hydrologic evaluations needed to improve barrier designs. In this research, a five year hydrologic evaluation was conducted at a poplar phytoremediation site in western NY, with the goal of quantifying ETg (evapotranspiration from groundwater) as a measure of the barrier's effectiveness in a humid climate. To consider transpiration from both vadose zone and groundwater, the hydrologic evaluation included four components: physical ET measurements, theoretical ET calculations, analysis of diurnal groundwater table fluctuations, and vadose zone modeling. The direct measurements of ETT (total) were obtained using sap flow meters installed on multiple trees within the barrier. These data were interpreted using a regression model that included theoretical ET calculations and site-specific measurements of weather parameters and poplar trunk area. Application of this model was challenged by the spatial variation in rooting depth as determined by tree excavations. To further quantify the removal of groundwater by the phytobarrier (ETg), the White Method was applied to interpret diurnal groundwater fluctuations from monitoring wells located within the barrier, in conjunction with a variably saturated-saturated flow model configured to confirm water extraction from ETg. Taken together, the results of this five year hydrologic evaluation highlight the complexity in quantifying humid climate groundwater extraction, as a large number of variables were found to influence these rates. Improved understanding of these controls will contribute to improved barrier designs that maximize ETg.

  5. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  6. The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils.

    Directory of Open Access Journals (Sweden)

    Richard S. Winder

    2013-09-01

    Full Text Available The impacts of leaf litter from genetically-modified hybrid poplar accumulating high levels of condensed tannins (proanthocyanidins were examined in soil microcosms consisting of moss growing on sieved soil. Moss preferentially proliferated in microcosms with lower tannin content; DGGE detected increased fungal diversity in microcosms with low-tannin litter. The proportion of cloned rDNA sequences from Actinobacteria decreased with litter addition while Bacteroidetes, Chloroflexi, Cyanobacteria, and α-Proteobacteria significantly increased. β–Proteobacteria were proportionally more numerous at high tannin levels. Tannins had no significant impact on overall diversity of bacterial communities analyzed with various estimators. There was an increased proportion of N-fixing bacteria corresponding to the addition of litter with low tannin levels. The addition of litter increased the proportion of Ascomycota/Basidiomycota. Dothideomycetes, Pucciniomycetes, and Tremellomycetes also increased and Agaricomycetes decreased. Agaricomycetes and Sordariomycetes were significantly more abundant in controls, whereas Pucciniomycetes increased in soil with litter from transformed trees (P = 0.051. Richness estimators and diversity indices revealed no significant difference in the composition of fungal communities; PCoA partitioned the fungal communities into three groups: (i those with higher amounts of added tannin from both transformed and untransformed treatments, (ii those corresponding to soils without litter, and (iii those corresponding to microcosms with litter added from trees transformed only with a β-glucuronidase (GUS control vector. While the litter from transformed poplars had significant effects on soil microbe communities, the observed impacts reflected known impacts on soil processes associated with tannins, and were similar to changes that would be expected from natural variation in tannin levels.

  7. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Seol Ah, E-mail: s6022029@korea.ac.kr; Choi, Young-Im, E-mail: yichoi99@forest.go.kr; Cho, Jin-Seong, E-mail: jinsung3932@gmail.com; Lee, Hyoshin, E-mail: hslee@forest.go.kr

    2015-06-19

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem.

  8. Selection strategy and the design of hybrid oligonucleotide primers for RACE-PCR: cloning a family of toxin-like sequences from Agelena orientalis

    Directory of Open Access Journals (Sweden)

    Lipkin Alexey

    2007-05-01

    Full Text Available Abstract Background the use of specific but partially degenerate primers for nucleic acid hybridisations and PCRs amplification of known or unknown gene families was first reported well over a decade ago and the technique has been used widely since then. Results here we report a novel and successful selection strategy for the design of hybrid partially degenerate primers for use with RT-PCR and RACE-PCR for the identification of unknown gene families. The technique (named PaBaLiS has proven very effective as it allowed us to identify and clone a large group of mRNAs encoding neurotoxin-like polypeptide pools from the venom of Agelena orientalis species of spider. Our approach differs radically from the generally accepted CODEHOP principle first reported in 1998. Most importantly, our method has proven very efficient by performing better than an independently generated high throughput EST cloning programme. Our method yielded nearly 130 non-identical sequences from Agelena orientalis, whilst the EST cloning technique yielded only 48 non-identical sequences from 2100 clones obtained from the same Agelena material. In addition to the primer design approach reported here, which is almost universally applicable to any PCR cloning application, our results also indicate that venom of Agelena orientalis spider contains a much larger family of related toxin-like sequences than previously thought. Conclusion with upwards of 100,000 species of spider thought to exist, and a propensity for producing diverse peptide pools, many more peptides of pharmacological importance await discovery. We envisage that some of these peptides and their recombinant derivatives will provide a new range of tools for neuroscience research and could also facilitate the development of a new generation of analgesic drugs and insecticides.

  9. Poplar MYB115 and MYB134 Transcription Factors Regulate Proanthocyanidin Synthesis and Structure.

    Science.gov (United States)

    James, Amy Midori; Ma, Dawei; Mellway, Robin; Gesell, Andreas; Yoshida, Kazuko; Walker, Vincent; Tran, Lan; Stewart, Don; Reichelt, Michael; Suvanto, Jussi; Salminen, Juha-Pekka; Gershenzon, Jonathan; Séguin, Armand; Constabel, C Peter

    2017-05-01

    The accumulation of proanthocyanidins is regulated by a complex of transcription factors composed of R2R3 MYB, basic helix-loop-helix, and WD40 proteins that activate the promoters of biosynthetic genes. In poplar (genus Populus), MYB134 is known to regulate proanthocyanidin biosynthesis by activating key flavonoid genes. Here, we characterize a second MYB regulator of proanthocyanidins, MYB115. Transgenic poplar overexpressing MYB115 showed a high-proanthocyanidin phenotype and reduced salicinoid accumulation, similar to the effects of MYB134 overexpression. Transcriptomic analysis of MYB115- and MYB134-overexpressing poplar plants identified a set of common up-regulated genes encoding proanthocyanidin biosynthetic enzymes and several novel uncharacterized MYB transcriptional repressors. Transient expression experiments demonstrated the capacity of both MYB134 and MYB115 to activate flavonoid promoters, but only in the presence of a basic helix-loop-helix cofactor. Yeast two-hybrid experiments confirmed the direct interaction of these transcription factors. The unexpected identification of dihydromyricetin in leaf extracts of both MYB115- and MYB134-overexpressing poplar led to the discovery of enhanced flavonoid B-ring hydroxylation and an increased proportion of prodelphinidins in proanthocyanidin of the transgenics. The dramatic hydroxylation phenotype of MYB115 overexpressors is likely due to the up-regulation of both flavonoid 3',5'-hydroxylases and cytochrome b5 Overall, this work provides new insight into the complexity of the gene regulatory network for proanthocyanidin synthesis in poplar. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. The clonal root system of balsam poplar in upland sites of Quebec and Alberta.

    Science.gov (United States)

    Adonsou, Kokouvi E; DesRochers, Annie; Tremblay, Francine; Thomas, Barb R; Isabel, Nathalie

    2016-10-01

    Balsam poplar seeds are short-lived and require moist seedbeds soon after they are released to germinate. In addition to sexual reproduction, balsam poplar stands can regenerate clonally by root suckering. The origin of stands will in turn affect their genetic structure and root system architecture, which are poorly understood for upland forest stands. Three stands were hydraulically excavated in Quebec (moist) and Alberta (dry) to determine the origin of trees and to characterize root systems with respect to presence of parental roots and root grafts connections. Clones were identified using single-nucleotide polymorphism (SNPs), and all stems, roots and root grafts were aged using dendrochronology techniques. All 82 excavated trees were of sucker origin, and four of the six stands contained a single clone. Parental root connections were found between 22% and 25% of excavated trees, and 53% and 48% of trees were linked with a root graft between the same or different clones, in Alberta and Quebec, respectively. Mean distance between trees connected by parental root was significantly lower than the distance between unconnected trees (0.47 ± 0.25 m vs. 3.14 ± 0.15 m and 1.55 ± 0.27 m vs. 4.25 ± 0.13 m) in Alberta and in Quebec, respectively. The excavations also revealed many dead stumps with live roots, maintained through root connections with live trees. This research highlights that balsam poplar growing in upland stands is a clonal species that can maintain relatively high genotypic diversity, with frequent root connections between trees at maturity. Maintaining an extensive root system through root connections increases the chances of a clone surviving when the above ground tree is dead and may also enhance the resilience of balsam poplar stands after disturbance.

  11. Dense poplar plantations as the raw material for the production of energy

    Directory of Open Access Journals (Sweden)

    Klašnja Bojana

    2006-01-01

    Full Text Available The higher heating value of wood and bark was determined for several poplar (Populus spp clones. The study included the juvenile one year old plants of the following clones: P.×euramericana cl. ostia, P. nigra cl.53/86, P. deltoides cl. PE 19/66, P.×euramericana cl. I-214, P. deltoides cl. S6-7 and P.×euramericana cv. robusta. By using FVI which takes into account ash content, wood bulk density, and moisture content, it was determined that poplar wood can be a significant energy raw material, primarily thanks to its short rotation cycle and a very high wood volume increment. Significant differences were determined in the values of wood basic density which affect the higher heating value of the study poplar clones, and consequently the yield (weight of biomass produced per unit area of dense plantations. This is reflected also on the estimated amount of energy that can be produced by the combustion of biomass of the whole one year old plants.

  12. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    Science.gov (United States)

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  13. Effect of drought on fine roots productivity in poplar-based short rotation coppice

    Science.gov (United States)

    Mani Tripathi, Abhishek; Fischer, Milan; Berhongaray, Gonzalo; Orság, Matěj; Trnka, Miroslav

    2015-04-01

    Short rotation woody crops (SRWC) are alternative source of bioenergy, which apart from their 'carbon neutrality' have potential to store carbon (C) into soil and mitigate the increasing CO2 emission. Studies of below ground biomass of trees are divided into two types according to root diameter - analysis of fine roots (less than 2 mm) and coarse roots (more than 2 mm). Trees roots are spatially highly heterogeneous and it requires large number of samples to obtain a representative estimate of belowground biomass. For this study we used hybrid poplar clone J-105 (Populus nigra x P. maximowiczii) grown under short rotation coppice system in the region of Bohemian-Moravian Highland (49o32'N, 16o15'E and altitude 530 m a.s.l.) since April 2000. The plantation with planting density of 9,216 trees ha-1 was established on the former agricultural land and the length of the rotation cycle was set to 6-8 years. While mean annual rainfall was 609 mm with mean annual temperature 7.2oC during 1981-2013 significant increase of temperature and more frequent droughts are expected. In 2011, we established drought experiment based on throughfall exclusion system, reducing up to 70 % of throughfall precipitation. Thus 2 treatments with normal and lowered soil moisture levels were introduced. In January and February 2014, we cored 18 places including drought and control using root bipartite auger. The main goal of the study is to assess the response of fine roots productivity and fine roots vertical distribution on the reduced soil water availability. Results will be presented at the conference. Acknowledgements: This study was funded by research project IGA Mendel University 2014 "Study of below ground biomass in short rotation poplar coppice (J-105) in the Czech-Moravian Highlands", project PASED (KONTAKT II LH12037 ʺDevelopment of models for the assessment of abiotic stresses in selected energy woody plantsʺ and "Building up a multidisciplinary scientific team focused on drought

  14. Effect of technological parameters and wood properties on cutting power in plane milling of juvenile poplar wood

    Directory of Open Access Journals (Sweden)

    Barcík Štefan

    2008-10-01

    Full Text Available This paper presents the results of experimental measurements aimed at observing the effect of technological parameters (cutting speed vc and feed speed vf , type of wood (juvenile wood and mature wood andwood species (aspen Populus tremula, L. and hybrid poplar Populus x Euramericana „Serotina“ on cutting power during plane milling of poplar wood. The results showed the reduction of cutting power with the decrease of cutting speed and feed speed. Lower cutting power was also measured in milling hybrid poplar than in milling aspen. The test also confirmed the effect of different anatomical and chemical structure of juvenile wood in relation to mature wood on different physical and mechanical properties of such wood and hence also on the cutting power in processing juvenile wood.

  15. Melhoramento genético da cana-de-açúcar: avaliação de clones provenientes de hibridações efetuadas em 1965 Sugarcane breeding: performance of iac sugarcane clones originated from hybridation

    Directory of Open Access Journals (Sweden)

    Raphael Alvarez

    1987-01-01

    Full Text Available Objetivando estudar dezoito clones de cana-de-açúcar provenientes de hibridações efetuadas em Ubatuba, SP, em 1965, tendo como padrão as variedades comerciais NA56-79 e CB41-76, efetuou-se um experimento em latossolo roxo na Usina Santa Lydia, em Ribeirão Preto, SP. No ensaio, plantado em março de 1973, utilizou-se o delineamento em blocos casualizados com quatro repetições, sendo a análise estatística feita com a média das três colheitas (cana-planta, soca e ressoca. Avaliou-se a produção agrícola, teor de açúcar provável e produtividade de açúcar provável. O clone IAC65-55 apresentou produtividade de açúcar significativamente superior ao padrão CB41-76, enquanto os clones IAC65-220, IAC65-257, IAC65-255, IAC65-155 e IAC65-113 não diferiram significativamente dele. Nenhum desses clones diferiu da variedade NA56-79 em produtividade de açúcar. Em função dessas características, associadas à resistência ao "carvão", os clones IAC65-55, IAC65-257, IAC65-113, IAC65-155 e IAC65-255 poderão constituir alternativas para o cultivo na região de Ribeirão Preto.A group of 18 of the best sugarcane clones obtained from hybridation in 1965, at the Experimental Station of Ubatuba, Instituto Agronômico, were evaluated in one experiment carried out in Santa Lydia mill, Ribeirão Preto, State of São Paulo, Brazil. In 1973, it was started a field trial using as controls the commercial varieties NA56-79, and CB41-76. The experiment design was a randomized complete block with four replications. The cane yield (t/ha, sugar content (kg/t cane, and sugar yield (t/ha were expressed as the average of three harvests: cane plant (18 months, first ratoon (12 months after and second ratoon (12 months after. According to these characteristics the clones IAC65-55, IAC65-257, IAC65-113, IAC65-155 and IAC65-255 were selected, and constitute alternatives of new varieties for the sugarcane cropping in the region of Ribeirão Preto.

  16. Multiple factors affect pest and pathogen damage on 31 Populus clones in South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David R.; Coleman, Mark D. [USDA Forest Service, Southern Research Station, P.O. Box 700, New Ellenton, SC 29809 (United States); Durant, Jaclin A.; Newman, Lee A. [Arnold School of Public Health, Department of Environmental Health Sciences, University of South Carolina, 800 Sumter St., Columbia, SC 29208 (United States)

    2006-08-15

    Populus species and hybrids have many practical applications, but there is a paucity of data regarding selections that perform well in the southeastern US. We compared pest susceptibility of 31 Populus clones over 3 years in South Carolina, USA. Cuttings were planted in spring 2001 on two study sites. Clones planted in the bottomland site received granular fertilizer yearly and irrigation the first two years only, while those on the sandy, upland site received irrigation and fertilization throughout each growing season. Foliar damage by the cottonwood leaf beetle (Chrysomela scripta), cottonwood leafcurl mite (Tetra lobulifera), and poplar leaf rust (Melampsora medusae) was visually monitored several times each growing season. Damage ratings differed significantly among clones, and clonal rankings changed from year to year. Irrigation increased C. scripta and M. medusae damage, but had no effect on T. lobulifera damage. Certain clones received greater pest damage at a particular study site. Temporal damage patterns were evident among individual clones and on each site. At the upland site, OP367 and 7300502 were highly resistant to all three pests; I45/51 was highly resistant to C. scripta and M. medusae; NM6 and 15-29 were highly resistant to M. medusae; and 7302801 was highly resistant to T. lobulifera and M. medusae. At the bottomland site, NM6, Eridano, I45/51, and 7302801 were highly resistant to all three pests; clone 7300502 was highly resistant to M. medusae only. Based on this preliminary 3-year study of pest damage levels, we would recommend clones NM6, Eridano, I45/51, OP367, 15-29, 7302801, 7300502, and Kentucky 8 for use in this region. (author)

  17. B-G cDNA clones have multiple small repeats and hybridize to both chicken MHC regions

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1989-01-01

    We used rabbit antisera to the chicken MHC erythrocyte molecule B-G and to the class I alpha chain (B-F) to screen lambda gt11 cDNA expression libraries made with RNA selected by oligo-dT from bone marrow cells of anemic B19 homozygous chickens. Eight clones were found to encode B-G molecules which...

  18. Association analysis identifies Melampsora ×columbiana poplar leaf rust resistance SNPs.

    Directory of Open Access Journals (Sweden)

    Jonathan La Mantia

    Full Text Available Populus species are currently being domesticated through intensive time- and resource-dependent programs for utilization in phytoremediation, wood and paper products, and conversion to biofuels. Poplar leaf rust disease can greatly reduce wood volume. Genetic resistance is effective in reducing economic losses but major resistance loci have been race-specific and can be readily defeated by the pathogen. Developing durable disease resistance requires the identification of non-race-specific loci. In the presented study, area under the disease progress curve was calculated from natural infection of Melampsora ×columbiana in three consecutive years. Association analysis was performed using 412 P. trichocarpa clones genotyped with 29,355 SNPs covering 3,543 genes. We found 40 SNPs within 26 unique genes significantly associated (permutated P<0.05 with poplar rust severity. Moreover, two SNPs were repeated in all three years suggesting non-race-specificity and three additional SNPs were differentially expressed in other poplar rust interactions. These five SNPs were found in genes that have orthologs in Arabidopsis with functionality in pathogen induced transcriptome reprogramming, Ca²⁺/calmodulin and salicylic acid signaling, and tolerance to reactive oxygen species. The additive effect of non-R gene functional variants may constitute high levels of durable poplar leaf rust resistance. Therefore, these findings are of significance for speeding the genetic improvement of this long-lived, economically important organism.

  19. Identification of differentially expressed proteins in poplar leaves induced by Marssonina brunnea f. Sp. Multigermtubi

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Black spot disease in poplar is a disease of the leaf caused by fungus. The major pathogen is Marssonina brunnea f. sp. multigermtubi.To date, little is known about the molecular mechanism of poplar (M. brunnea) interaction. In order to identify the proteins related to disease resistance and understand its molecular basis, the clone "NL895" (P. euramericana CL"NL895"), which is highly resistant to M.brunnea f. sp. multigermtubi, was used in this study. We used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to identify the proteins in poplar leaves that were differentially expressed in response to black spot disease pathogen, M. brunnea f. sp. multigermtubi. Proteins extracted from poplar leaves at 0, 12, 24, 48, and 72 h after pathogen-inoculation were separated by 2-DE. About 500 reproducible protein spots were detected, of which 40 protein spots displayed differential expression in levels and were subjected to Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) followed by database searching. According to the function, the identified proteins were sorted into five categories, that is, protein synthesis, metabolism, defense response and unclassified proteins.

  20. Impact of RAV1-engineering on poplar biomass production: a short-rotation coppice field trial.

    Science.gov (United States)

    Moreno-Cortés, Alicia; Ramos-Sánchez, José Manuel; Hernández-Verdeja, Tamara; González-Melendi, Pablo; Alves, Ana; Simões, Rita; Rodrigues, José Carlos; Guijarro, Mercedes; Canellas, Isabel; Sixto, Hortensia; Allona, Isabel

    2017-01-01

    Early branching or syllepsis has been positively correlated with high biomass yields in short-rotation coppice (SRC) poplar plantations, which could represent an important lignocellulosic feedstock for the production of second-generation bioenergy. In prior work, we generated hybrid poplars overexpressing the chestnut gene RELATED TO ABI3/VP1 1 (CsRAV1), which featured c. 80% more sylleptic branches than non-modified trees in growth chambers. Given the high plasticity of syllepsis, we established a field trial to monitor the performance of these trees under outdoor conditions and a SRC management. We examined two CsRAV1-overexpression poplar events for their ability to maintain syllepsis and their potential to enhance biomass production. Two poplar events with reduced expression of the CsRAV1 homologous poplar genes PtaRAV1 and PtaRAV2 were also included in the trial. Under our culture conditions, CsRAV1-overexpression poplars continued developing syllepsis over two cultivation cycles. Biomass production increased on completion of the first cycle for one of the overexpression events, showing unaltered structural, chemical, or combustion wood properties. On completion of the second cycle, aerial growth and biomass yields of both overexpression events were reduced as compared to the control. These findings support the potential application of CsRAV1-overexpression to increase syllepsis in commercial elite trees without changing their wood quality. However, the syllepsis triggered by the introduction of this genetic modification appeared not to be sufficient to sustain and enhance biomass production.

  1. Identification of CpTI Gene Integration for 2-year-old Transgenic Poplars at DNA Level

    Institute of Scientific and Technical Information of China (English)

    Zhang Qian; Lin Shanzhi; Lin Yuanzhen; Zhang Zhiyi; Liu Haijun; Zou Yening; Wang Zeliang

    2004-01-01

    The putative transgenic hybrid triploid poplars [(P. Tomentosa × P. Bolleana) × P. Tomentosa] with CpTI gene have been outplanted in test field for 2 years. Although the authors' previous studies have proved that they are highly resistant to 3 species of poplar-threatening insect pests and contain high content of CpTI protein in foliage, incorporation status of foreign CpTI gene in poplar genome is uncertain. In this present study, the incorporation of foreign CpTI gene in genome of 5 transgenic poplars was confirmed by PCR and Southern blotting analysis. DNA amplification showed that there were clear DNA bands of about 450bp specific to CpTI gene in transgenic lanes, while no corresponding band in non-transgenic lane was observed. Correspondingly, clear DNA hybridization signals and no signal were exhibited on film for DNA Southern blotting analysis in transgenic lanes and non-transgenic lane, respectively, which further confirmed the stable integration of foreign CpTI gene in genome of 2-year-old transgenic poplar.

  2. Continuous steam hydrolysis of tulip poplar

    Energy Technology Data Exchange (ETDEWEB)

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  3. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Michael Jourdes; Chanyoung Ki; Ann M. Patten; Laurence B. Davin; Norman G. Lewis; Gerald A. Tuskan; Lee Gunter; Stephen R. Decker; Michael J. Selig; Robert Sykes; Michael E. Himmel; Peter Kitin; Olga Shevchenko; Steven H. Strauss

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula...

  4. Why Clone?

    Science.gov (United States)

    ... How might cloning be used in medicine? Cloning animal models of disease Much of what researchers learn ... issue of the genetic reshuffling that happensduring sexual reproduction and simply clone our drug-producing cow. Cloning ...

  5. Effect of water regime on poplar cultivation

    Directory of Open Access Journals (Sweden)

    Letić Ljubomir

    2006-01-01

    Full Text Available The effect of water regime on the growth and development of plantations of hydrologically conditioned species, poplars was researched in the alluvial plain of the river Tamiš. The investigations were carried out during the period 2000-2003 on the area of FA "Opovo", KO Sakule, and the study results elucidate the very complex relationships between the hydrological conditions of the site and the growth and increment of the study poplar plantations, cl. I-214. .

  6. Cloned polynucleotide and synthetic oligonucleotide probes used in colony hybridization are equally efficient in the identification of enterotoxigenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Sommerfelt, H.; Kalland, K.H.; Raj, P.; Moseley, S.L.; Bhan, M.K.; Bjorvatn, B.

    1988-11-01

    Restriction endonuclease-generated polynucleotide and synthetically produced oligonucleotide gene probes used in colony hybridization assays proved to be efficient for the detection and differentiation of enterotoxigenic Escherichia coli. To compare their relative efficiencies, these two sets of probes were radiolabeled with /sup 32/P and were applied to 74 strains of E. coli with known enterotoxin profiles and to 156 previously unexamined E. coli isolates. The enterotoxigenic bacteria Vibrio cholerae O1, Vibrio cholerae non-O1 (NAG), Yersinia enterocolitica, and E. coli harboring the plasmid vectors of the polynucleotide gene probes were examined for further evaluation of probe specificity. The two classes of probes showed a perfect concordance in their specific detection and differentiation of enterotoxigenic E. coli. In the analysis of six strains, the signal strength on autoradiography after hybridization with oligonucleotides was weaker than that obtained after hybridization with polynucleotide probes. The probes did not hybridize with DNA from V. cholerae O1, V. cholerae non-O1 (NAG), or Y. enterocolitica. The strains of E. coli harboring the plasmid vectors of the polynucleotide gene probes were, likewise, negative in the hybridization assays.

  7. Genomic analysis of the F3031 Brazilian purpuric fever clone of Haemophilus influenzae biogroup aegyptius by PCR-based subtractive hybridization.

    Science.gov (United States)

    Smoot, Laura M; Franke, Deanna D; McGillivary, Glen; Actis, Luis A

    2002-05-01

    PCR-based subtractive genome hybridization produced clones harboring inserts present in Brazilian purpuric fever (BPF) prototype strain F3031 but absent in noninvasive Haemophilus influenzae biogroup aegyptius isolate F1947. Some of these inserts have no matches in the GenBank database, while others are similar to genes encoding either known or hypothetical proteins. One insert represents a 2.3-kb locus with similarity to a Thermotoga maritima hypothetical protein, while another is part of a 7.6-kb locus that contains predicted genes encoding hypothetical, phage-related, and carotovoricin Er-like proteins. The presence of DNA related to these loci is variable among BPF isolates and nontypeable H. influenzae strains, while neither of them was detected in strains of types a to f. The data indicate that BPF-causing strain F3031 harbors unique chromosomal regions, most of which appear to be acquired from unrelated microbial sources.

  8. Improvement of production of high-yield poplar varieties seedlings by mycorrhiza application

    Directory of Open Access Journals (Sweden)

    Galić Zoran A.

    2007-01-01

    Full Text Available Research related to the effects of treatment by mycorrhiza preparations Ectovit, Rhodovit (preparations Symbio-m Ltd., Czech Rep. and their combination on growth of four high-yield poplar clones of Populus deltoides and one variety of Populus x euramericana are presented in this paper. In order to make more accurate assessment of mycorrhiza effect, soil characteristics such as morphology, texture and chemical composition were determined. The study results indicate that mycorrhized cuttings had the same or the better survival in all the study clones compared to the control. The application of the preparation Ectovit and Rhodovit resulted averagely in the first class planting stock of all the study clones. The combination of the preparations Ectovit and Rhodovit produced averagely the first class planting stock only of the clone Populus x euramericana.

  9. Study on Poplar Industrialization in Jiangsu:(3)Conclusions and Recommendations on Poplar Industrialization Management

    Institute of Scientific and Technical Information of China (English)

    SHEN Wenxing; ZHOU Dingguo; XU Xinping

    2006-01-01

    This article concludes that the creation of a new industrial management,including the innovation of management institution,operation system,industrial policies and industrial technology,is a solution to the management optimization of the poplar industry.The further development of the poplar industry is beneficial to the sustainable development of the society,economy and ecological environment in Jiangsu province.

  10. Isolation and analysis of a TIR-specific promoter from poplar

    Institute of Scientific and Technical Information of China (English)

    Zheng Hui-quan; Lin Shan-zhi; Zhang Qian; Zhang Zhen-zhen; Zhang Zhi-yi; Lei Yang; Hou Lu

    2007-01-01

    A 5'flanking region of the well-conserved Toll/interleukin-1 receptor domain (TIR)-encoding sequence was isolated from the genomic DNA of Melampsora magnusiana Wagner resistant clones of hybrid triploid poplars [(Populus tomentosa × P. bolleana)× P. tomentosa]. Sequencing results and alignment analysis show that the obtained TIR-specific promoter (named as PtTIRp01) was 1,732 bp in length; moreover 3'region of the PtTIRp01 contains a 398 bp complete TIR-encoding sequence, which significantly corresponds to the 5'composition of TIR-NBS type gene PtDRG02, indicating that the obtained TIR-specific promoter region consists of 747 bp long 5'region of TIR-NBS type gene PtDRG02 and its upstream region of promoter (985 bp). It was found that the 5'region of TIR-NBS type gene PtDRG02 was characterized in the downstream region of the transcriptional start, named as 5'-untranslated region (5'UTR), consisting of one 93 bp 5'-untranslation exon, one 213 bp intron and one 441 bp TIR-encoding open reading frame (ORF). In addition, several putative cis-acting motifs were present in the obtained TIR-specific promoter of PtDRG02,including one TATA box, one GC-rich, one AT-rich, one P-box, one 3-AF1 binding site, two CAAT boxes, two GT-1 motifs, three typical W-boxes, four Ⅰ-boxes, and one multi-cis-acting fragment (MCF). The latter contains five types of regulatory elements (E4,G-box, ABRE motif, boxl and HVAls), most of which were homologous to the cis-acting regulatory elements involved in the activation of defense genes in plants. Thus, it can be suggested that TIR-specific promoter might be a pathogen-inducible promoter and be necessary for the inducible expression of defense-related genes.

  11. Ozone-induced changes in carotenoids and chlorophylls in three Populus clones

    OpenAIRE

    Keski-Saari, Sarita; Dumont, Jennifer; Keinänen, Markku; Kontunen-Soppela, Sari; Oksanen, Elina; Le Thiec, Didier

    2011-01-01

    Ozone is a phytotoxic air pollutant causing oxidative stress. We studied the effect of ozone on carotenoids, chlorophylls and polyisoprenoid alcohols in three euramerican poplar clones (Populus deltoides x Populus nigra: 'Carpaccio', 'Cima' and 'Robusta'). Poplars originating from cuttings were grown for 6 weeks and exposed to ozone in fumigation chambers (120 ppb each day for 13h). Leaf samples were collected 2, 4, 11, 15 and 17 days after the start of ozone treatment. Chemical analyses were...

  12. 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis

    NARCIS (Netherlands)

    Greshock, J; Naylor, TL; Margolin, A; Diskin, S; Cleaver, SH; Futreal, PA; deJong, PJ; Zhao, SY; Liebman, M; Weber, BL

    2004-01-01

    Array-based comparative genomic hybridization (aCGH) is a recently developed tool for genome-wide determination of DNA copy number alterations. This technology has tremendous potential for disease-gene discovery in cancer and developmental disorders as well as numerous other applications. However, w

  13. Nucleotide diversity among natural populations of a North American poplar (Populus balsamifera, Salicaceae).

    Science.gov (United States)

    Breen, Amy L; Glenn, Elise; Yeager, Adam; Olson, Matthew S

    2009-01-01

    Poplars (Populus spp.) comprise an important component of circumpolar boreal forest ecosystems and are the model species for tree genomics. In this study, we surveyed genetic variation and population differentiation in three nuclear genes among populations of balsam poplar (Populus balsamifera) in North America. We examined nucleotide sequence variation in alcohol dehydrogenase 1 (Adh1) and glyceraldehyde 3-phosphate dehydrogenase (G3pdh), two well-studied nuclear loci in plants, and abscisic acid insensitivity 1B (ABI1B), a locus coincident with timing of seasonal dormancy in quantitative trait locus (QTL) studies of hybrid poplars. We compared estimates of baseline population genetic parameters for these loci with those obtained in studies of other poplar species, particularly European aspen (Populus tremula). Average pairwise nucleotide diversity (pi(tot) = 0.00216-0.00353) was equivalent to that in Populus trichocarpa, but markedly less than that in P. tremula. Elevated levels of population structure were observed in ABI1B between the northern and southern regions (F(CT) = 0.184, P boreal plant species.

  14. Nitrifying bacterial communities in an aquaculture wastewater treatment system using fluorescence in situ hybridization (FISH), 16S rRNA gene cloning, and phylogenetic analysis.

    Science.gov (United States)

    Paungfoo, Chanyarat; Prasertsan, Poonsuk; Burrell, Paul C; Intrasungkha, Nugul; Blackall, Linda L

    2007-07-01

    Aquaculture, especially shrimp farming, has played a major role in the growth of Thailand's economy in recent years, as well as in many South East Asian countries. However, the nutrient discharges from these activities have caused adverse impacts on the quality of the receiving waterways. In particular nitrogenous compounds, which may accumulate in aquaculture ponds, can be toxic to aquatic animals and cause environmental problems such as eutrophication. The mineralization process is well known, but certain aspects of the microbial ecology of nitrifiers, the microorganisms that convert ammonia to nitrate, are poorly understood. A previously reported enrichment of nitrifying bacteria (ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) from a shrimp farm inoculated in a sequencing batch reactor (SBR) was studied by molecular methods. The initial identification and partial quantification of the nitrifying bacteria (AOB and NOB) were carried out by fluorescence in situ hybridization (FISH) using previously published 16S rRNA-targeting oligonucleotide probes. The two dominant bacterial groups detected by FISH were from the Cytophaga-Flavobacterium-Bacteroides and Proteobacteria (beta subdivision) phyla. Published FISH probes for Nitrobacter and Nitrospira did not hybridize to any of the bacterial cells. Therefore it is likely that new communities of NOBs, differing from previously reported ones, exist in the enrichments. Molecular genetic techniques (cloning, sequencing, and phylogenetic analysis) targeting the 16S rRNA genes from the nitrifying enrichments were performed to identify putative AOBs and NOBs.

  15. Transactivating effect of complete S protein of hepatitis B virus and cloning of genes transactivated by complete S protein using suppression subtractive hybridization technique

    Institute of Scientific and Technical Information of China (English)

    Gui-Qin Bai; Yan Liu; Jun Cheng; Shu-Lin Zhang; Ya-Fei Yue; Yan-Ping Huang; Li-Ying Zhang

    2005-01-01

    AIM: To investigate the transactivating effect of complete S protein of hepatitis B virus (HBV) and to construct a subtractive cDNA library of genes transactivated by complete S protein of HBV by suppression subtractive hybridization (SSH) technique and to clone genes associated with its transactivation activity, and to pave the way for elucidating the pathogenesis of hepatitis B virus infection.METHODS: pcDNA3.1(-)-complete S containing full-length HBV S gene was constructed by insertion of HBV complete S gene into BarmH-I/Kpn I sites. HepG2 cells were cotransfected with pcDNA3.1(-)-complete S and pSV-lacZ.After 48 h, cells were collected and detected for the expression of β-galactosidase (β-gal). Suppression subtractive hybridization and bioinformatics techniques were used.The mRNA of HepG2 cells transfected with pcDNA3.1(-)-complete S and pcDNA3.1(-) empty vector was isolated,and detected for the expression of complete S protein by reverse transcription polymerase chain reaction (RT-PCR)method, and cDNA was synthesized. After digestion with restriction enzyme RcaI, cDNA fragments were obtained.Tester cDNA was then divided into two groups and ligated to the specific adaptors 1 and 2, respectively. After tester cDNA had been hybridized with driver cDNA twice and underwent nested PCR twice, amplified cDNA fragments were subcloned into pGEM-Teasy vectors to set up the subtractive library. Amplification of the library was carried out within E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with BLAST search after polymerase chain reaction (PCR) amplification.RESULTS: The complete S mRNA could be detected by RT-PCR in HepG2 cells transfected with the pcDNA3.1(-)-complete S. The activity of β-gal in HepG2 cells transfected with the pcDNA3.1(-)-complete S was 6.9 times higher than that of control plasmid. The subtractive library of genes transactivated by HBV complete S protein was constructed successfully. The amplified library contains 86

  16. B-G cDNA clones have multiple small repeats and hybridize to both chicken MHC regions

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1989-01-01

    in turn react with authentic B-G proteins. None of the clones represent a complete message, some--if not all--bear introns, and none of them match with any sequences presently stored in the data banks. The following new information did, however, emerge. At least two homologous transcripts are present......We used rabbit antisera to the chicken MHC erythrocyte molecule B-G and to the class I alpha chain (B-F) to screen lambda gt11 cDNA expression libraries made with RNA selected by oligo-dT from bone marrow cells of anemic B19 homozygous chickens. Eight clones were found to encode B-G molecules which...... could explain the bewildering variation in size of B-G proteins within and between haplotypes. Southern blots of genomic chicken DNA gave complex patterns for most probes, with many bands in common using different probes, but few bands in common between haplotypes. The sequences detected are all present...

  17. Fluorescent in-situ hybridization of cattle and sheep chromosomes with cloned human fragile-X DNA

    DEFF Research Database (Denmark)

    Ali, Ahmd; Thomsen, Preben Dybdahl; Babar, M.E.

    2009-01-01

    An extensive study on spontaneous and 5-Fluorodeoxyuridine induced fragile sites identified Xq31 in cattle (Bos taurus) and (Xq24, Xq26) in sheep (Ovis aries) in addition to several autosomal fragile sites (under publication). A ZOO-FISH study using three cloned human fragile-X probes with CCG....../CGG(n) trinucleotide repeat sequence was carried out to determine homology between human and bovine fragile-X. The hybridisation results showed only a weak signal on a human chromosome that was not an X with all three fragile site probes. No signals were detected in sheep chromosomes. The signal of all three human...... showed no signals whatsoever. It was therefore concluded that no homology existed between human and bovine fragile-X....

  18. Biomass productivity and water use relation in short rotation poplar coppice (Populus nigra x P. maximowiczii in the conditions of Czech Moravian Highlands

    Directory of Open Access Journals (Sweden)

    Milan Fischer

    2011-01-01

    Full Text Available The plantations of short rotation coppice (SRC usually based on poplar or willow species are promising source of biomass for energy use. To contribute to decision-making process where to establish the plantations we evaluated the water consumption and its relation to biomass yields of poplar hybrid clone J-105 (Populus nigra x P. maximowiczii in representative conditions for Czech-Moravian Highlands. Water availability is usually considered as one of the main constraints of profitable SRC culture and therefore we focused on analyzing of the linkage between the aboveground biomass increments and the total stand actual evapotranspiration (ETa and on water use efficiency of production (WUEP. During the seasons 2008 and 2009 the total stand ETa measured by Bowen ratio energy balance system constructed above poplar canopy and the stem diameter increments of randomly chosen sample trees were examined. The stem diameters were subsequently converted to total aboveground biomass (AB by allometric equation obtained by destructive analysis at the beginning of 2010. The biomass volume and its increment of particular trees were subsequently converted to the whole canopy growth and correlated with the ETa values. Our results revealed that there was a statistically significant relation between water lost and biomass growth with coefficients of determination r2 0.96 and 0.51 in 2008 and 2009 respectively. By using multiple linear regression analysis additionally accounting for effect of precipitation events and thermal time (sums of effective temperatures above +5 °C the AB growth was explained from 98 and 87% in 2008 and 2009, respectively. Therefore for further analysis the multiple linear regression model was applied. The dynamic of seasonal WUEP (expressed as gram of AB dry matter per thousand grams of water reached up to 6.2 and 6.8 g kg−1 with means 3.13 and 3.54 g kg−1 in both executed years respectively. These values are situated in higher

  19. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products.

    Science.gov (United States)

    Devappa, Rakshit K; Rakshit, Sudip K; Dekker, Robert F H

    2015-11-01

    The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  20. Degradation of poplar bark by Panaeolus

    Energy Technology Data Exchange (ETDEWEB)

    Scurti, J.C.; Fiussello, N.; Gullino, M.L.; Ferrara, R.

    1978-01-01

    Pure cultures of 41 strains of Paneolus were tested for their ability to break down poplar bark with a view to their possible use for biodegradation of this waste product of paper manufacture. Most strains were able to grow (slowly) on sterilized poplar bark and showed high ligninolytic activity. Some strains also showed cellulolytic action. Almost all the strains showed phenol-oxidase activity, but there was no correlation between lignin decomposition and phenol-oxidase activity. The amounts of bark degraded by the fungi were relatively small (3.2 - 13.0% loss of dry weight after six months incubation).

  1. Evaluation of interspecific DNA variability in poplars using AFLP and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... markers. The AFLP and SSR markers polymorphism and its power of discrimination were determined ... clones, cultivars and hybrids on molecular basis. .... Means for SSR DNA variability and informative parameters over the 13 SSR loci for ... specific range, number of monomorphic and polymorphic bands ...

  2. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    Science.gov (United States)

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  3. [Construction of suppression subtractive hybridization (SSH) library of copepod Pseudodiaptomous annandalei and its ferritin cDNA cloning and differential expression under nickel stress].

    Science.gov (United States)

    Jiang, Jie-Lan; Wang, Gui-Zhong; Wu, Li-Sheng; Li, Shao-Jing

    2012-07-01

    To study the molecular response mechanisms of copepod to nickel stress, a suppression subtractive hybridization (SSH) cDNA library of Pseudodiaptomous annandalei under nickel stress was constructed by using SSH technique, and a total of 140 clones were randomly picked from the growing colonies and identified by PCR. The recombinant rate of the library was 98.6%, and the volume of the library was 1.12 x 10(6) cfu. After the recombinant plasmids were sequenced, a partial cDNA fragment of ferritin was recognized based on BLAST searches in NCBI, with a size of 859 bp and continuously encoding 170 amino acid residues. The semi-quantitative PCR results showed that the ferritin cDNA under 24 h nickel stress was distinctly up-regulated. The successful construction of the SSH library and the obtaining of ferritin cDNA fragment would supply basis for the further study of the molecular response mechanisms of copepod to nickel stress.

  4. The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a.

    Directory of Open Access Journals (Sweden)

    Juan Jesús Molina-Rueda

    Full Text Available BACKGROUND: Glutamine synthetase (GS plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4 expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD family were reciprocally regulated in GS poplar when compared with the wild-type control, in all tissues examined. SOD was the only gene family found to exhibit such patterns. RESULTS: In silico analysis of the Populus genome identified 12 SOD genes and two genes encoding copper chaperones for SOD (CCSs. The poplar SODs form three phylogenetic clusters in accordance with their distinct metal co-factor requirements and gene structure. Nearly all poplar SODs and CCSs are present in duplicate derived from whole genome duplication, in sharp contrast to their predominantly single-copy Arabidopsis orthologs. Drought stress triggered plant-wide down-regulation of the plastidic copper SODs (CSDs, with concomitant up-regulation of plastidic iron SODs (FSDs in GS poplar relative to the wild type; this was confirmed at the activity level. We also found evidence for coordinated down-regulation of other copper proteins, including plastidic CCSs and polyphenol oxidases, in GS poplar under drought conditions. CONCLUSIONS: Both gene duplication and expression divergence have contributed to the expansion and transcriptional diversity of the Populus SOD/CCS families. Coordinated down-regulation of major copper proteins in drought-tolerant GS poplars supports the copper cofactor economy model where copper supply is preferentially allocated for plastocyanins to sustain photosynthesis during drought. Our results also extend previous findings on the compensatory regulation between chloroplastic CSDs and FSDs, and suggest that this

  5. Molecular cloning and expression of a cDNA encoding a hybrid histidine kinase receptor in tropical periwinkle Catharanthus roseus.

    Science.gov (United States)

    Papon, N; Bremer, J; Vansiri, A; Glévarec, G; Rideau, M; Creche, J

    2006-09-01

    Signalling pathways involving histidine kinase receptors (HKRs) are widely used by prokaryotes and fungi to regulate a large palette of biological processes. In plants, HKRs are known to be implicated in cytokinin, ethylene, and osmosensing transduction pathways. In this work, a full length cDNA named CRCIK was isolated from the tropical species CATHARANTHUS ROSEUS (L.) G. Don. It encodes a 1205 amino acid protein that belongs to the hybrid HKR family. The deduced amino acid sequence shows the highest homology with AtHK1, an osmosensing HKR in ARABIDOPSIS THALIANA. In return, CrCIK protein shares very low identity with the other 10 ARABIDOPSIS HKRs. Southern blot analysis indicates that the CRCIK corresponding gene is either present in multiple copies or has very close homologues in the genome of the tropical periwinkle. The gene is widely expressed in the plant. In C. ROSEUS C20D cell suspension, it is slightly induced after exposure to low temperature, pointing to a putative role in cold-shock signal transduction.

  6. 欧美杨107杨正常木与应拉木制浆造纸性能比较%Comparison of Quality of Pulping and Paper-Making between Normal Wood and Tension Wood of Poplar Clone 107 ( Populus × euramericana ' Neva' ) Tree

    Institute of Scientific and Technical Information of China (English)

    周亮; 高慧; 张利萍; 刘盛全

    2012-01-01

    选取直立和倾斜欧美杨107杨为研究材料,根据正交试验确定正常木和应拉木最佳制浆条件,比较正常木和应拉木的制浆造纸性能,通过提高打浆转数对应拉木纸张性能的提高进行探讨.结果表明:正常木的最佳制浆条件为用碱量15%、最高温度164℃、最高温度保温时间75 min;而应拉木最佳制浆条件为用碱量13%、最高温度160℃、最高温度保温时间40 min.用碱量对正常木和应拉木制浆得率和卡伯值影响的通径系数在不同水平上显著.通过对正常木和应拉木制浆造纸性能比较发现,应拉木比正常木制浆得率高、卡伯值低、纸张力学性能均低,且抗张指数和耐破指数差距较大(约2倍),而撕裂指数差距较小.正常木和应拉木之间卡伯值、制浆得率、抗张指数、耐破指数均在0.001水平上差异显著,撕裂指数在0.05水平上差异显著.结合纸张断口形貌分析认为,胶质层的存在使得应拉木纤维成纸时不容易扁平坍陷,极大地阻碍了成纸时纤维之间的结合,因此降低了纸张力学性能;但是,由于其胶质层纤维素含量很高,因此其制浆性能优于正常木.随着打浆转数的提高,应拉木纸张力学性能增强,且接近正常木纸张水平,但过高会降低纸张力学性能.%Both of straight and inclining poplar clone 107 tree were selected for studying materials in this paper. The optimal pulping conditions was established by orthogonal experimental design both for normal wood and tension wood, and the quality of pulping and paper-making between normal wood and tension wood was compared with each other. Finally, potential application for improving paper quality of tension wood through increasing beating revolutions was discussed. The result showed that the optimal cooking condition for normal wood was alkali concentration 15% , the highest temperature 164 ℃, time at highest temperature 75 min, and for tension wood it

  7. What is Cloning?

    Science.gov (United States)

    Donate Home Cloning What is Cloning What is Cloning Clones are organisms that are exact genetic copies. ... clones made through modern cloning technologies. How Is Cloning Done? Many people first heard of cloning when ...

  8. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  9. Tree water use and rainfall partitioning in a mature poplar-pasture system.

    Science.gov (United States)

    Guevara-Escobar, A.; Edwards, W. R. N.; Morton, R. H.; Kemp, P. D.; Mackay, A. D.

    2000-01-01

    Traditionally, poplars (Populus) have been planted to control erosion on New Zealand's hill-slopes, because of their capacity to dry out and bind together the soil, by reducing effective rainfall and increasing evapotranspiration and soil strength. However, the effect of widely spaced poplars on the partitioning of soil water and rainfall has not been reported. This study determined rainfall partitioning for 18 mid-spring days in a mature P. deltoides (Bart. ex Marsh, Clone I78)-pasture association (37 stems per hectare, unevenly spaced at 16.4 +/- 0.4 m) and compared it with a traditional open pasture system in grazed areas of a hill environment. Tree transpiration was measured by the heat pulse technique. A time-driven mathematical model was used to set a zero offset, adjust anomalous values and describe simultaneous sap velocity time courses of trees. The model showed that daylight sap flow velocities can be represented with a nonlinear Beta function (R(2) > 0.98), and differences in the parameters representing the initiation, duration and conformation of the sap velocity can be tested statistically to discern tree transpiration differences during the day. Evapotranspiration was greater for the poplar-pasture association than for the open pasture (2.7-3.0 versus 2.2 mm day(-1)). The tree canopy alone contributed 0.92 mm day(-1) as transpiration and 1.37 mm day(-1) as interception, whereas evapotranspiration of the pasture understory was only 0.4-0.6 mm day(-1). Despite the higher water use of the poplar-pasture association, soil water in the 0-300 mm soil stratum was higher than, or similar to, that of the open pasture. Tree shading decreased evapotranspiration and pasture accumulation under the trees.

  10. Mycorrhizal formation of nine ectomycorrhizal fungi on poplar cuttings

    Institute of Scientific and Technical Information of China (English)

    Lei MA; Xiaoqin WU; Ling ZHENG

    2008-01-01

    In order to discover which ectomycorrhizal-(ECM) fungi have better growth-promoting effects on poplars, cuttings from four poplar species were inoculated with nine species of ECM fungi by three methods. We investigated the status of mycorrhizal formation and the effects of these fungi on the growth of the poplars. The results show that Xrocomus chrysentero (Xc), Boletus edu-lis (Be), Pisolithus tinctorius (Pt) and Laccaria amethystea (La) formed clear ectomycorrhizal symbiosis with the poplar seedlings. Among these four ECM fungi, Xc had the greatest ability to develop mycorrhizae with all four poplar species. Be shows a greater ability to form mycor-rhizae with Populus deltoides Bartr cv. 'Lux' (Poplar I-69). Pt and La had relatively weaker abilities of colonization. The other five ECM fungal species, i.e., Scleroderma luteus (S1), Leeeinum scabrum (Ls), Boletus speeiosus (Bs), Calvatia eraniiformis (Cc) and Rhizopogen luteous (RI) could not easily form mycorrhizae with poplar seed-lings grown in sterilized substrates, but could do so in non-sterilized soil. With the method of drilling and inject-ing liquid inoculum, a simple operation, the mycorrhizal infection rates were higher than with the other two meth-ods, applying solid inoculum as fertilizer at the bottom of the pots and dipping roots in the inoculum slurry. P. simonii Carr. formed mycorrhizae with most of the nine ECM fungi. P. × euramericana (Dode) Guinier cv. 'San Martino' (Poplar 1-72) and P. deltoids Harvard × P. del-toids Lux (Poplar NL-351) had the highest compatibility with Pt. Poplar I-69 shows the highest compatibility with Xc. The study indicates that the optimal ECM fungi for poplars I-69, I-72 and NL-351 were Be, Xc and Pt, respectively. The optimal fungi for P. simonii Carr. were Xc and Be. These ECM fungi promoted the growth of the poplar seedlings significantly.

  11. Cloning and characterization of the SERK1 gene in triploid Pingyi Tiancha [Malus hupehensis (Pamp.) Rehd. var. pingyiensis Jiang] and a tetraploid hybrid strain.

    Science.gov (United States)

    Zhang, L J; Dong, W X; Guo, S M; Wang, Y X; Wang, A D; Lu, X J

    2015-11-19

    This study aims to explore the roles of somatic embryogenesis receptor-like kinase (SERK) in Malus hupehensis (Pingyi Tiancha). The full-length sequences of SERK1 in triploid Pingyi Tiancha (3n) and a tetraploid hybrid strain 33# (4n) were cloned, sequenced, and designated as MhSERK1 and MhdSERK1, respectively. Multiple alignments of amino acid sequences were conducted to identify similarity between MhSERK1 and MhdSERK1 and SERK sequences in other species, and a neighbor-joining phylogenetic tree was constructed to elucidate their phylogenetic relations. Expression levels of MhSERK1 and MhdSERK1 in different tissues and developmental stages were investigated using quantitative real-time PCR. The coding sequence lengths of MhSERK1 and MhdSERK1 were 1899 bp (encoding 632 amino acids) and 1881 bp (encoding 626 amino acids), respectively. Sequence analysis demonstrated that MhSERK1 and MhdSERK1 display high similarity to SERKs in other species, with a conserved intron/exon structure that is unique to members of the SERK family. Additionally, the phylogenetic tree showed that MhSERK1 and MhdSERK1 clustered with orange CitSERK (93%). Furthermore, MhSERK1 and MhdSERK1 were mainly expressed in the reproductive organs, in particular the ovary. Their expression levels were highest in young flowers and they differed among different tissues and organs. Our results suggest that MhSERK1 and MhdSERK1 are related to plant reproduction, and that MhSERK1 is related to apomixis in triploid Pingyi Tiancha.

  12. Challenging synergistic activity of poplar-bacteria association for the Cd phytostabilization.

    Science.gov (United States)

    C, Cocozza; D, Trupiano; G, Lustrato; G, Alfano; D, Vitullo; A, Falasca; T, Lomaglio; V, De Felice; G, Lima; G, Ranalli; S, Scippa; R, Tognetti

    2015-12-01

    The synergistic activity between plants and microorganisms may contribute to the implementation of proactive management strategies in the stabilization of contaminated sites, although heavy metals, such as cadmium (Cd), are potentially toxic to them. The aim of this study was to evaluate the degree of tolerance to Cd contamination (supplying twice 40 mg kg(-1) of Cd) in poplar cuttings [clone I-214, P. × euramericana (Dode) Guinier] inoculated or not with two concentrations of Serratia marcescens strain (1 × 10(7) CFU/g and 2 × 10(7) CFU/g of potting mix). The response of the plant-bacteria system to excess Cd was investigated with special reference to the structural traits of plants and the functional efficiency of bacteria. Bacterial colonization and substrate components were previously assessed in order to define the best solution for formulating the experimental plant growth media. The tested plant-bacteria association, especially when bacteria were provided in double concentration, stimulated specific tolerance mechanisms to Cd through the promotion of the poplar growth. Inoculated plants produced larger leaves and increased stem diameter, while roots grew longer and wider in Cd-treated plants. The effect of bacterial inoculum on plant growth traits and metal partitioning in plant organs was assessed in order to define the potential of this poplar clone to be a suitable candidate for phytostabilization of Cd-contaminated soil. The final effect of the inoculation with bacteria, which alleviated the metal load and Cd phytotoxicity due to their bioaccumulation ability, suggests promising phytostabilization potential of these plant-bacteria associations.

  13. Quantum cloning

    OpenAIRE

    Scarani, Valerio; Iblisdir, Sofyan; Gisin, Nicolas; Acin, Antonio

    2005-01-01

    The impossibility of perfectly copying (or cloning) an arbitrary quantum state is one of the basic rules governing the physics of quantum systems. The processes that perform the optimal approximate cloning have been found in many cases. These "quantum cloning machines" are important tools for studying a wide variety of tasks, e.g. state estimation and eavesdropping on quantum cryptography. This paper provides a comprehensive review of quantum cloning machines (both for discrete-dimensional an...

  14. Estimation of the yield of poplars in plantations of fast-growing species within current results

    Directory of Open Access Journals (Sweden)

    Martin Fajman

    2009-01-01

    Full Text Available Current results are presented of allometric yield estimates of the poplar short rotation coppice. According to a literature review it is obvious that yield estimates, based on measurable quantities of a growing stand, depend not only on the selected tree specie or its clone, but also on the site location. The Jap-105 poplar clone (P. nigra x P. maximowiczii allometric relations were analyzed by regression methods aimed at the creation of the yield estimation methodology at a testing site in Domanínek. Altogether, the twelve polynomial dependences of particular measured quantities approved the high empirical data conformity with the tested regression model (correlation index from 0.9033 to 0.9967. Within the forward stepwise regression, factors were selected, which explain best examined estimates of the total biomass DM; i.e. d.b.h. and stem height. Furthermore, the KESTEMONT’s (1971 mo­del was verified with a satisfying conformity as well. Approving presented yield estimation methods, the presented models will be checked in a large-scale field trial.

  15. Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations.

    Science.gov (United States)

    Niinemets, Ulo; Al Afas, Najwa; Cescatti, Alessandro; Pellis, An; Ceulemans, Reinhart

    2004-02-01

    Leaf architecture, stand leaf area index and canopy light interception were studied in 13 poplar clones growing in a second rotation of a coppice plantation, to determine the role of leaf architectural attributes on canopy light-harvesting efficiency and to assess biomass investment in leaf support tissue. Stand leaf area index (L) varied from 2.89 to 6.99, but L was only weakly associated with canopy transmittance (TC). The weak relationship between TC and L was a result of a higher degree of foliage aggregation at larger values of L, leading to lower light-interception efficiency in stands with greater total leaf area. We observed a strong increase in leaf aggregation and a decrease in light-harvesting efficiency with decreasing mean leaf petiole length (PL) but not with leaf size, possibly because, in cordate or deltoid poplar leaves, most of the leaf area is located close to the petiole attachment to the lamina. Although PL was the key leaf characteristic of light-harvesting efficiency, clones with longer petioles had larger biomass investments in petioles, and there was a negative relationship between PL and L, demonstrating that enhanced light harvesting may lead to an overall decline in photosynthesizing leaf surface. Upper-canopy leaves were generally larger and had greater dry mass (MA) and nitrogen per unit area (NA) than lower-canopy leaves. Canopy plasticity in MA and NA was higher in clones with higher foliar biomass investment in midrib, and lower in clones with relatively longer petioles. These relationships suggest that there is a trade-off between photosynthetic plasticity and biomass investment in support, and also that high light-harvesting efficiency may be associated with lower photosynthetic plasticity. Our results demonstrate important clonal differences in leaf aggregation that are linked to leaf structure and biomass allocation patterns within the leaf.

  16. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: A large-scale field trial on heavily polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Castiglione, S. [Dipartimento di Biologia, Universita di Milano, Via Celoria 25, I-20100 Milano (Italy); Todeschini, V. [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale, via Bellini 25/G, I-15100 Alessandria (Italy); Franchin, C. [Dipartimento di Biologia e.s., Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Torrigiani, P. [Dipartimento di Colture Arboree, Universita di Bologna, Via Fanin 46, I-40127 Bologna (Italy); Gastaldi, D. [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale, via Bellini 25/G, I-15100 Alessandria (Italy); Cicatelli, A. [Dipartimento di Chimica, Universita di Salerno, Stecca 7, Via Ponte don Melillo, I-84084 Fisciano (Saudi Arabia) (Italy); Rinaudo, C.; Berta, G. [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale, via Bellini 25/G, I-15100 Alessandria (Italy); Biondi, S. [Dipartimento di Biologia e.s., Universita di Bologna, Via Irnerio 42, I-40126 Bologna (Italy); Lingua, G., E-mail: guido.lingua@mfn.unipmn.i [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale, via Bellini 25/G, I-15100 Alessandria (Italy)

    2009-07-15

    Three ex situ collections of poplar clones from natural populations of Populus alba and P. nigra growing in northern Italy were assessed for their genetic dissimilarity (GD) by means of amplified fragment length polymorphism (AFLP). The high GD evidenced within populations was exploited for screening 168 clones in a field trial on heavy metal-polluted soil. After one growth season, clonal differences in plant survival and growth were observed. On the basis of performance, six clones were singled out, and used to evaluate copper and zinc accumulation in different organs. Clonal differences in metal concentrations were most evident for leaves and stems; one clone of P. alba (AL35) had a distinctly higher concentration of both metals in the roots. Leaf polyamine (putrescine, spermidine, spermine) profiles correlated with tissue metal concentrations, depending on the clone, plant organ and metal. In particular, the high metal-accumulating clone AL35 exhibited a dramatically higher concentration of free and conjugated putrescine. Overall, the results indicate that, given the high GD of Populus even within populations, it is possible to identify genotypes best suited for soil clean-up, and useful also for investigating physiological markers associated with high metal accumulation/tolerance - High survival rate and heavy metal accumulation are associated with high polyamine concentration in an elite poplar clone.

  17. GHGs balance in a land use change process from grassland to short rotation coppice of poplar

    Science.gov (United States)

    Sabbatini, Simone; Arriga, Nicola; Baiocco, Andrea; Boschi, Alessio; Castaldi, Simona; Consalvo, Claudia; Gioli, Beniamino; Matteucci, Giorgio; Tomassucci, Michele; Zaldei, Alessandro; Papale, Dario

    2013-04-01

    At present one of the fastest spreading renewable energy sources are bioenergy cultivations. Millions of hectares of traditional crops all over the Europe are expected to be converted in energy crops in the near future, in order to produce green energy and contrast global warming. Last year, in the context of the GHG-Europe FP7 project we set up an experiment to verify the effects on the green-house gases balance of a land use change from traditional agriculture to short rotation coppice of poplar clones in central Italy. CO2 fluxes measured during the last growing season through three Eddy Covariance masts - two on poplar plantations of different ages and one over a reference site (grassland) - have been analysed. We also monitored CO2, CH4 and N2O fluxes from soil measured using chambers in order to better understand the contribution of other GHGs. The two poplar plantations showed a similar uptake of Carbon, 368 g C m-2 year-1 and 358 g C m-2 year-1, while the grassland absorbed 220 g C m-2 year-1 during the same period. Soil respiration in average was higher for the youngest plantation of poplar and for the grassland, lower for the oldest one, where soil is undisturbed from more time. In all the sites we measured low emissions during the winter (between 80 and 150 mg CO2 m-2 h-1), progressively higher in the spring and early summer with growing temperatures (up to 650 mg CO2 m-2 h-1), quite low during the summer because of a strong drought, while the highest values were recorded in September (ca. 1100 mg CO2 m-2 h-1 in the grassland and youngest poplar) after important rain events. Fluxes of N2O and CH4 from soil are very low: little absorption of CH4 in the grassland (values between 0 and -18.75 μg m-2 h-1), with peak after fertilization; in the SRC little absorption or emission with no clear seasonal pattern. Insignificant fluxes of N2O in all crops (even in the grassland after fertilization). The carbon fluxes measured are strongly related to the particular

  18. 南方地区杨树胶合板材定向培育技术的研究%STUDIES ON DIRECTIVE SILVICULTURE OF POPLAR VENEER GLUED WOOD IN THE SOUTHERN REGION OF CHINA

    Institute of Scientific and Technical Information of China (English)

    方升佐; 吕士行; 徐锡增; 唐罗忠; 曹福亮

    1999-01-01

    Based on the results of more than ten year's scientific research and practice, some key techniques for cultivating poplar veneer glued wood were summarized systematically. The results were as follows: (1)Selecting appropriate poplar clones for various cultivation zones according to their growth rate and wood quality. (2)Choosing good sites being suitable for poplar clone growing (at least SI≥18m). (3)Adopting reasonable planting density which can produce more timbers to meet the need of plywood(the tree spacing should be more than 5m×5m). (4)Using correct planting methods for different soil conditions, however, large seedling with 2-year-old root and 1-year-old stem (seedling height>4m)were advocated. (5)Taking effective measures to tend the stand, the most effective measure was interplanting with crops. (6)Pruning was neccessary to produce non-node timber, but pruning method, pruning intensity and pruning season should be controlled properly. If the 6 measures mentioned above were carried out, the poplar forests with a high yield and high quality could be ensured. In order to provied some theoretical basis for cultivating poplar veneer glued wood, 4 optimum cultivation patterns were also established using the method of two dimensions system.

  19. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations.

    Science.gov (United States)

    Laureysens, I; Blust, R; De Temmerman, L; Lemmens, C; Ceulemans, R

    2004-10-01

    The use of plants to decontaminate soils polluted by heavy metals has received considerable attention in recent years as a low-cost technique. Poplars (Populus spp.) can accumulate relatively high levels of certain metals, and have the added advantage of producing biomass that can be used for energy production. A short rotation coppice culture with 13 poplar clones was established on a former waste disposal site, which was moderately polluted with heavy metals. Total content of metals in leaves, wood and bark were determined in August and October/November. Significant clonal differences in accumulation were found for most metals, although clones with the highest concentration of all metals were not found. Cadmium, zinc and aluminium were most efficiently taken up. The lowest concentration was found in wood; the highest concentrations were generally found in senescing leaves, making removal and treatment of fallen leaves necessary.

  20. Study on Poplar Industrialization in Jiangsu: (2) Present Status and Problems of Poplar Industrialization

    Institute of Scientific and Technical Information of China (English)

    SHEN Wenxing; ZHOU Dingguo; XU Xinping

    2006-01-01

    This paper lists the existing main problems that poplar industry faces in Jiangsu and analyses the causes and the activities of different industry related to management institution and system according to the factors of knowledge infrastructure, institutional setups, government policies and production structure.

  1. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  2. Some new and noteworthy diseases of poplars in India. [Botryodiplodia sett-rot; Alternaria tip blight; Cladosporium leaf spot; Fusarium pink incrustation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.

    1983-09-01

    Four new diseases of poplars namely Botryodiplodia sett-rott, Alternaria tip blight, Cladosporium leaf spot and Fusarium pink incrustation are described in this paper. Botryodiplodia palmarum causes sett-rott of poplars both at pre-sprouting and post-sprouting stage. The pathogen also causes mortality of poplar plants in the field within 4-6 weeks after planting. Alternaria stage of Pleuspora infectoria has been found as the cause of blackening and dying of growing tips and young leaves of a Populus sp. and P. deltoides in nurseries. Cladosporium humile has been recorded as the cause of brown spot followed by crumpling and premature shedding of leaves in P. ciliata, P. nigra and P. alba. The cause of Fusarium incrustation disease on P. cilata has been identified as Fusarium sp. of Gibbosum group. Pathogenicity of Botryodiplodia palmarum and Alternaria stage of Pleospora infectoria was confirmed by artificial inoculations. Brief descriptions of Alternaria, Cladosporium and Fusarium are also given. The paper also gives a short account of some noteworthy diseases recorded on poplars namely Ganoderma root rot, foliage ruts and stem cankers. Ganoderma root-rot is found to reach alarming proportions in closely spaced poplar plantations. Melampsora ciliata, an indigenous rust, is found to attack mainly clones of P. deltoides, P. yunnanensis, P. trichocarpa, P. alba and some cultivars of P. x euramericana in nurseries. A brief account of three types of stem cankers i.e. cankers due to pink disease fungus, Corticium salmonicolor, sun-scaled cankers and cankers associated with slime flux on various clones of P. deltoides is also given.

  3. A method for describing the canopy architecture of coppice poplar with allometric relationships.

    Science.gov (United States)

    Casella, Eric; Sinoquet, Hervé

    2003-12-01

    A multi-scale biometric methodology for describing the architecture of fast-growing short-rotation woody crops is used to describe 2-year-old poplar clones during the second rotation. To allow for expressions of genetic variability observed within this species (i.e., growth potential, leaf morphology, coppice and canopy structure), the method has been applied to two clones: Ghoy (Gho) (Populus deltoides Bartr. ex Marsh. x Populus nigra L.) and Trichobel (Tri) (Populus trichocarpa Torr. & A. Gray x Populus trichocarpa). The method operates at the stool level and describes the plant as a collection of components (shoots and branches) described as a collection of metameric elements, themselves defined as a collection of elementary units (internode, petiole, leaf blade). Branching and connection between the plant units (i.e., plant topology) and their spatial location, orientation, size and shape (i.e., plant geometry) describe the plant architecture. The methodology has been used to describe the plant architecture of 15 selected stools per clone over a 5-month period. On individual stools, shoots have been selected from three classes (small, medium and large) spanning the diameter distribution range. Using a multi-scale approach, empirical allometric relationships were used to parameterize elementary units of the plant, topological relationships and geometry (e.g., distribution of shoot diameters on stool, shoot attributes from shoot diameter). The empirical functions form the basis of the 3-D Coppice Poplar Canopy Architecture model (3-D CPCA), which recreates the architecture and canopy structure of fast-growing coppice crops at the plot scale. Model outputs are assessed through visual and quantitative comparisons between actual photographs of the coppice canopy and simulated images. Overall, results indicate a good predictive ability of the 3-D CPCA model.

  4. Academic Cloning.

    Science.gov (United States)

    Sikula, John P.; Sikula, Andrew F.

    1980-01-01

    The authors define "cloning" as an integral feature of all educational systems, citing teaching practices which reward students for closely reproducing the teacher's thoughts and/or behaviors and administrative systems which tend to promote like-minded subordinates. They insist, however, that "academic cloning" is not a totally…

  5. Computer Simulation of Fiber Length and Width Distribution for Two Poplar Woods

    Institute of Scientific and Technical Information of China (English)

    ZHANGDongmei; HOUZhuqiang; GUANNing

    2004-01-01

    Computer simulation was carried out on fiber length and width for plantation-grown Chinese white poplar (Populus tomentosa Cart. clone) and plantation-grown poplar 1-72 (P. x eurumericana (Dode) Guiner cv.). Skewness and kurtosis of measured results exhibited that distributions of the fiber length and width departured from normal distribution. Three-parameter Weibull density function was used in this investigation and the corresponding program was written with Turbo C. The results showed that profiles of simulated length and width histograms were similar to ones of measured histograms, and that there was a pretty good agreement between simulated and measured means of fiber length and width. There was a little influence on the simulated means from seed used in random number generator and number of simulated variables. That indicated that the simulation was steady when the seed and the number were altered. Different histograms can be obtained with different values of the location, the shape, and the scale parameter corresponding to different values of the minimum, the mean, and the standard deviation for fiber length and width. The simulation presented here can be used as a tool for the studies on the variations in fiber morphology.

  6. Variation of microfibril angle and its correlation to wood properties in poplars

    Institute of Scientific and Technical Information of China (English)

    FANGSheng-zuo; YANGWen-zhong; FUXiang-xiang

    2004-01-01

    The microfibril angle of seven poplar clones was determined by using X-ray diffraction technique. Microfibril angle,wood basic density, fiber length, fiber width and cellulose content were assessed for every growth ring at breast height for all sample trees. Significant variation in microfibril angle was observed among growth rings. Mean microfibril angle (MFA) at breast height varied from 7.8°to 28° between growth rings with cambial age and showed a consistent pith-to-bark trend of decline angles. Analysis of variance also indicated that there were significant differences in wood basic density, fiber length, fiber width and cellulose content between the growth rings, which had an increasing tendency from pith to bark. Correlations between MFA and examined wood properties were predominantly large and significant negative (α=0.01), and the coefficients were -0.660 for cellulose content, -0.586 for fiber length, -0.516 for fiber width and -0.450 for wood basic density, respectively. Regression analysis with linear and curve estimation indicated that a quadratic function showed the largest R2 and the least standard error for describing the relationships between microfibril angle and measured wood properties, and the correlation coefficients were over -0.45 (n=125). The results from this study suggested that microfibril angle would be a good characteristic for improvement in the future breeding program of poplars.

  7. Preliminary Functional-Structural Modeling on Poplar (Salicaceae)

    CERN Document Server

    Liu, Dongxiang; Letort, Véronique; Xing, Meijun; Gang, Yang; Huang, Xinyuan; Cao, Weiqun

    2010-01-01

    Poplar is one of the best fast-growing trees in the world, widely used for windbreak and wood product. Although architecture of poplar has direct impact on its applications, it has not been descried in previous poplar models, probably because of the difficulties raised by measurement, data processing and parameterization. In this paper, the functional-structural model GreenLab is calibrated by using poplar data of 3, 4, 5, 6 years old. The data was acquired by simplifying measurement. The architecture was also simplified by classifying the branches into several types (physiological age) using clustering analysis, which decrease the number of parameters. By multi-fitting the sampled data of each tree, the model parameters were identified and the plant architectures at different tree ages were simulated.

  8. Poplar: A Java Extension for Evolvable Component Integration

    CERN Document Server

    Nyström-Persson, Johan

    2011-01-01

    The Java programming language contains many features that aid component-based software development (CBSD), such as interfaces, visibility levels, and strong support for encapsulation. However, component evolution often causes so-called breaking changes, largely because of the rigidity of component interconnections in the form of explicit method calls and field accesses. We present a Java extension, Poplar, which we are currently developing. In Poplar, inter-component dependencies are expressed using declarative queries; concrete linking code, generated using a planning algorithm, replaces these at compile time. Poplar includes a minimal specification language based on typestate-like protocols and labels, and a lightweight effect system, which ensures the absence of unwanted interference between hand-written code and generated code. We give several examples of fully automatic component integration using Poplar, and demonstrate its potential to simplify object-oriented software development greatly through evolv...

  9. Características da laranjeira 'Valência' sobre clones e híbridos de porta-enxertos tolerantes à tristeza Characteristics of 'Valencia' sweet orange onto clones and hybrid rootstocks tolerant to the tristeza disease

    Directory of Open Access Journals (Sweden)

    Rita Bordignon

    2003-01-01

    ção precoce e elevadosºBrix e ratio desse genitor, tratando-se de determinantes genéticos independentes. Trifoliata induziu altos valores de ratio do suco e, todos os seus grupos de híbridos foram superiores à Sunki e ao Cravo. Quanto à produção, verificou-se a superioridade do Cravo em relação à Sunki e esta em relação ao Trifoliata, enquanto nos híbridos constatou-se ampla variabilidade genética, sendo 228 significativamente mais produtivos que o Trifoliata, 100 superiores à Sunki e 47 ao Cravo. Os resultados evidenciaram alto potencial de seleção desses híbridos.Variability and selection potential of 396 hybrids of Rangpur lime 'Limeira', (Citrus limonia (C, Sunki mandarin (C. sunki (S, Sour orange 'São Paulo'(C. aurantium (A and Trifoliate orange 'Davis A'(Poncirus trifoliata (T tolerant to the tristeza disease were studied, comparatively to the genitors Rangpur lime, Sunki and Trifoliate orange. Hybrids TxA, TxS, SxT, CxS, SxC, CxA and SxA were investigated as to yield of first three crops, productivity and several vegetative and industrial characteristics of Valencia sweet orange onto them. Rangpur lime, Trifoliate orange and T x S, S x T, T x A, C x A hybrids initiated yielding before Sunki and S x C, C x S, S x A hybrids. This result indicates a dominance of the precocious yield of Trifoliate even in the hybrids with Sunki and conversely, the opposite trend of Sunki and its hybrids, except in the combination with Trifoliate orange. Yield per canopy area induced by Trifoliate orange was low, contrasting with Rangpur lime, Sunki mandarin and T x S, S x T hybrids. It was observed a close relationship between the diameter of scions, the diameter of rootstocks right after transplant to the field and the same parameters in the subsequent years. Height, canopy, rootstock and scion trunk diameters were highly correlated and useful for composing an index vigor. Trifoliate orange and Sunki mandarin are the most divergent genitors regarding vigor, and the

  10. 克隆 MCF-7细胞凋亡差异表达基因的一种方法%Improved PCR-based subtractive hybridization, a new strategy on cloning differential expression genes in apoptotic MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    晏伟; 朱峰; 赵忠良; 柴玉波; 岳文; 邵晨; 路凡; 李青; 王成济

    2001-01-01

    目的克隆人乳腺癌 MCF-7细胞凋亡相关基因,分析验证所用方法的特点。方法采用基于 PCR的消减杂交技术,在已建立的全反式维甲酸诱导人乳腺癌 MCF-7细胞的凋亡模型中,克隆 MCF-7细胞凋亡的相关基因。结果从 13个克隆中,共筛选出 5个表达的基因。其中 4个为已知基因, 1个为新基因。新基因命名为 apmcf-1, Genbank登录号为 AF141882。 4个已知基因中 3个与凋亡关系密切。结论这种改良的基于 PCR 的消减杂交技术,为克隆差异表达基因提供了一种新的方法和思路。%Aim To clone apoptosis-related genes from human MCF-7 breast cancer cells and to analyze the character of the method used in the process. Methods A poptotic cell model of MCF-7 cells was established with the apoptotic tumor cells induced by the all-trans-retinoic acid. The apoptotic gene was cloned from the model by improved PCR-based subtractive hybridization. Results 5 clones were identified to be related to apoptosis by reverse dot blot, 4 of them were known genes, and 3 were related to apoptosis. A novel gene, named apmcf-1, coded for 47 amino acid was identified. This gene was accepted by Genbank, the accession number was AF141882. Conclusion This improved PCR-based subtractive hybridization may be an efficient way in cloning differential expression gene.

  11. Poplar and its bacterial endophytes: coexistence and harmony

    Energy Technology Data Exchange (ETDEWEB)

    van der Lelie, D.; Taghavi, S.; Monchy, S.; Schwender, J.; Miller, L.; Ferrieri, R.; Rogers, A.; Zhu, W.; Weyens, N.; Vangronsveld, J.; Newman, L.

    2009-09-01

    Associations between plants and microorganisms are very complex and are the subject of an increasing number of studies. Here, we specifically address the relationship between poplar and its endophytic bacteria. The role and importance of endophytic bacteria in growth and development of their host plants is still underestimated. However, since many endophytes have a beneficial effect on their host, an improved understanding of the interaction between poplar and its endophytic bacteria has the potential to provide major breakthroughs that will improve the productivity of poplar. Endophytic bacteria can improve plant growth and development in a direct or indirect way. Direct plant growth promoting mechanisms may involve nitrogen fixation, production of plant growth regulators such as auxins, cytokinins and gibberellins, and suppression of stress ethylene synthesis by 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Endophytic bacteria can indirectly benefit the plant by preventing the growth or activity of plant pathogens through competition for space and nutrients, antibiosis, production of hydrolytic enzymes, inhibition of pathogen-produced enzymes or toxins, and through systemic induction of plant defense mechanisms. Examples of applications for custom endophyte-host partnerships include improved productivity and establishment of poplar trees on marginal soils and the phytoremediation of contaminated soils and groundwater. A systems biology approach to understand the synergistic interactions between poplar and its beneficial endophytic bacteria represents an important field of research, which is facilitated by the recent sequencing of the genomes of poplar and several of its endophytic bacteria.

  12. Continuous steam hydrolysis of tulip poplar

    Energy Technology Data Exchange (ETDEWEB)

    Fieber, C.; Colcord, A.R.; Faass, S.; Muzzy, J.D.; Roberts, R.S.

    1982-08-01

    To produce ethanol from hardwood it is desirable to fractionate the hardwood in order to produce a relatively pure cellulosic pulp for dilute acid hydrolysis. An experimental investigation of continuous steam hydrolysis of tulip poplar wood chips indicates that over 90% of the lignin present can be extracted by 0.1N sodium hydroxide, resulting in a cellulose pulp containing over 90% hexosan. The study was performed using a Stake Technology, Ltd., continuous digester rated at one oven dry ton per hour of wood chips. The yields of hexosans, hexoses, xylan, xylose, lignin, furfural, acetic acid and methanol were determined as a function of residence time and steam pressure in the digester. The information provides a basis for establishing a material and energy balance for a hardwood to ethanol plant.

  13. Transpiration by two poplar varieties grown as coppice for biomass production.

    Science.gov (United States)

    Allen, Simon J.; Hall, Robin L.; Rosier, Paul T. W.

    1999-07-01

    Fast-growing tree clones selected for biomass plantations are highly productive and therefore likely to use more water than the agricultural crops they replace. We report field measurements of transpiration through the summer of 1994 from two poplar clones, Beaupré (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh.) and Dorschkamp (P. deltoides x P. nigra L.), grown as unirrigated short-rotation coppice in southern England. Stand transpiration was quantified by scaling up from sap flow measurements made with the heat balance method in a sample of stems. Leaf conductances, leaf area development, meteorological variables and soil water deficit were also measured to investigate the response of the trees to the environment. High rates of transpiration were found for Beaupré. In June, when soil water was plentiful, the mean (+/- SD) transpiration rate over an 18-day period was 5.0 +/- 1.8 mm day(-1), reaching a maximum of 7.9 mm day(-1). Transpiration rates from Dorschkamp were lower, as a result of its lower leaf area index. High total leaf conductances were measured for both Beaupré (0.34 +/- 0.17 mol m(-2) s(-1)) and Dorschkamp (0.39 +/- 0.16 mol m(-2) s(-1)). Leaf conductance declined slightly with increasing atmospheric vapor pressure deficit in both clones, but only in Beaupré did leaf conductance decrease as soil water deficit increased.

  14. Qualitative suggestions about chemical weed control of poplar in the nursery and possible improvement on the basis of experimental trials over fifteen years

    Directory of Open Access Journals (Sweden)

    Gennaro M

    2009-06-01

    Full Text Available In this work the results of over fifteen years of experimentation are summarized, concerning the possibility of use of herbicides included in several chemical classes and with various mechanisms of action on poplar clones of different species, European and North American. The active ingredients were tested mainly singly or in commercial mixtures as well, applied before emergence (interpreted here as sprout of poplar cuttings not yet occurred and before weed infestation or after emergence (interpreted here as cuttings with sprouts 20-25 cm long and after weed colonisation. Almost 50% of the 43 tested formulations has proved to be unserviceable in poplar nursery because of the hard damage induced on plantlets, i.e. dicotyledonicides and those with a wide action range, especially applied after emergence. It was the case of acetolactate synthase inhibitors and synthetic auxins. About 25% of formulations has proved to be utilizable with limited risks and 20% without risk. After emergence, the lowest damage was caused by graminicide compounds included in the class of acetyl-CoA carboxylase inhibitors (e.g. diclofop-methyl, cycloxydim; before emergence, very good applicative opportunities were showed by microtubule assembly inhibitors, especially propyzamide, and the cellulose synthesis inhibitor isoxaben. Among the herbicides utilizable with some risk after emergence, the photosynthesis inhibitors pyridate and phenmedipham (singly or in mixture were interesting since they are the only ones that allow the control of broad-leaved weeds in the presence of herbaceous poplar shoots. Before emergence, flufenacet and isoxaflutole were remarkable as well, the latter being active versus hardly limited weeds. In summary, besides the two aforesaid compounds, the graminicide cycloxydim and - more cautiously - clodinafop and propaquizafop may be hopefully introduced in poplar nurseries after emergence, in association with the wide action range mixture of

  15. Text feature selection method based on hybrid clone quantum genetic strategy%基于混合克隆量子遗传策略的文本特征选择方法

    Institute of Scientific and Technical Information of China (English)

    符保龙

    2012-01-01

    The metrics of vector reduction rate and classification accuracy, and to use of the qubits encoded on the genetic algorithm, combined with the cloning operator, this paper proposed a strategy based on hybrid genetic quantum cloning text feature selection method. Experimental results show that the method can effectively reduce the dimension of feature vector text, set of extracted features can improve the quantum accuracy of text classification.%引入向量约简率和分类准确率的度量标准,采用量子比特对遗传算法进行编码,结合克隆算子,提出一种基于混合克隆量子遗传策略的文本特征选择方法.实验结果显示,该方法能有效地降低文本特征向量的维度,所提取的特征向量子集能有效提高文本分类的精度.

  16. [Whole cDNA sequence cloning and expression of chicken L-FABP gene and its relationship with lipid deposition of hybrid chickens].

    Science.gov (United States)

    Yu, Ying; Wang, Dong; Sun, Dong-Xiao; Xu, Gui-Yun; Li, Jun-Ying; Zhang, Yuan

    2011-07-01

    Liver fatty acid-binding protein (L-FABP) is closely related to intracellular transportation and deposition of lipids. A positive differential displayed fragment was found in the liver tissue among Silkie (CC), CAU-brown chicken (CD), and their reciprocal hybrids (CD and DC) at 8 weeks-old using differential display RT-PCR techniques (DDRT-PCR). Through recycling, sequencing, and alignment analysis, the fragment was identified as chicken liver fatty acid-binding protein gene (L-FABP, GenBank accession number AY321365). Reverse Northern dot blot and semi-quantitative RT-PCR revealed that the avian L-FABP gene was over-expressed in the liver tissue of the reciprocal hybrids (CD and DC) compared to their parental lines (CC and DD), which was consistent with the fact that higher abdomen fat weight and wider inter-muscular fat width observed in the reciprocal hybrids. Considering the higher expression of L-FABP may contribute to the increased lipid deposition in the hybrid chickens, the functional study of avian L-FABP is warranted in future.

  17. Suppression subtractive hybridization and its application to fish gene cloning%抑制消减杂交(SSH)及其在鱼类基因克隆中的应用

    Institute of Scientific and Technical Information of China (English)

    程起群

    2004-01-01

    There are 10 percent to 15 percent genes expression in certain cells during the life time of fishes like other vertebrates. The genes were different at different development stage, under different physiological conditions, and in different kinds of cells. So comparing the differences of gene expression in different cells can help us understand the genetic nature of phenotypic differences, and understand the basic information of life period, and find the genes in relation to development and diseases, and finally benefit mankind. Several methods were developed to clone differential expression gene in recent years. They are subtractive hybridization (SH), differential display (DD),representional difference analysis (RDA), and so on. These methods all have postive influences on cloning special genes, but they all have some defects, such as higher false-positive, lower replication, lower sensitive and difficulty to manipulate. Suppression subtractive hybridization (SSH) was developed by Diatchenko et al in 1996. SSH was based on suppression PCR and combines normalization and subtraction in a single procedure. It is a more effective and convenient method than all others mentioned above. The principle and the rules of manipulation of SSH in detail was illuminated and the novel genes cloned by SSH was listed. They are immune related genes and reproduction and development related genes. The reproduction and development related genes are as follows: ZP3, Cyclin A2,CBI02, YA2, FSTRAP. The immune related genes are as follows: NKEF(natural killer enhancing factor), CC chemokine, CXCR1, CXCR2, CXCR4, AIF-1(allograft inflammatory factor-1), IL-1β(inteleukin-1), FcεRIγ(γ submit of high affinity Fc receptor for IgE), SSA(serum amyloid A), LECT2 (leucocyte cell-derived hemotaxin 2), GMFβ(glia maturation factorβ), CD45, Lysozyme C, PBEF (Pre-B cell enhancing factor), C-type lectin,PTX(Pentraxin), IL-1RⅡ, IL-8-1ike CXC chemokine, TF(tissue factor), trout chemokine 2, TNF decoy

  18. Investigation of Carbohydrate Compositions for Poplar Ⅰ-214 and Chinese Fir

    Institute of Scientific and Technical Information of China (English)

    HUANG Luohua; QIN Tefu; MAGARA Kengo

    2006-01-01

    The carbohydrate compositions of poplar Ⅰ-214 and Chinese fir were investigated by the methods of hydrolysis and HPLC.The result showed that the contents of glucose,xylose and arabinose in poplar Ⅰ-214 are higher than those in Chinese fir,while contents of rhamnose and mannose in poplar Ⅰ-214 are lower than those in Chinese fir.

  19. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification.

    Science.gov (United States)

    Yıldırım, Kubilay; Uylaş, Senem

    2016-12-01

    Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation responses of these trees to B toxicity have not been investigated yet. Here, B accumulation and tolerance level of black poplar clones were firstly tested in the current study. Rooted cutting of these clones were treated with elevated B toxicity to select the most B accumulator and tolerant genotype. Then we carried out a microarray based transcriptome experiment on the leaves and roots of this genotype to find out transcriptional networks, genes and molecular mechanisms behind B toxicity tolerance. The results of the study indicated that black poplar is quite suitable for phytoremediation of B pollution. It could resist 15 ppm soil B content and >1500 ppm B accumulation in leaves, which are highly toxic concentrations for almost all agricultural plants. Transcriptomics results of study revealed totally 1625 and 1419 altered probe sets under 15 ppm B toxicity in leaf and root tissues, respectively. The highest induction were recorded for the probes sets annotated to tyrosine aminotransferase, ATP binding cassette transporters, glutathione S transferases and metallochaperone proteins. Strong up regulation of these genes attributed to internal excretion of B into the cell vacuole and existence of B detoxification processes in black poplar. Many other candidate genes functional in signalling, gene regulation, antioxidation, B uptake and transport processes were also identified in this hyper B accumulator plant for the first time with the current study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Molecular cloning.

    Science.gov (United States)

    Lessard, Juliane C

    2013-01-01

    This protocol describes the basic steps involved in conventional plasmid-based cloning. The goals are to insert a DNA fragment of interest into a receiving vector plasmid, transform the plasmid into E. coli, recover the plasmid DNA, and check for correct insertion events.

  1. Investigating the Role of Extensin Proteins in Poplar Biomass Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Margaret Brigham; Decker, Stephen R.; Bedinger, Patricia A.

    2016-04-13

    The biological conversion of cellulosic biomass to biofuel is hindered by cell wall recalcitrance, which can limit the ability of cellulases to access and break down cellulose. The purpose of this study was to investigate whether hydroxyproline-rich cell wall proteins (extensins) are present in poplar stem biomass, and whether these proteins may contribute to recalcitrance. Three classical extensin genes were identified in Populus trichocarpa through bioinformatic analysis of poplar genome sequences, with the following proposed names: PtEXTENSIN1 (Potri.001G019700); PtEXTENSIN2 (Potri.001G020100); PtEXTENSIN3 (Potri.018G050100). Tissue print immunoblots localized the extensin proteins in poplar stems to regions near the vascular cambium. Different thermochemical pretreatments reduced but did not eliminate hydroxyproline (Hyp, a proxy for extensins) from the biomass. Protease treatment of liquid hot water-pretreated poplar biomass reduced Hyp content by a further 16% and increased subsequent glucose yield by 20%. These data suggest that extensins may contribute to recalcitrance in pretreated poplar biomass, and that incorporating protease treatment into pretreatment protocols could result in a small but significant increase in the yield of fermentable glucose.

  2. Growing poplars for research with and without mycorrhizas

    Directory of Open Access Journals (Sweden)

    Anna eMüller

    2013-08-01

    Full Text Available During the last decades the importance of the genus Populus increased because the poplar genome has been sequenced and molecular tools for basic research are available. Furthermore, poplar species occur in different habitats and harbour large genetic variation, which can be exploited for economic applications and for increasing our knowledge on the basic molecular mechanisms of the woody life style. Poplars are, therefore, employed to unravel the molecular mechanisms of wood formation, stress tolerance, tree nutrition and interaction with other organisms such as pathogens or mycorrhiza. The basis of these investigations is the reproducible production of homogeneous plant material. In this method paper we describe techniques and growth conditions for the in vitro propagation of different poplar species (Populus × canescens, P. trichocarpa, P. tremula and P. euphratica and ectomycorrhizal fungi (Laccaria bicolor, Paxillus involutus as well as for their co-cultivation for ectomycorrhizal synthesis. Maintenance and plant preparation require different multiplication and rooting media. Growth systems to cultivate poplars under axenic conditions in agar and sand cultures with and without mycorrhizal fungi are described. Transfer of the plants from in vitro to in situ conditions is critical and hardening is important to prevent high mortality. Growth and vitality of the trees in vitro and outdoors with and without ectomycorrhizas are reported.

  3. 尾叶桉及其杂交种无性系早期生长变异分析%Early Growth Variation in Eucalyptus urophylla and Hybrid Clones

    Institute of Scientific and Technical Information of China (English)

    黄锦芬; 郭东强; 朱建武; 李昌荣; 陆能飞; 任世奇; 陈健波

    2015-01-01

    本文对9个尾叶桉、巨尾桉、尾巨桉无性系0.5~2.5年生试验林生长率、差异性及林分直径结构分析,发现林龄0.5~1.5 a是无性系树高生长高峰期,此时树高生长率达79.20%~96.27%,是林龄1.5~2.5 a树高生长率的3~4倍;林龄1.5~2.5 a时,各无性系林分胸径、树高、单株材积生长率分别为19.66%~25.67%、18.58%~27.96%、52.57%~62.54%,生长率最大的是E7号无性系(胸径、单株材积)和E6号无性系(树高);秩次相关分析表明:各无性系胸径、单株材积生长量在不同林龄时排序变动不大,而无性系树高生长量排序在不同林龄时变动较大;差异性分析表明:无性系间胸径、树高、单株材积生长差异显著,但随林龄增加有差异减小趋势;林龄2.5年生时,E5号无性系胸径、单株材积生长量最大,分别达11.39 cm、0.0736 m3;各无性系林分树木径阶范围为6~14 cm或8~14 cm,以10 cm或12 cm径阶树木占最大比例,除E8号无性系外,其余8个无性系树木径阶分布总体上近似正态分布。%This study examined differences in growth rates and diameter classes among nine 0.5-to-2.5-year-old Eucalyptus urophylla and hybrid clones in experimental stands. The peak period of tree height growth occurred at 0.5-to-1.5-year-old (79.2% ~ 96.3%) and this was 3 to 4 times that at 1.5-to-2.5-year-old. Growth in diameter at breast height, tree height and individual tree volume were 19.7%~25.7%, 18.6% ~ 27.9% and 52.6% ~ 62.5% respectively at 1.5-to-2.5-year-old. The highest growth in diameter at breast height and individual tree volume was by clone E7, and the highest tree height growth rate was by clone E6; rank correlation analysis showed that growth rate of diameter at breast height and individual tree volume changed slightly at different ages between each clone, and growth rate of tree height changed greatly at different ages between each clone. There were significant differences among

  4. Cloning of C-Terminal of Opioid μ-Receptor and Construction of Its Expression Plasmid for Yeast Two Hybrid System

    Institute of Scientific and Technical Information of China (English)

    YANHui; GONGZe-hui

    2004-01-01

    Aim: To obtain the C-terminal DNA and construct the expression plasmid in yeast two-hybrid. Methods: About 177bp DNA fragment was amplified from the complete sequence of ( receptor by PCR. After being sequenced, the C-terminal fragment was ligased into EcoR I-BamH I site of pGBKT7 vector to form recombinants. The recombinant plasmid

  5. Evolutionary analysis of allotetraploid hybrids of red crucian carp × common carp,based on ISSR,AFLP molecular markers and cloning of cyclins genes

    Institute of Scientific and Technical Information of China (English)

    LIU LiangGuo; YAN JinPeng; LIU ShaoJun; LIU Dong; YOU CuiPing; ZHONG Huan; TAO Min; LIU Yun

    2009-01-01

    The allotetraploid hybrids of red crucian carp × common carp are the first reported artificially cultured polyploid fish with bisexual fertility and stable inheritance in vertebrate.Using ISSR and AFLP markers and the cyclins genes,the genomes and cyclin gene sequence changes were analyzed between the allotetraploid hybrids and their parents.The results indicated that the allotetraploids inherited many genetic characteristics from their parents and the genetic characteristics were stable after 15 generations.However,the allotetraploids had a closer genetic relationship with their original female parents and represented a bias toward the maternal progenitor.DNA fingerprinting analysis showed that the allotetraploids had undergone sequences deletion from their original parents and that the deleted sequences were mostly from the male parent's genome.Some non-parental bands were found in the allotetraploid hybrids.Sequences analysis of the cyclin A1 and B1 genes showed nonsynonymous substitutions of single nucleotides in codons that were different from their original parents,leading to non-parental amino acid loci.We speculate that the non-additivity in the allotetraploids,compared with their progenitors,could be an adjustment to the genomic shock from heterozygosity and polyploidy, allowing maintenance of genetic stability.

  6. Proteome Analysis of Poplar Seed Vigor.

    Science.gov (United States)

    Zhang, Hong; Wang, Wei-Qing; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Seed vigor is a complex property that determines the seed's potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30 °C and 75 ± 5% relative humidity for different periods of time (0-90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue.

  7. Human Cloning

    Science.gov (United States)

    2006-07-20

    genes , for example, has led to new treatments developed by the biotechnology industry for diseases such as diabetes and hemophilia . In the context of...stem cells should be permitted because of the potential for developing new therapies and advancing biomedical knowledge. On May 24, 2005, the House...to describe many different processes that involve making copies of biological material, such as a gene , a cell, a plant or an animal. The cloning of

  8. The growth process of natural poplar-birch forests

    Institute of Scientific and Technical Information of China (English)

    LAN Shibo; LUO Xu; LUO Yuliang

    2006-01-01

    With a combination of permanent and temporary sample plots,we investigated the growth conditions of natural poplar-birch forests.The forests were divided into four site classes,using statistical and analytical techniques in a quantitative model,in descending order where site class I was the best.On this basis,the growth of natural poplar-birch forests in the different site classes was studied.The growth processes of height and diameter at breast height were divided into three stages:a fast growing period,a stable growing period and a slow growing period.Results of this study provide a theoretical basis for the directive cultivation of natural poplar-birch forests.

  9. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass.

    Science.gov (United States)

    Negro, Maria José; Manzanares, Paloma; Ballesteros, Ignacio; Oliva, Jose Miguel; Cabañas, Araceli; Ballesteros, Mercedes

    2003-01-01

    Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210 C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.

  10. Stem taper equations for poplars growing on farmland in Sweden

    Institute of Scientific and Technical Information of China (English)

    Birger Hjelm

    2013-01-01

    We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations.In Sweden there is an increasing interest in the use of poplar.Effective management of poplar plantations for high yield production would be facilitated by taper equations providing better predictions of stem volume than currently available equations.In the study a polynomial stem taper equation with five parameters was established for individual poplar trees growing on former farmland.The outputs of the polynomial taper equation were compared with five published equations.Data for fitting the equations were collected from 69 poplar trees growing at 37 stands in central and southern Sweden (lat.55-60° N).The mean age of the stands was 21 years (range 14-43),the mean density 984 stemsha-1 (198-3,493),and the mean diameter at breast height (outside bark) 25 cm (range 12-40).To verify the tested equations,performance of accuracy and precision diameter predictions at seven points along the stem was closely analyzed.Statistics used for evaluation of the equations indicated that the variable exponent taper equation presented by Kozak (1988) performed best and can be recommended.The stem taper equation by Kozak (1988) recommended in the study is likely to be beneficial for optimising the efficiency and profitability of poplar plantation management.The constructed polynomial equation and the segmented equation presented by Max & Burkhart (1976) were second and third ranked.Due to the statistical complexity of Kozak's equation,the constructed polynomial equation is alternatively recommended when a simple model is requested and larger bias is accepted.

  11. Impact of spacing and rotation length on nutrient budgets of poplar plantations for pulpwood

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The above-ground biomass and nutrient accumulation by poplar plantations were evaluated for pulpwood production in China. Experimental treatments applied in a split-plot design included four planting densities (1111, 833, 625 and 500 stems·hm-2), three rotation lengths (4a, 5a and 6a) and three poplar clones (I-69,NL-80351 and 1-72). The highest biomass was achieved in the highest stocked stand (1111 stem·hm-2) at 6 of rotation age for both clone 1-69 and clone 1-72, which is about two times that in the stands of 500 stems·hm-2 at 4 of rotation age. However, the highest occurred in the stand of 833 stems·hm-2 at 6-year rotation for NL-80351. Ranking of the plantation biomass production by component was stem > branches > foliage > stem-bark and the production of the support components of the plantation was 10-fold that of the productive component, i.e., foliage. The pattern of accumulation of nutrients by the plantations was similar to the biomass. Nutrient accumulation in the plantations was in the order of Ca > N > K > Mg > P, but some differences existed in annual nutrient accumulation rates for four planting densities and three poplar clones. The mean annual accumulation of N and P in the plantations was 13.2 and 2.8 kg·hm-2 in stem, 12.1 and 1.9 kg·hm-2 in branch, and 98.5 and 9.5 kg·hm-2 in foliage. The mean Ca, K and Mg accumulations were 28.2, 18.5 and 2.9 kg·hm-2· a-1, 26.9, 11.0 and 2.3 kg·hm-2·a-1 in branch,and 116.5, 81.3 and 16.1 kg·hm-2· a-1 in foliage, respectively. Biomass utilization standards markedly affected the export of nutrients from the site. Whole tree utilization yields the most biomass and removes the most nutrients.Removal of stem with ≥ 10-cm diameter exports about half of the biomass, but N and nutrients removals are only 23% and 28% of the total, respectively. Removal of the entire stem provides about two-thirds of the total biomass and removes 31.1% total N and 37.5 % total nutrients respectively

  12. Sulfate Metabolites of 4-Monochlorobiphenyl in Whole Poplar Plants

    OpenAIRE

    Zhai, Guangshu; Lehmler, Hans-Joachim; Schnoor, Jerald L.

    2012-01-01

    4-Monochlorobiphenyl (PCB3) has been proven to be transformed into hydroxylated metabolites of PCB3 (OH-PCB3s) in whole poplar plants in our previous work. However, hydroxylated metabolites of PCBs, including OH-PCB3s, as the substrates of sulfotransferases have not been studied in many organisms including plants in vivo. Poplar (Populus deltoides × nigra, DN34) was used to investigate the further metabolism from OH-PCB3s to PCB3 sulfates because it is a model plant and one that is frequently...

  13. Effect of different biochars on Nitrogen uptake in poplar trees

    Science.gov (United States)

    George, Elizabeth; Tonon, Giustino; Scandellari, Francesca

    2014-05-01

    Influence of biochar on soil nitrogen transformation and plant uptake has been reported. This paper presents preliminary results of plant N uptake in poplars by using 15N isotope tracer approach Two types of biochar were applied to two sets of pots containing only sand and each pot received a pre-rooted poplar cutting. Half of the pots were inoculated with commercial mycorrhizal gel and the other half were left without. It is intended to provide information on how biochar, mycorrhiza and root interaction mediate nitrogen uptake and organ allocation.

  14. Biomass production and carbon sequestration potential in poplar plantations with different management patterns.

    Science.gov (United States)

    Fang, S; Xue, J; Tang, L

    2007-11-01

    Biomass production and carbon storage in short-rotation poplar plantations over 10 years were evaluated at the Hanyuan Forestry Farm, Baoying County, China. Experimental treatments applied in a split-plot design included four planting densities (1111, 833, 625 and 500 stems ha(-1)) and three poplar clones (NL-80351, I-69 and I-72). Based on the model of total biomass production developed, total plantation biomass production was significantly different in the plantations. The ranking of the plantation biomass production by planting density was 1111>833 more more than 625>500 stems ha(-1), and by components was stem>root>or=branch>leaf for all plantations. At 10 years, the highest total biomass in the plantation of 1111 stems ha(-1) reached about 146 t ha(-1), which was 5.3%, 11.6% and 24.2% higher than the plantations of 833, 625 and 500 stems ha(-1), respectively. The annual increment of biomass production over 10 years differed significantly among initial planting densities and stand ages (pplantation carbon storage by planting density was similar to that of total biomass production. At age 10, the highest total plantation carbon storage in the plantation of 1111 stems ha(-1) reached about 72.0 t ha(-1), which was 5.4%, 11.9% and 24.8% higher than in the plantations of 833, 625 and 500 stems ha(-1), respectively. The annual carbon storage increment over 10 years differed significantly among initial planting densities and stand ages (pplantations. The results suggest that biomass production and carbon storage potential were highest for planting densities of 1111 and 833 stems ha(-1) grown over 5- and 6-year cutting cycles, respectively. If 3- or 4-year cutting cycles are used, the planting density should be higher than 1111 stems ha(-1) (e.g., 1667 or 2500 stems ha(-1)). Based on the mean annual carbon storage for the plantation of 625 stems ha(-1), as an estimation, the mean carbon storage in the biomass of poplar plantations (excluding leaves) amounts to 3.75x10

  15. Life cycle assessment: an application to poplar for energy cultivated in Italy

    Directory of Open Access Journals (Sweden)

    Jacopo Bacenetti

    2012-09-01

    Full Text Available The development of the bioenergy sector has led to an increasing interest in energy crops. Short rotation coppices (SRC are forestry management systems in which fast-growing tree species are produced under intensive cultivation practices to obtain high wood chips yields. In Italy, most SRC plantations consist of poplar biomass-clones. SRC plantations can be carried out with different management systems with diverse cutting times; consequently, the cultivation system can be crucial for attaining high yields depending on: i short and ii medium cutting frequency. Nowadays, the larger part of Italian SRC is based on 2-year cutting short rotation forestry (SRF but the best quality of wood chips is linked to 5-year plantation medium rotation forestry (MRF. This work compares an SRF and an MRF poplar plantation located in the Po Valley in northern Italy. In particular, a life cycle assessment (LCA was carried out to evaluate their energy demand and greenhouse gas emissions. The LCA software SimaPro 7.10 was used to create the LCA model and to assure an accurate impact assessment calculation. The analysis shows several differences between MRF and SRF in terms of fertiliser requirements and intensive agricultural activities. Results highlight that MRF produces a more sustainable wood chip production than SRF according to energy and environmental concerns. Furthermore, hot spots were identified in both SRF and MRF due to the high energy consumption and the related emissions. These hot spots were: i mineral fertilisation; ii mechanical weed-control; iii harvesting and biomass transport.

  16. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential.

    Science.gov (United States)

    Laureysens, I; De Temmerman, L; Hastir, T; Van Gysel, M; Ceulemans, R

    2005-02-01

    Short rotation coppice cultures (SRC) are intensively managed, high-density plantations of multi-shoot trees. In April 1996, an SRC field trial with 17 different poplar clones was established in Boom (Belgium) on a former waste disposal site. In December 1996 and January 2001, all shoots were cut back to a height of 5 cm to create a coppice culture. For six clones, wood and bark were sampled at the bottom, middle and top of a shoot in August and November 2002. No significant height effect of metal concentration was found, but for wood, metal concentrations generally increased toward the top of the shoot in August, and decreased toward the top of the shoot in November. Phytoextraction potential of a clone was primarily determined by metal concentration and by biomass production. Shoot size and number of shoots per stool were less important, as a high biomass production could be achieved by producing a few large shoots or many smaller shoots. Clone Fritzi Pauley accumulated 1.4 kg ha(-1) of Al over two years; Wolterson and Balsam Spire showed a relatively high accumulation of Cd and Zn, i.e. averaging, respectively 47 and 57 g ha(-1) for Cd and 2.4 and 2.0 kg ha(-1) for Zn over two years.

  17. Influência da densidade básica da madeira na qualidade da polpa kraft de clones hibrídos de Eucalyptus grandis W. Hill ex Maiden X Eucalyptus urophylla S. T. Blake Effect of wood basic density on kraft pulp quality of hybrid Eucalyptus grandis W. Hill ex Maiden X Eucalyptus urophylla S.T. Blake clones

    Directory of Open Access Journals (Sweden)

    Simone Cristina Setúbal Queiroz

    2004-12-01

    Full Text Available Foram estudados dois clones de Eucalyptus com densidades básicas de 447 e 552 kg/m³. O processo kraft foi utilizado para a produção de celulose, tendo sido aplicadas diferentes cargas de álcali para se obterem polpas com número kappa 18 ± 0,5. As polpas foram branqueadas pela seqüência ODEopDD, a alvuras de 90 ± 1% ISO, e refinadas, sendo suas propriedades físico-mecânicas e ópticas analisadas. A madeira de baixa densidade mostrou-se mais recomendável para a produção de celulose, por ter apresentado maior rendimento depurado, viscosidade da polpa mais elevada, ter requerido menor carga de álcali no cozimento, ter proporcionado menor teor de sólidos no licor residual e menor consumo de reagentes químicos no branqueamento. As propriedades mecânicas e estruturais das polpas não foram afetadas significativamente pela densidade básica das madeiras.Two hybrid Eucalyptus clones having 447 kg/m³ and 552 kg/m³ basic densities were used for this study. The kraft process was used for pulping the wood chips to kappa number 18±0.5 and different alkali charges were applied to reach this delignification target. Pulp was bleached to 90±1% ISO using the ODEopDD bleaching sequence. The bleached pulp was refined and its physical-mechanical properties were determined. The lower density wood was recommended for pulp production due to its lower alkali requirement for pulping, higher screened yield, superior pulp viscosity, lower black liquor solids content and lower bleaching chemical requirement. Wood basic density did not affect significantly the mechanical and structural pulp properties.

  18. Comparative study of plant growth of two poplar tree species irrigated with treated wastewater, with particular reference to accumulation of heavy metals (Cd, Pb, As, and Ni).

    Science.gov (United States)

    Houda, Zarati; Bejaoui, Zoubeir; Albouchi, Ali; Gupta, Dharmendra K; Corpas, Francisco J

    2016-02-01

    Water is a scarce natural resource around the world which can hamper the socio-economic development of many countries. The Mediterranean area, especially north Africa, is known for its semi-arid to arid climate, causing serious water supply problems. Treated wastewater (TWW) is being used as an alternative strategy for recycling wastewater. It is also a potential source of nutrients for reforestation with certain plant species such as poplar trees, a useful wood resource, and even for phytoremediation purposes. In the present study, we used treated wastewater to irrigate two clones of 1-year-old poplar trees (Populus nigra cv. I-488 and Populus alba cv. MA-104) for 90 days. After a stipulated time, a comparative study was made of the effects of TWW on growth parameters, acquisition of essential minerals (Na, Fe and Zn) and pollutants (Cd, Pb, As and Ni) as well as the enrichment of secondary metabolites such as polyphenolic, flavonoid and tannin compounds which could contribute to the growth and development of poplar plants. The results of this study show that the use of TWW increased P. alba's biomass production by 36% and also enhanced its Cd and Pb accumulation capacity. We also found that P. alba has considerable potential to be used as an alternative plant species for reforestation and/or phytoremediation of toxic metals from contaminated water or effluent.

  19. Molecular cloning of kman coding for mannanase from Klebsiella oxytoca KUB-CW2-3 and its hybrid mannanase characters.

    Science.gov (United States)

    Pongsapipatana, Nawapan; Damrongteerapap, Piyanat; Chantorn, Sudathip; Sintuprapa, Wilawan; Keawsompong, Suttipun; Nitisinprasert, Sunee

    2016-07-01

    Gene encoding for β-mannanase (E.C 3.2.1.78) from Klebsiella oxytoca KUB-CW2-3 was cloned and expressed by an E. coli system resulting in 400 times higher mannanase activities than the wild type. A 3314bp DNA fragment obtained revealed an open reading frame of 1164bp, namely kman-2, which encoded for 387 amino acids with an estimated molecular weight of 43.2kDa. It belonged to the glycosyl hydrolase family 26 (GH26) exhibited low similarity of 50-71% to β-mannanase produced by other microbial sources. Interestingly, the enzyme had a broad range of substrate specificity of homopolymer of ivory nut mannan (6%), carboxymethyl cellulose (30.6%) and avicel (5%), and heteropolymer of konjac glucomannan (100%), locust bean gum (92.6%) and copra meal (non-defatted 5.3% and defatted 7%) which would be necessary for in vivo feed digestion. The optimum temperature and pH were 30-50°C and 4-6, respectively. The enzyme was still highly active over a low temperature range of 10-40°C and over a wide pH range of 4-10. The hydrolysates of konjac glucomannan (H-KGM), locust bean gum (H-LBG) and defatted copra meal (H-DCM) composed of compounds which were different in their molecular weight range from mannobiose to mannohexaose and unknown oligosaccharides indicating the endo action of mannanase. Both H-DCM and H-LBG enhanced the growth of lactic acid bacteria and some pathogens except Escherichia coli E010 with a specific growth rate of 0.36-0.83h(-1). H-LBG was more specific to 3 species of Weissella confusa JCM 1093, Lactobacillus reuteri KUB-AC5, Lb salivarius KL-D4 and E. coli E010 while both H-KGM and H-DCM were to Lb. reuteri KUB-AC5 and Lb. johnsonii KUNN19-2. Based on the nucleotide sequence of kman-2 containing two open reading frames of 1 and 2at 5' end of the +1 and +43, respectively, removal of the first open reading frame provided the recombinant clone E. coli KMAN-3 resulting in the mature protein of mannanase composing of 345 amino acid residues confirmed by 3D

  20. Application of pre-emergence herbicides in poplar nursery production

    Institute of Scientific and Technical Information of China (English)

    Verica Vasic; Sasa Orlovic; Predrag Pap; Branislav Kovacevic; Milan Drekic; Leopold Poljakovic Pajnik; Zoran Galic

    2015-01-01

    In addition to pests and diseases, weeds are a major problem in poplar nursery production. The possibili-ties of herbicide application in juvenile poplar growth were researched, taking into account that weeds are one of the main limiting factors. The following pre-emergence herbi-cides were tested: acetochlor, S-metolachlor, metribuzin, oxifluorfen, and dimethenamid during two vegetation sea-sons at two locations, which differed by the soil physico-chemical characteristics. The study results show that the number of weeds on sample plots was significantly reduced by the tested herbicides when compared to control plots. The highest reduction in the number of weeds was achieved using the herbicides acetochlor and metribuzin. However, me-tribuzin showed a phytotoxic effect on sandy soil. Metribu-zin application is recommended only on the soils with higher contents of organic matter, where the phytotoxic effect was absent. Acetochlor, S-metolachlor, oxifluorfen, and dime-thenamid were not phytotoxic to poplars and can be used for weed suppression in the production of poplar plants.

  1. Transgenic manipulation of the metabolism of polyamines in poplar cells

    Science.gov (United States)

    Pratiksha Bhatnagar; Bernadette M. Glasheen; Suneet K. Bains; Stephanie L. Long; Rakesh Minocha; Christian Walter; Subhash C. Minocha

    2001-01-01

    The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra 3 maximowiczii) expressing a...

  2. Arbuscular mycorrhizal colonization in black poplar roots after defoliation by a non-native and a native insect

    Directory of Open Access Journals (Sweden)

    Zampieri E

    2016-08-01

    Full Text Available A major goal in ecology is to understand how interactions among organisms influence ecosystem services. This work compares the effects of two Lepidoptera defoliators, one non-native (Hyphantria cunea and one native (Lymantria dispar to Europe, on the colonization of black poplar (the Populus nigra clone “Jean Pourtet” roots by an arbuscular mycorrhizal (AM symbiotic fungus (Funneliformis mosseae in a pot experiment. The effects of defoliation have also been assessed on the expression of fungal and plant genes playing a role during symbiosis. Both control and defoliated poplars have shown a low level of mycorrhization. Additionally, neither the non-native nor the native insect seem to strongly affect the AM colonization, at least at the time of observation (eight days from the end of the defoliation. Concerning the gene expression analysis, our results suggest that defoliation does not influence neither the expression of genes coding for a fungal and a plant phosphate transporter nor that of a gene coding for a fungal ATPase, and that there were no differences between defoliation carried out by the non-native and the native insect.

  3. Study of transactivating effect of pre-S2 protein of hepatitis B virus and cloning of genes transactivated by pre-S2 protein with suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    Dong Ji; Jun Cheng; Guo-Feng Chen; Yan Liu; Lin Wang; Jiang Guo

    2005-01-01

    AIM: To investigate the transactivating effect of pre-S2 protein of hepatitis B virus (HBV) and construct a subtractive cDNA library of genes transactivated by pre-S2 protein with suppression subtractive hybridization (SSH)technique, and to pave the way for elucidating the pathogenesis of HBV infection.METHODS: pcDNA3.1(-)-pre-S2 containing pre-S2 region of HBV genome was constructed by routine molecular methods. HepG2 cells were cotransfected with pcDNA3.1 (-)-pre-S2/pSV-lacZ and empty pcDNA3.1(-)/pSV-lacZ.After 48 h, cells were collected and detected for the expression of β-galactosidase (β-gal). SSH and bioinformatics techniques were used, the mRNA of HepG2 cells transfected with pcDNA3.1(-)-pre-S2 and pcDNA3.1(-) empty vector was isolated, respectively, cDNA was synthesized. After digestion with restriction enzyme RsaI, cDNA fragments were obtained. Tester cDNA was then divided into two groups and ligated to the specific adaptor 1 and adaptor 2, respectively. After tester cDNA was hybridized with driver cDNA twice and underwent two times of nested PCR, amplified cDNA fragments were subcloned into pGEM-Teasy vectors to set up the subtractive library.Amplification of the library was carried out with E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with Blast search after PCR.RESULTS: The pre-S2 mRNA could be detected in HepG2 cells transfected with pcDNA3.1(-)-pre-S2 plasmid. The activity of β-gal in HepG2 cells transfected with pcDNA3.1 (-)-pre-S2/pSV-lacZ was 7.0 times higher than that of control plasmid (P<0.01). The subtractive library of genes transactivated by HBV pre-S2 protein was constructed successfully. The amplified library contains 96 positive clones. Colony PCR showed that 86 clones contained 200-1 000 bp inserts. Sequence analysis was performed in 50 clones randomly, and the full length sequences were obtained with bioinformatics method and searched for homologous DNA sequence from GenBank, altogether 25 coding sequences

  4. Investment appraisal of a poplar plantation aged 42 years

    Directory of Open Access Journals (Sweden)

    Keča Ljiljana

    2013-01-01

    Full Text Available Commercial profitability of poplar cultivation was analyzed in an artificial poplar plantation in Serbia. The aim of this study was to validate the invested financial means in the artificial poplar plantation, on the basis of the analysis of costs and receipts during a 42-year rotation, on alluvial semigley, at a discount rate of 12%. Methods of dynamic investment calculation (net present value - NPV, internal rate of return - IRR, benefit-cost method - B/C and payback period - PBP were used. The investigated plantations were established from Populus x euramericana cl. I-214, with a planting spacing of 6 x 3 m. At the calculation discount rate of 12%, the project for the production cycle of 42 years was not cost-effective from the economic aspect. The discount rate of 6% can be accepted in the studied plot because of the better site (alluvial semigley, but the oldness of the stand is unfavourable. For the studied sample plot, IRR was 5.51 %. B/C at r=12% in the study compartment was 0.24. The analysis shows that PBP is practically unacceptable for the investor at the discount rate of 6%. In practice, it is necessary to improve the position of producers in getting financial means for investment in poplar cultivation, so as to stimulate the establishment of artificial poplar plantations, especially in the private sector (on private land. [Projekat Ministarstva nauke Republike Srbije, br. TR 37008, TR 31041 and Value chain of non-wood forest products and its role in development of forestry sector in Serbia

  5. Isoprene emission-free poplars--a chance to reduce the impact from poplar plantations on the atmosphere.

    Science.gov (United States)

    Behnke, Katja; Grote, Rüdiger; Brüggemann, Nicolas; Zimmer, Ina; Zhou, Guanwu; Elobeid, Mudawi; Janz, Dennis; Polle, Andrea; Schnitzler, Jörg-Peter

    2012-04-01

    • Depending on the atmospheric composition, isoprene emissions from plants can have a severe impact on air quality and regional climate. For the plant itself, isoprene can enhance stress tolerance and also interfere with the attraction of herbivores and parasitoids. • Here, we tested the growth performance and fitness of Populus × canescens in which isoprene emission had been knocked down by RNA interference technology (PcISPS-RNAi plants) for two growing seasons under outdoor conditions. • Neither the growth nor biomass yield of the PcISPS-RNAi poplars was impaired, and they were even temporarily enhanced compared with control poplars. Modelling of the annual carbon balances revealed a reduced carbon loss of 2.2% of the total gross primary production by the absence of isoprene emission, and a 6.9% enhanced net growth of PcISPS-RNAi poplars. However, the knock down in isoprene emission resulted in reduced susceptibility to fungal infection, whereas the attractiveness for herbivores was enhanced. • The present study promises potential for the use of non- or low-isoprene-emitting poplars for more sustainable and environmentally friendly biomass production, as reducing isoprene emission will presumably have positive effects on regional climate and air quality. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  6. Conservation status of white poplar (Populus alba L. and black poplar (Populus nigra L. in the territory of Great War Island

    Directory of Open Access Journals (Sweden)

    Šijačić-Nikolić Mirjana

    2014-01-01

    Full Text Available T he paper describes t he conservation status of white poplar (Populus alba L. and black poplar (Populus nigra L. in the territory of Great War Island. The activities of in situ and ex situ gene pool conservation have been defined in order to preserve and expand the populations of the above species, as carriers of complex wetland forest ecosystems.

  7. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil.

    Science.gov (United States)

    Castiglione, S; Todeschini, V; Franchin, C; Torrigiani, P; Gastaldi, D; Cicatelli, A; Rinaudo, C; Berta, G; Biondi, S; Lingua, G

    2009-07-01

    Three ex situ collections of poplar clones from natural populations of Populus alba and P. nigra growing in northern Italy were assessed for their genetic dissimilarity (GD) by means of amplified fragment length polymorphism (AFLP). The high GD evidenced within populations was exploited for screening 168 clones in a field trial on heavy metal-polluted soil. After one growth season, clonal differences in plant survival and growth were observed. On the basis of performance, six clones were singled out, and used to evaluate copper and zinc accumulation in different organs. Clonal differences in metal concentrations were most evident for leaves and stems; one clone of P. alba (AL35) had a distinctly higher concentration of both metals in the roots. Leaf polyamine (putrescine, spermidine, spermine) profiles correlated with tissue metal concentrations, depending on the clone, plant organ and metal. In particular, the high metal-accumulating clone AL35 exhibited a dramatically higher concentration of free and conjugated putrescine. Overall, the results indicate that, given the high GD of Populus even within populations, it is possible to identify genotypes best suited for soil clean-up, and useful also for investigating physiological markers associated with high metal accumulation/tolerance.

  8. Relationship between trophic component of different poplar strains and occurrence of Saperda poplnea

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An experimental area of poplar was established in Songyuan of Jilin Province in 1999 for testing the resistance of different poplar stains to Saperda poplnea. Incidence of S. poplnea on ten poplar strains were investigated, and the main trophic component of branches of these poplar trees were measured and analyzed in April 2001. The results showed that there existed significant difference in population size of S. poplnea on different poplar strains, and the branches of these poplar strains have significant difference in nutrient component and content of amino acids. The population size of this pest had a significantly posi-tive correlation with dissolvable total sugar and water content but had no significant correlation with content of total nitrogen and protein nitrogen.

  9. Impact of Biofuel Poplar Cultivation on Ground-Level Ozone and Premature Human Mortality Depends on Cultivar Selection and Planting Location.

    Science.gov (United States)

    Ashworth, Kirsti; Wild, Oliver; Eller, Allyson S D; Hewitt, C Nick

    2015-07-21

    Isoprene and other volatile organic compounds emitted from vegetation play a key role in governing the formation of ground-level ozone. Emission rates of such compounds depend critically on the plant species. The cultivation of biofuel feedstocks will contribute to future land use change, altering the distribution of plant species and hence the magnitude and distribution of emissions. Here we use relationships between biomass yield and isoprene emissions derived from experimental data for 29 commercially available poplar hybrids to assess the impact that the large-scale cultivation of poplar for use as a biofuel feedstock will have on air quality, specifically ground-level ozone concentrations, in Europe. We show that the increases in ground-level ozone across Europe will increase the number of premature deaths attributable to ozone pollution each year by up to 6%. Substantial crop losses (up to ∼9 Mt y(-1) of wheat and maize) are also projected. We further demonstrate that these impacts are strongly dependent on the location of the poplar plantations, due to the prevailing meteorology, the population density, and the dominant crop type of the region. Our findings indicate the need for a concerted and centralized decision-making process that considers all aspects of future land use change in Europe, and not just the effect on greenhouse gas emissions.

  10. Elevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE).

    Science.gov (United States)

    Liberloo, Marion; Dillen, Sophie Y; Calfapietra, Carlo; Marinari, Sara; Luo, Zhi Bin; De Angelis, Paolo; Ceulemans, Reinhart

    2005-02-01

    We investigated the individual and combined effects of elevated CO2 concentration and fertilization on aboveground growth of three poplar species (Populus alba L. Clone 2AS-11, P. nigra L. Clone Jean Pourtet and P. x euramericana Clone I-214) growing in a short-rotation coppice culture for two growing seasons after coppicing. Free-air carbon dioxide enrichment (FACE) stimulated the number of shoots per stool, leaf area index measured with a fish-eye-type plant canopy analyzer (LAIoptical), and annual leaf production, but did not affect dominant shoot height or canopy productivity index. Comparison of LAIoptical with LAI estimates from litter collections and from allometric relationships showed considerable differences. The increase in biomass in response to FACE was caused by an initial stimulation of absolute and relative growth rates, which disappeared after the first growing season following coppicing. An ontogenetic decline in growth in the FACE treatment, together with strong competition inside the dense plantation, may have caused this decrease. Fertilization did not influence aboveground growth, although some FACE responses were more pronounced in fertilized trees. A species effect was observed for most parameters.

  11. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Jin; Chen, Xingling; Lv, Jinhui; Jia, Huixia; Zhao, Shutang; Lu, Mengzhu

    2017-01-01

    To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  12. Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1

    Science.gov (United States)

    Adams, Joshua P.; Adeli, Ardeshir; Hsu, Chuan-Yu; Harkess, Richard L.; Page, Grier P.; dePamphilis, Claude W.; Schultz, Emily B.; Yuceer, Cetin

    2011-01-01

    Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation. PMID:21504875

  13. Molecular cloning and biochemical characterization of VIM-12, a novel hybrid VIM-1/VIM-2 metallo-beta-lactamase from a Klebsiella pneumoniae clinical isolate, reveal atypical substrate specificity.

    Science.gov (United States)

    Kontou, Maria; Pournaras, Spyros; Kristo, Ioulia; Ikonomidis, Alexandros; Maniatis, Antonios N; Stathopoulos, Constantinos

    2007-11-13

    Metallo-beta-lactamases (MBLs) are considered an emerging family of Zn2+-dependent enzymes that significantly contribute to the resistance of many nosocomial pathogens against beta-lactam antimicrobials. Since these plasmid-encoded enzymes constitute specific molecular targets for beta-lactams, their exact mode of action is greatly important in deploying efficient anti-infective treatments and for the control of severe multi-resistant nosocomial infections, which becomes a global problem. A novel hybrid VIM-1/VIM-2-type beta-lactamase (named VIM-12) has recently been identified in a clinical isolate of Klebsiella pneumoniae in Greece. The sequence of this enzyme is highly similar with that of VIM-1 at its N-terminal region and with that of VIM-2 at its C-terminal region, raising the question of whether this sequence similarity reflects also a similar functional role. Moreover, the possible contribution of this novel beta-lactamase to the overall antibiotic resistance of this specific clinical isolate was investigated. The gene encoding VIM-12 was cloned and expressed, and the recombinant enzyme was used for detailed kinetic analysis, using a variety of beta-lactam antibiotics. VIM-12 was found to exhibit narrow substrate specificity, compared to other known beta-lactamases, limited mainly to penicillin and to a much lesser extent to imipenen. Interestingly, meropenem was found to act as a noncompetitive inhibitor of the enzyme, although the active site of VIM-12 exhibited complete conservation of residues among VIM enzymes. We conclude that VIM-12 represents a novel and unique member of the family of known metallo-beta-lactamases, exhibiting atypical substrate specificity.

  14. Nitrogen ion utilization by tulip poplar (Liriodendron tulipifera L. ) seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Mann, L.K.

    1982-01-01

    Growth responses of one-year-old tulip poplar seedlings were determined for different nitrogen sources (HN/sub 4/NO/sub 3/, NH+/sub 4/, NO-/sub 3/, no nitrogen) at 336 ppm N in nutrient culture. At the end of three months, there were no significant differences in growth observed among treatments in terms of stem elongation, leaf area, and leaf size. After four months, however, seedlings of the NH/sub 4/NO/sub 3/ treatment exhibited significantly (P<0.05) greater growth (final weight gain and stem elongation) than all other nitrogen sorces. Growth was slightly less for the NO-/sub 3/ treatment plants, but compared with NH+/sub 4/ and no nitrogen treatment, both NH/sub 4/NO/sub 3/ and NO-/sub 3/ treatments exhibited significantly greater growth responses. NO-/sub 3/ is recommended as the sole nitrogen source, especially for small seedlings of tulip poplar.

  15. The Clone Factory

    Science.gov (United States)

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  16. Heat transfer mechanisms in poplar wood undergoing torrefaction

    Science.gov (United States)

    Sule, Idris O.; Mahmud, Shohel; Dutta, Animesh; Tasnim, Syeda Humaira

    2016-03-01

    Torrefaction, a thermal treatment process of biomass, has been proved to improve biomass combustible properties. Torrefaction is defined as a thermochemical process in reduced oxygen condition and at temperature range from 200 to 300 °C for shorter residence time whereby energy yield is maximized, can be a bridging technology that can lead the conventional system (e.g. coal-fired plants) towards a sustainable energy system. In efforts to develop a commercial operable torrefaction reactor, the present study examines the minimum input condition at which biomass is torrefied and explores the heat transfer mechanisms during torrefaction in poplar wood samples. The heat transfer through the wood sample is numerically modeled and analyzed. Each poplar wood is torrefied at temperature of 250, 270, and 300 °C. The experimental study shows that the 270 °C-treatment can be deduced as the optimal input condition for torrefaction of poplar wood. A good understanding of heat transfer mechanisms can facilitate the upscaling and downscaling of torrefaction process equipment to fit the feedstock input criteria and can help to develop treatment input specifications that can maximize process efficiency.

  17. Barcoding poplars (Populus L. from western China.

    Directory of Open Access Journals (Sweden)

    Jianju Feng

    Full Text Available BACKGROUND: Populus is an ecologically and economically important genus of trees, but distinguishing between wild species is relatively difficult due to extensive interspecific hybridization and introgression, and the high level of intraspecific morphological variation. The DNA barcoding approach is a potential solution to this problem. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested the discrimination power of five chloroplast barcodes and one nuclear barcode (ITS among 95 trees that represent 21 Populus species from western China. Among all single barcode candidates, the discrimination power is highest for the nuclear ITS, progressively lower for chloroplast barcodes matK (M, trnG-psbK (G and psbK-psbI (P, and trnH-psbA (H and rbcL (R; the discrimination efficiency of the nuclear ITS (I is also higher than any two-, three-, or even the five-locus combination of chloroplast barcodes. Among the five combinations of a single chloroplast barcode plus the nuclear ITS, H+I and P+I differentiated the highest and lowest portion of species, respectively. The highest discrimination rate for the barcodes or barcode combinations examined here is 55.0% (H+I, and usually discrimination failures occurred among species from sympatric or parapatric areas. CONCLUSIONS/SIGNIFICANCE: In this case study, we showed that when discriminating Populus species from western China, the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions. Meanwhile, combining the ITS region with chloroplast regions may improve the barcoding success rate and assist in detecting recent interspecific hybridizations. Failure to discriminate among several groups of Populus species from sympatric or parapatric areas may have been the result of incomplete lineage sorting, frequent interspecific hybridizations and introgressions. We agree with a previous proposal for constructing a tiered barcoding system in

  18. Cloning of observables

    OpenAIRE

    Ferraro, Alessandro; Galbiati, Matteo; Paris, Matteo G. A.

    2005-01-01

    We introduce the concept of cloning for classes of observables and classify cloning machines for qubit systems according to the number of parameters needed to describe the class under investigation. A no-cloning theorem for observables is derived and the connections between cloning of observables and joint measurements of noncommuting observables are elucidated. Relationships with cloning of states and non-demolition measurements are also analyzed.

  19. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding.

    Directory of Open Access Journals (Sweden)

    Birgit Kersten

    Full Text Available Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca and for chloroplasts (seven species, but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus. The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4 from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52 and 783,513 bp (717-1B4 in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future.

  20. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mathews, Teresa J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ketelle, Richard [East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States)

    2016-06-01

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not address the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats’ surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain

  1. Cloning and sequencing genes related to preeclampsia

    Institute of Scientific and Technical Information of China (English)

    SHI Juan-zi; LIU Yan-fang; YAO Yuan-qing; YAN Wei; ZHU Feng; ZHAO Zhong-liang

    2001-01-01

    To clone genes specifically expressed in the placenta of patients with preeclampsia, and to explain the mechanism in the etiopathology ofpreeclampsia. Methods: The placentae ofpreeclamptic and normotensive subjects with pregnancy were used as models, and the cDNA Library was constructed and 20 differentially expressed fragments were cloned after a new version of PCR-based subtractive hybridization. The false positive clones were identified by reverse dot blot analysis. With one of the obtained gene taken as the probe, the placentas of 10 normal pregnant women and 10 preeclamptic patients were studied by using dot hybridization methods. Results: Six false positive clones were identified by reverse dot blot, and the rest 14 clones were identified as preeclampsia-related genes. These clones were sequenced, and analyzed with BLAST analysis system. Eleven of 14 clones were genes already known, among which one belongs to necdin family; the rest 3 were identified as novel genes. These 3 genes were acknowledged by GenBank, with the accession numbers AF232216, AF232217, AF233648. The results of dot hybridization using necdin gene as probe were as follows: (1) There was this mRNA in the placental tissues of normal pregnancy as well as in that ofpreeclampsia.(2) The intensity of transcription of this mRNA in the placental tissues of preeclampsia increased significantly compared with that of the normal pregnancy (P<0.05). Conclusions: This study for the first time reported this group of genes, especially necdin-expressing gene, which are related to the etiopathology of preeclampsia. In addition, the overtranscription ofnecdin gene has been found in preeclampsia. It is helpful in further studies of the etiology ofpreeclampsia.

  2. Key factors for causing poplar Ice Nucleation Active bacterial canker and its control techniques

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The isolation, culture and the active determination of poplar ice nucleation active (INA) bacteria and the inoculation tests in laboratory and field were conducted, and the varieties, distribution and number of poplar INA bacteria and its pathogenicity and freezing injury property were determined. The study results showed that the INA bacteria widely spread on poplar in Northeast China and caused the frozen injury for poplar under the frost condition in Spring or Autumn, which was the key factor to induce INA bacterial canker. Through evaluation and investigation of different poplar varieties and inoculation tests, fine disease-resistant varieties and strains of poplar suitable for Northeast China were selected. Further tests for strong seedling showed that burying cuttings in sand and covering with plastic film could effectively avoid the frostbite, frozen and drought damage, reduce INA bacteria infection, and promote poplar growth. INA bacterial canker was detected early by highly specialized antiserums of INA bacteria and the agglutinated test of ring-shaped boundary surface. The inducers such as streptomycin, phenylmercuric acetae, salicylic acid and heat-killed bacteria to immerse cuttings, have obvious induced disease-resistant effect. Before poplar sprouted in early spring, through spraying the solution of frostbite agent, the control effect also was obvious.

  3. WUS and STM-based reporter genes for studying meristem development in poplar

    Science.gov (United States)

    We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5’ flanking regions of close homologs were used to drive expression o...

  4. Molecular cloning of nif DNA from Azotobacter vinelandii.

    OpenAIRE

    1985-01-01

    Two clones which contained nif DNA were isolated from a clone bank of total EcoRI-digested Azotobacter vinelandii DNA. The clones carrying the recombinant plasmids were identified by use of the 32P-labeled 6.2-kilobase (kb) nif insert from pSA30 (which contains the Klebsiella pneumoniae nifK, nifD, and nifH genes) as a hybridization probe. Hybridization analysis with fragments derived from the nif insert of pSA30 showed that the 2.6-kb insert from one of the plasmids (pLB1) contains nifK wher...

  5. Pulping performance of transgenic poplar with depressed Caffeoyl-CoA O-methyltransferase

    Institute of Scientific and Technical Information of China (English)

    WEI JianHua; WANG YanZhen; WANG HongZhi; LI RuiFen; LIN Nan; MA RongCai; QU LeQing; SONG YanRu

    2008-01-01

    This paper evaluated pulping performance of 3-year-old field-grown transgenic poplar (Populus tremula × Populus alba). The transgenic poplar with anti-sense CCoAOMT had an about 13% decreased lignin content, in which a slight increment was found in S/G ratio. Chemical analysis showed that the trans-genic poplar had significantly less benezene-ethanol extractive than that of control wood, but no sig-nificant differences were found in contents of ash, cold water extractive, hot water extractive, 1% NaOH extractive, holocellulose, pentosans and cellulose. Fiber assay demonstrated that down-regulation of CCoAOMTexpression improved the fiber quality in transgenic poplar. Kraft pulping showed that lower lignin in transgenic poplar led to remarkable improved pulp quality and increased pulp yield.

  6. Effects of climate factors on the height increment of poplar protection forest in the riverbank field

    Institute of Scientific and Technical Information of China (English)

    LIHai-mei; HEXing-yuan; WANGKui-ling

    2004-01-01

    Based on the data of stand investigation and stem analysis, the effects of climate factors on the poplar protection forest increment in the riverbank field of the Dalinghe and Xiaolinghe rivers of Liaoning Province, China were studied by stepwise regression procedure and grey system theories and methods. A regression model reflecting the correlation between the height increment of poplar protection forest and climatic factors was developed. The order of grey relevance for the effect of climatic factors on the height increment of poplar protection forest is" light>water>heat, and it could be interpreted that the poplar increment was mainly influenced by light factor, water factor, and heat factor. This result will provide scientific basis for the intensive cultivation and regeneration of the poplar protection forest in riverbank field in similar regions in China.

  7. The use of the white poplar (Populus alba L.) biomass as fuel

    Institute of Scientific and Technical Information of China (English)

    Tatiana Griu; Aurel Lunguleasa

    2016-01-01

    We determined the calorific value of white poplar (Populus alba L.) woody biomass to use it as fire-wood. The value of 19.133 MJ kg-1 obtained experimen-tally shows that the white poplar can be quite successfully used as firewood. Being of a lower quality in comparison with usual beech firewood, the white poplar has similar calorific value. The white poplar has a calorific density of 30.7%lower than that of current firewood. That is why the price of this firewood from white poplar is lower accord-ingly. Also, the prognosis of calorific value on the basis of the main chemical elements, being very close to the experimental value (?2.6%), indicates an appropriate value can be achieved to be used for investigation with the chemical element analysis.

  8. College Reading: Clone, Illegitimate Child, or Hybrid.

    Science.gov (United States)

    Manzo, Anthony V.

    The college reading movement, its methods, organization, and, implicitly, the career opportunities within it, is critiqued in this report in terms of four categories of programs: (1) rapid reading with ancillary attention to study skills; (2) remedial type reading and study skills; (3) compensatory type programs; and (4) content area improvement…

  9. Molecular Cloning of Waterless-Related Genes in Ponkan Mandarin Using Suppression Subtractive Hybridization%应用抑制性差减杂交技术分离椪柑枯水相关基因

    Institute of Scientific and Technical Information of China (English)

    杨明; 王日葵; 周炼; 葛文东; 焦雁翔

    2012-01-01

    [Objective] The aim of this experiment is to reveal the molecular mechanism of the waterless citrus, to explore related genes, and to lay a foundation for the citrus waterless prevention. [Method] A suppression subtractive hybridization library was constructed using cDNA synthesized from RNA extracted from normal pulp as driver and waterless pulp as tester. [Result] A total of 300 positive clones were selected for sequencing, and a total of 260 EST sequences were obtained. After comparison with GenBank using the online software of the BLAST, 197 ESTs, involving in 52 genes, were found to share considerable homology with known genes while the rest 63 ESTs had low or even no homology with known genes. The expressions of the P-tubulin, senescence-associated protein, cytochrome c, cysteine protease, phosphoenolpyruvate carboxykinase, trafficking protein, aspartic protease precursor, WRKY transcription factor 21 genes were studied by real-time quantitative PCR. The eight genes were significantly up-regulated in waterless pulp. These differentially expressed genes were related to numerical biological processes such as aging, stress-tolerance, chitin and cell wall macromolecule catabolic and proteolysis. [Conclusion] Some genes related to waterless were obtained, while the suppression subtractive hybridization library was constructed. These genes reflected the regulation of pulp to waterlessness, and can be used to prevent the disorder of waterlessness as candidate genes.%[目的]探索椪柑枯水分子机理,寻找柑橘枯水应答基因,为柑橘枯水防治奠定基础.[方法]利用抑制性差减杂交技术以椪柑正常果肉cDNA作为Driver,以枯水果肉cDNA作为Tester构建正向差减文库.[结果]挑选了300个有效克隆进行测序分析,260个测序成功.经BLASTx比对分析,197条表达序列标签(ESTs)找到了分属于52个基因的同源序列;63条ESTs同源性较低或没有同源性.对文库中编码β-微管蛋白、衰老相关蛋白

  10. Statement on Human Cloning

    Science.gov (United States)

    ... ban on efforts to implant a human cloned embryo for the purpose of reproduction. The scientific evidence ... stem cell research, including the use of nuclear transplantation techniques (also known as research or therapeutic cloning), ...

  11. Ethical issues in cloning.

    Science.gov (United States)

    Satris, S

    2000-01-01

    There is great public concern with the ethics of human cloning. This paper briefly examines some of what I identify as pseudo-problems or myths associated with cloning, and some of the more substantial ethical concerns.

  12. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    Science.gov (United States)

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  13. Feeding performance of Clostera fulgurita on three clones of Populus deltoides

    Institute of Scientific and Technical Information of China (English)

    K.S.Sangha

    2011-01-01

    Poplar leaf defoliator, Closterafulgurita (Walker) larvae were reared on three Populus deltoides clones (PLI, PL5 and PL7) in the laboratory. The nutritional indices were computed for working out the relationship between food consumption and growth rate of 3rd, 4th and 5th instar larvae on three clones. The result showed that the consumption index (CI), approximate digestibility (AD), growth rate (GR), relative growth rate (RGR) and efficiency of conversion of ingested food (ECl)decreased with the increase in the age of the larvae. Efficiency of conversion of digested food (ECD) increased with increase in age of the larvae. GR and RGR varied significantly, indicating that larval development was enhanced on PLI as compared to PL5 & PL7. The values of AD, ECl and ECD were not affected by the different clones. Feeding and growth indices could be useful to define a defoliation prediction model.

  14. Wood Properties of Poplar from Stand Affected by Acid Rain

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Wood properties from 28 trees (Populus euramericana) selected from healthy and acid rain damaged forest were measured to evaluate the possible impacts on wood quality and utilization. On the heavily damaged location, the pH value of precipitation ranged from 3.7-5.0, and sulfate loading ranged from 20-40 kg·ha-2.y-1. Quantitative and qualitative studies on ring width, physical properties and mechanical properties indicated that changes of wood properties between diseased and healthy poplar occurred. Aci...

  15. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    Science.gov (United States)

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  16. Greenhouse gas balance of cropland conversion to bioenergy poplar short rotation coppice

    Science.gov (United States)

    Sabbatini, S.; Arriga, N.; Bertolini, T.; Castaldi, S.; Chiti, T.; Consalvo, C.; Njakou Djomo, S.; Gioli, B.; Matteucci, G.; Papale, D.

    2015-05-01

    The production of bioenergy in Europe is one of the strategies conceived to reduce greenhouse gas (GHG) emissions. The suitability of the land use change from a cropland (REF site) to a short rotation coppice plantation of hybrid poplar (SRC site) was investigated by comparing the GHG budgets of these two systems over 24 months in Viterbo, Italy. Eddy covariance measurements were carried out to quantify the net ecosystem exchange of CO2 (FCO2), whereas chambers were used to measure N2O and CH4 emissions from soil. Soil organic carbon (SOC) of an older poplar plantation was used to estimate via a regression the SOC loss due to SRC establishment. Emissions from tractors and from production and transport of agricultural inputs (FMAN) were modelled and GHG emission offset due to fossil fuel substitution was credited to the SRC site considering the C intensity of natural gas. Emissions due to the use of the biomass (FEXP) were also considered. The suitability was finally assessed comparing the GHG budgets of the two sites. FCO2 was the higher flux in the SRC site (-3512 ± 224 g CO2 eq m-2 in two years), while in the REF site it was -1838 ± 107 g CO2 m-2 in two years. FEXP was equal to 1858 ± 240 g CO2 m-2 in 24 months in the REF site, thus basically compensating FCO2, while it was 1118 ± 521 g CO2 eq m-2 in 24 months in the SRC site. This latter could offset -379.7 ± 175.1 g CO2 eq m-2 from fossil fuel displacement. Soil CH4 and N2O fluxes were negligible. FMAN weighed 2 and 4% in the GHG budgets of SRC and REF sites respectively, while the SOC loss weighed 455 ± 524 g CO2 m-2 in two years. Overall, the REF site was close to neutrality in a GHG perspective (156 ± 264 g CO2 eq m-2), while the SRC site was a net sink of -2202 ± 792 g CO2 eq m-2. In conclusion the experiment led to a positive evaluation of the conversion of cropland to bioenergy SRC from a GHG viewpoint.

  17. Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice

    Science.gov (United States)

    Sabbatini, S.; Arriga, N.; Bertolini, T.; Castaldi, S.; Chiti, T.; Consalvo, C.; Njakou Djomo, S.; Gioli, B.; Matteucci, G.; Papale, D.

    2016-01-01

    The production of bioenergy in Europe is one of the strategies conceived to reduce greenhouse gas (GHG) emissions. The suitability of the land use change from a cropland (REF site) to a short-rotation coppice plantation of hybrid poplar (SRC site) was investigated by comparing the GHG budgets of these two systems over 24 months in Viterbo, Italy. This period corresponded to a single rotation of the SRC site. The REF site was a crop rotation between grassland and winter wheat, i.e. the same management of the SRC site before the conversion to short-rotation coppice. Eddy covariance measurements were carried out to quantify the net ecosystem exchange of CO2 (FCO2), whereas chambers were used to measure N2O and CH4 emissions from soil. The measurements began 2 years after the conversion of arable land to SRC so that an older poplar plantation was used to estimate the soil organic carbon (SOC) loss due to SRC establishment and to estimate SOC recovery over time. Emissions from tractors and from production and transport of agricultural inputs (FMAN) were modelled. A GHG emission offset, due to the substitution of natural gas with SRC biomass, was credited to the GHG budget of the SRC site. Emissions generated by the use of biomass (FEXP) were also considered. Suitability was finally assessed by comparing the GHG budgets of the two sites. CO2 uptake was 3512 ± 224 g CO2 m-2 at the SRC site in 2 years, and 1838 ± 107 g CO2 m-2 at the REF site. FEXP was equal to 1858 ± 240 g CO2 m-2 at the REF site, thus basically compensating for FCO2, while it was 1118 ± 521 g CO2 m-2 at the SRC site. The SRC site could offset 379.7 ± 175.1 g CO2eq m-2 from fossil fuel displacement. Soil CH4 and N2O fluxes were negligible. FMAN made up 2 and 4 % in the GHG budgets of SRC and REF sites respectively, while the SOC loss was 455 ± 524 g CO2 m-2 in 2 years. Overall, the REF site was close to neutrality from a GHG perspective (156 ± 264 g CO2eq m-2), while the SRC site was a net sink of

  18. Photosynthesis, water relations, and growth of two hybrid Populus genotypes during a severe drought

    Energy Technology Data Exchange (ETDEWEB)

    Dickmann, D.I.; Liu, Zuijun; Nguyen, Phu V.; Pregitzer, K.S. (Michigan State Univ., East Lansing, MI (USA))

    1992-01-01

    During the 1988 growing season in East Lansing, Michigan, only 1.53 cm of rain fell from mid-May to mid-July, causing a severe drought. Then, a period of near record precipitation commenced; 30.4 cm of rain fell from July 19 to October 4. Growth, photosynthesis, and water relations of hybrid poplar cultivars Eugenei and Tristis, which had been established in the spring of 1987 in plastic pots buried in the ground, were measured on several sunny days during the 1988 growing season. Pots were irrigated at two different rates, and half the pots received supplemental nitrogen fertilizer. On a seasonal basis, photosynthesis and water-use efficiency in both genotypes peaked in early July and declined thereafter. Stomatal conductances were low during the drought but increased substantially when the rains commenced. Whereas nitrogen level had little effect on leaf physiology, the low water treatment produced significant reductions in photosynthesis and conductance. Diurnal measurements were made on June 17 and July 12. On both days photosynthesis and conductances were higher in Tristis than in Eugenei, especially for plants in the high water treatments and on July 12, the most extreme period of the drought. Drought produced both stomatal and mesophyll limitations to photosynthesis in both clones, though these responses were more pronounced in Eugenei. This clone also showed very low water-use efficiencies in the low water treatment on July 12. Even though the physiology of Eugenei was more impacted by drought than Tristis, it still produced two to three times more biomass over the 2-year period of the study than did Tristis. 41 refs., 10 figs., 5 tabs.

  19. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.

    Science.gov (United States)

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming

    2016-06-27

    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the "salicoid" duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants.

  20. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    Science.gov (United States)

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  1. Avaliação de clones de capim-elefante (Pennisetum purpureum Schum. e de um híbrido com o milheto (Pennisetum glaucum (L. R. Br. submetidos a estresse hídrico. 2. Valor nutritivo Evaluation of elephant grass clones (Pennisetum purpureum Schum. and an elephant grass x pearl millet (Pennisetum glaucum (L. R. Br. hybrid submitted to water stress. 2. Nutritive value

    Directory of Open Access Journals (Sweden)

    Glesser Porto Barreto

    2001-02-01

    Full Text Available O objetivo deste trabalho foi avaliar o valor nutritivo de três cultivares de capim-elefante (Cameroon, Roxo de Botucatu e Mott e de um híbrido de capim-elefante com o milheto (híbrido HV-241, cultivados sob diferentes condições de umidade (com e sem estresse hídrico. Utilizou-se o delineamento em blocos ao acaso com parcelas subdivididas e três repetições. Na parcela principal, estudou-se o efeito dos regimes de umidade e nas subparcelas, os diferentes clones. Foram avaliados os teores de matéria seca (% MS, proteína bruta (PB e fibra em detergente neutro (FDN e a digestibilidade in vitro da matéria seca (DIVMS. Os materiais submetidos a estresse hídrico apresentaram elevado grau de dessecação (mais de 58% de MS, sobretudo os cultivares de capim-elefante. As plantas submetidas a estresse hídrico apresentaram teores de PB (17,58% significativamente superiores aos das irrigadas (14,45%, sendo que, entre os cultivares, apenas o Cameroon (14,68% PB diferiu dos demais (16,46% PB. Quanto aos teores de FDN, não se verificou diferença entre os dois regimes de umidade, mas os cvs. Mott e Cameroon apresentaram teores superiores (61,79% aos do cv. Roxo de Botucatu e do híbrido HV-241 (56,60%. Não foi verificada diferença na DIVMS entre os regimes de umidade nem entre os diferentes clones, sendo o valor médio de 53,07%.This trial aimed to study the nutritive value of three Elephant grass clones (Cameroon, Roxo de Botucatu and Mott and an Elephant grass with pearl millet hybrid (HV-241 cultivated under two different humidity conditions (with and without water stress. A randomized block design with split plots and three replicates was used. In the main plot, the effect of the humidity regimes was studied and in the split plot, the different clones. The dry matter (DM; crude protein (CP and of neutral detergent fiber (NDF content; and in vitro dry matter disappearance (IVDMD were analyzed. The materials submitted to water stress showed a

  2. Mapping clones with a given ordering of interleaving

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao [McMaster Univ., Hamilton, Ontario (Canada); Karp, R.M. [Univ. of Washington, Seattle, WA (United States)

    1997-12-01

    We study the problem of constructing a most compact physical map for a collection of clones whose ordering or interleaving on a DNA molecule are given. Each clone is a contiguous section of the DNA and is represented by its finger-print obtained from biochemical experiments. In this paper, the fingerprint of a clone is either a multiset containing the sizes of the restriction fragments occurring in the clone in single complete digest mapping or a multiset containing the short oligonucleotide probes occurring in the clone in mapping by hybridization of probes. Our goal is to position the clones and restriction fragments (or probes) on the DNA consistently with the given ordering or interleaving so that the total number of restriction fragments (or probes, resp.) required on the DNA is minimized.

  3. Farm-gate budget of energy crops: an experiment to assess changes in GHGs balance due to a land use change from grassland to short rotation coppice of poplar

    Science.gov (United States)

    Sabbatini, S.; Arriga, N.; Baiocco, A.; Boschi, A.; Castaldi, S.; Consalvo, C.; Gioli, B.; Matteucci, G.; Tomassucci, M.; Zaldei, A.; Papale, D.

    2012-04-01

    Over the last decades the rising in the prices of oil pushed many farmers all over the Europe to exploit part of their fields to produce biomass for energy. Government funding promoted this trend in order to contrast global warming and Green-House Gases (GHG) emissions. Nevertheless energy crops entail, in addition to a land use change, a sum of treatments that leads again to emissions of GHG. In the context of the GHG-Europe FP7 project we set-up an experiment to study a case of land use change from grassland to Short Rotation Coppice (SRC) of poplar clones in central Italy. Through the Eddy Covariance (EC) technique, we measure carbon and energy fluxes over two different poplar SRC with different ages, and over a reference site (grassland) representing the original land use. Furthermore, we measured additional fluxes such as soil respiration, CH4 and N2O fluxes using chambers. To compute the Farm-Gate Budget (FGB) of both the grassland and the poplar plantations, we collect also additional data that contribute to GHG budget such as management (tillage, fertilizations, irrigations, harvesting) and disturbances. In this poster we present the experiment set-up and the first results resulting from the measurements.

  4. Quick and clean cloning.

    Science.gov (United States)

    Thieme, Frank; Marillonnet, Sylvestre

    2014-01-01

    Identification of unknown sequences that flank known sequences of interest requires PCR amplification of DNA fragments that contain the junction between the known and unknown flanking sequences. Since amplified products often contain a mixture of specific and nonspecific products, the quick and clean (QC) cloning procedure was developed to clone specific products only. QC cloning is a ligation-independent cloning procedure that relies on the exonuclease activity of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. A specific feature of QC cloning is the use of vectors that contain a sequence called catching sequence that allows cloning specific products only. QC cloning is performed by a one-pot incubation of insert and vector in the presence of T4 DNA polymerase at room temperature for 10 min followed by direct transformation of the incubation mix in chemo-competent Escherichia coli cells.

  5. Enhancement of Enzymatic Saccharification of Poplar by Green Liquor Pretreatment

    Directory of Open Access Journals (Sweden)

    Xin Meng

    2014-04-01

    Full Text Available Green liquor (Na2S + Na2CO3, GL pretreatment is an effective pathway for improving the enzymatic digestibility of lignocellulosic biomass for the production of bioethanol. In this work, GL was employed as a pretreatment to enhance the enzymatic saccharification of poplar. During pretreatment, the increase of H-factor and TTA charge resulted in enhanced delignification and increased degradation of polysaccharides. The sugar yield of enzymatic hydrolysis increased rapidly with increasing TTA charge in GL pretreatment, while the effect of different H-factors (from 400 to 800 on sugar yield was unnoticeable. The pretreated solid recovery was 75.5% at a lignin removal rate of 29.2% under optimized conditions of total titratable alkali (TTA charge 20%, sulfidity 25%, and H-factor 400. The sugar yield of glucan, xylan, and total sugar of GL-pretreated poplar in enzymatic hydrolysis reached up to 89.9%, 65.5%, and 82.8%, respectively, at a cellulase loading of 40 FPU/g-cellulose.

  6. Soils organic C sequestration under poplar and willow agroforestry systems

    Science.gov (United States)

    Gunina, Anna; Tariq, Azeem; Lamersdorf, Norbert

    2015-04-01

    Short rotation coppices (SRC) as monocultures or as agroforestry (AF) applications (e.g. alley cropping) are two techniques to implement forest into agricultural practices. Despite afforestation promotes soil carbon (C) accumulation, age and type of the tree stand can affect the C accumulation in different degrees. Here, we studied the impact of afforestation on C accumulation for: i) pure SCR of willow (Salix viminalis x Salix schwerinii) and poplar (Populus nigra x Populus maximowiczii) and ii) AF cropping system with willow. Forest systems have been established within the BEST agroforestry project in Germany. Adjacent agricultural field have been used as a control. Soil samples were collected in 2014, three years after plantation establishment, from three soil depths: 0-3, 3-20, and 20-30 cm. Total organic C, labile C (incubation of 20 g soil during 100 days with measuring of CO2) and aggregate structure were analysed. Additionally, density fractionation of the samples from 0-3 cm was applied to separate particulate organic matter (POM) and mineral fractions. Aggregates and density fractions were analyzed for C content. High input of plant litter as well as root exudates have led to increases of organic C in AF and SRC plots compare to cropland, mainly in the top 0-3 cm. The highest C content was found for willow SRC (18.2 g kg-1 soil), followed by willow-AF (15.6 g kg-1 soil), and poplar SRC (13.7 g kg-1 soil). Carbon content of cropland was 12.5 g kg-1 soil. Absence of ploughing caused increase portion of macroaggregates (>2000 μm) under SRC and AF in all soil layers as well as the highest percentage of C in that aggregate size class (70-80%). In contrast, C in cropland soil was mainly accumulated in small macroaggregates (250-2000 μm). Intensive mineralisation of fresh litter and old POM, taking place during first years of trees development, resulted to similar portions of free POM for willow AF, willow SRC and cropland (8%), and even lower ones for poplar

  7. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought

    Directory of Open Access Journals (Sweden)

    Riccardo Ludovisi

    2017-09-01

    Full Text Available Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level HTFP approach to investigate the response to drought of a full-sib F2 partially inbred population (termed here ‘POP6’, whose F1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought on a population of 4603 trees (503 genotypes hosted in two adjacent experimental plots (1.67 ha by conducting low-elevation (25 m flights with an aerial drone and capturing 7836 thermal infrared (TIR images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature (Tc was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype

  8. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mathews, Teresa J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ketelle, Richard [East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States)

    2016-06-01

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not address the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats’ surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain

  9. Clone history shapes Populus drought responses.

    Science.gov (United States)

    Raj, Sherosha; Bräutigam, Katharina; Hamanishi, Erin T; Wilkins, Olivia; Thomas, Barb R; Schroeder, William; Mansfield, Shawn D; Plant, Aine L; Campbell, Malcolm M

    2011-07-26

    Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids.

  10. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China

    Science.gov (United States)

    Jie Zhou; Zhiqiang Zhang; Ge Sun; Xianrui Fang; Tonggang Zha; Steve McNulty; Jiquan Chen; Ying Jin; Asko Noormets

    2013-01-01

    Poplar plantations are widely used for timber production and ecological restoration in northern China,a region that experiences frequent droughts and water scarcity. An open-path eddy-covariance (EC)system was used to continuously measure the carbon,water,and energy fluxes in a poplar plantation during the growing season (i.e., April–October)over the period 2006–2008...

  11. Statement on Human Cloning

    Science.gov (United States)

    ... as our understanding of this technology advances. Support Stem Cell Research (including Research Cloning) AAAS supports stem cell research, including the use of nuclear transplantation techniques (also ...

  12. Evaluation of soil nutrient status in poplar forest soil by soil nutrient systematic approach

    Institute of Scientific and Technical Information of China (English)

    YUChang-bing; CHENFang; LUOZhi-jian; CHENWei-wen

    2004-01-01

    A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach(SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in laboratory through collection soil samples of study site. Ten treatments of application different fertilizers were designed such as CK, optimum treatment (N, P,K, Zn), -N(P, K, Zn), -P(N, K, Zn), -K(N, P, Zn), +Mg(N, P, K, Zn, Mg), -Zn (N,P,K), +2P(N, 2P, K, Zn), +2K(N, P, 2K, Zn), and 2N+2P+2K(2N, 2P, 2K, Zn) for field experiment to test the effect on tree height, diameter (DBH) growth, and dry weight of poplar.The results showed that there was no significant difference in tree heights between treatments with different fertilizers, diameter growth of poplar trees in treatments of lack of N and Zn was significantly slower than that of trees in optimum treatment, and dry weight of poplar dropped significantly for treatment of CK as well as treatments without application N and Zn. It is concluded that N and Zn were main limiting factor for poplar growth. Results from laboratory analysis and field experiment were uniform perfectly, which proved that SNSA was reliable in evaluating soil nutrient status of poplar plantation.

  13. Feasibility of poplar foliages as bio-monitors for organochlorine pesticides in air

    Institute of Scientific and Technical Information of China (English)

    DAI TianYou; ZHU XiaoHua; WANG Wei; MENG Wei; YU YunJiang; LI FaSheng; YANG YongLiang; LIU Feng

    2009-01-01

    The feasibility of poplar (P. tomentosa) foliages as passive biomonitors for organochlorine pesticides In air was explored. The accumulation patterns of poplar foliages for HCHs, DDTs and HCB were similar, the amount of HCHs, DDTs and HCB increased with foliage growth in spring, and decreased thereafter. There was no obvious distinction in the accumulation styles between the adult leaf and the leaf-litter. This accumulation pattern is likely related to the growing process of the poplar foliage, and was ob-served for the first time in our work, giving an evidence for the "bud burst effect" in plants. The tech-nical HCH and DDT were used largely in history and not used in recent years, but there was a little usage of lindane and new input of o,p'DDT in recent years, and dicofol usage may be the main source of o,p'-DDT. Concentrations of HCHs, DDTs and HCB in poplar foliages were similar to those in pine needles at the corresponding period, and there is a positive strong correlation between OCP concen-tration data of two kinds of trees. It presents no difference in the accumulation style between two kinds of trees. The level of OCPs in the poplar foliage reflected the pollution status of OCPs in air. The result of this work showed that the poplar foliage can be used as the bio-monitor of OCPs in air.

  14. Cloning and developmental expression of the murine neurofilament gene family.

    NARCIS (Netherlands)

    J-P. Julien (Jean-Pierre); D.N. Meijer (Dies); D. Flavell (David); J. Hurst; F.G. Grosveld (Frank)

    1986-01-01

    textabstractDNA clones encoding the 3 mouse neurofilament (NF) genes have been isolated by cross-hybridization with a previously described NF-L cDNA probe from the rat. Screening of a lambda gt10 cDNA library prepared from mouse brain RNA led to the cloning of an NF-L cDNA of 2.0 kb that spans the e

  15. Dechlorination of PCBs in the rhizosphere of switchgrass and poplar.

    Science.gov (United States)

    Meggo, Richard E; Schnoor, Jerald L; Hu, Dingfei

    2013-07-01

    Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products.

  16. Wood Microstructure Effects on Chinese White Poplar Dyeing

    Institute of Scientific and Technical Information of China (English)

    DUANXinfang; BAOFucheng

    2004-01-01

    In order to study the influence of wood microstructure on wood dyeing, eleven parameters of wood microstructure and 5 parameters of wood dyeing effects for 34 pieces of wood boards from 5 trees of Chinese white poplar (Populus tornentosa) were determined and the multiple regression analysis between the factors of wood microstructures and the parameters of wood dyeing effects were made. The regression results show that each variable of wood dyeing effects has higher relationship with wood microstructures,and multiple correlation coefficients between each variable of wood dyeing effects and wood microstructures are 0.483 6-0.799 8. The main factors of wood microstructures influencing wood dyeing of Chinese whitep oplar are proportion of wood ray, proportion of vessel and proportion of wood fiber according to comparing the standardized regression coefficients of multiple regression equation.

  17. Quantification of carbon sources for isoprene emission in poplar leaves

    Science.gov (United States)

    Kreutzwieseer, J.; Graus, M.; Schnitzler, J. P.; Heizmann, U.; Rennenberg, H.; Hansel, A.

    2003-12-01

    Isoprene is the most abundant volatile organic compound emitted by plants and in particular by trees. Current interest in understanding its biosynthesis in chloroplasts is forced by the important role isoprene plays in atmospheric chemistry. Leaf isoprene formation is closely linked to photosynthesis by a dynamic use of recently fixed photosynthetic precursors in the chloroplast. Under steady state conditions in [13C]CO2 atmosphere approximately 75 % of isoprene became labeled within minutes. The source of unlabeled C is suggested to be of extra-chloroplastidic and/or from starch degradation. In order to test whether these alternative carbon sources - leaf internal C-pools and xylem-transported carbohydrates, contribute to leaf isoprene formation in poplar (Populus tremula x P. alba) on-line proton-transfer-reaction-mass spectrometry (PTR-MS) was used to follow 13C-labeling kinetics.

  18. Lead Tolerance and Accumulation in White Poplar Cultivated In Vitro

    Directory of Open Access Journals (Sweden)

    Branislav Kovačević

    2013-06-01

    Full Text Available Background and Purpose: This paper analyses the lead tolerance and accumulation in white poplar genotypes in vitro, in order to optimize genotype evaluation and other procedures in their implementation in phytoremediation projects and landscaping in areas endangered by lead accumulation. Material and Methods: The lead tolerance and accumulation of five white poplar genotypes after 35 days in vitro cultivation on media supplemented with lead was examined. The following Pb(NO32 concentrations were used: 0, 10-6, 10-5, 10-4 and 10-3 M. Tolerance analysis (described by tolerance indices was based on morphological parameters, biomass accumulation and the content of photosynthetic pigments, while lead accumulation was described by shoot lead accumulation and shoot lead content. Results and Conclusions: The chosen lead concentrations appeared not to be lethal. Moreover, the obtained results showed that the tested lead concentrations had a positive effect on: number of formed roots, shoot moisture content and shoot height. The best differentiation among the examined genotypes was gained by the tolerance index based on the shoot height on 10-4 M Pb(NO32. The shoot lead accumulation and shoot lead content significantly increased on 10-4 and 10-3 M Pb(NO32 media. Thus, the concentration of 10-4 M Pb(NO32 is recommended for further research. Two examined genotypes of horticultural value (LCM and LBM achieved a significantly higher lead shoot content compared to the wide spread genotype “Villafranca” (almost 200% and 125% higher, respectively.

  19. Cloning-free CRISPR

    NARCIS (Netherlands)

    Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I

    2015-01-01

    We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each targ

  20. Cloning-free CRISPR

    NARCIS (Netherlands)

    Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I

    2015-01-01

    We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each

  1. Cloning-free CRISPR

    NARCIS (Netherlands)

    Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels|info:eu-repo/dai/nl/194303403; Sherwood, Richard I

    2015-01-01

    We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each targ

  2. Evaluation of Water Use Efficiency of Short Rotation Poplar Coppice at Bohemian-Moravian Highlands

    Science.gov (United States)

    Hlaváčová, Marcela; Fischer, Milan; Mani Tripathi, Abhishek; Orság, Matěj; Trnka, Miroslav

    2015-04-01

    The water availability of the locality constitutes one of the main constraint for short rotation coppices grown on arable land. As a convenient characteristic assessing how the water use is coupled with the biomass yields, so called water use efficiency (WUE) is proposed. One method of water use efficiency determination is presented within this study. The study was carried out at short rotation poplar coppice (poplar clone J-105) at the Test Station Domanínek, Ltd. at Bohemian-Moravian Highlands during the growing season 2013. Diameters at breast height (DBH) were measured for 16 sample trees where sap flow measuring systems (Granier's Thermal Dissipation Probe, TDP) were installed. TDP outputs are expressed as temperature differences (ΔT) between the heated and non-heated probes. Estimation of sap flux density (Fd) by the Granier method relies on the measurement of temperature difference (ΔT). Determination of maximum temperature difference (ΔTmax) is fundamental for sap flux density (Fd) calculation. Although ΔTmax can be theoretically defined as ΔT at Fd = 0, many factors may prevent the occurrence of the zero flow state, such as night-time water movement for new growth (vegetative or reproductive) or water loss from the canopy due to high vapour pressure deficit (VPD). Therefore, the VPD condition was established for determination of ΔTmax. VPD condition was established as follows: VPD reaching values 0.2 at least 6 hours during night (from 21 p. m. to 3 a. m. and when the condition was fullfilled, the value at 3 a. m. was taken) because it is a supposed time after that the tree has no transpiration. The programmable part of Mini 32 software (www.emsbrno.cz) was used for application of the script establishing ΔTmax values under this VPD condition. Nevertheless, another script was applied on ΔT data set to determination of ΔTmax values for every night at 3 a. m. (as this is when ΔT should be at its daily maximum) without VPD condition restriction for

  3. Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements.

    Science.gov (United States)

    Feng, Feng; Ding, Fei; Tyree, Melvin T

    2015-05-01

    Both drought and freezing-thawing of stems induce a loss of hydraulic conductivity (percentage loss of conductivity [PLC]) in woody plants. Drought-induced PLC is often accompanied by physical damage to pit membranes, causing a shift in vulnerability curves (cavitation fatigue). Hence, if cavitated stems are flushed to remove embolisms, the next vulnerability curve is different (shifted to lower tensions). The 84K poplar (Populus alba × Populus glandulosa) clone has small vessels that should be immune from frost-induced PLC, but results demonstrated that freezing-thawing in combination with tension synergistically increased PLC. Frost fatigue has already been defined, which is similar to cavitation fatigue but induced by freezing. Frost fatigue caused a transition from a single to a dual Weibull curve, but drought-fatigued stems had single Weibull curves shifted to lower tensions. Studying the combined impact of tension plus freezing on fatigue provided evidence that the mechanism of frost fatigue may be the extra water tension induced by freezing or thawing while spinning stems in a centrifuge rather than direct ice damage. A hypothesis is advanced that tension is enhanced as ice crystals grow or melt during the freeze or thaw event, respectively, causing a nearly identical fatigue event to that induced by drought. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Investigations Concerning Cavitation and Frost Fatigue in Clonal 84K Poplar Using High-Resolution Cavitron Measurements1[OPEN

    Science.gov (United States)

    Feng, Feng; Ding, Fei; Tyree, Melvin T.

    2015-01-01

    Both drought and freezing-thawing of stems induce a loss of hydraulic conductivity (percentage loss of conductivity [PLC]) in woody plants. Drought-induced PLC is often accompanied by physical damage to pit membranes, causing a shift in vulnerability curves (cavitation fatigue). Hence, if cavitated stems are flushed to remove embolisms, the next vulnerability curve is different (shifted to lower tensions). The 84K poplar (Populus alba × Populus glandulosa) clone has small vessels that should be immune from frost-induced PLC, but results demonstrated that freezing-thawing in combination with tension synergistically increased PLC. Frost fatigue has already been defined, which is similar to cavitation fatigue but induced by freezing. Frost fatigue caused a transition from a single to a dual Weibull curve, but drought-fatigued stems had single Weibull curves shifted to lower tensions. Studying the combined impact of tension plus freezing on fatigue provided evidence that the mechanism of frost fatigue may be the extra water tension induced by freezing or thawing while spinning stems in a centrifuge rather than direct ice damage. A hypothesis is advanced that tension is enhanced as ice crystals grow or melt during the freeze or thaw event, respectively, causing a nearly identical fatigue event to that induced by drought. PMID:25786827

  5. Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU).

    Science.gov (United States)

    Carriero, G; Emiliani, G; Giovannelli, A; Hoshika, Y; Manning, W J; Traversi, M L; Paoletti, E

    2015-11-01

    This is the longest continuous experiment where ethylenediurea (EDU) was used to protect plants from ozone (O3). Effects of long-term ambient O3 exposure (23 ppm h AOT40) on biomass of an O3 sensitive poplar clone (Oxford) were examined after six years from in-ground planting. Trees were irrigated with either water or 450 ppm EDU. Above (-51%) and below-ground biomass (-47%) was reduced by O3 although the effect was significant only for stem and coarse roots. Ambient O3 decreased diameter of the lower stem, and increased moisture content along the stem of not-protected plants (+16%). No other change in the physical wood structure was observed. A comparison with a previous assessment in the same experiment suggested that O3 effects on biomass partitioning to above-ground organs depend on the tree ontogenetic stage. The root/shoot ratios did not change, suggesting that previous short-term observations of reduced allocation to tree roots may be overestimated.

  6. Nutrient Dynamics of Fine Roots in the Mixed Plantation of Poplar and Black Locust

    Institute of Scientific and Technical Information of China (English)

    Zhai Mingpu; Jiang Sannai; Jia Liming

    2006-01-01

    The mixed plantation of poplar (Populus spp.)and black locust (Robinia pseudoacacia) is one of the typical mixed stands with nitrogen-fixing and non-nitrogen-fixing species.Interaction between the two species in the mixed stand is harmonious and productivity is high,making this kind of mixed plantation a very successful pattern on poor sandy sites in north China.In this study,the fine root decomposition of the two species was investigated in the mixed plantation of 27-year-old Canadian poplar (P.canadansis)and 22-year-old black locust on sandy sites along the Chaobai River in Beijing.Mechanism of harmonious interaction between the two species was observed in the view of the nutrient cycle of fine roots.Results showed that:(1) the fine root decomposition of Canadian poplar and black locust trees was different.Concentrations of N,Ca and Mg gradually increased and those of P and K gradually decreased in the fine roots of poplar during the period of decomposition.Concentrations of N,P and K gradually decreased in the fine roots of black locust during decomposition.The speed of nutrient decomposition in mixed fine roots of the two species fell between the speed of the two pure samples.(2) During decomposition,the annual return amount of N,K and Mg in fine roots of black locust was highest,followed by the mixed fine roots of the two species,and then the fine roots of poplar.(3) The increased return amount of N in mixed fine roots could improve the N nutrient condition of poplar trees.The return amount of P in poplar Fine roots was greater than that of black locust,which could improve the P nutrient of black locust trees.The interaction of mutual supplements of N and P nutrient cycle of fine roots between these two species formed.

  7. Molecular cloning and chromosome assignment of murine N-ras.

    OpenAIRE

    Ryan, J.; Hart, C P; Ruddle, F H

    1984-01-01

    The murine N-ras gene was cloned by screening an EMBL-3 recombinant phage library with a human N-ras specific probe. Hybridization of two separate unique sequence N-ras probes, isolated from the 5' and 3' flanking sequences of the murine gene, to a mouse-Chinese hamster hybrid mapping panel assigns the N-ras locus to mouse chromosome three.

  8. COMPARISON OF APMP PULP CHARACTERISTICS OF JUVENILE TRIPLOID CHINESE WHITE POPLAR IN SALINE SOIL WITH THAT OF NORMAL 5-YEAR POPLAR

    Institute of Scientific and Technical Information of China (English)

    Hongchun Zou; Guomin Tan; Qun Li; Zimin Zhang

    2004-01-01

    In the paper, differences between the juvenile Triploid Chinese White Poplar TCWP in saline soil and 5-year TCWP in normal soil are compared in terms of their APMP-pulping properties. The results show that the saline planting environment does not show obvious effects on pulping properties of juvenile TCWP.

  9. Melhoramento da cana-de-açúcar: IX: evaluation of clones obtained in 1980 and 1981 hybridizations, selected in Ribeirão Preto region, state of São Paulo, Brazil Sugarcane breeding: IX

    Directory of Open Access Journals (Sweden)

    Marcos Guimarães de Andrade Landell

    1995-01-01

    Full Text Available Testaram-se doze clones de cana-de-açúcar, obtidos de hibridações realizadas em Camamu (BA, em 1980 e 1981, em três ensaios na região de Ribeirão Preto (SP. Além do delineamento em blocos ao acaso, com seis repetições, efetuou-se a análise estatística com a média das três colheitas (1.°, 2.° e 3.° cortes, tomando as variedades SP70-1143, NA56-79 e IAC64-257 como testemunhas-padrão. Entre os caracteres agroindustriais avaliados estão: a produtividade de cana e açúcar, pol % cana, fibra %, intensidade de florescimento, índice de infestação de broca-do-colmo (Diatraea saccharalis e a reação à ferrugem (Puccinia melanocephala. O melhor clone foi o IAC80-2094, indicado para início de safra, com boa produção e bom teor de fibra, mas de florescimento intenso e suscetibilidade à ferrugem. O IAC81-2004 também apresentou bons resultados, caracterizando-se como precoce, com bom teor de fibra e boa resistência à broca-do-colmo. Em condições naturais de campo, porém, sua desvantagem é a grande incidência de "chicotes" de carvão. Apesar de ambos os clones apresentarem características agroindustriais vantajosas, desaconselha-se que sejam incluídos no estudo de manejo parietal para outras regiões paulistas, em função dos problemas fitossanitários citados.A number of sugarcane clones obtained in crosses made in 1980 and 1981, was tested in three locations with Oxisol soils at Ribeirão Preto region. The commercial varieties SP70-1143, NA56-79 and IAC64-257 were used as controls in trials and evaluated for agricultural and industrial traits on the average of three harvests. The best clone in the experiments was IAC80-2094, which has been indicated for early harvest period with good yield and fiber content, but with heavy tasseling and susceptibility to rust. Other early maturing clone was IAC81-2004, which showes good fiber content and stem borer tolerance, however it does show, in natural conditions in the field

  10. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning (EF

  11. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning

  12. Unified Approach to Universal Cloning and Phase-Covariant Cloning

    OpenAIRE

    Hu, Jia-Zhong; Yu, Zong-Wen; Wang, Xiang-Bin

    2008-01-01

    We analyze the problem of approximate quantum cloning when the quantum state is between two latitudes on the Bloch's sphere. We present an analytical formula for the optimized 1-to-2 cloning. The formula unifies the universal quantum cloning (UQCM) and the phase covariant quantum cloning.

  13. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning (EF

  14. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    Science.gov (United States)

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  15. Fertilization effects on biomass production, nutrient leaching and budgets in four stand development stages of short rotation forest poplar

    DEFF Research Database (Denmark)

    Georgiadis, Petros; Nielsen, Anders Tærø; Stupak, Inge

    2017-01-01

    Abstract Dedicated energy poplar plantations have a high biomass production potential in temperate regions, which may be further increased by improved management practices. The aim of this study was to investigate the effects of fertilization on short rotation forest poplar established on former...

  16. Main: Clone Detail [KOME

    Lifescience Database Archive (English)

    Full Text Available Clone Detail Mapping Pseudomolecule data detail Detail information Mapping to the TIGR japonica Pseudomolecu...les kome_mapping_pseudomolecule_data_detail.zip kome_mapping_pseudomolecule_data_detail ...

  17. BIOETHICS AND HUMAN CLONING

    Directory of Open Access Journals (Sweden)

    Željko Kaluđerović

    2011-12-01

    Full Text Available In this paper the authors analyze the process of negotiating and beginning of the United Nations Declaration on Human Cloning as well as the paragraphs of the very Declaration. The negotiation was originally conceived as a clear bioethical debate that should have led to a general agreement to ban human cloning. However, more often it had been discussed about human rights, cultural, civil and religious differences between people and about priorities in case of eventual conflicts between different value systems. In the end, a non-binding Declaration on Human Cloning had been adopted, full of numerous compromises and ambiguous formulations, that relativized the original intention of proposer states. According to authors, it would have been better if bioethical discussion and eventual regulations on cloning mentioned in the following text had been left over to certain professional bodies, and only after the public had been fully informed about it should relevant supranational organizations have taken that into consideration.

  18. Do Managers Clone Themselves?

    Science.gov (United States)

    Baron, Alma S.

    1981-01-01

    A recent questionnaire survey provides statistics on male managers' views of female managers. The author recommends that male managers break out of their cloning behavior and that the goal ought to be a plurality in management. (Author/WD)

  19. [Canopy conductance characteristics of poplar in agroforestry system in west Liaoning Province of Northeast China].

    Science.gov (United States)

    Li, Zheng; Niu, Li-Hua; Yuan, Feng-Hui; Guan, De-Xin; Wang, An-Zhi; Jin, Chang-Jie; Wu, Jia-Bing

    2012-11-01

    By using Granier' s thermal dissipation probe, the sap flow of poplar in a poplar-maize agroforestry system in west Liaoning was continuously measured, and as well, the environmental factors such as air temperature, air humidity, net radiation, wind speed, soil temperature, and soil moisture content were synchronically measured. Based on the sap flow data, the canopy conductance of poplar was calculated with simplified Penman-Monteith equation. In the study area, the diurnal variation of poplar' s canopy conductance showed a "single peak" curve, whereas the seasonal variation showed a decreasing trend. There was a negative logarithm relationship between the canopy conductance and vapor pressure deficit, with the sensitivity of canopy conductance to vapor pressure deficit change decreased gradually from May to September. The canopy conductance had a positive relationship with solar radiation. In different months, the correlation degree of canopy conductance with environmental factors differed. The vapor pressure deficit in the whole growth period of poplar was the most significant environmental factor correlated with the canopy conductance.

  20. Obtaining the transgenic poplars with low lignin content through down-regulation of 4CL

    Institute of Scientific and Technical Information of China (English)

    JIA Caihong; ZHAO Huayan; WANG Hongzhi; XING Zhifeng; DU Kejiu; SONG Yanru; WEI Jianhua

    2004-01-01

    The antisense 4CL (4-coumarate: CoA ligase) gene was transformed into triploid Chinese white poplar (Populus tomentosa) mediated by Agrobacterium tumefaciens. PCR and Southern blot analysis indicated that antisense 4CL gene had been integrated into the genome of the transgenic Chinese white poplars. The antisense gene had also been expressed, which was indicated by RT-PCR and Western analysis. Klason lignin content assay showed that repression of 4CL expression could result in remarkable reduction of lignin content in transgenic poplars, with most reduction of 41.73% compared with that of wild type in this paper. But there is no significant difference in holocellulose content between trans- genic and wild poplars. We considered that 4CL might not be the metabolism control point between lignin and carbohy- drate biosynthesis. The stems of transgenic poplars displayed red-brown color with different levels after the bark was peeled, while those of untransformed plants were white. No visible differences in growth and development were observed between transgenic and wild plants. Wiesner reaction analysis of the transgenic plant stems with reduced lignin content exhibited red color, while that of untransformed plant was typically purple-red.

  1. In Silico Identification and Characterization of N-Terminal Acetyltransferase Genes of Poplar (Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Hang-Yong Zhu

    2014-01-01

    Full Text Available N-terminal acetyltransferase (Nats complex is responsible for protein N-terminal acetylation (Nα-acetylation, which is one of the most common covalent modifications of eukaryotic proteins. Although genome-wide investigation and characterization of Nat catalytic subunits (CS and auxiliary subunits (AS have been conducted in yeast and humans they remain unexplored in plants. Here we report on the identification of eleven genes encoding eleven putative Nat CS polypeptides, and five genes encoding five putative Nat AS polypeptides in Populus. We document that the expansion of Nat CS genes occurs as duplicated blocks distributed across 10 of the 19 poplar chromosomes, likely only as a result of segmental duplication events. Based on phylogenetic analysis, poplar Nat CS were assigned to six subgroups, which corresponded well to the Nat CS types (CS of Nat A–F, being consistent with previous reports in humans and yeast. In silico analysis of microarray data showed that in the process of normal development of the poplar, their Nat CS and AS genes are commonly expressed at one relatively low level but share distinct tissue-specific expression patterns. This exhaustive survey of Nat genes in poplar provides important information to assist future studies on their functional role in poplar.

  2. Two Highly Similar Poplar Paleo-subgenomes Suggest an Autotetraploid Ancestor of Salicaceae Plants.

    Science.gov (United States)

    Liu, Yinzhe; Wang, Jinpeng; Ge, Weina; Wang, Zhenyi; Li, Yuxian; Yang, Nanshan; Sun, Sangrong; Zhang, Liwei; Wang, Xiyin

    2017-01-01

    As a model plant to study perennial trees in the Salicaceae family, the poplar (Populus trichocarpa) genome was sequenced, revealing recurrent paleo-polyploidizations during its evolution. A comparative and hierarchical alignment of its genome to a well-selected reference genome would help us better understand poplar's genome structure and gene family evolution. Here, by adopting the relatively simpler grape (Vitis vinifera) genome as reference, and by inferring both intra- and inter-genomic gene collinearity, we produced a united alignment of these two genomes and hierarchically distinguished the layers of paralogous and orthologous genes, as related to recursive polyploidizations and speciation. We uncovered homologous blocks in the grape and poplar genomes and also between them. Moreover, we characterized the genes missing and found that poplar had two considerably similar subgenomes (≤0.05 difference in gene deletion) produced by the Salicaceae-common tetraploidization, suggesting its autotetraploid nature. Taken together, this work provides a timely and valuable dataset of orthologous and paralogous genes for further study of the genome structure and functional evolution of poplar and other Salicaceae plants.

  3. Transcriptome Analysis of Poplar during Leaf Spot Infection with Sphaerulina spp.

    Science.gov (United States)

    Foster, Adam J; Pelletier, Gervais; Tanguay, Philippe; Séguin, Armand

    2015-01-01

    Diseases of poplar caused by the native fungal pathogen Sphaerulina musiva and related species are of growing concern, particularly with the increasing interest in intensive poplar plantations to meet growing energy demands. Sphaerulina musiva is able to cause infection on leaves, resulting in defoliation and canker formation on stems. To gain a greater understanding of the different responses of poplar species to infection caused by the naturally co-evolved Sphaerulina species, RNA-seq was conducted on leaves of Populus deltoides, P. balsamifera and P. tremuloides infected with S. musiva, S. populicola and a new undescribed species, Ston1, respectively. The experiment was designed to contain the pathogen in a laboratory environment, while replicating disease development in commercial plantations. Following inoculation, trees were monitored for disease symptoms, pathogen growth and host responses. Genes involved in phenylpropanoid, terpenoid and flavonoid biosynthesis were generally upregulated in P. balsamifera and P. tremuloides, while cell wall modification appears to play an important role in the defense of P. deltoides. Poplar defensive genes were expressed early in P. balsamifera and P. tremuloides, but their expression was delayed in P. deltoides, which correlated with the rate of disease symptoms development. Also, severe infection in P. balsamifera led to leaf abscission. This data gives an insight into the large differences in timing and expression of genes between poplar species being attacked by their associated Sphaerulina pathogen.

  4. Transcriptome Analysis of Poplar during Leaf Spot Infection with Sphaerulina spp.

    Directory of Open Access Journals (Sweden)

    Adam J Foster

    Full Text Available Diseases of poplar caused by the native fungal pathogen Sphaerulina musiva and related species are of growing concern, particularly with the increasing interest in intensive poplar plantations to meet growing energy demands. Sphaerulina musiva is able to cause infection on leaves, resulting in defoliation and canker formation on stems. To gain a greater understanding of the different responses of poplar species to infection caused by the naturally co-evolved Sphaerulina species, RNA-seq was conducted on leaves of Populus deltoides, P. balsamifera and P. tremuloides infected with S. musiva, S. populicola and a new undescribed species, Ston1, respectively. The experiment was designed to contain the pathogen in a laboratory environment, while replicating disease development in commercial plantations. Following inoculation, trees were monitored for disease symptoms, pathogen growth and host responses. Genes involved in phenylpropanoid, terpenoid and flavonoid biosynthesis were generally upregulated in P. balsamifera and P. tremuloides, while cell wall modification appears to play an important role in the defense of P. deltoides. Poplar defensive genes were expressed early in P. balsamifera and P. tremuloides, but their expression was delayed in P. deltoides, which correlated with the rate of disease symptoms development. Also, severe infection in P. balsamifera led to leaf abscission. This data gives an insight into the large differences in timing and expression of genes between poplar species being attacked by their associated Sphaerulina pathogen.

  5. Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter.

    Science.gov (United States)

    Guidi, Werther; Piccioni, Emiliano; Bonari, Enrico

    2008-07-01

    Ten-day evapotranspiration (ETc) and crop coefficient (k(c)) of willow and poplar SRC used as vegetation filter and grown under fertilised (F) and unfertilised (NF) conditions, were determined for two successive growing seasons using volumetric lysimeters. During the first growing season, total ETc observed was, respectively, 620 (NF)-1190 (F)mm in willow and 590 (NF)-725 (F) in poplar. During the second growing season, ETc showed a general increase, mainly in fertilised lysimeters where it ranged between 890 (NF)-1790 mm (F) in willow and 710 (NF)-1100 mm (NF) in poplar. kc reached in both years its maximum between the end of August and the beginning of September. In 2004 maximum kc ranged from 1.25-2.84 in willow and 1.06-1.90 in poplar, whereas in 2005 it ranged from 1.97-5.30 in willow and 1.71-4.28 in poplar. ETc seemed to be strongly correlated to plant development and mainly dependent on its nutritional status rather than on the differences between the species.

  6. Relationship between plant hormone level excreted by ectomycorrhizal fungi and growth of poplar NL-895

    Institute of Scientific and Technical Information of China (English)

    Lei MA; Xiaoqin WU; Ling ZHENG

    2009-01-01

    To explore the effects of plant hormones levels excreted by ectomycorrhizal (ECM) fungi on the growth of poplars, Populus x euramericana cv. NL-895 seedlings were inoculated with nine species of ECM fungi. We investigated the status of ectomycorrhizal formation and the effects of these fungi on poplar growth, and using the HPLC method, we measured the contents of four kinds of plant hormones, indole acetic acid (IAA), zeatin (Z), gibberellin (GA) and abscisic acid (ABA) in both the culture filtrate and the mycelium of these fungi. The results showed that the effects of nine ECM fungi on the growth of poplar NL-895 varied. The inoculated seedlings, whether or not obvious mycorrhizas were developed, grew better than those non-inoculated ones. All nine ectomycorrhizal fungi excreted the four plant hormones, but at different levels. The hormone contents in culture filtrate were higher than that in mycelium, which showed a definite relationship with poplar growth. Significantly, correlation analysis suggested the height and stem diameter of the poplar were positively correlated with zeatin contents in the mycelium, and were negatively correlated with the levels of ABA or IAA in the mycelium.

  7. Chromosomal assignment of chicken clone contigs by extending the consensus linkage map

    NARCIS (Netherlands)

    Aerts, J.; Veenendaal, T.; Poel, van der J.J.; Crooijmans, R.P.M.A.; Groenen, M.A.M.

    2005-01-01

    The bacterial artificial clone-based physical map for chicken plays an important role in the integration of the consensus linkage map and the whole-genome shotgun sequence. It also provides a valuable resource for clone selection within applications such as fluorescent in situ hybridization and posi

  8. Construction and characterization of human chromosome 2-specific cosmid, fosmid, and PAC clone libraries

    Energy Technology Data Exchange (ETDEWEB)

    Gingrich, J.C.; Boehrer, D.M.; Garnes, J.A. [Lawrence Livermore National Lab., CA (United States)] [and others

    1996-02-15

    This article discusses the construction and characterization of three human chromosome 2-specific clone libraries. A chromosome 2-specific PAC library was also constructed from a hybrid cell line. The chromosome 2 coverage of each of the three libraries was further determined by PCR screening clone pools with 82 chromosome 2-specific STSs. 47 refs., 3 figs., 1 tab.

  9. Clonal diversity and clone formation in the parthenogenetic Caucasian rock Lizard Darevskia dahli [corrected].

    Science.gov (United States)

    Vergun, Andrey A; Martirosyan, Irena A; Semyenova, Seraphima K; Omelchenko, Andrey V; Petrosyan, Varos G; Lazebny, Oleg E; Tokarskaya, Olga N; Korchagin, Vitaly I; Ryskov, Alexey P

    2014-01-01

    The all-female Caucasian rock lizard species Darevskia dahli and other parthenogenetic species of this genus reproduce normally via true parthenogenesis. Previously, the genetic diversity of this species was analyzed using allozymes, mitochondrial DNA, and DNA fingerprint markers. In the present study, variation at three microsatellite loci was studied in 111 specimens of D. dahli from five populations from Armenia, and new information regarding clonal diversity and clone formation in D. dahli was obtained that suggests a multiple hybridization origin. All individuals but one were heterozygous at the loci studied. Based on specific allele combinations, 11 genotypes were identified among the individuals studied. Individuals with the same genotypes formed distinct clonal lineages: one major clone was represented by 72 individuals, an intermediate clone was represented by 21 individuals, and nine other clones were rare and represented by one or several individuals. A new approach based on the detection and comparison of genotype-specific markers formed by combinations of parental-specific markers was developed and used to identify at least three hybridization founder events that resulted in the initial formation of one major and two rare clones. All other clones, including the intermediate and seven rare clones, probably arose through postformation microsatellite mutations of the major clone. This approach can be used to identify hybridization founder events and to study clone formation in other unisexual taxa.

  10. BIOLOGICAL MONITORING PROGRAM FOR EAST FORK POPLAR CREEK

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; BEATY, T.W.; BRANDT, C.C.; CHRISTENSEN, S.W.; CICERONE, D.S.

    1998-09-09

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  11. Genomics Mechanisms of Carbon Allocation and Partitioning in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias; Peter, Gary; Martin, Timothy

    2009-07-30

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration. It is also unclear how environmental cues such as nitrogen availability impact the genes that regulate growth, and biomass allocation and wood composition in trees. To address these questions we phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above and below ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Fifty-seven quantitative trait loci (QTL) were identified for twenty traits analyzed. The majority of QTL are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and QTL co-localization identified the genomic position of potential pleiotropic regulators. Gene expression analysis of all poplar genes was also characterized in differentiating xylem, whole-roots and developing leaves of 192 of the segregating population. By integrating the QTL and gene expression information we identified genes that regulate carbon partitioning and several biomass growth related properties. The work developed in this project resulted in the publication of three book chapters, four scientific articles (three others currently in preparation), 17 presentations in international conferences and two provisional patent applications.

  12. Soil Investigation of Lower East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Johnbull O [ORNL; Mayes, Melanie [ORNL; Earles, Jennifer E [ORNL; Mehlhorn, Tonia L [ORNL; Lowe, Kenneth Alan [ORNL; Peterson, Mark J [ORNL; Pierce, Eric M [ORNL

    2017-03-01

    Mercury is regarded by the US Department of Energy (DOE) Oak Ridge Office of Environmental Management as a priority contaminant on the Oak Ridge Reservation because of the environmental risks associated with substantial losses from buildings, soils, and surface waters at the Y-12 National Security Complex (Y-12). As a result of historical releases of mercury from Y-12 primarily in the 1950s and early 1960s, the lower East Fork Poplar Creek (LEFPC) stream channel and bank soil margins are contaminated with mercury (Brooks and Southworth 2011; Tennessee Valley Authority 1985b, a). A Mercury Remediation Technology Development project is underway to evaluate the nature of downstream mercury contamination and to develop targeted site-specific remedial technologies that can mitigate mercury release and biological uptake. It is known that mercury concentration varies longitudinally and with depth in LEFPC bank soils; however, soil types and soil physical properties are not well known, especially relative to the zones of mercury contamination. Moreover, there are no soil maps for the downstream reaches of LEFPC in Roane County (i.e. from the Chestnut Hill Road downstream) and this work represents the first ever soil mapping along this section of LEFPC.

  13. BIOLOGICAL MONITORING PROGRAM FOR EAST FORK POPLAR CREEK

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; ASHWOOD, T.L.; BEATY, T.W.; BRANDT, C.C.

    1997-10-24

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y- 12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  14. Surface Characterization of Plasma-modified Poplar Veneer: Dynamic Wettability

    Directory of Open Access Journals (Sweden)

    Lijuan Tang

    2014-11-01

    Full Text Available The dynamic wettability of plasma-modified poplar veneer was investigated with sessile adhesive droplets using a wetting model. Dynamic contact angle, instantaneous and equilibrium contact angles, and their rates of change (K-value were used to illustrate the dynamic wetting process. The experiment consisted of selecting treatment parameters (type of gas, power that would lead to the increased wettability of wood. Three resin systems, urea-formaldehyde (UF, phenol-formaldehyde (PF, and diphenylmethylene diisocyanate (MDI, were evaluated. Based on the wetting model, the K-value was used to interpret the kinetics of wetting. The higher the K-value, the faster the contact angle reaches equilibrium, and the faster the liquid penetrates and spreads. Therefore, the model was helpful for characterizing the dynamic wettability of wood surfaces modified with different plasma treatments. The K-values of plasma-treated veneer surfaces at different plasma power levels and with different gases (such as O2, N2, Ar, air, and NH3 were 458% to 653% and 332% to 528% higher than those of untreated veneer surfaces, respectively. In addition, the K-values of the three resins on the oxygen plasma-treated veneer surfaces were 38% to 1204% higher than those on the untreated veneer surfaces. Therefore, this method was helpful for characterizing the dynamic wettability of veneer surfaces modified with plasma treatment.

  15. Effect of autohydrolysis on the wettability, absorbility and further alkali impregnation of poplar wood chips.

    Science.gov (United States)

    Xu, Ningpan; Liu, Wei; Hou, Qingxi; Wang, Peiyun; Yao, Zhirong

    2016-09-01

    Autohydrolysis with different severity factors was performed on poplar wood chips prior to pulping, and the wettability, absorbility and the following impregnation of NaOH solution for the poplar wood chips were then investigated. The results showed that after autohydrolysis pretreatment the porosity, shrinkage and fiber saturation point (FSP) of the poplar wood chips were increased, while the surface contact angle decreased as the severity factor was increased. The autohydrolyzed chips absorbed more NaOH in impregnation that resulted in a low NaOH concentration in the bulk impregnation liquor (i.e., the impregnation liquor outside wood chips), while the concentration in the entrapped liquor (i.e., the impregnation liquor inside wood chips) was increased. Autohydrolysis substantially improved the effectiveness of alkali impregnation.

  16. Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings.

    Science.gov (United States)

    Huang, Ping; Wan, Xianchong; Lieffers, Victor J

    2016-05-01

    This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response.

  17. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    Energy Technology Data Exchange (ETDEWEB)

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-02-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, /sup 32/P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.

  18. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.

    Science.gov (United States)

    Kumar, Rajeev; Mago, Gaurav; Balan, Venkatesh; Wyman, Charles E

    2009-09-01

    In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO(2) technologies. In addition to measuring the chemical compositions including acetyl content, physical attributes determined were biomass crystallinity, cellulose degree of polymerization, cellulase adsorption capacity of pretreated solids and enzymatically extracted lignin, copper number, FT-IR responses, scanning electron microscopy (SEM) visualizations, and surface atomic composition by electron spectroscopy of chemical analysis (ESCA). Lime pretreatment removed the most acetyl groups from both corn stover and poplar, while AFEX removed the least. Low pH pretreatments depolymerized cellulose and enhanced biomass crystallinity much more than higher pH approaches. Lime pretreated corn stover solids and flowthrough pretreated poplar solids had the highest cellulase adsorption capacity, while dilute acid pretreated corn stover solids and controlled pH pretreated poplar solids had the least. Furthermore, enzymatically extracted AFEX lignin preparations for both corn stover and poplar had the lowest cellulase adsorption capacity. ESCA results showed that SO(2) pretreated solids had the highest surface O/C ratio for poplar, but for corn stover, the highest value was observed for dilute acid pretreatment with a Parr reactor. Although dependent on pretreatment and substrate, FT-IR data showed that along with changes in cross linking and chemical changes, pretreatments may also decrystallize cellulose and change the ratio of crystalline cellulose polymorphs (Ialpha/Ibeta).

  19. Uptake of ferrocyanide in willow and poplar trees in a long term greenhouse experiment.

    Science.gov (United States)

    Dimitrova, Tsvetelina; Repmann, Frank; Raab, Thomas; Freese, Dirk

    2015-04-01

    Phytoremediation of sites contaminated with iron cyanides can be performed using poplar and willow trees. Poplar and willow trees were grown in potting substrate spiked with ferrocyanide concentrations of up to 2,000 mg kg(-1) for 4 and 8 weeks respectively. Soil solution and leaf tissue of different age were sampled for total cyanide analysis every week. Chlorophyll content in the leaves was determined to quantify cyanide toxicity. Results showed that cyanide in the soil solution of spiked soils differed between treatments and on weekly basis and ranged from 0.5 to 1,200 mg l(-1). The maximum cyanide content in willow and poplar leaves was 518 mg kg(-1) fresh weight (FW) and 148 mg kg(-1) FW respectively. Cyanide accumulated in the leaves increased linearly with increasing cyanide concentration in the soil solution. On the long term, significantly more cyanide was accumulated in old leaf tissue than in young tissue. Chlorophyll content in poplar decreased linearly with increasing cyanide in the soil solution and in leaf tissue, and over time. The inhibitory concentration (IC50) value for poplars after 4 weeks of exposure was 173 mg l(-1) and for willow after 8 weeks of exposure-768 mg l(-1). Results show that willows tolerate much more cyanide and over a longer period than poplars, making them very appropriate for remediating sites highly contaminated with iron cyanides.

  20. Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar

    Directory of Open Access Journals (Sweden)

    Lawrence Amanda M

    2010-11-01

    Full Text Available Abstract Background Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development. Results We report that poplar (Populus spp. has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast. Conclusion These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.

  1. Changes in sulphur metabolism of grey poplar (Populus x canescens) leaves during salt stress: a metabolic link to photorespiration.

    Science.gov (United States)

    Herschbach, Cornelia; Teuber, Markus; Eiblmeier, Monika; Ehlting, Barbara; Ache, Peter; Polle, Andrea; Schnitzler, Jörg-Peter; Rennenberg, Heinz

    2010-09-01

    The poplar hybrid Populus x canescens (syn. Populus tremula x Populus alba) was subjected to salt stress by applying 75 mM NaCl for 2 weeks in hydroponic cultures. Decreasing maximum quantum yield (Fv/Fm) indicated damage of photosystem II (PS II), which was more pronounced under nitrate compared with ammonium nutrition. In vivo staining with diaminobenzidine showed no accumulation of H(2)O(2) in the leaf lamina; moreover, staining intensity even decreased. But at the leaf margins, development of necrotic tissue was associated with a strong accumulation of H(2)O(2). Glutathione (GSH) contents increased in response to NaCl stress in leaves but not in roots, the primary site of salt exposure. The increasing leaf GSH concentrations correlated with stress-induced decreases in transpiration and net CO(2) assimilation rates at light saturation. Enhanced rates of photorespiration could also be involved in preventing reactive oxygen species formation in chloroplasts and, thus, in protecting PS II from damage. Accumulation of Gly and Ser in leaves indeed indicates increasing rates of photorespiration. Since Ser and Gly are both immediate precursors of GSH that can limit GSH synthesis, it is concluded that the salt-induced accumulation of leaf GSH results from enhanced photorespiration and is thus probably restricted to the cytosol.

  2. Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.

    Science.gov (United States)

    Dou, Chang; Marcondes, Wilian F; Djaja, Jessica E; Bura, Renata; Gustafson, Rick

    2017-01-01

    Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system and establish the trees. The biomass from these 2-year-old trees is very heterogeneous, and includes components of leaf, bark, branch, and wood chip. This material is quite different than the samples that have been used in most poplar bioconversion research, which come from mature trees of short rotation forestry (SRF) plantations. If the coppice management regime is to be used, it is important that feedstock growers maximize their revenue from this initial harvest, but the heterogeneous nature of the biomass may be challenging for bioconversion. This work evaluates bioconversion of 2-year-old poplar coppice and compares its performance to whitewood chips from 12-year-old poplar. The 2-year-old whole tree coppice (WTC) is comprised of 37% leaf, 9% bark, 12% branch, and 42% wood chip. As expected, the chemical compositions of each component were markedly different. The leaf has a low sugar content but is high in phenolics, ash, and extractives. By removing the leaves, the sugar content of the biomass increased significantly, while the phenolic, ash, and extractives contents decreased. Leaf removal improved monomeric sugar yield by 147 kg/tonne of biomass following steam pretreatment and enzymatic hydrolysis. Bioconversion of the no-leaf coppice (NLC) achieved a 67% overall sugar recovery, showing no significant difference to mature whitewood from forestry plantation (WWF, 71%). The overall sugar yield of NLC was 135 kg/tonne less than that of WWF, due to the low inherent sugar content in original biomass. An economic analysis shows the minimum ethanol selling price required to cover the

  3. Study on Drying Characteristic of Chinese Fir and Poplar Plantation Wood

    Institute of Scientific and Technical Information of China (English)

    ZHOUYongdong; LIXiaoling

    2004-01-01

    The drying characteristic was studied for plantation wood of Chinese fir and poplar, which are typical plantation wood of southern and northern part of China, respectively. Through lO0-degree-method the drying characteristic and basic drying condition were gotten, then drying schedule was developed for practical drying, the results showed that the drying schedule is suitable for Chinese fir and poplar plantation lumber, but shrinkage is large. The recommendation was made that enough dead weight is needed to decrease shrinkage in drying process. The drying quality of the two species of lumber is good in conventional drying method.

  4. Studies on genetic diversity in poplar (Populus deltoides Bartr) using ...

    African Journals Online (AJOL)

    hp

    2012-05-22

    May 22, 2012 ... random amplified polymorphic DNA (RAPD) marker. Lakshmi ... loci were detected out of which 20 were monomorphic and 354 were polymorphic. ... molecular study revealed that genotypes from different geographical region clustered in one group, ..... was the least informative for clone fingerprinting and.

  5. Growth and carbohydrate status of coppice shoots of hybrid poplar following shoot pruning.

    Science.gov (United States)

    Tschaplinski, T J; Blake, T J

    1995-05-01

    Fifteen, 1-year-old Populus maximowiczii Henry x P. nigra L. 'MN9' trees were decapitated and allowed to sprout. After 8 weeks, all had 6 to 10 coppice shoots. All shoots, except the tallest (dominant) shoot, were removed from five of the trees (pruned treatment), and shoot growth, gas exchange and carbohydrate status were compared in the pruned and unpruned trees. Although photosynthetic rate of recently mature leaves of pruned trees was approximately 50% greater than that of leaves on the dominant shoot of unpruned trees, and the dry weight of leaves of pruned trees was 37% greater than that of the leaves on the dominant shoot of unpruned trees, the shoot dry matter relative growth rate did not differ between treatments. Concentrations of water-soluble carbohydrates and starch in the uppper stem and leaves of the dominant shoot were similar in pruned and unpruned trees. However, relative to that of the dominant shoot in unpruned trees, the lower stem in pruned trees was depleted in both soluble carbohydrates and starch. Starch deposition, assessed as the quantity of (14)C-starch in tissues 24 h after a fully expanded source leaf was labeled with (14)CO(2), was 3.9 times greater in roots of pruned trees than in roots of unpruned trees. We conclude that early removal of all but the dominant shoot reduces the carbohydrate status of the roots and the lower portion of the stem by eliminating the excised shoots as a source of photosynthate.

  6. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento'.

    Directory of Open Access Journals (Sweden)

    Xiaohua Su

    Full Text Available Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento' harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although

  7. Placentation in cloned cattle

    DEFF Research Database (Denmark)

    Miglino, M A; Pereira, F T V; Visintin, J A

    2007-01-01

    To elucidate the morphological differences between placentas from normal and cloned cattle pregnancies reaching term, the umbilical cord, placentomes and interplacentomal region of the fetal membranes were examined macroscopically as well as by light and scanning electron microscopy. In pregnancies...... than one primary villus, as opposed to a single villus in non-cloned placentae. Scanning electron microscopy of blood vessel casts revealed that there was also more than one stem artery per villous tree and that the ramification of the vessels failed to form dense complexes of capillary loops...

  8. Effect of Genetically Modified Poplars on Soil Microbial Communities during the Phytoremediation of Waste Mine Tailings▿†

    Science.gov (United States)

    Hur, Moonsuk; Kim, Yongho; Song, Hae-Ryong; Kim, Jong Min; Choi, Young Im; Yi, Hana

    2011-01-01

    The application of transgenic plants to clean up environmental pollution caused by the wastes of heavy metal mining is a promising method for removing metal pollutants from soils. However, the effect of using genetically modified organisms for phytoremediation is a poorly researched topic in terms of microbial community structures, despite the important role of microorganisms in the health of soil. In this study, a comparative analysis of the bacterial and archaeal communities found in the rhizosphere of genetically modified (GM) versus wild-type (WT) poplar was conducted on trees at different growth stages (i.e., the rhizospheres of 1.5-, 2.5-, and 3-year-old poplars) that were cultivated on contaminated soils together with nonplanted control soil. Based on the results of DNA pyrosequencing, poplar type and growth stages were associated with directional changes in the structure of the microbial community. The rate of change was faster in GM poplars than in WT poplars, but the microbial communities were identical in the 3-year-old poplars. This phenomenon may arise because of a higher rate and greater extent of metal accumulation in GM poplars than in naturally occurring plants, which resulted in greater changes in soil environments and hence the microbial habitat. PMID:21890678

  9. Why clone flies? Using cloned Drosophila to monitor epigenetic defects.

    Science.gov (United States)

    Haigh, Andrew J; Lloyd, Vett K

    2007-01-01

    Since the birth of the first cloned sheep in 1996, advances in nuclear transplantation have led to both the creation of genetically tailored stem cells and the generation of a number of cloned organisms. The list of cloned animals reared to adulthood currently includes the frog, sheep, mouse, cow, goat, pig, rabbit, cat, zebrafish, mule, horse, rat and dog. The addition of Drosophila to this elite bestiary of cloned animals has prompted the question - why clone flies? Organisms generated by nuclear transplantation suffer from a high rate of associated defects, and many of these defects appear to be related to aberrant genomic imprinting. Imprinted gene expression also appears to be compromised in Drosophila clones. Proper imprinted gene regulation relies on a suite of highly conserved chromatin-modifying genes first identified in Drosophila. Thus, Drosophila can potentially be used to study epigenetic dysfunction in cloned animals and to screen for genetic and epigenetic conditions that promote the production of healthy clones.

  10. Clip, connect, clone

    DEFF Research Database (Denmark)

    Fujima, Jun; Lunzer, Aran; Hornbæk, Kasper

    2010-01-01

    using three mechanisms: clipping of input and result elements from existing applications to form cells on a spreadsheet; connecting these cells using formulas, thus enabling result transfer between applications; and cloning cells so that multiple requests can be handled side by side. We demonstrate...

  11. The Cloning of America.

    Science.gov (United States)

    Dobson, Judith E.; Dobson, Russell L.

    1981-01-01

    Proposes that the U.S. school system purports to prize human variability, but many educators are engaged in activities that seek to homogenize students. Describes these activities, including diagnosis, labeling, ability grouping, and positive reinforcement. Presents suggestions for counselors to combat sources of cloning and self-validation. (RC)

  12. Asian Yellow Goat Cloned

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ It was released on August 24,2005 by Prof. CHEN Dayuan (Da-Yuan Chen) from the CAS Institute of Zoology that the first success in cloning the Asian Yellow Goat by nuclear transfer had recently been achieved in east China's Shandong Province.

  13. Effects of Direct Application of Fertilizers and Hydrogel on the Establishment of Poplar Cuttings

    Directory of Open Access Journals (Sweden)

    Henrik Böhlenius

    2014-12-01

    Full Text Available The aim of poplar plantations is to achieve high biomass production over a short rotation period. This requires low mortality and fast development of the transplants. The experiment described in this paper examines methods aimed at enhancing survival and development of Populus trichocarpa plants by application of fertilizers, a hydrogel or a combination of both to dormant cuttings just before planting. The experiment was carried out at two agricultural sites with different soil characteristics, a loamy sand and a silty loam. It was demonstrated that none of the treatments influenced survival or early growth at the silty loam soil site, and plant development was delayed by the solid fertilizer. At the site with loamy sand, the solid fertilizer negatively affected both survival and early growth. Hydrogel and the combination of hydrogel and the solid fertilizer also hampered early growth. Overall, treatments of poplar cuttings with hydrogel or fertilizers alone, or in combination, may not be a method to reduce poplar cutting mortality or to enhance early plant development on agricultural land. However, our results demonstrate that establishing poplar with cuttings as transplants can be used on both loamy sand and silty loam soils.

  14. Soil respiration in apple orchards, poplar plantations and adjacent grasslands in Artvin, Turkey.

    Science.gov (United States)

    Tufekcioglu, Aydin; Ozbayram, Ali Kemal; Kucuk, Mehmet

    2009-09-01

    In this study influence of land-use type on soil respiration was investigated in poplar plantation, apple orchard (apple trees with understory grasses) and adjacent grassland sites in Seyitler Area, Artvin, Turkey. Soil respiration was measured approximately monthly in three sampling plots in each land use type from January 2005 to November 2005 using the soda-lime technique. Mean daily soil respiration ranged from 0.63-3.59 g Cm(-2) d(-1). Mean soil respiration in apple orchard, poplar plantation and grassland sites were 1.98, 1.45 and 1.12 g C m(-2) d(-1), respectively. Mean soil respiration was significantly greater in apple orchard than in poplar plantations and grasslands. Seasonal changes in soil respiration were related to soil moisture and temperature changes. Mean soil respiration rate correlated strongly with subsurface soil (15-35cm) pH (R = -0,73; p biomass. Overall, our results indicate that apple orchards with understory grasses have higher soil biological activity compared to poplar and grassland sites.

  15. Environmental controls on ozone fluxes in a poplar plantation in Western Europe

    DEFF Research Database (Denmark)

    Zona, D.; Gioli, B.; Fares, S.

    2014-01-01

    Tropospheric O-3 is a strong oxidant that may affect vegetation and human health. Here we report on the O-3 fluxes from a poplar plantation in Belgium during one year. Surprisingly, the winter and autumn O-3 fluxes were of similar magnitude to ones observed during most of the peak vegetation deve...

  16. The use of short rotation willows and poplars for the recycling of saline waste waters

    Science.gov (United States)

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  17. Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy.

    Science.gov (United States)

    Castro-Rodríguez, Vanessa; García-Gutiérrez, Angel; Canales, Javier; Cañas, Rafael A; Kirby, Edward G; Avila, Concepción; Cánovas, Francisco M

    2016-01-01

    The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild-type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen-use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above-ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution.

  18. Effector-mining in the poplar rust fungus Melampsora larici populina secretome

    Directory of Open Access Journals (Sweden)

    Cecile eLorrain

    2015-12-01

    Full Text Available The poplar leaf rust fungus, Melampsora larici-populina has been established as a tree-microbe interaction model. Understanding the molecular mechanisms controlling infection by pathogens appears essential for durable management of tree plantations. In biotrophic plant parasites, effectors are known to condition host cell colonization. Thus, investigation of candidate secreted effector proteins is a major goal in the poplar-poplar rust interaction. Unlike oomycetes, fungal effectors do not share conserved motifs and candidate prediction relies on a set of a priori criteria established from reported bona fide effectors. Secretome prediction, genome-wide analysis of gene families and transcriptomics of M. larici-populina have led to catalogues of more than a thousand secreted proteins. Automatized effector mining pipelines hold great promise for rapid and systematic identification and prioritization of candidate secreted effector proteins for functional characterization. In this review, we report on and discuss the current status of the poplar rust fungus secretome and prediction of candidate effectors in this species.

  19. Energy partitioning and surface resistance of a poplar plantation in northern China

    Science.gov (United States)

    M. Kang; Z. Zhang; A. Noormets; X. Fang; T. Zha; J. Zhou; G. Sun; S. G. McNulty; J. Chen

    2015-01-01

    Poplar (Populus sp.) plantations have been, on the one hand, broadly used in northern China for urban greening, combating desertification, as well as for paper and wood production. On the other hand, such plantations have been questioned occasionally for their possible negative impacts on water availability due to the higher water-use nature of...

  20. Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism

    Science.gov (United States)

    Pratiksha Bhatnagar; Rakesh Minocha; Subhash C. Minocha

    2002-01-01

    We investigated the catabolism of putrescine (Put) in a non-transgenic (NT) and a transgenic cell line of poplar (Populus nigra x maximowiczii) expressing a mouse (Mus musculus) ornithine (Orn) decarboxylase (odc) cDNA. The transgenic cells produce 3- to 4-fold higher amounts of Put than the NT...

  1. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome.

    Science.gov (United States)

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Van Acker, Rebecca; Van Montagu, Marc; Boerjan, Wout; Vangronsveld, Jaco

    2016-02-23

    Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.

  2. Exploring the role of asexual multiplication in poplar rust epidemics: impact on diversity and genetic structure.

    Science.gov (United States)

    Barrès, Benoît; Dutech, Cyril; Andrieux, Axelle; Halkett, Fabien; Frey, Pascal

    2012-10-01

    Fungal plant pathogens, especially rust fungi (Pucciniales), are well known for their complex life cycles, which include phases of sexual and asexual reproduction. The effect of asexual multiplication on population genetic diversity has been investigated in the poplar rust fungus Melampsora larici-populina using a nested hierarchical sampling scheme. Four hierarchical levels were considered: leaf, twig, tree and site. Both cultivated and wild poplar stands were sampled at two time points at the start and end of rust epidemics. A total of 641 fungal isolates was analysed using nine microsatellite markers. This study revealed that the genetic signature of asexual multiplication in the wild poplar stand was seen only at lower hierarchical levels (leaf and twig). Moreover, we observed an erosion of clonal structure through time, with an increase in both gene and genotypic diversity. New genotypes contributed to host infection over time, which demonstrates the importance of allo-infection in the epidemic process in this host-pathogen system. Compared with the wild stands, the nearly lack of detection of clonal structure in the cultivated stands reflects the higher infection level on cultivated poplars. More generally, this genetic analysis illustrates the utility of population genetics approach for elucidating the proportion of asexual reproduction in the multiplication of isolates during an epidemic, and for proper quantification of asexual dispersal in plant pathogens.

  3. Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees

    DEFF Research Database (Denmark)

    Trapp, Stefan; Köhler, A.; Larsen, L.C.

    2001-01-01

    The toxicity of fresh and weathered gasoline and diesel fuel to willow and poplar trees was studied using a tree transpiration toxicity test. Soils were taken from an abandoned filling station. Concentrations in the samples were measured as the sum of hydrocarbons from C5 to C10 (gasoline) and C1...

  4. A method for generating subtractive cDNA libraries retaining clones containing repetitive elements.

    OpenAIRE

    1997-01-01

    Here we describe a two-stepped photobiotin-based procedure to enrich a target (canine retinal) cDNA library for tissue specific clones without removing those containing repetitive ( SINE ) elements, despite the presence of these elements in the driver population. In a first hybridization excess SINE elements were hybridized to a driver (canine cerebellar) cDNA. In a second hybridization target cDNA was added to this reaction. The resulting cDNA library was enriched for retinal specific clones...

  5. Sequential cloning of chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1991-12-31

    A method for sequential cloning of chromosomal DNA and chromosomal DNA cloned by this method are disclosed. The method includes the selection of a target organism having a segment of chromosomal DNA to be sequentially cloned. A first DNA segment, having a first restriction enzyme site on either side. homologous to the chromosomal DNA to be sequentially cloned is isolated. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  6. [Nuclear transfer and therapeutic cloning].

    Science.gov (United States)

    Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying

    2005-03-01

    Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.

  7. The First Human Cloned Embryo.

    Science.gov (United States)

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  8. Animal Cloning and Food Safety

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Animal Cloning and Food Safety Share Tweet Linkedin Pin it ... evaluate the issue. back to top FDA Studies Cloning For more than five years, CVM scientists studied ...

  9. Wutun Poplar growth in South of Xinjiang%吴屯杨在南疆的生长状况研究

    Institute of Scientific and Technical Information of China (English)

    丁晓丽; 易海艳; 杨盼盼

    2015-01-01

    Determination of annual Xinjiang poplar Wutun poplar under the same conditions, the growth indica-tors, the results show that the Wutun poplar implanted in 4436, 342 died, Wutun poplar's survival rate was 92.3%, while Xinjiang poplar implanted in 4399, 513 died, Xinjiang poplar survival rate was 88.3%.Through the investi-gation of Wutun poplar, and Xinjiang poplar plant height, diameter, diameter at breast height and found that Wutun poplar both plant height, basal diameter, diameter at breast height of these growth indicators are excellent and the Xinjiang poplar, so it can be concluded in the same habitatunder Wutun poplar faster than Xinjiang poplar growth rate, the overall growth is relatively stable, the resistance of fast-growing Wutun poplar introduction to the southern border is feasible.%通过对一年生的新疆杨与吴屯杨在同一条件下的生长指标测定,结果表明,吴屯杨共植入4436株,死亡342株,吴屯杨的成活率为92.3%;而新疆杨共植入4399株,死亡513株,新疆杨的成活率为88.3%.通过调查吴屯杨和新疆杨的株高、地径、胸径,发现吴屯杨无论是株高、地径、胸径这些生长指标都优与新疆杨,因此在同一生境下吴屯杨比新疆杨生长速率更快,整体生长比较稳定,抗逆性速生吴屯杨引种至南疆具有可行性.

  10. Probabilistic Cloning and Quantum Computation

    Institute of Scientific and Technical Information of China (English)

    GAO Ting; YAN Feng-Li; WANG Zhi-Xi

    2004-01-01

    @@ We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which the cloning offers an advantage which cannot be matched by any approach that does not resort to quantum cloning.In these quantum computations, we need to distribute quantum information contained in the states about which we have some partial information. To perform quantum computations, we use a state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.

  11. Abaxial Greening Phenotype in Hybrid Aspen

    Directory of Open Access Journals (Sweden)

    Julia S. Nowak

    2013-04-01

    Full Text Available The typical angiosperm leaf, as in Arabidopsis, is bifacial consisting of top (adaxial and bottom (abaxial surfaces readily distinguishable by the underlying cell type (palisade and spongy mesophyll, respectively. Species of the genus Populus have leaves that are either conventionally bifacial or isobilateral. Isobilateral leaves have palisade mesophyll on the top and bottom of the leaf, making the two sides virtually indistinguishable at the macroscopic level. In poplars this has been termed the “abaxial greening” phenotype. Previous work has implicated ASYMMETRIC LEAVES1 (AS1 as an essential determinant of palisade mesophyll development. This gene, as well as other genes (84 in all putatively involved in setting the dorsiventral axis of leaves, were investigated in two Populus species: black cottonwood (Populus trichocarpa and hybrid aspen (P. tremula x tremuloides, representative of each leaf type (bifacial and isobilateral, respectively. Poplar orthologs of AS1 have significantly higher expression in aspen leaf blade and lower in the petiole, suggestive of a potential role in the isobilateral leaf phenotype consistent with the previously observed phenotypes. Furthermore, an ABERRANT TESTA SHAPE (ATS ortholog has significantly lower expression in aspen leaf tissue, also suggesting a possible contribution of this gene to abaxial greening.

  12. Abaxial Greening Phenotype in Hybrid Aspen.

    Science.gov (United States)

    Nowak, Julia S; Douglas, Carl J; Cronk, Quentin C B

    2013-04-24

    The typical angiosperm leaf, as in Arabidopsis, is bifacial consisting of top (adaxial) and bottom (abaxial) surfaces readily distinguishable by the underlying cell type (palisade and spongy mesophyll, respectively). Species of the genus Populus have leaves that are either conventionally bifacial or isobilateral. Isobilateral leaves have palisade mesophyll on the top and bottom of the leaf, making the two sides virtually indistinguishable at the macroscopic level. In poplars this has been termed the "abaxial greening" phenotype. Previous work has implicated ASYMMETRIC LEAVES1 (AS1) as an essential determinant of palisade mesophyll development. This gene, as well as other genes (84 in all) putatively involved in setting the dorsiventral axis of leaves, were investigated in two Populus species: black cottonwood (Populus trichocarpa) and hybrid aspen (P. tremula x tremuloides), representative of each leaf type (bifacial and isobilateral, respectively). Poplar orthologs of AS1 have significantly higher expression in aspen leaf blade and lower in the petiole, suggestive of a potential role in the isobilateral leaf phenotype consistent with the previously observed phenotypes. Furthermore, an ABERRANT TESTA SHAPE (ATS) ortholog has significantly lower expression in aspen leaf tissue, also suggesting a possible contribution of this gene to abaxial greening.

  13. Two iron-regulated transporter (IRT) genes showed differential expression in poplar trees under iron or zinc deficiency.

    Science.gov (United States)

    Huang, Danqiong; Dai, Wenhao

    2015-08-15

    Two iron-regulated transporter (IRT) genes were cloned from the iron chlorosis resistant (PtG) and susceptible (PtY) Populus tremula 'Erecta' lines. Nucleotide sequence analysis showed no significant difference between PtG and PtY. The predicted proteins contain a conserved ZIP domain with 8 transmembrane (TM) regions. A ZIP signature sequence was found in the fourth TM domain. Phylogenetic analysis revealed that PtIRT1 was clustered with tomato and tobacco IRT genes that are highly responsible to iron deficiency. The PtIRT3 gene was clustered with the AtIRT3 gene that was related to zinc and iron transport in plants. Tissue specific expression indicated that PtIRT1 only expressed in the root, while PtIRT3 constitutively expressed in all tested tissues. Under iron deficiency, the expression of PtIRT1 was dramatically increased and a significantly higher transcript level was detected in PtG than in PtY. Iron deficiency also enhanced the expression of PtIRT3 in PtG. On the other hand, zinc deficiency down-regulated the expression of PtIRT1 and PtIRT3 in both PtG and PtY. Zinc accumulated significantly under iron-deficient conditions, whereas the zinc deficiency showed no significant effect on iron accumulation. A yeast complementation test revealed that the PtIRT1 and PtIRT3 genes could restore the iron uptake ability under the iron uptake-deficiency condition. The results will help understand the mechanisms of iron deficiency response in poplar trees and other woody species.

  14. Responses of energy partitioning and surface resistance to drought in a poplar plantation in northern China

    Science.gov (United States)

    Kang, M.; Zhang, Z.; Noormets, A.; Fang, X.; Zha, T.; Zhou, J.; Sun, G.; McNulty, S.; Chen, J.

    2015-01-01

    Poplar (Populus sp.) plantations have been used broadly for combating desertification, urban greening, and paper and wood production in northern China. However, given the high water use by the species and the regional dry environment, the long-term sustainability of these plantations needs to be evaluated. Currently, the understanding of energy partitioning and canopy resistance to water vapor and CO2 in poplar plantations is limited, impeding an accurate assessment of their true ecosystem functions. This study examined the variability of canopy bulk resistance parameters and energy partitioning over a four-year period encompassing both dry and wet conditions in a poplar (Populus euramericana CV. "74 / 76") plantation ecosystem located in northern China. Available energy (Net radiation Rn minus Soil Heat Flux, G) partitioning to latent (LE) and sensible (H) heat was responsive to climatological drought, with LE/(Rn-G) ranging from 62% in wet years (e.g. 2007 and 2008) to 53% in dry years (e.g. 2006 and 2009), and H/(Rn-G) from 25 to 33% between wet and dry years. Correspondingly, the Bowen ratio (β=H/LE) were 0.83 and 1.57. Surface resistance (Rs) had the greatest response to drought (+43%), but the aerodynamic and climatological resistances did not change significantly (p > 0.05). Partial correlation analysis indicated that Rs was the dominant factor in controlling the Bowen ratio. Furthermore, Rs was the major factor controlling LE during the growing season, even in wet years, as indicated by the decoupling coefficient (Ω = 0.45 and 0.39 in wet and dry years, respectively), and the LE / LEeq ratio ranged from 0.81 and 0.68 in wet and dry years, respectively. In general, the dry surface conditions dominated in this poplar plantation ecosystem regardless of soil water availability suggesting that fast-growing and water use-intensive species like poplar plantations are poorly adapted for the water limited region.

  15. Responses of energy partitioning and surface resistance to drought in a poplar plantation in northern China

    Directory of Open Access Journals (Sweden)

    M. Kang

    2015-01-01

    Full Text Available Poplar (Populus sp. plantations have been used broadly for combating desertification, urban greening, and paper and wood production in northern China. However, given the high water use by the species and the regional dry environment, the long-term sustainability of these plantations needs to be evaluated. Currently, the understanding of energy partitioning and canopy resistance to water vapor and CO2 in poplar plantations is limited, impeding an accurate assessment of their true ecosystem functions. This study examined the variability of canopy bulk resistance parameters and energy partitioning over a four-year period encompassing both dry and wet conditions in a poplar (Populus euramericana CV. "74 / 76" plantation ecosystem located in northern China. Available energy (Net radiation Rn minus Soil Heat Flux, G partitioning to latent (LE and sensible (H heat was responsive to climatological drought, with LE/(Rn-G ranging from 62% in wet years (e.g. 2007 and 2008 to 53% in dry years (e.g. 2006 and 2009, and H/(Rn-G from 25 to 33% between wet and dry years. Correspondingly, the Bowen ratio (β=H/LE were 0.83 and 1.57. Surface resistance (Rs had the greatest response to drought (+43%, but the aerodynamic and climatological resistances did not change significantly (p > 0.05. Partial correlation analysis indicated that Rs was the dominant factor in controlling the Bowen ratio. Furthermore, Rs was the major factor controlling LE during the growing season, even in wet years, as indicated by the decoupling coefficient (Ω = 0.45 and 0.39 in wet and dry years, respectively, and the LE / LEeq ratio ranged from 0.81 and 0.68 in wet and dry years, respectively. In general, the dry surface conditions dominated in this poplar plantation ecosystem regardless of soil water availability suggesting that fast-growing and water use-intensive species like poplar plantations are poorly adapted for the water limited region.

  16. THE FIBER MORPHOLOGY VARIATION OF TRIPLOID CLONE OF POPULUS TOMENTOSA CARR.AND ITS SUPPOSED HARVESTING AGE FOR THE PAPER INDUSTRY

    Institute of Scientific and Technical Information of China (English)

    Yongming Fan; Zhiyi Zhang; Yimin Xie; dakai Ren; yuanyuan Luo; yuying Wu; jing He

    2004-01-01

    The fiber morphology variation of triploid clone of Populus tomentosa Carr. and the supposed harvesting age for the paper industry were investigated in this paper. The results shows that in the first few years,2-4 years for example, the fiber length at breast high grows faster than it does in the later years. But the standard deviation of distribution in fiber length at breast high in mature wood is larger than in the young tree. The technologically harvestable age of triploid clone of Populus tomentosa Carr., BL304could be 4-7 year old to meet the requirement for paper industry. The distribution of fiber length become concentrated within an annual ring as the tree grows. The test results also show that the cloned poplar has a small Runkel ratio value (less than 0.4,generally about 0.3), and this ratio increases slightly with the tree grows.

  17. THE FIBER MORPHOLOGY VARIATION OF TRIPLOID CLONE OF POPULUS TOMENTOSA CARR.AND ITS SUPPOSED HARVESTING AGE FOR THE PAPER INDUSTRY

    Institute of Scientific and Technical Information of China (English)

    YongmingFan; ZhiyiZhang; YiminXie; dakaiRen; yuanyuanLuo; yuyingWu; jingHe

    2004-01-01

    The fiber morphology variation of triploid clone of Populus tomentosa Cart. and the supposed harvesting age for the paper industry were investigated in this paper. The results shows that in the first few years, 2-4 years for example, the fiber length at breast highg rows faster than it does in the later years. But the standard deviation of distribution in fiber length at breast high in mature wood is larger than in the young tree. The technologically harvestable age of triploid clone of Populus tomentosa Carr., BL304 could be 4-7 year old to meet the requirement for paper industry. The distribution of fiber length become concentrated within an annual ring as the tree grows. The test results also show that the cloned poplar has a small Runkel ratio value (less than 0.4, generally about 0.3), and this ratio increases slightly with the tree grows.

  18. Evaluation of a pooled strategy for high-throughput sequencing of cosmid clones from metagenomic libraries.

    Directory of Open Access Journals (Sweden)

    Kathy N Lam

    Full Text Available High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequence data are required for complete characterization of such clones, but the sequencing of a large set of clones requires individual barcode-based sample preparation; this can become costly, as the cost of clone barcoding scales linearly with the number of clones processed, and thus sequencing a large number of metagenomic clones often remains cost-prohibitive. We investigated a hybrid Sanger/Illumina pooled sequencing strategy that omits barcoding altogether, and we evaluated this strategy by comparing the pooled sequencing results to reference sequence data obtained from traditional barcode-based sequencing of the same set of clones. Using identity and coverage metrics in our evaluation, we show that pooled sequencing can generate high-quality sequence data, without producing problematic chimeras. Though caveats of a pooled strategy exist and further optimization of the method is required to improve recovery of complete clone sequences and to avoid circumstances that generate unrecoverable clone sequences, our results demonstrate that pooled sequencing represents an effective and low-cost alternative for sequencing large sets of metagenomic clones.

  19. Evaluation of a pooled strategy for high-throughput sequencing of cosmid clones from metagenomic libraries.

    Science.gov (United States)

    Lam, Kathy N; Hall, Michael W; Engel, Katja; Vey, Gregory; Cheng, Jiujun; Neufeld, Josh D; Charles, Trevor C

    2014-01-01

    High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequence data are required for complete characterization of such clones, but the sequencing of a large set of clones requires individual barcode-based sample preparation; this can become costly, as the cost of clone barcoding scales linearly with the number of clones processed, and thus sequencing a large number of metagenomic clones often remains cost-prohibitive. We investigated a hybrid Sanger/Illumina pooled sequencing strategy that omits barcoding altogether, and we evaluated this strategy by comparing the pooled sequencing results to reference sequence data obtained from traditional barcode-based sequencing of the same set of clones. Using identity and coverage metrics in our evaluation, we show that pooled sequencing can generate high-quality sequence data, without producing problematic chimeras. Though caveats of a pooled strategy exist and further optimization of the method is required to improve recovery of complete clone sequences and to avoid circumstances that generate unrecoverable clone sequences, our results demonstrate that pooled sequencing represents an effective and low-cost alternative for sequencing large sets of metagenomic clones.

  20. Reactions of cloned poplars to air pollution. Ozone-induced increase of stress ethylene and possible antisenescence strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ballach, H.J. [Johann Wolfgang Goethe-Univ., Frankfurt (Germany). Botanisches Inst.; Niederee, C. [Johann Wolfgang Goethe-Univ., Frankfurt (Germany). Botanisches Inst.; Wittig, R. [Johann Wolfgang Goethe-Univ., Frankfurt (Germany). Botanisches Inst.; Woltering, E.J. [Agrotechnological Research Inst., Wageningen (Netherlands)

    1995-12-01

    Ozone-induced changes in ethylene production, ACC oxidase activity and the contents of ACC, MACC and free PAs were studied in Populus nigra L. cv. Loenen with high ozone sensitivity as judged by the degree of chlorophyll degradation and premature leaf abscission. Ethylene production, ACC oxidase activity, ACC content and MACC levels were induced by the one-, two-, and three-week ozone exposure (36{+-}9 ppb O{sub 3} for 11 hours a day). In addition, increases in PA levels, especially in spermidine, were measured in ozone treated plants. The role of free PAs and MACC synthesis as possible antisenescence reactions is discussed. (orig.)

  1. Mapping genomic library clones using oligonucleotide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sapolsky, R.J.; Lipshutz, R.J. [Affymetrix, Santa Clara, CA (United States)

    1996-05-01

    We have developed a high-density DNA probe array and accompanying biochemical and informatic methods to order clones from genomic libraries. This approach involves a series of enzymatic steps for capturing a set of short dispersed sequence markers scattered throughout a high-molecular-weight DNA. By this process, all the ambiguous sequences lying adjacent to a given Type IIS restriction site are ligated between two DNA adaptors. These markers, once amplified and labeled by PCR, can be hybridized and detected on a high-density olligonucleotide array bearing probes complementary to all possible markers. The array is synthesized using light-directed combinatorial chemistry. For each clone in a genomic library, a characteristic set of sequence markers can be determined. On the basis of the similarity between the marker sets for each pair of clones, their relative overlap can be measured. The library can be sequentially ordered into a contig map using this overlap information. This new methodology does not require gel-based methods or prior sequence information and involves manipulations that should allow for easy adaptation to automated processing and data collection. 28 refs., 9 figs., 2 tabs.

  2. Molecular cloning of lupin leghemoglobin cDNA

    DEFF Research Database (Denmark)

    Konieczny, A; Jensen, E O; Marcker, K A

    1987-01-01

    Poly(A)+ RNA isolated from root nodules of yellow lupin (Lupinus luteus, var. Ventus) has been used as a template for the construction of a cDNA library. The ds cDNA was synthesized and inserted into the Hind III site of plasmid pBR 322 using synthetic Hind III linkers. Clones containing sequences...... its nucleotide sequence was consistent with known amino acid sequence of lupin Lb II. The cloned lupin Lb cDNA hybridized to poly(A)+ RNA from nodules only, which is in accordance with the general concept, that leghemoglobin is expressed exclusively in nodules. Udgivelsesdato: 1987-null...

  3. Molecular cloning of lupin leghemoglobin cDNA

    DEFF Research Database (Denmark)

    Konieczny, A; Jensen, E O; Marcker, K A

    1987-01-01

    Poly(A)+ RNA isolated from root nodules of yellow lupin (Lupinus luteus, var. Ventus) has been used as a template for the construction of a cDNA library. The ds cDNA was synthesized and inserted into the Hind III site of plasmid pBR 322 using synthetic Hind III linkers. Clones containing sequences...... its nucleotide sequence was consistent with known amino acid sequence of lupin Lb II. The cloned lupin Lb cDNA hybridized to poly(A)+ RNA from nodules only, which is in accordance with the general concept, that leghemoglobin is expressed exclusively in nodules. Udgivelsesdato: 1987-null...

  4. Endemic Indian clones of Klebsiella pneumoniae-harbouring New Delhi metallo-beta-lactamase-1 on a hybrid plasmid replicon type: A case of changing New Delhi metallo-beta-lactamase plasmid landscapes in India?

    Directory of Open Access Journals (Sweden)

    G K Subramanian

    2016-01-01

    Full Text Available Purpose: blaNDM genes are MBL genes that confer resistance to carbapenems. Globally, they are associated with diverse clones and plasmids. In this study, we characterised three isolates of Klebsiella pneumoniae-harbouring blaNDM1 from patients undergoing chronic haemodialysis and renal transplantation. Materials and Methods: 3 blaNDM1 -producing K. pneumoniae were isolated from end-stage renal disease patients undergoing haemodialysis and renal transplantation from a nephrology unit. All the three isolates were screened for clinically relevant resistant genes. Plasmid replicon content was analysed by polymerase chain reaction based replicon typing. Conjugation assays were done using azide-resistant Escherichia coli J53 as the recipient strain. Multilocus sequence typing and variable number tandem repeat typing were done to find the clonality. Replicon sequence based typing was attempted to find the diversity of replicon-associated sequences in IncHI3 plasmids. Results: All the 3 blaNDM positive isolates possessed the New Delhi metallo-beta-lactamase-1 (NDM-1 allele with an IncHI3 plasmid which was not transferable in one isolate. The isolates were found to be sequence type 14 (ST14; 2 nos and ST38 both of which were previously reported to be the NDM-producing K. pneumoniae STs prevalent in India. Replicon sequence analysis revealed limited sequence diversity within the repHI3 and repFIB locus. Conclusion: To the best of our knowledge, this is the first report of IncHI3, a newly assigned enterobacterial plasmid incompatibility group from India. This could either be a case of importation or a widely circulating NDM plasmid type in India.

  5. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    Energy Technology Data Exchange (ETDEWEB)

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with /sup 32/P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus.

  6. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level

    National Research Council Canada - National Science Library

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-01-01

    ...) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground...

  7. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  8. Entering the Clone Age

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    Suppose you make your parents so happy,they decide to have another baby just like you.It might be flattering,but how would you feel about having a little brother or sister who is also your twin? A laboratory experiment conducted last fall suggests it may someday be possible.For the first time ever,scientists made exact copies, or clones, of a human embryo.

  9. Analyzing the impact of climate and management factors on the productivity and soil carbon sequestration of poplar plantations.

    Science.gov (United States)

    Wang, Dan; Fan, Jiazhi; Jing, Panpan; Cheng, Yong; Ruan, Honghua

    2016-01-01

    It is crucial to investigate how climate and management factors impact poplar plantation production and soil carbon sequestration interactively. We extracted above-ground net primary production (ANPP), climate and management factors from peer-reviewed journal articles and analyzed impact of management factor and climate on the mean annual increment (MAI) of poplar ANPP statistically. Previously validated mechanistic model (ED) is used to perform case simulations for managed poplar plantations under different harvesting rotations. The meta-analysis indicate that the dry matter MAI was 6.3 Mg ha(-1) yr(-1) (n=641, sd=4.9) globally, and 5.1 (n=292, sd=4.0), 8.1 (n=224, sd=4.7) and 4.4 Mg ha(-1) yr(-1) (n=125, sd=3.2) in Europe, the US and China, respectively. Poplar MAI showed a significant response to GDD, precipitation and planting density and formed a quadratic relationship with stand age. The low annual production for poplar globally was probably caused by suboptimal water availability, rotation length and planting density. SEM attributes the variance of poplar growth rate more to climate than to management effects. Case simulations indicated that longer rotation cycle significantly increased soil carbon storage. Findings of this work suggests that management factor of rotation cycle alone could have dramatic impact on the above ground growth, as well as on the soil carbon sequestration of poplar plantations and will be helpful to quantify the long-term carbon sequestration through short rotation plantation. The findings of this study are useful in guiding further research, policy and management decisions towards sustainable poplar plantations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Bacterial microflora isolated from the bark surface of poplars growing in areas where air pollution is very high

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2015-05-01

    Full Text Available In the autumn of 1976 bacteria of the genera Bacillus, Pseudomonas, Flavobacterium, Erwinia and Cellulomonas were isolated from the bark surface of poplars growing in protective belts around several industrial plants. It was found that the qualitative and quantitative composition of the surface bacterial microflora changes in dependence on the degree of resistance of the poplars to the action of the dust emitted by the industrial establishment and containing high amounts of heavy metals.

  11. Sequential cloning of chromosomes

    Science.gov (United States)

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  12. Cloning-free CRISPR

    Directory of Open Access Journals (Sweden)

    Mandana Arbab

    2015-11-01

    Full Text Available We present self-cloning CRISPR/Cas9 (scCRISPR, a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA or knockin homology construct for each target locus. We introduce a self-cleaving palindromic sgRNA plasmid and a short double-stranded DNA sequence encoding the desired locus-specific sgRNA into target cells, allowing them to produce a locus-specific sgRNA plasmid through homologous recombination. scCRISPR enables efficient generation of gene knockouts (∼88% mutation rate at approximately one-sixth the cost of plasmid-based sgRNA construction with only 2 hr of preparation for each targeted site. Additionally, we demonstrate efficient site-specific knockin of GFP transgenes without any plasmid cloning or genome-integrated selection cassette in mouse and human embryonic stem cells (2%–4% knockin rate through PCR-based addition of short homology arms. scCRISPR substantially lowers the bar on mouse and human transgenesis.

  13. Secure the Clones

    CERN Document Server

    Jensen, Thomas; Pichardie, David

    2012-01-01

    Exchanging mutable data objects with untrusted code is a delicate matter because of the risk of creating a data space that is accessible by an attacker. Consequently, secure programming guidelines for Java stress the importance of using defensive copying before accepting or handing out references to an internal mutable object. However, implementation of a copy method (like clone()) is entirely left to the programmer. It may not provide a sufficiently deep copy of an object and is subject to overriding by a malicious sub-class. Currently no language-based mechanism supports secure object cloning. This paper proposes a type-based annotation system for defining modular copy policies for class-based object-oriented programs. A copy policy specifies the maximally allowed sharing between an object and its clone. We present a static enforcement mechanism that will guarantee that all classes fulfil their copy policy, even in the presence of overriding of copy methods, and establish the semantic correctness of the ove...

  14. Ethical issues in livestock cloning.

    Science.gov (United States)

    Thompson, P B

    1999-01-01

    Although cloning may eventually become an important technology for livestock production, four ethical issues must be addressed before the practice becomes widespread. First, researchers must establish that the procedure is not detrimental to the health or well-being of affected animals. Second, animal research institutions should evaluate the net social benefits to livestock producers by weighing the benefits to producers against the opportunity cost of research capacity lost to biomedical projects. Third, scientists should consider the indirect effects of cloning research on the larger ethical issues surrounding human cloning. Finally, the market structure for products of cloned animals should protect individual choice, and should recognize that many individuals find the prospect of cloning (or consuming cloned animals) repugnant. Analysis of these four issues is complicated by spurious arguments alleging that cloning will have a negative impact on environment and genetic diversity.

  15. Impact of 40 years poplar cultivation on soil carbon stocks and greenhouse gas fluxes

    Directory of Open Access Journals (Sweden)

    C. Ferré

    2005-08-01

    Full Text Available Within the JRC Kyoto Experiment in the Regional Park and UN-Biosphere Reserve "Parco Ticino" (North-Italy, near Pavia, the soil carbon stocks and fluxes of CO2, N2O, and CH4 were measured in a poplar plantation in comparison with a natural mesohygrophilous deciduous forest nearby, which represents the pristine land cover of the area. Soil fluxes were measured using the static and dynamic closed chamber techniques for CH4 N2O, and CO2, respectively. We made further a pedological study to relate the spatial variability found with soil parameters.

    Annual emission fluxes of N2O and CO2 and deposition fluxes of CH4 were calculated for the year 2003 for the poplar plantation and compared to those measured at the natural forest site. N2O emissions at the poplar plantation were 0.15$plusmn;0.1 g N2O m-2 y-1 and the difference to the emissions at the natural forest of 0.07±0.06 g N2O m-2 y-1 are partly due to a period of high emissions after the flooding of the site at the end of 2002. CH4 consumption at the natural forest was twice as large as at the poplar plantation. In comparison to the relict forest, carbon stocks in the soil under the poplar plantation were depleted by 61% of surface (10 cm carbon and by 25% down the profile under tillage (45 cm. Soil respiration rates were not significant different at both sites with 1608±1053 and 2200±791 g CO2 m-2 y-1 at the poplar plantation and natural forest, respectively, indicating that soil organic carbon is much more stable in the natural forest. In terms of the greenhouse gas budget, the non-CO2 gases contributed minor to the overall soil balance with only 0.9% (N2O and -0.3% (CH4 of CO2-eq emissions in the

  16. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level

    Science.gov (United States)

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-09-01

    The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health.

  17. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level

    Science.gov (United States)

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-01-01

    The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health. PMID:27615148

  18. Integration of the cytogenetic, genetic, and physical maps of the human genome by FISH mapping of CEPH YAC clones

    Energy Technology Data Exchange (ETDEWEB)

    Bray-Ward, P.; Menninger, J.; Lieman, J. [Yale Univ. School of Medicine, New Haven, CT (United States)] [and others

    1996-02-15

    This article discusses the genetic mapping of over 950 yeast artificial chromosome (YAC) clones on human chromosomes. This integration of the cytogenetic, genetic and physical maps of the human genome was accomplished using fluorescence in situ hybridization (FISH) mapping and the CEPH library of YAC clones. 27 refs., 2 figs., 1 tab.

  19. Ethical issues in animal cloning.

    Science.gov (United States)

    Fiester, Autumn

    2005-01-01

    The issue of human reproductive cloning has recently received a great deal attention in public discourse. Bioethicists, policy makers, and the media have been quick to identify the key ethical issues involved in human reproductive cloning and to argue, almost unanimously, for an international ban on such attempts. Meanwhile, scientists have proceeded with extensive research agendas in the cloning of animals. Despite this research, there has been little public discussion of the ethical issues raised by animal cloning projects. Polling data show that the public is decidedly against the cloning of animals. To understand the public's reaction and fill the void of reasoned debate about the issue, we need to review the possible objections to animal cloning and assess the merits of the anti-animal cloning stance. Some objections to animal cloning (e.g., the impact of cloning on the population of unwanted animals) can be easily addressed, while others (e.g., the health of cloned animals) require more serious attention by the public and policy makers.

  20. Mapping clones with a given ordering or interleaving

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao [McMaster Univ., Hamilton, Ontario (Canada); Karp, R.M. [Univ. of Washington, Seattle, WA (United States)

    1997-06-01

    We study the problem of constructing a most compact physical map for a collection of clones whose ordering or interleaving on a DNA molecule are given. Each clone is a contiguous section of the DNA and is represented by its fingerprint obtained from biochemical experiments. In this paper, the fingerprint of a done is either a multiset containing the sizes of the restriction fragments occurring in the clone in single complete digest mapping or a multiset containing the short oligonucleotide probes occurring in the clone in mapping by hybridization of probes. Our goal is to position the clones and restriction fragments on the DNA consistently with the given ordering or interleaving so that the total number of restriction fragments required on the DNA is neighbored. We first formulate this as a constrained path cover problem on a multistage graph. Using this formulation, it is shown that finding a most compact map for clones with a given ordering is NP-hard. The approximability of the problem is then considered. We present a simple approximation algorithm with ratio 2. This is in fact the best possible as the above NP-hardness proof actually shows that achieving ratio 2 - {epsilon} is impossible for any constant {epsilon} > 0, unless P = NP. We also give a polynomial time approximation scheme when the multiplicity is bounded by one. The exact complexity of the problem in this special case is presently unknown. Finally we consider the mapping problem when an interleaving is given which depicts how the clones overlap with each other on the DNA. In the case of restriction fragment data, it is shown that finding a consistent map is NP-complete even if the multiplicity is bounded by 3. This may suggest that information about the interleaving of clones does not necessarily make the problem computationally easier in single complete digest mapping.

  1. To clone or not to clone--whither the law?

    Science.gov (United States)

    Lupton, M L

    1999-01-01

    The cloning of Dolly the lamb from adult cells by scientists at the Roslin Laboratories near Edinburgh in February 1997 has startled the world because it now opens the way to clone adult human beings. The reaction to Ian Wilmut's breakthrough has been instant and largely negative. Bills were rushed into both the US Senate and House of Representatives aimed at banning the cloning of human beings. Human cloning is premature at this stage, but there are many positive spin-offs of cloning in the field of genetic engineering, such as the production of human proteins such as blood clotting factors which aid in healing wounds. Progress by means of cloning can also be made into devising a cure for Parkinson's Disease amongst others. No lesser ethicist than John C. Fletcher of the University of Virginia foresees circumstances in which human cloning is acceptable e.g. to enable a couple to replace a dying child, to enable a couple, one of whom is infertile, to clone a child from either partner. Extensive regulation of cloning by the law is inevitable but, in doing so, the legislation should be careful not to outlaw research in this area which could be beneficial to mankind.

  2. Short Rotation Woody Crops Program. Quarterly progress report, March 1-May 31, 1985. [Sycamore, alders, black locust, larch, poplars, saltbush

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Perlack, R.D.; Wenzel, C.R.; Trimble, J.L.; Ranney, J.W.

    1985-08-01

    This report covers the progress of the Short Rotation Woody Crops Program (SRWCP) during the third quarter of fiscal year 1985. This report summarizes ORNL management activities, technical activities at ORNL and subcontract institutions, and the technology transfer that is occurring as a result of subcontractor and ORNL activities. Third-year results of a nutrient utilization study confirmed that there were no benefits to quarterly fertilization with urea nitrogen. Testing of one prototype short-rotation intensive culture harvester was conducted on a sycamore plantation on Scott Paper Company land in southern Alabama. Coppice yields of European black alder reported by Iowa State University indicate potential productivity of about 7.2 dry Mg . ha/sup -1/ . year/sup -1/ if the best trees are selected. Coppice yields were more than double first-rotation yields. About 31,000 black locust and larch trees were established in 12 genetic tests at 4 sites in Michigan. Seedling rotation productivity rates of 4-year-old hybrid poplar, based on harvest data, were reported by Pennsylvania State University. Rates varied from 4.8 dry Mg . ha/sup -1/ . year/sup -1/ to 10.7 dry Mg . ha/sup -1/ . year/sup -1/, depending on site, management strategy, and planting year. An efficient method for in vitro micropropagation of elite genotypes of fourwing saltbush was developed by Plant Resources Institute. A new study to evaluate yield/density relationships was established by the USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. Dissertation research on the crown geometry of plantation-grown American sycamore was completed.

  3. Suppression subtractive hybridization.

    Science.gov (United States)

    Ghorbel, Mohamed T; Murphy, David

    2011-01-01

    Comparing two RNA populations that differ from the effects of a single independent variable, such as a drug treatment or a specific genetic defect, can establish differences in the abundance of specific transcripts that vary in a population dependent manner. There are different methods for identifying differentially expressed genes. These methods include microarray, Serial Analysis of Gene Expression (SAGE), and quantitative Reverse-Transcriptase Polymerase Chain Reaction (qRT-PCR). Herein, the protocol describes an easy and cost-effective alternative that does not require prior knowledge of the transcriptomes under examination. It is specifically relevant when low levels of RNA starting material are available. This protocol describes the use of Switching Mechanism At RNA Termini Polymerase Chain Reaction (SMART-PCR) to amplify cDNA from small amounts of RNA. The amplified cDNA populations under comparison are then subjected to Suppression Subtractive Hybridization (SSH-PCR). SSH-PCR is a technique that couples subtractive hybridization with suppression PCR to selectively amplify fragments of differentially expressed genes. The resulting products are cDNA populations enriched for significantly overrepresented transcripts in either of the two input RNAs. These cDNA populations can then be cloned to generate subtracted cDNA library. Microarrays made with clones from the subtracted forward and reverse cDNA libraries are then screened for differentially expressed genes using targets generated from tester and driver total RNAs.

  4. Lessons learned from cloning dogs.

    Science.gov (United States)

    Kim, M J; Oh, H J; Kim, G A; Park, J E; Park, E J; Jang, G; Ra, J C; Kang, S K; Lee, B C

    2012-08-01

    The aim of this article is to review dog cloning research and to suggest its applications based on a discussion about the normality of cloned dogs. Somatic cell nuclear transfer was successfully used for production of viable cloned puppies despite limited understanding of in vitro dog embryo production. Cloned dogs have similar growth characteristics to those born from natural fertilization, with no evidence of serious adverse effects. The offspring of cloned dogs also have similar growth performance and health to those of naturally bred puppies. Therefore, cloning in domestic dogs can be applied as an assisted reproductive technique to conserve endangered species, to treat sterile canids or aged dogs, to improve reproductive performance of valuable individuals and to generate disease model animals.

  5. Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees

    DEFF Research Database (Denmark)

    Trapp, Stefan; Köhler, A.; Larsen, L.C.

    2001-01-01

    The toxicity of fresh and weathered gasoline and diesel fuel to willow and poplar trees was studied using a tree transpiration toxicity test. Soils were taken from an abandoned filling station. Concentrations in the samples were measured as the sum of hydrocarbons from C5 to C10 (gasoline) and C12...... to C28 (diesel). Concentrations ranged from 145 to 921 mg/kg gasoline and 143 to 18231 mg/kg diesel. The correlation between log soil concentration and toxicity to willows (Salix viminalis x schwerinii) was highly significant for the diesel fraction (r2=0.81, n=19) and for the sum of hydrocarbons (r2...... diesel and gasoline contaminated soils, and two willow and one poplar species (S. viminalis, S. alba and Populus nigra). Fresh diesel at about 1000 mg/kg showed no effect on S. alba, although P. nigra was more sensitive. 10000 mg/kg seriously affected the transpiration of all species, silver willow (S...

  6. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.

    Science.gov (United States)

    Kang, Jun Won; Doty, Sharon Lafferty

    2014-07-01

    Trichloroethylene (TCE), a chlorinated organic solvent, is one of the most common and widespread groundwater contaminants worldwide. Among the group of TCE-degrading aerobic bacteria, Burkholderia cepacia G4 is the best-known representative. This strain requires the addition of specific substrates, including toluene, phenol, and benzene, to induce the enzymes to degrade TCE. However, the substrates are toxic and introducing them into the soil can result in secondary contamination. In this study, poplar leaf homogenate containing natural phenolic compounds was tested for the ability to induce the growth of and TCE degradation by B. cepacia G4. The results showed that the G4 strain could grow and degrade TCE well with the addition of phytochemicals. The poplar leaf homogenate also functioned as an inducer of the toluene-ortho-monooxygenase (TOM) gene in B. cepacia G4.

  7. Cloning and expression of aequorin photoprotein using intein tag

    Directory of Open Access Journals (Sweden)

    Elah sadat Seyed Hosseini

    2015-01-01

    Full Text Available Background: Intein (INT, is the internal parts of the protein which can be separated from the immature protein during protein splicing process. This sequence requires no specific enzyme or cofactor for separation. This protein sequence and their characteristic of self-cleavage by thiol induction, temperature and pH changes is used for protein purification. The advantage of this method compared to the other protein purification methods is that it doesn’t require any protease enzyme and protease removal steps that make this method important economically. In this study, aequorin photoprotein was hybridized with INT in molecular form and its expression was evaluated. Materials and Methods: In this study, aequorin coding gene that was cloned in pET21-a in the previous studies, was cloned in pTYB21 vector containing INT tag by specific primers and restriction enzymes. Then the resulting pTY-aequarin was transformed to the ER2566 expression strain and cloning accuracy was confirmed by electrophoresis, western blotting and sequencing. Results: The photoprotein aequorin was cloned into SapI/PstI restriction site of pTYB21 plasmid accurately and successfully. Aequorin- INT hybrid protein expression confirmed using traditional methods. Conclusion: The photoprotein aequorin constract in fused with INT confirmed by molecular methods. Also rate of Aequorin- INT expression determined about %25 of cell total protein.

  8. Molecular Cloning of Adenosinediphosphoribosyl Transferase.

    Science.gov (United States)

    1987-09-08

    ACCESSION NO.D,. 03261102F 2312 A~5 11. TITLE (include Securqt Classification) 0 Molecular Cloning of Adenosinediphosphoribosyl Transferase 12. PERSONAL...I’:- AFOSR.Tlt. 8 7 - 0 9 8,2 0IL * pi AFOSR- 85 -0377 PROGRESS REPORT Molecular Cloning of Adenosinediphosphoribosyl Transferase 5." Period of...Pharmacology and the Cardiovascular Research Institute September 8, 1987 .’, 5.’- "’S ". -f, AFOSR - 85 -0377 PROGRESS REPORT Molecular Cloning of

  9. Variation in Genomic Methylation in Natural Populations of Chinese White Poplar

    OpenAIRE

    Kaifeng Ma; Yuepeng Song; Xiaohui Yang; Zhiyi Zhang; Deqiang Zhang

    2013-01-01

    BACKGROUND: It is thought that methylcytosine can be inherited through meiosis and mitosis, and that epigenetic variation may be under genetic control or correlation may be caused by neutral drift. However, DNA methylation also varies with tissue, developmental stage, and environmental factors. Eliminating these factors, we analyzed the levels and patterns, diversity and structure of genomic methylcytosine in the xylem of nine natural populations of Chinese white poplar. PRINCIPAL FINDINGS: O...

  10. Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, Sara; Moreira, M. Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Gasol, Carles M. [SosteniPrA (UAB-IRTA), Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Gabarrell, Xavier; Rieradevall, Joan [SosteniPrA (UAB-IRTA), Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Chemical Engineering Department, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)

    2010-05-15

    Liquid biofuels provide one of the few options for fossil fuel substitution in the short to medium-term and they are strongly being promoted by the European Union as transport fuel (such as ethanol) since they have the potential to offer both greenhouse gas (GHG) savings and energy security. A ''well to wheel'' analysis has been conducted for poplar based ethanol by means of the Life Cycle Assessment (LCA) approach. The aim of the analysis is to assess the environmental performance of three ethanol applications (E10, E85 and E100) in comparison with conventional gasoline. To compare the environmental profiles, the study addressed the impact potentials per kilometre driven by a middle size passenger car, taking into account the performance difference between ethanol blends and gasoline. According to the results of this study, fuel ethanol derived from poplar biomass may help to reduce the contributions to global warming, abiotic resources depletion and ozone layer depletion up to 62%, 72% and 36% respectively. Reductions of fossil fuel extraction of up to 80% could be achieved when pure ethanol is used. On the contrary, contributions to other impact categories would be increased, specifically to acidification and eutrophication. In both categories, ethanol based blends are less environmentally friendly than conventional gasoline due to the higher impact from the upstream activities. Research focussed on the reduction of the environmental impacts should be pointed forward poplar cultivation as well as ethanol conversion plant (enzyme manufacturing, energy production and distillation). In this study poplar cultivation was really intensive in order to obtain a high yield. Strategic planning according to the location of the crops and its requirements should help to reduce these impacts from its cultivation. (author)

  11. Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba).

    Science.gov (United States)

    Ehlting, B; Dluzniewska, P; Dietrich, H; Selle, A; Teuber, M; Hänsch, R; Nehls, U; Polle, A; Schnitzler, J-P; Rennenberg, H; Gessler, A

    2007-07-01

    Salinity represents an increasing environmental problem in managed ecosystems. Populus spp. is widely used for wood production by short-rotation forestry in fertilized plantations and can be grown on saline soil. Because N fertilization plays an important role in salt tolerance, we analysed Grey poplar (Populus tremula x alba, syn. Populus canescens) grown with either 1 mM nitrate or ammonium subjected to moderate 75 mM NaCl. The impact of N nutrition on amelioration of salt tolerance was analysed on different levels of N metabolism such as N uptake, assimilation and N (total N, proteins and amino compounds) accumulation. Na concentration increased in all tissues over time of salt exposure. The N nutrition-dependent effects of salt exposure were more intensive in roots than in leaves. Application of salt reduced root increment as well as stem height increase and, at the same time, increased the concentration of total amino compounds more intensively in roots of ammonium-fed plants. In leaves, salt treatment increased concentrations of total N more intensively in nitrate-fed plants and concentrations of amino compounds independently of N nutrition. The major changes in N metabolism of Grey poplar exposed to moderate salt concentrations were detected in the significant increase of amino acid concentrations. The present results indicate that N metabolism of Grey poplar exposed to salt performed better when the plants were fed with nitrate instead of ammonium as sole N source. Therefore, nitrate fertilization of poplar plantations grown on saline soil should be preferred.

  12. RNA-SEQ reveals transcriptional level changes of poplar roots in different forms of nitrogen treatments

    Directory of Open Access Journals (Sweden)

    Chunpu eQu

    2016-02-01

    Full Text Available Poplar has emerged as a model plant for understanding molecular mechanisms of tree growth, development and response to environment. Long-term application of different forms of nitrogen (such as NO3--N and NH4+-N may cause morphological changes of poplar roots; however, the molecular level changes are still not well known. In this study, we analyzed the expression profiling of poplar roots treated by three forms of nitrogen: S1 (NH4+, S2 (NH4NO3 and S3 (NO3- by using RNA-SEQ technique. We found 463 genes significantly differentially expressed in roots by different N treatments, of which a total of 116 genes were found to differentially express between S1 and S2, 173 genes between S2 and S3, and 327 genes between S1 and S3. A cluster analysis shows significant difference in many transcription factor families and functional genes family under different N forms. Through an analysis of Mapman metabolic pathway, we found that the significantly differentially expressed genes are associated with fermentation, glycolysis and tricarboxylic acid cycle (TCA, secondary metabolism, hormone metabolism, and transport processing. Interestingly, we did not find significantly differentially expressed genes in N metabolism pathway, mitochondrial electron transport / ATP synthesis and mineral nutrition. We also found abundant candidate genes (20 transcription factors and 30 functional genes regulating morphology changes of poplar roots under the three N forms. The results obtained are beneficial to a better understanding of the potential molecular and cellular mechanisms regulating root morphology changes under different N treatments.

  13. Impact of Alkali Pretreatment on the Chemical Component Distribution and Ultrastructure of Poplar Cell Walls

    OpenAIRE

    Zhe Ji; Zhe Ling; Xun Zhang; Gui-Hua Yang; Feng Xu

    2014-01-01

    Alkali pretreatment is one of the leading pretreatment technologies for biofuel applications. The histochemical and structural characteristics of poplar cell walls were investigated before and after sodium hydroxide pretreatment (121 oC, 2%) to understand the alterations in biomass cellular structure, which were correlated with saccharification yield. Results showed that alkali pretreatment preferentially removed lignin from the S2 of fibers, which was similar to the behaviors of coniferyl al...

  14. Sexual dimorphism floral microRNA profiling and target gene expression in andromonoecious poplar (Populus tomentosa.

    Directory of Open Access Journals (Sweden)

    Yuepeng Song

    Full Text Available Although the molecular basis of poplar sex-specific flower development remains largely unknown, increasing evidence indicates an essential role for microRNAs (miRNAs. The specific miRNA types and precise miRNA expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. This system, combined with high-throughput sequencing and computational analysis, allowed us to characterize sex-specific miRNAomes from female and male flowers. Comparative miRNAome analysis combined with quantitative real-time PCR revealed the expression patterns of 27 miRNAs in poplar flower and showed that the targets of these miRNAs are involved in flower organogenesis, Ca(2+ transport, phytohormone synthesis and metabolism, and DNA methylation. This paper describes a complex regulatory network consisting of these miRNAs expressed in sex-specific flower development in a dioecious plant. The conserved and novel miRNA locations were annotated in the Populus trichocarpa genome. Among these, miRNA Pto-F70 and 4 targets are located in the sex-determination regions of chromosome XIX. Furthermore, two novel miRNAs, Pto-F47 and Pto-F68, were shown for the first time to be regulatory factors in phytohormone interactions. To our knowledge, this report is the first systematic investigation of sex-specific flower-related miRNAs and their targets in poplar, and it deepens our understanding of the important regulatory functions of miRNAs in female and male flower development in this dioecious plant.

  15. Oxidative lime pretreatment of high-lignin biomass: poplar wood and newspaper.

    Science.gov (United States)

    Chang, V S; Nagwani, M; Kim, C H; Holtzapple, M T

    2001-04-01

    Lime (Ca[OH]2) and oxygen (O2) were used to enhance the enzymatic digestibility of two kinds of high-lignin biomass: poplar wood and newspaper. The recommended pretreatment conditions for poplar wood are 150 degrees C, 6 h, 0.1 g of Ca(OH)2/g of dry biomass, 9 mL of water/g of dry biomass, 14.0 bar absolute oxygen, and a particle size of -10 mesh. Under these conditions, the 3-d reducing sugar yield of poplar wood using a cellulase loading of 5 filter paper units (FPU)/g of raw dry biomass increased from 62 to 565 mg of eq. glucose/g of raw dry biomass, and the 3-d total sugar (glucose + xylose) conversion increased from 6 to 77% of raw total sugars. At high cellulase loadings (e.g., 75 FPU/g of raw dry biomass), the 3-d total sugar conversion reached 97%. In a trial run with newspaper, using conditions of 140 degrees C, 3 h, 0.3 g of Ca(OH)2/g of dry biomass, 16 mL of water/g of dry biomass, and 7.1 bar absolute oxygen, the 3-d reducing sugar yield using a cellulase loading of 5 FPU/g of raw dry biomass increased from 240 to 565 mg of eq. glucose/g of raw dry biomass. A material balance study on poplar wood shows that oxidative lime pretreatment solubilized 38% of total biomass, including 78% of lignin and 49% of xylan; no glucan was removed. Ash increased because calcium was incorporated into biomass during the pretreatment. After oxidative lime pretreatment, about 21% of added lime could be recovered by CO2 carbonation.

  16. Human cloning and child welfare.

    Science.gov (United States)

    Burley, J; Harris, J

    1999-01-01

    In this paper we discuss an objection to human cloning which appeals to the welfare of the child. This objection varies according to the sort of harm it is expected the clone will suffer. The three formulations of it that we will consider are: 1. Clones will be harmed by the fearful or prejudicial attitudes people may have about or towards them (H1); 2. Clones will be harmed by the demands and expectations of parents or genotype donors (H2); 3. Clones will be harmed by their own awareness of their origins, for example the knowledge that the genetic donor is a stranger (H3). We will show why these three versions of the child welfare objection do not necessarily supply compelling reasons to ban human reproductive cloning. The claim that we will develop and defend in the course of our discussion is that even if it is the case that a cloned child will suffer harms of the type H1-H3, it is none the less permissible to conceive by cloning so long as these cloning-induced welfare deficits are not such as to blight the existence of the resultant child, whoever this may be. PMID:10226914

  17. Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    François Héricourt

    2016-12-01

    Full Text Available Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.

  18. An In-Depth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xianzhi [Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville TN 37996 USA; Pu, Yunqiao [BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Yoo, Chang Geun [BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Li, Mi [BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Bali, Garima [Renewable Bioproducts Institute, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 USA; Park, Doh-Yeon [Renewable Bioproducts Institute, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 USA; Gjersing, Erica [BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; National Renewable Energy Laboratory, Golden CO 80401 USA; Davis, Mark F. [BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; National Renewable Energy Laboratory, Golden CO 80401 USA; Muchero, Wellington [BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Tuskan, Gerald A. [BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Tschaplinski, Timothy J. [BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Ragauskas, Arthur J. [Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville TN 37996 USA; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University Tennessee Institute of Agriculture, Knoxville TN 37996 USA

    2016-12-12

    In an effort to better understand the biomass recalcitrance, six natural poplar variants were selected as feedstocks based on previous sugar release analysis. Compositional analysis and physicochemical characterizations of these poplars were performed and the correlations between these physicochemical properties and enzymatic hydrolysis yield were investigated. Gel permeation chromatography (GPC) and 13C solid state NMR were used to determine the degree of polymerization (DP) and crystallinity index (CrI) of cellulose, and the results along with the sugar release study indicated that cellulose DP likely played a more important role in enzymatic hydrolysis. Simons' stain revealed that the accessible surface area of substrate significantly varied among these variants from 17.3 to 33.2 mg g-1/biomass as reflected by dye adsorption, and cellulose accessibility was shown as one of the major factors governing substrates digestibility. HSQC and 31P NMR analysis detailed the structural features of poplar lignin variants. Overall, cellulose relevant factors appeared to have a stronger correlation with glucose release, if any, than lignin structural features. Lignin structural features, such as a phenolic hydroxyl group and the ratio of syringyl and guaiacyl (S/G), were found to have a more convincing impact on xylose release. Low lignin content, low cellulose DP, and high cellulose accessibility generally favor enzymatic hydrolysis; however, recalcitrance cannot be simply judged on any single substrate factor.

  19. Leaf energy balance and transpirational relationships of tulip poplar (Liriodendron tulipifera)

    Energy Technology Data Exchange (ETDEWEB)

    McConathy, R.K.; McLaughlin, S.B.; Reichle, D.E.; Dinger, B.E.

    1976-10-01

    Relationships between several physiological parameters of in situ tulip poplar (Liriodendron tulipifera L.) foliage, and its surrounding forest environment were examined, with emphasis on the transpirational process. Objectives were to measure and compare stomatal relationships with environmental and plant morphological variables, determine and assess the relative importance of factors affecting transpiration and leaf energy balance of a mature tulip poplar, examine and describe the diurnal kinetics of transpiration and leaf energy balance under forest conditions, and examine and develop equations describing these processes and relationships. Tulip poplar leaves were examined at three crown heights. Stomatal distribution, density, and dimensions were measured, then these data were used to predict leaf diffusion layer resistance. Stomatal dimensions decreased with crowned height while stomatal density increased, but neither varied over individual leaf surfaces. Numbers of stomata per leaf were constant throughout the crown. Calculated transpiration rates were compared with stomatal diffusion resistance, leaf xylem water potential, and environmental parameters. Diurnal leaf heat loss, water stress, and stomatal resistance measurements followed the diurnal variation of the radiation absorbed by the leaf. Heat loss by radiation, evaporation, and convection varied with crown height in response to variations in stomatal diffusion resistance, transpiration, vapor pressure deficit, leaf temperature, and wind speed.

  20. Investigation of horizontal gene transfer in poplar/Amanita muscaria ectomycorrhizas.

    Science.gov (United States)

    Zhang, Chi; Hampp, Rüdiger; Nehls, Uwe

    2005-01-01

    Fine roots of forest trees form together with certain soil fungi symbiotic structures (ectomycorrhizas), where fungal hyphae are in intimate contact with plant cells. Due to root cell degeneration, plant DNA is released and could be taken up by the fungus. The possibility that horizontal gene transfer might result in a risk for the environment should be evaluated before a massive release of genetically engineered trees into nature occurs, even though only a few convincing examples of horizontal gene transfer are known. Transgenic poplars containing a construct of the Streptomyces hygroscopicus bar gene under the control of the Cochliobolus heterostrophus GPD (glyceraldehyde-3-phosphate dehydrogenase) promoter were generated by Agrobacterium-mediated transformation. The functionality of this construct in the ectomycorrhizal model fungus Amanita muscaria was previously verified by protoplast-based fungal transformation. 35,000 ectomycorrhizas, formed between transgenic poplars and non-transgenic A. muscaria hyphae, were isolated and transferred to selective agar plates. Putative herbicide-resistant fungal colonies were obtained after the first round of selection. However, none of these colonies survived a transfer onto fresh selection medium, nor did they contain the bar gene, indicating that no horizontal gene transfer from poplar to A. muscaria occurred during symbiosis under axenic conditions. However, since ectomycorrhizas are associated under natural conditions with viruses, bacteria and other fungi, these additional associations should be evaluated in future.

  1. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK.

    Science.gov (United States)

    Aylott, Matthew J; Casella, E; Tubby, I; Street, N R; Smith, P; Taylor, Gail

    2008-01-01

    Limited information on likely supply and spatial yield of bioenergy crops exists for the UK. Here, productivities are reported of poplar (Populus spp.) and willow (Salix spp.) grown as short-rotation coppice (SRC), using data from a large 49-site yield trial network. A partial least-squares regression technique was used to upscale actual field trial observations across England and Wales. Spatial productivity was then assessed under different land-use scenarios. Mean modelled yields ranged between 4.9 and 10.7 oven-dry tonnes (odt) ha(-1) yr(-1). Yields were generally higher in willow than in poplar, reflecting the susceptibility of older poplar genotypes to rust and their tendency for single stem dominance. Replacing 10% of arable land, 20% of improved grassland and 100% of set-aside grassland in England and Wales with the three most productive genotypes would yield 13 Modt of biomass annually (supplying 7% of UK electricity production or 48% of UK combined heat and power (CHP) production). Results show existing SRC genotypes have the immediate potential to be an important component of a mixed portfolio of renewables and that, in future, as new and improved genotypes become available, higher yields could extend this potential further.

  2. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils.

    Science.gov (United States)

    Ruttens, Ann; Boulet, Jana; Weyens, Nele; Smeets, Karen; Adriaensen, Kristin; Meers, Erik; Van Slycken, Stijn; Tack, Filip; Meiresonne, Linda; Thewys, Theo; Witters, Nele; Carleer, Robert; Dupae, Joke; Vangronsveld, Jaco

    2011-01-01

    Phytoremediation, more precisely phytoextraction, has been placed forward as an environmental friendly remediation technique, that can gradually reduce increased soil metal concentrations, in particular the bioavailable fractions. The aim of this study was to investigate the possibilities of growing willows and poplars under short rotation coppice (SRC) on an acid, poor, sandy metal contaminated soil, to combine in this way soil remediation by phytoextraction on one hand, and production of biomass for energy purposes on the other. Above ground biomass productivities were low for poplars to moderate for willows, which was not surprising, taking into account the soil conditions that are not very favorable for growth of these trees. Calculated phytoextraction efficiency was much longer for poplars than these for willows. We calculated that for phytoextraction in this particular case it would take at least 36 years to reach the legal threshold values for cadmium, but in combination with production of feedstock for bioenergy processes, this type of land use can offer an alternative income for local farmers. Based on the data of the first growing cycle, for this particular case, SRC of willows should be recommended.

  3. Overexpression of poplar cellulase accelerates growth and disturbs the closing movements of leaves in sengon.

    Science.gov (United States)

    Hartati, Sri; Sudarmonowati, Enny; Park, Yong Woo; Kaku, Tomomi; Kaida, Rumi; Baba, Kei'ichi; Hayashi, Takahisa

    2008-06-01

    In this study, poplar (Populus alba) cellulase (PaPopCel1) was overexpressed in a tropical Leguminosae tree, sengon (Paraserianthes falcataria), by the Agrobacterium tumefaciens method. PaPopCel1 overexpression increased the length and width of stems with larger leaves, which showed a moderately higher density of green color than leaves of the wild type. The pairs of leaves on the transgenic plants closed more slowly during sunset than those on the wild-type plants. When main veins from each genotype were excised and placed on a paper towel, however, the leaves of the transgenic plants closed more rapidly than those of the wild-type plant. Based on carbohydrate analyses of cell walls, the leaves of the transgenic plants contained less wall-bound xyloglucan than those of the wild-type plants. In situ xyloglucan endotransglucosylase activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, occurred in the parenchyma cells (motor cells) of the petiolule pulvinus attached to the main vein, although the transgenic plant incorporated less whole xyloglucan than the wild-type plant. These observations support the hypothesis that the paracrystalline sites of cellulose microfibrils are attacked by poplar cellulase, which loosens xyloglucan intercalation, resulting in an irreversible wall modification. This process could be the reason why the overexpression of poplar cellulase both promotes plant growth and disturbs the biological clock of the plant by altering the closing movements of the leaves of the plant.

  4. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves; Chatterjee, Siddharth G.; Donohoe, Bryon S.; Yarbrough, John M.; Himmel, Michael E.; Nimlos, Mark R.; Johnson, David K.

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylan that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.

  5. Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain

    Science.gov (United States)

    Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.

    1985-12-01

    A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.

  6. [Construction of Frankia genomic libraries and isolation of clones homologous to nodulation genes from Rhizobium leguminosarum].

    Science.gov (United States)

    Cui, Y H; Qin, M; Wang, Y L; Ding, J; Ma, Q S

    1990-01-01

    High molecular genomic DNAs were isolated by using the lysozyme plus achromopeptidase system from Frankia strains At4, Ccol and Hr16, the root nodule endophytes of Alnus, Casuarina and Hippophae respectively, and used to construct genomic libraries in pLAFR1, a broad host range cosmid vector within many gram-negative hosts. The genomic libraries were screened by in situ colony hybridization to identify clones homologous to common nodulation genes of Rhizobium leguminosarum, based on the sequence homology of EcoRI-digested Frankia total DNA to nodABC from Rhizobium meliloti. Several clones showing relatively strong hybridization were found, the recombinant plasmid was isolated, and their homology with Rhizobium nodulation genes was confirmed by spot hybridization. Further work on these positive clones is now underway.

  7. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  8. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Directory of Open Access Journals (Sweden)

    A. Kiendler-Scharr

    2012-01-01

    Full Text Available Stress-induced volatile organic compound (VOC emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m−2 s−1 in non-transgenic controls (wild type WT and nearly zero (<0.5 nmol m−2 s−1 in isoprene emission-repressed plants (line RA22, respectively. Nucleation rates of up to 3600 cm−3 s−1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8 was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  9. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Directory of Open Access Journals (Sweden)

    A. Kiendler-Scharr

    2011-08-01

    Full Text Available Stress-induced volatile organic compound (VOC emissions from transgenic Grey poplar, modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA formation. Nucleation rates of up to 3600 cm−3 s−1 were observed in our experiments. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m−2 s−1 in non-transgenic controls (wild type WT and nearly zero (<0.5 nmol m−2 s−1 in isoprene emission-repressed lines (line RA22, respectively. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8 was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3 % of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  10. [The discrete horror of cloning].

    Science.gov (United States)

    Guibourg, Ricardo A

    2009-01-01

    The author raises the topic of cloning after the decision of the Argentine government, which concerned for the "dignity of the human person", passed a decree of need and urgency, No. 200/97 (Annex), prohibiting cloning experiments with human beings. Therefore, considering that the topic is so terribly urgent and necessary, the author feels it is timely to consider it.

  11. CATO: The Clone Alignment Tool.

    Directory of Open Access Journals (Sweden)

    Peter V Henstock

    Full Text Available High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1 a top-level summary of the top candidate sequences aligned to each reference sequence, 2 a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3 a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  12. CATO: The Clone Alignment Tool.

    Science.gov (United States)

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  13. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    Science.gov (United States)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but

  14. Investigation on the Effect of Kenaf Core and Stalk Fiber on the Medium Density Fiber Board Properties Made of Poplar Fibers

    Directory of Open Access Journals (Sweden)

    Fahimeh SH.Alizadeh

    2012-01-01

    Full Text Available In order to optimize the use of material non-forest resources, in this study the possibility of using the kenaf stalk fibers mixed with poplar fibers in producing medium density fiber board was considered. Variable factors such as density at two levels (0.55, 0.75 g/cm3 and the percentage incorporation of fiber (%50 poplar fibers, - %50 kenaf core fiber, %50 poplar fiber, -% 50 kenaf stalk fiber and %100 poplar fibers were considered. Steaming time and temperature (175°C, 10min, press time and temperature (5 min, 175°C, Pressing pressure (30 kg/cm3, fiber cake moisture (%12 and urea-formaldehyde resin with Concentration of %50 of the study factors were fixed. Results show that adding kenaf core fibers to the poplar fibers increases modulus of elasticity and water absorption but thickness swelling reduces. Increased density in board made with kenaf core has caused increase in bending strength, modulus of elasticity and internal bond strength and their water absorption and thickness swelling after 2 and 24 hours were competitive with poplar (MDF. On the other hand Populus fiber– kenaf stalk board mechanical and physical properties were competitive with (MDF board made of %100 poplar fibers. Finally we can say that according to the statistical analysis, the best treatment in this study was using kenaf core fibers, in making poplar (MDF with 0.75 g/cm3 density.

  15. Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment

    NARCIS (Netherlands)

    Liberloo, M.; Lukac, M.; Calfapietra, C.; Hoosbeek, M.R.; Gielen, B.; Miglietta, F.; Mugnozza, G.S.; Ceulemans, R.

    2009-01-01

    A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar (Populus) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show tha

  16. A first generation physical map of the medaka genome in BACs essential for positional cloning and clone-by-clone based genomic sequencing.

    Science.gov (United States)

    Khorasani, Maryam Zadeh; Hennig, Steffen; Imre, Gabriele; Asakawa, Shuichi; Palczewski, Stefanie; Berger, Anja; Hori, Hiroshi; Naruse, Kiyoshi; Mitani, Hiroshi; Shima, Akihiro; Lehrach, Hans; Wittbrodt, Jochen; Kondoh, Hisato; Shimizu, Nobuyoshi; Himmelbauer, Heinz

    2004-07-01

    In order to realize the full potential of the medaka as a model system for developmental biology and genetics, characterized genomic resources need to be established, culminating in the sequence of the medaka genome. To facilitate the map-based cloning of genes underlying induced mutations and to provide templates for clone-based genomic sequencing, we have created a first-generation physical map of the medaka genome in bacterial artificial chromosome (BAC) clones. In particular, we exploited the synteny to the closely related genome of the pufferfish, Takifugu rubripes, by marker content mapping. As a first step, we clustered 103,144 public medaka EST sequences to obtain a set of 21,121 non-redundant sequence entities. Avoiding oversampling of gene-dense regions, 11,254 of EST clusters were successfully matched against the draft sequence of the fugu genome, and 2363 genes were selected for the BAC map project. We designed 35mer oligonucleotide probes from the selected genes and hybridized them against 64,500 BAC clones of strains Cab and Hd-rR, representing 14-fold coverage of the medaka genome. Our data set is further supplemented with 437 results generated from PCR-amplified inserts of medaka cDNA clones and BAC end-fragment markers. Our current, edited, first generation medaka BAC map consists of 902 map segments that cover about 74% of the medaka genome. The map contains 2721 markers. Of these, 2534 are from expressed sequences, equivalent to a non-redundant set of 2328 loci. The 934 markers (724 different) are anchored to the medaka genetic map. Thus, genetic map assignments provide immediate access to underlying clones and contigs, simplifying molecular access to candidate gene regions and their characterization.

  17. [Scientific ethics of human cloning].

    Science.gov (United States)

    Valenzuela, Carlos Y

    2005-01-01

    True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.

  18. Quantum probabilistically cloning and computation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this article we make a review on the usefulness of probabilistically cloning and present examples of quantum computation tasks for which quantum cloning offers an advantage which cannot be matched by any approach that does not resort to it.In these quantum computations,one needs to distribute quantum information contained in states about which we have some partial information.To perform quantum computations,one uses state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.And we discuss the achievable efficiencies and the efficient quantum logic network for probabilistic cloning the quantum states used in implementing quantum computation tasks for which cloning provides enhancement in performance.

  19. [Time lag effect between poplar' s sap flow velocity and microclimate factors in agroforestry system in West Liaoning Province].

    Science.gov (United States)

    Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing

    2010-11-01

    By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus,