Hybrid Simulations of Pluto's Plasma Interaction
Feyerabend, M.; Simon, S.; Motschmann, U.; Liuzzo, L.
2016-12-01
We study the interaction between Pluto and the solar wind at the time of the New Horizons (NH) flyby by applying a hybrid (kinetic ions, fluid electrons) simulation model. The use of a hybrid model is necessary since the gyroradii of the involved ion species are more than an order of magnitude larger than the obstacle to the solar wind and thus, Pluto's interaction region displays considerable asymmetries. We investigate the three-dimensional structure and extension of the various plasma signatures seen along the NH trajectory. Especially, we will constrain possible asymmetries in the shape of Pluto's bow shock, plasma tail and Plutopause (i.e., the boundary between the solar wind and the population of plutogenic ions) which may arise from the large ion gyroradii. Starting from the upstream solar wind parameters measured by NH, we investigate the dependency of these plasma signatures on the density of Pluto's ionosphere and on the solar wind ram pressure. We also include Pluto's largest moon Charon into the simulation model and study the simultaneous interaction between both bodies and the solar wind. Data from NH suggest that Charon mainly acts as a plasma absorber without an appreciable atmosphere. For various relative positions of Pluto and Charon, we investigate the deformation of Charon's wake when exposed to the inhomogeneous plasma flow in the Pluto interaction region, as well as a possible feedback of Charon on the structure of Pluto's induced magnetosphere.
Plasma environment of Titan: a 3-D hybrid simulation study
Directory of Open Access Journals (Sweden)
S. Simon
2006-05-01
Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.
Hybrid molecular dynamics simulation for plasma induced damage analysis
Matsukuma, Masaaki
2016-09-01
In order to enable further device size reduction (also known as Moore's law) and improved power performance, the semiconductor industry is introducing new materials and device structures into the semiconductor fabrication process. Materials now include III-V compounds, germanium, cobalt, ruthenium, hafnium, and others. The device structure in both memory and logic has been evolving from planar to three dimensional (3D). One such device is the FinFET, where the transistor gate is a vertical fin made either of silicon, silicon-germanium or germanium. These changes have brought renewed interests in the structural damages caused by energetic ion bombardment of the fin sidewalls which are exposed to the ion flux from the plasma during the fin-strip off step. Better control of the physical damage of the 3D devices requires a better understanding of the damage formation mechanisms on such new materials and structures. In this study, the damage formation processes by ion bombardment have been simulated for Si and Ge substrate by Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid simulations and compared to the results from the classical molecular dynamics (MD) simulations. In our QM/MM simulations, the highly reactive region in which the structural damage is created is simulated with the Density Functional based Tight Binding (DFTB) method and the region remote from the primary region is simulated using classical MD with the Stillinger-Weber and Moliere potentials. The learn on the fly method is also used to reduce the computational load. Hence our QM/MM simulation is much faster than the full QC-MD simulations and the original QM/MM simulations. The amorphous layers profile simulated with QM/MM have obvious differences in their thickness for silicon and germanium substrate. The profile of damaged structure in the germanium substrate is characterized by a deeper tail then in silicon. These traits are also observed in the results from the mass selected ion beam
Plasma simulation in a hybrid ion electric propulsion system
Jugroot, Manish; Christou, Alex
2015-04-01
An exciting possibility for the next generation of satellite technology is the microsatellite. These satellites, ranging from 10-500 kg, can offer advantages in cost, reduced risk, and increased functionality for a variety of missions. For station keeping and control of these satellites, a suitable compact and high efficiency thruster is required. Electrostatic propulsion provides a promising solution for microsatellite thrust due to their high specific impulse. The rare gas propellant is ionized into plasma and generates a beam of high speed ions by electrostatic processes. A concept explored in this work is a hybrid combination of dc ion engines and hall thrusters to overcome space-charge and lifetime limitations of current ion thruster technologies. A multiphysics space and time-dependent formulation was used to investigate and understand the underlying physical phenomena. Several regions and time scales of the plasma have been observed and will be discussed.
Integrated Plasma Simulation of Lower Hybrid Current Drive in Tokamaks
Bonoli, P. T.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Kessel, C. E.; Jardin, S. C.
2012-03-01
It has been shown in Alcator C-Mod that the onset time for sawteeth can be delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through the injection of off-axis LH current drive power [1]. We are simulating these experiments using the Integrated Plasma Simulator (IPS) [2], where the driven LH current density profiles are computed using a ray tracing component (GENRAY) and Fokker Planck code (CQL3D) [3] that are run in a tightly coupled time advance. The background plasma is evolved using the TSC transport code with the Porcelli sawtooth model [4]. Predictions of the driven LH current profiles will be compared with simpler ``reduced'' models for LHCD such as the LSC code which is implemented in TSC and which is also invoked within the IPS. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).
Hybrid Simulation of Laser-Plasma Interactions and Fast Electron Transport in Inhomogeneous Plasma
Energy Technology Data Exchange (ETDEWEB)
Cohen, B I; Kemp, A; Divol, L
2009-05-27
A new framework is introduced for kinetic simulation of laser-plasma interactions in an inhomogenous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell's equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell's equations are solved using an Ohm's law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere's law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.
Energy Technology Data Exchange (ETDEWEB)
Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
2015-08-15
The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.
Ito, Atsushi M.; Takayama, Arimichi; Oda, Yasuhiro; Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji; Ohno, Noriyasu; Kajita, Shin; Yajima, Miyuki; Noiri, Yasuyuki; Yoshimoto, Yoshihide; Saito, Seiki; Takamura, Shuichi; Murashima, Takahiro; Miyamoto, Mitsutaka; Nakamura, Hiroaki
2015-08-01
The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.
Lipatov, A S; Paterson, W R; Sittler, E C; Hartle, R E; Simpson, D G
2012-01-01
The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect a to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream backgr...
Jovian Plasma Torus Interaction with Europa: 3D Hybrid Kinetic Simulation. First results
Lipatov, A. S.; Cooper, J. F.; Paterson, W. R.; Sittler, E. C.; Hartle, R. E.; Simpson, D. G.
2010-01-01
The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa-moon-magnetosphere system with respect to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo orbiter mission, and for planning flyby and orbital measurements, (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy etal.,2007;Shematovichetal.,2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyro radius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions).Non-thermal distributions of upstream plasma will be addressed in future work. Photoionization,electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider two models for background plasma:(a) with O(++) ions; (b) with O(++) and S(++) ions. The majority of O2 atmosphere is thermal with an extended cold population (Cassidyetal.,2007). A few first simulations already include an induced magnetic dipole; however, several important effects of induced magnetic fields arising from oceanic shell conductivity will be addressed in later work.
Bonoli, P. T.; Shiraiwa, S.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Chen, Jin; Poli, F.; Kessel, C. E.; Jardin, S. C.
2012-10-01
Recent upgrades to the ion cyclotron RF (ICRF) and lower hybrid RF (LHRF) components of the Integrated Plasma Simulator [1] have made it possible to simulate LH current drive in the presence of ICRF minority heating and mode conversion electron heating. The background plasma is evolved in these simulations using the TSC transport code [2]. The driven LH current density profiles are computed using advanced ray tracing (GENRAY) and Fokker Planck (CQL3D) [3] components and predictions from GENRAY/CQL3D are compared with a ``reduced'' model for LHCD (the LSC [4] code). The ICRF TORIC solver is used for minority heating with a simplified (bi-Maxwellian) model for the non-thermal ion tail. Simulation results will be presented for LHCD in the presence of ICRF heating in Alcator C-Mod. [4pt] [1] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008).[0pt] [2] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).[0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992).[0pt] [4] D. Ignat et al, Nucl. Fus. 34, 837 (1994).[0pt] [5] M. Brambilla, Plasma Phys. and Cont. Fusion 41,1 (1999).
Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan Carrick
Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literatureAB that is appropriate for such studies. In particular, the formulation uses a set of time-dependent drift-kinetic equations (DKEs) to advance the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by a set of MHD equations which are closed by moments of fNM . We then present two DKE solvers based upon this formulation in axisymmetric toroidal geometries. The Neoclassical Ion-Electron Solver (NIES) solves the steady-state DKEs in the low-collisionality limit. Convergence and benchmark studies are discussed, providing a proof-of-principle that this new formulation can accurately reproduce results from the literature in the limit considered. We then present the DK4D code which evolves the finite-collisionality DKEs time-dependently. Computational methods used and successful benchmarks to other neoclassical models and codes are discussed. Furthermore, we couple DK4D to a reduced, transport-timescale MHD code. The resulting hybrid code is used to simulate the evolution of the current density in a large-aspect-ratio plasma in the presence of several different time-dependent pressure profiles. These simulations demonstrate the self-consistent, dynamic formation of the ohmic and bootstrap currents. In the slowly-evolving plasmas considered
A robust method for handling low density regions in hybrid simulations for collisionless plasmas
Energy Technology Data Exchange (ETDEWEB)
Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp; Higashimori, Katsuaki; Shirakawa, Keisuke
2014-10-15
A robust method to handle vacuum and near vacuum regions in hybrid simulations for space and astrophysical plasmas is presented. The conventional hybrid simulation model dealing with kinetic ions and a massless charge-neutralizing electron fluid is known to be susceptible to numerical instability due to divergence of the whistler-mode wave dispersion, as well as division-by-density operation in regions of low density. Consequently, a pure vacuum region is not allowed to exist in the simulation domain unless some ad hoc technique is used. To resolve this difficulty, an alternative way to introduce finite electron inertia effect is proposed. Contrary to the conventional method, the proposed one introduces a correction to the electric field rather than the magnetic field. It is shown that the generalized Ohm's law correctly reduces to Laplace's equation in a vacuum which therefore does not involve any numerical problems. In addition, a variable ion-to-electron mass ratio is introduced to reduce the phase velocity of high frequency whistler waves at low density regions so that the stability condition is always satisfied. It is demonstrated that the proposed model is able to handle near vacuum regions generated as a result of nonlinear self-consistent development of the system, as well as pure vacuum regions set up at the initial condition, without losing the advantages of the standard hybrid code.
Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.
2013-01-01
The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive
Chen, Qiang; Chen, Bin
2012-10-01
In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.
Hybrid simulation of a parallel collisionless shock in the Large Plasma Device
Weidl, M S; Jenko, F; Niemann, C
2016-01-01
We present two-dimensional hybrid kinetic/magnetohydrodynamic simulations of planned laser-ablation experiments in the Large Plasma Device (LAPD). Our results, based on parameters which have been validated in previous experiments, show that a parallel collisionless shock can begin forming within the available space. Carbon-debris ions that stream along the magnetic-field direction with a blow-off speed of four times the Alfven velocity excite strong magnetic fluctuations, eventually transfering part of their kinetic energy to the surrounding hydrogen ions. This acceleration and compression of the background plasma creates a shock front, which satisfies the Rankine-Hugoniot conditions and can therefore propagate on its own. Furthermore, we analyze the upstream turbulence and show that it is dominated by the right-hand resonant instability.
Comparison of plasma data from ASPERA-3/Mars-Express with a 3-D hybrid simulation
Directory of Open Access Journals (Sweden)
A. Bößwetter
2007-08-01
Full Text Available The ELS and IMA sensors of the ASPERA-3 experiment onboard of Mars-Express (MEX can measure electron as well as ion moments. We compare these measurements for a specific orbit with the simulation results from a 3-D hybrid model. In the hybrid approximation the electrons are modeled as a massless charge-neutralizing fluid, whereas the ions are treated as individual particles. This approach allows gyroradius effects to be included in our model calculations of the Martian plasma environment because the gyroradii of the solar wind protons are in the range of several hundred kilometers and therefore comparable with the characteristic scales of the subsolar ionospheric interaction region. The position of both the bow shock and the Ion Composition Boundary (ICB manifest in the MEX data as well as in the results from the hybrid simulation nearly at the same location. The characteristic features of these boundaries, i.e. an increase of proton density and temperature at the Bow Shock and a transition from solar wind to ionospheric particles at the ICB, are clearly identifiable in the data.
Hybrid Kinetic-Fluid Electromagnetic Simulations of Imploding High Energy Density Plasmas for IFE
Welch, Dale; Rose, Dave; Thoma, Carsten; Genoni, Thomas; Bruner, Nichelle; Clark, Robert; Stygar, William; Leeper, Ramon
2011-10-01
A new simulation technique is being developed to study high current and moderate density-radius product (ρR) z-pinch plasmas relevant to Inertial Fusion Energy (IFE). Fully kinetic, collisional, and electromagnetic simulations of the time evolution of up to 40-MA current (deuterium and DT) z-pinches, but with relatively low ρR, have yielded new insights into the mechanisms of neutron production. At fusion relevant conditions (ρR > 0.01 gm/cm2) , however, this technique requires a prohibitively large number of cells and particles. A new hybrid implicit technique has been developed that accurately describes high-density and magnetized imploding plasmas. The technique adapts a recently published algorithm, that enables accurate descriptions of highly magnetized particle orbits, to high density plasmas and also makes use of an improved kinetic particle remap technique. We will discuss the new technique, stable range of operation, and application to an IFE relevant z-pinch design at 60 MA. Work supported by Sandia National Laboratories.
A Robust Method for Handling Low Density Regions in Hybrid Simulations for Collisionless Plasmas
Amano, Takanobu; Shirakawa, Keisuke
2014-01-01
A robust method to handle vacuum and near vacuum regions in hybrid simulations for space and astrophysical plasmas is presented. The conventional hybrid simulation model dealing with kinetic ions and a massless charge-neutralizing electron fluid is known to be susceptible to numerical instability due to divergence of the whistler-mode wave dispersion, as well as division-by-density operation in regions of low density. Consequently, a pure vacuum region is not allowed to exist in the simulation domain unless some ad hoc technique is used. To resolve this difficulty, an alternative way to introduce finite electron inertia effect is proposed. Contrary to the conventional method, the proposed one introduces a correction to the electric field rather than the magnetic field. It is shown that the generalized Ohm's law correctly reduces to Laplace's equation in a vacuum which therefore does not involve any numerical problems. In addition, a variable ion-to-electron mass ratio is introduced to reduce the phase velocit...
Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations
Hellinger, Petr
2014-01-01
Kinetic instabilities in weakly collisional, high beta plasmas are investigated using two-dimensional hybrid expanding box simulations with Coulomb collisions modeled through the Langevin equation (corresponding to the Fokker-Planck one). The expansion drives a parallel or perpendicular temperature anisotropy (depending on the orientation of the ambient magnetic field). For the chosen parameters the Coulomb collisions are important with respect to the driver but are not strong enough to keep the system stable with respect to instabilities driven by the proton temperature anisotropy. In the case of the parallel temperature anisotropy the dominant oblique fire hose instability efficiently reduces the anisotropy in a quasilinear manner. In the case of the perpendicular temperature anisotropy the dominant mirror instability generates coherent compressive structures which scatter protons and reduce the temperature anisotropy. For both the cases the instabilities generate temporarily enough wave energy so that the ...
Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Landi, Simone
2016-01-01
Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the other hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.
Institute of Scientific and Technical Information of China (English)
Yu Daren; Wu Zhiwen; Wu Xiaoling
2005-01-01
Based on the analysis of the physical mechanism of the Stationary Plasma Thruster (SPT), an integral equation describing the ion density of the steady SPT and the ion velocity distribution function at an arbitrary axial position of the steady SPT channel are derived. The integral equation is equivalent to the Vlasov equation, but the former is simpler than the latter. A one dimensional steady quasineutral hybrid model is established. In this model, ions are described by the above integral equation, and neutrals and electrons are described by hydrodynamic equations. The transferred equivalency to the differential equation and the integral equation, together with other equations, are solved by an ordinary differential equation (ODE) solver in the Matlab.The numerical simulation results show that under various circumstances, the ion average velocity would be different and needs to be deduced separately.
Mapping of coma anisotropies to plasma structures of weak comets: a 3-D hybrid simulation study
Directory of Open Access Journals (Sweden)
N. Gortsas
2009-04-01
Full Text Available The effects of coma anisotropies on the plasma environment of comets have been studied by means of a 3-D hybrid model which treats electrons as a massless, charge-neutralizing fluid, whereas ion dynamics are covered by a kinetic approach. From Earth-based observations as well as from in-situ spacecraft measurements the shape of the coma of many comets is ascertained to be anisotropic. However, most plasma simulation studies deploy a spherically symmetric activity pattern. In this paper anisotropy is studied by considering three different coma shape models. The first model is derived from the Haser model and is characterised by spherically symmetry. This reference model is then compared with two different neutral gas shape models: the dayside restricted model with no nightside activity and a cone shaped model with opening angle of π/2. In all models the integrated surface activity is kept constant. The simulations have been done for the Rosetta target comet 67P/Churyumov-Gerasimenko for two heliocentric distances, 1.30 AU and 3.25 AU. It is found that shock formation processes are modified as a result of increasing spatial confinement. Characteristic plasma structures of comets such as the bow shock, magnetic barrier region and the ion composition boundary exhibit a shift towards the sun. In addition, the cone shaped model leads to a strong increase of the mass-loaded region which in turn leads to a smooth deceleration of the solar wind flow and an increasing degree of mixture between the solar wind and cometary ion species. This creates an additional transport channel of the magnetic field from the magnetic barrier region away which in turn leads to a broadening of this region. In addition, it leads to an ion composition boundary which is only gradually developed.
Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters
Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel
2010-01-01
HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.
A New Hybrid Scheme for Simulations of Highly Collisional RF-Driven Plasmas
Eremin, Denis; Mussenbrock, Thomas
2015-01-01
This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using Particle-In-Cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy species are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a "full" fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons. The fluid models require knowledge of the momentum exchange frequency and dependence of the ion mobilities on the electric field when the ions are in equilibrium with the latter. To this end an auxiliary Monte-Carlo scheme is constructed. It is demonstrated that the drift-diffusion approximation can overestimate ion transport in simulations of RF-driven discharges with heavy ion species operated in the $\\gamma$ mode at the atmospheric pressure or in all discharge simulations for lower pressures. This can lead to exaggerated plasma ...
High-resolution hybrid simulations of kinetic plasma turbulence at proton scales
Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr
2015-01-01
We investigate properties of plasma turbulence from magneto-hydrodynamic (MHD) to sub-ion scales by means of two-dimensional, high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field, perpendicular to the simulation box, and we add a spectrum of large-scale magnetic and kinetic fluctuations, with energy equipartition and vanishing correlation. Once the turbulence is fully developed, we observe a MHD inertial range, where the spectra of the perpendicular magnetic field and the perpendicular proton bulk velocity fluctuations exhibit power-law scaling with spectral indices of -5/3 and -3/2, respectively. This behavior is extended over a full decade in wavevectors and is very stable in time. A transition is observed around proton scales. At sub-ion scales, both spectra steepen, with the former still following a power law with a spectral index of ~-3. A -2.8 slope is observed in the density and parallel magnetic fluctuations, highlighting the presence of compressive effects ...
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Energy Technology Data Exchange (ETDEWEB)
Ku, S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hager, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Chang, C. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kwon, J. M. [National Fusion Research Institute, Republic of Korea; Parker, S. E. [University of Colorado Boulder, USA
2016-06-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Energy Technology Data Exchange (ETDEWEB)
Ku, S., E-mail: sku@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Hager, R.; Chang, C.S. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kwon, J.M. [National Fusion Research Institute (Korea, Republic of); Parker, S.E. [University of Colorado Boulder (United States)
2016-06-15
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Ku, S.; Hager, R.; Chang, C. S.; Kwon, J. M.; Parker, S. E.
2016-06-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation - e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others - can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function - driven by ionization, charge exchange and wall loss - is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics
2016-11-29
other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a ...Briefing Charts 3. DATES COVERED (From - To) 02 November 2016 – 30 November 2016 4. TITLE AND SUBTITLE A Hybrid Model for Multiscale Laser Plasma...Briefing Charts 15. SUBJECT TERMS N/ A 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE
A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics
2017-06-23
account for all processes of the collisional cascade during the relaxation of a hot plasma. To this end, the focus was in the development of (a) a...Collisional Radiative operator was necessary to accurately account for all processes of the collisional cascade during the relaxation of a hot plasma. To this...important to note that this is a code-to- code comparison and the validation of these simulations is an area of active research in the non-local
Real-time 3-D hybrid simulation of Titan's plasma interaction during a solar wind excursion
Directory of Open Access Journals (Sweden)
S. Simon
2009-09-01
Full Text Available The plasma environment of Saturn's largest satellite Titan is known to be highly variable. Since Titan's orbit is located within the outer magnetosphere of Saturn, the moon can leave the region dominated by the magnetic field of its parent body in times of high solar wind dynamic pressure and interact with the thermalized magnetosheath plasma or even with the unshocked solar wind. By applying a three-dimensional hybrid simulation code (kinetic description of ions, fluid electrons, we study in real-time the transition that Titan's plasma environment undergoes when the moon leaves Saturn's magnetosphere and enters the supermagnetosonic solar wind. In the simulation, the transition between both plasma regimes is mimicked by a reversal of the magnetic field direction as well as a change in the composition and temperature of the impinging plasma flow. When the satellite enters the solar wind, the magnetic draping pattern in its vicinity is reconfigured due to reconnection, with the characteristic time scale of this process being determined by the convection of the field lines in the undisturbed plasma flow at the flanks of the interaction region. The build-up of a bow shock ahead of Titan takes place on a typical time scale of a few minutes as well. We also analyze the erosion of the newly formed shock front upstream of Titan that commences when the moon re-enters the submagnetosonic plasma regime of Saturn's magnetosphere. Although the model presented here is far from governing the full complexity of Titan's plasma interaction during a solar wind excursion, the simulation provides important insights into general plasma-physical processes associated with such a disruptive change of the upstream flow conditions.
Integrated Plasma Simulation of Lower Hybrid Current Drive Modification of Sawtooth in Alcator C-Mod
Bonoli, P. T.; Hubbard, A. E.; Schmidt, A. E.; Wright, J. C.; Kessel, C. E.; Batchelor, D. B.; Berry, L. A.; Harvey, R. W.
2010-11-01
Experiments were performed in Alcator C-Mod, where the onset time for sawteeth was delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through injection of off-axis LH current drive power [1]. In this poster we discuss simulations of these experiments using the Integrated Plasma Simulator (IPS) [2], through which driven current density profiles and hard x-ray spectra are computed using a ray tracing code (GENRAY) and Fokker Planck code (CQL3D) [3], that are executed repeatedly in time. The background plasma is evolved in these simulations using the TSC transport code with the Porcelli sawtooth model [4]. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Mtg. on Sim. and Mod. of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, Journal Comp. Phys. 66, 481 (1986).
Institute of Scientific and Technical Information of China (English)
王帅; 徐翔; 王友年
2012-01-01
We developed a one-dimensional hybrid model to simulate the DC/RF combined driven capacitively coupled plasma for argon discharges. The numerical results are used to analyze the influence of the DC source on the plasma density distribution, ion energy distributions （IEDs） and ion angle distributions （IADs） on both the RF and DC electrodes. The increase in DC voltage drives more high-energy ions to the electrode applied to the DC source, which makes the IEDs at the DC electrode shift towards higher energy, and the peaks in the IADs shift towards small angle regions. At the same time, it also decreases the ion energy at the RF electrode and enlarges the incident angles of the ions, which strike the RF electrode.
Hybrid-structure atomic models for HED laboratory plasma diagnostics and simulations
Hansen, Stephanie
2010-03-01
While theoretical atomic physics calculations are well developed for isolated atoms and have been thoroughly benchmarked against low-density laboratory sources such as electron beam ion traps and tokamak plasmas, the high energy density (HED) regime offers significant challenges for atomic physics and spectroscopic modeling. High plasma densities lead to collective effects such as continuum lowering, line broadening, and significant populations in multiply excited atomic states. These effects change the plasma equation of state and the character of emission and absorption spectra and must be accounted for in order to accurately simulate radiative transfer in and apply spectroscopic diagnostics to HED plasmas. Modeling complex mid- and high-Z ions in the HED regime is a particular challenge because exponential growth in accessible configuration space overwhelms the reduction of the Rydberg levels through continuum lowering. This talk will discuss one approach to generating a tractable spectroscopic-quality atomic kinetics model and describe its application to HED laboratory plasmas produced on Sandia's Z facility. [4pt] Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Plasma environment of magnetized asteroids: a 3-D hybrid simulation study
Directory of Open Access Journals (Sweden)
S. Simon
2006-03-01
Full Text Available The interaction of a magnetized asteroid with the solar wind is studied by using a three-dimensional hybrid simulation code (fluid electrons, kinetic ions. When the obstacle's intrinsic magnetic moment is sufficiently strong, the interaction region develops signs of magnetospheric structures. On the one hand, an area from which the solar wind is excluded forms downstream of the obstacle. On the other hand, the interaction region is surrounded by a boundary layer which indicates the presence of a bow shock. By analyzing the trajectories of individual ions, it is demonstrated that kinetic effects have global consequences for the structure of the interaction region.
Plasma and fields in the wake of Rhea: 3-D hybrid simulation and comparison with Cassini data
Directory of Open Access Journals (Sweden)
E. Roussos
2008-03-01
Full Text Available Rhea's magnetospheric interaction is simulated using a three-dimensional, hybrid plasma simulation code, where ions are treated as particles and electrons as a massless, charge-neutralizing fluid. In consistency with Cassini observations, Rhea is modeled as a plasma absorbing obstacle. This leads to the formation of a plasma wake (cavity behind the moon. We find that this cavity expands with the ion sound speed along the magnetic field lines, resulting in an extended depletion region north and south of the moon, just a few Rhea radii (R_{Rh} downstream. This is a direct consequence of the comparable thermal and bulk plasma velocities at Rhea. Perpendicular to the magnetic field lines the wake's extension is constrained by the magnetic field. A magnetic field compression in the wake and the rarefaction in the wake sides is also observed in our results. This configuration reproduces well the signature in the Cassini magnetometer data, acquired during the close flyby to Rhea on November 2005. Almost all plasma and field parameters show an asymmetric distribution along the plane where the corotational electric field is contained. A diamagnetic current system is found running parallel to the wake boundaries. The presence of this current system shows a direct corelation with the magnetic field configuration downstream of Rhea, while the resulting j×B forces on the ions are responsible for the asymmetric structures seen in the velocity and electric field vector fields in the equatorial plane. As Rhea is one of the many plasma absorbing moons of Saturn, we expect that this case study should be relevant for most lunar-type interactions at Saturn.
Simulations of low field helicon discharges using a two-dimensional hybrid plasma equipment model
Energy Technology Data Exchange (ETDEWEB)
Kinder, R.L.; Kushner, M.J.
1999-07-01
As the semiconductor industry moves towards larger wafers, a greater degree of process uniformity than is currently available with conventional inductively coupled plasma reactors will be necessary. Due to their high ionization efficiency, high flux density and their ability to deposit power within the volume of the plasma, helicon reactors are being developed for downstream etching and deposition. The power coupling of the antenna radiation to the plasma is of concern due to issues related to process uniformity. Furthermore, operation of helicon discharges at low magnetic fields (5--20 G) is not only economically attractive, but lower fields provide greater ion flux uniformity to the substrate. At low magnetic fields, it has been observed that there is a resonant peak in the power deposition and plasma density. This has been attributed to the occurrence of an electron cyclotron wave, or Trivelpiece-Gould (TG) mode, when {omega}/{omega}{sub c} is of order unity. To investigate these issues, the authors have improved the electromagnetics module of the HPEM to resolve the helicon wave structure of a m = 0 mode. The electrostatic component of the wave equation has been neglected, so this work focuses on the effects of the helicon mode. Plasma dynamics are coupled to the electromagnetic fields through a tensor form of Ohm's law and an effective collision frequency for Landau damping has been incorporated. Using a solenoidal magnetic field and an antenna operating at 13.65 MHz, studies show a shift in the power deposition towards the center of the reactor as the magnetic field is decreased below 30 G. Furthermore, peak values and wave structure is sensitive to the magnetic field configuration. Results for process relevant gas mixtures are examined and the dependence on magnetic field strength, field configuration and power are discussed.
Cook, J W S; Dendy, R O
2010-01-01
We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a regime relevant to tokamak fusion plasmas, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes under conditions approximating the outer mid-plane edge in a large tokamak, through which there pass confined centrally born fusion products on banana orbits that have large radial excursions. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the in...
Kim, Deok-Kyu; Hong, Sang Hee
2005-06-01
A two-dimensional simulation modeling that has been performed in a self-consistent way for analysis on the fully coupled transports of plasma, recycling neutrals, and intrinsic carbon impurities in the divertor domain of tokamaks is presented. The numerical model coupling the three major species transports in the tokamak edge is based on a fluid-particle hybrid approach where the plasma is described as a single magnetohydrodynamic fluid while the neutrals and impurities are treated as kinetic particles using the Monte Carlo technique. This simulation code is applied to the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak [G. S. Lee, J. Kim, S. M. Hwang et al., Nucl. Fusion 40, 575 (2000)] to calculate the peak heat flux on the divertor plate and to explore the divertor plasma behavior depending on the upstream conditions in its base line operation mode for various values of input heating power and separatrix plasma density. The numerical modeling for the KSTAR tokamak shows that its full-powered operation is subject to the peak heat loads on the divertor plate exceeding an engineering limit, and reveals that the recycling zone is formed in front of the divertor by increasing plasma density and by reducing power flow into the scrape-off layer. Compared with other researchers' work, the present hybrid simulation more rigorously reproduces severe electron pressure losses along field lines by the presence of recycling zone accounting for the transitions between the sheath limited and the detached divertor regimes. The substantial profile changes in carbon impurity population and ionic composition also represent the key features of this divertor regime transition.
Energy Technology Data Exchange (ETDEWEB)
Zhidkov, A.; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment
1998-11-01
A 1D hybrid electromagnetic particle-in-cell code with new methods to include particle collisions and atomic kinetics is developed and applied to ultra-short-pulse laser plasma interaction. Using the Langevin equation to calculate the Coulomb collision term, the present code is shown to be fast and stable in calculating the particle motion in the PIC simulation. Furthermore, by noting that the scale length of the change of atomic kinetics is much longer than the Debye radius, we calculate ionization and X-ray emission on kinetics cells, which are determined by averaging plasma parameters such as the electron density and energy over number of PIC cells. The absorption of short-pulse laser by overdense plasmas is calculated in self-consistent manner, including the effect of rapid change of density and temperature caused by instantaneous heating and successive fast ionization of the target material. The calculated results agree well with those obtained from the Fokker-Planck simulation as well as experiments, for non-local heat transport in plasmas with steep temperature gradient, and for the absorption of a short laser pulse by solid density targets. These results demonstrate usefulness of the code and the computational method therein for understanding of physics of short pulse laser plasma interaction experiments, and for application to the gain calculation of short-pulse laser excited X-ray laser as well. (author)
Directory of Open Access Journals (Sweden)
S. Simon
2009-02-01
Full Text Available With a Saturnian magnetopause average stand-off distance of about 21 planetary radii, Titan spends most of its time inside the rotating magnetosphere of its parent planet. However, when Saturn's magnetosphere is compressed due to high solar wind dynamic pressure, Titan can cross Saturn's magnetopause in the subsolar region of its orbit and therefore to interact with the shocked solar wind plasma in Saturn's magnetosheath. This situation has been observed during the T32 flyby of the Cassini spacecraft on 13 June 2007. Until a few minutes before closest approach, Titan had been located inside the Saturnian magnetosphere. During the flyby, Titan encountered a sudden change in the direction and magnitude of the ambient magnetic field. The density of the ambient plasma also increased dramatically during the pass. Thus, the moon's exosphere and ionosphere were exposed to a sudden change in the upstream plasma conditions. The resulting reconfiguration of Titan's plasma tail has been studied in real-time by using a three-dimensional, multi-species hybrid simulation model. The hybrid approximation treats the electrons of the plasma as a massless, charge-neutralizing fluid, while ion dynamics are described by a kinetic approach. In the simulations, the magnetopause crossing is modeled by a sudden change of the upstream magnetic field vector as well as a modification of the upstream plasma composition. We present real-time simulation results, illustrating how Titan's induced magnetotail is reconfigured due to magnetic reconnection. The simulations allow to determine a characteristic time scale for the erosion of the original magnetic draping pattern that commences after Titan has crossed Saturn's magnetopause. Besides, the influence of the plasma composition in the magnetosheath on the reconfiguration process is discussed in detail. The question of whether the magnetopause crossing is likely to yield a detachment of Titan
Electric/Hybrid Vehicle Simulation
Slusser, R. A.; Chapman, C. P.; Brennand, J. P.
1985-01-01
ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.
Laosunthara, Ampan; Akatsuka, Hiroshi
2016-09-01
In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.
Habib, A.; Menouni, M.; Pangaud, P.; Fenzi, C.; Colledani, G.; Moureau, G.; Escarguel, A.; Morel, C.
2017-01-01
PLATO is a prototype hybrid X-ray photon counting detector that has been designed to meet the specifications for plasma diagnostics for the WEST tokamak platform (Tungsten (W) Environment in Steady-state Tokamak) in southern France, with potential perspectives for ITER. PLATO represents a customized solution that fulfills high sensitivity, low dispersion and high photon counting rate. The PLATO prototype matrix is composed of 16 × 18 pixels with a 70 μm pixel pitch. New techniques have been used in analog sensitive blocks to minimize noise coupling through supply rails and substrate, and to suppress threshold dispersion across the matrix. The PLATO ASIC is designed in CMOS 0.13 μm technology and was submitted for a fabrication run in June 2016. The chip is designed to be bump-bonded to a silicon sensor. This paper presents pixel architecture as well as simulation results while highlighting novel solutions.
Hybrid Simulation of Composite Structures
DEFF Research Database (Denmark)
Høgh, Jacob Herold
Hybrid simulation is a substructural method combining a numerical simulation with a physical experiment. A structure is thereby simulated under the assumption that a substructure’s response is well known and easily modelled while a given substructure is studied more accurately in a physical...... of freedom. In this dissertation the main focus is to develop hybrid simulation for composite structures e.g. wind turbine blades where the boundary between the numerical model and the physical experiment is continues i.e. in principal infinite amount of degrees of freedom. This highly complicates...
Energy Technology Data Exchange (ETDEWEB)
Greenwald, Martin
2011-10-04
Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a
Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr
2016-01-01
We investigate properties of the ion-scale spectral break of solar wind turbulence by means of two-dimensional high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box and add a spectrum of in-plane, large-scale, magnetic and kinetic fluctuations. We perform a set of simulations with different values of the plasma beta, distributed over three orders of magnitude, from 0.01 to 10. In all the cases, once turbulence is fully developed, we observe a power-law spectrum of the fluctuating magnetic field on large scales (in the inertial range) with a spectral index close to -5/3, while in the sub-ion range we observe another power-law spectrum with a spectral index systematically varying with $\\beta$ (from around -3.6 for small values to around -2.9 for large ones). The two ranges are separated by a spectral break around ion scales. The length scale at which this transition occurs is found to be proportional to the ion inertial length, $d_i$...
Numerical simulation of dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Winske, D.
1995-09-01
The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.
Influence of plasma loading in a hybrid muon cooling channel
Energy Technology Data Exchange (ETDEWEB)
Freemire, B.; Stratakis, D.; Yonehara, K.
2015-05-03
In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization also occurs as the beam passes through the pressurized cavity. The resulting plasma may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.
Analysis of hybrid viscous damper by real time hybrid simulations
DEFF Research Database (Denmark)
Brodersen, Mark Laier; Ou, Ge; Høgsberg, Jan Becker
2016-01-01
Results from real time hybrid simulations are compared to full numerical simulations for a hybrid viscous damper, composed of a viscous dashpot in series with an active actuator and a load cell. By controlling the actuator displacement via filtered integral force feedback the damping performance...... of the hybrid viscous damper is improved, while for pure integral force feedback the damper stroke is instead increased. In the real time hybrid simulations viscous damping is emulated by a bang-bang controlled Magneto-Rheological (MR) damper. The controller activates high-frequency modes and generates drift...... in the actuator displacement, and only a fraction of the measured damper force can therefore be used as input to the investigated integral force feedback in the real time hybrid simulations....
Nonlinear lower hybrid modeling in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Napoli, F.; Schettini, G. [Università Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)
2014-02-12
We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.
An Energy Conserving Parallel Hybrid Plasma Solver
Holmstrom, M
2010-01-01
We investigate the performance of a hybrid plasma solver on the test problem of an ion beam. The parallel solver is based on cell centered finite differences in space, and a predictor-corrector leapfrog scheme in time. The implementation is done in the FLASH software framework. It is shown that the solver conserves energy well over time, and that the parallelization is efficient (it exhibits weak scaling).
Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems
Energy Technology Data Exchange (ETDEWEB)
Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.
2011-04-06
Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.
1982-12-31
expan- sion of a warm plasma; launching and propagation and decay of very large amplitude waves (8GK, solitons, etc.); thermal barriers (really...25.373.1981. ION-10N TWO-STREAM IN THERMAL BARRIERS : Vincent-lhonal,U.C.Berkeley. We present stu- dies or the eleclroTatic ion-ion two-stream instability as
1980-09-30
William Nevins L439 LLL (422-7032) Lecturers , UCB; Physicists -LLL Dr. William Fawley Guest, UCB; Physicist LLL L321 LLL (422-9272) Yu-Jiuan Chen, Douglas... MHD - Particle Codes." Three abstracts of papers prepared for the APS Division of Plasma Physics Meeting, November 10-14, 1980, at San Diego, follow
Labotratory Simulation Experiments of Cometary Plasma
Minami, S; Baum, P. J.; Kamin, G.; R. S. White; 南, 繁行
1986-01-01
Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...
Hybrid2 - The hybrid power system simulation model
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)
1996-12-31
There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.
A Hybrid Method with Deviational Particles for Spatial Inhomogeneous Plasma
Yan, Bokai
2015-01-01
In this work we propose a Hybrid method with Deviational Particles (HDP) for a plasma modeled by the inhomogeneous Vlasov-Poisson-Landau system. We split the distribution into a Maxwellian part evolved by a grid based fluid solver and a deviation part simulated by numerical particles. These particles, named deviational particles, could be both positive and negative. We combine the Monte Carlo method proposed in \\cite{YC15}, a Particle in Cell method and a Macro-Micro decomposition method \\cite{BLM08} to design an efficient hybrid method. Furthermore, coarse particles are employed to accelerate the simulation. A particle resampling technique on both deviational particles and coarse particles is also investigated and improved. The efficiency is significantly improved compared to a PIC-MCC method, especially near the fluid regime.
Hamiltonian approach to hybrid plasma models
Tronci, Cesare
2010-01-01
The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.
A treecode to simulate dust-plasma interactions
Thomas, D. M.; Holgate, J. T.
2017-02-01
The interaction of a small object with surrounding plasma is an area of plasma-physics research with a multitude of applications. This paper introduces the plasma octree code pot, a microscopic simulator of a spheroidal dust grain in a plasma. pot uses the Barnes-Hut treecode algorithm to perform N-body simulations of electrons and ions in the vicinity of a chargeable spheroid, employing also the Boris particle-motion integrator and Hutchinson’s reinjection algorithm from SCEPTIC; a description of the implementation of all three algorithms is provided. We present results from pot simulations of the charging of spheres in magnetised plasmas, and of spheroids in unmagnetized plasmas. The results call into question the validity of using the Boltzmann relation in hybrid PIC codes. Substantial portions of this paper are adapted from chapters 4 and 5 of the first author’s recent PhD dissertation.
Simulation of a Hybrid Locomotion Robot Vehicle
Aarnio, P.
2002-10-01
This study describes a simulation process of a mobile robot. The focus is in kinematic and dynamic behavior simulations of hybrid locomotion robot vehicles. This research is motivated by the development needs of the WorkPartner field service robot. The whole robot system consists of a mobile platform and a two-hand manipulator. The robot platform, called Hybtor, is a hybrid locomotion robot capable of walking and driving by wheels as well as combining these two locomotion modes. This study describes first the general problems and their solutions in the dynamic simulation of mobile robots. A kinematic and dynamic virtual model of the Hybtor robot was built and simulations were carried out using one commercial simulation tool. Walking, wheel driven and rolking mode locomotion, which is a special hybrid locomotion style, has been simulated and analyzed. Position and force control issues during obstacle overrun and climbing were also studied.
1979-09-30
mode In all of Davidson’s equations, there is a factor of /2- difference in vti due 2 to his definition of T.i =m v ti12. -3- -1 10-2- 1 0- 10-51 0.3...v E.6 max N~ -10- 0.6 v x 0.4 -0.2 a -0.4 0 1.0 2.0 3.0 4.0 5.0 6.0 16 12 8 4 (b) -0.4 -0.2 Vph -0. -. 2 0.0 0.2 0.4 A vx FIG. 5 Simulation (many mode...Drift Instability", Phys. Fluids 21, 1017 (1978). l mj 12 0.6 . . . . . . vx A 0.4. -0.2 (a) -0.4x 0 10 2.0 3.0 4.0 5.0 6.0 16 12 8 4 (b) Vph -0.4 -0.2
Hybrid formulation of radiation transport in optically thick divertor plasmas
Energy Technology Data Exchange (ETDEWEB)
Rosato, J.; Marandet, Y.; Bufferand, H.; Stamm, R. [PIIM, UMR 7345 Aix-Marseille Universite / CNRS, Centre de St-Jerome, Marseille (France); Reiter, D. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Juelich (Germany)
2016-08-15
Kinetic Monte Carlo simulations of coupled atom-radiation transport in optically thick divertor plasmas can be computationally very demanding, in particular in ITER relevant conditions or even larger devices, e.g. for power plant divertor studies. At high (∝ 10{sup 15} cm{sup -3}) atomic densities, it can be shown that sufficiently large divertors behave in certain areas like a black body near the first resonance line of hydrogen (Lyman α). This suggests that, at least in part, the use of continuum model (radiation hydrodynamics) can be sufficiently accurate, while being less time consuming. In this work, we report on the development of a hybrid model devoted to switch automatically between a kinetic and a continuum description according to the plasma conditions. Calculations of the photo-excitation rate in a homogeneous slab are performed as an illustration. The outlined hybrid concept might be also applicable to neutral atom transport, due to mathematical analogy of transport equations for neutrals and radiation. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)
Plasma physics via computer simulation
Birdsall, CK
2004-01-01
PART 1: PRIMER Why attempting to do plasma physics via computer simulation using particles makes good sense Overall view of a one dimensional electrostatic program A one dimensional electrostatic program ES1 Introduction to the numerical methods used Projects for ES1 A 1d electromagnetic program EM1 Projects for EM1 PART 2: THEORY Effects of the spatial grid Effects of the finitw time ste Energy-conserving simulation models Multipole models Kinetic theory for fluctuations and noise; collisions Kinetic properties: theory, experience and heuristic estimates PART 3: PRACTIC
Hybrid simulations of mini-magnetospheres in the laboratory
Gargaté, L; Fonseca, R A; Bamford, R; Thornton, A; Gibson, K; Bradford, J; Silva, L O
2008-01-01
Solar energetic ions are a known hazard to both spacecraft electronics and to manned space flights in interplanetary space missions that extend over a long period of time. A dipole-like magnetic field and a plasma source, forming a mini magnetosphere, are being tested in the laboratory as means of protection against such hazards. We investigate, via particle-in-cell hybrid simulations, using kinetic ions and fluid electrons, the characteristics of the mini magnetospheres. Our results, for parameters identical to the experimental conditions, reveal the formation of a mini-magnetosphere, whose features are scanned with respect to the plasma density, the plasma flow velocity, and the intensity of the dipole field. Comparisons with a simplified theoretical model reveal a good qualitative agreement and excellent quantitative agreement for higher plasma dynamic pressures and lower B-fields.
Hybrid simulation models of production networks
Kouikoglou, Vassilis S
2001-01-01
This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.
Methane production in simulated hybrid bioreactor landfill.
Xu, Qiyong; Jin, Xiao; Ma, Zeyu; Tao, Huchun; Ko, Jae Hac
2014-09-01
The aim of this work was to study a hybrid bioreactor landfill technology for landfill methane production from municipal solid waste. Two laboratory-scale columns were operated for about ten months to simulate an anaerobic and a hybrid landfill bioreactor, respectively. Leachate was recirculated into each column but aeration was conducted in the hybrid bioreactor during the first stage. Results showed that leachate pH in the anaerobic bioreactor maintained below 6.5, while in the hybrid bioreactor quickly increased from 5.6 to 7.0 due to the aeration. The temporary aeration resulted in lowering COD and BOD5 in the leachate. The volume of methane collected from the hybrid bioreactor was 400 times greater than that of the anaerobic bioreactor. Also, the methane production rate of the hybrid bioreactor was improved within a short period of time. After about 10 months' operation, the total methane production in the hybrid bioreactor was 212 L (16 L/kgwaste).
PIC Simulation of plasma detachment
Ishiguro, Seiji; Pianpanit, Theerasarn; Hasegawa, Hiroki; Kanno, Ryutaro
2014-10-01
The detached plasma, which is caused by gas puffing, has been proposed and it is the most promising way to reduce the heat load to the divertor plate of fusion oriented devices. Dynamical and kinetic behavior of the detached plasma is unresolved. So we are developing particle-in-cell simulation model with atomic processes such as line radiation, ionization, charge-exchange collision and recombination. As a first step, we have performed PIC simulation with Monte Carlo collisions, where spatial and velocity space distributions of charged particles, self-consistent electric field, and atomic processes such as ionization and charge exchange are included. Temperature decrease and density increase in front of the target is observed and electric potential structure along the axis is created. This work is performed with the support and under the auspices of NIFS Collaboration Research programs (NIFS14KNXN279 and 8 NIFS13KNSS038) and the Research Cooperation Program on Hierarchy and Holism in Natural Sciences at the NINS.
TRNSYS HYBRID wind diesel PV simulator
Energy Technology Data Exchange (ETDEWEB)
Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)
1996-12-31
The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.
Simulation Tool for Dielectric Barrier Discharge Plasma Actuators
Likhanskii, Alexander
2014-01-01
Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.
A treecode to simulate dust-plasma interactions
Thomas, D M
2016-01-01
The complex interaction of a small object with its surrounding plasma is an area of significant research with applications in a multitude of astrophysical, atmospheric, industrial and fusion plasmas. The computational study of these interactions has been dominated by macroscopic particle-in-cell (PIC) codes. This paper introduces a microscopic simulator of a spherical dust grain in a plasma, the plasma octree code pot, which uses the Barnes-Hut treecode algorithm to perform $N$-body simulations of electrons and ions in the vicinity of a spherical object. It also employs the Boris particle-motion integrator and Hutchinson's reinjection algorithm from SCEPTIC; a description of all three algorithms, and their implementation, is provided. Test results confirm the successful implementation of the treecode method and question the assumptions made by hybrid PIC codes.
Dense magnetized plasma numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Bilbao, L [INFIP-CONICET, and Physics Department (FCEN-UBA), Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina); Bernal, L, E-mail: bilbao@df.uba.a [Physics Department (FCEYN-UNMDP), Complejo Universitario, Funes y Pena, 7600 Mar del Plata (Argentina)
2010-06-15
The scope for developing the present numerical method was to perform parametric studies for optimization of several configurations in magnetized plasmas. Nowadays there exist several efficient numerical codes in the subject. However, the construction of one's own computational codes brings the following important advantages: (a) to get a deeper knowledge of the physical processes involved and the numerical methods used to simulate them and (b) more flexibility to adapt the code to particular situations in a more efficient way than would be possible for a closed general code. The code includes ion viscosity, thermal conduction (electrons and ions), magnetic diffusion, thermonuclear or chemical reaction, Bremsstrahlung radiation, and equation of state (from the ideal gas to the degenerate electron gas). After each calculation cycle, mesh vertices are moved arbitrarily over the fluid. The adaptive method consists of shifting mesh vertices over the fluid in order to keep a reasonable mesh structure and increase the spatial resolution where the physical solution demands. The code was a valuable tool for parametric study of different physical problems, mainly optimization of plasma focus machine, detonation and propagation of thermonuclear reactions and Kelvin-Helmholtz instabilities in the boundary layer of the terrestrial magnetopause.
M3D project for simulation studies of plasmas
Energy Technology Data Exchange (ETDEWEB)
Park, W.; Belova, E.V.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Strauss, H.R. [New York Univ., NY (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1998-12-31
The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.
Institute of Scientific and Technical Information of China (English)
尹乐; 周进; 杨乐; 吴建军; 李自然; 李洁
2011-01-01
目前微小卫星正在积极的发展中,脉冲等离子体推力器是其推进系统的一个重要发展方向,为了能够将PPT成功地运用于空间,需对其羽流进行研究.将一维MHD双温放电模型用于DSMC(Direct Simulation Monte-Carlo)/PIC(Particle in Cell)流体混合算法模拟PPT羽流的入口条件计算,一体化模拟实验室PPT羽流,对不同电容情况下的羽流场进行模拟,并与实验结果进行了比较.计算结果显示高电容下带来更高的质量流量,更高的中性粒子的含量,同时返流的影响域更广.在推力器入口附近,CEX碰撞与一般碰撞形式共同存在,且频率很高,在羽流外围,CEX碰撞成为碰撞的主要形式.%Now, micro-satellite is being developed, and the pulsed plasma thruster is one of its choices. For space application,the pulsed plasma tluuster's flume is need to being studied. One-dimension MHD two-temperature discharge model was used to simulate the exit condition of the Expenmental flume for DSMC (Direct Simulation Monte-Carlo )/PIC (Particle in Cell) fluid hybrid method. The flume at different capacitor was simulated from end to end, comparing to experiment data. The results show the big capacitor brings high mass flux, bigh neutral ratio and bigger affect repon. There are CEX collisions and non-CEX collisions at the thruster's exit, with high frequency, and at the flume edge CEX collision becomes the main collision
Hybrid Method Simulation of Slender Marine Structures
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye
This present thesis consists of an extended summary and five appended papers concerning various aspects of the implementation of a hybrid method which combines classical simulation methods and artificial neural networks. The thesis covers three main topics. Common for all these topics...... is that they deal with time domain simulation of slender marine structures such as mooring lines and flexible risers used in deep sea offshore installations. The first part of the thesis describes how neural networks can be designed and trained to cover a large number of different sea states. Neural networks can...... that a single neural network can cover all relevant sea states. The applicability and performance of the present hybrid method is demonstrated on a numerical model of a mooring line attached to a floating offshore platform. The second part of the thesis demonstrates how sequential neural networks can be used...
Theory and simulation of laser plasma coupling
Energy Technology Data Exchange (ETDEWEB)
Kruer, W.L.
1979-08-09
The theory and simulation of these coupling processes are considered. Particular emphasis is given to their nonlinear evolution. First a brief introduction to computer simulation of plasmas using particle codes is given. Then the absorption of light via the generation of plasma waves is considered, followed by a discussion of stimulated scattering of intense light. Finally these calculations are compared with experimental results.
Localized lower hybrid acceleration of ionospheric plasma
Kintner, P. M.; Vago, J.; Chesney, S.; Arnoldy, R. L.; Lynch, K. A.; Pollock, C. J.; Moore, T. E.
1992-01-01
Observations of the transverse acceleration of ions in localized regions of intense lower hybrid waves at altitudes near 1000 km in the auroral ionosphere are reported. The acceleration regions are thin filaments with dimensions across geomagnetic field lines of about 50-100 m corresponding to 5-10 thermal ion gyroradii or one hot ion gyroradius. Within the acceleration region lower hybrid waves reach peak-to-peak amplitudes of 100-300 mV/m and ions are accelerated transversely with characteristic energies of the order of 10 eV. These observations are consistent with theories of lower hybrid wave collapse.
A Dynamical Simulation Facility for Hybrid Systems
Back, A; Myers, M; Back, Allen; Guckenheimer, John; Myers, Mark
1993-01-01
Abstract: This paper establishes a general framework for describing hybrid dynamical systems which is particularly suitable for numerical simulation. In this context, the data structures used to describe the sets and functions which comprise the dynamical system are crucial since they provide the link between a natural mathematical formulation of a problem and the correct application of standard numerical algorithms. We describe a partial implementation of the design methodology and use this simulation tool for a specific control problem in robotics as an illustration of the utility of the approach for practical applications.
Characteristic of Ion loss as determined by hybrid simulations
Brecht, Stephen H.; Ledvina, Stephen
2016-10-01
One of the major objectives of the MAVEN mission is to determine the loss rate of oxygen ions from the atmosphere of Mars. It is thought that the oxygen ion loss represents a conduit for the loss of water from Mars. However, the actual measurements and estimates of global loss rates are very difficult because one needs an average over many orbits and full coverage of the loss regions of Mars; something that MAVEN will only accomplish with an extended mission. In the meantime global kinetic simulations are an avenue to gain further insight into the loss process and perhaps offer insight into the data analysis that will be performed on the MAVEN data. Hybrid particle codes provide self-consistent simulations of the ion dynamics occurring when the solar wind interacts with Mars.This paper reports the results of HALFSHEL hybrid code simulations of the solar wind interaction with Mars and the subsequent loss of oxygen ions in the form of O+ and O2+. Four simulations were performed representing different orientations of the crustal magnetic fields with the subsolar regions using a solar EUV flux representative of the moderate solar activity experienced by MAVEN. Loss rates will be presented as will evaluations of the distribution functions of the various loss ion species as accumulated at roughly 2 Rm for each of the four simulations. The results will be presented as faces on a box surrounding Mars so that one can evaluate regions such as that of the measured plasma plume. The plume feature has now been measured and is often seen in simulations. Finally, the losses and the subsequent velocity distributions will be compared between the various crustal magnetic field orientations.In summary, results from the HALFSHEL hybrid code will be presented. These results will address characteristics of the oxygen ions lost from Mars as a function of crustal magnetic field orientation. Further, they will be compared with respect to the regions surrounding Mars and the associated
Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance
Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.
2014-12-01
It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.
A multi-model plasma simulation of collisionless magnetic reconnection
Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.
2016-10-01
Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted to plasma energy. A full understanding of this phenomenon, however, is currently incomplete as models developed to date have difficulty explaining the fast reconnection rates often seen in nature, such as in the case of solar flares. Therefore, this behavior represents an area of much research in which various plasma models have been tested in order to understand the proper physics explaining the reconnection process. In this research, the WARPXM code developed at the University of Washington is used to study the problem using a hybrid multi-model simulation employing Hall-MHD and two-fluid plasma models. The simulation is performed on a decomposed domain where different plasma models are solved in different regions, depending on a trade-off between each model's physical accuracy and associated computational expense in each region. The code employs a discontinuous Galerkin (DG) finite element spatial discretization coupled with a Runge-Kutta scheme for time advancement and uses boundary conditions to couple the different plasma models. This work is supported by a Grant from the United States Air Force Office of Scientific Research.
Developing integrated patient pathways using hybrid simulation
Zulkepli, Jafri; Eldabi, Tillal
2016-10-01
Integrated patient pathways includes several departments, i.e. healthcare which includes emergency care and inpatient ward; intermediate care which patient(s) will stay for a maximum of two weeks and at the same time be assessed by assessment team to find the most suitable care; and social care. The reason behind introducing the intermediate care in western countries was to reduce the rate of patients that stays in the hospital especially for elderly patients. This type of care setting has been considered to be set up in some other countries including Malaysia. Therefore, to assess the advantages of introducing this type of integrated healthcare setting, we suggest develop the model using simulation technique. We argue that single simulation technique is not viable enough to represent this type of patient pathways. Therefore, we suggest develop this model using hybrid techniques, i.e. System Dynamics (SD) and Discrete Event Simulation (DES). Based on hybrid model result, we argued that the result is viable to be as references for decision making process.
Boundary Plasma Turbulence Simulations for Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
Hybrid Simulations of Particle Acceleration at Shocks
Caprioli, Damiano
2014-01-01
We present the results of large hybrid (kinetic ions - fluid electrons) simulations of particle acceleration at non-relativistic collisionless shocks. Ion acceleration efficiency and magnetic field amplification are investigated in detail as a function of shock inclination and strength, and compared with predictions of diffusive shock acceleration theory, for shocks with Mach number up to 100. Moreover, we discuss the relative importance of resonant and Bell's instability in the shock precursor, and show that diffusion in the self-generated turbulence can be effectively parametrized as Bohm diffusion in the amplified magnetic field.
Cluster hybrid Monte Carlo simulation algorithms
Plascak, J. A.; Ferrenberg, Alan M.; Landau, D. P.
2002-06-01
We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially reduce the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.
Computer Simulation of Convective Plasma Cells
Carboni, Rodrigo; Frutos-Alfaro, Francisco
2015-01-01
Computer simulations of plasmas are relevant nowadays, because it helps us understand physical processes taking place in the sun and other stellar objects. We developed a program called PCell which is intended for displaying the evolution of the magnetic field in a 2D convective plasma cell with perfect conducting walls for different stationary plasma velocity fields. Applications of this program are presented. This software works interactively with the mouse and the users can create their ow...
Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas
Timofeev, I V
2012-01-01
Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.
Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing
Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.
2010-12-01
The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.
Simulating plasma production from hypervelocity impacts
Fletcher, Alex; Close, Sigrid; Mathias, Donovan
2015-09-01
Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30-72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff
Fabrication of hybrid nanostructures by liquid plasma for biomedical applications
Ponraj, Sri Balaji; Dai, Xiujuan Jane; Li, Luhua; Chen, Zhiqiang; Surya Narayanan, Jayanth; Kanwar, Jagat; Du Plessis, Johan
2013-09-01
Liquid plasma, generated by a nanosecond pulsed generator at atmospheric pressure, was used to treat bamboo-like boron nitride nanotubes (BNNTs). It was observed that the length of the BNNTs was reduced and found more cup like structures called boron nitride nanocups (BNNCs). Interestingly, a new peak appeared at 406.86 eV in the N1s X-ray photoelectron spectrum, which seems to be attributable to the oxidation of nitrogen (N-O) in BNNTs. The C1s spectrum showed that oxygen functional groups were introduced onto the BNNT/BNNC surface. The liquid plasma was also used to assemble gold nanoparticles onto the treated BNNTs/BNNCs. This hybrid nanostructure was fabricated efficiently, compared with normal equilibrium conditions. The pH values and conductivity of all samples were measured. After plasma treatment, the pH values were greatly reduced and conductivity was significantly increased. We propose that the plasma acid, hydrogen peroxide, OH-, H ions and radicals formed in liquid plasma as well as the pulsed electric field contribute to the oxidation of nitrogen, reduced length of the BNNTs(forming BNNCs), surface functionalization, and to the fabrication of hybrid nanostructure. The cytotoxic tests for these hybrid nanostructures is underway. The authors acknowledge Rosey van Driel and Prabhukumar Sellamuthu for assisting with TEM and SEM, and the access of the XPS facility at RMIT University.
Computer Simulation of Convective Plasma Cells
Carboni, Rodrigo
2015-01-01
Computer simulations of plasmas are relevant nowadays, because it helps us understand physical processes taking place in the sun and other stellar objects. We developed a program called PCell which is intended for displaying the evolution of the magnetic field in a 2D convective plasma cell with perfect conducting walls for different stationary plasma velocity fields. Applications of this program are presented. This software works interactively with the mouse and the users can create their own movies in MPEG format. The programs were written in Fortran and C. There are two versions of the program (GNUPLOT and OpenGL). GNUPLOT and OpenGL are used to display the simulation.
AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics
Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.
2017-05-01
We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.
Simulating the dynamics of complex plasmas
Schwabe, Mierk
2014-01-01
Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.
On Plasma Theory and Simulation.
2014-09-26
SHEATH REGION INCLUDING ION REFLECTION Lou Ann Schwager (Prof. C. K. Birdsall, Dr. I. Roth ) A low temperature plasma interacts with a collector plate...Hitchcock. Katz. Lankford. Nelson. Barnes. Borovsky. Forslund. Kwan. Sadowski Lindemuth. Mason . Mostrom. Nielson, Oliphant. Sgro. Thode Department of
Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study
Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie
2015-06-01
A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.
Plasma boundaries at Mars: a 3-D simulation study
Directory of Open Access Journals (Sweden)
A. Bößwetter
2004-12-01
Full Text Available The interaction of the solar wind with the ionosphere of planet Mars is studied using a three-dimensional hybrid model. Mars has only a weak intrinsic magnetic field, and consequently its ionosphere is directly affected by the solar wind. The gyroradii of the solar wind protons are in the range of several hundred kilometers and therefore comparable with the characteristic scales of the interaction region. Different boundaries emerge from the interaction of the solar wind with the continuously produced ionospheric heavy-ion plasma, which could be identified as a bow shock (BS, ion composition boundary (ICB and magnetic pile up boundary (MPB, where the latter both turn out to coincide. The simulation results regarding the shape and position of these boundaries are in good agreement with the measurements made by Phobos-2 and MGS spacecraft. It is shown that the positions of these boundaries depend essentially on the ionospheric production rate, the solar wind ram pressure, and the often unconsidered electron temperature of the ionospheric heavy ion plasma. Other consequences are rays of planetary plasma in the tail and heavy ion plasma clouds, which are stripped off from the dayside ICB region by some instability.
Key words. Magnetospheric physics (solar wind interactions with unmagnetized bodies – Space plasma physics (discontinuities; numerical simulation studies
Accelerating Climate Simulations Through Hybrid Computing
Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark
2009-01-01
Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.
Plasma crystals: experiments and simulation
Piel, A.
2017-01-01
Dusty plasmas are a well accessible system to study crystallization of charged-particle systems at room temperature. The large mass compared to atomic particles dramatically slows down the particle velocities. The high transparency of the system allows to trace simultaneously the motion of all particles with quasi-atomic resolution. After a brief overview, the progress in this field is exemplified by studies of spherical three-dimensional plasma crystals, the so-called Yukawa balls. The static structure and eigenmodes are explained in simple terms. It is shown that shielding modifies the expansion of a Yukawa ball from a self-similar explosion to a continuous ablation process that starts at the surface. The experimental progress with three-dimensional diagnostics and laser heating and sophisticated methods for visualising the order inside the shell structure are described. Together with quantifying the diffusion coefficient these investigations reveal the details of the solid-liquid phase transition. Besides thermodynamic aspects, the liquid phase of dusty plasmas also gives access to hydrodynamic phenomena at the individual particle scale.
Plasma Spraying of Copper by Hybrid Water-Gas DC Arc Plasma Torch
Kavka, T.; Matějíček, J.; Ctibor, P.; Mašláni, A.; Hrabovský, M.
2011-06-01
Water-stabilized DC arc plasma torches offer a good alternative to common plasma sources used for plasma spraying applications. Unique properties of the generated plasma are determined by a specific plasma torch construction. This article is focused on a study of the plasma spraying process performed by a hybrid torch WSP500®-H, which combines two principles of arc stabilization—water vortex and gas flow. Spraying tests with copper powder have been carried out in a wide range of plasma torch parameters. First, analyses of particle in-flight behavior for various spraying conditions were done. After, particles were collected in liquid nitrogen, which enabled analyses of the particle in-flight oxidation. A series of spraying tests were carried out and coatings were analyzed for their microstructure, porosity, oxide content, mechanical, and thermal properties.
Hybrid simulation: an active power filter case study
Directory of Open Access Journals (Sweden)
Y. A. Garcés
2011-10-01
Full Text Available The hybrid simulation concept consisting of a combination of computer simulation and laboratory tests. This approach is a cost effective alternative to physically testing the whole system and allows better understanding of complex coupled systems.This paper describes implementing an active power filter (APF hybrid prototype where the source system and load are implemented as a real-time simulation and the system of static power converter acting as an active power filter is implemented in physical hardware. It also confirmed the hybrid simulation results by implementing the simulation in MATLAB-Simulink regarding the same system implemented during the active power filter analysis and design stage.
Computer simulation of complexity in plasmas
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Takaya; Sato, Tetsuya [National Inst. for Fusion Science, Toki, Gifu (Japan)
1998-08-01
By making a comprehensive comparative study of many self-organizing phenomena occurring in magnetohydrodynamics and kinetic plasmas, we came up with a hypothetical grand view of self-organization. This assertion is confirmed by a recent computer simulation for a broader science field, specifically, the structure formation of short polymer chains, where the nature of the interaction is completely different from that of plasmas. It is found that the formation of the global orientation order proceeds stepwise. (author)
Theory and Simulations of Solar System Plasmas
Goldstein, Melvyn L.
2011-01-01
"Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.
Rudakov, Leonid; Mithaiwala, Manish; Ganguli, Gurudas
2012-01-01
Using electromagnetic particle-in-cell simulations Winske and Daughton [Phys Plasmas, 19, 072109, 2012] have recently demonstrated that the nonlinear evolution of a wave turbulence initiated by cold ion ring beam is vastly different in three dimensions than in two dimensions. We further analyze the Winske-Daughton three dimensional simulation data and show that the nonlinear induced scattering by thermal plasma particles is crucial for understanding the evolution of lower hybrid/whistler wave turbulence as described in the simulation.
3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions
Energy Technology Data Exchange (ETDEWEB)
Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Leblanc, F. [LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris (France); Hess, S. [ONERA, Toulouse (France); Mancini, M. [LUTH, Observatoire Paris-Meudon (France)
2016-03-15
We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.
Simulating strongly coupled plasmas at low temperatures
Bussmann, M.; Schramm, U.; Habs, D.
2006-10-01
Realistic molecular dynamics (MD) simulations of the particle dynamics in strongly coupled plasmas require the computation of the mutual Coulomb-force for each pair of charged particles if a correct treatment of long range correlations is required. For plasmas with N > 104 particles this requires a tremendous number of computational steps which can only be addressed using efficient parallel algorithms adopted to modern super-computers. We present a new versatile MD simulation code which can simulate the non-relativistic mutual Coulomb-interaction of a large number of charged particles in arbitrary external field configurations. A demanding application is the simulation of the complete dynamics of in-trap stopping of highly charged ions in a laser cooled plasma of N = 105 24Mg+ ions. We demonstrate that the simulation is capable of delivering results on stopping times and plasma dynamics under realistic conditions. The results suggest that this stopping scheme can compete with in-trap electron cooling and might be an alternative approach for delivering ultra cold highly charged ions for future trap-based experiments aiming for precision mass measurements of stable and radioactive nuclei.
Simulating plasma production from hypervelocity impacts
Energy Technology Data Exchange (ETDEWEB)
Fletcher, Alex, E-mail: alexcf@stanford.edu; Close, Sigrid [Stanford University, Aeronautics and Astronautics, 496 Lomita Mall, Stanford, California 94305 (United States); Mathias, Donovan [NASA Ames Research Center, Bldg. 258, Moffett Field, California 94035 (United States)
2015-09-15
Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent
A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics
Told, Daniel; Astfalk, Patrick; Jenko, Frank
2016-01-01
A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm's law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.
Hybrid simulation of electron cyclotron resonance heating
Ropponen, T; Suominen, P; Koponen, T K; Kalvas, T; Koivisto, H
2008-01-01
Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.
Hybrid simulation of electron cyclotron resonance heating
Energy Technology Data Exchange (ETDEWEB)
Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)
2008-03-11
Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.
Plasma arc cutting technology: simulation and experiments
Energy Technology Data Exchange (ETDEWEB)
Cantoro, G; Colombo, V; Concetti, A; Ghedini, E; Sanibondi, P; Zinzani, F; Rotundo, F [Department of Mechanical Engineering (D.I.E.M.) and Research Center for Applied Mathematics (C.I.R.A.M.), Alma Mater Studiorum-Universita di Bologna, Via Saragozza 8, 40123 Bologna (Italy); Dallavalle, S; Vancini, M, E-mail: emanuele.ghedini@unibo.it [Cebora S.p.A., Via Andrea Costa 24, 40057 Cadriano di Granarolo (Italy)
2011-01-01
Transferred arc plasma torches are widely used in industrial processes for cutting of metallic materials because of their ability to cut a wide range of metals with very high productivity. The process is characterized by a transferred electric arc established between an electrode inside the torch (the cathode) and another electrode, the metallic workpiece to be cut (the anode). In order to obtain a high quality cut and a high productivity, the plasma jet must be as collimated as possible and must have the higher achievable power density. Plasma modelling and numerical simulation can be very useful tools for the designing and optimizing these devices, but research is still in the making for finding a link between simulation of the plasma arc and a consistent prevision of cut quality. Numerical modelling of the behaviour of different types of transferred arc dual gas plasma torches can give an insight on the physical reasons for the industrial success of various design and process solutions that have appeared over the last years. Diagnostics based on high speed imaging and Schlieren photography can play an important role for investigating piercing, dross generation, pilot arcing and anode attachment location. Also, the behaviour of hafnium cathodes at high current levels at the beginning of their service life can been experimentally investigated, with the final aim of understanding the phenomena that take place during those initial piercing and cutting phases and optimizing the initial shape of the surface of the emissive insert exposed to plasma atmosphere.
Plasma Simulation in the Multiphysics Object Oriented Simulation Environment MOOSE
Shannon, Steven; Lindsay, Alex; Graves, David; Icenhour, Casey; Peterson, David; White, Scott
2016-09-01
MOOSE is an open source multiphysics solver developed by Idaho National Laboratory that is primarily used for the simulation of fission reactor systems; the framework is also well suited for the simulation of plasma systems given the development of appropriate modules not currently developed in the framework such as electromagnetic solvers, Boltzmann solvers, etc. It is structured for user development of application specific modules and is intended for both workstation level and high performance massively parallel environments. We have begun the development of plasma modules in the MOOSE environment and carried out preliminary simulation of the plasma/liquid interface to elucidate coupling mechanisms between these states using a fully coupled multiphysics model; these results agree well with PIC simulation of the same system and show strong response of plasma parameters with respect to electron reflection at the liquid surface. These results will be presented along with an overview of MOOSE and ongoing module development to extend capabilities to a broader set of research challenges in low temperature plasmas, with particular focus on RF and pulsed RF driven systems.
Marocchino, A.; Massimo, F.; Rossi, A. R.; Chiadroni, E.; Ferrario, M.
2016-09-01
In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.
Energy Technology Data Exchange (ETDEWEB)
Marocchino, A., E-mail: albz.uk@gmail.com [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Massimo, F. [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Rossi, A.R. [Dipartimento di Fisica, University of Milan and INFN-Milano, Milano (Italy); Chiadroni, E.; Ferrario, M. [INFN-LNF, Frascati (Italy)
2016-09-01
In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.
A hybrid simulation model for a stable auroral arc
Directory of Open Access Journals (Sweden)
P. Janhunen
Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.
Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies
Stereoscopic Visualization of Plasma Simulation Data
Jones, Samuel; Cardenas, Rosa; Kim, Charlson; Parker, Scott
2000-10-01
Large-scale three-dimensional simulation of realistic fusion and space plasmas generates massive amounts of raw numerical data. Scientific visualization is an important tool in the analysis of this data. Stereoscopic projection is a visualization technique allowing data to be presented spacialy with visual separation clues to indicate the relative depth of the data. This allows researchers to be able to see three-dimensional structures that are not easily shown in purely two-dimensional representations. We have implemented a low cost stereo projection system running from a linux based intel cluster. This system is used to display images created with the visualization package IBM Open Data Explorer (Open-DX). We will present results of our use of this technology in the study of various plasma phenomenon including the complex spacial nature of magnetic fields embedded in simulated spheromak plasma.
Spectral Methods in Numerical Plasma Simulation
DEFF Research Database (Denmark)
Coutsias, E.A.; Hansen, F.R.; Huld, T.;
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...
Hermes: Global plasma edge fluid turbulence simulations
Dudson, Ben
2016-01-01
The transport of heat and particles in the relatively collisional edge regions of magnetically confined plasmas is a scientifically challenging and technologically important problem. Understanding and predicting this transport requires the self-consistent evolution of plasma fluctuations, global profiles and flows, but the numerical tools capable of doing this in realistic (diverted) geometry are only now being developed. Here a 5-field reduced 2-fluid plasma model for the study of instabilities and turbulence in magnetised plasmas is presented, built on the BOUT++ framework. This cold ion model allows the evolution of global profiles, electric fields and flows on transport timescales, with flux-driven cross-field transport determined self-consistently by electromagnetic turbulence. Developments in the model formulation and numerical implementation are described, and simulations are performed in poloidally limited and diverted tokamak configurations.
The effect of lower hybrid waves on JET plasma rotation
Nave, M. F. F.; Kirov, K.; Bernardo, J.; Brix, M.; Ferreira, J.; Giroud, C.; Hawkes, N.; Hellsten, T.; Jonsson, T.; Mailloux, J.; Ongena, J.; Parra, F.; Contributors, JET
2017-03-01
This paper reports on observations of rotation in JET plasmas with lower hybrid current drive. Lower hybrid (LH) has a clear impact on rotation. The changes in core rotation can be either in the co- or counter-current directions. Experimental features that could determine the direction of rotation were investigated. Changes from co- to counter-rotation as the q-profile evolves from above unity to below unity suggests that magnetic shear could be important. However, LH can drive either co- or counter-rotation in discharges with similar magnetic shear and at the same plasma current. It is not clear if a slightly lower density is significant. A power scan at fixed density, shows a lower hybrid power threshold around 3 MW. For smaller LH powers, counter rotation increases with power, while for larger powers a trend towards co-rotation is found. The estimated counter-torque from the LH waves, would not explain the observed angular frequencies, neither would it explain the observation of co-rotation.
Hybrid2: The hybrid system simulation model, Version 1.0, user manual
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.
1996-06-01
In light of the large scale desire for energy in remote communities, especially in the developing world, the need for a detailed long term performance prediction model for hybrid power systems was seen. To meet these ends, engineers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) have spent the last three years developing the Hybrid2 software. The Hybrid2 code provides a means to conduct long term, detailed simulations of the performance of a large array of hybrid power systems. This work acts as an introduction and users manual to the Hybrid2 software. The manual describes the Hybrid2 code, what is included with the software and instructs the user on the structure of the code. The manual also describes some of the major features of the Hybrid2 code as well as how to create projects and run hybrid system simulations. The Hybrid2 code test program is also discussed. Although every attempt has been made to make the Hybrid2 code easy to understand and use, this manual will allow many organizations to consider the long term advantages of using hybrid power systems instead of conventional petroleum based systems for remote power generation.
Simulation study of the plasma brake effect
Janhunen, Pekka
2014-01-01
The plasma brake is a thin negatively biased tether which has been proposed as an efficient concept for deorbiting satellites and debris objects from low Earth orbit. We simulate the interaction with the ionospheric plasma ram flow with the plasma brake tether by a high performance electrostatic particle in cell code to evaluate the thrust. The tether is assumed to be perpendicular to the flow. We perform runs for different tether voltage, magnetic field orientation and plasma ion mass. We show that a simple analytical thrust formula reproduces most of the simulation results well. The interaction with the tether and the plasma flow is laminar when the magnetic field is perpendicular to the tether and the flow. If the magnetic field is parallel to the tether, the behaviour is unstable and thrust is reduced by a modest factor. The case when the magnetic field is aligned with the flow can also be unstable, but does not result in notable thrust reduction. We also fix an error in an earlier reference. According to...
Nonlinear PIC Simulations for Nonneutral Plasmas
Lapenta, Giovanni; Luca Delzanno, Gian; Finn, John M.
2002-11-01
We present nonlinear simulations of the low frequency dynamics of electrons in a Malmberg-Penning trap, including compressional and thermal effects [1,2]. First, we consider a 2D model where we assume the effective plasma length constant in time. In this framework, we further neglect the thermal effect on the velocity field, and show with the PIC code KANDINSKY that Penning traps could be used to perform geophysical fluid dynamics experiments [3]. We also observe that, due to the presence of the nonlinear m=1 instability, the initially hollow density profile becomes peaked, as in the experiments. Then, we show 2D results including thermal effects. In this case, the development of the m=1 instability is slowed since the equilibrium plasma length profile is closer to the integrable profile, namely the length profile for which there are no discrete unstable modes [4]. Finally, we present simulations of the 3D fluiddynamics model of Ref. [2]. In particular, we investigate the evolution of a m=1 perturbation for different electron temperatures, when compressional and thermal effects are included. [1] J.M. Finn, D. del-Castillo-Negrete, D.C. Barnes,Phys. Plasmas, 6, 3744, 1999. [2] G.G.M. Coppa, A. D'Angola, G.L. Delzanno, G. Lapenta, Phys. Plasmas, 8, 1133, 2001. [3] G.L. Delzanno, J.M. Finn, G. Lapenta, "Nonlinear Phase of the Compressional m=1 Diocotron Instability: Saturation and Analogy with Geophysical Fluid Dynamics", submitted to Phys. Plasmas. [4] G.L. Delzanno, V.I. Pariev, J.M. Finn, G. Lapenta, "Stability Analysis of Hollow Electron Columns Including Compression and Thermal Effects: Integrability Condition and Numerical Simulations", submitted to Phys. Plasmas.
Hybrid and Electric Advanced Vehicle Systems Simulation
Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.
1985-01-01
Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.
Simulations for Plasma and Laser Acceleration
Vay, Jean-Luc; Lehe, Rémi
Computer simulations have had a profound impact on the design and understanding of past and present plasma acceleration experiments, and will be a key component for turning plasma accelerators from a promising technology into a mainstream scientific tool. In this article, we present an overview of the numerical techniques used with the most popular approaches to model plasma-based accelerators: electromagnetic particle-in-cell, quasistatic and ponderomotive guiding center. The material that is presented is intended to serve as an introduction to the basics of those approaches, and to advances (some of them very recent) that have pushed the state of the art, such as the optimal Lorentz-boosted frame, advanced laser envelope solvers and the elimination of numerical Cherenkov instability. The particle-in-cell method, which has broader interest and is more standardized, is presented in more depth. Additional topics that are cross-cutting, such as azimuthal Fourier decomposition or filtering, are also discussed, as well as potential challenges and remedies in the initialization of simulations and output of data. Examples of simulations using the techniques that are presented have been left out of this article for conciseness, and because simulation results are best understood when presented together, and contrasted with theoretical and/or experimental results, as in other articles of this volume.
Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition
Energy Technology Data Exchange (ETDEWEB)
Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.
2014-05-20
Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism
A tandem mirror plasma source for a hybrid plume plasma propulsion concept
Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.
1985-01-01
This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.
MHD simulations of Plasma Jets and Plasma-surface interactions in Coaxial Plasma Accelerators
Subramaniam, Vivek; Raja, Laxminarayan
2016-10-01
Coaxial plasma accelerators belong to a class of electromagnetic acceleration devices which utilize a self-induced Lorentz force to accelerate magnetized thermal plasma to large velocities ( 40 Km/s). The plasma jet generated as a result, due to its high energy density, can be used to mimic the plasma-surface interactions at the walls of thermonuclear fusion reactors during an Edge Localized Mode (ELM) disruption event. We present the development of a Magnetohydrodynamics (MHD) simulation tool to describe the plasma acceleration and jet formation processes in coaxial plasma accelerators. The MHD model is used to study the plasma-surface impact interaction generated by the impingement of the jet on a target material plate. The study will characterize the extreme conditions generated on the target material surface by resolving the magnetized shock boundary layer interaction and the viscous/thermal diffusion effects. Additionally, since the plasma accelerator is operated in vacuum conditions, a novel plasma-vacuum interface tracking algorithm is developed to simulate the expansion of the high density plasma into a vacuum background in a physically consistent manner.
Electric and plug-in hybrid vehicles advanced simulation methodologies
Varga, Bogdan Ovidiu; Moldovanu, Dan; Iclodean, Calin
2015-01-01
This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain
Molecular dynamics simulations of magnetized dusty plasmas
Piel, Alexander; Reichstein, Torben; Wilms, Jochen
2012-10-01
The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)
Accelerated simulation methods for plasma kinetics
Caflisch, Russel
2016-11-01
Collisional kinetics is a multiscale phenomenon due to the disparity between the continuum (fluid) and the collisional (particle) length scales. This paper describes a class of simulation methods for gases and plasmas, and acceleration techniques for improving their speed and accuracy. Starting from the Landau-Fokker-Planck equation for plasmas, the focus will be on a binary collision model that is solved using a Direct Simulation Monte Carlo (DSMC) method. Acceleration of this method is achieved by coupling the particle method to a continuum fluid description. The velocity distribution function f is represented as a combination of a Maxwellian M (the thermal component) and a set of discrete particles fp (the kinetic component). For systems that are close to (local) equilibrium, this reduces the number N of simulated particles that are required to represent f for a given level of accuracy. We present two methods for exploiting this representation. In the first method, equilibration of particles in fp, as well as disequilibration of particles from M, due to the collision process, is represented by a thermalization/dethermalization step that employs an entropy criterion. Efficiency of the representation is greatly increased by inclusion of particles with negative weights. This significantly complicates the simulation, but the second method is a tractable approach for negatively weighted particles. The accelerated simulation method is compared with standard PIC-DSMC method for both spatially homogeneous problems such as a bump-on-tail and inhomogeneous problems such as nonlinear Landau damping.
Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition
Energy Technology Data Exchange (ETDEWEB)
Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.
2014-05-20
Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism
Temperature field simulation of laser-TIG hybrid welding
Institute of Scientific and Technical Information of China (English)
陈彦宾; 李俐群; 方俊飞; 封小松; 吴林
2003-01-01
The three-dimensional transient temperature distribution of laser-TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid welding was studied and the coupling effect of the laser and arc in the hybrid process was fully considered. The temperature fields and weld cross-sections of the typical welding parameters are obtained using present model. The calculation results show that the model can indicate the relationship of energy match between laser and arc to joints cross-sections objectively, and the simulation results are well agreed with the experimental results.
Discrete photon implementation for plasma simulations
Energy Technology Data Exchange (ETDEWEB)
Fierro, Andrew, E-mail: andrew.s.fierro@ieee.org; Stephens, Jacob; Beeson, Sterling; Dickens, James; Neuber, Andreas [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)
2016-01-15
The self-produced light emission from pulsed plasma discharges and its impact on plasma development are challenging to characterize through simulation and modeling, chiefly due to the large number of radiating species and limited computer memory. Often, photo-processes, such as photo-ionization or photo-emission of electrons, are implemented through over-simplifying approximations or neglected altogether. Here, a method applicable to plasma simulations is implemented in a Particle-in-Cell /Monte Carlo Collision model, which is capable of discretely tracking photons and their corresponding wavelengths. Combined with the appropriate cross sections or quantum yields, a wavelength dependent model for photo-ionization or photo-emission may be implemented. Additionally, by resolving the wavelengths of each photon, an emission spectrum for a region of interest may be generated. Simulations for a pure nitrogen environment reveal that the calculated emission profile of the second positive system agrees well with the experimental spectrum of a pulsed, nanosecond discharge in the same spectral region.
Simulation of hybrid solar power plants
Dieckmann, Simon; Dersch, Jürgen
2017-06-01
Hybrid solar power plants have the potential to combine advantages of two different technologies at the cost of increased complexity. The present paper shows the potential of the software greenius for the techno-economic evaluation of hybrid solar power plants and discusses two exemplary scenarios. Depreciated Concentrated Solar Power (CSP) plants based on trough technology can be retrofitted with solar towers in order to reach higher steam cycle temperatures and hence efficiencies. Compared to a newly built tower plant the hybridization of a depreciated trough plant causes about 30% lower LCOE reaching 104 /MWh. The second hybrid scenario combines cost-efficient photovoltaics with dispatchable CSP technology. This hybrid plant offers very high capacity factors up to 69% based on 100% load from 8am to 11pm. The LCOE of the hybrid plant are only slightly lower (174 vs. 186 /MWh) compared to the pure CSP plant because the capital expenditure for thermal storage and power block remains the same while the electricity output is much lower.
Parametric decay of plasma waves near the upper-hybrid resonance
Dodin, I. Y.; Arefiev, A. V.
2017-03-01
An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.
Bogatu, I. N.; Galkin, S. A.
2016-10-01
The C60 nanoparticle plasma jet (NPPJ) rapid injection into a tokamak major disruption is followed by C60 gradual fragmentation along plasma-traversing path. The result is abundant C ion concentration in the core plasma enhancing the potential to probe and diagnose the runaway electrons (REs) during different phases of their dynamics. A C60/C NPPJ of 75 mg, high-density (>1023 m-3) , hyper-velocity (>4 km/s), and uniquely fast response-to-delivery time ( 1 ms) has been demonstrated on a test bed. It can rapidly and deeply deliver enough mass to increase electron density to 2.4x1021 m-3, 60 times larger than typical DIII-D pre-disruption value. We will present the results of our on-going work on: 1) self-consistent model for RE current density evolution (by Dreicer mechanism and ``avalanche'') focused on the effect of fast and deep deposition of C ions, 2) improvement of single C60q+ fragmenting ion penetration model through tokamak B(R)-field and post-TQ plasma, and 3) simulation of C60q+ PJ penetration through the DIII-D characteristic 2 T B-field to the RE beam central location by using the Hybrid Electro-Magnetic 2D code (HEM-2D. Work supported by US DOE DE-SC0015776 Grant.
SKIRT: Hybrid parallelization of radiative transfer simulations
Verstocken, S.; Van De Putte, D.; Camps, P.; Baes, M.
2017-07-01
We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modelling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behaviour of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.
Energy Technology Data Exchange (ETDEWEB)
Stroh, Christoph; Schnoerch, Stefan; Rathberger, Christian [Magna Powertrain Engineering Center Steyr GmbH und Co. KG, St. Valentin (Austria)
2012-11-01
In the past few years hybrid vehicles have been in the center of automotive engineering efforts, in particular in the field of passenger cars. But hybrid powertrains will also be important for commercial trucks. This focus on hybrid vehicles leads to high demands on thermal management since the additional components in a hybrid vehicle need appropriate cooling or even heating. In the given paper the simulation of a complete cooling system of a hybrid commercial vehicle will be explained. For this virtual examination the commercial 1D thermal management software KULI will be used, a co-simulation with several programs will not be done deliberately. Yet all aspects which are relevant for a global assessment of the thermal management are considered. The main focus is put on the investigation of appropriate concepts for the fluid circuits, including low and high temperature circuits, electric water pumps, etc. Moreover, also a refrigerant circuit with a chiller for active battery cooling will be used, the appropriate control strategy is implemented as well. For simulating transient profiles a simple driving simulation model is included, using road profile, ambient conditions, and various vehicle parameters as input. In addition an engine model is included which enables the investigation of fuel consumption potentials. This simulation model shows how the thermal management of a hybrid vehicle can be investigated with a single program and with reasonable effort. (orig.)
Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology
Musalek, Radek; Medricky, Jan; Tesar, Tomas; Kotlan, Jiri; Pala, Zdenek; Lukac, Frantisek; Chraska, Tomas; Curry, Nicholas
2016-12-01
Technology of water-stabilized plasma torch was recently substantially updated through introduction of a so-called hybrid concept that combines benefits of water stabilization and gas stabilization principles. The high-enthalpy plasma provided by the WSP-H ("hybrid") torch may be used for thermal spraying of powders as well as liquid feedstocks with high feed rates. In this study, results from three selected experiments with suspension plasma spraying with WSP-H technology are presented. Possibility of deposition of coatings with controlled microstructures was demonstrated for three different ceramics (YSZ—yttria-stabilized zirconia, YAG—yttrium aluminum garnet and Al2O3) introduced into ethanol-based suspensions. Shadowgraphy was used for optimization of suspension injection and visualization of the liquid fragmentation in the plasma jet. Coatings were deposited onto substrates attached to the rotating carousel with integrated temperature monitoring and air cooling, which provided an excellent reproducibility of the deposition process. Deposition of columnar-like YSZ and dense YAG and Al2O3 coatings was successfully achieved. Deposition efficiency reached more than 50%, as evaluated according to EN ISO 17 836 standard.
Towards Hybrid Overset Grid Simulations of the Launch Environment
Moini-Yekta, Shayan
A hybrid overset grid approach has been developed for the design and analysis of launch vehicles and facilities in the launch environment. The motivation for the hybrid grid methodology is to reduce the turn-around time of computational fluid dynamic simulations and improve the ability to handle complex geometry and flow physics. The LAVA (Launch Ascent and Vehicle Aerodynamics) hybrid overset grid scheme consists of two components: an off-body immersed-boundary Cartesian solver with block-structured adaptive mesh refinement and a near-body unstructured body-fitted solver. Two-way coupling is achieved through overset connectivity between the off-body and near-body grids. This work highlights verification using code-to-code comparisons and validation using experimental data for the individual and hybrid solver. The hybrid overset grid methodology is applied to representative unsteady 2D trench and 3D generic rocket test cases.
Interaction of Enceladus's Water Plume with Saturnian Magnetosphere via Hybrid Numerical Simulations
Somr, J.; Travnicek, P. M.; Stverak, S.; Khurana, K. K.; Hellinger, P.; Dougherty, M. K.
2008-12-01
Several close Cassini flybys of the Santurnian moon Enceladus provided direct in situ measurements of neutral water molecules escaping from the surface showing their interaction with the ambient plasma environment. Cassini measurements indicate Enceladus to act as an obstacle to the magnetized Saturnian plasma flow resulting in an effect of field line draping. Ionization of escaping neutrals by way of charge exchange with the ambient plasma produces fresh ions which are picked up by the Saturnian magnetosphere. The Saturnian co-rotating plasma flow therefore slows down and the ambient magnetic field is affected. We study these local plasma interaction of Enceladus and its neutral water plume with the Saturnian magnetosphere by using a full 3D hybrid code numerical simulation. The results of our model are subsequently compared with Cassini observations. Since a complete and accurate description of Enceladus surroundings is still missing, the initialialization of our simulations is based on currently published estimations. However, by use the hybrid code we are able to recover very similar magnetic field signatures as some of those realy observed by Cassini spacecraft.
A Novel Software Simulator Model Based on Active Hybrid Architecture
Directory of Open Access Journals (Sweden)
Amr AbdElHamid
2015-01-01
Full Text Available The simulated training is an important issue for any type of missions such as aerial, ground, sea, or even space missions. In this paper, a new flexible aerial simulator based on active hybrid architecture is introduced. The simulator infrastructure is applicable to any type of training missions and research activities. This software-based simulator is tested on aerial missions to prove its applicability within time critical systems. The proposed active hybrid architecture is introduced via using the VB.NET and MATLAB in the same simulation loop. It exploits the remarkable computational power of MATLAB as a backbone aircraft model, and such mathematical model provides realistic dynamics to the trainee. Meanwhile, the Human-Machine Interface (HMI, the mission planning, the hardware interfacing, data logging, and MATLAB interfacing are developed using VB.NET. The proposed simulator is flexible enough to perform navigation and obstacle avoidance training missions. The active hybrid architecture is used during the simulated training, and also through postmission activities (like the generation of signals playback reports for evaluation purposes. The results show the ability of the proposed architecture to fulfill the aerial simulator demands and to provide a flexible infrastructure for different simulated mission requirements. Finally, a comparison with some existing simulators is introduced.
A simulation approach to sizing hybrid photovoltaic and wind systems
Anderson, L. A.
1983-12-01
A simulation approach to sizing hybrid photovoltaic and wind systems provides a combination of components to realize zero downtime and minimum initial or life-cycle cost. Using Dayton, OH as a test site for weather data, cost advantages in the neighborhood of four are predicted for a hybrid system with battery storage when compared to a wind-energy-only system for the same electrical load.
Pseudospectral Model for Hybrid PIC Hall-effect Thruster Simulation
2015-07-01
1149. 8Goebel, D. M. and Katz, I., Fundamentals of Electric Propulsion : Ion and Hall Thrusters, John Wiley & Sons, Inc., 2008. 9Martin, R., J.W., K...Bilyeu, D., and Tran, J., “Dynamic Particle Weight Remapping in Hybrid PIC Hall -effect Thruster Simulation,” 34th Int. Electric Propulsion Conf...Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Pseudospectral model for hybrid PIC Hall -effect thruster simulationect
Sizing and Simulation of PV-Wind Hybrid Power System
Mustafa Engin
2013-01-01
A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during t...
Distributed Heterogeneous Simulation of a Hybrid-Electric Vehicle
2006-03-29
operate as a generator to convert mechanical energy from the diesel t~nginc 01 from regenerative braking to electrical energy. A vehicle control module...Distributed Heterogeneous Simulation of a Hybrid- Electric Vehicle Ning Wu’, Curtis Rands t , Charles E. Lucas!, Eric A. Walters§, and Maher A...Masrurit US Army RDECOM-TARDEC, Warren, MI, 48397 Hybrid- electric military vehicles provide many advantages over conventional military vehicles powered
Simulations with Conventional and Gas Puff Plasma Focus Devices
Shan, Bing; Liu, Mahe; Lee, Paul; Lee, Sing
2000-10-01
An energy consistent plasma focus model is improved by considering the plasma ionization states based on the corona equilibrium. This provides the model with the capability of calculating the plasma dynamics and states for different gases in plasma focus. The model is employed to simulate the behavior of the NX2 plasma focus, with both neon and argon gases. The results show that much lower pressure is required to work with argon for x-ray. The model has also been modified to describe a gas-puff plasma focus based on a measured pressure distribution profile. The simulation result reveals that the gas-puff scheme is more efficient in plasma heating and can improve the stability of the plasma column. By comparing with the published results, agreements have been obtained between the computations and experiments of both machines in the major points regarding plasma dynamics, plasma column stability and appearances, plasma temperatures, and x-ray radiation properties.
Kinetic Simulations of Dense Plasma Focus Breakdown
Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.
2015-11-01
A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.
Multisymplectic Integration for Beam and Plasma Simulations
Webb, Stephen; RadiaSoft, LLC Team
2015-11-01
Particle-in-cell methods are a standard tool for simulating charged particle systems such as fusion plasmas, intense beams, and laser- and beam-driven wakefield accelerators. Conventional methods have been successful in studying short-term dynamics, however numerical instabilities and artifacts such as grid heating make long-time simulations unreliable. A similar issue existed in single particle tracking for storage rings in the 1980s, which led to the development of symplectic algorithms. The essential insight that if the physical equations of motion derive from a least-action principle, then so too should the numerical equations of motion. The resulting update sequence preserves a symplectic 2-form, which is a strong constraint on the numerical solutions. The resulting algorithms are stable and accurate over very long simulation times. This same structure exists for field theories as well as single-particle dynamics. Such multisymplectic integrators have good stability properties and naturally encode conservation laws, making them ideal for simulations over many oscillations of the system. We present here a number of examples where multisymplectic algorithms have been used over very long time scales. This work was sponsored by the Air Force Office of Scientific Research, Young Investigator Program, under contract no. FA9550-15-C-0031. Distribution Statement A. Approved for public release; distribution is unlimited.
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Energy Technology Data Exchange (ETDEWEB)
Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Energy Technology Data Exchange (ETDEWEB)
Winke, Florian; Bargende, Michael [Stuttgart Univ. (Germany). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)
2013-09-15
As a result of the rising requirements on the development process of modern vehicles, simulation models for the prediction of fuel efficiency have become an irreplaceable tool in the automotive industry. Especially for the design of hybrid electric drivetrains, the increasingly short development cycles can only be met by the use of efficient simulation models. At the IVK of the University of Stuttgart, different approaches to simulating the longitudinal dynamics of hybrid electric vehicles were analysed and compared within the presented project. The focus of the investigations was on urban operation. The objective was to develop a hybrid vehicle concept that allows an equitable comparison with pure battery electric vehicles. (orig.)
Coupled neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan C.
2014-10-01
Neoclassical effects (e.g., the bootstrap current and neoclassical toroidal viscosity [NTV]) have a profound impact on many magnetohydrodynamic (MHD) instabilities, including tearing modes, edge-localized modes (ELMs), and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We present the first results of the DK4D code, a dynamic drift-kinetic equation (DKE) solver being developed for this application. In this study, DK4D solves a set of time-dependent, axisymmetric DKEs for the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The plasma is formally assumed to be in the low- to finite-collisionality regimes. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by an appropriate set of extended MHD equations. We will discuss computational methods used and benchmarks to other neoclassical models and codes. Furthermore, DK4D has been coupled to a reduced, transport-timescale MHD code, allowing for self-consistent simulations of the dynamic formation of the ohmic and bootstrap currents. Several applications of this hybrid code will be presented, including an ELM-like pressure collapse. We will also discuss plans for coupling to the spatially three-dimensional, extended MHD code M3D-C1 and generalizing to nonaxisymmetric geometries, with the goal of performing self-consistent hybrid simulations of tokamak instabilities and calculations of NTV torque. This work supported by the U.S. Department of Energy (DOE) under Grant Numbers DE-FC02-08ER54969 and DE-AC02-09CH11466.
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-06-01
Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.
Momentum and heat transfer from lower hybrid antennas to the tokamak edge plasma
Energy Technology Data Exchange (ETDEWEB)
Fuchs, V.; Goniche, M.; Gunn, J.; Petrzilka, V
2001-02-01
The momentum and heat transfer from the Lower Hybrid (LH) grill electric field to tokamak edge plasma are derived within the framework of quasi-linear theory. Results are supported by test electron simulations. An LH power loss of the order of 1- 5% of total radiated power is found to occur in an interaction layer of the size of about 0.3 cm in the radial direction limited by electron Landau damping of the LH slow wave. The underlying electron distribution function describing fast electrons generated in both the parallel and anti-parallel (to{sup {yields}} B{sub 0}) directions is approximated by a sum of drifting Maxwellian with
Flow Simulation and Optimization of Plasma Reactors for Coal Gasification
Ji, Chunjun; Zhang, Yingzi; Ma, Tengcai
2003-10-01
This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.
A Parallel Genetic Simulated Annealing Hybrid Algorithm for Task Scheduling
Institute of Scientific and Technical Information of China (English)
SHU Wanneng; ZHENG Shijue
2006-01-01
In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing .It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively.When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole.From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.
Pressure calculation in hybrid particle-field simulations.
Milano, Giuseppe; Kawakatsu, Toshihiro
2010-12-07
In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.
Hybrid simulation theory for a classical nonlinear dynamical system
Drazin, Paul L.; Govindjee, Sanjay
2017-03-01
Hybrid simulation is an experimental and computational technique which allows one to study the time evolution of a system by physically testing a subset of it while the remainder is represented by a numerical model that is attached to the physical portion via sensors and actuators. The technique allows one to study large or complicated mechanical systems while only requiring a subset of the complete system to be present in the laboratory. This results in vast cost savings as well as the ability to study systems that simply can not be tested due to scale. However, the errors that arise from splitting the system in two requires careful attention, if a valid simulation is to be guaranteed. To date, efforts to understand the theoretical limitations of hybrid simulation have been restricted to linear dynamical systems. In this work we consider the behavior of hybrid simulation when applied to nonlinear dynamical systems. As a model problem, we focus on the damped, harmonically-driven nonlinear pendulum. This system offers complex nonlinear characteristics, in particular periodic and chaotic motions. We are able to show that the application of hybrid simulation to nonlinear systems requires a careful understanding of what one expects from such an experiment. In particular, when system response is chaotic we advocate the need for the use of multiple metrics to characterize the difference between two chaotic systems via Lyapunov exponents and Lyapunov dimensions, as well as correlation exponents. When system response is periodic we advocate the use of L2 norms. Further, we are able to show that hybrid simulation can falsely predict chaotic or periodic response when the true system has the opposite characteristic. In certain cases, we are able to show that control system parameters can mitigate this issue.
Indian Academy of Sciences (India)
M Singh; P N Deka
2006-03-01
A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.
Magnetized plasma jets in experiment and simulation
Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce
2013-10-01
This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.
Simulating Strongly Correlated Electron Systems with Hybrid Monte Carlo
Institute of Scientific and Technical Information of China (English)
LIU Chuan
2000-01-01
Using the path integral representation, the Hubbard and the periodic Anderson model on D-dimensional cubic lattice are transformed into field theories of fermions in D + 1 dimensions. These theories at half-filling possess a positive definite real symmetry fermion matrix and can be simulated using the hybrid Monte Carlo method.
A hybrid parallel framework for the cellular Potts model simulations
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV
2009-01-01
The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).
Hybrid Techniques for Quantum Circuit Simulation
2014-02-01
15 Figure 10. (a) Ripple-carry (Cuccaro) adder for 3...bit numbers [17]. (b) Average runtime and memory needed by Quipu and QuIDDPro (QPLite) to simulate -bit Cuccaro adders ...b) scaled adder , (c) binary-to- stochastic converter, and (d) stochastic-to-binary converter
Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor
Jiang, Nan; Lu, Na; Li, Jie; Wu, Yan
2012-02-01
In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.
Simulation of rarefied low pressure RF plasma flow around the sample
Zheltukhin, V. S.; Shemakhin, A. Yu
2017-01-01
The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 103 K, in the plasma jet is (3.2-10) • 102 K, the degree of ionization is 10-7-10-5, electron density is 1015-1019 m-3. For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out.
Wind Solar Hybrid System Rectifier Stage Topology Simulation
Directory of Open Access Journals (Sweden)
Anup M. Gakare
2014-06-01
Full Text Available This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of the energy sources maximum power from the sun when it is available. An adaptive MPPT algorithm with a standard perturbs and observed method will be used for the Photo Voltaic system. The main advantage of the hybrid system is to give continuous power supply to the load. The gating pulses to the inverter switches are implemented with conventional and fuzzy controller. This hybrid wind-photo voltaic system is modeled in MATLAB/ SIMULINK environment. Simulation circuit is analyzed and results are presented for this hybrid wind and solar energy system.
Simulating magnetised plasma with the versatile advection code
Keppens, R.; Toth, G.; Palma, J. M. L.; Dongarra, J.; Hernandez, V.
1999-01-01
Matter in the universe mainly consists of plasma. The dynamics of plasmas is controlled by magnetic fields. To simulate the evolution of magnetised plasma, we solve the equations of magnetohydrodynamics using the Versatile Advection Code (VAC). To demonstrate the versatility of VAC, we present calcu
Simulating magnetised plasma with the versatile advection code
Keppens, R.; Toth, G.; Palma, J. M. L.; Dongarra, J.; Hernandez, V.
1999-01-01
Matter in the universe mainly consists of plasma. The dynamics of plasmas is controlled by magnetic fields. To simulate the evolution of magnetised plasma, we solve the equations of magnetohydrodynamics using the Versatile Advection Code (VAC). To demonstrate the versatility of VAC, we present
A hybrid approach to simulating mechanical properties of polymer nanocomposites.
Mccarron, Andy P; Raj, Sharad; Hyers, Robert; Kim, Moon K
2009-12-01
Empirical studies indicate that a polymer reinforced with nanoscale particles could enhance its mechanical properties such as stiffness and toughness. To give insight into how and why this nanoparticle reinforcement is effective, it is necessary to develop computational models that can accurately simulate the effects of nanoparticles on the fracture characteristics of polymer composites. Furthermore, a hybrid model that can account for both continuum and non-continuum effects will hasten the development of not only new hierarchical composite materials but also new theories to explain their behavior. This paper presents a hybrid modeling scheme for simulating fracture of polymer nanocomposites by utilizing an atomistic modeling approach called Elastic Network Model (ENM) in conjunction with a traditional Finite Element Analysis (FEA). The novelty of this hybrid ENM-FEA approach lies in its ability to model less interesting outer domains with FEA while still accounting for areas of interest such as crack tip reion and the interface between a nanoparticle and the polymer matrix at atomic scale with ENM. Various simulation conditions have been tested to determine the feasibility of the proposed hybrid model. For instance, an iterative result from a uniaxial loading with isotropic properties in an ENM-FEA model shows accuracy and convergence to the analytic solution.
Comparisons of dense-plasma-focus kinetic simulations with experimental measurements
Energy Technology Data Exchange (ETDEWEB)
Schmidt, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Link, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Welch, D. [Voss Scientific, Inc., Albuquerque, NM (United States); Ellsworth, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Falabella, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tang, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-06-01
Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.
Three-dimensional global fluid simulations of cylindrical magnetized plasmas
DEFF Research Database (Denmark)
Naulin, Volker; Windisch, T.; Grulke, O.
2008-01-01
. Thus, it is possible to assess the reproductive and predictive capabilities of plasma simulations in unprecedented detail. Here, three-dimensional global fluid simulations of a cylindrical magnetized plasma are presented. This plasma is characterized by the existence of spatially localized sources...... and sinks. The traditional scale separation paradigm is not applied in the simulation model to account for the important evolution of the background profiles due to the dynamics of turbulent fluctuations. Furthermore, the fluid modeling of sheath boundary conditions, which determine the plasma conditions...
Simulation and Test of a Fuel Cell Hybrid Golf Cart
Directory of Open Access Journals (Sweden)
Jingming Liang
2014-01-01
Full Text Available This paper establishes the simulation model of fuel cell hybrid golf cart (FCHGC, which applies the non-GUI mode of the Advanced Vehicle Simulator (ADVISOR and the genetic algorithm (GA to optimize it. Simulation of the objective function is composed of fuel consumption and vehicle dynamic performance; the variables are the fuel cell stack power sizes and the battery numbers. By means of simulation, the optimal parameters of vehicle power unit, fuel cell stack, and battery pack are worked out. On this basis, GUI mode of ADVISOR is used to select the rated power of vehicle motor. In line with simulation parameters, an electrical golf cart is refitted by adding a 2 kW hydrogen air proton exchange membrane fuel cell (PEMFC stack system and test the FCHGC. The result shows that the simulation data is effective but it needs improving compared with that of the real cart test.
Influence of collisions on parametric instabilities induced by lower hybrid waves in tokamak plasmas
Castaldo, C.; Di Siena, A.; Fedele, R.; Napoli, F.; Amicucci, L.; Cesario, R.; Schettini, G.
2016-01-01
Parametric instabilities induced at the plasma edge by lower hybrid wave power externally coupled to tokamak plasmas have, via broadening of the antenna spectrum, strong influence on the power deposition and current drive in the core. For modeling the parametric instabilities at the tokamak plasma edge in lower hybrid current drive experiments, the effect of the collisions has been neglected so far. In the present work, a specific collisional parametric dispersion relation, useful to analyze these nonlinear phenomena near the lower hybrid antenna mouth, is derived for the first time, based on a kinetic model. Numerical solutions show that in such cold plasma regions the collisions prevent the onset of the parametric instabilities. This result is important for present lower hybrid current drive experiments, as well as in fusion reactor scenarios.
A Matlab—Based Simulation for Hybrid Electric Motorcycle
Institute of Scientific and Technical Information of China (English)
邵定国; 李永斌; 汪信尧; 江建中
2003-01-01
This paper presents a simulation and modeling package based on Matlab for a parallel hybrid electric motorcycle (HEM).The package consists of several main detailed models: internal combustion engine (ICE), motor, continuously variable transmission(CVT), battery, energy management system (EMS) etc. Each component is built as a library, and can be connected together accord-ing to the parallel HEM's topology. Simulation results, such as ICE power demand, motor power demand, battery instantaneous state-of-charge (SOC), pollution emissions etc. Are given and discussed. Lastly experimental data verify our simulation results.
Bulk plasma fragmentation in a C{sub 4}F{sub 8} inductively coupled plasma: A hybrid modeling study
Energy Technology Data Exchange (ETDEWEB)
Zhao, Shu-Xia; Zhang, Yu-Ru [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Gao, Fei; Wang, You-Nian [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Bogaerts, Annemie [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium)
2015-06-28
A hybrid model is used to investigate the fragmentation of C{sub 4}F{sub 8} inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. C{sub x}F{sub y} (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C{sub 4}F{sub 8} inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C{sub 4}F{sub 8} reaction set used in the model. The C{sub 4}F{sub 8} plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.
Energy Technology Data Exchange (ETDEWEB)
Tong Huifeng; Yuan Hong [Institute of Fluid Physics, Chinese Academy of Engineering Physics, P.O. Box 919-101, Mianyang, Sichuan 621900 (China); Tang Zhiping [CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei 230026 (China)
2013-01-28
When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.
PIC/MCC simulation for magnetized capacitively coupled plasmas driven by combined dc/rf sources
Yang, Shali; Zhang, Ya; Jiang, Wei; Wang, Hongyu; Wang, Shuai
2016-09-01
Hybrid dc/rf capacitively coupled plasma (CCP) sources have been popular in substrate etching due to their simplicity in the device structure and better plasma property. In this work, the characteristics of magnetized capacitively coupled plasmas driven by combined dc/rf sources are described by a one-dimensional Particle-in-cell/Monte Carlo collision (PIC/MCC) model. The simulation is using a rf source of 13.56MHz in argon and at a low pressure of 50mTorr. The effects of dc voltage and magnetic field on the plasmas are examined for 200-400V and 0-200Gs. It is found that, to some extent, dc voltage will increase the plasma density, but plasma density drops with increasing dc voltage. The magnetic field will enhance the plasma density significantly, due to the magnetic field will increase the electron life time and decrease the loss to the electrodes. In the bulk plasma, electron temperature is increased with the magnetic field but decreased with the dc voltage. The electron temperature in sheath is higher than in bulk plasma, due to stochastic heating in sheath is greater than Ohmic heating in bulk plasma under low gas pressure. National Natural Science Foundation of China (11405067, 11105057, 11305032, 11275039).
Numerical Simulation of Plasma Antenna with FDTD Method
Institute of Scientific and Technical Information of China (English)
LIANG Chao; XU Yue-Min; WANG Zhi-Jiang
2008-01-01
We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconfigurable antenna.The investigation is meaningful and instructional for the optimization of plasma antenna design.
A Hybrid Model for Smoke Simulation
Institute of Scientific and Technical Information of China (English)
童若锋; 董金祥
2002-01-01
A smoke simulation approach based on the integration of traditional particlesystems and density functions is presented in this paper. By attaching a density function toeach particle as its attribute, the diffusion of smoke can be described by the variation of parti-cles' density functions, along with the effect on airflow by controlling particles' movement andfragmentation. In addition, a continuous density field for realistic rendering can be generatedquickly through the look-up tables of particle's density functions. Compared with traditionalparticle systems, this approach can describe smoke diffusion, and provide a continuous densityfield for realistic rendering with much less computation. A quick rendering scheme is also pre-sented in this paper as a useful preview tool for tuning appropriate parameters in the smokemodel.
Battery thermal models for hybrid vehicle simulations
Pesaran, Ahmad A.
This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.
Managing resource capacity using hybrid simulation
Ahmad, Norazura; Ghani, Noraida Abdul; Kamil, Anton Abdulbasah; Tahar, Razman Mat
2014-12-01
Due to the diversity of patient flows and interdependency of the emergency department (ED) with other units in hospital, the use of analytical models seems not practical for ED modeling. One effective approach to study the dynamic complexity of ED problems is by developing a computer simulation model that could be used to understand the structure and behavior of the system. Attempts to build a holistic model using DES only will be too complex while if only using SD will lack the detailed characteristics of the system. This paper discusses the combination of DES and SD in order to get a better representation of the actual system than using either modeling paradigm solely. The model is developed using AnyLogic software that will enable us to study patient flows and the complex interactions among hospital resources for ED operations. Results from the model show that patients' length of stay is influenced by laboratories turnaround time, bed occupancy rate and ward admission rate.
HIS-TORIC: extending core ICRF wave simulation to include realistic SOL plasmas
Shiraiwa, S.; Wright, J. C.; Lee, J. P.; Bonoli, P. T.
2017-08-01
This paper presents a novel approach to incorporating an arbitrarily shaped edge scrape-off-layer (SOL) plasma and an ion cyclotron range of frequency (ICRF) antenna structure into existing core ICRF wave simulation models. We partition the entire computation domain into two sub-domains: a core and an edge region. Simulations in each domain are performed separately with appropriate numerical solvers. For the core, the TORIC ICRF solver (Brambilla 1999 Plasma Phys. Control. Fusion 41 1) was modified to impose an essential (Dirichlet) boundary condition at its interface with the edge domain. In the edge, a finite element method is used to solve a cold collisional plasma model. The domains are then joined together using the continuity boundary condition for the tangential electric and magnetic fields at their interfaces (Hybrid Integration of SOL to TORIC: HIS-TORIC). The model developed here was tested using an ICRH H minority heating scenario on the Alcator C-Mod tokamak (Hutchinson et al 1994 Phys. Plasmas 1 1511). The simulated pattern of core wave propagation agrees well with a standard TORIC simulation. This approach opens the possibility of using a realistic diverted SOL plasma and a complicated 3D RF antenna together with a rigorous hot core plasma model, while requiring only minimal modification to existing RF codes.
Combustion flame-plasma hybrid reactor systems, and chemical reactant sources
Kong, Peter C
2013-11-26
Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.
Particle simulation of neoclassical transport in the plasma Edge
Energy Technology Data Exchange (ETDEWEB)
Chang, C.S. [Department of Physics, Korea Advanced Institute of Science and Technology (Korea); Ku, S. [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY (United States); Department of Physics, Korea Advanced Institute of Science and Technology (Korea)
2006-09-15
Particle-in-cell is a popular technique for a global five dimensional numerical simulation of the neoclassical plasma phenomena in a toroidal plasma. In this paper, we briefly review the physical and mathematical aspects of the modern neoclassical particle simulation methodology for a plasma edge simulation and present representative results recently obtained from XGC (X-point included Guiding Center) code. The strength and weakness in the modern neoclassical particle simulation techniques will also be discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Particle-in-cell simulation study of a lower-hybrid shock
Dieckmann, M. E.; Sarri, G.; Doria, D.; Ynnerman, A.; Borghesi, M.
2016-06-01
The expansion of a magnetized high-pressure plasma into a low-pressure ambient medium is examined with particle-in-cell simulations. The magnetic field points perpendicular to the plasma's expansion direction and binary collisions between particles are absent. The expanding plasma steepens into a quasi-electrostatic shock that is sustained by the lower-hybrid (LH) wave. The ambipolar electric field points in the expansion direction and it induces together with the background magnetic field a fast E cross B drift of electrons. The drifting electrons modify the background magnetic field, resulting in its pile-up by the LH shock. The magnetic pressure gradient force accelerates the ambient ions ahead of the LH shock, reducing the relative velocity between the ambient plasma and the LH shock to about the phase speed of the shocked LH wave, transforming the LH shock into a nonlinear LH wave. The oscillations of the electrostatic potential have a larger amplitude and wavelength in the magnetized plasma than in an unmagnetized one with otherwise identical conditions. The energy loss to the drifting electrons leads to a noticeable slowdown of the LH shock compared to that in an unmagnetized plasma.
MONTE CARLO SIMULATION OF CHARGED PARTICLE IN AN ELECTRONEGATIVE PLASMA
Directory of Open Access Journals (Sweden)
L SETTAOUTI
2003-12-01
Full Text Available Interest in radio frequency (rf discharges has grown tremendously in recent years due to their importance in microelectronic technologies. Especially interesting are the properties of discharges in electronegative gases which are most frequently used for technological applications. Monte Carlo simulation have become increasingly important as a simulation tool particularly in the area of plasma physics. In this work, we present some detailed properties of rf plasmas obtained by Monte Carlo simulation code, in SF6
Utilization of MATLAB in Simulation of Linear Hybrid Circuits
BRANCIK, L.
2003-01-01
In the paper a MATLAB-based method for simulating transient phenomena in linear hybrid circuits containing parts with both lumped and distributed parameters is presented. Distributed parts of the circuit are multiconductor transmission lines, which can generally be nonuniform, with frequency-dependent parameters, and under nonzero initial voltage and/or current distributions. In principle a solution is formulated using the modified nodal analysis method in the frequency domain. Subsequently a...
Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data
Herčík, David; Trávníček, Pavel M.; Å tverák, Å. těpán.; Hellinger, Petr
2016-01-01
Using a global hybrid model and test particle simulations we present a detailed analysis of the Hermean plasma belt structure. We investigate characteristic properties of quasi-trapped particle population characteristics and its behavior under different orientations of the interplanetary magnetic field. The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than the surrounding area. On the dayside the population exhibits loss cone distribution function matching the theoretical loss cone angle. The simulation results are in good agreement with in situ observations of MESSENGER's (MErcury Surface Space ENvironment GEochemistry, and Ranging) MAG and FIPS instruments.
Massimo, F.; Atzeni, S.; Marocchino, A.
2016-12-01
Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for the solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.
Preface to advances in numerical simulation of plasmas
Parker, Scott E.; Chacon, Luis
2016-10-01
This Journal of Computational Physics Special Issue, titled "Advances in Numerical Simulation of Plasmas," presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.
Flow Simulation and Optimization of Plasma Reactors for Coal Gasification
Institute of Scientific and Technical Information of China (English)
冀春俊; 张英姿; 马腾才
2003-01-01
This paper reports a 3-d numerical simulation system to analyze the complicatedflow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phaseflow and plasma effect. On the basis of analytic results, the distribution of the density, tempera-ture and components' concentration are obtained and a different plasma reactor configuration isproposed to optimize the flow parameters. The numerical simulation results show an improvedconversion ratio of the coal gasification. Different kinds of chemical reaction models are used tosimulate the complex flow inside the reactor. It can be concluded that the numerical simulationsystem can be very useful for the design and optimization of the plasma reactor.
STEM image simulation with hybrid CPU/GPU programming.
Yao, Y; Ge, B H; Shen, X; Wang, Y G; Yu, R C
2016-07-01
STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. Copyright © 2016 Elsevier B.V. All rights reserved.
Hybrid and electric advanced vehicle systems (heavy) simulation
Hammond, R. A.; Mcgehee, R. K.
1981-01-01
A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.
Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy
Directory of Open Access Journals (Sweden)
Zhu Dongyong
2016-12-01
Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.
Parallel pic plasma simulation through particle decomposition techniques
Energy Technology Data Exchange (ETDEWEB)
Briguglio, S.; Vlad, G. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia; Di Martino, B. [Wien Univ. (Austria). Inst. for Software Tecnology and Parallel Systems]|[Naples, Univ. `Federico II` (Italy). Dipt. di Informatica e Sistemistica
1998-02-01
Particle-in-cell (PIC) codes are among the major candidates to yield a satisfactory description of the detail of kinetic effects, such as the resonant wave-particle interaction, relevant in determining the transport mechanism in magnetically confined plasmas. A significant improvement of the simulation performance of such codes con be expected from parallelization, e.g., by distributing the particle population among several parallel processors. Parallelization of a hybrid magnetohydrodynamic-gyrokinetic code has been accomplished within the High Performance Fortran (HPF) framework, and tested on the IBM SP2 parallel system, using a `particle decomposition` technique. The adopted technique requires a moderate effort in porting the code in parallel form and results in intrinsic load balancing and modest inter processor communication. The performance tests obtained confirm the hypothesis of high effectiveness of the strategy, if targeted towards moderately parallel architectures. Optimal use of resources is also discussed with reference to a specific physics problem. [Italiano] I codici Particle-in-cell (PIC) sono considerati tra i piu` promettenti candidati per ottenere una descrizione soddisfacente e dettagliata degli effetti cinetici, quali per esempio l`interazione risonante particella-onda, rilevanti nel determinare i meccanismi di trasporto che interessano il confinamento del plasma. Un significativo miglioramento delle prestazioni della simulazione puo` essere ottenuto distribuendo la popolazione di particelle tra diversi processori in parallelo. La parallelizzazione di un codice ibrido MHD-girocinetico e` stata effettuata, in ambiente HPF, utilizzando la tecnica di `decomposizione per particelle`, ed e` stata provata sul sistema parallelo IBM SP2. La tecnica adottata richiede uno sforzo moderato per la trasformazione del codice in versione parallela, permette un intrinseco bilanciamento tra i processori del carico di lavoro e necessita di una modesta
Energy Technology Data Exchange (ETDEWEB)
Winske, D., E-mail: winske@lanl.gov; Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-02-15
We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (β{sub e} = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with T{sub i} = T{sub e}. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (β{sub i} = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.
Winske, D.; Daughton, W.
2015-02-01
We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.
Modeling of plasma and thermo-fluid transport in hybrid welding
Ribic, Brandon D.
Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of
Two-fluid biasing simulations of the large plasma device
Fisher, Dustin M.; Rogers, Barrett N.
2017-02-01
External biasing of the Large Plasma Device (LAPD) and its impact on plasma flows and turbulence are explored for the first time in 3D simulations using the Global Braginskii Solver code. Without external biasing, the LAPD plasma spontaneously rotates in the ion diamagnetic direction. The application of a positive bias increases the plasma rotation in the simulations, which show the emergence of a coherent Kelvin Helmholtz (KH) mode outside of the cathode edge with poloidal mode number m ≃6 . Negative biasing reduces the rotation in the simulations, which exhibit KH turbulence modestly weaker than but otherwise similar to unbiased simulations. Biasing either way, but especially positively, forces the plasma potential inside the cathode edge to a spatially constant, KH-stable profile, leading to a more quiescent core plasma than the unbiased case. A moderate increase in plasma confinement and an associated steepening of the profiles are seen in the biasing runs. The simulations thus show that the application of external biasing can improve confinement while also driving a Kelvin-Helmholtz instability. Ion-neutral collisions have only a weak effect in the biased or unbiased simulations.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Multiscale Hy3S: Hybrid stochastic simulation for supercomputers
Directory of Open Access Journals (Sweden)
Kaznessis Yiannis N
2006-02-01
Full Text Available Abstract Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users
Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas
Kaur, Maninder; Nandan Gupta, Devki
2016-11-01
The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.
Particle-in-cell simulation study of a lower-hybrid shock
Dieckmann, Mark Eric; Doria, Domenico; Ynnerman, Anders; Borghesi, Marco
2016-01-01
The expansion of a magnetized high-pressure plasma into a low-pressure ambient medium is examined with particle-in-cell (PIC) simulations. The magnetic field points perpendicularly to the plasma's expansion direction and binary collisions between particles are absent. The expanding plasma steepens into a quasi-electrostatic shock that is sustained by the lower-hybrid (LH) wave. The ambipolar electric field points in the expansion direction and it induces together with the background magnetic field a fast E cross B drift of electrons. The drifting electrons modify the background magnetic field, resulting in its pile-up by the LH shock. The magnetic pressure gradient force accelerates the ambient ions ahead of the LH shock, reducing the relative velocity between the ambient plasma and the LH shock to about the phase speed of the shocked LH wave, transforming the LH shock into a nonlinear LH wave. The oscillations of the electrostatic potential have a larger amplitude and wavelength in the magnetized plasma than...
Gonzalez-Mancera, Andres; Gonzalez Cardenas, Diego
2014-11-01
Flow in the microcirculation is highly dependent on the mechanical properties of the cells suspended in the plasma. Red blood cells have to deform in order to pass through the smaller sections in the microcirculation. Certain deceases change the mechanical properties of red blood cells affecting its ability to deform and the rheological behaviour of blood. We developed a hybrid algorithm based on the Lattice-Boltzmann and Finite Element methods to simulate blood flow in small capillaries. Plasma was modeled as a Newtonian fluid and the red blood cells' membrane as a hyperelastic solid. The fluid-structure interaction was handled using the immersed boundary method. We simulated the flow of plasma with suspended red blood cells through cylindrical capillaries and measured the pressure drop as a function of the membrane's rigidity. We also simulated the flow through capillaries with a restriction and identify critical properties for which the suspended particles are unable to flow. The algorithm output was verified by reproducing certain common features of flow int he microcirculation such as the Fahraeus-Lindqvist effect.
Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods
Energy Technology Data Exchange (ETDEWEB)
Lambert, M.A.
1996-06-01
An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d {ital rz}-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere`s law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods.
Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods
Energy Technology Data Exchange (ETDEWEB)
Lambert, Michael Allen [Univ. of California, Davis, CA (United States)
1996-06-01
An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere`s law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods.
Energy Technology Data Exchange (ETDEWEB)
Bergemann, Claudia [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Cornelsen, Matthias [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Quade, Antje [Leibniz-Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Laube, Thorsten; Schnabelrauch, Matthias [INNOVENT e.V., Biomaterials Department, Pruessingstrasse 27B, D-07745 Jena (Germany); Rebl, Henrike [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Weißmann, Volker [Institute for Polymer Technologies (IPT) e.V., Alter Holzhafen 19, D-23966 Wismar (Germany); Seitz, Hermann [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Nebe, Barbara, E-mail: barbara.nebe@med.uni-rostock.de [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany)
2016-02-01
The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(L-lactide-co-D,L-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA — improvement of compressive strength of calcium phosphate scaffolds – is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10 mm hybrid scaffold were dynamically cultivated for 14 days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. - Highlights: • Mechanical stabilization of β-tricalcium phosphate scaffolds by PLA infiltration • Hybrid scaffolds with higher cell attraction due to plasma polymerized allylamine • 3D perfusion in vitro model for observation of cell migration inside scaffolds • Enhanced cell migration within plasma polymer coated TCP hybrid scaffolds.
Flow simulation and optimization of plasma reactors for coal gasification
Energy Technology Data Exchange (ETDEWEB)
Ji, C.J.; Zhang, Y.Z.; Ma, T.C. [Dalian University of Technology, Dalian (China). Power Engineering Dept.
2003-10-01
This paper reports a 3-D numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.
Modelling of dusty plasma properties by computer simulation methods
Energy Technology Data Exchange (ETDEWEB)
Baimbetov, F B [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Ramazanov, T S [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Dzhumagulova, K N [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Kadyrsizov, E R [Institute for High Energy Densities of RAS, Izhorskaya 13/19, Moscow 125412 (Russian Federation); Petrov, O F [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Gavrikov, A V [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan)
2006-04-28
Computer simulation of dusty plasma properties is performed. The radial distribution functions, the diffusion coefficient are calculated on the basis of the Langevin dynamics. A comparison with the experimental data is made.
Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas
Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi
2016-08-01
A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.
Computational simulation of intermingled-fiber hybrid composite behavior
Mital, Subodh K.; Chamis, Christos C.
1992-01-01
Three-dimensional finite-element analysis and a micromechanics based computer code ICAN (Integrated Composite Analyzer) are used to predict the composite properties and microstresses of a unidirectional graphite/epoxy primary composite with varying percentages of S-glass fibers used as hydridizing fibers at a total fiber volume of 0.54. The three-dimensional finite-element model used in the analyses consists of a group of nine fibers, all unidirectional, in a three-by-three unit cell array. There is generally good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite-element methods and the micromechanics equations embedded in the ICAN computer code can be used to obtain the properties of intermingled fiber hybrid composites needed for the analysis/design of hybrid composite structures. However, the finite-element model should be big enough to be able to simulate the conditions assumed in the micromechanics equations.
Wind hybrid electrical supply system: behaviour simulation and sizing optimization
Notton, G.; Cristofari, C.; Poggi, P.; Muselli, M.
2001-04-01
Using a global approach, a wind hybrid system operation is simulated and the evolution of several parameters is analysed, such as the wasted energy, the fuel consumption and the role of the wind turbine subsystem in the global production. This analysis shows that all the energies which take part in the system operation are more dependent on the wind turbine size than on the battery storage capacity. A storage of 2 or 3 days is sufficient, because an increase in storage beyond these values does not have a notable impact on the performance of the wind hybrid system. Finally, a cost study is performed to determine the optimal configuration of the system conducive to the lowest cost of electricity production.
Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas
Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi
2016-11-01
A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.
Large-scale nanocomposites simulations using hybrid particle/SCFT simulations
Sides, Scott
2009-03-01
Preliminary results from 2D simulations of block copolymer nanocomposites (Phys. Rev. Lett. Vol 96, 250601 (2006) have been performed using a hybrid self-consistent field theory (SCFT) algorithm. While these simulation results showed that the presence of nanoparticles could induce changes in block copolymer morphologies, quantitative agreement with experiments for the particle densities at this transition are not yet possible. A feature missing in the 2D hybrid simulations is the packing behavior of real, three-dimensional spherical particles embedded in lamellar layers or hexagonally packed cylinders formed by linear diblock chains. In order to carry out these hybrid particle/SCFT 3D simulations a new object-oriented SCFT framework has been developed. The object-oriented design enables the hybrid/SCFT simulations to be performed in a framework that is both numerically efficient and sufficiently flexible to incorporate new SCFT models easily, In particular, this new framework will be used to investigate the distribution of particle positions in diblock lamellar layers as function of nanoparticle density to study the interplay of patterning due to diblock domain structure and the chain depletion interaction between spherical particles.
Directory of Open Access Journals (Sweden)
Richard Thomas Lermen
2012-12-01
Full Text Available O principal objetivo deste artigo foi apresentar um novo dispositivo para o processamento de materiais. Ele consiste em uma tocha de plasma híbrida, a qual é caracterizada pela formação simultânea de dois arcos plasma em apenas um dispositivo, gerando jato (de plasma com elevada densidade de energia. A tocha foi submetida aos seguintes testes experimentais: de funcionamento para verificar possíveis problemas de projeto e seus limites de operação; de caracterização, consistindo em determinar o comprimento do jato de plasma; de sua viabilidade para processamento de materiais (soldagem e corte. Com base nestes testes iniciais, alguns problemas de isolamento elétrico e térmico foram encontrados e resolvidos. Quanto aos resultados dos testes de caracterização, os parâmetros de funcionamento da tocha de plasma híbrida apresentaram influência significativa sobre o comprimento do jato de plasma. Os resultados obtidos nos testes de processamento de materiais foram satisfatórios, ou seja, é possível realizar soldagem e corte com esta tocha de plasma híbrida.The main aim of this paper was to present a new device for materials processing. It consist of a hybrid plasma torch which is characterized by the simultaneous formation of two plasma arcs in one device only, generating a (plasma jet with high energy density. The torch was submitted to the following trials: of operation to identify possible design problems and its operational torch limits; of characterization, consisting in plasma jet length determination; and of viability for materials processing (welding and cutting. Based on these initial trials, some electrical and thermal insulation problems were found and solved. Concerning the results of the characterization trials, the hybrid plasma torch parameters had a significant influence over the plasma jet length. The results obtained in the materials processing trials were satisfactory, i.e., it is possible to carry out welding and
A hybrid algorithm for parallel molecular dynamics simulations
Mangiardi, Chris M
2016-01-01
This article describes an algorithm for hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-ranged forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with AVX and AVX-2 processors as well as Xeon-Phi co-processors.
A hybrid algorithm for parallel molecular dynamics simulations
Mangiardi, Chris M.; Meyer, R.
2017-10-01
This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.
Simulation of Flow Around Cylinder Actuated by DBD Plasma
Wang, Yuling; Gao, Chao; Wu, Bin; Hu, Xu
2016-07-01
The electric-static body force model is obtained by solving Maxwell's electromagnetic equations. Based on the electro-static model, numerical modeling of flow around a cylinder with a dielectric barrier discharge (DBD) plasma effect is also presented. The flow streamlines between the numerical simulation and the particle image velocimetry (PIV) experiment are consistent. According to the numerical simulation, DBD plasma can reduce the drag coefficient and change the vortex shedding frequencies of flow around the cylinder.
Computational Simulation of High Energy Density Plasmas
2009-10-30
the imploding liner. The PFS depends on a lithium barrier foil slowing the advance of deuterium up the coaxial gun to the corner. There the plasma ...the coaxial gun section, and Figure 4 shows the physical state of the plasma just prior to pinch. Figure 5 shows neutron yield reaching 1014 in this...details the channel geometry between the center cylinder and coaxial gas gun . The deuterium injection starts when the pressure of the deuterium gas in
Yang, Wei; Li, Hong; Gao, Fei; Wang, You-Nian
2016-12-01
In this article, we have described a radio-frequency (RF) inductively coupled H2 plasma using a hybrid computational model, incorporating the Maxwell equations and the linear part of the electron Boltzmann equation into global model equations. This report focuses on the effects of RF frequency, gas pressure, and coil current on the spatial profiles of the induced electric field and plasma absorption power density. The plasma parameters, i.e., plasma density, electron temperature, density of negative ion, electronegativity, densities of neutral species, and dissociation degree of H2, as a function of absorption power, are evaluated at different gas pressures. The simulation results show that the utilization efficiency of the RF source characterized by the coupling efficiency of the RF electric field and power to the plasma can be significantly improved at the low RF frequency, gas pressure, and coil current, due to a low plasma density in these cases. The densities of vibrational states of H2 first rapidly increase with increasing absorption power and then tend to saturate. This is because the rapidly increased dissociation degree of H2 with increasing absorption power somewhat suppresses the increase of the vibrational states of H2, thus inhibiting the increase of the H-. The effects of absorption power on the utilization efficiency of the RF source and the production of the vibrational states of H2 should be considered when setting a value of the coil current. To validate the model simulations, the calculated electron density and temperature are compared with experimental measurements, and a reasonable agreement is achieved.
Energy Technology Data Exchange (ETDEWEB)
Takase, Haruhiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Senda, Ikuo
1999-04-01
A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting components around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this code. The code can analyze the plasma position and shape control during the minor disruption in which the deformation of plasma is not negligible. Using the ITER (International Thermonuclear Experimental Reactor) parameters, some examples of calculations are shown in this paper. (author)
Modeling of the coal gasification processes in a hybrid plasma torch
Energy Technology Data Exchange (ETDEWEB)
Matveev, I.B.; Serbin, S.I. [Applied Plasma Technology, Mclean, VA (USA)
2007-12-15
The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of the computational-fluid-dynamics-computational method, preliminary 3-D calculations of heat exchange in a 1-MW plasma generator operating with direct vortex and RV have been conducted at the air flow rate of 100 g/s. For the investigated mode and designed parameters, reduction of the total wall heat transfer for the reverse scheme is about 65 kW, which corresponds to an increase of the plasma generator efficiency by approximately 6.5%. This new hybrid plasma torch operates as a multimode, high power plasma system with a wide range of plasma feedstock gases and turn down ratio, and offers convenient and simultaneous feeding of several additional reagents into the discharge zone.
Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The poloidal rotation of the magnetized edge plasma in tokamak driven by theponderomotive force which is generated by injecting lower hybrid wave(LHW) electric field hasbeen studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla’sgrill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneouscold plasma have been derived. It is shown that a strong wave electric field will be generated inthe plasma edge by injecting LH wave of the power in MW magnitude, and this electric field willinduce a poloidal rotation with a sheared poloidal velocity.PACS: 52.55.Fa
Utilization of MATLAB in Simulation of Linear Hybrid Circuits
Directory of Open Access Journals (Sweden)
L. Brancik
2003-12-01
Full Text Available In the paper a MATLAB-based method for simulating transientphenomena in linear hybrid circuits containing parts with both lumpedand distributed parameters is presented. Distributed parts of thecircuit are multiconductor transmission lines, which can generally benonuniform, with frequency-dependent parameters, and under nonzeroinitial voltage and/or current distributions. In principle a solutionis formulated using the modified nodal analysis method in the frequencydomain. Subsequently an improved fast method of the numerical inversionof Laplace transforms in the vector or matrix form is applied to obtainsolution in the time domain.
Hybrid multiscale simulation of a mixing-controlled reaction
Energy Technology Data Exchange (ETDEWEB)
Scheibe, Timothy D.; Schuchardt, Karen L.; Agarwal, Khushbu; Chase, Jared M.; Yang, Xiaofan; Palmer, Bruce J.; Tartakovsky, Alexandre M.; Elsethagen, Todd O.; Redden, George D.
2015-09-01
Continuum-scale models have been used to study subsurface flow, transport, and reactions for many years but lack the capability to resolve fine-grained processes. Recently, pore-scale models, which operate at scales of individual soil grains, have been developed to more accurately model and study pore-scale phenomena, such as mineral precipitation and dissolution reactions, microbially-mediated surface reactions, and other complex processes. However, these highly-resolved models are prohibitively expensive for modeling domains of sizes relevant to practical problems. To broaden the utility of pore-scale models for larger domains, we developed a hybrid multiscale model that initially simulates the full domain at the continuum scale and applies a pore-scale model only to areas of high reactivity. Since the location and number of pore-scale model regions in the model varies as the reactions proceed, an adaptive script defines the number and location of pore regions within each continuum iteration and initializes pore-scale simulations from macroscale information. Another script communicates information from the pore-scale simulation results back to the continuum scale. These components provide loose coupling between the pore- and continuum-scale codes into a single hybrid multiscale model implemented within the SWIFT workflow environment. In this paper, we consider an irreversible homogenous bimolecular reaction (two solutes reacting to form a third solute) in a 2D test problem. This paper is focused on the approach used for multiscale coupling between pore- and continuum-scale models, application to a realistic test problem, and implications of the results for predictive simulation of mixing-controlled reactions in porous media. Our results and analysis demonstrate that loose coupling provides a feasible, efficient and scalable approach for multiscale subsurface simulations.
Numerical simulation and experimental progress on plasma window
Wang, S. Z.; Zhu, K.; Huang, S.; Lu, Y. R.; Shi, B. L.
2016-11-01
In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic simulation on 3mm plasma window using argon, taken as a windowless vacuum device, was developed. The gas inlet, arc creation and developing and plasma expansion segments are all contained in this model. In the axis-symmetry cathode structure, a set of parameters including pressure, temperature, velocity and current distribution were obtained and discussed. The fluid dynamics of plasma in cavities with different shapes was researched. Corresponding experiments was carried out and the result agrees well to the numerical simulation. The validity of sealing ability of plasma window has been verified. Relevant further research upon deuteron gas as neutron production target is to be continued, considering larger diameter plasma window experimentally and numerically.
Institute of Scientific and Technical Information of China (English)
WANG Feihu; ZHANG Zhou; CHEN Yinhua; HUANG Feng
2007-01-01
In this study,by employing a local fluid theory for warm plasma containing negative ions,an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field currents or relative drifts between electrons and ions Was investigated.It is found that the growth rate of the lower-hybrid-drift instability(LHDI)can be controlled by appropriate selection of the propagation direction,the wave number and the relative population of the negative ions.
Monte Carlo simulations for plasma physics
Energy Technology Data Exchange (ETDEWEB)
Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-07-01
Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)
Wiehle, S.; Plaschke, F.; Motschmann, U.; Glassmeier, K. H.; Auster, H. U.; Angelopoulos, V.; Mueller, J.; Kriegel, H.; Georgescu, E.; Halekas, J.; Sibeck, D. G.; McFadden, J. P.
2011-01-01
The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake; therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process.
Sizing and Simulation of PV-Wind Hybrid Power System
Directory of Open Access Journals (Sweden)
Mustafa Engin
2013-01-01
Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.
Energy Technology Data Exchange (ETDEWEB)
Morales C, J
2001-07-01
One of the general objectives that are developed by the group of polymers semiconductors in the laboratory of polymers of the UAM-Iztapalapa is to study the surface treatment for plasma of different materials. Framed in this general objective, in this work three lines of investigation have been developed, independent one of other that converge in the general objective. The first one tries about the modeling one and evaluation of the microscopic parameters of operation of the polymerization reactor. The second are continuation of the study of conductive polymers synthesized by plasma and the third are an application of the treatment for plasma on natural fibers. In the first one it lines it is carried out the characterization and simulation of the parameters of operation of the polymerization reactor for plasma. They are determined the microscopic parameters of operation of the reactor experimentally like they are the electronic temperature, the potential of the plasma and the density average of electrons using for it an electrostatic Langmuir probe. In the simulation, starting from the Boltzmann transport equation it thinks about the flowing pattern and the electronic temperature, the ions density is obtained and of electrons. The data are compared obtained experimentally with the results of the simulation. In second line a study is presented about the influence of the temperature on the electric conductivity of thin films doped with iodine, of poly aniline (P An/I) and poly pyrrole (P Py/I). The films underwent heating-cooling cycles. The conductivity of P An/I and P Py/I in function of the temperature it is discussed based on the Arrhenius model, showing that it dominates the model of homogeneous conductivity. It is also synthesized a polymer bi-layer of these two elements and a copolymer random poly aniline-poly pyrrole, of the first one it the behavior of its conductivity discusses with the temperature and of the second, the conductivity is discussed in
Simulations for plasma spectroscopy based on UTA theory
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
The unresolved transition array(UTA) simulation with configurationaverage approximation is used to calculate the spectral properties ofplasmas involving complex ions. This method is used to simulate thetransmission of X-rays through aluminum plasma and niobium plasmarespectively. The results are compared with experiments and other results ofadvanced models and good agreements are obtained.
Thermalization of Na+ Pickup Ions in Mercury's Magnetosheath and Magnetosphere via Hybrid Simulation
Boardsen, S. A.; Omidi, N.; Slavin, J. A.
2007-12-01
In previous studies it has been suggested that the incorporation of Na+ pickup ions into Mercury's magnetosphere could have a significant impact on various magnetospheric processes. Test particle simulations indicate that freshly created Na+ ions are rapidly energized and lost from the system. In order to incorporate these ions into the bulk magnetospheric plasma they must be thermalized. A recent study that used linear theory suggests that the wavelengths of electromagnetic ion cyclotron waves may be to large and may not grow to sufficient amplitudes to thermalize these ions and concluded that global thermalization of these ions is not possible. However, under certain solar wind and IMF conditions such thermalization might take place in limited regions of Mercury's magnetosphere, primarily in the sub-solar magnetosheath. Due the small scale size of Mercury's magnetosphere compared to the gyro-radii of these heavy ions and their associated wave modes, hybrid simulation with a kinetic treatment for the ions and a fluid treatment for the electrons may be the only way to study if thermalization of Na+ can occur. Preliminary results of a hybrid simulation that incorporates the Na+ pickup ions in its kinetic treatment will be presented.
Hybrid simulation of metal oxide surge-arrester thermal behaviour
Energy Technology Data Exchange (ETDEWEB)
Huang, L.; Raghuveer, M.R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Electrical and Computer Engineering
1996-01-01
A finite-difference-based technique for simulating the thermal behaviour of a metal oxide surge arrester (MOSA) was described. The improved hybrid thermal modelling technique was claimed to accurately represent heat-transfer modes. Fin theory was used to represent arrester sheds. The proposed model, which relies on simple measurements at the arrester terminals, yields the temporal variation of temperature in a MOSA in both the axial and radial direction. The thermal behaviour of a MOSA under steady-state and transient conditions can be simulated using such a model under different environmental conditions. The accuracy of the modelling technique was demonstrated experimentally by measurements conducted on an arrester. 15 refs., 7 figs.
Software development infrastructure for the HYBRID modeling and simulation project
Energy Technology Data Exchange (ETDEWEB)
Aaron S. Epiney; Robert A. Kinoshita; Jong Suk Kim; Cristian Rabiti; M. Scott Greenwood
2016-09-01
One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers
Simulations of a beam-driven plasma antenna in the regime of plasma transparency
Timofeev, I. V.; Berendeev, E. A.; Dudnikova, G. I.
2017-09-01
In this paper, the theoretically predicted possibility to increase the efficiency of electromagnetic radiation generated by a thin beam-plasma system in the regime of oblique emission, when a plasma column becomes transparent to radiation near the plasma frequency, is investigated using particle-in-cell simulations. If a finite-size plasma column has a longitudinal density modulation, such a system is able to radiate electromagnetic waves as a dipole antenna. This radiation mechanism is based on the conversion of an electron beam-driven potential plasma wave on the periodic perturbation of plasma density. In this case, the frequency of radiated waves appears to be slightly lower than the plasma frequency. That is why their fields enable the penetration into the plasma only to the skin-depth. This case is realized when the period of density modulation coincides with the wavelength of the most unstable beam-driven mode, and the produced radiation escapes from the plasma in the purely transverse direction. In the recent theoretical paper [I. V. Timofeev et al. Phys. Plasmas 23, 083119 (2016)], however, it has been found that the magnetized plasma can be transparent to this radiation at certain emission angles. It means that the beam-to-radiation power conversion can be highly efficient even in a relatively thick plasma since not only boundary layers but also the whole plasma volume can be involved in the generation of electromagnetic waves. Simulations of steady-state beam injection into a pre-modulated plasma channel confirm the existence of this effect and show limits of validity for the simplified theoretical model.
Arc plasma devices: Evolving mechanical design from numerical simulation
Indian Academy of Sciences (India)
S Ghorui; A K Das
2013-04-01
Wide ranges of technological applications involve arc plasma devices as the primary plasma source for processing work. Recent findings exhibit the existence of appreciable thermal non-equilibrium in these so-called thermal plasma devices. Commercially available magnetohydrodynamic codes are not capable of handling such systems due to unavailability of non-equilibrium thermodynamic and transport property data and self-consistent models. A recipe for obtaining mechanical design of arc plasma devices from numerical simulation incorporating two-temperature thermal non-equilibrium model is presented in this article with reference to the plasma of the mixture of molecular gases like nitrogen and oxygen. Such systems are technologically important as they correspond to the plasma devices operating with air, oxygen plasma torches in cutting industries and plasma devices using nitrogen as shielding gas. Temperature field, associated fluid dynamics and electrical characteristics of a plasma torch are computed in a systematic manner to evaluate the performance of a conceived design using a two-fluid CFD model coupled with a two-temperature thermodynamic and transport property code. Important effects of different nozzle designs and plasma gases obtained from the formalism are discussed. Non-equilibrium thermo-dynamic properties are computed using modified two-temperature Saha equations and transport properties are computed using standard Chapman–Enskog approach.
Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Johnson, Jeffrey N. [Univ. of California, Davis, CA (United States)
2009-01-01
The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.
Plasma characteristics in inductively and capacitively coupled hybrid source using single RF power
Kim, Kwan-Yong; Lee, Moo-Young; Kim, Tae-Woo; Kim, Ju-Ho; Chung, Chin-Wook
2016-09-01
Parallel combined inductively coupled plasma (ICP) and capacitively coupled plasma (CCP) using single RF generator was proposed to linear control of the plasma density with RF power. In the case of ICP, linear control of the plasma density is difficult because there is a density jump up due to E to H transition. Although the plasma density of CCP changes linearly with power, the density is lower than that of ICP due to high ion energy loss at the substrate. In our hybrid source, the single RF power generator was connected to electrode and antenna, and the variable capacitor was installed between the antenna and the power generator to control the current flowing through the antenna and the electrode. By adjusting the current ratio between the antenna and the electrode, linear characteristic of plasma density with RF power is achieved.
The characteristics of arc beam shaping in hybrid plasma and laser deposition manufacturing
Institute of Scientific and Technical Information of China (English)
ZHANG; Hai'ou; QIAN; Yingping; WANG; Guilan; ZHENG; Qiguang
2006-01-01
As a new direct metal prototyping technology,the hybrid plasma and laser deposition manufacturing (PLDM) is proposed in this paper. In order to figure out the characteristics of plasma arc beam and mould in the PLDM process of high temperature alloy, the high speed CCD camera is used to obtain the picture around the plasma arc. Afterwards the sketch of picture is clearly obtained. And the effect of laser parameter, such as average power, pulse width, pulse repetition frequency and the angle between laser beam and plasma arc beam on the plasma arc appearance, is studied experimentally. The results show that the modality of plasma arc beam is markedly influenced by laser beam. And the improvements of shape precision and surface state of the layer deposited by PLDM are confirmed.
Plasma simulator for rotating astrophysical objects
Directory of Open Access Journals (Sweden)
K. E. Nakamura
2000-01-01
Full Text Available Estamos desarrollando un simulador de plasmas astrof sicos con rotaci on, que consiste de m odulos manejados por un c odigo tridimensional magnetohidrodin amico. Los m odulos que hemos dise~nado incluyen difusi on magn etica, conducci on t ermica, enfriamiento radiativo y autogravedad. Estamos desarrollando m odulos para hacer la visualizaci on. El c odigo est a paralelizado y optimizado para computadoras vectorizadas y paralelas.
PLASMA ENERGETIC PARTICLES SIMULATION CENTER (PEPSC)
Energy Technology Data Exchange (ETDEWEB)
Berk, Herbert L.
2014-05-23
The main effort of the Texas group was to develop theoretical and simplified numerical models to understand chirping phenomena often seen for Alfven and geodesic acoustic waves in experimental plasmas such as D-III-D, NSTX and JET. Its main numerical effort was to modify the AEGIS code, which was originally developed as an eigenvalue solver. To apply to the chirping problem this code has to be able to treat the linear response to the continuum and the response of the plasma to external drive or to an internal drive that comes from the formation of phase space chirping structures. The theoretical underpinning of this investigation still needed to be more fully developed to understand how to best formulate the theoretical problem. Considerable progress was made on this front by B.N. Breizman and his collaborators and a new reduced model was developed by H. L. Berk and his PhD student, G. Wang which can be uses as simplified model to describe chirping in a large aspect ratio tokamak. This final report will concentrate on these two directions that were developed as well as results that were found in the work with the AEGIS code and in the progress in developing a novel quasi-linear formulation for a description of Alfvenic modes destabilized by energetic particles, such as alpha particles in a burning plasma.
High heat flux plasma generator for new divertor plasma simulator in Nagoya University
Energy Technology Data Exchange (ETDEWEB)
Narita, S.; Ezumi, N.; Ohno, N.; Uesugi, Y.; Takamura, S. [Nagoya Univ. (Japan)
1997-12-31
A new divertor simulator called NAGDIS-II has been constructed in order to investigate edge plasma physics in fusion devices. Improved TP-D type plasma source, which consists of LaB{sub 6} cathode with a Mo hollow shield and external heating system, water-cooled intermediate electrode and anode was employed to make a high density plasma in the NAGDIS-II. The performance and reliability of the discharge system was confirmed by quantitatively measuring neutral pressure, heating efficiency and plasma parameters. (author)
PIC simulation of electron acceleration in an underdense plasma
Directory of Open Access Journals (Sweden)
S Darvish Molla
2011-06-01
Full Text Available One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of the wide variety of methods for generating a regular electric field in plasmas with strong laser radiation, the most attractive one at the present time is the scheme of the Laser Wake Field Accelerator (LWFA. In this method, a strong Langmuir wave is excited in the plasma. In such a wave, electrons are trapped and can acquire relativistic energies, accelerated to high energies. In this paper the PIC simulation of wakefield generation and electron acceleration in an underdense plasma with a short ultra intense laser pulse is discussed. 2D electromagnetic PIC code is written by FORTRAN 90, are developed, and the propagation of different electromagnetic waves in vacuum and plasma is shown. Next, the accuracy of implementation of 2D electromagnetic code is verified, making it relativistic and simulating the generating of wakefield and electron acceleration in an underdense plasma. It is shown that when a symmetric electromagnetic pulse passes through the plasma, the longitudinal field generated in plasma, at the back of the pulse, is weaker than the one due to an asymmetric electromagnetic pulse, and thus the electrons acquire less energy. About the asymmetric pulse, when front part of the pulse has smaller time rise than the back part of the pulse, a stronger wakefield generates, in plasma, at the back of the pulse, and consequently the electrons acquire more energy. In an inverse case, when the rise time of the back part of the pulse is bigger in comparison with that of the back part, a weaker wakefield generates and this leads to the fact that the electrons
Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments
DEFF Research Database (Denmark)
Madsen, Jens
The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite...... models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov......-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor radius effects on the radial transport of isolated plasma filaments (blobs) in the scrape-off region of fusion plasmas...
Inductively coupled radio frequency methane plasma simulation
Bera, K.; Farouk, B.; Vitello, P.
2001-05-01
A self-consistent two-dimensional radio frequency inductively coupled glow discharge model has been developed in cylindrical coordinates using a fluid model. The objective of the study is to provide insight into charged species dynamics and investigate their effects on plasma process for a methane discharge. The model includes continuity and energy equations for electrons and continuity, momentum and energy equations for positive and negative ions. An electromagnetic model that considers the electric field due to the space charge within the plasma and due to inductive power coupling is also incorporated. For an inductively coupled methane discharge we expect to find higher fluxes of ions and radicals to the cathode, and hence a higher deposition/etch rate for a high-density plasma. The independent control of ion energy to the cathode in an inductively coupled discharge will facilitate control on film deposition/etch rate and uniformity on the wafer. Swarm data as a function of the electron energy are provided as input to the model. The model predicts the electron density, ion density and their fluxes and energies to the cathode. The radical and neutral densities in the discharge are calculated using a gas phase chemistry model. The diamond-like-carbon thin-film deposition/etch rate is predicted using a surface chemistry model. The gas phase chemistry model considers the diffusion of radicals and neutrals along with creation and loss terms. The surface deposition/etching process involves adsorption-desorption, adsorption layer reaction, ion stitching, direct ion incorporation and carbon sputtering.
Magnetized laboratory plasma jets: Experiment and simulation
Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce
2015-01-01
Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.
Prediction of plasma simulation data with the Gaussian process method
Energy Technology Data Exchange (ETDEWEB)
Preuss, R.; Toussaint, U. von, E-mail: udo.v.toussaint@ipp.mpg.de [Max-Planck-Institute for Plasma Physics, EURATOM Association, 85748 Garching (Germany)
2014-12-05
The simulation of plasma-wall interactions of fusion plasmas is extremely costly in computer power and time - the running time for a single parameter setting is easily in the order of weeks or months. We propose to exploit the already gathered results in order to predict the outcome for parametric studies within the high dimensional parameter space. For this we utilize Gaussian processes within the Bayesian framework and perform validation with one and two dimensional test cases from which we learn how to assess the outcome. Finally, the newly implemented method is applied to simulated data from the scrape-off layer of a fusion plasma. Uncertainties of the predictions are provided which point the way to parameter settings of further (expensive) simulations.
Zheng, Kai; Li, Huan; Yang, Li-Jun; Gu, Xiao-Yan; Gao, Ying
2013-04-01
The plasma radiation of laser-double wire hybrid welding was collected by using fiber spectrometer, the coupling mechanism of arc with laser was studied through high-speed photography during welding process, and the temperature of hybrid plasma was calculated by using the method of Boltzmann plot. The results indicated that with laser hybrid, luminance was enhanced; radiation intensity became stronger; arc was attracted to the laser point; cross section contracted and arc was more stable. The laser power, welding current and arc-arc distance are important factors that have great influence on electron temperature. Increase in the laser power, amplification of welding current and reduction of arc-arc distance can all result in the rise of temperature.
Accelerating Climate and Weather Simulations through Hybrid Computing
Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark
2011-01-01
Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.
Modeling plasma-assisted growth of graphene-carbon nanotube hybrid
Tewari, Aarti
2016-08-01
A theoretical model describing the growth of graphene-CNT hybrid in a plasma medium is presented. Using the model, the growth of carbon nanotube (CNT) on a catalyst particle and thereafter the growth of the graphene on the CNT is studied under the purview of plasma sheath and number density kinetics of different plasma species. It is found that the plasma parameter such as ion density; gas ratios and process parameter such as source power affect the CNT and graphene dimensions. The variation in growth rates of graphene and CNT under different plasma power, gas ratios, and ion densities is analyzed. Based on the results obtained, it can be concluded that higher hydrocarbon ion densities and gas ratios of hydrocarbon to hydrogen favor the growth of taller CNTs and graphene, respectively. In addition, the CNT tip radius reduces with hydrogen ion density and higher plasma power favors graphene with lesser thickness. The present study can help in better understanding of the graphene-CNT hybrid growth in a plasma medium.
Hybrid framework for the simulation of stochastic chemical kinetics
Duncan, Andrew; Erban, Radek; Zygalakis, Konstantinos
2016-12-01
Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the "fast" reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when one or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.
A Fast Hybrid Approach to Air Shower Simulations and Applications
Drescher, H J; Bleicher, M; Reiter, M; Soff, S; Stöcker, H; Stoecker, Horst
2003-01-01
The SENECA model, a new hybrid approach to air shower simulations, is presented. It combines the use of efficient cascade equations in the energy range where a shower can be treated as one-dimensional, with a traditional Monte Carlo method which traces individual particles. This allows one to reproduce natural fluctuations of individual showers as well as the lateral spread of low energy particles. The model is quite efficient in computation time. As an application of the new approach, the influence of the low energy hadronic models on shower properties for AUGER energies is studied. We conclude that these models have a significant impact on the tails of lateral distribution functions, and deserve therefore more attention.
Hybrid method of solution applied to simulation of pulse chromatography
Directory of Open Access Journals (Sweden)
M. A. Cremasco
2009-06-01
Full Text Available In this communication, the method proposed by Cremasco et al. (2003 is applied to predict single and low concentration pulse chromatography. In previous work, a general rate model was presented to describe the breakthrough curve, where a hybrid solution was proposed for the linear adsorption. The liquid phase concentration inside the particle was found analytically and related with the bed liquid phase through Duhamel's Theorem, while the bulk-phase equation was solved by a numerical method. In this paper, this method is applied to describe pulse chromatography of solutes that present linear adsorption isotherms. The simulated results of pulse chromatography are compared with experimental ones for aromatic amino acid experiments from literature.
Perspective: Theory and simulation of hybrid halide perovskites
Whalley, Lucy D.; Frost, Jarvist M.; Jung, Young-Kwang; Walsh, Aron
2017-06-01
Organic-inorganic halide perovskites present a number of challenges for first-principles atomistic materials modeling. Such "plastic crystals" feature dynamic processes across multiple length and time scales. These include the following: (i) transport of slow ions and fast electrons; (ii) highly anharmonic lattice dynamics with short phonon lifetimes; (iii) local symmetry breaking of the average crystallographic space group; (iv) strong relativistic (spin-orbit coupling) effects on the electronic band structure; and (v) thermodynamic metastability and rapid chemical breakdown. These issues, which affect the operation of solar cells, are outlined in this perspective. We also discuss general guidelines for performing quantitative and predictive simulations of these materials, which are relevant to metal-organic frameworks and other hybrid semiconducting, dielectric and ferroelectric compounds.
A Hybrid Flight Control for a Simulated Raptor-30 V2 Helicopter
Directory of Open Access Journals (Sweden)
Arbab Nighat Khizer
2015-04-01
Full Text Available This paper presents a hybrid flight control system for a single rotor simulated Raptor-30 V2 helicopter. Hybrid intelligent control system, combination of the conventional and intelligent control methodologies, is applied to small model helicopter. The proposed hybrid control used PID as a traditional control and fuzzy as an intelligent control so as to take the maximum advantage of advanced control theory. The helicopter?s model used; comes from X-Plane flight simulator and their hybrid flight control system was simulated using MATLAB/SIMULINK in a simulation platform. X-Plane is also used to visualize the performance of this proposed autopilot design. Through a series of numerous experiments, the operation of hybrid control system was investigated. Results verified that the proposed hybrid control has an excellent performance at hovering flight mode.
AETHER: A simulation platform for inductively coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Turkoz, Emre, E-mail: emre.turkoz@boun.edu.tr; Celik, Murat
2015-04-01
An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.
Theory and hybrid simulations of the radial evolution of the solar wind turbulence
Comisel, Horia; Narita, Yasuhito; Motschmann, Uwe
2016-04-01
Solar wind turbulence in the inner heliosphere is believed to evolve in the radial direction away from the Sun driven by various nonlinear processes. When a perturbative treatment is applicable, plasma fluctuations evolve along the dispersion relations while the frequencies deviate from the normal-mode frequency by exciting non-normal modes or sideband waves. Direct numerical simulations of magnetized plasma at the scale of ion gyro-radius or smaller using the hybrid code AIKEF show smooth transitions and evolutions into nonlinear stage with sideband wave excitations. The evolution profile of linear and nonlinear modes as well as the intrinsic nature of wave vector anisotropy can be unambiguously classified according to the values of ion plasma beta. By using a mapping based on a one-dimensional solar wind expansion model, the resulting ion kinetic scale turbulence is related to the solar distance from the Sun. We find that the relevant normal modes such as ion cyclotron and Bernstein mode will occur first at radial distance of about 0.2-0.3 AU, i.e., near the Mercury orbit. Furthermore, a radial dependence of the wave-vector anisotropy is obtained. The predominance of the filament structures highlights the strong impact of Alfvénic waves.
Cruz, F.; Fonseca, R. A.; Silva, L. O.; Rigby, A.; Gregori, G.; Bamford, R. A.; Bingham, R.; Koenig, M.
2016-10-01
Efficient particle acceleration in astrophysical shocks can only be achieved in the presence of initial high energy particles. A candidate mechanism to provide an initial seed of energetic particles is lower hybrid turbulence (LHT). This type of turbulence is commonly excited in regions where space and astrophysical plasmas interact with large obstacles. Due to the nature of LH waves, energy can be resonantly transferred from ions (travelling perpendicular to the magnetic field) to electrons (travelling parallel to it) and the consequent motion of the latter in turbulent shock electromagnetic fields is believed to be responsible for the observed x-ray fluxes from non-thermal electrons produced in astrophysical shocks. Here we present PIC simulations of plasma flows colliding with magnetized obstacles showing the formation of a bow shock and the consequent development of LHT. The plasma and obstacle parameters are chosen in order to reproduce the results obtained in a recent experiment conducted at the LULI laser facility at Ecole Polytechnique (France) to study accelerated electrons via LHT. The wave and particle spectra are studied and used to produce synthetic diagnostics that show good qualitative agreement with experimental results. Work supported by the European Research Council (Accelerates ERC-2010-AdG 267841).
A Hybrid Mode and a Classification of Beam Plasma Instabilities
2014-09-26
classification scheme, based on the beam energy and beam density. This classification identifies the domains for the hybrid mode, the Weibel mode,13 and...the classical two stream instabilities. In that section, we also furnish a simple derivation of the Weibel mode for a relativist..c electron beam...w p which is non-zero. This mode has been called a Weibel mode,1 3 4 and is predominant in Domain III in the classification shown in Fig. 4. (B2
Simulation of hybrid vehicle propulsion with an advanced battery model
Energy Technology Data Exchange (ETDEWEB)
Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)
2011-07-01
In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect
High-Density Plasma Reactors: Simulations for Design
Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1998-01-01
The development of improved and more efficient plasma reactors is a costly process for the semiconductor industry. Until five years ago, the Industry made most of its advancements through a trial and error approach. More recently, the role of computational modeling in the design process has increased. Both conventional computational fluid dynamics (CFD) techniques like Navier-Stokes solvers as well as particle simulation methods are used to model plasma reactor flowfields. However, since high-density plasma reactors generally operate at low gas pressures on the order of 1 to 10 mTorr, a particle simulation may be necessary because of the failure of CFD techniques to model rarefaction effects. The direct simulation Monte Carlo method is the most widely accepted and employed particle simulation tool and has previously been used to investigate plasma reactor flowfields. A plasma DSMC code is currently under development at NASA Ames Research Center with its foundation as the object-oriented parallel Cornell DSMC code, MONACO. The present investigation is a follow up of a neutral flow investigation of the effects of process parameters as well as reactor design on etch rate and etch rate uniformity. The previous work concentrated on silicon etch of a chlorine flow in a configuration typical of electron cyclotron resonance (ECR) or helical resonator type reactors. The effects of the plasma on the dissociation chemistry were modeled by making assumptions about the electron temperature and number density. The electrons or ions themselves were not simulated.The present work extends these results by simulating the charged species.The electromagnetic fields are calculated such that power deposition is modeled self-consistently. Electron impact reactions are modeled along with mechanisms for charge exchange. An bipolar diffusion assumption is made whereby electrons remain tied to the ions. However, the velocities of tile electrons are allowed to be modified during collisions
Programmable physical parameter optimization for particle plasma simulations
Ragan-Kelley, Benjamin; Verboncoeur, John; Lin, Ming-Chieh
2012-10-01
We have developed a scheme for interactive and programmable optimization of physical parameters for plasma simulations. The simulation code Object-Oriented Plasma Device 1-D (OOPD1) has been adapted to a Python interface, allowing sophisticated user or program interaction with simulations, and detailed numerical analysis via numpy. Because the analysis/diagnostic interface is the same as the input mechanism (the Python programming language), it is straightforward to optimize simulation parameters based on analysis of previous runs and automate the optimization process using a user-determined scheme and criteria. An example use case of the Child-Langmuir space charge limit in bipolar flow is demonstrated, where the beam current is iterated upon by measuring the relationship of the measured current and the injected current.
Plasma Shape and Current Control Simulation of HT-7U Tokamak
Institute of Scientific and Technical Information of China (English)
吴斌; 张澄
2003-01-01
This paper describes the discharge simulation of HT-7U tokamak plasma equilibriumand plasma current by solving MHD equations and surface average transport equations using anequilibrium evolution code. The simulated result shows the evolution of plasma parameter versustime .The simulated result can play an important role in the design of the plasma equilibrium andcontrol system of a tokamak.
Control-relevant modeling and simulation of a SOFC-GT hybrid system
Directory of Open Access Journals (Sweden)
Rambabu Kandepu
2006-07-01
Full Text Available In this paper, control-relevant models of the most important components in a SOFC-GT hybrid system are described. Dynamic simulations are performed on the overall hybrid system. The model is used to develop a simple control structure, but the simulations show that more elaborate control is needed.
Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems
2011-03-01
None From the ion chromatography results we can calculate the concentration of HNO3 in the gas leaving the plasma reactor. The small NO3- detected...resistant to decomposition by O3. Carbon and polymeric adsorbents were not considered because they would react with O3 and decompose . Potential...nor any ability to decompose ozone. A SAC-13 catalyst was obtained from Engelhard for testing also. This material is an H- Nafion Ion Exchange
Magnetic null points in kinetic simulations of space plasmas
Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni
2015-01-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic Particle-in-Cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind; and a relaxing turbulent configuration with multiple null points. Spiral n...
Development of high energy pulsed plasma simulator for plasma-lithium trench experiment
Jung, Soonwook
To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe
Molecular dynamics and Monte Carlo hybrid simulation for fuzzy tungsten nanostructure formation
Ito, A. M.; Takayama, A.; Oda, Y.; Tamura, T.; Kobayashi, R.; Hattori, T.; Ogata, S.; Ohno, N.; Kajita, S.; Yajima, M.; Noiri, Y.; Yoshimoto, Y.; Saito, S.; Takamura, S.; Murashima, T.; Miyamoto, M.; Nakamura, H.
2015-07-01
For the purposes of long-term use of tungsten divertor walls, the formation process of the fuzzy tungsten nanostructure induced by exposure to the helium plasma was studied. In the present paper, the fuzzy nanostructure's formation has been successfully reproduced by the new hybrid simulation method in which the deformation of the tungsten material due to pressure of the helium bubbles was simulated by the molecular dynamics and the diffusion of the helium atoms was simulated by the random walk based on the Monte Carlo method. By the simulation results, the surface height of the fuzzy nanostructure increased only when helium retention was under the steady state. It was proven that the growth of the fuzzy nanostructure was brought about by bursting of the helium bubbles. Moreover, we suggest the following key formation mechanisms of the fuzzy nanostructure: (1) lifting in which the surface lifted up by the helium bubble changes into a convexity, (2) bursting by which the region of the helium bubble changes into a concavity, and (3) the difference of the probability of helium retention by which the helium bubbles tend to appear under the concavity. Consequently, the convex-concave surface structure was enhanced and grew to create the fuzzy nanostructure.
A wind turbine hybrid simulation framework considering aeroelastic effects
Song, Wei; Su, Weihua
2015-04-01
In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.
Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls
Thoma, C.; Welch, D. R.; Clark, R. E.; Rose, D. V.; Golovkin, I. E.
2017-06-01
The walls of the hohlraum used in experiments at the national ignition facility are heated by laser beams with intensities ˜ 10 15 W/cm2, a wavelength of ˜ 1 / 3 μm, and pulse lengths on the order of a ns, with collisional absorption believed to be the primary heating mechanism. X-rays generated by the hot ablated plasma at the gold walls are then used to implode a target in the hohlraum interior. In addition to the collisional absorption of laser energy at the walls, non-linear laser-plasma interactions (LPI), such as stimulated Raman scattering and two plasmon decay, are believed to generate a population of supra-thermal electrons which, if present in the hohlraum, can have a deleterious effect on target implosion. We describe results of hohlraum modeling using a hybrid particle-in-cell code. To enable this work, new particle-based algorithms for a multiple-ion magneto-hydrodynamic (MHD) treatment, and a particle-based ray-tracing model were developed. The use of such hybrid methods relaxes the requirement to resolve the laser wavelength, and allows for relatively large-scale hohlraum simulations with a reasonable number of cells. But the non-linear effects which are believed to be the cause of hot electron generation can only be captured by fully kinetic simulations with good resolution of the laser wavelength. For this reason, we employ a two-tiered approach to hohlraum modeling. Large-scale simulations of the collisional absorption process can be conducted using the fast quasi-neutral MHD algorithm with fluid particle species. From these simulations, we can observe the time evolution of the hohlraum walls and characterize the density and temperature profiles. From these results, we can transition to smaller-scale highly resolved simulations using traditional kinetic particle-in-cell methods, from which we can fully model all of the non-linear laser-plasma interactions, as well as assess the details of the electron distribution function. We find that vacuum
3-D Simulations of Plasma Wakefield Acceleration with Non-Idealized Plasmas and Beams
Energy Technology Data Exchange (ETDEWEB)
Deng, S.; Katsouleas, T.; Lee, S.; Muggli, P.; /Southern California U.; Mori, W.B.; Hemker, R.; Ren, C.; Huang, C.; Dodd, E.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Wang,; /UCLA; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; O' Connell, C.; Raimondi, P.; Walz, D.; /SLAC
2005-09-27
3-D Particle-in-cell OSIRIS simulations of the current E-162 Plasma Wakefield Accelerator Experiment are presented in which a number of non-ideal conditions are modeled simultaneously. These include tilts on the beam in both planes, asymmetric beam emittance, beam energy spread and plasma inhomogeneities both longitudinally and transverse to the beam axis. The relative importance of the non-ideal conditions is discussed and a worst case estimate of the effect of these on energy gain is obtained. The simulation output is then propagated through the downstream optics, drift spaces and apertures leading to the experimental diagnostics to provide insight into the differences between actual beam conditions and what is measured. The work represents a milestone in the level of detail of simulation comparisons to plasma experiments.
Simulating industrial plasma reactors - A fresh perspective
Mohr, Sebastian; Rahimi, Sara; Tennyson, Jonathan; Ansell, Oliver; Patel, Jash
2016-09-01
A key goal of the presented research project PowerBase is to produce new integration schemes which enable the manufacturability of 3D integrated power smart systems with high precision TSV etched features. The necessary high aspect ratio etch is performed via the BOSCH process. Investigations in industrial research are often use trial and improvement experimental methods. Simulations provide an alternative way to study the influence of external parameters on the final product, whilst also giving insights into the physical processes. This presentation investigates the process of simulating an industrial ICP reactor used over high power (up to 2x5 kW) and pressure (up to 200 mTorr) ranges, analysing the specific procedures to achieve a compromise between physical correctness and computational speed, while testing commonly made assumptions. This includes, for example, the effect of different physical models and the inclusion of different gas phase and surface reactions with the aim of accurately predicting the dependence of surface rates and profiles on external parameters in SF6 and C4F8 discharges. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under Grant Agreement No. 662133 PowerBase.
Simulations of Galaxy Cluster Collisions with a Dark Plasma Component
Sepp, Tiit; Heikinheimo, Matti; Hektor, Andi; Raidal, Martti; Spethmann, Christian; Tempel, Elmo; Veermäe, Hardi
2016-01-01
We present the results of N-body/smoothed particle hydrodynamics simulations of galaxy cluster collisions with a two component model of dark matter, which is assumed to consist of a predominant non-interacting dark matter component and a 20 percent mass fraction of dark plasma. Dark plasma is an intriguing form of interacting dark matter with an effective fluid-like behavior, which is well motivated by various theoretical particle physics models. We find that by choosing suitable simulation parameters, the observed distributions of dark matter in both the Bullet Cluster (1E 0657-558) and Abell 520 (MS 0451.5+0250) can be qualitatively reproduced. In particular, it is found that dark plasma forms an isolated mass clump in the Abell 520 system which cannot be explained by traditional models of dark matter, but has been detected in weak lensing observations.
Simulations of Stimulated Raman Scattering in Low-Density Plasmas
Institute of Scientific and Technical Information of China (English)
CAO Lihua; CHANG Tieqiang; LIU Zhanjun; ZHENG Chunyang
2007-01-01
Stimulated Raman scattering(SRS)in a low-density plasma slab is investigated by particle-in-cell(PIC)simulations.The backward stimulated Raman scattering(B-SRS)dominates initially and erodes the head of the pump wave,while the forward stimulated Raman scattering (F-SRS)subsequently develops and is located at the rear part of the slab.Two-stage electron acceleration may be more efficient due to the coexistence of these two instabilities.The B-SRS plasma wave with low phase velocities can accelerate the background electrons which may be further boosted to higher energies by the F-SRS plasma wave with high phase velocities.The simulations show that the peaks of the main components in both the frequency and wave number spectra occur at the positions estimated from the phase-matching conditions.
A simulation study of a controlled tokamak plasma
Fujii, N.; Niwa, Y.
1980-03-01
A tokamak circuit theory, including results of numerical simulation studies, is applied to a control system synthesized for a Joule heated tokamak plasma. The treatment is similar to that of Ogata and Ninomiya (1979) except that in this case a quadrupole field coil current is considered coexisting with image induced on a vacuum chamber.
A methodology for the rigorous verification of plasma simulation codes
Riva, Fabio
2016-10-01
The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.
Simulation of density measurements in plasma wakefields using photo acceleration
Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Sadler, James; Burrows, Philip N; Trines, Raoul; Holloway, James; Wing, Matthew; Bingham, Robert; Norreys, Peter
2015-01-01
One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.
Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges
Energy Technology Data Exchange (ETDEWEB)
Ngamou, P.H.T.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Overbeek, J.P.; Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN, Energy research Centre of the Netherlands, Petten (Netherlands); Wienk, I.M.; Cuperus, P.F. [SolSep BV, Apeldoorn (Netherlands)
2013-03-05
Hybrid organically bridged silica membranes are suitable for energy-efficient molecular separations under harsh industrial conditions. Such membranes can be useful in organic solvent nanofiltration if they can be deposited on flexible, porous and large area supports. Here, we report the proof of concept for applying an expanding thermal plasma to the synthesis of perm-selective hybrid silica films from an organically bridged monomer, 1,2-bis(triethoxysilyl)ethane. This membrane is the first in its class to be produced by plasma enhanced chemical vapor deposition. By tuning the plasma and process parameters, the organic bridging groups could be retained in the separating layer. This way, a defect free film could be made with pervaporation performances of an n-butanol-water mixture comparable with those of conventional ceramic supported membranes made by sol-gel technology (i.e. a water flux of [similar]1.8 kg m'-{sup 2} h{sup -1}, a water concentration in the permeate higher than 98% and a separation factor of >1100). The obtained results show the suitability of expanding thermal plasma as a technology for the deposition of hybrid silica membranes for molecular separations.
Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation
Bonoli, Paul
2007-11-01
Recently, lower hybrid current drive (LHCD) experiments have been carried out on Alcator C-Mod using an RF system consisting of 12 klystrons at 4.6 GHz, feeding a 4 x 22 waveguide array. Up to 900 kW of LH power has been coupled in the range1.6 PLH 0.3 [1]. We have simulated the LH current drive in these discharges using the combined ray tracing / 3D (r, v, v//) Fokker Planck code GENRAY -- CQL3D [2] and found similar current drive efficiencies. Measurements of nonthermal x-ray emission and electron cyclotron emission (ECE) confirm the presence of a significant fast electron population that varies with waveguide phasing and plasma density. Studies are currently underway to investigate the role of fast electron diffusion and full-wave effects such as diffractional broadening in determining the spatial and velocity space structure of the nonthermal electrons. The 3D (r, v, v//) electron distribution function from CQL3D has been used in synthetic diagnostic codes to simulate the measured hard x-ray and ECE emissions. Fast electron diffusion times have been inferred from x-ray data by employing a radial diffusion operator in CQL3D and determining the fast electron diffusivities that are required to reproduce the experimentally observed profiles of hard x-ray emission. Finally, we have been performing full-wave LH field simulations using the massively parallel TORIC --LH solver [3] in order to assess spatial and spectral broadening of the incident wave front that can result from diffraction and wave focusing effects. [1] R. Parker, Bull. Am. Phys. Soc. 51, 20 (2006). [2] R.W. Harvey and M. McCoy, ``The CQL3D Fokker Planck Code,'' Proc. IAEA Tech. Comm. Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992. [3] J. C. Wright et al., Nucl. Fusion 45, 1411 (2005).
Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu
2016-07-01
The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.
Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Sarantos, M.
2012-12-01
In this report we discuss the results of a 3D hybrid modeling of the interaction between Saturn's magnetosphere and Titan's atmosphere/ionosphere for the T5 encounter. The T5 flyby is the only encounter when the two main ionizing sources of Titan's atmosphere, solar radiation and corotating plasma, align quasi-anti-parallel. The model is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) and the Cassini Ion and Neutral Mass Spectrometer (INMS) measurements during the T5 flyby through Titan's ram-side and polar ionosphere [1,2]. Magnetic field data was used from the MAG instrument [3]. In our model the background ions (O+, H+), all pickup ions, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid (see e.g. [4]). Inhomogeneous photoionization (in the dayside ionosphere), electron-impact ionization, and charge exchange are included in our model. The temperature of the background electrons and pickup electrons was also incorporated into the generalized Ohm's law. We also take into account collisions between ions and neutrals. In our hybrid simulations we use Chamberlain profiles for the exosphere's components. The moon is considered as a weakly conducting body. The first results of our hybrid modeling show a strong asymmetry in the background (H+, O+) and pickup (H2+, N2+, CH4+) ion density profiles. Such strong asymmetry cannot be explained by a single-fluid multi-species 3D MHD model [5], which includes complex chemistry but does not produce finite gyroradius and kinetic effects. References [1] Sittler, et al., Energy Deposition Processes in Titan's Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton, J.P., Waite, J.H., Eds., Springer, (Dordrecht, Heidelberg, London, New York), pp. 393-455, 2010. [2] Agren, K., et al., On magnetosphere electron impact ionization and dynamics in Titan's ram-side and polar ionosphere -- a Cassini case study, Ann. Geophys., 25, 2359
Quantum Simulations of Solvated Biomolecules Using Hybrid Methods
Hodak, Miroslav
2009-03-01
One of the most important challenges in quantum simulations on biomolecules is efficient and accurate inclusion of the solvent, because the solvent atoms usually outnumber those in the biomolecule of interest. We have developed a hybrid method that allows for explicit quantum-mechanical treatment of the solvent at low computational cost. In this method, Kohn-Sham (KS) density functional theory (DFT) is combined with an orbital-free (OF) DFT. Kohn-Sham (KS) DFT is used to describe the biomolecule and its first solvation shells, while the orbital-free (OF) DFT is employed for the rest of the solvent. The OF part is fully O(N) and capable of handling 10^5 solvent molecules on current parallel supercomputers, while taking only ˜ 10 % of the total time. The compatibility between the KS and OF DFT methods enables seamless integration between the two. In particular, the flow of solvent molecules across the KS/OF interface is allowed and the total energy is conserved. As the first large-scale applications, the hybrid method has been used to investigate the binding of copper ions to proteins involved in prion (PrP) and Parkinson's diseases. Our results for the PrP, which causes mad cow disease when misfolded, resolve a contradiction found in experiments, in which a stronger binding mode is replaced by a weaker one when concentration of copper ions is increased, and show how it can act as a copper buffer. Furthermore, incorporation of copper stabilizes the structure of the full-length PrP, suggesting its protective role in prion diseases. For alpha-synuclein, a Parkinson's disease (PD) protein, we show that Cu binding modifies the protein structurally, making it more susceptible to misfolding -- an initial step in the onset of PD. In collaboration with W. Lu, F. Rose and J. Bernholc.
Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities
Baylin-Stern, Adam C.
This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.
Numerical simulation of primary cluster formation in silane plasmas
Gupta, N; Kroesen, G
2003-01-01
The usage of low-cost silicon-based solar cells is limited by their tendency to degrade on prolonged exposure to sunlight. Current research has indicated that the inclusion of nano-particles in the plasma-deposited film enhances its efficiency considerably. It is therefore essential to identify the plasma operating conditions such that nano-particles are formed and deposited in the film. The early stages of cluster formation, nucleation and coagulation are still open to experimental and theoretical investigation. In this paper, a simulation of the first stage of particle formation in capacitively coupled radio-frequency discharges in SiH sub 4 is attempted. A molecular dynamics based model has been set up to simulate one of the principal reaction pathways in cluster formation. This simulation model appears to produce valid and meaningful trends. Further studies are planned to explore the effect of other parameters and alternate pathways.
Numerical simulation of primary cluster formation in silane plasmas
Gupta, Nandini; Stoffels, W. W.; Kroesen, G. M. W.
2003-04-01
The usage of low-cost silicon-based solar cells is limited by their tendency to degrade on prolonged exposure to sunlight. Current research has indicated that the inclusion of nano-particles in the plasma-deposited film enhances its efficiency considerably. It is therefore essential to identify the plasma operating conditions such that nano-particles are formed and deposited in the film. The early stages of cluster formation, nucleation and coagulation are still open to experimental and theoretical investigation. In this paper, a simulation of the first stage of particle formation in capacitively coupled radio-frequency discharges in SiH4 is attempted. A molecular dynamics based model has been set up to simulate one of the principal reaction pathways in cluster formation. This simulation model appears to produce valid and meaningful trends. Further studies are planned to explore the effect of other parameters and alternate pathways.
Plasma transport simulation modeling for helical confinement systems
Energy Technology Data Exchange (ETDEWEB)
Yamazaki, K.; Amano, T.
1991-08-01
New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called `H-mode` of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author).
Khamsen, Natthaporn; Onwimol, Damrongvudhi; Teerakawanich, Nithiphat; Dechanupaprittha, Sanchai; Kanokbannakorn, Weerawoot; Hongesombut, Komsan; Srisonphan, Siwapon
2016-08-01
We designed a system to produce atmospheric hybrid cold-discharge plasma (HCP) based on microcorona discharge on a single dielectric barrier and applied it to inactivate microorganisms that commonly attach the rice seed husk. The cold-plasma treatment modified the surface of the rice seeds, resulting in accelerated germination and enhanced water imbibition. The treatment can operate under air-based ambient conditions without the need for a vacuum. The cold-plasma treatment completely inactivated pathogenic fungi and other microorganisms, enhancing the germination percentage and seedling quality. The final germination percentage of the treated rice seeds was ∼98%, whereas that of the nontreated seeds was ∼90%. Microcorona discharge on a single dielectric barrier provides a nonaggressive cold plasma that can be applied to organic materials without causing thermal and electrical damage. The hybrid nonthermal plasma is cost effective and consumes relatively little power, making it suitable for the surface sterilization and disinfection of organic and biological materials with large-scale compatibility.
1995-05-01
A HYBRID ANALYTICAL/ SIMULATION MODELING APPROACH FOR PLANNING AND OPTIMIZING MASS TACTICAL AIRBORNE OPERATIONS by DAVID DOUGLAS BRIGGS M.S.B.A...COVERED MAY 1995 TECHNICAL REPORT THESIS 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS A HYBRID ANALYTICAL SIMULATION MODELING APPROACH FOR PLANNING AND...are present. Thus, simulation modeling presents itself as an excellent alternate tool for planning because it allows for the modeling of highly complex
Dust-lower-hybrid instability with fluctuating charge in quantum plasmas
Jamil, M.; Ali, M.; Rasheed, A.; Zubia, K.; Salimullah, M.
2015-03-01
The instability of Dust-Lower-Hybrid (DLH) wave is examined in detail in the uniform dusty magnetoplasmas. The time dependent charging effects on dust particles around its equilibrium charge Qd0 are taken into account based on Orbit-Limited Probe theory. The quantum characteristics of the system like Bohm potential and Fermi degenerate pressure are dealt using the quantum hydrodynamic model of plasmas. The external magnetic field and size of the dust particles have new physical effects over the dissipative instability of DLH wave in the quantum plasma regime.
Sahu, D; Bhattacharjee, S; Singh, M J; Bandyopadhyay, M; Chakraborty, A
2012-02-01
Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE(11) mode. The source is operated at different discharge conditions to obtain the optimized negative H(-) ion current which is ∼33 μA (0.26 mA∕cm(2)). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.
Sahu, D.; Bhattacharjee, S.; Singh, M. J.; Bandyopadhyay, M.; Chakraborty, A.
2012-02-01
Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE11 mode. The source is operated at different discharge conditions to obtain the optimized negative H- ion current which is ˜33 μA (0.26 mA/cm2). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.
Dust-cyclotron and dust-lower-hybrid modes in self-gravitating magnetized dusty plasmas
Indian Academy of Sciences (India)
A K Banerjee; M N Alam; A A Mamun
2003-07-01
Theoretical investigation has been made on two different ultra-low-frequency electrostatic modes, namely, dust-cyclotron mode and dust-lower-hybrid mode, propagating perpendicular to the external magnetic ﬁeld, in a self-gravitating magnetized two-ﬂuid dusty plasma system. It has been shown that the effect of the self-gravitational force, acting on both dust grains and ions, signiﬁcantly modiﬁes the dispersion properties of these two electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are brieﬂy mentioned.
Dust-lower-hybrid instability with fluctuating charge in quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Jamil, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Ali, M. [Department of Physics, School of Natural Sciences, NUST, Islamabad 44000 (Pakistan); Rasheed, A. [Department of Physics, GC University, Faisalabad 38000 (Pakistan); Zubia, K. [Department of Physics, GC University, Lahore 54000 (Pakistan); Salimullah, M. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)
2015-03-15
The instability of Dust-Lower-Hybrid (DLH) wave is examined in detail in the uniform dusty magnetoplasmas. The time dependent charging effects on dust particles around its equilibrium charge Q{sub d0} are taken into account based on Orbit-Limited Probe theory. The quantum characteristics of the system like Bohm potential and Fermi degenerate pressure are dealt using the quantum hydrodynamic model of plasmas. The external magnetic field and size of the dust particles have new physical effects over the dissipative instability of DLH wave in the quantum plasma regime.
Kinetic simulations of ladder climbing by electron plasma waves
Hara, Kentaro; Barth, Ido; Kaminski, Erez; Dodin, I. Y.; Fisch, N. J.
2017-05-01
The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth et al. [Phys. Rev. Lett. 115, 075001 (2015), 10.1103/PhysRevLett.115.075001] based on a linear fluid model. In this paper, LC of electron plasma waves is investigated using fully nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It is shown that, in agreement with the basic theory, plasmons survive substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough to trigger Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir waves per se.
Simulation of plasma filled hemispherical cavity as dielectric resonator antenna
Trenchev, G.; Kissóvski, Zh
2016-10-01
Plasma antennas are becoming an increasingly interesting research topic because of their uncommon characteristics. They are highly configurable, can be turned on and off rapidly, and exhibit lower thermal noise compared to metal antennas. In recent years, research has been conducted on cylindrical plasma columns sustained by DC, RF or microwave field, and their application as leaky wave antennas or as regular monopole antennas. Dielectric resonator antennas (DRA) with high dielectric permittivity are known for their small size and excellent operating characteristics for modern mobile communications (WiMAX, LTE). Hemispherical dielectric resonator antennas are characterized by simple shape, high radiation efficiency and wide bandwidth. Hemispherical DRA with a low density weakly ionized plasma as dielectric material will combine the positive features of plasma and dielectric antennas, and is particularly interesting, as antennas of this type have not been studied yet. The hemispherical plasma antenna is simulated with Ansoft HFSS in the microwave S-band. Obtained radiation pattern and bandwidth show the advantages of hemispherical plasma antennas for future communication technology.
Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments
Energy Technology Data Exchange (ETDEWEB)
Madsen, Jens
2010-09-15
The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor
The role of MHD in causing impurity peaking in JET Hybrid plasmas
Hender, T C; Casson, F J; Alper, B; Baranov, Yu; Baruzzo, M; Challis, C D; Koechl, F; Marchetto, C; Nave, M F F; Pütterich, T; Cortes, S Reyes; Contributors, JET
2015-01-01
In Hybrid plasma operation in JET with its ITER-like wall (JET-ILW) it is found that n>1 tearing activity can significantly enhance the rate of on-axis peaking of tungsten impurities, which in turn significantly degrades discharge performance. Core n=1 instabilities can be beneficial in removing tungsten impurities from the plasma core (e.g. sawteeth or fishbones), but can conversely also degrade core confinement (particularly in combination with simultaneous n=3 activity). The nature of MHD instabilities in JET Hybrid discharges, with both its previous Carbon wall and subsequent JET-ILW, is surveyed statistically and the character of the instabilities is examined. Possible qualitative models for how the n>1 islands can enhance on-axis tungsten transport accumulation processes are presented.
Liu, Wei
2010-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor) and NSTX (National Spherical Torus Experiment). Unmagnetized jet injection is similar to compact toroid injection but with higher possible injection density and total mass, as well as a potentially smaller footprint for the injector hardware. Our simulation results show that the unmagnetized dense jet is quickly magnetized upon injection. The penetration depth of the jet into the tokamak plasma is mostly dependent on the jet's initial kinetic energy while the jet's magnetic field determines its interior evolution. A key requirement for spatially precise fueling is for the jet's slowing-down time to be less than the time for the perturbed tokamak magnetic flux to relax due to magnetic reconnection. Thus ...
Modeling of plasma in a hybrid electric propulsion for small satellites
Jugroot, Manish; Christou, Alex
2016-09-01
As space flight becomes more available and reliable, space-based technology is allowing for smaller and more cost-effective satellites to be produced. Working in large swarms, many small satellites can provide additional capabilities while reducing risk. These satellites require efficient, long term propulsion for manoeuvres, orbit maintenance and de-orbiting. The high exhaust velocity and propellant efficiency of electric propulsion makes it ideally suited for low thrust missions. The two dominant types of electric propulsion, namely ion thrusters and Hall thrusters, excel in different mission types. In this work, a novel electric hybrid propulsion design is modelled to enhance understanding of key phenomena and evaluate performance. Specifically, the modelled hybrid thruster seeks to overcome issues with existing Ion and Hall thruster designs. Scaling issues and optimization of the design will be discussed and will investigate a conceptual design of a hybrid spacecraft plasma engine.
Synthesis and photocatalytic activity of Pt-ZnO hybrid nanocomposite by solution plasma technology
Hu, Xiulan; Xu, QiuCheng; Ge, Chao; Su, Nan; Zhang, Jianbo; Huang, Huihong; Zhu, Shoufeng; Xu, Yanqiu; Cheng, Jiexu
2017-01-01
In this paper, Pt-ZnO hybrid nanocomposites were prepared by solution plasma technology. X-ray diffraction (XRD) and energy dispersive x-ray analysis (EDX) were used to verify their chemical composition. The size and morphology of the Pt-ZnO hybrid nanocomposites were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). These results indicate that about 2-3 nm Pt nanoparticles (NPs) were synthesized and dispersed on the pyramid-like ZnO (20-60 nm) surface. Photodegradation of Rhodamine B (RhB) demonstrates that the Pt (5 wt%)-ZnO hybrid nanocomposite has better photocatalytic activity than commercial P25 because Pt NPs restrain the photogenerated electron/hole recombination and increase the catalyst activity.
Synthesis and photocatalytic activity of Pt-ZnO hybrid nanocomposite by solution plasma technology.
Hu, Xiulan; Xu, QiuCheng; Ge, Chao; Su, Nan; Zhang, Jianbo; Huang, Huihong; Zhu, Shoufeng; Xu, Yanqiu; Cheng, Jiexu
2017-01-27
In this paper, Pt-ZnO hybrid nanocomposites were prepared by solution plasma technology. X-ray diffraction (XRD) and energy dispersive x-ray analysis (EDX) were used to verify their chemical composition. The size and morphology of the Pt-ZnO hybrid nanocomposites were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). These results indicate that about 2-3 nm Pt nanoparticles (NPs) were synthesized and dispersed on the pyramid-like ZnO (20-60 nm) surface. Photodegradation of Rhodamine B (RhB) demonstrates that the Pt (5 wt%)-ZnO hybrid nanocomposite has better photocatalytic activity than commercial P25 because Pt NPs restrain the photogenerated electron/hole recombination and increase the catalyst activity.
Hybrid Multilevel Monte Carlo Simulation of Stochastic Reaction Networks
Moraes, Alvaro
2015-01-07
Stochastic reaction networks (SRNs) is a class of continuous-time Markov chains intended to describe, from the kinetic point of view, the time-evolution of chemical systems in which molecules of different chemical species undergo a finite set of reaction channels. This talk is based on articles [4, 5, 6], where we are interested in the following problem: given a SRN, X, defined though its set of reaction channels, and its initial state, x0, estimate E (g(X(T))); that is, the expected value of a scalar observable, g, of the process, X, at a fixed time, T. This problem lead us to define a series of Monte Carlo estimators, M, such that, with high probability can produce values close to the quantity of interest, E (g(X(T))). More specifically, given a user-selected tolerance, TOL, and a small confidence level, η, find an estimator, M, based on approximate sampled paths of X, such that, P (|E (g(X(T))) − M| ≤ TOL) ≥ 1 − η; even more, we want to achieve this objective with near optimal computational work. We first introduce a hybrid path-simulation scheme based on the well-known stochastic simulation algorithm (SSA)[3] and the tau-leap method [2]. Then, we introduce a Multilevel Monte Carlo strategy that allows us to achieve a computational complexity of order O(T OL−2), this is the same computational complexity as in an exact method but with a smaller constant. We provide numerical examples to show our results.
SIMULATION OF WIRELESS SENSOR NETWORK WITH HYBRID TOPOLOGY
Directory of Open Access Journals (Sweden)
J. Jaslin Deva Gifty
2016-03-01
Full Text Available The design of low rate Wireless Personal Area Network (WPAN by IEEE 802.15.4 standard has been developed to support lower data rates and low power consuming application. Zigbee Wireless Sensor Network (WSN works on the network and application layer in IEEE 802.15.4. Zigbee network can be configured in star, tree or mesh topology. The performance varies from topology to topology. The performance parameters such as network lifetime, energy consumption, throughput, delay in data delivery and sensor field coverage area varies depending on the network topology. In this paper, designing of hybrid topology by using two possible combinations such as star-tree and star-mesh is simulated to verify the communication reliability. This approach is to combine all the benefits of two network model. The parameters such as jitter, delay and throughput are measured for these scenarios. Further, MAC parameters impact such as beacon order (BO and super frame order (SO for low power consumption and high channel utilization, has been analysed for star, tree and mesh topology in beacon disable mode and beacon enable mode by varying CBR traffic loads.
Modeling and simulation of a hybrid ship power system
Doktorcik, Christopher J.
2011-12-01
Optimizing the performance of naval ship power systems requires integrated design and coordination of the respective subsystems (sources, converters, and loads). A significant challenge in the system-level integration is solving the Power Management Control Problem (PMCP). The PMCP entails deciding on subsystem power usages for achieving a trade-off between the error in tracking a desired position/velocity profile, minimizing fuel consumption, and ensuring stable system operation, while at the same time meeting performance limitations of each subsystem. As such, the PMCP naturally arises at a supervisory level of a ship's operation. In this research, several critical steps toward the solution of the PMCP for surface ships have been undertaken. First, new behavioral models have been developed for gas turbine engines, wound rotor synchronous machines, DC super-capacitors, induction machines, and ship propulsion systems. Conventional models describe system inputs and outputs in terms of physical variables such as voltage, current, torque, and force. In contrast, the behavioral models developed herein express system inputs and outputs in terms of power whenever possible. Additionally, the models have been configured to form a hybrid system-level power model (HSPM) of a proposed ship electrical architecture. Lastly, several simulation studies have been completed to expose the capabilities and limitations of the HSPM.
Broadband ground-motion simulation using a hybrid approach
Graves, R.W.; Pitarka, A.
2010-01-01
This paper describes refinements to the hybrid broadband ground-motion simulation methodology of Graves and Pitarka (2004), which combines a deterministic approach at low frequencies (f 1 Hz). In our approach, fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time. The prescribed slip distribution is constrained to follow an inverse wavenumber-squared fall-off and the average rupture speed is set at 80% of the local shear-wave velocity, which is then adjusted such that the rupture propagates faster in regions of high slip and slower in regions of low slip. We use a Kostrov-like slip-rate function having a rise time proportional to the square root of slip, with the average rise time across the entire fault constrained empirically. Recent observations from large surface rupturing earthquakes indicate a reduction of rupture propagation speed and lengthening of rise time in the near surface, which we model by applying a 70% reduction of the rupture speed and increasing the rise time by a factor of 2 in a zone extending from the surface to a depth of 5 km. We demonstrate the fidelity of the technique by modeling the strong-motion recordings from the Imperial Valley, Loma Prieta, Landers, and Northridge earthquakes.
Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara
2016-02-01
The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. Copyright © 2015 Elsevier B.V. All rights reserved.
MHD Simulations of the Plasma Flow in the Magnetic Nozzle
Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.
2013-01-01
The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the
Subproton-scale Cascades in Solar Wind Turbulence: Driven Hybrid-kinetic Simulations
Cerri, S. S.; Califano, F.; Jenko, F.; Told, D.; Rincon, F.
2016-05-01
A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfvén wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at β ≳ 1 and by magnetosonic/whistler fluctuations at lower β. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and variability of subproton-scale turbulence in the SW, including its possible dependence on the plasma β, and call for detailed and extensive parametric explorations of driven kinetic turbulence in three dimensions.
Plasma transport in a simulated magnetic-divertor configuration
Energy Technology Data Exchange (ETDEWEB)
Strawitch, C. M.
1981-03-01
The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.
Progress in theory and simulation of ion cyclotron emission from magnetic confinement fusion plasmas
Dendy, Richard; Chapman, Ben; Chapman, Sandra; Cook, James; Reman, Bernard; McClements, Ken; Carbajal, Leopoldo
2016-10-01
Suprathermal ion cyclotron emission (ICE) is detected from all large tokamak and stellarator plasmas. Its frequency spectrum has narrow peaks at sequential cyclotron harmonics of the energetic ion population (fusion-born or neutral beam-injected) at the outer edge of the plasma. ICE was the first collective radiative instability driven by confined fusion-born ions observed in deuterium-tritium plasmas in JET and TFTR, and the magnetoacoustic cyclotron instability is the most likely emission mechanism. Contemporary ICE measurements are taken at very high sampling rates from the LHD stellarator and from the conventional aspect ratio KSTAR tokamak. A correspondingly advanced modelling capability for the ICE emission mechanism has been developed using 1D3V PIC and hybrid-PIC codes, supplemented by analytical theory. These kinetic codes simulate the self-consistent full orbit dynamics of energetic and thermal ions, together with the electric and magnetic fields and the electrons. We report recent progress in theory and simulation that addresses: the scaling of ICE intensity with energetic particle density; the transition between super-Alfvénic and sub-Alfvénic regimes for the collectively radiating particles; and the rapid time evolution that is seen for some ICE measurements. This work was supported in part by the RCUK Energy Programme [Grant Number EP/I501045] and by Euratom.
Dynamic simulation and optimal control strategy for a parallel hybrid hydraulic excavator
Institute of Scientific and Technical Information of China (English)
Xiao LIN; Shuang-xia PAN; Dong-yun WANG
2008-01-01
The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.
Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications
Directory of Open Access Journals (Sweden)
Hong-Wen He
2010-11-01
Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.
A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events
DEFF Research Database (Denmark)
Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei
2017-01-01
The global climate change leads to more extreme meteorological conditions such as icing weather, which have caused great losses to power systems. Comprehensive simulation tools are required to enhance the capability of power system risk assessment under extreme weather conditions. A hybrid...... numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS....../E enabling hybrid simulation of icing event and power system disturbance is developed, based on which a hybrid simulation platform is established. Numerical studies show that the functionality of power system simulation is greatly extended by taking into account the icing weather events....
Nonlinear instability in simulations of Large Plasma Device turbulence
Friedman, B; Umansky, M V; Schaffner, D; Joseph, I
2013-01-01
Several simulations of turbulence in the Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Inst. 62, 2875 (1991)] are energetically analyzed and compared with each other and with the experiment. The simulations use the same model, but different axial boundary conditions. They employ either periodic, zero-value, zero-derivative, or sheath axial boundaries. The linear stability physics is different between the scenarios because the various boundary conditions allow the drift wave instability to access different axial structures, and the sheath boundary simulation contains a conducting wall mode instability which is just as unstable as the drift waves. Nevertheless, the turbulence in all the simulations is relatively similar because it is primarily driven by a robust nonlinear instability that is the same for all cases. The nonlinear instability preferentially drives $k_\\parallel = 0$ potential energy fluctuations, which then three-wave couple to $k_\\parallel \
Multigrid Particle-in-cell Simulations of Plasma Microturbulence
Energy Technology Data Exchange (ETDEWEB)
J.L.V. Lewandowski
2003-06-17
A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas.
Magnetic stochasticity in gyrokinetic simulations of plasma microturbulence
Energy Technology Data Exchange (ETDEWEB)
Nevins, W M; Wang, E; Candy, J
2010-02-12
Analysis of the magnetic field structure from electromagnetic simulations of tokamak ion temperature gradient turbulence demonstrates that the magnetic field can be stochastic even at very low plasma pressure. The degree of magnetic stochasticity is quantified by evaluating the magnetic diffusion coefficient. We find that the magnetic stochasticity fails to produce a dramatic increase in the electron heat conductivity because the magnetic diffusion coefficient remains small.
Kinetic simulation study of one dimensional collisional bounded plasma
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
A self-consistent kinetic simulation study ofone dimensional collisional bounded plasma is presented.The formation of stable sheath potential is investigated.It is found that mass ratio of electron and ion not onlyaffects the level of sheath potential, but also affectsthe ion temperature of system. It is clarified that the effects of secondaryemission electron on both the total potential dropand the temperature are not important.
Simulation of current generation in a 3-D plasma model
Energy Technology Data Exchange (ETDEWEB)
Tsung, F.S.; Dawson, J.M. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A{sub {parallel}} {circ} v{sub {parallel}} term in the test charge`s Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle`s parallel velocity. This is the basis for the {open_quotes}preferential loss{close_quotes} mechanism described in the work by Nunan et al. In our previous 2+{1/2}D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+{1/2}D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+{1/2}D and the 3D calculations. We will present our 3D results at the meeting.
Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP
Kuo, Spencer; Snyder, Arnold
2013-05-01
High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.
Energy Technology Data Exchange (ETDEWEB)
Balaven-Clermidy, S.
2001-12-01
Oil reservoir simulations study multiphase flows in porous media. These flows are described and evaluated through numerical schemes on a discretization of the reservoir domain. In this thesis, we were interested in this spatial discretization and a new kind of hybrid mesh has been proposed where the radial nature of flows in the vicinity of wells is directly taken into account in the geometry. Our modular approach described wells and their drainage area through radial circular meshes. These well meshes are inserted in a structured reservoir mesh (a Corner Point Geometry mesh) made up with hexahedral cells. Finally, in order to generate a global conforming mesh, proper connections are realized between the different kinds of meshes through unstructured transition ones. To compute these transition meshes that we want acceptable in terms of finite volume methods, an automatic method based on power diagrams has been developed. Our approach can deal with a homogeneous anisotropic medium and allows the user to insert vertical or horizontal wells as well as secondary faults in the reservoir mesh. Our work has been implemented, tested and validated in 2D and 2D1/2. It can also be extended in 3D when the geometrical constraints are simplicial ones: points, segments and triangles. (author)
Numerical Simulations of Flow and Fuel Regression Rate Coupling in Hybrid Rocket Motors
Directory of Open Access Journals (Sweden)
Marius STOIA-DJESKA
2017-03-01
Full Text Available The hybrid propulsion offers some remarkable advantages like high safety and high specific impulse and thus it is considered a promising technology for the next generation launchers and space systems. The purpose of this work is to validate a design tool for hybrid rocket motors (HRM through numerical simulations.
Monte Carlo Simulation of Dosimetric Parameters for HYBRID PdI Source in Brachytherapy
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
A novel brachytherapy source model, ADVANTAGE HYBRID PdI, has been designed by CIAE For treatment of cancer. In this project, the purpose of this study is to obtain the dosimetric parameters of HYBRID PdI source. The Monte Carlo simulation
Plasma current start-up using the lower hybrid wave on the TST-2 spherical tokamak
Takase, Y.; Ejiri, A.; Inada, T.; Moeller, C. P.; Shinya, T.; Tsujii, N.; Yajima, S.; Furui, H.; Homma, H.; Imamura, K.; Nakamura, K.; Nakamura, K.; Sonehara, M.; Takeuchi, T.; Togashi, H.; Tsuda, S.; Yoshida, Y.
2015-12-01
Non-inductive plasma current start-up, ramp-up and sustainment by waves in the lower hybrid wave (LHW) frequency range at 200 MHz were investigated on the TST-2 spherical tokamak (R0 ≤ 0.38 m, a ≤ 0.25 m, Bt0 ≤ 0.3T, Ip ≤ 0.14 MA). Experimental results obtained using three types of antenna were compared. Both the highest plasma current (Ip = 18 kA) and the highest current drive figure of merit ηCD≡n¯eIpR0/PRF=1.4 ×1017 A/W/m2 were achieved using the capacitively-coupled combline (CCC) antenna, designed to excite the LHW with a sharp and highly directional wavenumber spectrum. For Ip greater than about 5 kA, high energy electrons accelerated by the LHW become the dominant carrier of plasma current. The low value of ηCD observed so far are believed to be caused by a rapid loss of energetic electrons and parasitic losses of the LHW energy in the plasma periphery. ηCD is expected to improve by an order of magnitude by increasing the plasma current to improve energetic electron confinement. In addition, edge power losses are expected to be reduced by increasing the toroidal magnetic field to improve wave accessibility to the plasma core, and by launching the LHW from the inboard upper region of the torus to achieve better single-pass absorption.
Co-Simulation of Hybrid Systems with SpaceEx and Uppaal
DEFF Research Database (Denmark)
Bogomolov, Sergiy; Greitschus, Marius; Jensen, Peter Gjøl
2015-01-01
The Functional Mock-up Interface (FMI) is an industry standard which enables co-simulation of complex heterogeneous systems using multiple simulation engines. In this paper, we show how to use FMI in order to co-simulate hybrid systems modeled in the model checkers SPACEEX and UPPAAL. We show how...
Hybrid (kinetic-fluid) simulation scheme based on method of characteristics
Javaheri, N; Abbasi, H
2015-01-01
Certain features of the method of characteristics are of considerable interest in relation with Vlasov simulation [H. Abbasi {\\it et al}, Phys. Rev. E \\textbf{84}, 036702 (2011)]. A Vlasov simulation scheme of this kind can be recurrence free providing initial phase points in velocity space are set randomly. Naturally, less filtering of fine-structures (arising from grid spacing) is possible as there is now a smaller scale than the grid spacing that is average distance between two phase points. Its interpolation scheme is very simple in form and carried out with less operations. In our previous report, the simplest model (immobile ions) was considered to merely demonstrate the important features. Now, a hybrid model is introduced that solves the coupled Vlasov-Fluid-Poisson system self-consistently. A possible application of the code is the study of ion-acoustic (IA) soliton attributes. To this end, a collisionless plasma with hot electrons and cold positive ions is considered. For electrons, the collisionles...
Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong
2016-07-01
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.
Energy Technology Data Exchange (ETDEWEB)
Marchetti, Luca, E-mail: marchetti@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy); University of Trento, Department of Mathematics (Italy); Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy)
2016-07-15
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.
SciDAC - Center for Plasma Edge Simulation - Project Summary
Energy Technology Data Exchange (ETDEWEB)
Parker, Scott [Univ. of Colorado, Boulder, CO (United States)
2014-11-03
Final Technical Report: Center for Plasma Edge Simulation (CPES) Principal Investigator: Scott Parker, University of Colorado, Boulder Description/Abstract First-principle simulations of edge pedestal micro-turbulence are performed with the global gyrokinetic turbulence code GEM for both low and high confinement tokamak plasmas. The high confinement plasmas show a larger growth rate, but nonlinearly a lower particle and heat flux. Numerical profiles are obtained from the XGC0 neoclassical code. XGC0/GEM code coupling is implemented under the EFFIS (“End-to-end Framework for Fusion Integrated Simulation”) framework. Investigations are underway to clearly identify the micro-instabilities in the edge pedestal using global and flux-tube gyrokinetic simulation with realistic experimental high confinement profiles. We use both experimental profiles and those obtained using the EFFIS XGC0/GEM coupled code framework. We find there are three types of instabilities at the edge: a low-n, high frequency electron mode, a high-n, low frequency ion mode, and possibly an ion mode like kinetic ballooning mode (KBM). Investigations are under way for the effects of the radial electric field. Finally, we have been investigating how plasmas dominated by ion-temperature gradient (ITG) driven turbulence, how cold Deuterium and Tritium ions near the edge will naturally pinch radially inward towards the core. We call this mechanism “natural fueling.” It is due to the quasi-neutral heat flux dominated nature of the turbulence and still applies when trapped and passing kinetic electron effects are included. To understand this mechanism, examine the situation where the electrons are adiabatic, and there is an ion heat flux. In such a case, lower energy particles move inward and higher energy particles move outward. If a trace amount of cold particles are added, they will move inward.
Magnetic Null Points in Kinetic Simulations of Space Plasmas
Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni
2016-03-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.
Magnetohydrodynamic simulation of reconnection in turbulent astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Widmer, Fabien
2016-07-19
Turbulence is ubiquitous at large-Reynolds-number astrophysical plasmas like in the Solar corona. In such environments, the turbulence is thought to enhance the energy conversion rate by magnetic reconnection above the classical model predictions. Since turbulence cannot be simulated together with the large scale behaviour of the plasma, magnetic reconnection is studied through the average properties of turbulence. A Reynolds-averaged turbulence model is explored in which turbulence is self-sustained and -generated by the large scales (mean-) field inhomogeneities. Employing that model, the influence of turbulence is investigated by large-scale MHD numerical simulations solving evolution equations of the energy and cross-helicity of the turbulence together with the MHD equations. Magnetic reconnection is found to be either rapidly enhanced or suppressed by turbulence depending on the turbulence timescale. If the turbulence timescale is self-consistently calculated, reconnection is always strongly enhanced. Since the solar corona bears strong guide magnetic fields perpendicular to the reconnecting magnetic fields, the influences of a strong guide field on turbulent reconnection is separately investigated. A slow down of reconnection, obtained in the presence of a finite guide field, can be understood by a finite residual helicity working against the enhancement of reconnection by the turbulence. The influence of turbulence on magnetic reconnection is further studied by means of high resolution simulations of plasmoid-unstable current sheets. These simulations revealed the importance of turbulence for reaching fast reconnection.
Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers were prepared by atmospheric plasma treatment and electrospinning. Atmospheric helium plasma treatment was first used to reduce the silver nitrate precursor in pre-electrospinning solutions into metallic silver nanoparticles, foll...
CO2 laser-micro plasma arc hybrid welding for galvanized steel sheets
Institute of Scientific and Technical Information of China (English)
C. H. KIM; Y. N. AHN; J. H. KIM
2011-01-01
A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal. which is steel. In the autogenous laser welding,the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-heat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap.The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces.Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.
Fatigue cracking of hybrid plasma gas metal arc welded 2205 duplex stainless steel
Energy Technology Data Exchange (ETDEWEB)
Yurtisik, Koray; Tirkes, Suha [Middle East Technical Univ., Ankara (Turkey). Welding Technology and Nondestructive Testing Research/Application Center
2014-10-01
Contrary to other keyhole welding applications on duplex stainless steels, a proper cooling time and a dilution were achieved during hybrid plasma gas metal arc welding that provided sufficient reconstructive transformation of austenite without sacrificing its high efficiency and productivity. Simultaneous utilization of keyhole and metal deposition in the hybrid welding procedure enabled us to get an as-welded 11 mm-thick standard duplex stainless steel plate in a single pass. Metallographic examination on hybrid plasma-gas metal arc weldments revealed only primary austenite in ferrite matrix, whereas in addition to reconstructive transformation of primary austenite during solidification, secondary austenite was also transformed in a displacive manner due to successive thermal cycles during multi-pass gas metal arc welding. On the one hand, secondary austenite provided barriers and retarded the crack propagation during the tests in laboratory air. On the other hand, chromium and molybdenum depletion in the neighborhood of secondary austenite precipitates yielded relatively high crack propagation rates in multi-pass weldments under chloride attack.
Fully kinetic simulations of megajoule-scale dense plasma focus
Energy Technology Data Exchange (ETDEWEB)
Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M. [Lawrence Livermore National Laboratory, Livermore California 94550 (United States); Welch, D. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Meehan, B. T.; Hagen, E. C. [National Security Technologies, LLC, Las Vegas, Nevada 89030 (United States)
2014-10-15
Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.
Three-Dimensional Simulation of Plasma Jet and Particle Groups in Plasma Spraying
Institute of Scientific and Technical Information of China (English)
FAN Qun-bo; WANG Lu; WANG Fu-chi
2008-01-01
The temperature field, velocity field, as well as species distribution in three-dimensional space are successfully calculated by establishing three-dimensional geometry model and solving plasma jet-substrate interaction equations, optimized particle trajecory models, as well as particle-particle heat transfer equations in three-dimensionalal space. Under typical working conditions, the flying trajectories and distribution of ZrO2 ceramic particles and Ni metal particles are also simulated. Results show that, the plasma jet becomes wider near the substrate, and the stochastic trajectory model is preferable to simulate the turbulent diffusion effect of particles. In addition, Ni metal particles penetrate relatively more deeply than ZrO2 ceramic particles due to larger density.
Reduction Methods for Real-time Simulations in Hybrid Testing
DEFF Research Database (Denmark)
Andersen, Sebastian
2016-01-01
Hybrid testing constitutes a cost-effective experimental full scale testing method. The method was introduced in the 1960's by Japanese researchers, as an alternative to conventional full scale testing and small scale material testing, such as shake table tests. The principle of the method...... is to divide a structure into a physical substructure and a numerical substructure, and couple these in a test. If the test is conducted in real-time it is referred to as real time hybrid testing. The hybrid testing concept has developed significantly since its introduction in the 1960', both with respect...... without introducing further unknowns into the system. The basis formulation is shown to exhibit high precision and to reduce the computational cost significantly. Furthermore, the basis formulation exhibits a significant higher stability, than standard nonlinear algorithms. A real-time hybrid test...
Energy Technology Data Exchange (ETDEWEB)
Nopoush, M.; Abbasi, H. [Faculty of Physics, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran (Iran, Islamic Republic of)
2011-08-15
The present paper is devoted to the simulation of the nonlinear disintegration of a localized perturbation into an ion-acoustic soliton in a plasma. Recently, this problem was studied by a simple model [H. Abbasi et al., Plasma Phys. Controlled Fusion 50, 095007 (2008)]. The main assumptions were (i) in the electron velocity distribution function (DF), the ion-acoustic soliton velocity was neglected in comparison to the electron thermal velocity, (ii) on the ion-acoustic evolution time-scale, the electron velocity DF was assumed to be stationary, and (iii) the calculation was restricted to the small amplitude case. In order to generalize the model, one has to consider the evolution of the electron velocity DF for finite amplitudes. For this purpose, a one dimensional electrostatic hybrid code, particle in cell (PIC)-fluid, was designed. It simulates the electrons dynamics by the PIC method and the cold ions dynamics by the fluid equations. The plasma contains a population of super-thermal electrons and, therefore, a Lorentzian (kappa) velocity DF is used to model the high energy tail in the electron velocity DF. Electron trapping is included in the simulation in view of their nonlinear resonant interaction with the localized perturbation. A Gaussian initial perturbation is used to model the localized perturbation. The influence of both the trapped and the super-thermal electrons on this process is studied and compared with the previous model.
Magnetohydrodynamic simulation of the inverse-pinch plasma discharge
Esaulov, A.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.; Presura, R.; Ryutov, D. D.; Sheehey, P. T.; Siemon, R. E.; Sotnikov, V. I.
2004-04-01
A wall confined plasma in an inverse-pinch configuration holds potential as a plasma target for Magnetized Target Fusion (MTF) as well as a simple geometry to study wall-confined plasma. An experiment is planned to study the inverse-pinch configuration using the Zebra Z pinch [B. S. Bauer et al., AIP Conference Proceedings Vol. 409 (American Institute of Physics, Melville, 1997), p. 153] of the Nevada Terawatt Facility at the University of Nevada, Reno (UNR). The dynamics of the discharge formation have been analyzed using analytic models and numerical methods. Strong heating occurs by thermalization of directed energy when an outward moving current sheet (the inverse pinch effect) collides with the outer wall of the experimental chamber. Two-dimensional magnetohydrodynamic simulations show Rayleigh-Taylor and Richtmyer-Meshkov like modes of instability, as expected because of the shock acceleration during plasma formation phase. The instabilities are not disruptive, but give rise to a mild level of turbulence. The conclusion from this work is that an interesting experiment relevant to wall confinement for MTF could be done using existing equipment at UNR.
Shearing Box Simulations of the MRI in a Collisionless Plasma
Energy Technology Data Exchange (ETDEWEB)
Sharma, Prateek; Hammett, Gregory, W.; Quataert, Eliot; Stone, James, M.
2005-08-31
We describe local shearing box simulations of turbulence driven by the magnetorotational instability (MRI) in a collisionless plasma. Collisionless effects may be important in radiatively inefficient accretion flows, such as near the black hole in the Galactic Center. The MHD version of ZEUS is modified to evolve an anisotropic pressure tensor. A fluid closure approximation is used to calculate heat conduction along magnetic field lines. The anisotropic pressure tensor provides a qualitatively new mechanism for transporting angular momentum in accretion flows (in addition to the Maxwell and Reynolds stresses). We estimate limits on the pressure anisotropy due to pitch angle scattering by kinetic instabilities. Such instabilities provide an effective ''collision'' rate in a collisionless plasma and lead to more MHD-like dynamics. We find that the MRI leads to efficient growth of the magnetic field in a collisionless plasma, with saturation amplitudes comparable to those in MHD. In the saturated state, the anisotropic stress is comparable to the Maxwell stress, implying that the rate of angular momentum transport may be moderately enhanced in a collisionless plasma.
Monte Carlo simulations of ionization potential depression in dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Stransky, M., E-mail: stransky@fzu.cz [Department of Radiation and Chemical Physics, Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic)
2016-01-15
A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.
Plasma-gas interactions studies in a hybrid plume plasma rocket
Chang, F. R.; Krueger, W. A.; Yang, T. F.; Fisher, J. L.
1985-01-01
Plasma-gas interaction was investigated and the basic mechanisms for energy and particle transport. The solution approach assumes cylindrical geometry and includes a multiplicity of atomic reactions, and the presence of a strong magnetic field is described. The principal reactions are electron and ion impact ionization, and charge exchange between hot ions and cold neutrals. Radial particle and energy transport is mainly by diffusion. A modified Bohm diffusion model for plasma in the core of the plume, and classical neutral particle diffusion in the cooler regions of the flow are presented. Neutrals are allowed to free stream in the low density regions, where the collision mean-free-path becomes comparable, or even larger than the characteristic dimensions of the system.
The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation
Energy Technology Data Exchange (ETDEWEB)
Foley, Samantha S [ORNL; Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL
2011-11-01
High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.
Effects of Boundary Conditions on Near Field Plasma Plume Simulations
Boyd, Iain
2004-11-01
The successful development of various types of electric propulsion devices is providing the need for accurate assessment of integration effects generated by the interaction of the plasma plumes of these thrusters with the host spacecraft. Assessment of spacecraft interaction effects in ground based laboratory facilities is inadequate due to the technical difficulties involved in accurately recreating the near vacuum ambient conditions experienced in space. This situation therefore places a heavy demand on computational modeling of plasma plume phenomena. Recently (Boyd and Yim, Journal of Applied Physics, Vol. 95, 2004, pp. 4575-5484) a hybrid model of the near field of the plume of a Hall thruster was reported in which the heavy species are modeled using particles and the electrons are modeled using a detailed fluid description. The present study continues the model development and assessment by considering the sensitivity of computed results to different types of boundary conditions that must be formulated for the thruster exit, for the cathode exit, for the thruster walls, and for the plume far field. The model is assessed through comparison of its predictions with several sets of experimental data measured in the plume of the BHT-200 Hall thruster.
A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)
Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan
This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and "through-the-ground" parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains.
A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)
Energy Technology Data Exchange (ETDEWEB)
Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan [Department of Mechanical and Aeronautical Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616 (United States)
2010-10-01
This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and ''through-the-ground'' parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains. (author)
Controlled cytotoxicity of plasma treated water formulated by open-air hybrid mode discharge
Lu, P.; Boehm, D.; Cullen, P.; Bourke, P.
2017-06-01
Plasma treated liquids (PTLs) provide a means to convey a broad range of effects of relevance for food, environmental, or clinical decontamination, plant growth promotion, and therapeutic applications. Devising the reactive species ingredients and controlling the biological response of PTLs are of great interest. We demonstrate an approach by using an open-air hybrid mode discharge (HMD) to control the principal reactive species composition within plasma treated water (PTW), which is then demonstrated to regulate the cytotoxicity of PTW. The cytotoxicity of HMD produced PTW demonstrates a non-monotonic change over the discharge time. Although hydrogen peroxide and nitrite are not the sole effectors for cell death caused by PTW, using them as principal reactive species indicators, cytotoxicity can be removed and/or enhanced by formulating their concentrations and composition through adjusting the discharge mode and time on-line during PTW generation without the addition of additional working gas or chemical scavengers. This work demonstrates that a hybrid mode discharge can be employed to generate a PTW formulation to control a biological response such as cytotoxicity. This provides insights into how plasma treated liquids may be harnessed for biological applications in a specific and controllable manner.
Plasma-surface interactions with ICRF antennas and lower hybrid grills in Tore Supra
Harris, J. H.; Hutter, T.; Hogan, J. T.; Basiuk, V.; Beaumont, B.; Becoulet, A.; Bremond, S.; Carter, M. D.; Goniche, M.; Goulding, R. H.; Guilhem, D.; Haste, G. R.; Hoffman, D. J.; Litaudon, X.; Nguyen, F.
1997-02-01
The edge plasma interactions of the actively cooled radio-frequency heating launchers in Tore Supra ion-cyclotron range of frequencies (ICRF) antennas and lower-hybrid (LH) grills are studied using infrared video imaging. On the two-strap ICRF antennas, operated in fast-wave electron heating or current drive mode, hot spots with temperatures of 500-900°C are observed by the end of 2 s power pulses of 2 MW per antenna. The steady-state temperature distribution is determined principally by the relative phase of the two antenna straps: dipole (heating) phasing results in significantly less antenna heating than does 90° (current drive) phasing. Transient heat fluxes of 1-20 MW/m 2 are measured on the lateral protection bumpers at ICRF turn-on; these fluxes are primarily a function of plasma and radio frequency (rf) control. The remarkable feature of the lower hybrid edge interaction is the production of beams of heat flux in front of the grills; these beams propagate along the helical magnetic field lines and can deliver fluxes of 5-10 MW/m 2 over areas of several cm 2 to plasma-facing components. Both the ICRF and LH phenomena appear to result from the acceleration of particles by the near fields of the launchers. Modeling of the heat flux deposition on components and its relation to sputtering processes is presented.
Directory of Open Access Journals (Sweden)
Koray Yurtisik
2013-09-01
Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.
The role of the plasma current in turbulence decrease during lower hybrid current drive
Antar, G.; Ekedahl, A.; Goniche, M.; Asghar, A.; Žàček, F.
2017-03-01
The interaction of radio frequency (RF) waves with edge turbulence has resurfaced after the results obtained on many tokamaks showing that edge turbulence decreases when the ion cyclotron frequency heating (ICRH) is switched on. Using the lower hybrid (LH) waves to drive current into tokamak plasmas, this issue presented contradicting results with some tokamaks (FTU & HT-7) showing a net decrease, similar to the ICRH results, and others (Tore Supra) did not. In this article, these apparent discrepancies among tokamaks and RF wave frequencies are removed. It is found that turbulence large-scale structures in the scrape-off layer decrease at high enough plasma currents (Ip) on the Tore Supra tokamak. We distinguish three regimes: At low Ip's, no modification is detected with statistical properties of turbulence similar to ohmic plasmas even with PLH reaching 4.8 MW. At moderate plasma currents, turbulence properties are modified only at a high LH power. At high plasma currents, turbulent large scales are reduced to values smaller than 1 cm, and this is accompanied by a net decrease in the level of turbulence of about 30% even with a moderate LH power.
3D MHD disruptions simulations of tokamaks plasmas
Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua
2008-11-01
Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.
Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas
Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team
2017-10-01
In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.
Stability properties and fast ion confinement of hybrid tokamak plasma configurations
Graves, J. P.; Brunetti, D.; Pfefferle, D.; Faustin, J. M. P.; Cooper, W. A.; Kleiner, A.; Lanthaler, S.; Patten, H. W.; Raghunathan, M.
2015-11-01
In hybrid scenarios with flat q just above unity, extremely fast growing tearing modes are born from toroidal sidebands of the near resonant ideal internal kink mode. New scalings of the growth rate with the magnetic Reynolds number arise from two fluid effects and sheared toroidal flow. Non-linear saturated 1/1 dominant modes obtained from initial value stability calculation agree with the amplitude of the 1/1 component of a 3D VMEC equilibrium calculation. Viable and realistic equilibrium representation of such internal kink modes allow fast ion studies to be accurately established. Calculations of MAST neutral beam ion distributions using the VENUS-LEVIS code show very good agreement of observed impaired core fast ion confinement when long lived modes occur. The 3D ICRH code SCENIC also enables the establishment of minority RF distributions in hybrid plasmas susceptible to saturated near resonant internal kink modes.
Hybrid statistics-simulations based method for atom-counting from ADF STEM images.
De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra
2017-01-25
A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials.
Magnetic null points in kinetic simulations of space plasmas
Olshevsky, Vyacheslav; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni
2015-01-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic Particle-in-Cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind; and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and lunar magnetic ano...
Smoothed Particle Hydrodynamics for the Simulation of Laser Produced Plasmas
Griffith, Alec; Holladay, Tyler; Murillo, Michael S.
2016-10-01
To address the design and interpretation of experiments at next generation light sources such as at the SLAC LCLS and the LANL proposed MaRIE a simulation of the laser produced plasma targets has been developed. Smoothed particle hydrodynamics is used to capture the full experimental time and length scales, large degrees of deformation, and the experimental environment's open boundary conditions. Additionally the model incorporates plasma transport with thermal conduction, the electric potential, and a two species model of the electrons and ions. The electron and ion particle representations in SPH allow for time dependent ionization and recombination while addressing the disparate masses of the two species. To gain computational speedup our simulation takes advantage of parallelism, and to reduce computational cost we have explored using data structures such as the linked cell list and octree as well as algorithmic techniques such as the fast mutipole method. We will discuss the results of simulating several possible experimental configurations using our model. This work was supported by the Los Alamos National Laboratory computational physics workshop.
Simulation of the Partially Ionized Negative Hydrogen Plasma
Averkin, Sergey; Gatsonis, Nikolaos; Olson, Lynn
2012-10-01
A High Pressure Discharge Negative Ion Source (HPDNIS) operating on hydrogen is been under investigation. The Negative Ion Production (NIP) section of the HPDNIS attaches to the 10-100 Torr RF-discharge chamber with a micronozzle and ends with a grid that extracts the negative ion beam. The partially ionized and reacting plasma flow in the NIP section is simulated using an unstructured three-dimensional Direct Simulation Monte Carlo (U3DSMC) code. The NIP section contains a low-pressure plasma that includes H2, vibrationally-rotationally excited H2^*, negative hydrogen atoms H^-, and electrons. Primary reactions in the NIP section are dissociate attachment, H2^*+e->H^0+H^-and electron collisional detachment, e+H^-->H+2e. The U3DSMC computational domain includes the entrance to the NIP nozzle and the extraction grid at the exit. The flow parameters at the entrance are based on conditions in the RF-discharge chamber and are implemented in U3DSMC using a Kinetic-Moment subsonic boundary conditions method. Neutral--neutral, ion-neutral, Coulomb collisions and charge-neutralizing collisions are implemented in U3DSMC using the no time counter method, electron-molecule collisions are treated by the constant timestep method. Simulations cover the regime of operation of the HPDNIS and examine the flow characteristics inside the NIP section.
SciDAC-Center for Plasma Edge Simulation
Energy Technology Data Exchange (ETDEWEB)
Chang, Choong Seock
2012-06-04
The SciDAC ProtoFSP Center for Plasma Edge Simulation (CPES) [http://www.cims.nyu.edu/cpes/] was awarded to New York University, Courant Institute of Mathematical Sciences in FY 2006. C.S. Chang was the institutional and national project PI. It's mission was 1) to build kinetic simulation code applicable to tokamak edge region including magnetic divertor geometry, 2) to build a computer science framework which can integrate the kinetic code with MHD/fluid codes in multiscale, 3) to conduct scientific research using the developed tools. CPES has built two such edge kinetic codes XGC0 and XGC1, which are still the only working kinetic edge plasma codes capable of including the diverted magnetic field geometry. CPES has also built the code coupling framework EFFIS (End-to-end Framework for Fusion Integrated Simulation), which incubated and used the Adios (www.olcf.ornl.gov/center-projects/adios/) and eSiMon (http://www.olcf.ornl.gov/center-projects/esimmon/) technologies, together with the Kepler technology.
Vlasov simulations of multi-ion plasma turbulence in the solar wind
Perrone, Denise; Servidio, Sergio; Dalena, Serena; Veltri, Pierluigi
2012-01-01
Hybrid Vlasov-Maxwell simulations are employed to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of protons, alpha particles and fluid electrons. In the typical conditions of the solar-wind environment, and in situations of decaying turbulence, the numerical results show that the velocity distribution functions of both ion species depart from the typical configuration of thermal equilibrium. These non-Maxwellian features are quantified through the statistical analysis of the temperature anisotropy, for both protons and alpha particles, in the reference frame given by the local magnetic field. Anisotropy is found to be higher in regions of high magnetic stress. Both ion species manifest a preferentially perpendicular heating, although the anisotropy is more pronounced for the alpha particles, according with solar wind observations. Anisotropy of the alpha particle, moreover, is correlated to the proton anisotropy, and also depends on the local differential flo...
Wexler, David B.; Hollweg, Joseph V.; Jensen, Elizabeth; Lionello, Roberto; Macneice, Peter J.; Coster, Anthea J.
2017-08-01
Study of coronal MHD wave energetics relies upon accurate representation of plasma particle number densities (ne) and magnetic field strengths. In the lower corona, these parameters are obtained indirectly, and typically presented as empirical equations as a function of heliocentric radial distance (solar offset, SO). The development of coronal global models using synoptic solar surface magnetogram inputs has provided refined characterization of the coronal plasma organization and magnetic field. We present a cross-analysis between a MHD thermodynamic simulation and Faraday rotation (FR) observations over SO 1.63-1.89 solar radii (Rs) near solar minimum. MESSENGER spacecraft radio signals with a line of sight (LOS) passing through the lower corona were recorded in dual polarization using the Green Bank Telescope in November 2009. Polarization position angle changes were obtained from Stokes parameters. The magnetic field vector (B) and ne along the LOS were obtained from a MHD thermodynamic simulation provided by the Community Coordinated Modeling Center. The modeled FR was computed as the integrated product of ne and LOS-aligned B component. The observations over the given SO range yielded an FR change of 7 radians. The simulation reproduced this change when the modeled ne was scaled up by 2.8x, close to values obtained using the Allen-Baumbach equation. No scaling of B from the model was necessary. A refined fit to the observations was obtained when the observationally based total electron content (TEC) curves were introduced. Changes in LOS TEC were determined from radio frequency shifts as the signal passed to successively lower electron concentrations during egress. A good fit to the observations was achieved with an offset of 7e21 m-2 added. Back-calculating ne along the LOS from the TEC curves, we found that the equivalent ne scaling compared to the model output was higher by a factor of 3. The combination of solar surface magnetogram-based MHD coronal
Vlasov-Fokker-Planck simulations of fast-electron transport with hydrodynamic plasma response
Energy Technology Data Exchange (ETDEWEB)
Kingham, R J; Sherlock, M; Ridgers, C P; Evans, R G, E-mail: rj.kingham@imperial.ac.u [Plasma Physics Group, Imperial College London, London SW7 2AZ (United Kingdom)
2010-08-01
We report on kinetic simulations of the transport of laser-produced relativistic electron beams (REB) through solid-density plasma, including the hydrodynamic response of the plasma. We consider REBs with parameters relevant to fast-ignition of compressed inertial confinement fusion capsules. We show that over the 10-20ps timescales required for fast-ignition, thermal pressure (from Ohmic heating) can significantly modify the density which in turn strongly affects the propagation of injected fast-electrons; it allows them to re-collimate into a narrow, intense beam under conditions where they initially undergo beam-hollowing. Similar static-density calculations do not show re-collimation. The re-collimation effect is attributed to PdV cooling in the pressure-induced density-channel, which in turn suppresses defocusing magnetic fields generated by resistivity gradients. These simulations have been carried out using the new 2D-3V Vlasov-Fokker-Planck (VFP) code FIDO running in hybrid mode.
Simulations of the spectrum from a photoionized Si plasma
Lihua, Bao; Zeqing, Wu; Bin, Duan; Yongkun, Ding; Jun, Yan
2011-02-01
In order to interpret the spectrum of a photoionized Si plasma, we calculate the level populations and emissions using a collisional-radiative equilibrium model with detailed atomic data. In our calculations, levels with principal quantum number up to 9 are included and the electron impact processes are also taken into account. The peak around 1855 eV, which is not reproduced in the previous simulation, is obvious in the present results. Spectra analyzing shows that this peak mainly comes from the intercombination line of He-like Si. Our calculations indicate that the electron impact processes enhance this intercombination line about once, although the electron temperature is pretty low.
Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation
Karney, C. F. F.
1977-01-01
Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.
Hybrid programming model for implicit PDE simulations on multicore architectures
Kaushik, Dinesh K.
2011-01-01
The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.
Upper-hybrid wave driven Alfvenic turbulence in magnetized dusty plasmas
Misra, A P
2010-01-01
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations [J.Plasma Phys. 73, 3 (2006)] that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs is solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths which, in turn, ...
Quantum electrostatic surface waves in a hybrid plasma waveguide: Effect of nano-sized slab
Shahmansouri, M.; Mahmodi Moghadam, M.
2017-10-01
The propagation properties of surface plasmon (SP) waves are studied in a hybrid plasma waveguide (consisting of plasma-gap-dielectric layers) with quantum effects including the Fermi-pressure, the Bohm potential and the exchange-correlation interaction. By using a quantum hydrodynamic model and Maxwell's equations, the dispersion relation of SP waves is derived, which describes the quantum corrected features of the dispersion properties of such surface waves. Previous results in this context are recovered. It is found that the exchange-correlation interactions and the presence of the second dielectric layer drastically modify the behaviors of the surface plasmon waves. The implications of our finding are discussed in some particular cases of interest. Our finding is applicable for understanding the surface wave behaviors in nano-scale systems.
Energy Technology Data Exchange (ETDEWEB)
Shlapakovski, Anatoli; Beilin, Leonid; Bliokh, Yuri; Donskoy, Moshe; Krasik, Yakov E. [Physics Department, Technion, Haifa 32000 (Israel); Hadas, Yoav [Department of Applied Physics, Rafael, PO Box 2250, Haifa 31021 (Israel); Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2014-05-07
Numerical simulations of the process of electromagnetic energy release from a high-power microwave pulse compressor comprising a gas-filled cavity and interference switch were carried out. A microwave plasma discharge in a rectangular waveguide H-plane tee was modeled with the use of the fully electromagnetic particle-in-cell code MAGIC. The gas ionization, plasma evolution, and interaction with RF fields accumulated within the compressor were simulated using different approaches provided by the MAGIC code: particle-in-cell approach accounting for electron-neutral collisions, gas conductivity model based on the concept of mobility, and hybrid modeling. The dependences of the microwave output pulse peak power and waveform on parameters that can be controlled in experiments, such as an external ionization rate, RF field amplitude, and background gas pressure, were investigated.
Low-temperature plasma simulations with the LSP PIC code
Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy
2014-10-01
The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni [Centre for Mathematical Plasma Astrophysics (CmPA), KU Leuven (Belgium); Deca, Jan [Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder, Boulder, CO (United States); Divin, Andrey [St. Petersburg State University, St. Petersburg (Russian Federation); Peng, Ivy Bo; Markidis, Stefano, E-mail: sya@mao.kiev.ua [High Performance Computing and Visualization (HPCViz), KTH Royal Institute of Technology, Stockholm (Sweden)
2016-03-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.
Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas
Hamlin, Nathaniel; Seyler, Charles
2016-10-01
We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling laser-plasma interactions in relativistic and nonrelativistic regimes. By formulating the fluid equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of two-fluid phenomena in dense plasmas without the need to resolve the smallest electron length and time scales. For relativistic and nonrelativistic laser-target interactions, we have validated a cycle-averaged absorption (CAA) laser driver model against the direct approach of driving the electromagnetic fields. The CAA model refers to driving the radiation energy and flux rather than the fields, and using hyperbolic radiative transport, coupled to the plasma equations via energy source terms, to model absorption and propagation of the radiation. CAA has the advantage of not requiring adequate grid resolution of each laser wavelength, so that the system can span many wavelengths without requiring prohibitive CPU time. For several laser-target problems, we compare existing MHD results to extended-MHD results generated using PERSEUS with the CAA model, and examine effects arising from Hall physics. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.
Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle
Directory of Open Access Journals (Sweden)
Siavash Sadeghi
2010-04-01
Full Text Available Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicle performance,dynamic modeling of the motor and other components is necessary. Whereas the switchedreluctance machine is well suited for electric and hybrid electric vehicles, due to the simpleand rugged construction, low cost, and ability to operate over a wide speed range atconstant power, in this paper dynamic performance of the switched reluctance motor for eseries hybrid electric vehicles is investigated. For this purpose a switched reluctance motorwith its electrical drive is modeld and simulated first, and then the other components of aseries hybrid electric vehicle, such as battery, generator, internal combusion engine, andgearbox, are designed and linked with the electric motor. Finally a typical series hybridelectric vehicle is simulated for different drive cycles. The extensive simulation results showthe dynamic performance of SRM, battery, fuel consumption, and emissions.
Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges
Lu, Yijia; Ji, Linhong; Cheng, Jia
2016-12-01
Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)
Simulation of coal pyrolysis in plasma jet by CPD model
Energy Technology Data Exchange (ETDEWEB)
Tian, Y.; Xie, K.; Zhu, S.; Fletcher, T.H. [Taiyuan University of Technology, Taiyuan (China). State Key Lab. of C1 Chemistry and Technology
2001-12-01
Reaction of coal in a plasma jet is complex and extremely rapid, and acetylene and carbon monoxide are the main products in the pyrolysis gas. Coal pyrolysis is assumed as the first step reaction when coal is injected into hot plasma jet with initial average temperature of 3700 K. Chemical percolation devolatalization (CPD) is employed first to simulate this procedure in mechanism. The calculation results indicate coal pyrolysis rate in plasma jet is very fast and the retention time of coal staying in reactor is only several milliseconds. Comparing the calculation with experiment result, it was concluded that the CPD agree with the experiment well when the coal feed rate is larger than about 2.0 g s{sup -1}. As the coal feed rate was increased, the average temperature of coal particle during staying in reactor was reduced and the residual time became long, but it was not found that the residual time influenced the coal conversion evidently. 15 refs., 6 figs., 3 tabs.
E324 Simulation of Turbulent Channel Flow Using a RANS/LES Hybrid Model
半場, 藤弘; Fujihiro, Hamba; 東大生研; Institute of Industrial Science, University of Tokyo
2004-01-01
A RANS/LES hybrid simulation of a channel flow at Reτ=5000 was carried out using the Smagorinsky model. It is known that some hybrid simulations including the detached eddy simulation have a common defect: the mean velocity profile has a mismatch between the RANS and LES regions due to a steep gradient near the interface. New filtering for the velocity was introduced to improve the mean velocity profile. It was shown that this method increases the intensity of the normal velocity component in...
Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations
Cerri, S S; Jenko, F; Told, D; Rincon, F
2016-01-01
A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfv\\'en wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at $\\beta\\gtrsim1$ and by magnetosonic/whistler fluctuations at lower $\\beta$. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and va...
Goforth, M. M.; Loch, S. D.; Maurer, D. A.; Pearce, A. J.; Traverso, P. J.
2014-10-01
A Thomson scattering system is in development for the Compact Toroidal Hybrid (CTH) experiment to provide localized, internal electron temperature and density measurements. Thomson scattering yields accurate information on the internal plasma electron pressure profile, which will aid in the equilibrium reconstruction of CTH plasmas using the V3FIT code. The expected Thomson scattered signal is approximately 1015 times less than the incident laser light, and can be overwhelmed by stray laser light, background plasma emission, and intrinsic detector noise. Background plasma emission measurements in the visible spectral region near the planned laser wavelength of 532 nm are underway using a Holospec f/1.8 spectrometer and an And or iStar image intensified CCD camera to quantify line and continuum background levels. In addition, impurity line identification and plans for a separate line-of-sight averaged impurity temperature and density measurement capability employing the Thomson spectrometer are in progress. This work is supported by US DOE Grant DE-FG-02-00ER54610 and by the Auburn University Undergraduate Research Fellowship.
PIC Simulation of Relativistic Electromagnetic Plasma Expansion with Radiation Damping
Noguchi, Koichi; Liang, Edison; Wilks, Scott
2004-11-01
One of the unsolved problems in astrophysics is the acceleration of nonthermal high-energy particles. Nonthermal radiation is observed from pulsars, blazers, gamma-ray bursts and black holes. Recently, a new mechanism of relativistic nonthermal particle acceleration, called the Diamagnetic Relativistic Pulse Accelerator(DRPA), discovered using multi-dimensional Particle-in-Cell(PIC) simulations. When a plasma-loaded electromagnetic pulse expands relativistically, the self-induced drift current creates ponderomotive trap, which drags only the fast particles in the trap and leave slow ones behind. Here we study the effect of radiation on an electron-positron plasma accelerated by the DRPA, by introducing the radiation force in our 2D PIC code. In the radiation case, particles are accelerated by the EM pulse but decelerated by the radiation reaction simultaneously, whereas particles are accelerated indefinitely in the non-radiation case. We find that even with the radiation dumping the DRPA mechanism remains robust and particles are accelerated to over γ>100. After the simulation reaches the quasi-equilibrium state, kinetic energy becomes constant, and field energy is converted to radiation using particles as the transfer agent. We will also produce sample light waves of the radiation output.
Plasma Drifts in the Intermediate Magnetosphere: Simulation Results
Lyon, J.; Zhang, B.
2016-12-01
One of the outstanding questions about the inner magnetosphere dynamics is how the ring current is populated. It is not clear how much is due to a general injection over longer time and spatial scales and how much due to more bursty events. One of the major uncertainties is the behavior of the plasma in the intermediate magnetosphere: the region where the magnetosphere changes from being tail-like to one where the dipole field dominates. This is also the region where physically the plasma behavior changes from MHD-like in the tail to one dominated by particle drifts in the inner magnetosphere. No of the current simulation models self-consistently handle the region where drifts are important but not dominant. We have recently developed a version of the multi-fluid LFM code that can self-consistently handle this situation. The drifts are modeled in a fashion similar to the Rice Convection Model in that a number of energy "channels" are explicitly simulated. However, the method is not limited to the "slow flow" region and both diamagnetic and inertial drifts are included. We present results from a number of idealized cases of the global magnetosphere interacting with a southward turning of the IMF. We discuss the relative importance of general convection and bursty flows to the transport of particles and energy across this region.
Directory of Open Access Journals (Sweden)
R. Modolo
2006-12-01
Full Text Available The solar wind plasma interaction with the Martian exosphere is investigated by means of 3-D multi-species hybrid simulations. The influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary is examined by comparing two simulations describing the two extreme states of the solar cycle. The hybrid formalism allows a kinetic description of each ions species and a fluid description of electrons. The ionization processes (photoionization, electron impact and charge exchange are included self-consistently in the model where the production rate is computed locally, separately for each ionization act and for each neutral species. The results of simulations are in a reasonable agreement with the observations made by Phobos 2 and Mars Global Surveyor spacecraft. The position of the bow shock and the magnetic pile-up boundary is weakly dependent of the solar EUV flux. The motional electric field creates strong asymmetries for the two plasma boundaries.
The simulation of hard x-ray images obtained during lower hybrid current drive on PBX-M
Energy Technology Data Exchange (ETDEWEB)
Goeler, S. von; Fishman, H.; Ignat, D. [and others
1994-10-01
During lower hybrid current drive on PBX-M suprathermal electrons in the 30 to 150 keV range are generated. These electrons emit hard X-ray bremsstrahlung in collisions with plasma ions; the radiation creates images in a hard X-ray pinhole camera. In order to interpret the hard X-ray images, a computer simulation code has been written, the PBXRAY code. It represents an extension of the STEVENS code that calculates the free-free and free-bound radiation for non-Maxwellian relativistic electron tail distributions. The PBXRAY code provides the chord integration in the bean-shaped plasma geometry on PBX-M and integrates over photon energy. The simulations show that the location of the suprathermal electrons can be determined with an accuracy of approximately two centimeters in the plasma. In particular, the authors analyzed discharges whose characteristic ``hollow`` images indicate off-axis LH current drive. A comparison of images taken with different absorber foils reveals that the suprathermal electrons have less than 150 keV parallel energy for the hollow discharges.
Energy Technology Data Exchange (ETDEWEB)
Imbeaux, F
1999-09-22
Control of the current density profile is a critical issue in view to obtain high fusion performances in tokamak plasmas? It is therefore important to be able to control the power deposition profile of the lower hybrid wave, which has the highest current drive efficiency among all other non-inductive additional methods. Propagation and absorption of this wave are investigated in the Tore Supra tokamak using a new hard x-ray tomographic system and a new ray-tracing/Fokker-Planck code. These tools are described in detail and allow to analyse the lower hybrid power deposition profile dependence as a function of various plasma parameters (density, magnetic field, current) and of the injected wave spectrum. A good agreement between the code and the measurements found when the central electron temperature is greater than about 3 keV, that is in regimes where the wave undergoes only a few reflections before being absorbed. The simulations are then used to interpret the experimental trends. The lower hybrid power deposition profile is in nearly all discharges localised at a normalised minor radius of 0.2-0.3, and is weakly sensitive to variations of plasma parameters. It is hence difficult to perform an efficient control of the current profile generated by the lower hybrid wave in Tore Supra. This goal may nevertheless be reached by using an original method, which uses an auxiliary lower hybrid wave injected by a vertical port of the torus. This method is investigated by means of the simulation code. (author)
Test and numerical simulation of a new type of hybrid control technique
Institute of Scientific and Technical Information of China (English)
Meng Qingli; Zhang Minzheng; Cheng Dong
2005-01-01
In this paper, a new hybrid control technique, based on a combination of base-isolation and semi-active variable stiffness/damping in a superstructure, is presented. To illustrate the efficiency of the proposed control system, model tests on a mini-electromagnetic shaking table and a numerical simulation were performed. The test and numerical calculation results indicate that this new hybrid control mode with additional damping and smaller additional stiffness can achieve a better control efficiency.
Selection of a Planning Horizon for a Hybrid Microgrid Using Simulated Wind Forecasts
2014-12-01
Craparo Dashi I. Singham Naval Postgraduate School 1411 Cunningham Road Monterey, CA, 93943 USA ABSTRACT Hybrid microgrids containing renewable energy ...produced is at least as great as the total load. Energy is produced by generators, wind turbines, purchases from the commercial grid, and discharge of the...A PLANNING HORIZON FOR A HYBRID MICROGRID USING SIMULATED WIND FORECASTS Mumtaz Karatas Turkish Naval Academy Tuzla, Istanbul, 34942, TURKEY Emily M
Dynamic Particle Weight Remapping in Hybrid PIC Hall-effect Thruster Simulation
2015-05-01
International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, Japan July 410, 2015 Robert Martin∗ ERC Incorporated, Huntsville...Algorithms, . 8Koo, J. and Martin, R., Pseudospectral model for hybrid PIC Hall -eect thruster simulation, 34th Int. Electric Propul- sion Conf...Paper 3. DATES COVERED (From - To) May 2015-July 2015 4. TITLE AND SUBTITLE Dynamic Particle Weight Remapping in Hybrid PIC Hall -effect Thruster
Lower-Hybrid Drift Instability Saturation Mechanisms in One-Dimensional Simulations,
1980-09-19
The linear properties and saturation mechanisms of the lower-hybrid drift instability have been investigated using a one-dimensional particle-hybrid simulation. For low drift velocities (V sub d much less than V sub ti), ion trapping and current relaxation (V sub d approaches limit of 0) are competing processes for stabilization. If the relative electron-ion drift velocity is kept constant in time , ion trapping causes
Tang, William
2013-04-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).
An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays
Directory of Open Access Journals (Sweden)
Laurenzi Ian J
2009-12-01
Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.
Hybrid simulation of whistler excitation by electron beams in two-dimensional non-periodic domains
Energy Technology Data Exchange (ETDEWEB)
Woodroffe, J.R., E-mail: woodrofj@erau.edu; Streltsov, A.V., E-mail: streltsa@erau.edu
2014-11-01
We present a two-dimensional hybrid fluid-PIC scheme for the simulation of whistler wave excitation by relativistic electron beams. This scheme includes a number of features which are novel to simulations of this type, including non-periodic boundary conditions and fresh particle injection. Results from our model suggest that non-periodicity of the simulation domain results in the development of fundamentally different wave characteristics than are observed in periodic domains.
Vencels, Juris; Delzanno, Gian Luca; Manzini, Gianmarco; Markidis, Stefano; Peng, Ivy Bo; Roytershteyn, Vadim
2016-05-01
We present the design and implementation of a spectral code, called SpectralPlasmaSolver (SPS), for the solution of the multi-dimensional Vlasov-Maxwell equations. The method is based on a Hermite-Fourier decomposition of the particle distribution function. The code is written in Fortran and uses the PETSc library for solving the non-linear equations and preconditioning and the FFTW library for the convolutions. SPS is parallelized for shared- memory machines using OpenMP. As a verification example, we discuss simulations of the two-dimensional Orszag-Tang vortex problem and successfully compare them against a fully kinetic Particle-In-Cell simulation. An assessment of the performance of the code is presented, showing a significant improvement in the code running-time achieved by preconditioning, while strong scaling tests show a factor of 10 speed-up using 16 threads.
Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.
A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.
Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks
DEFF Research Database (Denmark)
Wright, J.C.; Bonoli, P.T.; Brambilla, M.;
2004-01-01
Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k(perpendi......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first......)] to gain new understanding into the nature of FWMC in tokamaks. The massively-parallel-processor version of TORIC is also now capable of running with sufficient resolution to model planned lower hybrid range of frequencies experiments in the Alcator C-Mod. (C) 2004 American Institute of Physics....
Charaterizing the O+ ion plume from Hybrid simulations: comparison to MAVEN observations
Modolo, R.; Leblanc, F.; Chaufray, J. Y.; Leclercq, L.; Esteban-Hernandez, R.; Curry, S.; Dong, Y.; Brain, D. A.; Bowers, C.; Luhmann, J. G.; McFadden, J. P.; Halekas, J. S.; Espley, J. R.; Connerney, J. E. P.; Jakosky, B. M.
2015-12-01
MAVEN observations show a substantial plume-like distribution of escaping ions from the Martian atmosphere. It represents an important ion escape channel with large fluxes (Brain et al, 2015; Dong et al, 2015, Curry et al, 2015). Such structure is organized by the solar wind convection electric field and it is located in the MSE northward hemisphere. Global hybrid models (eg Modolo et al, 2005, 2012; Kallio et al, 2006; Brecht et al, 2006) reproduce nicely this plume. To further characterize this population, hybrid simulations have been performed with upstream solar wind conditions observed by MAVEN. Simulation results along the spacecraft track present signatures of high energetic O+ ions similar to MAVEN measurements. Comparison of simulated 3D distribution functions of this population are compared to STATIC and SWIA observations. Moreover a comparison of hybrid results with statistical ion fluxes maps derived from MAVEN (Dong et al, 2015; Brain et al, 2015) have been conducted and a reasonable agreement is found .
Strategy and gaps for modeling, simulation, and control of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hovsapian, Rob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mesina, George L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-04-01
The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled
Simulation of the performance of a hybrid ventilation system in different climates
Energy Technology Data Exchange (ETDEWEB)
Charvat, P.; Jicha, M. [Brno Univ. of Technology, Brno (Czech Republic). Faculty of Mechanical Engineering; Niachou, A.; Santamouris, M. [National and Kapodistrian Univ. of Athens, Athens (Greece)
2005-07-01
Four different concepts of hybrid ventilation systems for 4 climates in Europe have been developed within the Framework of the European Union project called Residential Hybrid Ventilation (RESHYVENT). This study involved computational simulations to examine the performance of the hybrid ventilation system for a moderate climate in an urban environment under various climatic conditions. A hybrid ventilation system refers to a ventilation system that uses natural driving forces as long as possible and which switches to mechanical forces when needed. It therefore minimizes energy consumption while maintaining good indoor air quality and thermal comfort for occupants. The RESHYVENT hybrid ventilation system consists of a self-regulating air inlet, DC fan, motorized damper, flow meter, central control unit, carbon dioxide sensors and ductwork. If natural driving forces are not sufficient, the fan engages and its speed adjusts to match the demanded flow rate. This paper presents a case study in which the TRNSYS type 15 software package was used with the TRNFlow air flow network module to simulate natural driving forces such as wind and buoyancy in an apartment building situated in an urban canyon. Results were obtained for a specific geometry, occupancy scheme and other factors. The study showed that the hybrid ventilation system was able to maintain required indoor air quality regardless of weather conditions. As such, it was better than the natural ventilation system and holds promise for use in office and residential buildings. The complexity of hybrid and natural ventilation systems is due to the fact that air flow rates depend greatly on climatic conditions. Therefore, simulations must consider thermal and air flow models. Experiments conducted at a demonstration house in Brno, Czech Republic show that the RESHYVENT hybrid ventilation system could maintain the level of carbon dioxide concentration in rooms below 1200 ppm. refs., 7 tabs., 3 figs.
Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas
Dimarco, Giacomo; Pareschi, Lorenzo
2010-01-01
We consider the development of Monte Carlo schemes for molecules with Coulomb interactions. We generalize the classic algorithms of Bird and Nanbu-Babovsky for rarefied gas dynamics to the Coulomb case thanks to the approximation introduced by Bobylev and Nanbu (Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation, Physical Review E, Vol. 61, 2000). Thus, instead of considering the original Boltzmann collision operator, the schemes are constructed through the use of an approximated Boltzmann operator. With the above choice larger time steps are possible in simulations; moreover the expensive acceptance-rejection procedure for collisions is avoided and every particle collides. Error analysis and comparisons with the original Bobylev-Nanbu (BN) scheme are performed. The numerical results show agreement with the theoretical convergence rate of the approximated Boltzmann operator and the better performance of Bird-type schemes with respect to t...
Coulomb Collision for Plasma Simulations: Modelling and Numerical Methods
Geiser, Juergen
2016-09-01
We are motivated to model weakly ionized Plasma applications. The modeling problem is based on an incorporated explicit velocity-dependent small-angle Coulomb collision terms into a Fokker-Planck equation. Such a collision is done with so called test and field particles, which are scattered stochastically based on a Langevin equation. Based on such different model approaches, means the transport part is done with kinetic equations, while the collision part is done via the Langevin equations, we present a splitting of these models. Such a splitting allow us to combine different modeling parts. For the transport part, we can apply particle models and solve them with particle methods, e.g., PIC, while for the collision part, we can apply the explicit Coulomb collision model, e.g., with fast stochastic differential equation solvers. Additional, we also apply multiscale approaches for the different parts of the transport part, e.g., different time-scales of an explicit electric field, and model-order reduction approaches. We present first numerical results for particle simulations with the deterministic-stochastic splitting schemes. Such ideas can be applied to sputtering problems or plasma applications with dominant Coulomb collisions.
Monte Carlo simulation of electron beam air plasma characteristics
Institute of Scientific and Technical Information of China (English)
Deng Yong-Feng; Han Xian-Wei; Tan Chang
2009-01-01
A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4,a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model,the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam,but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases,i.e.,with and without secondary electrons (SEs). Analysis indicates that the energy deposition of Ses accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic,but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover,both the energy distribution of Bes and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus,a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.
Simulations Of Laser Cooling In An Ultracold Neutral Plasma
Langin, Thomas; Strickler, Trevor; Pohl, Thomas; Vrinceanu, Daniel; Killian, Thomas
2016-05-01
Ultracold neutral plasmas (UNPs) generated by photoionization of laser-cooled, magneto-optically trapped neutral gases, are useful systems for studying strongly coupled plasmas. Coupling is parameterized by Γi, the ratio of the average nearest neighbor Coulomb interaction energy to the ion kinetic energy. For typical UNPs, Γi is currently limited to ~ 3 . For alkaline earth ions, higher Γi can be achieved by laser-cooling. Using Molecular Dynamics and a quantum trajectories approach, we have simulated laser-cooling of Sr+ ions interacting through a Yukawa potential. The simulations include re-pumping from two long-lived D-states, and are conducted at experimentally achievable parameters (density n = 2 e+14 m-3, size σ0 = 4 mm, Te = 19 K). Laser-cooling is shown to both reduce the temperature by a factor of 2 over relevant timescales (tens of μ s) and slow the electron thermal-pressure driven radial expansion of the UNP. We also discuss the unique aspects of laser-cooling in a highly collisional system; in particular, the effect of collisions on dark state formation due to the coupling of the P3/2 state to both the S1/2 (via the cooling transition) and the D5/2 (via a re-pump transition) states. Supported by NSF and DoE, the Air Force Office of Scientific Research, the NDSEG Program, and NIH NCRR S10RR02950, an IBM SUR Award in partnership with CISCO, Qlogic and Adaptive Computing.
Lin, Y.; Wing, S.; Johnson, J. R.; Wang, X. Y.; Perez, J. D.; Cheng, L.
2017-06-01
Global structure and evolution of flux tube entropy S, integrated over closed field lines, associated with magnetic reconnection in the magnetotail are investigated using the AuburN Global hybrId codE in three dimensions (3-D), ANGIE3D. Flux tubes with decreased entropy, or "bubbles," are found to be generated due to the sudden change of flux tube topology and thus volume in reconnection. By tracking the propagation of the entropy-depleted flux tubes, the roles of the entropy structure in plasma transport to the inner magnetosphere is examined with a self-consistent global hybrid simulation for the first time. The value of S first decreases due to the shortening of flux tubes and then increases due to local ion heating as the bubbles are injected earthward by interchange-ballooning instability, finally oscillating around an equilibrium radial distance where S is nearly the same as the ambient value. The pressure remains anisotropic and not constant along the flux tubes during their propagation with a nonzero heat flux along the field line throughout the duration of the simulation. The correlation of these bubbles with earthward fast flows and specific entropy s is also studied.
Hybrid TS fuzzy modelling and simulation for chaotic Lorenz system
Institute of Scientific and Technical Information of China (English)
Li De-Quan
2006-01-01
The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.
Directory of Open Access Journals (Sweden)
Adam B. Sefkow
2008-07-01
Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and
Bellos, Vasilis; Tsakiris, George
2016-09-01
The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.
A hybrid approach to simulate multiple photon scattering in X-ray imaging
Energy Technology Data Exchange (ETDEWEB)
Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)
2005-01-01
A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.
Smolyakov, A. I.; Chapurin, O.; Frias, W.; Koshkarov, O.; Romadanov, I.; Tang, T.; Umansky, M.; Raitses, Y.; Kaganovich, I. D.; Lakhin, V. P.
2017-01-01
Partially-magnetized plasmas with magnetized electrons and non-magnetized ions are common in Hall thrusters for electric propulsion and magnetron material processing devices. These plasmas are usually in strongly non-equilibrium state due to presence of crossed electric and magnetic fields, inhomogeneities of plasma density, temperature, magnetic field and beams of accelerated ions. Free energy from these sources make such plasmas prone to various instabilities resulting in turbulence, anomalous transport, and appearance of coherent structures as found in experiments. This paper provides an overview of instabilities that exist in such plasmas. A nonlinear fluid model has been developed for description of the Simon-Hoh, lower-hybrid and ion-sound instabilities. The model also incorporates electron gyroviscosity describing the effects of finite electron temperature. The nonlinear fluid model has been implemented in the BOUT++ framework. The results of nonlinear simulations are presented demonstrating turbulence, anomalous current and tendency toward the formation of coherent structures.
Particle based plasma simulation for an ion engine discharge chamber
Mahalingam, Sudhakar
Design of the next generation of ion engines can benefit from detailed computer simulations of the plasma in the discharge chamber. In this work a complete particle based approach has been taken to model the discharge chamber plasma. This is the first time that simplifying continuum assumptions on the particle motion have not been made in a discharge chamber model. Because of the long mean free paths of the particles in the discharge chamber continuum models are questionable. The PIC-MCC model developed in this work tracks following particles: neutrals, singly charged ions, doubly charged ions, secondary electrons, and primary electrons. The trajectories of these particles are determined using the Newton-Lorentz's equation of motion including the effects of magnetic and electric fields. Particle collisions are determined using an MCC statistical technique. A large number of collision processes and particle wall interactions are included in the model. The magnetic fields produced by the permanent magnets are determined using Maxwell's equations. The electric fields are determined using an approximate input electric field coupled with a dynamic determination of the electric fields caused by the charged particles. In this work inclusion of the dynamic electric field calculation is made possible by using an inflated plasma permittivity value in the Poisson solver. This allows dynamic electric field calculation with minimal computational requirements in terms of both computer memory and run time. In addition, a number of other numerical procedures such as parallel processing have been implemented to shorten the computational time. The primary results are those modeling the discharge chamber of NASA's NSTAR ion engine at its full operating power. Convergence of numerical results such as total number of particles inside the discharge chamber, average energy of the plasma particles, discharge current, beam current and beam efficiency are obtained. Steady state results for
Baurle, R. A.
2015-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit
Hybrid Modeling and Simulation of Automotive Supply Chain Network
Directory of Open Access Journals (Sweden)
Wen Wang
2013-07-01
Full Text Available According to the operation of automotive supply chain and the features of various simulation methods, we create and simulate a automotive supply chain network model with the core enterprise of two vehicle manufacturers, consisting of several parts suppliers, vehicle distributors and logistics service providers. On this basis of a conceptual model including the establishment of enterprise layer, business layer and operation layer, we establish a detailed model of the network system according to the network structure of automotive supply chain, the operation process and the internal business process of core enterprises; then we use System Dynamics (SD, Discrete Event Simulation (DES and Agent Based Modeling (ABM to describe the operating state of each node in the network model. We execute and analyze the simulation model of the whole network system described by Anylogic, using the results of the distributors’ inventory, inventory cost and customer’s satisfaction to prove the effectiveness of the model.
Cook, James; Chapman, Sandra; Dendy, Richard
2010-11-01
Particle-in-cell (PIC) simulations of fusion-born protons in deuterium plasmas demonstrate a key alpha channeling phenomenon for tokamak fusion plasmas. We focus on obliquely propagating modes at the plasma edge, excited by centrally born fusion products on banana orbits, known to be responsible for observations of ion cyclotron emission in JET and TFTR. A fully self-consistent electromagnetic 1D3V PIC code evolves a ring-beam distribution of 3MeV protons in a 10keV thermal deuterium-electron plasma with realistic mass ratio. A collective instability occurs, giving rise to electromagnetic field activity in the lower hybrid range of frequencies. Waves spontaneously excited by this lower hybrid drift instability undergo Landau damping on resonant electrons, drawing out an asymmetric tail in the distribution of electron parallel velocities, which constitutes a net current. These simulations demonstrate a key building block of some alpha channeling scenarios: the direct collisionless coupling of fusion product energy into a form which can help sustain the equilibrium of the tokamak.
Directory of Open Access Journals (Sweden)
M. J. Kalaee
2010-06-01
Full Text Available In order to clarify the role of the mode conversion process in the generation mechanism of LO-mode waves in the equatorial region of the plasmasphere, we have investigated the linear mode conversion process among upper-hybrid-resonance (UHR-mode, Z-mode and LO-mode waves by a numerical simulation solving Maxwell's equations and the equation of motion of a cold electron fluid. The wave coupling process occurring in the cold magnetized plasma are examined in detail. In order to give a realistic initial plasma condition in the numerical experiments, we use initial parameters inferred from observation data obtained around the generation region of LO-mode waves obtained by the Akebono satellite. A density gradient is estimated from the observed UHR frequency, and wave normal angles are estimated from the dispersion relation of cold plasma by comparing observed wave electric fields. Then, we perform numerical experiments of mode conversion processes using the density gradient of background plasma and the wave normal angle of incident upper hybrid mode waves determined from the observation results. We found that the characteristics of reproduced LO-mode waves in each simulation run are consistent with observations.
Goh, Yang Miang; Askar Ali, Mohamed Jawad
2016-08-01
One of the key challenges in improving construction safety and health is the management of safety behavior. From a system point of view, workers work unsafely due to system level issues such as poor safety culture, excessive production pressure, inadequate allocation of resources and time and lack of training. These systemic issues should be eradicated or minimized during planning. However, there is a lack of detailed planning tools to help managers assess the impact of their upstream decisions on worker safety behavior. Even though simulation had been used in construction planning, the review conducted in this study showed that construction safety management research had not been exploiting the potential of simulation techniques. Thus, a hybrid simulation framework is proposed to facilitate integration of safety management considerations into construction activity simulation. The hybrid framework consists of discrete event simulation (DES) as the core, but heterogeneous, interactive and intelligent (able to make decisions) agents replace traditional entities and resources. In addition, some of the cognitive processes and physiological aspects of agents are captured using system dynamics (SD) approach. The combination of DES, agent-based simulation (ABS) and SD allows a more "natural" representation of the complex dynamics in construction activities. The proposed hybrid framework was demonstrated using a hypothetical case study. In addition, due to the lack of application of factorial experiment approach in safety management simulation, the case study demonstrated sensitivity analysis and factorial experiment to guide future research.
Existence of Global Weak Solutions to a Hybrid Vlasov-MHD Model for Magnetized Plasmas
Cheng, Bin; Tronci, Cesare
2016-01-01
We prove the global-in-time existence of large-data finite-energy weak solutions to an incompressible hybrid Vlasov-magnetohydrodynamic model in three space dimensions. The model couples three essential ingredients of magnetized plasmas: a transport equation for the probability density function, which models energetic rarefied particles of one species; the incompressible Navier--Stokes system for the bulk fluid; and a parabolic evolution equation, involving magnetic diffusivity, for the magnetic field. The physical derivation of our model is given. It is also shown that the weak solution, whose existence is established, has nonincreasing total energy, and that it satisfies a number of physically relevant properties, including conservation of the total momentum, conservation of the total mass, and nonnegativity of the probability density function for the energetic particles. The proof is based on a one-level approximation scheme, which is carefully devised to avoid increase of the total energy for the sequence...
Properties of the ion-ion hybrid resonator in fusion plasmas
Energy Technology Data Exchange (ETDEWEB)
Morales, George J. [Univ. of California, Los Angeles, CA (United States)
2015-10-06
The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts between experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.
Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys
Directory of Open Access Journals (Sweden)
Lee Hee-Keun
2015-07-01
Full Text Available Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG hybrid (PMH welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.
Implementations of mesh refinement schemes for particle-in-cell plasma simulations
Energy Technology Data Exchange (ETDEWEB)
Vay, J.-L.; Colella, P.; Friedman, A.; Grote, D.P.; McCorquodale, P.; Serafini, D.B.
2003-10-20
Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations and present two implementations in more detail, with examples.
Simulation of beam-induced plasma for the mitigation of beam-beam effects
Energy Technology Data Exchange (ETDEWEB)
Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.
2015-05-03
One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.
Thermodynamic Simulation of a Hybrid Pneumatic-Combustion Engine Concept
Directory of Open Access Journals (Sweden)
Yann Chamaillard
2002-03-01
Full Text Available Although internal combustion engines display high overall maximum global efficiencies, this potential cannot be fully exploited in automotive applications: in real conditions, the average engine load (and thus efficiency is quite low and the kinetic energy during a braking phase is lost. This work presents a new hybrid pneumatic-combustion engine and the associated thermodynamic cycles, which is able to store energy in the form of compressed air. This energy can be issued from a braking phase or from a combustion phase at low power. The potential energy from the air tank can then be restored to start the engine, or charge the engine at full load. The regenerative breaking and the suppression of the idling phases could provide an improvement in terms of fuel economy as high as 15% or more if combined with engine downsizing.
Di Cintio, Pierfrancesco; Lepri, Stefano; Ciraolo, Guido
2016-01-01
By means of hybrid MPC-PIC simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled 2D and quasi 1D plasmas. We find that the predictions of Nonlinear Fluctuating Hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for two dimensional systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.
Effects of Hybrid Voltages on Oxide Formation on 6061 Al-alloys During Plasma Electrolytic Oxidation
Institute of Scientific and Technical Information of China (English)
Kai Wang; Bon Heun Koo; Chan Gyu Lee; Young Joo Kim; Sunghun Lee; Eungsun Byon
2009-01-01
Plasma electrolytic oxidation (PEO) is carried out on 6061 Al-alloys in a weak alkaline electrolyte containing NaOH, Na_2SiO_3 and NaCl. Centered on the correlation of composition and structure, analyses by means of X-ray diffration (XRD), scanning electron microscope (SEM) and energy dispersive spectrometry (EDS) are conducted on the specimens, which have been PEO-treated under hybrid voltages of different direct current (DC) values (140-280 V) with constant alternate current (AC) amplitude (200 V). Attention is paid to the composition, properties and growth mechanism of oxide layers formed with hybrid voltages. Moreover, the main effects of DC value are discussed. Ceramic layers with a double-layer structure which combines hard outer and soft inner layers are found to be consist of α-Al_2O_3, γ-Al_2O_3 and mullite. With the DC values increasing, the growth of the ceramic layers tends to have increasingly obvious three-stage feature.
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics
Energy Technology Data Exchange (ETDEWEB)
Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca [Department of Mathematics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.
Hybrid particle-field molecular dynamics simulations for dense polymer systems.
Milano, Giuseppe; Kawakatsu, Toshihiro
2009-06-07
We propose a theoretical scheme for a hybrid simulation technique where self-consistent field theory and molecular dynamics simulation are combined (MD-SCF). We describe the detail of the main implementation issues on the evaluation of a smooth three-dimensional spatial density distribution and its special gradient based on the positions of particles. The treatments of our multiscale model system on an atomic scale or on a specific coarse-grained scale are carefully discussed. We perform a series of test simulations on this hybrid model system and compare the structural correlations on the atomic scale with those of classical MD simulations. The results are very encouraging and open a way to an efficient strategy that possess the main advantages common to the SCF and the atomistic approaches, while avoiding the disadvantages of each of the treatments.
Modeling and Simulation of Renewable Hybrid Power System using Matlab Simulink Environment
Directory of Open Access Journals (Sweden)
Cristian Dragoş Dumitru
2010-12-01
Full Text Available The paper presents the modeling of a solar-wind-hydroelectric hybrid system in Matlab/Simulink environment. The application is useful for analysis and simulation of a real hybrid solar-wind-hydroelectric system connected to a public grid. Application is built on modular architecture to facilitate easy study of each component module influence. Blocks like wind model, solar model, hydroelectric model, energy conversion and load are implemented and the results of simulation are also presented. As an example, one of the most important studies is the behavior of hybrid system which allows employing renewable and variable in time energy sources while providing a continuous supply. Application represents a useful tool in research activity and also in teaching
Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems
Energy Technology Data Exchange (ETDEWEB)
Roberts, R.A. (U. of California, Irvine, CA); Brouwer, J. (U. of California, Irvine, CA); Liese, E.A.; Gemmen, R.S.
2006-04-01
Hybrid fuel cell/gas turbine systems provide an efficient means of producing electricity from fossil fuels with ultra low emissions. However, there are many significant challenges involved in integrating the fuel cell with the gas turbine and other components of this type of system. The fuel cell and the gas turbine must maintain efficient operation and electricity production while protecting equipment during perturbations that may occur when the system is connected to the utility grid or in stand-alone mode. This paper presents recent dynamic simulation results from two laboratories focused on developing tools to aid in the design and dynamic analyses of hybrid fuel cell systems. The simulation results present the response of a carbonate fuel cell/gas turbine, or molten carbonate fuel cell/gas turbine, (MCFC/GT) hybrid system to a load demand perturbation. Initial results suggest that creative control strategies will be needed to ensure a flexible system with wide turndown and robust dynamic operation.
Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics.
Petsev, Nikolai D; Leal, L Gary; Shell, M Scott
2015-01-28
We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.
Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics
Energy Technology Data Exchange (ETDEWEB)
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott [Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106-5080 (United States)
2015-01-28
We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.
Energy Technology Data Exchange (ETDEWEB)
Surucu, Seda [Department of Metallurgical and Materials Engineering, Atilim University, Incek, Golbasi, 06836, Ankara (Turkey); Masur, Kai [Leibniz Institute for Plasma Science and Technology (Germany); Turkoglu Sasmazel, Hilal, E-mail: hilal.sasmazel@atilim.edu.tr [Department of Metallurgical and Materials Engineering, Atilim University, Incek, Golbasi, 06836, Ankara (Turkey); Von Woedtke, Thomas; Weltmann, Klaus Dieter [Leibniz Institute for Plasma Science and Technology (Germany)
2016-11-01
Highlights: • Electrospun PCL/chitosan/PCL scaffolds introduced to the literature by us were modified with atmospheric pressure plasma jets. • Plasma was fed into the system with different gas flow rates, time and distances. • Topographical and functional changes were examined by various characterization methods. • Optimum plasma treatment parameters for enhanced topography and functionality were determined. • Electrospun hybrid plasma surface modified samples showed the increased biocompatibility performance of L929 fibroblast cells. - Abstract: This paper reports Ar gas, Ar + O{sub 2}, Ar + O{sub 2} + N{sub 2} gas mixtures and dry air plasma modifications by atmospheric pressure argon driven kINPen and air driven Diener (PlasmaBeam) plasma jets to alter surface properties of three dimensional (3D), electrospun PCL/Chitosan/PCL layer by layer hybrid scaffolds to improve human fibroblast (MRC5) cell attachment and growth. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), X-Ray Photoelectron spectroscopy (XPS) analysis. The results showed that the plasma modification carried out under dry air and Ar + O{sub 2} + N{sub 2} gas mixtures were altered effectively the nanotopography and the functionality of the material surfaces. It was found that the samples treated with Ar + O{sub 2} + N{sub 2} gas mixtures for 1 min and dry air for 9 min have better hydrophilicity 78.9° ± 1.0 and 75.6° ± 0.1, respectively compared to the untreated samples (126.5°). Biocompatibility performance of the scaffolds was determined with alamarBlue (aB) assay and MTT assay methods, Giemsa staining, fluorescence microscope, confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analyses. The results showed that plasma treated samples increased the hydrophilicity and oxygen functionality and topography of the surfaces significantly, thus affecting the cell viability and proliferation on
Energy Technology Data Exchange (ETDEWEB)
Keiter, E.R.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering
1997-12-31
Numerical Modeling of low pressure plasma reactors is subject to numerous time step constraints, and among the most restrictive of these is the dielectric relaxation time. In recent years, semi-implicit flux-correction techniques have allowed plasma modelers to loosen the dielectric relaxation time step restriction. However, since these simulations do solve a form of Poisson`s equation, they still have a restriction on time step based on a modified, albeit less restrictive, dielectric relaxation time. For some parameter spaces this is acceptable, but for very large scale simulations (for example in three dimensions) and for simulations of systems having long time scales, obtaining a longer time step is crucial. Using a generalization of a technique already presented, the authors present a method for obtaining an approximate electrostatic potential which has no dielectric relaxation time restriction. Implementation is of comparable difficulty to that of a conventional Poisson`s equation, and is no more computationally intensive. The module is implemented within a large, self-consistent hybrid plasma equipment model (HPEM). A rearranged continuity equation is solved, and charge neutrality is assumed. A comparison to the HPEM running with Poisson`s equation is presented, for both two and three dimensions, and for electropositive and electronegative gases.
A multi-scale code for flexible hybrid simulations
Leukkunen, L; Lopez-Acevedo, O
2012-01-01
Multi-scale computer simulations combine the computationally efficient classical algorithms with more expensive but also more accurate ab-initio quantum mechanical algorithms. This work describes one implementation of multi-scale computations using the Atomistic Simulation Environment (ASE). This implementation can mix classical codes like LAMMPS and the Density Functional Theory-based GPAW. Any combination of codes linked via the ASE interface however can be mixed. We also introduce a framework to easily add classical force fields calculators for ASE using LAMMPS, which also allows harnessing the full performance of classical-only molecular dynamics. Our work makes it possible to combine different simulation codes, quantum mechanical or classical, with great ease and minimal coding effort.
Accelerated stochastic and hybrid methods for spatial simulations of reaction-diffusion systems
Rossinelli, D; Bayati, B; Koumoutsakos, P.
2008-01-01
Spatial distributions characterize the evolution of reaction-diffusion models of several physical, chemical, and biological systems. We present two novel algorithms for the efficient simulation of these models: Spatial т-Leaping (Sт -Leaping), employing a unified acceleration of the stochastic simulation of reaction and diffusion, and Hybrid т-Leaping (Hт-Leaping), combining a deterministic diffusion approximation with a т-Leaping acceleration of the stochastic reactions. The algorithms are v...
An atomistic-continuum hybrid simulation of fluid flows over superhydrophobic surfaces
Li, Qiang; He, Guo-Wei
2009-01-01
Recent experiments have found that slip length could be as large as on the order of 1 μm for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption i...
Hybrid simulations : combining atomistic and coarse-grained force fields using virtual sites
Rzepiela, Andrzej J.; Louhivuori, Martti; Peter, Christine; Marrink, Siewert J.
2011-01-01
Hybrid simulations, in which part of the system is represented at atomic resolution and the remaining part at a reduced, coarse-grained, level offer a powerful way to combine the accuracy associated with the atomistic force fields to the sampling speed obtained with coarse-grained (CG) potentials. I
Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation
Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.
2016-10-01
The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.
Kartsan, I. N.; Tyapkin, V. N.; Dmitriev, D. D.; Goncharov, A. E.; Zelenkov, P. V.; Kovalev, I. V.
2016-11-01
This paper considers the simulation of adaptive nulling mechanism patterns in hybrid reflector antenna systems with a 19-element feed element, in which the radiation pattern is formed as a cluster. Incidents of broadband and narrowband interference are studied in the article.
Hybrid Large-Eddy/Reynolds-Averaged Simulation of a Supersonic Cavity Using VULCAN
Quinlan, Jesse; McDaniel, James; Baurle, Robert A.
2013-01-01
Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters a three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and the effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case and indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. Simulations are performed with and without inflow turbulence recycling on the coarse grid to isolate the effect of the recycling procedure, which is demonstrably critical to capturing the relevant shear layer dynamics. Shock sensor formulations of Ducros and Larsson are found to predict mean flow statistics equally well.
Energy Technology Data Exchange (ETDEWEB)
Ohno, N. [Nagoya Univ. (Japan). Dept. of Energy Eng. and Sci.; Mori, S. [Nagoya Univ. (Japan). Dept. of Energy Eng. and Sci.; Ezumi, N. [Nagoya Univ. (Japan). Dept. of Energy Eng. and Sci.; Takagi, M. [Nagoya Univ. (Japan). Dept. of Energy Eng. and Sci.; Takamura, S. [Nagoya Univ. (Japan). Dept. of Energy Eng. and Sci.; Suzuki, H. [National Inst. for Fusion Science, Nagoya (Japan)
1996-08-01
It is one of the most critical requirements to reduce the heat load to the divertor plate in the next generation fusion devices such as ITER, intended to have a long pulse or a steady state operation. Dynamic gas target divertor as well as high recycling divertor is one of the most important candidates for ITER. Recently a detached plasma has been observed in experimental fusion devices. Knowledge of the basic physics of the plasma detachment is required for any application of the gas target and high recycling divertor to the next generation experimental reactors. Linear plasma divertor simulators with high heat flux plasmas are used to investigate the plasma detachment because its good accessibility for comprehensive measurements and simple geometry leads a deeper understanding of the plasma detachment by comparing between simulation predictions and the experimental results. (orig.)
Numerical Simulations of Collisionless Shock Formation in Merging Plasma Jet Experiments
2013-06-01
experiment [5], which uses counter-propagating hydrogen plasma jets formed and launched by plasma railguns [11] mounted on opposite sides of a...hydrogen plasma jet propagating from the railgun nozzle to the center of the chamber in order to connect the plasma jet parameters at the railgun exit...the jet at the railgun exit and center of the chamber (z = 0 cm) are given in Table 1. So this simulation determines the approximate parameter regime
Žura Žaja, Ivona; Samardžija, Marko; Vince, Silvijo; Vilić, Marinko; Majić-Balić, Ivanka; Đuričić, Dražen; Milinković-Tur, Suzana
2016-07-01
The objectives of this study were to determine the influence of breed and hybrid genetic traits of boars on lipid and protein concentrations and antioxidative system variables in seminal plasma (SP) and spermatozoa and their correlations with semen quality variables. Semen samples from 27 boars: Swedish Landraces (SL), German Landraces (GL), Large Whites (LW), Pietrains (P) and Pig Improvement Company hybrids (PIC-hybrid), aged from 1.5 to 3 years old, were collected. SP was spectrophotometrically analyzed to determine total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triacylglycerol (TAG), total protein (TP), albumin, and zinc concentrations. The antioxidative system in SP and spermatozoa was established spectrophotometrically by determining total antioxidative status (TAS), total superoxide dismutase (TSOD) and glutathione peroxidase (GSH-Px) parameters, as well as copper-zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) activity in spermatozoa. The hybrid boars had higher (Pspermatozoa of: TAS and CuZnSOD than SL; TSOD and GSH-Px than SL and P; and MnSOD than SL and LW. Differences in SP and spermatozoa antioxidative system variables and the significant differences in SP protein and lipid variables exist among boars of different breeds and hybrid. Novel data and observed differences in semen variables among boar breeds and hybrids and their correlations with semen quality parameters in this study could contribute to better assessment of boar semen quality.
Modeling and Simulation for Hybrid of PV-Wind system
Directory of Open Access Journals (Sweden)
Maged N. F. Nashed
2015-04-01
Full Text Available The rising consumption rate of fossil fuels causes a significant pollution impact on the atmosphere, unwanted greenhouse gases has drawn worldwide attention towards renewable energy sources. Moreover, in recent year’s generation of electricity using the different types of renewable sources are specifically evaluated in the economical performance of the overall equipment. This paper focuses on the modeling and analysis of a Standalone Photovoltaic (PV- wind energy hybrid generation system under different conditions using MATLAB. The proposed system consists of two renewable sources i.e. wind and solar energy. Modeling of PV array and wind turbine is explained. The wind subsystem is equipped of an induction generator. In photovoltaic system, the variable DC output voltage is controlled using buck-boost converter for the MPPT. These two systems are combined to operate in parallel and the common bus collects the total energy from the wind and PV systems are uses it to the load and with change the load
Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi
2016-01-01
Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.
Hybrid airfoil design methods for full-scale ice accretion simulation
Saeed, Farooq
The objective of this thesis is to develop a design method together with a design philosophy that allows the design of "subscale" or "hybrid" airfoils that simulate fullscale ice accretions. These subscale or hybrid airfoils have full-scale leading edges and redesigned aft-sections. A preliminary study to help develop a design philosophy for the design of hybrid airfoils showed that hybrid airfoils could be designed to simulate full-scale airfoil droplet-impingement characteristics and, therefore, ice accretion. The study showed that the primary objective in such a design should be to determine the aft section profile that provides the circulation necessary for simulating full-scale airfoil droplet-impingement characteristics. The outcome of the study, therefore, reveals circulation control as the main design variable. To best utilize this fact, this thesis describes two innovative airfoil design methods for the design of hybrid airfoils. Of the two design methods, one uses a conventional flap system while the other only suggests the use of boundary-layer control through slot-suction on the airfoil upper surface as a possible alternative for circulation control. The formulation of each of the two design methods is described in detail, and the results from each method are validated using wind-tunnel test data. The thesis demonstrates the capabilities of each method with the help of specific design examples highlighting their application potential. In particular, the flap-system based hybrid airfoil design method is used to demonstrate the design of a half-scale hybrid model of a full-scale airfoil that simulates full-scale ice accretion at both the design and off-design conditions. The full-scale airfoil used is representative of a scaled modern business-jet main wing section. The study suggests some useful advantages of using hybrid airfoils as opposed to full-scale airfoils for a better understanding of the ice accretion process and the related issues. Results
Chang, C. L.; Lipatov, A. S.; Drobot, A. T.; Papadopoulos, K.; Satya-Narayana, P.
1994-01-01
The dynamic response of a magnetized collisionless plasma to an externally driven, finite size, sudden switch-on current source across the magnetic field has been studied using a two dimensional hybrid code. It was found that the predominant plasma response was the excitation of whistler waves and the formation of current closure by induced currents in the plasma. The results show that the current closure path consists of: (a) two antiparallel field-aligned current channels at the end of the imposed current sheet; and (b) a cross-field current region connecting these channels. The formation of the current closure path occured in the whistler timescale much shorter than that of MHD and the closure region expanded continuously in time. The current closure process was accompanied by significant energy loss due to whistler radiation.
Recent advances in numerical simulation of space-plasma-physics problems
Birmingham, T. J.
1983-01-01
Computer simulations have become an increasingly popular, important and insightful tool for studying space plasmas. This review describes MHD and particle simulations, both of which treat the plasma and the electromagnetic field in which it moves in a self consistent fashion but on drastically different spatial and temporal scales. The complementary roles of simulation, observations and theory are stressed. Several examples of simulations being carried out in the area of magnetospheric plasma physics are described to illustrate the power, potential and limitations of the approach.
Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac
2015-07-01
Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10months. The hybrid bioreactors were operated in an aerobic-anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia-nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75d and 60d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4L/kgvs and 113.2L/kgvs. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.
Formation of Compact Clusters from High Resolution Hybrid Cosmological Simulations
Richardson, Mark L A; Gray, William J
2013-01-01
The early Universe hosted a large population of small dark matter `minihalos' that were too small to cool and form stars on their own. These existed as static objects around larger galaxies until acted upon by some outside influence. Outflows, which have been observed around a variety of galaxies, can provide this influence in such a way as to collapse, rather than disperse the minihalo gas. Gray & Scannapieco performed an investigation in which idealized spherically-symmetric minihalos were struck by enriched outflows. Here we perform high-resolution cosmological simulations that form realistic minihalos, which we then extract to perform a large suite of simulations of outflow-minihalo interactions including non-equilibrium chemical reactions. In all models, the shocked minihalo forms molecules through non-equilibrium reactions, and then cools to form dense chemically homogenous clumps of star-forming gas. The formation of these high-redshift clusters will be observable with the next generation of telesc...
2005-01-01
Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications
Energy Technology Data Exchange (ETDEWEB)
Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn
2015-07-15
Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.
A hybrid local/non-local framework for the simulation of damage and fracture
Azdoud, Yan
2014-01-01
Recent advances in non-local continuum models, notably peridynamics, have spurred a paradigm shift in solid mechanics simulation by allowing accurate mathematical representation of singularities and discontinuities. This doctoral work attempts to extend the use of this theory to a community more familiar with local continuum models. In this communication, a coupling strategy - the morphing method -, which bridges local and non-local models, is presented. This thesis employs the morphing method to ease use of the non-local model to represent problems with failure-induced discontinuities. First, we give a quick review of strategies for the simulation of discrete degradation, and suggest a hybrid local/non-local alternative. Second, we present the technical concepts involved in the morphing method and evaluate the quality of the coupling. Third, we develop a numerical tool for the simulation of the hybrid model for fracture and damage and demonstrate its capabilities on numerical model examples
Modeling and Simulation of Metallurgical Process Based on Hybrid Petri Net
Ren, Yujuan; Bao, Hong
2016-11-01
In order to achieve the goals of energy saving and emission reduction of iron and steel enterprises, an increasing number of modeling and simulation technologies are used to research and analyse metallurgical production process. In this paper, the basic principle of Hybrid Petri net is used to model and analyse the Metallurgical Process. Firstly, the definition of Hybrid Petri Net System of Metallurgical Process (MPHPNS) and its modeling theory are proposed. Secondly, the model of MPHPNS based on material flow is constructed. The dynamic flow of materials and the real-time change of each technological state in metallurgical process are simulated vividly by using this model. The simulation process can implement interaction between the continuous event dynamic system and the discrete event dynamic system at the same level, and play a positive role in the production decision.
Chiadamrong, N.; Piyathanavong, V.
2017-04-01
Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.
Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST
Energy Technology Data Exchange (ETDEWEB)
Xu, X Q
2007-11-09
We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. With our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.
Gyrokinetic simulations predict anomalous poloidal rotation in tokamak plasmas
Dif-Pradalier, Guilhem; Grandgirard, Virginie; Sarazin, Yanick; Garbet, Xavier; Ghendrih, Phillippe; Angelino, Paolo
2008-11-01
First-principle based collisionless gyrokinetic theory consensually provides today's deepest insight on turbulence-related problems in plasma physics. Conversely, neoclassical theory describes the effects of binary Coulomb collisions in a toroidal and inhomogeneous magnetic geometry and its consequences on particle trapping. The interplay between turbulence and collisions is a subject of great current focus for first-principle modeling since recent evidences have started to emphasise its relevance for the onset and the control of enhanced confinement regimes in the next-generation devices like Iter. A finite differences Fokker-Planck ion-ion collision operator is implemented in the full-f and global GYSELA code and has been thoroughly benchmarked in neoclassical regimes. Two types of simulations are compared, either purely neoclassical or turbulent including neoclassical effects. In each case, three different values of collisionality in the banana regime are investigated. Preliminary results show an enhancement of about 30% of the poloidal rotation of the main ions (Z=1) in the turbulent regime as compared to its neoclassical value. In all cases the radial force balance equation is satisfied within a few percent. Most of this increase comes from the radial electric field.
Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system
Energy Technology Data Exchange (ETDEWEB)
Wang, Shaojie [ClimateMaster, Inc., Oklahoma City, OK (United States); Ellis, Dan [ClimateMaster, Inc., Oklahoma City, OK (United States)
2014-05-29
The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.
Development of a hybrid simulation course to reduce central line infections.
Clapper, Timothy
2012-05-01
Clinical educators are continually looking at ways to effectively deliver large amounts of information to their learners. Whether as a part of pre-course work or as a separate phase of training, there are numerous benefits to making information available to learners before conducting sessions that allow the learners to practice the skills. Hybrid courses consist of a mixture of online and on-site instruction and offer a viable option for clinical educators to consider, especially when their intended audience consists of thousands of learners. This article describes the experiences of a medical simulation center and the use of a hybrid curriculum technique to reduce central line infections.
Wen, De-Qi; Liu, Wei; Gao, Fei; Lieberman, M. A.; Wang, You-Nian
2016-08-01
A hybrid model, i.e. a global model coupled bidirectionally with a parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate an inductively coupled discharge with a bias source. This hybrid model can self-consistently reveal the interaction between the bulk plasma and the radio frequency (rf) bias sheath. More specifically, the plasma parameters affecting characteristics of rf bias sheath (sheath length and self-bias) are calculated by a global model and the effect of the rf bias sheath on the bulk plasma is determined by the voltage drop of the rf bias sheath. Moreover, specific numbers of ions are tracked in the rf bias sheath and ultimately the ion energy distribution function (IEDF) incident on the bias electrode is obtained. To validate this model, both bulk plasma density and IEDF on the bias electrode in an argon discharge are compared with experimental measurements, and a good agreement is obtained. The advantage of this model is that it can quickly calculate the bulk plasma density and IEDF on the bias electrode, which are of practical interest in industrial plasma processing, and the model could be easily extended to serve for industrial gases.
Energy Technology Data Exchange (ETDEWEB)
NONE
1999-03-01
The R and D program was implemented for a hybrid pulse plasma coating system, where organometallic gases as the feed gases were selected, and methods for feeding them and treating the exhaust gases to remove organic metals were studied, as the preliminary steps for the pulse introduction tests. The tests of combining an rf plasma with microwaves and pulse plasma generation have been started. The power source characteristics, e.g., pulse width, voltage and current, were analyzed, and high-voltage pulse voltage application tests were conducted, in order to grasp the power source characteristics related to the pulse voltage application. Generation of high-density plasma has been confirmed by the tests with microwaves absorbed by an rf plasma, and the plasma density measurement has been started using the single probe and double probe methods. It is also confirmed that a pulse voltage can be applied to a high-density plasma. A plasma source type ion injector (PSII) has been made on a trial basis, to collect the data for the injector. (NEDO).
Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment
Baurle, Robert A.; Edwards, Jack R.
2010-01-01
Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure
Uccellini, L. W.; Johnson, D. R.; Schlesinger, R. E.
1979-01-01
A solution is presented for matching boundary conditions across the interface of an isentropic and sigma coordinate hybrid model. A hybrid model based on the flux form of the primitive equations is developed which allows direct vertical exchange between the model domains, satisfies conservation principles with respect to transport processes, and maintains a smooth transition across the interface without need for artificial adjustment or parameterization schemes. The initial hybrid model simulations of a jet streak propagating in a zonal channel are used to test the feasibility of the hybrid model approach. High efficiency of the hybrid model is demonstrated.
Plasma simulations of emission line regions in high energy environments
Richardson, Chris T.
This dissertation focuses on understanding two different, but in each case extreme, astrophysical environments: the Crab Nebula and emission line galaxies. These relatively local objects are well constrained by observations and are test cases of phenomena seen at high-z where detailed observations are rare. The tool used to study these objects is the plasma simulation code known as Cloudy. The introduction provides a brief summary of relevant physical concepts in nebular astrophysics and presents the basic features and assumptions of Cloudy. The first object investigated with Cloudy, the Crab Nebula, is a nearby supernova remnant that previously has been subject to photoionization modeling to reproduce the ionized emission seen in the nebula's filamentary structure. However, there are still several unanswered questions: (1) What excites the H2 emitting gas? (2) How much mass is in the molecular component? (3) How did the H2 form? (4) What is nature of the dust grains? A large suite of observations including long slit optical and NIR spectra over ionized, neutral and molecular gas in addition to HST and NIR ground based images constrain a particularly bright region of H2 emission, Knot 51, which exhibits a high excitation temperature of ˜3000 K. Simulations of K51 revealed that only a trace amount of H2 is needed to reproduce the observed emission and that H2 forms through an uncommon nebular process known as associative detachment. The final chapters of this dissertation focus on interpreting the narrow line region (NLR) in low-z emission line galaxies selected by a novel technique known as mean field independent component analysis (MFICA). A mixture of starlight and radiation from an AGN excites the gas present in galaxies. MFICA separates galaxies over a wide range of ionization into subsets of pure AGN and pure star forming galaxies allowing simulations to reveal the properties responsible for their observed variation in ionization. Emission line ratios can
Yeliseyev, Yu. N.
2014-05-01
The spectrum of eigenmodes of a waveguide completely filled with a cold electron plasma containing a small admixture of ions produced due to electron-impact ionization of background gas atoms is calculated numerically. The calculations were performed within the entire range of allowable values of the radial electric and longitudinal magnetic fields for both magnetized and unmagnetized ions by using the earlier derived nonlocal dispersion relation [Plasma Phys. Rep. 36, 563 (2010)]. The spectrum consists of three families of electron modes with frequencies equal to the Doppler-shifted upper and lower hybrid frequencies and modified ion cyclotron (MIC) modes. When the Doppler shift caused by electron rotation in the crossed electric and magnetic fields compensates for the hybrid frequency, the electron modes become low-frequency modes and interact with the ion modes. For m = 1, only the lower hybrid modes can be low-frequency ones, whereas at m ≥ 2, both lower and upper hybrid modes can be low-frequency ones. The spectrum of modes having the azimuthal number m = 2 is thoroughly analyzed. It is shown that, in this case, the lower hybrid modes behave similar to the m = 1 modes. The dispersion curves of the upper hybrid modes intersect with all harmonics of the MIC frequency (positive, negative, and zero) and are unstable in the vicinities of the intersections. The maximum value of the instability growth rate is several times higher than the ion plasma frequency. The MIC modes are unstable within a wide range of the field strengths, and their growth rates are two orders of magnitude slower. Instabilities are caused by the relative motion of electrons and ions (the transverse current) and the anisotropy of the ion distribution function.
Effect of plasma processing reactor circuitry on plasma characteristics
Energy Technology Data Exchange (ETDEWEB)
Rauf, S.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering
1997-12-31
It is well known that external circuitry greatly influences the performance of plasma processing reactors. Simulation of external circuits difficult since the time in which the external circuit attains the steady-state is several orders of magnitude longer than typical plasma simulation time scales. In this paper, the authors present a technique to simulate the external circuit concurrently with the plasma, and implement it into the Hybrid Plasma Equipment Model (HPEM). The resulting model is used to investigate the influence of external circuitry on plasma behavior.
Institute of Scientific and Technical Information of China (English)
DUANMU Gang; ZHAO Changming; LIANG Chao; XU Yuemin
2014-01-01
This paper focuses on the application of plasma as wireless antenna.In order to reveal the radiation characteristics of column plasma antenna,we chose the finite-difference timedomain (FDTD) numerical analysis method to simulate radiation impedance and efficiencies of each channel for a few sets of plasma densities and plasma collision frequencies.Simulation results demonstrate that a plasma antenna shares similar characteristics with a metallic antenna in radiation impedance and efficiency of each channel when an appropriate setting is adopted.Unlike a metallic antenna,a plasma antenna is capable of realizing such functions as dynamic reconfiguration,digital control and dual-channel communication.Thus it is possible to carry out dual-channel communication by plasma antenna,indicating a new path for modern intelligent communication.
Laboratory simulation of energetic flows of magnetospheric planetary plasma
Shaikhislamov, I. F.; Posukh, V. G.; Melekhov, A. V.; Boyarintsev, E. L.; Zakharov, Yu P.; Prokopov, P. A.; Ponomarenko, A. G.
2017-01-01
Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere.
Hybrid Network Simulation for the ATLAS Trigger and Data Acquisition (TDAQ) System
Bonaventura, Matias Alejandro; The ATLAS collaboration; Castro, Rodrigo Daniel; Foguelman, Daniel Jacob
2015-01-01
The poster shows the ongoing research in the ATLAS TDAQ group in collaboration with the University of Buenos Aires in the area of hybrid data network simulations. he Data Network and Processing Cluster filters data in real-time, achieving a rejection factor in the order of 40000x and has real-time latency constrains. The dataflow between the processing units (TPUs) and Readout System (ROS) presents a “TCP Incast”-type network pathology which TCP cannot handle it efficiently. A credits system is in place which limits rate of queries and reduces latency. This large computer network, and the complex dataflow has been modelled and simulated using a PowerDEVS, a DEVS-based simulator. The simulation has been validated and used to produce what-if scenarios in the real network. Network Simulation with Hybrid Flows: Speedups and accuracy, combined • For intensive network traffic, Discrete Event simulation models (packet-level granularity) soon becomes prohibitive: Too high computing demands. • Fluid Flow simul...
Modelling and Simulation of System Dynamics of Hybrid-Driven Precision Press
Institute of Scientific and Technical Information of China (English)
LI Yonggang; ZHANG Ce; MENG Caifang; SONG Yimin
2005-01-01
Different from conventional mechanical systems with single degree of freedom (DOF), the main idea of the system of hybrid-driven precision press is to combine the motion of a constant speed motor with a servomotor via a two-DOF mechanism to provide flexible output. In order to make the feasibility clear, this paper studies theoretically the dynamic characteristics of this hybrid-driven mechanical system.Firstly,the dynamics model of the whole electromechanical system is set up by combining dynamic equations of DC motors with those of two-DOF nine-bar mechanism deduced by the Lagrange′s formula. Secondly through the numerical solution with the fourth Runge-Kutta, computer simulation about the dynamics is done, which shows that the designed and optimized hybrid-driven precision press is feasible in theory. These provide theoretical basis for later experimental research.
Simulations of ionospheric turbulence produced by HF heating near the upper hybrid layer
Najmi, A.; Eliasson, B.; Shao, X.; Milikh, G. M.; Papadopoulos, K.
2016-06-01
Heating of the ionosphere by high-frequency (HF), ordinary (O) mode electromagnetic waves can excite magnetic field-aligned density striations, associated with upper and lower hybrid turbulence and electron heating. We have used Vlasov simulations in one spatial and two velocity dimensions to study the induced turbulence in the presence of striations when the O-mode pump is mode converted to large-amplitude upper hybrid oscillations trapped in a striation. Parametric processes give rise to upper and lower hybrid turbulence, as well as to large amplitude, short wavelength electron Bernstein waves. The latter excite stochastic electron heating when their amplitudes exceed a threshold for stochasticity, leading to a rapid increase of the electron temperature by several thousands of kelvin. The results have relevance for high-latitude heating experiments.
Electric and hybrid electric vehicle study utilizing a time-stepping simulation
Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.
1992-01-01
The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.
Energy Technology Data Exchange (ETDEWEB)
Burdorf, Sven; Bauer, Gottfried Heinrich; Brueggemann, Rudolf [Institut fuer Physik, Carl von Ossietzky Universitaet, Oldenburg (Germany)
2011-07-01
Hybrid solar cells consisting of dye sensitizers incorporated in the i-layer of microcrystalline silicon pin solar cell have been proposed and even recently processed. The dye sensitizer molecules are embedded in the matrix and enhance the overall absorption of the dye-matrix system due to their high absorption coefficient in the spectral range interesting for photovoltaic applications. However, the charge transport properties of dyes are quite poor. Microcrystalline silicon on the other hand has acceptable charge transport properties, while the absorption, given a layer thickness in the micron range, is relatively poor. This contribution investigates the effiency improvement of hybrid dye-microcrystalline solar cells compared to pure microcrystalline solar cells by simulation. The results indicate that, under optimal conditions, the effiency can be improved by more than 20 % compared to a pure microcrystalline silicon cell. The thickness reduction for the hybrid system can be as large as 50 % for the same effiency.
The modeling and simulation of plasma sheath effect on GNSS system
Song, Zhongguo; Liu, Jiangfan; Du, Yongxing; Xi, Xiaoli
2015-11-01
Plasma sheath can potentially degrade global navigation satellite system (GNSS) through signal attenuation as well as phase noise when a hypersonic vehicle reenters the Earth's atmosphere. Modeling and simulation method of GNSS system disturbed by plasma sheath is introduced in this paper by means of electromagnetic wave propagation theory combined with the satellite signal simulation technique. The transmission function of the plasma sheath with stratified model is derived utilizing scattering matrix method. The effects of the plasma sheath on GPS signal reception and positioning performance are examined. Experimental results are presented and discussed, partly supporting the validity of the analytical method proposed.
An Experimental Study of Curved Rectangular Microstrip Antenna in Simulated Plasma Medium
Directory of Open Access Journals (Sweden)
Prem Bhushan Mital
1996-01-01
Full Text Available The effect of plasma on the radiation characteristics of curved rectangular microstrip antenna is studied by means of a new plasma simulation technique. Unlike previous techniques [1,2], a relative index of refraction less than unity is obtained by representing free space with a high dielectric constant sodium chloride powder and plasma by a medium of lower dielectric constant (air. A wide range of dielectric constants of simulated plasma could be possible with this technique using solid dielectrics instead of liquids. It is observed that the resonance frequency is not affected by the curvature of the antenna. However radiation patterns are significantly affected.
Le Picard, Romain; Song, Sang-Heon; Porter, David; Kushner, Mark; Girshick, Steven
2014-10-01
Silicon nanocrystals (SiNCs) are of interest for applications in the photonics, electronics, and biomedical areas. Nonthermal plasmas offer several potential advantages for synthesizing SiNCs. In this work, we have developed a numerical model of a capacitively coupled RF plasma used for the synthesis of SiNCs. The plasma, consisting of silane diluted in argon at a total pressure of about 2 Torr, flows through a narrow quartz tube with two ring electrodes. The numerical model is 2D, assuming axisymmetry. An aerosol sectional model is added to the Hybrid Plasma Equipment Model developed by Kushner and coworkers. The aerosol module solves for aerosol size distributions and size-dependent charge distributions. A detailed chemical kinetic mechanism considering silicon hydride species containing up to 5 Si atoms is used to model particle nucleation and surface growth. The sectional model calculates coagulation, particle transport by electric force, neutral drag and ion drag, and particle charging using orbital motion limited theory. Simulation results are presented for selected operating conditions, and are compared to experimental results. This work was partially supported by the US Dept. of Energy Office of Fusion Energy Science (DE-SC0001939), the US National Science Foundation (CHE-124752), and the Minnesota Supercomputing Institute.
Numerical Simulation of Basic Parameters in Plasma Spray
Institute of Scientific and Technical Information of China (English)
范群波; 王鲁; 王富耻
2004-01-01
On the basis of energy balance in the plasma gas, a new, simplified but effective mathematical model is developed to predict the temperature, velocity and ionization degrees of different species at the torch exit, which can be directly calculated just by inputting the general spraying parameters, such as current, voltage, flow rates of gases, etc. Based on this method, the effects of plasma current and the flow rate of Ar on the basic parameters at the torch exit are discussed. The results show that the temperature, velocity and ionization degrees of gas species will increase with increasing the plasma current; while increasing Ar flow rate can increase the velocity at the exit but decrease the temperature and ionization degrees of plasma species. The method would be helpful to predict the temperature and velocity fields in a plasma jet in future, and direct the practical plasma spray operations.
Development of a software platform for a plug-in hybrid electric vehicle simulator
Karlis, Athanasios; Bibeau, Eric; Zanetel, Paul; Lye, Zelon
2012-03-01
Electricity use for transportation has had limited applications because of battery storage range issues, although many recent successful demonstrations of electric vehicles have been achieved. Renewable biofuels such as biodiesel and bioethanol also contribute only a small percentage of the overall energy mix for mobility. Recent advances in hybrid technologies have significantly increased vehicle efficiencies. More importantly, hybridization now allows a significant reduction in battery capacity requirements compared to pure electric vehicles, allowing electricity to be used in the overall energy mix in the transportation sector. This paper presents an effort made to develop a Plug-in Hybrid Electric Vehicle (PHEV) platform that can act as a comprehensive alternative energy vehicle simulator. Its goal is to help in solving the pressing needs of the transportation sector, both in terms of contributing data to aid policy decisions for reducing fossil fuel use, and to support research in this important area. The Simulator will allow analysing different vehicle configurations, and control strategies with regards to renewable and non-renewable fuel and electricity sources. The simulation platform models the fundamental aspects of PHEV components, that is, process control, heat transfer, chemical reactions, thermodynamics and fluid properties. The outcomes of the Simulator are: (i) determining the optimal combination of fuels and grid electricity use, (ii) performing greenhouse gas calculations based on emerging protocols being developed, and (iii) optimizing the efficient and proper use of renewable energy sources in a carbon constrained world.
Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System
Directory of Open Access Journals (Sweden)
Nannan Dai
2017-02-01
Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used
Quasiclassical Theory and Simulations of Strongly Coupled Plasmas
Ebeling, W.; Ortner, J.
1999-01-01
A survey on the dynamical and thermodynamical properties of plasmas with strong Coulomb interactions in the quasi-classical density-temperature region is given. First the basic theoretical concepts describing nonideality are discussed. The chemical picture is introduced. It is shown that the nonideal plasma subsystem of the free charges has a rather large quasi-classical regime, where the quantum effects yield only corrections to the merely classical dynamics. The plasma of free charges may b...
Kouprienko, D. V.; Altukhov, A. B.; Gurchenko, A. D.; Gusakov, E. Z.; Kantor, M. Yu.; Lashkul, S. I.; Esipov, L. A.
2010-05-01
The dynamics of electron heat transport at improved energy confinement during lower hybrid plasma heating in the FT-2 tokamak was studied experimentally. Evolution of the profiles of the electron temperature and density was thoroughly investigated under conditions of fast variation in the plasma parameters. The energy balance in the electron channel is calculated with the help of the ASTRA code by using the measured plasma parameters. Correlation is revealed between the dynamics of electron heat transport and the behavior of small-scale drift turbulence measured using the enhanced scattering correlation diagnostics. The suppression of heat transfer and turbulence agrees well with the increase in the shear of poloidal plasma rotation calculated from experimental data in the neoclassical approximation.
Plasma Jet Simulations Using a Generalized Ohm's Law
Ebersohn, Frans; Shebalin, John V.; Girimaji, Sharath S.
2012-01-01
Plasma jets are important physical phenomena in astrophysics and plasma propulsion devices. A currently proposed dual jet plasma propulsion device to be used for ISS experiments strongly resembles a coronal loop and further draws a parallel between these physical systems [1]. To study plasma jets we use numerical methods that solve the compressible MHD equations using the generalized Ohm s law [2]. Here, we will discuss the crucial underlying physics of these systems along with the numerical procedures we utilize to study them. Recent results from our numerical experiments will be presented and discussed.
Plasma ignition and steady state simulations of the Linac4 H$^{-}$ ion source
Mattei, S; Yasumoto, M; Hatayama, A; Lettry, J; Grudiev, A
2014-01-01
The RF heating of the plasma in the Linac4 H- ion source has been simulated using an Particle-in-Cell Monte Carlo Collision method (PIC-MCC). This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.
Annenkov, V V; Volchok, E P
2015-01-01
In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in the realistic formulation allowing for the continuous injection of a relativistic electron beam through the plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of electromagnetic plasma eigenmodes, as in the infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.
Annenkov, V. V.; Timofeev, I. V.; Volchok, E. P.
2016-05-01
In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in a realistic formulation allowing for the continuous injection of a relativistic electron beam through a plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of the electromagnetic plasma eigenmodes, as in an infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and the second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.
Energy Technology Data Exchange (ETDEWEB)
Horiuchi, Ritoku; Sato, Tetsuya [Theory and Computer Simulation Center, National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-06-01
Generation of anomalous resistivity and dynamical development of collisionless reconnection in the vicinity of a magnetically neutral sheet are investigated by means of a three-dimensional particle simulation. For no external driving source, two different types of plasma instabilities are excited in the current layer. The lower hybrid drift instability (LHDI) is observed to grow in the periphery of current layer in an early period, while a drift kink instability (DKI) is triggered at the neutral sheet in a late period as a result of the nonlinear deformation of the current sheet by the LHDI. A reconnection electric field grows at the neutral sheet in accordance with the excitation of the DKI. When an external driving field exists, the convective electric field penetrates into the current layer through the particle kinetic effect and collisionless reconnection is triggered by the convective electric field earlier than the DKI is excited. It is also found that the anisotropic ion distribution is formed through the anomalous ion heating by the DKI. (author)
Hybrid simulation models for data-intensive systems
Barisits, Martin
Data-intensive systems are used to access and store massive amounts of data by combining the storage resources of multiple data-centers, usually deployed all over the world, in one system. This enables users to utilize these massive storage capabilities in a simple and efficient way. However, with the growth of these systems it becomes a hard problem to estimate the effects of modifications to the system, such as data placement algorithms or hardware upgrades, and to validate these changes for potential side effects. This thesis addresses the modeling of operational data-intensive systems and presents a novel simulation model which estimates the performance of system operations. The running example used throughout this thesis is the data-intensive system Rucio, which is used as the data man- agement system of the ATLAS experiment at CERN’s Large Hadron Collider. Existing system models in literature are not applicable to data-intensive workflows, as they only consider computational workflows or make assumpti...
Fast garment simulation with aid of hybrid bones
Institute of Scientific and Technical Information of China (English)
吴博; 陈寅; 徐凯; 程志全; 熊岳山
2015-01-01
A data-driven method was proposed to realistically animate garments on human poses in reduced space. Firstly, a gradient based method was extended to generate motion sequences and garments were simulated on the sequences as our training data. Based on the examples, the proposed method can fast output realistic garments on new poses. Our framework can be mainly divided into offline phase and online phase. During the offline phase, based on linear blend skinning (LBS), rigid bones and flex bones were estimated for human bodies and garments, respectively. Then, rigid bone weight maps on garment vertices were learned from examples. In the online phase, new human poses were treated as input to estimate rigid bone transformations. Then, both rigid bones and flex bones were used to drive garments to fit the new poses. Finally, a novel formulation was also proposed to efficiently deal with garment-body penetration. Experiments manifest that our method is fast and accurate. The intersection artifacts are fast removed and final garment results are quite realistic.
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
Energy Technology Data Exchange (ETDEWEB)
Tsai A, Banta L, Tucker D
2010-08-01
This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.
Phase space structures in gyrokinetic simulations of fusion plasma turbulence
Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure
2014-10-01
Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference
Hybrid annealing using a quantum simulator coupled to a classical computer
Graß, Tobias
2016-01-01
Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Simulated annealing is a computational technique which explores the configuration space by mimicking thermal noise. By slow cooling, it freezes the system in a low-energy configuration, but the algorithm often gets stuck in local minima. In quantum annealing, the thermal noise is replaced by controllable quantum fluctuations, and the technique can be implemented in modern quantum simulators. However, quantum-adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configurati...
RAD sequencing and genomic simulations resolve hybrid origins within North American Canis
Rutledge, L. Y.; Devillard, S.; Boone, J. Q.; Hohenlohe, P. A.; White, B. N.
2015-01-01
Top predators are disappearing worldwide, significantly changing ecosystems that depend on top-down regulation. Conflict with humans remains the primary roadblock for large carnivore conservation, but for the eastern wolf (Canis lycaon), disagreement over its evolutionary origins presents a significant barrier to conservation in Canada and has impeded protection for grey wolves (Canis lupus) in the USA. Here, we use 127 235 single-nucleotide polymorphisms (SNPs) identified from restriction-site associated DNA sequencing (RAD-seq) of wolves and coyotes, in combination with genomic simulations, to test hypotheses of hybrid origins of Canis types in eastern North America. A principal components analysis revealed no evidence to support eastern wolves, or any other Canis type, as the product of grey wolf × western coyote hybridization. In contrast, simulations that included eastern wolves as a distinct taxon clarified the hybrid origins of Great Lakes-boreal wolves and eastern coyotes. Our results support the eastern wolf as a distinct genomic cluster in North America and help resolve hybrid origins of Great Lakes wolves and eastern coyotes. The data provide timely information that will shed new light on the debate over wolf conservation in eastern North America. PMID:26156129
Energy Technology Data Exchange (ETDEWEB)
Wijnands, T.J. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere
1997-03-01
This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author) 151 refs.
Plasma burn-through simulations using the DYON code and predictions for ITER
Kim, Hyun-Tae; de Vries, P C; Contributors, JET-EFDA
2014-01-01
This paper will discuss simulations of the full ionization process (i.e. plasma burn-through), fundamental to creating high temperature plasma. By means of an applied electric field, the gas is partially ionized by the electron avalanche process. In order for the electron temperature to increase, the remaining neutrals need to be fully ionized in the plasma burn-through phase, as radiation is the main contribution to the electron power loss. The radiated power loss can be significantly affected by impurities resulting from interaction with the plasma facing components. The DYON code is a plasma burn-through simulator developed at Joint European Torus (JET) [1] [2]. The dynamic evolution of the plasma temperature and plasma densities including impurity content is calculated in a self-consistent way, using plasma wall interaction models. The recent installation of a beryllium wall at JET enabled validation of the plasma burn-through model in the presence of new, metallic plasma facing components. The simulation...
Energy Technology Data Exchange (ETDEWEB)
Josephson, Gary B.; Tonkyn, Russell G.; Rappe, Kenneth G.; Frye, John G.
2009-06-01
Annual report covering the development of a hybrid nonthermal plasma single-pass filtration system for collective protection. This report covers NTP destruction testing on a high priority Toxic Industrial Material and an surrogate for a sulfur containing chemical agent (e.g. mustard), Effects of catalysts in the nonthermal plasma and catalyst poisoning by the sulfur are presented. Also presented are proof-of-principle data for utilizing ozone created in the NTP as a beneficial reactant to destroy adsorbed contaminants in-situ. Catalysts to decompose the ozone within the adsorbent bed are necessary to convert the adsorber into an ozone reactor.
Hybrid systems modelling and simulation in DESTECS: a co-simulation approach
Ni, Yunyun; Broenink, Johannes F.; Klumpp, M.
2012-01-01
This paper introduces the modelling methodology and tooling in DESTECS (www.destecs.org) - Design Support and Tooling for Embedded Control Software - project as a novel modelling approach for hybrid systems from an executable model perspective. It provides a top-level structure for the system model
Simulations of a Plasma Thruster Utilizing the FRC Configuration
Energy Technology Data Exchange (ETDEWEB)
Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cohen, B. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-10
This report describes work performed by LLNL to model the behavior and performance of a reverse-field configuration (FRC) type of plasma device as a plasma thruster as summarized by Razin et al. [1], which also describes the MNX device at PPPL used to study this concept.
A hybrid SPH/N-body method for star cluster simulations
Hubber, D A; Smith, R; Goodwin, S P
2013-01-01
We present a new hybrid Smoothed Particle Hydrodynamics (SPH)/N-body method for modelling the collisional stellar dynamics of young clusters in a live gas background. By deriving the equations of motion from Lagrangian mechanics we obtain a formally conservative combined SPH/N-body scheme. The SPH gas particles are integrated with a 2nd order Leapfrog, and the stars with a 4th order Hermite scheme. Our new approach is intended to bridge the divide between the detailed, but expensive, full hydrodynamical simulations of star formation, and pure N-body simulations of gas-free star clusters. We have implemented this hybrid approach in the SPH code SEREN (Hubber et al. 2011) and perform a series of simple tests to demonstrate the fidelity of the algorithm and its conservation properties. We investigate and present resolution criteria to adequately resolve the density field and to prevent strong numerical scattering effects. Future developments will include a more sophisticated treatment of binaries.
An hybrid RANS/LES model for simulation of complex turbulent flow
Institute of Scientific and Technical Information of China (English)
魏群; 陈红勋; 马峥
2016-01-01
A non-linear eddy viscosity model (NLEVM) and a scalable hybrid Reynolds averaged Navier-Stokes/ large eddy simula- tion (RANS/LES) strategy are developed to improve the capability of the eddy viscosity model (EVM) to simulate complex flows featuring separations and unsteady motions. To study the performance of the NLEVM, numerical simulations around S809 airfoil are carried out and the results show that the NLEVM performs much better when a large separation occurs. Calculated results of the flow around a triangular cylinder show that the NLEVM can improve the precision of the flow fields to some extents, but the error is still considerable, and the small turbulence structures can not be clearly captured as the EVM. Whereas the scalable hybrid RANS/LES model based on the NLEVM is fairly effective on resolving the turbulent structures and can give more satisfactory predictions of the flow fields.
Institute of Scientific and Technical Information of China (English)
WANG Bing; SHU Jiwu; ZHENG Weimin; WANG Jinzhao; CHEN Min
2005-01-01
A hybrid decomposition method for molecular dynamics simulations was presented, using simultaneously spatial decomposition and force decomposition to fit the architecture of a cluster of symmetric multi-processor (SMP) nodes. The method distributes particles between nodes based on the spatial decomposition strategy to reduce inter-node communication costs. The method also partitions particle pairs within each node using the force decomposition strategy to improve the load balance for each node. Simulation results for a nucleation process with 4 000 000 particles show that the hybrid method achieves better parallel performance than either spatial or force decomposition alone, especially when applied to a large scale particle system with non-uniform spatial density.
Salcedo-Sanz, Sancho; Santiago-Mozos, Ricardo; Bousoño-Calzón, Carlos
2004-04-01
A hybrid Hopfield network-simulated annealing algorithm (HopSA) is presented for the frequency assignment problem (FAP) in satellite communications. The goal of this NP-complete problem is minimizing the cochannel interference between satellite communication systems by rearranging the frequency assignment, for the systems can accommodate the increasing demands. The HopSA algorithm consists of a fast digital Hopfield neural network which manages the problem constraints hybridized with a simulated annealing which improves the quality of the solutions obtained. We analyze the problem and its formulation, describing and discussing the HopSA algorithm and solving a set of benchmark problems. The results obtained are compared with other existing approaches in order to show the performance of the HopSA approach.
Plasma Viscosity with Mass Transport in Spherical ICF Implosion Simulations
Vold, Erik L; Ortega, Mario I; Moll, Ryan; Fenn, Daniel; Molvig, Kim
2015-01-01
The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrange hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduc...
Oblique Bernstein Mode Generation Near the Upper-hybrid Frequency in Solar Pre-flare Plasmas
Kryshtal, A.; Fedun, V.; Gerasimenko, S.; Voitsekhovska, A.
2015-11-01
We study analytically the generation process of the first harmonics of the pure electron weakly oblique Bernstein modes. This mode can appear as a result of the rise and development of a corresponding instability in a solar active region. We assume that this wave mode is modified by the influence of pair Coulomb collisions and a weak large-scale sub-Dreicer electric field in the pre-flare chromosphere near the footpoints of a flare loop. To describe the pre-flare plasma we used the model of the solar atmosphere developed by Fontenla, Avrett, and Loeser ( Astrophys. J. 406, 319, 1993). We show that the generated first harmonic is close to the upper-hybrid frequency. This generation process begins at the very low threshold values of the sub-Dreicer electric field and well before the beginning of the preheating phase of a flare. We investigate the necessary conditions for the existence of non-damped first harmonics of oblique Bernstein waves with small amplitudes in the flare area.
Full Wave Simulation of Integrated Circuits Using Hybrid Numerical Methods
Tan, Jilin
Transmission lines play an important role in digital electronics, and in microwave and millimeter-wave circuits. Analysis, modeling, and design of transmission lines are critical to the development of the circuitry in the chip, subsystem, and system levels. In the past several decays, at the EM modeling level, the quasi-static approximation has been widely used due to its great simplicity. As the clock rates increase, the inter-connect effects such as signal delay, distortion, dispersion, reflection, and crosstalk, limit the performance of microwave systems. Meanwhile, the quasi-static approach loses its validity for some complex system structures. Since the successful system design of the PCB, MCM, and the chip packaging, rely very much on the computer aided EM level modeling and simulation, many new methods have been developed, such as the full wave approach, to guarantee the successful design. Many difficulties exist in the rigorous EM level analysis. Some of these include the difficulties in describing the behavior of the conductors with finite thickness and finite conductivity, the field singularity, and the arbitrary multilayered multi-transmission lines structures. This dissertation concentrates on the full wave study of the multi-conductor transmission lines with finite conductivity and finite thickness buried in an arbitrary lossy multilayered environment. Two general approaches have been developed. The first one is the integral equation method in which the dyadic Green's function for arbitrary layered media has been correctly formulated and has been tested both analytically and numerically. By applying this method, the double layered high dielectric permitivitty problem and the heavy dielectrical lossy problem in multilayered media in the CMOS circuit design have been solved. The second approach is the edge element method. In this study, the correct functional for the two dimensional propagation problem has been successfully constructed in a rigorous way
Efficient parabolic evaluation of coupling terms in hybrid quantum/classical simulations
Energy Technology Data Exchange (ETDEWEB)
Bastida, Adolfo, E-mail: bastida@um.es [Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Murcia, 30100 Murcia (Spain); Soler, Miguel Angel; Zuniga, Jose; Requena, Alberto [Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Murcia, 30100 Murcia (Spain); Miguel, Beatriz [Departamento de Ingenieria Quimica y Ambiental, Universidad Politecnica de Cartagena, 30203 Cartagena (Spain)
2009-03-30
A parabolic interpolation function of time is proposed to evaluate the non-adiabatic coupling matrix elements and the adiabatic energies at intermediate times within the classical time integration interval in hybrid quantum/classical simulations. The accuracy and the computational efficiency of this parabolic approximation are illustrated by carrying out a numerical application to the well-studied vibrational relaxation of I{sub 2} in liquid xenon.
2012-03-01
airports’ terminal processing facilities again utilizing the AACC /IATA criteria. This method , however, received much criticism for various fundamental flaws...networks in the literature are limited, so a method for using DES to adjust for ar- rival time-dependency in QNA is developed. Second, beyond quality of...terminal in particular, using a hybrid of simulation and analytical methods . The challenge, then, is to determine the optimal capacity given estimated