WorldWideScience

Sample records for hybrid photovoltaic-thermal pv-t

  1. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  2. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  3. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  4. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  5. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  6. Photovoltaic-thermal (PV/T) solar collectors: Features and performance modelling

    International Nuclear Information System (INIS)

    Atienza-Márquez, Antonio; Bruno, Joan Carles; Coronas, Alberto; Korolija, Ivan; Greenough, Richard; Wright, Andy

    2017-01-01

    Currently, the electrical efficiency of photovoltaic (PV) solar cells ranges between 5–25%. One of the most important parameters that affects the electrical efficiency of a PV collector is the temperature of its cells: the higher temperature, the lower is the efficiency. Photovoltaic/thermal (PV/T) technology is a potential solution to ensure an acceptable solar energy conversion. The PV/T technology produces both electrical and thermal energy simultaneously. It is suitable for low temperature applications (25–40 o C) and overall efficiency increases compared to individual collectors. This paper describes an installation in a single-family house where PV/T collectors are coupled with a ground heat exchanger and a heat pump for domestic hot water and space heating purposes. The aim of this work is twofold. First, the features of the PV/T technology are analyzed. Second, a model of a flat-plate PV/T water collector was developed in TRNSYS in order to analyze collectors performance. (author)

  7. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    Science.gov (United States)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  8. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  9. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  10. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  11. A Review on Photovoltaic-Thermal (PV-T) Air and Water Collectors

    International Nuclear Information System (INIS)

    Avezov, R.R.; Akhatov, J. S.; Avezova, N. R.

    2011-01-01

    This paper presents the state-of-the-art on photovoltaic-thermal PV-T collectors. There are presented two main classification groups: -Air and -Water PV-Thermal collectors, design and performance evaluation, comparison of the findings obtained by various researchers. The review also covers the description of different designs of air and water PV-T collectors, the results of theoretical and experimental works, focused to optimization of the technical and economical performances in terms of electrical as well as thermal outputs. (authors)

  12. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  13. Performance Study of Photovoltaic-Thermal (Pv/T) Solar Collector with ·-Grooved Absorber Plate

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Hafidz Ruslan; Kamaruzzaman Sopian; Jin, G.L.

    2009-01-01

    A hybrid photovoltaic-thermal solar collector has been designed, built and its performance has been studied. The advantage of the collector is that it can generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used to generate electricity. The module also acts as heat absorber of the collector. Single pass ·-groove collector made of aluminium sheet with 0.7 mm thickness has been used to collect heat generated. Study was conducted under a designed halogen lamps solar simulator with intensities set at 386 ± 8 Wm -2 and 817 ± 8 Wm -2 . The speed of air passing through the collector was set between (69.6 ± 2.2) x 10 -4 kg/s to (695.8 ± 2.2) x 10 -4 kg/s. The objective of the study is to compare the performance of PV/T collector with and without ·-groove absorber. The study found that the PV/T collector with ·-groove absorber plate has higher efficiency than the PV/T without ·-groove absorber. The electrical and thermal efficiencies are also increased when radiation intensity and speed of air increase. (author)

  14. Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Yin, Ershuai; Li, Qiang; Xuan, Yimin

    2017-01-01

    Highlights: • A detailed thermal resistance analysis of the PV-TE hybrid system is proposed. • c-Si PV and p-Si PV cells are proved to be inapplicable for the PV-TE hybrid system. • Some criteria for selecting coupling devices and optimal design are obtained. • A detailed process of designing the practical PV-TE hybrid system is provided. - Abstract: The thermal resistance theory is introduced into the theoretical model of the photovoltaic-thermoelectric (PV-TE) hybrid system. A detailed thermal resistance analysis is proposed to optimize the design of the coupled system in terms of optimal total conversion efficiency. Systems using four types of photovoltaic cells are investigated, including monocrystalline silicon photovoltaic cell, polycrystalline silicon photovoltaic cell, amorphous silicon photovoltaic cell and polymer photovoltaic cell. Three cooling methods, including natural cooling, forced air cooling and water cooling, are compared, which demonstrates a significant superiority of water cooling for the concentrating photovoltaic-thermoelectric hybrid system. Influences of the optical concentrating ratio and velocity of water are studied together and the optimal values are revealed. The impacts of the thermal resistances of the contact surface, TE generator and the upper heat loss thermal resistance on the property of the coupled system are investigated, respectively. The results indicate that amorphous silicon PV cell and polymer PV cell are more appropriate for the concentrating hybrid system. Enlarging the thermal resistance of the thermoelectric generator can significantly increase the performance of the coupled system using amorphous silicon PV cell or polymer PV cell.

  15. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems

    International Nuclear Information System (INIS)

    Hassani, Samir; Saidur, R.; Mekhilef, Saad; Taylor, Robert A.

    2016-01-01

    Highlights: • Environmental and ExPBT analysis of different PV/T configurations is presented. • The exergy payback time of nanofluid-based hybrid PV/T system is about 2 years. • Nanofluid-based hybrid PV/T system is a reliable solution for pollution prevention. • Nanofluid-based hybrid PV/T system is highly recommended at high solar concentration. - Abstract: Photovoltaic/thermal (PV/T) solar systems, which produce both electrical and thermal energy simultaneously, represent a method to achieve very high conversion rates of sunlight into useful energy. In recent years, nanofluids have been proposed as efficient coolants and optical filter for PV/T systems. Aim of this paper is to theoretically analyze the life cycle exergy of three different configurations of nanofluids-based PV/T hybrid systems, and compare their performance to a standard PV and PV/T system. Electrical and thermal performance of the analyzed solar collectors was investigated numerically. The life cycle exergy analysis revealed that the nanofluids-based PV/T system showed the best performance compared to a standard PV and PV/T systems. At the optimum value of solar concentration C, nanofluid-based PV/T configuration with optimized optical and thermal properties produces ∼1.3 MW h/m 2 of high-grade exergy annually with the lowest exergy payback time of 2 years, whereas these are ∼0.36, ∼0.79 MW h/m 2 and 3.48, 2.55 years for standard PV and PV/T systems, respectively. In addition, the nanofluids-based PV/T system can prevent the emissions of about 448 kg CO 2 eq m −2 yr −1 . Overall, it was found that the nanofluids-based PV/T with optimized optical and thermal properties has potential for further development in a high-concentration solar system.

  16. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    Saeedi, F.; Sarhaddi, F.; Behzadmehr, A.

    2015-01-01

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  17. Energy metrics analysis of hybrid - photovoltaic (PV) modules

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Arvind [Department of Electronics and Communication, Krishna Institute of Engineering and Technology, 13 k.m. stone, Ghaziabad - Meerut Road, Ghaziabad 201 206, UP (India); Barnwal, P.; Sandhu, G.S.; Sodha, M.S. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2009-12-15

    In this paper, energy metrics (energy pay back time, electricity production factor and life cycle conversion efficiency) of hybrid photovoltaic (PV) modules have been analyzed and presented for the composite climate of New Delhi, India. For this purpose, it is necessary to calculate (1) the energy consumption in making different components of the PV modules and (2) the annual energy (electrical and thermal) available from the hybrid-PV modules. A set of mathematical relations have been reformulated for computation of the energy metrics. The manufacturing energy, material production energy, energy use and distribution energy of the system have been taken into account, to determine the embodied energy for the hybrid-PV modules. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. For hybrid PV module, it has been observed that the EPBT gets significantly reduced by taking into account the increase in annual energy availability of the thermal energy in addition to the electrical energy. The values of EPF and LCCE of hybrid PV module become higher as expected. (author)

  18. An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system

    International Nuclear Information System (INIS)

    Erdil, Erzat; Ilkan, Mustafa; Egelioglu, Fuat

    2008-01-01

    A hybrid system, composed of a photovoltaic (PV) module and a solar thermal collector is constructed and tested for energy collection at a geographic location of Cyprus. Normally, it is required to install a PV system occupying an area of about 10 m 2 in order to produce electrical energy; 7 kWh/day, required by a typical household. In this experimental study, we used only two PV modules of area approximately 0.6 m 2 (i.e., 1.3x0.47 m 2 ) each. PV modules absorb a considerable amount of solar radiation that generate undesirable heat. This thermal energy, however, may be utilized in water pre-heating applications. The proposed hybrid system produces about 2.8 kWh thermal energy daily. Various attachments that are placed over the hybrid modules lead to a total of 11.5% loss in electrical energy generation. This loss, however, represents only 1% of the 7 kWh energy that is consumed by a typical household in northern Cyprus. The pay-back period for the modification is less than 2 years. The low investment cost and the relatively short pay-back period make this hybrid system economically attractive

  19. Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions

    Science.gov (United States)

    Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.

    2017-11-01

    In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.

  20. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  1. Numerical study of PV/T-SAHP system

    Institute of Scientific and Technical Information of China (English)

    Gang PEI; Jie JI; Ke-liang LIU; Han-feng HE; Ai-guo JIANG

    2008-01-01

    In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PV/T-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.

  2. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  3. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  4. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    Science.gov (United States)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  5. Exergetic evaluation on photovoltaic/thermal hybrid panel; Taiyoko netsu hybrid panel no exergy hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Iwaki, H; Morita, Y; Fujisawa, T; Tani, T [Science University of Tokyo, Tokyo (Japan)

    1996-10-27

    The photovoltaic/thermal hybrid panel (PV/T) is an energy converter that was designed for the composite use of electricity and heat. In this paper, the validity of PV/T designed for trial was evaluated based on an exergetic theory. As the result of an experiment, the electric exergetic value of PV/T and PV is each 65.8 kWh/m{sup 2} and 58.6 kWh/m{sup 2}. The former is higher than the latter by 11.2%. The total exergetic value of PV/T is also 1.2 and 8.2 times as high as those of a PV and solar collector (SC), respectively. The calculation result of the optimum temperature operation showed that the exergetic value of PV/T is 3.1 times as high as the electric exergetic value. Therefore, the operation must be performed with the electric and thermal exergetic values set in a ratio of 3.1 to 1. In this paper, the operating mode is handled in which importance was more attached to the electric exergy than the thermal exergy. The flow rate of a heating medium on PV/T is not thus the flow control that maximizes the PV/T exergy. In the future, studies including these points will be promoted. 7 refs., 7 figs., 3 tabs.

  6. Photovoltaic-Thermal New Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McNutt, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jones, Dennis [Group14 Engineering, Inc., Denver, CO (United States); Heinicke, David [Group14 Engineering, Inc., Denver, CO (United States)

    2015-01-01

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  7. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  8. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  9. Energy performance of water hybrid PV/T collectors applied to combisystems of Direct Solar Floor type

    Energy Technology Data Exchange (ETDEWEB)

    Fraisse, G.; Johannes, K. [Laboratoire Optimisation de la Conception et Ingenierie de l' Environnement, Ecole Superieure d' Ingenieurs de Chambery, Campus Scientifique Savoie Technolac, 73376 Le Bourget du Lac Cedex (France); Menezo, C. [Centre de Thermique de Lyon, Domaine Scientifique de La Doua, Bat. Freyssinet, 20, Avenue A. Einstein, 69621 Villeurbanne Cedex (France)

    2007-11-15

    The integration of photovoltaic (PV) modules in buildings allows one to consider a multifunctional frame and then to reduce the cost by substitution of components. In order to limit the rise of the cell operating temperature, a photovoltaics/thermal (PV/T) collector combines a solar water heating collector and PV cells. The recovered heat energy can be used for heating systems and domestic hot water. A combination with a Direct Solar Floor is studied. Its low operating temperature level is appropriate for the operating conditions of the mono- or poly-crystalline photovoltaic modules which are selected in that study. However, for a system including a glass covered collector and localised in Macon area in France, we show that the annual photovoltaic cell efficiency is 6.8% which represents a decrease of 28% in comparison with a conventional non-integrated PV module of 9.4% annual efficiency. This is obviously due to a temperature increase related to the cover. On the other hand, we show that without a glass cover, the efficiency is 10% which is 6% better than a standard module due to the cooling effect. Moreover, in the case of a glazed PV/T collector with a conventional control system for Direct Solar Floor, the maximum temperature reached at the level of the PV modules is higher than 100{sup o}C. This is due to the oversize of the collectors during the summer when the heating needs are null, i.e. without a heated swimming pool for example. This temperature level does not allow the use of EVA resin (ethylene vinyl acetate) in PV modules due to strong risks of degradation. The current solution consists of using amorphous cells or, if we do not enhance the thermal production, uncovered PV/T collector. Further research led to water hybrid PV/T solar collectors as a one-piece component, both reliable and efficient, and including the thermal absorber, the heat exchanger and the photovoltaic functions. (author)

  10. Energy and exergy analysis of a two pass photovoltaicthermal (PV/T) air heater

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study elaborately its thermal and electrical performance corresponding to the warm and humid environment. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such way that the absorber plate is partially covered by solar cells. Thin metallic strips (called slats) are attached longitudinally at the bottom side of the absorber plate to improve the overall system performance (by increasing the cooling rate of the absorber plate). Thermal and electrical performances of the whole system at different cooling rates are presented. The exergy analysis of double pass hybrid solar air (PV/T) heater with slats has also been carried out. The instantaneous overall energy and overall exergy efficiency of the double pass hybrid (PV/T) solar air heater varies between 29 – 37 percent and 14-17 percent respectively. These obtained values are comparable with that of published results.

  11. Life cycle energy metrics and CO 2 credit analysis of a hybrid photovoltaic/thermal greenhouse dryer

    OpenAIRE

    P. Barnwal; G. N. Tiwari

    2008-01-01

    In this paper, life cycle energy metrics, such as energy payback time (EPBT), energy production factor (EPF) and life cycle conversion efficiency (LCCE), and mitigation of CO 2 emissions for a hybrid photovoltaic/thermal (PV/T) greenhouse dryer have been analyzed. The hybrid PV/T greenhouse (roof type even span) dryer, designed and constructed at Solar Energy Park, Indian Institute of Technology, New Delhi (28°35′N, 77°12′E, 216 m above MSL), India, has a 2.50 m × 2.60 m floor area, 1.80 m ce...

  12. PV-hybrid and mini-grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    ) Optimization of a wind/diesel hybrid configuration in a remote grid with battery implementation: Case study of Melinka Island; (23) Provisional acceptance of installations and online data submission of PV and hybrid kits in remote areas of Latin-America under the EC's EURO-SOLAR programme; (24) Experience of the Canary Islands in the development of insular 100 % RES systems and micro-grids; (25) Assessment of photovoltaic hybrid power systems in the United States; (26) Solar hybrid school project in East Malaysia; (27) Eigg Island - Electrification of a British Island by a unique PV wind hydro diesel hybrid system; (28) A pragmatic performance reporting approach for describing PV hybrid systems within mini-grids: Work in progress from IEA's PVPS Task 11 Act. 31; (29) Hybrid renewable energy systems for the supply of services in rural settlements of Mediterranean partner countries. The HYRESS project - The case study of the hybrid system - Micro grid in Egypt. Beside these lectures, the following poster contributions were presented: (1) Performance of conventional MPPT techniques in the presence of partial shielding; (2) Photovoltaic and thermal collector (PV/T) hybrid system's performance analysis under the mild climate conditions of Izmir City; (3) Influential parameters on a building integrated hybrid PVT concentrator; (4) The solution to combine and manage renewable energies in hybrid applications and mini-grids; (5) Stabilization of distribution networks with PV and vanadium redox-battery backup systems - Simulation and first experiences; (6) Control, monitoring and data acquisition architecture design for clean production of hydrogen from mini-wind energy; (7) Remote Telecom System including photovoltaic energy and H{sub 2} production by electrolysis; (8) Effective combination of solar and wind energy systems; (9) Standardisation of distributed grid support - An analogous approach for the smart grid; (10) Optimizing energy management of decentralized

  13. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  14. Investigations on the performance of a double pass, hybrid - type (PV/T) solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A solar hybrid energy system having photovoltaic and thermal (PV/T) devices, which produces both thermal and electrical energies simultaneously is considered for analysis. A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study its thermal and electrical performance. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such a way that the absorber plate is partially covered by solar cells. The raise in temperature of the solar cell is expected to decrease its electrical performance. Thin metallic strips called slats are attached longitudinally at the bottom side of the absorber plate to improve the system performance by increasing the cooling rate of the absorber plate. Thermal and electrical performances of the whole system at varying cooling conditions are presented. An artificial neural network model is used for forecasting the system performance at any desired conditions. The proposed model can be successfully used for evaluating the effect of different operating parameters under different ambient conditions for predicting the overall performance of the system.

  15. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors

    NARCIS (Netherlands)

    Solanki, S.C.; Dubey, Swapnil; Tiwari, A.

    2009-01-01

    An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations,

  16. Characteristic on photovoltaic/thermal hybrid collector. Evaluation of excergetic theory; Taiyoko netsu hybrid collector no tokusei. Exergy ni yoru hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Iwawaki, H; Morita, Y; Fujisawa, T; Tani, T [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    Described herein are characteristics of photovoltaic (PV)/thermal hybrid collectors (PV/Ts), in which a PV module is combined with a plate-shape solar heat collector to simultaneously produce electric power and heat. Their efficiency is assessed by exergy. The test results indicate that the PV/T system gives a 1.07 times higher exergy than the PV system, 86.3 versus 80.7kWh. In terms of energy, the optimum values (OVs) are 5, 44 and 37% lower than the measuring values (MVs) for electrical energy, thermal energy and total exergy. In terms of exergy, on the other hand, OV is 5% lower than MV for electrical energy, but 893 times higher for thermal energy and 1.26 times higher for total exergy. As a result, the exergy level is 26% higher than that of a system which generates power as the main product and heat as the auxiliary product. 3 refs., 6 figs., 5 tabs.

  17. A Hybrid Power Control Concept for PV Inverters with Reduced Thermal Loading

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    on a single-phase PV inverter under yearly operation is presented with analyses of the thermal loading, lifetime, and annual energy yield. It has revealed the trade-off factors to select the power limit and also verified the feasibility and the effectiveness of the proposed control concept.......This letter proposes a hybrid power control concept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum Power Point Tracking (MPPT) control or a Constant Power Generation (CPG) control depending on the instantaneous available power from the PV panels....... The essence of the proposed concept lies in the selection of an appropriate power limit for the CPG control to achieve an improved thermal performance and an increased utilization factor of PV inverters,and thus to cater for a higher penetration level of PV systems with intermittent nature. A case study...

  18. Investigation on the effect of thermal resistances on a highly concentrated photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin

    2016-01-01

    Highlights: • The highly concentrated PV-TE hybrid system is studied. • The performances of different cooling systems are analyzed and compared. • Sandwiching a copper plate between the PV and TE can improve the efficiency. • Four thermal design principles of the system are proposed. - Abstract: A thermal analysis of a highly concentrated photovoltaic-thermoelectric (PV-TE) hybrid system is carried out in this paper. Both the output power and the temperature distribution in the hybrid system are calculated by means of a three-dimensional numerical model. Three possible approaches for designing the highly concentrated PV-TE hybrid system are presented by analyzing the thermal resistance of the whole system. First, the sensitivity analysis shows that the thermal resistance between the TE module and the environment has a more great effect on the output power than the thermal resistance between the PV and the TE. The influence of the natural convection and the radiation can be ignored for the highly concentrated PV-TE hybrid system. Second, it is necessary to sandwich a copper plate between the PV and the TE for decreasing the thermal resistance between the PV and the TE. The role of the copper plate is to improve the temperature uniformity. Third, decreasing the area of PV cells can improve the efficiency of the highly concentrated PV-TE hybrid system. It should be pointed out that decreasing the area of PV cells also increases the total thermal resistance, but the raise of the efficiency is caused by the reduction of the heat transfer rate of the system. Therefore, the principle of minimizing the total thermal resistance may not be suitable for optimizing the area of PV cells.

  19. Experimental Performance Investigation of Photovoltaic/Thermal (PV–T System

    Directory of Open Access Journals (Sweden)

    Bakir C.

    2013-04-01

    Full Text Available Photovoltaic solar cells convert light energy from the sun into electricity. Photovoltaic cells are produced by semi-conducting materials to convert the energy into electricity and during this process heat is absorbed by the solar radiation. This heat causes a loss of electricity generation efficiencies.In this study, an experimental setup was designed and established to test two separate photovoltaic panel systems with alone PV and with water cooling system PV/T to examine the heat effect on PV systems. The absorbed heat energy behind the photovoltaic cell's surface in insulated ambient was removed by means of a water cooling system and the tests for both systems were simultaneously performed along the July 2011. It is found that without active water cooling, the temperature of the PV module was higher during day time and solar cells could only achieve around 8% conversion efficiency. On the other hand, when the PV module was operated with active water cooling condition, the temperature dropped significantly, leading to an increase in the efficiency of solarcells as much as 13.6%. Gained from absorbed solar heat and maximum thermal conversion efficiencies of the system are determined as 49% and 51% for two different mass flow rates. It is observed that water flow rate is effective on the increasing the conversion efficiency as well as absorption and transitionrates of cover glass in PV/T (PV–Thermal collector, the insulation material and cell efficiency. As a conclusion, the conversion efficiency of the PV system with water cooling might be improved on average about 10%. Therefore, it is recommended that PV system should be designed with most efficient type cooling system to enhance the efficiency and to decrease the payback period.

  20. Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.

    Science.gov (United States)

    Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A

    2018-05-14

    Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.

  1. Life cycle cost analysis of single slope hybrid (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, G.N.

    2009-01-01

    This paper presents the life cycle cost analysis of the single slope passive and hybrid photovoltaic (PV/T) active solar stills, based on the annual performance at 0.05 m water depth. Effects of various parameters, namely interest rate, life of the system and the maintenance cost have been taken into account. The comparative cost of distilled water produced from passive solar still (Rs. 0.70/kg) is found to be less than hybrid (PV/T) active solar still (Rs. 1.93/kg) for 30 years life time of the systems. The payback periods of the passive and hybrid (PV/T) active solar still are estimated to be in the range of 1.1-6.2 years and 3.3-23.9 years, respectively, based on selling price of distilled water in the range of Rs. 10/kg to Rs. 2/kg. The energy payback time (EPBT) has been estimated as 2.9 and 4.7 years, respectively. (author)

  2. Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions

    International Nuclear Information System (INIS)

    Hazami, Majdi; Riahi, Ali; Mehdaoui, Farah; Nouicer, Omeima; Farhat, Abdelhamid

    2016-01-01

    The endeavor of this paper is to study the potential offered by the expenditure of a PV/T (photovoltaic thermal) solar system in Tunisian households. This investigation is performed according to two-folded approaches. Firstly, outdoor experiments were carried out during July 2014 for both passive and active mode. An exhaustive energy and exergy analysis was then performed to evaluate the instantaneous thermal and the electrical exergy outputs of the PV/T solar system. The results showed that the maximum instantaneous thermal and electric energy efficiency in active mode are about 50 and 15%, respectively. It was found also that the maximum thermal and electric exergy efficiencies were about 50 and 14.8%, respectively. The second approach is the evaluation of the monthly/annual performances of the PV/T solar system under typical climate area of Tunisia by using TRNSYS program. The results showed that the active mode enhances the electric efficiency and the exergy of the PV/T system by 3 and 2.5% points, respectively. The results showed that the optimized PV/T solar system covert the major part of the hot water and the electric needs of Tunisian household's with an expected annual average gain of about 14.60 and 5.33%, respectively. An economic appraisal was performed. - Highlights: • The present work studies the potential of using PV/T solar collector in Tunisian. • The maximum thermal and electric efficiencies are 50 and 15%, respectively. • The maximum thermal and electric exergy efficiencies were 50 and 14.8%. • The results showed that the expected annual gain are 14.60 and 5.33%. • The PV/T is compared to a high quality commercial solar collectors and a PV panel.

  3. Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

    OpenAIRE

    K. Touafek; A. Khelifa; E. H. Khettaf; A. Embarek

    2013-01-01

    Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a h...

  4. Artificial Neural Network based control for PV/T panel to track optimum thermal and electrical power

    International Nuclear Information System (INIS)

    Ben Ammar, Majed; Chaabene, Maher; Chtourou, Zied

    2013-01-01

    Highlights: ► We establish a state model of PV/T panel. ► We study the effect of mass flow rate on PV/T efficiency. ► A real time PV/T control algorithm is proposed. ► A model based optimal thermal and electrical power operation point is tracked. - Abstract: As solar energy is intermittent, many algorithms and electronics have been developed to track the maximum power generation from photovoltaic and thermal panels. Following technological advances, these panels are gathered into one unit: PV/T system. PV/T delivers simultaneously two kinds of power: electrical power and thermal power. Nevertheless, no control systems have been developed in order to track maximum power generation from PV/T system. This paper suggests a PV/T control algorithm based on Artificial Neural Network (ANN) to detect the optimal power operating point (OPOP) by considering PV/T model behavior. The OPOP computes the optimum mass flow rate of PV/T for a considered irradiation and ambient temperature. Simulation results demonstrate great concordance between OPOP model based calculation and ANN outputs.

  5. Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system

    International Nuclear Information System (INIS)

    Makki, Adham; Omer, Siddig; Su, Yuehong; Sabir, Hisham

    2016-01-01

    Highlights: • Integration of TE generators with a heat pipe-based PV module as a hybrid system is proposed. • Numerical transient modeling based on the energy balance equations of the system was performed. • Integration of TE generators with PV module aid operating the solar cells at a steady level in harsh conditions. - Abstract: Photovoltaic (PV) cells are able to absorb about 80% of the solar spectral irradiance, however, certain percentage accounts for electricity conversion depending on the cell technology employed. The remainder energy however, can elevate the silicon junction temperature in the PV encapsulation perilously, resulting in deteriorated performance. Temperature rise at the PV cell level is addressed as one of the most critical issues that can seriously degrade and shortens the life-time of the PV cells, hence thermal management of the PV module during operation is considered essential. Hybrid PV designs which are able to simultaneously generate electrical energy and utilize the waste heat have been proven to be the most promising solution. In this study, theoretical investigation of a hybrid system comprising of thermoelectric generator integration with a heat pipe-based Photovoltaic/Thermal (PV/T) absorber is proposed and evaluated. The system presented incorporates a PV panel for direct electricity generation, a heat pipe for excessive heat absorption from the PV cells and a thermoelectric generator (TEG) performing direct heat-to-electricity conversion. A mathematical model based on the energy balance within the system is developed to evaluate the performance of the hybrid integration and the improvements associated with the thermal management of PV cells. Results are presented in terms of the overall system efficiency compared to a conventional PV panel under identical operating conditions. The integration of TEG modules with PV cells in such way aid improving the performance of the PV cells in addition to utilizing the waste

  6. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  7. PV and PV/hybrid products for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

    2000-05-15

    Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

  8. Character of photovoltaic/thermal hybrid collector. Character analysis by numerical calculation; Taiyoko netsu hybrid collector no tokusei. Suchi keisan ni yoru tokusei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y; Iwawaki, T; Fujisawa, T; Tani, T [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    In order to investigate characteristics of photovoltaic (PV)/thermal hybrid collectors (PV/T{sub s}) operating under varying conditions, energy equilibrium equations have been developed for numerical calculation, and the calculated results were compared with the observed ones. The calculated characteristics are close to the observed ones, both for photoelectric conversion and heat collecting characteristics, demonstrating validity of these energy equations. It is found, by comparing characteristics of PV/T{sub A} (covered with glass) with those of PV/T{sub B} (not covered with glass), that these characteristics are greatly affected by glass cover. Maximum overall excergy levels attained are 13.29% with PV/T{sub A} and 11.48% with PV/T{sub B} under the conditions of solar radiation intensity H: 800W/m{sup 2}, ambient temperature: 20degC and wind velocity: 0.5m/s, where flow rates of heat medium are 2.0times10{sup -3} and 4.0times10{sup -3}kg/s, respectively. Thus, the PV/T{sub A} system has a higher maximum excergy efficiency than the PV/T{sub B} system. The PV/T{sub A} gives water of higher temperature, demonstrating that covering the system with glass increases maximum excergy efficiency and optimum temperature. 6 refs., 5 figs., 2 tabs.

  9. Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Sera, Dezso; Rosendahl, Lasse Aistrup

    2016-01-01

    of the hybrid system under different weather conditions. The model takes into account solar irradiation, wind speed and ambient temperature as well as convective and radiated heat losses from the front and rear surfaces of the panel. The model is developed for three sample cities in Europe with different......In general, modeling of photovoltaic-thermoelectric (PV/TEG) hybrid panels have been mostly simplified and disconnected from the actual ambient conditions and thermal losses from the panel. In this study, a thermally coupled model of PV/TEG panel is established to precisely predict performance...... weather conditions. The results show that radiated heat loss from the front surface and the convective heat loss due to the wind speed are the most critical parameters on performance of the hybrid panel performance. The results also indicate that, with existing thermoelectric materials, the power...

  10. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors

    International Nuclear Information System (INIS)

    Al-Waeli, Ali H.A.; Chaichan, Miqdam T.; Kazem, Hussein A.; Sopian, K.

    2017-01-01

    Highlights: • Three types of nanoparticles (Al 2 O 3 , CuO and SiC) were added to water which was used as a base fluid. • The resulted nanofluid was used for cooling an indoor PV/T system. • The used nanofluids improved the thermal and electrical efficiencies of the PV/T system. • The stability of nanofluids was examined for an extended period and found to be stable. • SiC nanofluid showed better thermal conductivity and stability compared with Al 2 O 3 and CuO nanofluids. - Abstract: The reduction in efficiency of photovoltaic (PV) units due to increases in cell temperature occurs when a small part of the absorbed solar radiation is converted into electricity and the remaining part is lost as heat. Recently, the addition of a range of nanomaterials with high thermal conductivity to the cooling fluid in PV/T systems has been the subject of much research. In this study, three nanomaterials were added to water as a base fluid with several volume fractions to determine the best concentration and nanoparticle for this application. The PV/T system was setup in an indoor laboratory. Knowing which material has a better effect on the PV unit in particular, and the PV/T unit in general, is important for deciding which nanomaterial is more suitable for the system. The results reveal that nanofluid gives higher thermal conductivity with very little increase in the fluid density and viscosity compared with the base fluid. The studied volume fractions were 0.5, 1, 2, 3, and 4% and the selected nanoparticles were Al 2 O 3 , CuO, and SiC. It was found that silicon carbide nanoparticles have the best stability and the highest thermal conductivity compared to the other two nano-substances. Copper oxide nanofluid has higher thermal conductivity than aluminium oxide but lower stability, although it was found here that this material reliably stable compared to in other studies. The nanofluid reduced the indoor PV/T system temperature and enhanced its generated power.

  11. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  12. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  13. PV Horizon : Proceedings of the Workshop on Photovoltaic Hybrid Systems. CD ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of this workshop was to share information on current photovoltaic (PV) and hybrid system technology, and to present information on international experience and trends in research and development. It brought together 70 experts from Canada, the United States, several European countries, Japan and Australia. Currently, PV hybrid systems are used for stand-alone projects in telecommunication applications, remote housing, and leisure lodges. The applications for these sectors are well known and the technology is cost effective. Other applications are for micro-grid applications such as small remote islands, village power and tourist resorts. The costs for these types of applications can also be effective as long as the power demand is relatively low. A keynote presentation which highlighted the current application of PV hybrid systems, was followed by three sessions dealing with international experience with hybrid systems, the research and development opportunities for hybrid systems, and visual presentations on a range of subjects dealing with PV hybrid systems, their components, system integration, standards, guidelines, and control system issues. It was noted that the future for renewables looks bright, particularly for developing countries. Their use will also reduce the environmental footprint of remote power solutions. refs., tabs., figs.

  14. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Pei Gang; Fu Huide; Ji Jie; Chow Tintai; Zhang Tao

    2012-01-01

    Highlights: ► A novel heat pipe photovoltaic/thermal system with freeze protection was proposed. ► A detailed annual simulation model for the HP-PV/T system was presented. ► Annual performance of HP-PV/T was predicted and analyzed under different condition. - Abstract: Heat-pipe photovoltaic/thermal (HP-PV/T) systems can simultaneously provide electrical and thermal energy. Compared with traditional water-type photovoltaic/thermal systems, HP-PV/T systems can be used in cold regions without being frozen with the aid of a carefully selected heat-pipe working fluid. The current research presents a detailed simulation model of the HP-PV/T system. Using this model, the annual electrical and thermal behavior of the HP-PV/T system used in three typical climate areas of China, namely, Hong Kong, Lhasa, and Beijing, are predicted and analyzed. Two HP-PV/T systems, with and without auxiliary heating equipment, are studied annually under four different kinds of hot-water load per unit collecting area (64.5, 77.4, 90.3, and 103.2 kg/m 2 ).

  15. Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system

    International Nuclear Information System (INIS)

    Yang, Tingting; Athienitis, Andreas K.

    2015-01-01

    Highlights: • BIPV/T system thermal efficiency is 5% higher using two inlets compared to one. • BIPV/T thermal efficiency is 7.6% higher using semi-transparent than opaque PV. • Detailed air temperature profile in BIPV/T channel is obtained. • Nusselt number correlations are developed. - Abstract: An experimental study of thermal characteristics of a novel two-inlet air-based open-loop building integrated photovoltaic/thermal (BIPV/T) system using a full-scale solar simulator is presented. Experimental prototypes of one-inlet and two-inlet BIPV/T systems were constructed for conducting comparative experiments. Variations of BIPV/T systems are also investigated including systems employing opaque mono-crystalline silicon photovoltaic (PV) panels and systems employing semi-transparent mono-crystalline PV panels. Experimental results demonstrate that an equivalent two-inlet system with frameless PV panels can increase the thermal efficiency by 5% compared to a conventional one-inlet system, and that the BIPV/T system with semi-transparent PV panels achieves 7.6% higher thermal efficiency due to the absorption of some solar radiation at the bottom surface in the BIPV/T system cavity. Also, the two-inlet BIPV/T design is easily implemented and does not add significant cost. Detailed air temperature measurements reveal that the mixing of the warm outlet air from the first section and the cool ambient air drawn in from the second inlet contributes to the improved performance of the two-inlet system. Based on a thermal network model of the BIPV/T system and experimental data, correlations are developed for the convective heat transfer coefficients in the two sections. These are necessary for further analysis and development of BIPV/T system with multiple inlets.

  16. Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover

    International Nuclear Information System (INIS)

    Chow, T.T.; Pei, G.; Fong, K.F.; Lin, Z.; Chan, A.L.S.; Ji, J.

    2009-01-01

    In photovoltaic-thermal (PV/T) technology, the use of glass cover on the flat-plate hybrid solar collector is favorable to the photothermic process but not to the photovoltaic process. Because of the difference in the usefulness of electricity and thermal energy, there is often no straight forward answer on whether a glazed or unglazed collector system is more suitable for a specific application. This glazing issue was tackled in this paper from the viewpoint of thermodynamics. Based on experimental data and validated numerical models, a study of the appropriateness of glass cover on a thermosyphon-based water-heating PV/T system was carried out. The influences of six selected operating parameters were evaluated. From the first law point of view, a glazed PV/T system is found always suitable if we are to maximize the quantity of either the thermal or the overall energy output. From the exergy analysis point of view however, the increase of PV cell efficiency, packing factor, water mass to collector area ratio, and wind velocity are found favorable to go for an unglazed system, whereas the increase of on-site solar radiation and ambient temperature are favorable for a glazed system

  17. Optimal Photovoltaic System Sizing of a Hybrid Diesel/PV System

    Directory of Open Access Journals (Sweden)

    Ahmed Belhamadia

    2017-03-01

    Full Text Available This paper presents a cost analysis study of a hybrid diesel and Photovoltaic (PV system in Kuala Terengganu, Malaysia. It first presents the climate conditions of the city followed by the load profile of a 2MVA network; the system was evaluated as a standalone system. Diesel generator rating was considered such that it follows ISO 8528. The maximum size of the PV system was selected such that its penetration would not exceed 25%. Several sizes were considered but the 400kWp system was found to be the most cost efficient. Cost estimation was done using Hybrid Optimization Model for Electric Renewable (HOMER. Based on the simulation results, the climate conditions and the NEC 960, the numbers of the maximum and minimum series modules were suggested as well as the maximum number of the parallel strings.

  18. Performance Analysis of a Photovoltaic-Thermal Integrated System

    International Nuclear Information System (INIS)

    Radziemska, E.

    2009-01-01

    The present commercial photovoltaic solar cells (PV) converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is highly desirable to obtain efficiency increase. The total efficiency of 60-80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV). In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings the destroyed exergy has been called energy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiencies in a system. This information, which cannot be provided by other means (e.g., an energy analysis), is very useful for the improvement and cost-effectiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solar watt module.

  19. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  20. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  1. PV/T slates - Laboratory measurements; PV/T-Schiefer. Labormessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with an experimental outdoor set-up and reviews in-situ measurements made on a prototype of a ventilated PV-tile system (PV/T-Slates). The report describes the configuration and construction of the experimental PV-tiled roof and the measurement system used to measure its electrical and thermal performance. The results of the measurements made are presented in detail in graphical form. The influence of various factors such as air-slit width and mounting angle are discussed.

  2. Experimental and numerical results from hybrid retrofitted photovoltaic panels

    International Nuclear Information System (INIS)

    Rossi, Cecilia; Tagliafico, Luca A.; Scarpa, Federico; Bianco, Vincenzo

    2013-01-01

    Highlights: • The experimental study focuses on the feasibility of hybrid PV/T panels retrofitting. • The critical role of a thin layer of air between PV panel and back plate is evidenced. • The benefit of the addition of a conductive paste layer is analyzed via FEM simulations. • The use of wood ribs to stick the back plate represents a cheap effective solution. - Abstract: The aim of present study is to investigate different methodologies to achieve a better contact between a photovoltaic panel and a thermal plate, in order to cool the PV panel by means of water in the perspective of coupling it with a heat pump. It is believed that this kind of system allows to obtain a higher energy efficiency. The analysis is developed both experimentally and numerically, testing different kinds of configurations in different operating conditions. Simulations are employed to analyze the effect of the variations of the contact resistance between the panel and the thermal plates, demonstrating that the use of a conductive paste increases the overall performance of the panel. Results show interesting possibilities in terms of retrofitting of existing photovoltaic panels by employing very simple solutions, such as to fix the thermal plate on the rear of the panel by means of wood ribs

  3. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  4. Design and simulation of a low concentrating photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Rosell, J.I.; Vallverdu, X.; Lechon, M.A.; Ibanez, M.

    2005-01-01

    The advantages of photovoltaic/thermal (PV/T) collectors and low solar concentration technologies are combined into a photovoltaic/thermal system to increase the solar energy conversion efficiency. This paper presents a prototype 11X concentration rate and two axis tracking system. The main novelty is the coupling of a linear Fresnel concentrator with a channel photovoltaic/thermal collector. An analytical model to simulate the thermal behaviour of the prototype is proposed and validated. Measured thermal performance of the solar system gives values above 60%. Theoretical analysis confirms that thermal conduction between the PV cells and the absorber plate is a critical parameter

  5. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  6. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  7. Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors

    International Nuclear Information System (INIS)

    Daghigh, Ronak; Ibrahim, Adnan; Jin, Goh Li; Ruslan, Mohd Hafidz; Sopian, Kamaruzzaman

    2011-01-01

    BIPVT is an application where solar PV/T modules are integrated into the building structure. System design parameters such as thermal conductivity and fin efficiency, type of cells, type of coolant and operating conditions are factors which influence the performance of BIPVT. Attempts have been made to improve the efficiency of building-integrated photovoltaic thermal (BIPVT). A new design concept of water-based PVT collector for building-integrated applications has been designed and evaluated. The results of simulation study of amorphous silicon (a-Si) PV/T and crystalline silicon (c-Si) module types are based on the metrological condition of Malaysia for a typical day in March. At a flow rate of 0.02 kg/s, solar radiation level between 700 and 900 W/m 2 and ambient temperature between 22 and 32 o C, the electrical, thermal and combined photovoltaic thermal efficiencies for the PV/T (a-Si) were 4.9%, 72% and 77%, respectively. Moreover, the electrical, thermal and combined photovoltaic thermal efficiencies of the PV/T (c-Si) were 11.6%, 51% and 63%.

  8. A novel solar multifunctional PV/T/D system for green building roofs

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Yu, Xu; Su, Yuehong

    2015-01-01

    Highlights: • A novel transparent roof combines the solar PV/T/D system with green building design. • Novel photovoltaic-thermal roofing design can achieve excellent light control at noon. • The roof has no obvious influence on indoor light intensity in morning and afternoon. • Higher efficiency of solar energy utilization could be achieved with new roofing. - Abstract: A novel transparent roof which is made of solid CPC (Compound Parabolic Concentrator) PV/T/D (Photovoltaic/Thermal/Day lighting) system is presented. It combines the solar PV/T/D system with green building design. The PV/T/D system can achieve excellent light control at noon and adjust the thermal environment in the building, such that high efficiency utilization of solar energy could be achieved in modern architecture. This kind of roof can increase the visual comfort for building occupants; it can also avoid the building interior from overheating and dazzling at noon which is caused by direct sunlight through transparent roof. Optical simulation software is used to track the light path in different incidence angles. CFD (Computational Fluid Dynamics) simulation and steady state experiment have been taken to investigate the thermal characteristic of PV/T/D device. Finally, the PV/T/D experimental system was built; and the PV efficiency, light transmittance and air heating power of the system are tested under real sky conditions

  9. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system

    International Nuclear Information System (INIS)

    Al-Waeli, Ali H.A.; Sopian, K.; Chaichan, Miqdam T.; Kazem, Hussein A.; Hasan, Husam Abdulrasool; Al-Shamani, Ali Najah

    2017-01-01

    Highlights: • Nano-SiC-water used as a base fluid for cooling an outdoor PV/T system. • The used nanofluid improved the thermal and electrical efficiencies of the PV/T system. • The stability of nanofluid was examined for an extended period and found to be stable. • The overall effectiveness found to be 88.9% compared to the separate PV system. - Abstract: The thermophysical properties of nanofluid composed of water and SiC nanoparticles without the use of a surfactant as a coolant for a PV/T system was investigated. It was observed that the addition of 3 wt% of these nanoparticles to water caused an increase in the resulting fluid density by up to 0.0082% and an increase of viscosity by up to 1.8%. Moreover, the thermal conductivity was enhanced by up to 8.2% for the tested temperature range of 25 °C–60 °C. The stability of the nanofluid was examined at intervals of three months and it was found that after six months the thermal conductivity reduced by up to 0.003 W/m K, indicating that the solution was stable and suitable for use for long periods. The use of 3 wt% SiC nanofluid increased the electrical efficiency by up to 24.1% compared to the PV system alone, while the thermal efficiency increased by up to 100.19% compared to the use of water for cooling. The final results indicated that the total effectiveness of the PV/T nanofluid system had a higher overall efficiency of about 88.9% compared to the separate PV system.

  10. PV-HYBRID and MINI-GRID. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 3rd European Conference at the Centre de Congres in Aix en Provence (France) between 11th and 12th May, 2006, the following lessons were held: (1) Small electric networks: European drivers and projects for the integration of RES and DG into the electricity grids of the future (Manuel Sanchez-Jimenez); (2) PV hybrid system within mini grids - IEA PVPS programme (Meuch Konraf); (3) Renewables for the developing world (Alvaro Ponce Plaza); (4) Rural electicity supply using photovoltaic / - Diesel hybrid systems: Attractive for investors in the renewable energy sector? (Andreas Hahn); (5) Economic analysis of stand-alone and grid-connected photovoltaic systems under current tariff structure of Taiwan (Yaw-Juen Wang); (6) Using wind-PV-diesel hybrid system for electrification of remote village in Western Libya (N.M. Kreama); (7) Venezuela's renewable energy program for small towns and rural areas ''Sembrando Luz'' (Jorge Torres); (8) AeroSmart5, the professional, sysem-compatible small-scale wind energy converter will be tested in field tests (Fabian Jochem); (9) Lifetime, test procedures and recommendations for optimal operating strategies for lead-acid-batteries in renewable energy systems - A survey on results from European projects from the 5th framework programme (Rudi Kaiser); (10) Prototype of a reversible fuel cell system for autonomous power supplies (Tom Smolinska); (11) Interconnection management in microgrids (Michel Vandenbergh); (12) Control strategy for a small-scale stand-alone power system based on renewable energy and hydrogen (Harald Miland); (13) Standard renewable electricity supply for people in rural areas - mini-grids in western provinces of China (Michael Wollny); (14) The Brava island a ''100% renewable energy'' project (Jean-Christian Marcel); (15) Breakthrough to a new era of PV-hybrid systems with the help of standardised components communication? (Michael Mueller); (16) Standardized

  11. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)

    Institute of Scientific and Technical Information of China (English)

    Xing Ju; Chao Xu; Zhirong Liao; Xiaoze Du; Gaosheng Wei; Zhifeng Wang; Yongping Yang

    2017-01-01

    In conventional photovoltaic (PV) systems,a large portion of solar energy is dissipated as waste heat since the generating efficiency is usually less than 30%.As the dissipated heat can be recovered for various applications,the wasted heat recovery concentrator PV/thermal (WHR CPVT) hybrid systems have been developed.They can provide both electricity and usable heat by combining thermal systems with concentrator PV (CPV) module,which dramatically improves the overall conversion efficiency of solar energy.This paper systematically and comprehensively reviews the research and development ofWHR CPVT systems.WHR CPVT systems with innovative design configurations,different theoretical evaluation models and experimental test processes for several implementations are presented in an integrated manner.We aim to provide a global point of view on the research trends,market potential,technical obstacles,and the future work which is required in the development of WHR CPVT technology.Possibly,it will offer a generic guide to the investigators who are interested in the study of WHR CPVT systems.

  12. Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid

    Science.gov (United States)

    Gangadevi, R.; Vinayagam, B. K.; Senthilraja, S.

    2017-05-01

    In this paper, the PV/T (Photovoltaic thermal unit) system is investigated experimentally to examine the thermal, electrical and overall efficiency by circulating Al2O3/water nanofluid of 1wt% and 2wt% with an optimum flow rate of 40L/H. The overall efficiency of PVT system is largely influenced by various factors such as heat due to photovoltaic action; energy radiated at the infrared wavelength of the solar spectrum, solar irradiance, mounting structure, tilt angle, wind speed direction, Ambient temperature and panel material composition. However, the major factor is considered in this study to extract the heat generated in the PV panel by using nanofluid as a coolant to increase the overall system efficiency. Therefore, the result shows that by using 2 wt% Al2O3/water nanofluid the electrical efficiency, thermal efficiency and overall efficiency of the PVT system enhanced by 13%, 45%, and 58% respectively compared with water.

  13. Analysis on the Performance of Copper Indium Gallium Selenide (CIGS Based Photovoltaic Thermal

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available This paper deals with the efficiency improvement of Copper Indium Gallium Selenide (CIGS Photovoltaic (PV and also solar thermal collector. Photovoltaic thermal (PV/T can improve overall efficiency for PV and also solve the problem of limited roof space at urban area. Objective of this study is to clarify the effect of mass flow rate on the efficiency of the PV/T system. A CIGS solar cell is used with rated output power 65 W and 1.18 m2 of area. 4 set of experiments were carried out, which were: thermal collector with 0.12 kg/s flow rate, PV/T with 0.12 kg/s flow rate, PV/T with 0.09 kg/s flow rate and PV. It was found that PV/T with 0.12 kg/s flow rate had the highest electrical efficiency, 2.92 %. PV/T with 0.09 kg/s flow rate had the lowest electrical efficiency, 2.68 %. It also had 2 % higher overall efficiency. The efficiency gained is low due to several factors. The rated output power of the PV is low for the area of 1.18 m2. The packing factor of the PV also need to be considered as it may not be operated at the optimal packing factor. Furthermore, aluminium sheet of the PV may affect the PV temperature due to high thermal conductivity. Further study on more values of mass flow rate and also other parameters that affect the efficiency of the PV/T is necessary.

  14. Hybrid solar collector using nonimaging optics and photovoltaic components

    Science.gov (United States)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  15. PV/T slates - Pilot project in Steinhausen; PV/T-Schiefer. Pilotprojekt Steinhausen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with a ventilated PV-tile system (PV/T-Slates) mounted on a garden shed in Steinhausen, Switzerland. The installation provides power and heat to the main house. The report describes the construction and operation of this pilot project and the results of measurements made on its electrical and thermal performance. The results of measurements made are presented in detail in graphical form and compared with the results of simulation. Suggestions are made for the optimisation of the system. Figures are presented on energy production and energy flows in graphical form.

  16. 新型PV/T太阳能利用复合系统的实验研究%Experimental Study on A Novel Hybrid Photovoltaic/Thermal Solar System

    Institute of Scientific and Technical Information of China (English)

    李光明; 刘祖明; 李景天; 廖华; 朱勋梦; 张卫东

    2013-01-01

    A novel hybrid photovoltaic /thermal solar system,which combining flat stainless steel box as solar heat collectors with aluminum alloy backplane monocrystalline silicon PV components,and using the thermally conductive silica-gel for adhesion,was designed to improve the energy efficiency and to supply hot water and electricity.The system performed good adhesion,insulation and heat conduction between the collector and PV module.The electrical and thermal efficiency of the system are tested through experiments conducted in Kunming area with different water mass and under different conditions.The results show that the total efficiency and general energy efficiency of novel PV/T system is higher in 75kg water mass sunny weather.Its electrical efficiency,thermal efficiency,total efficiency and general energy efficiency are 14%,37%,51%,and 70.72%,respectively.Compared with in 50kg water mass sunny or 75kg water mass cloudy weather,the general efficiency has been enhanced by 11.86% or 2.09%.Compared with pure PV system or the nature circulation of the solar water collector,The novel PV/T systems has several advantages,including smaller occupied area,higher utilization of solar energy and lower expenditure.%为提高PV/T系统太阳能利用率,同时获得可利用的热水和电力,将铝合金背板型单晶硅光伏组件和自行设计制作的不锈钢扁盒式集热板相结合,用导热硅胶加以粘接制成新型光伏光热一体化(PV/T)复合系统,该系统实现了光伏组件与集热板之间良好的粘接性、绝缘性和热传导,并在昆明地区对系统进行测试,分析了系统在不同水箱水容量及不同天气工况下运行的光电光热性能.结果表明,系统在75kg水箱水容量(m)晴天工况下运行效率更高,系统的平均电效率、热效率、综合效率及综合性能效率分别在14%、37%、51%、70.72%左右,与系统在50kg水箱水容量晴天或75kg水箱水容量多云工况下

  17. Photovoltaic thermal module concepts and their performance analysis: A review

    International Nuclear Information System (INIS)

    Hasan, M. Arif; Sumathy, K.

    2010-01-01

    This paper presents a review of the available literature covering the latest module aspects of different photovoltaic/thermal (PV/T) collectors and their performances in terms of electrical as well as thermal output. The review covers detailed description of flat-plate and concentrating PV/T systems, using liquid or air as the working fluid, numerical model analysis, experimental work and qualitative evaluation of thermal and electrical output. Also an in-depth review on the performance parameters such as, optimum mass flow rate, PV/T dimensions, air channel geometry is presented in this study. Based on the thorough review, it is clear that PV/T modules are very promising devices and there exists lot of scope to further improve their performances. Appropriate recommendations are made which will aid PV/T systems to improve their efficiency and reducing their cost, making them more competitive in the present market. (author)

  18. Photovoltaic thermal module concepts and their performance analysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, M. Arif; Sumathy, K. [Department of Mechanical Engineering, North Dakota State University, Fargo, ND (United States)

    2010-09-15

    This paper presents a review of the available literature covering the latest module aspects of different photovoltaic/thermal (PV/T) collectors and their performances in terms of electrical as well as thermal output. The review covers detailed description of flat-plate and concentrating PV/T systems, using liquid or air as the working fluid, numerical model analysis, experimental work and qualitative evaluation of thermal and electrical output. Also an in-depth review on the performance parameters such as, optimum mass flow rate, PV/T dimensions, air channel geometry is presented in this study. Based on the thorough review, it is clear that PV/T modules are very promising devices and there exists lot of scope to further improve their performances. Appropriate recommendations are made which will aid PV/T systems to improve their efficiency and reducing their cost, making them more competitive in the present market. (author)

  19. Optimal design of orientation of PV/T collector with reflectors

    International Nuclear Information System (INIS)

    Kostic, Lj.T.; Pavlovic, T.M.; Pavlovic, Z.T.

    2010-01-01

    Hybrid conversion of solar radiation implies simultaneous solar radiation conversion into thermal and electrical energy in the PV/Thermal collector. In order to get more thermal and electrical energy, flat solar radiation reflectors have been mounted on PV/T collector. To obtain higher solar radiation intensity on PV/T collector, position of reflectors has been changed and optimal position of reflectors has been determined by both experimental measurements and numerical calculation so as to obtain maximal concentration of solar radiation intensity. The calculated values have been found to be in good agreement with the measured ones, both yielding the optimal position of the flat reflector to be the lowest (5 o ) in December and the highest (38 o ) in June. In this paper, the thermal and electrical efficiency of PV/T collector without reflectors and with reflectors in optimal position have been calculated. Using these results, the total efficiency and energy-saving efficiency of PV/T collector have been determined. Energy-saving efficiency for PV/T collector without reflectors is 60.1%, which is above the conventional solar thermal collector, whereas the energy-saving efficiency for PV/T collector with reflectors in optimal position is 46.7%, which is almost equal to the values for conventional solar thermal collector. Though the energy-saving efficiency of PV/T collector decreases slightly with the solar radiation intensity concentration factor, i.e. the thermal and electrical efficiency of PV/T collector with reflectors are lower than those of PV/T collector without reflectors, the total thermal and electrical energy generated by PV/T collector with reflectors in optimal position are significantly higher than total thermal and electrical energy generated by PV/T collector without reflectors.

  20. Combined photovoltaic and solar-thermal systems: overcoming barriers to market acceptance

    International Nuclear Information System (INIS)

    Collins, M.R.

    2005-01-01

    Combined Photovoltaic and Solar-Thermal Systems (PV/T Systems) combine Photovoltaic (PV) and solar thermal technologies into one system with both electrical and thermal energy output. PV/T systems have several perceived advantages to stand-alone PV or solar-thermal systems. The increased efficiency and dual nature of the systems make suitable for situations where installation space is limited, and for homeowners who are forced to decide between meeting thermal or electrical needs. The financial benefit of the combined system is also significant, as the long payback of PV systems is joined with a relatively short payback of solar thermal systems. A background of PV/T was presented, with details of classifications and the International Energy Association's program to evaluate the technical status of PV/T systems and formulate a roadmap for future development. It was noted that input from the Solar Heating and Cooling Program (SHCP) is needed to help identify market barriers in PV/T systems. This paper reviewed existing and potential PV/T systems and their technical status, and reported on the methodology established by IEA group 35. The systems were grouped according to thermal collector types of unglazed water collectors, glazed water collectors, unglazed air collectors, glazed air collectors, air-flow windows, and concentrating collectors. It was noted that a number of new systems are currently being developed, including concentrating collectors with water and air heating, unglazed air heating systems, and unglazed water heating systems. It was noted that apart from technical barriers, efficient design and performance prediction are also problematic, as tools for predicting performance do not exist. The same tools will be used to optimize PV/T system designs. It was suggested that standardized reporting methods, simulation and sizing tools and demonstration products need to be created and that regional certification issues need to be identified. Environmental

  1. Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications

    International Nuclear Information System (INIS)

    Tsuanyo, David; Azoumah, Yao; Aussel, Didier; Neveu, Pierre

    2015-01-01

    This paper presents a new model and optimization procedure for off-grid hybrid PV (photovoltaic)/Diesel systems operating without battery storage. The proposed technico-economic model takes into account the variability of both the solar irradiation and the electrical loads. It allows optimizing the design and the operation of the hybrid systems by searching their lowest LCOE (Levelized Cost of Electricity). Two cases have been investigated: identical Diesel generators and Diesel generators with different sizes, and both are compared to conventional standalone Diesel generator systems. For the same load profile, the optimization results show that the LCOE of the optimized batteryless hybrid solar PV/Diesel (0.289 €/kWh for the hybrid system with identical Diesel generators and 0.284 €/kWh for the hybrid system with different sizes of Diesel generators) is lower than the LCOE obtained with standalone Diesel generators (0.32 €/kWh for the both cases). The obtained results are then confirmed by HOMER (Hybrid Optimization Model for Electric Renewables) software. - Highlights: • A technico-economic model for optimal design and operation management of batteryless hybrid systems is developed. • The model allows optimizing design and operation of hybrid systems by ensuring their lowest LCOE. • The model was validated by HOMER. • Batteryless hybrid system are suitable for off-grid applications

  2. Energy and economic analysis of an On-grid PV/T system in a dairy farm in Chile

    International Nuclear Information System (INIS)

    Coca-Ortegón, Adriana; Atienza-Márquez, Antonio; Coronas, Alberto; Merino, Gabriel; Gontupi, Jorge; Salazar, Francisco

    2017-01-01

    The objective of this study is to evaluate the performance of an on-grid PV/T system in a dairy farm located in Osorno (Chile), operated under the Net-Metering scheme. All equipment installed in the farm is driven by electricity and the daily average electric consumption is 235 kWh. The study analyses first the existing installation, second a conventional solar installation (with photovoltaic and solar thermal technologies), and third a photovoltaic installation plus a photovoltaic-thermal hybrid installation. We did a sensibility analysis of the solar contribution factor to the self-consumption (electric and thermal), by varying the mass flow rate in the solar thermal circuit, and the energy storage size. This analysis allowed to optimize the sizing and the operation of the solar systems. The systems are compared in terms of annual energy production per unit area, unit price of energy produced and percentage of energy exported to the grid. (author)

  3. Design procedures of hybrid PV/SMES system

    International Nuclear Information System (INIS)

    Hamad, Ismail; El-Sayas, M. A.

    2006-01-01

    This paper presents accurate procedures to determine the design parameters of an autonomous hybrid PV/SMES system. Integrating Superconductive magnetic energy storage as a recent storage technology with photovoltaic power system enhances the PV output utilization during the solar radiation fluctuations period. this is because of SMES fast response to any PV output fluctuation. The load demand is supplied either from PV plant or through SMES or from both. Imposed to the technical and economical constrains, the optimum solar cells area and the proper capacity and rating of SMES system are assessed. Regarding solar radiation profile, clear and cloudy days are accurately considered for investigation. Three indices are suggested to express the cloudy and fluctuations conditions. These indices represent the non-utilized PV energy due to clouds (x), fluctuation period (T f ) and location of fluctuations period(t s t). The incremental changes in the design parameters are computed for any variation in these indices. Differentiation between the role of BS and SMES in affecting the results is determined and quantitatively analyzed. The results of clear day condition with SMES are the bas quantities for these changes. Complete analysis of the most effective parameters is presented. Eventually, mathematical models are deduced for each parameter which assists in predicting its behavior against the independent variable.(Author)

  4. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    Science.gov (United States)

    Guo, L. Jay

    2015-10-01

    adopted by other material systems as well. Based on these understandings, we have also developed colored perovskite PV by integrating an optical cavity with the perovskite semiconductors [4]. The principle and experimental results will be presented. 1. J. Y. Lee, K. T. Lee, S.Y. Seo, L. J. Guo, "Decorative power generating panels creating angle insensitive transmissive colors," Sci. Rep. 4, 4192, 2014. 2. K. T. Lee, J.Y. Lee, S.-Y. Seo, and L. J. Guo, "Colored ultra-thin hybrid photovoltaics with high quantum efficiency," Light: Science and Applications, 3, e215, 2014. 3. K. T. Lee, S.-Y. Seo, J.Y. Lee, and L. J. Guo, "Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters," Appl. Phys. Lett. 104, 231112, (2014); and "Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters," Adv. Mater, 26, 6324-6328, 2014. 4. K. T. Lee, M. Fukuda, L. J. Guo, "Colored, see-through perovskite solar cells employing an optical cavity," Submitted, 2015

  5. Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system

    International Nuclear Information System (INIS)

    Kim, Myungchin; Bae, Sungwoo

    2017-01-01

    Highlights: • This paper introduces the design and control of a PV-battery hybrid power system. • Reliable and scalable operation of hybrid power systems is achieved. • System and power control are performed without a centralized controller. • Reliability and scalability characteristics are studied in a quantitative manner. • The system control performance is verified using realistic solar irradiation data. - Abstract: This paper presents the design and control of a sustainable standalone photovoltaic (PV)-battery hybrid power system (HPS). The research aims to develop an approach that contributes to increased level of reliability and scalability for an HPS. To achieve such objectives, a PV-battery HPS with a passively connected battery was studied. A quantitative hardware reliability analysis was performed to assess the effect of energy storage configuration to the overall system reliability. Instead of requiring the feedback control information of load power through a centralized supervisory controller, the power flow in the proposed HPS is managed by a decentralized control approach that takes advantage of the system architecture. Reliable system operation of an HPS is achieved through the proposed control approach by not requiring a separate supervisory controller. Furthermore, performance degradation of energy storage can be prevented by selecting the controller gains such that the charge rate does not exceed operational requirements. The performance of the proposed system architecture with the control strategy was verified by simulation results using realistic irradiance data and a battery model in which its temperature effect was considered. With an objective to support scalable operation, details on how the proposed design could be applied were also studied so that the HPS could satisfy potential system growth requirements. Such scalability was verified by simulating various cases that involve connection and disconnection of sources and loads. The

  6. Simulation and Modeling of a Five -Level (NPC Inverter Fed by a Photovoltaic Generator and Integrated in a Hybrid Wind-PV Power System

    Directory of Open Access Journals (Sweden)

    M. Rezki,

    2017-08-01

    Full Text Available A distributed hybrid coordinated wind photovoltaic (PV power system was proposed in this paper. As oil and coal reserves are being depleted whilst at the same time the energy demand is growing, it is important to consider alternative energy generating techniques. Today, the five-level (NPC inverter represents a good alternative for several industrial applications. To take advantage of the five-level inverter topology and the benefits of renewable energy represented by a photovoltaic generator, a new scheme of these controllers is proposed in this work. This paper outlines the design of a hybrid power system consisting of a solar photovoltaic (PV and a wind power system. The system is modeled in Matlab Simulink and tested for various conditions. The model and results are discussed in this paper.

  7. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  8. PV-hybrid and thermoelectric collectors

    Energy Technology Data Exchange (ETDEWEB)

    Rockendorf, G.; Sillmann, R. [Institut fuer Solarenergieforschung GmbH, Emmerthal (Germany); Podlowski, L.; Litzenburger, B. [SolarWerk GmbH, Teltow (Germany)

    1999-07-01

    Two different principles of thermoelectric cogeneration solar collectors have been realized and investigated. Concerning the first principle, the thermoelectric collector (TEC) delivers electricity indirectly by first producing heat and subsequently generating electricity by means of a thermoelectric generator. Concerning the second principle, the photovoltaic-hybrid collector (PVHC) uses photovoltaic cells, which are cooled by a liquid heat-transfer medium. The characteristics of both collector types are described. Simulation modules have been developed and implemented in TRNSYS 14.1 (1994), in order to simulate their behaviour in typical domestic hot-water systems. The discussion of the results shows that the electric output of the PV-hybrid collector is significantly higher than that of the thermoelectric collector. (author)

  9. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power

  10. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  11. Experimental study on a hybrid photovoltaic/heat pump system

    International Nuclear Information System (INIS)

    Chen Hongbing; Riffat, Saffa B.; Fu Yu

    2011-01-01

    Several studies have found that the decrease of photovoltaic (PV) cell temperature would increase the solar-to-electricity conversion efficiency. Different working fluids such as air and water have been used for the cooling of PV modules, but the improvement in energy performance has been found to be small. In this paper, R134a refrigerant was employed to cool the PV modules. With its low evaporating temperature, it was expected to achieve better cooling effect and electrical performance of the PV modules than using air and water working fluids. An experimental rig of a hybrid micro PV panel-based heat pump system was constructed for the performance testing in a laboratory at University of Nottingham. A small PV panel was made of 6 glass vacuum tube - PV module - aluminium sheet - cooper tube (GPAC) sandwiches connected in series, acting as the evaporator. This was coupled with a small heat pump system. The glass vacuum tubes reduced the heat loss from the PV panel to the ambient, resulting in the improvement of thermal performance. Three testing modes were proposed to investigate the effect of solar radiation, condenser water flow rate and condenser water supply temperature on energy performance. The testing results showed that an averaged COP reached 3.8, 4.3 and 4.0 under the three testing modes with variable radiation, condenser water supply water temperature and water flow rate, respectively, but this could be much higher for a large capacity heat pump system using large PV panels on building roofs. The COP increased with the increasing solar radiation, but decreased with the increasing condenser water supply temperature and water flow rate. The electrical efficiency of PV panel was improved by up to 1.9% based on a reference PV efficiency of 3.9%, compared with that without cooling. The condenser water supply temperature and water flow rate had little effect on the electrical performance. - Highlights: → R134a refrigerant was used for cooling of PV modules

  12. 基于模拟太阳辐射强度对自然循环式PV/T系统的实验研究%Simulation Experiment Study of the Effect of Solar Radiation Intensity on PV/T System with Natural Circulation

    Institute of Scientific and Technical Information of China (English)

    王红岩; 杨洪兴; 吕建; 李宪莉

    2015-01-01

    为提高太阳能的利用率同时得到可资利用的电能和热能,对辐射强度对光伏光热建筑热电联供系统的影响进行实验研究。在太阳能模拟实验室进行了自然循环模式下,太阳辐射强度对系统的发电效率、热效率以及综合效率和一次能源节约率的影响进行分析,结果表明:太阳辐射强度是影响PV/T系统的主要因素。%For the improvement of the availability of solar energy and the obtaining of the available electrical and thermal energy,an experimental study of the effect of radiation intensity on solar hybrid photovoltaic and thermal system(PV/T)is conducted. An analysis of the effect of solar radiation intensity on the power generation efficiency and the thermal effi-ciency,overall efficiency and primary energy saving ratio of the PV/T system is carried out under the circulation pattern at different radiation intensity in the photovoltaic solar simulation laboratory. The result shows that the solar radiation intensity is the major influence factor of PV/T system.

  13. Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT System

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2017-04-01

    Full Text Available In recent years, with the development of photovoltaic system and photo-thermal system technology, hybrid photovoltaic-thermal (PVT technology has been a breakthrough in many aspects. This paper describes the movable hybrid PVT system from the aspects of appearance structure, energy flow, and control circuit. The system is equipped with rolling wheels and the simulated light sources also can be removed so that the system can be used in the outdoor conditions. The movable system is also suitable for the PVT system and its related applications without any external power supply. This system combines two technologies: photovoltaic power generation and photo-thermal utilization. The first part of the power supply is for the systems own output power supply, and the second part is for generating thermal energy. The two separate parts can be controlled and monitored respectively through the control circuits and the touch screens. The experimental results show that the system can generate 691 kWh electric energy and 3047.8 kWh thermal energy each year under normal working conditions. The efficiency of the proposed movable hybrid PVT system is calculated to be approximately 42.82% using the revised equations that are proposed in this paper. Therefore, the movable hybrid PVT system can meet the daily demands of hot water and electricity power in remote areas or islands and other non-grid areas. It also can be used to conduct experiment tests for the PVT system.

  14. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration

    International Nuclear Information System (INIS)

    Tan, Lijun; Ji, Xu; Li, Ming; Leng, Congbin; Luo, Xi; Li, Haili

    2014-01-01

    Highlights: • A two-stage photovoltaic thermal system based on solar trough concentration. • Maximum cell efficiency of 5.21% with the mirror opening width of 57 cm. • With single cycle, maximum temperatures rise in the heating stage is 12.06 °C. • With 30 min multiple cycles, working medium temperature 62.8 °C, increased 28.7 °C. - Abstract: A two-stage photovoltaic thermal system based on solar trough concentration is proposed, in which the metal cavity heating stage is added on the basis of the PV/T stage, and thermal energy with higher temperature is output while electric energy is output. With the 1.8 m 2 mirror PV/T system, the characteristic parameters of the space solar cell under non-concentrating solar radiation and concentrating solar radiation are respectively tested experimentally, and the solar cell output characteristics at different opening widths of concentrating mirror of the PV/T stage under condensation are also tested experimentally. When the mirror opening width was 57 cm, the solar cell efficiency reached maximum value of 5.21%. The experimental platform of the two-stage photovoltaic thermal system was established, with a 1.8 m 2 mirror PV/T stage and a 15 m 2 mirror heating stage, or a 1.8 m 2 mirror PV/T stage and a 30 m 2 mirror heating stage. The results showed that with single cycle, the long metal cavity heating stage would bring lower thermal efficiency, but temperature rise of the working medium is higher, up to 12.06 °C with only single cycle. With 30 min closed multiple cycles, the temperature of the working medium in the water tank was 62.8 °C, with an increase of 28.7 °C, and thermal energy with higher temperature could be output

  15. Model and analysis of solar thermal generators to reduce the intermittency of photovoltaic systems with the use of spectrum splitting

    Science.gov (United States)

    Ayala, Silvana; Wu, Yuechen; Vorndran, Shelby; Santiago, Raphael P.; Kostuk, Raymond K.

    2015-09-01

    In this paper we introduce an approach to damping intermittency in photovoltaic (PV) system output due to fluctuations in solar illumination generated by use of a hybrid PV-thermal electric (TE) generation system. We describe the necessary constrains of the PV-TE system based on its thermodynamic characteristics. The basis for the approach is that the thermal time constant for the TE device is much longer than that of a PV cell. When used in combination with an optimized thermal storage device short periods of intermittency (several minutes) in PV output due to passing clouds can be compensated. A comparison of different spectrum splitting systems to efficiently utilize the incident solar spectrum between the PV and TE converters are also examined. The time-dependent behavior of a hybrid PV-TE converter with a thermal storage element is computed with SMARTS modeled irradiance data and compared to real weather and irradiation conditions for Tucson, Arizona.

  16. Dynamic response evaluation of sensorless MPPT method for hybrid PV-DFIG wind turbine system

    Directory of Open Access Journals (Sweden)

    Danvu Nguyen

    2016-01-01

    Full Text Available This research proposes a sensorless Maximum Power Point Tracking (MPPT method for a hybrid Photovoltaic-Wind system, which consists of Photovoltaic (PV system and Doubly-Fed Induction Generator (DFIG Wind Turbine. In the hybrid system, the DC/DC converter output of the PV system is directly connected to the DC-link of DFIG’s back-to-back converter. Therefore, the PV inverter and its associated circuit can be removed in this structure. Typically, the PV power is monitored by using PV current sensor and PV voltage sensor for MPPT. In this paper, the powers of converters on grid side and rotor side of DFIG are used to estimate the PV power without the PV current sensor. That can efficiently reduce the cost of the hybrid system. The detailed analysis of the sensorless MPPT method, which includes derived equations and operation response, is also presented in this paper. In addition, an overview of PV-DFIG research in literature is stated to supply comprehensive knowledge of related research.

  17. Transient analysis of the double pass photovoltaic thermal solar collector

    International Nuclear Information System (INIS)

    Alfegi, Ebrahim M.; Sopian, Kamaruzzaman; Abakr, Yousif A.

    2006-01-01

    A mathematical model of a double pass photovoltaic thermal (PV/T) solar collector is reported in this work. It is composed of five couple unsteady nonlinear partial differential equations which are solved by using Gear implicit numerical scheme. That model was validated against experimental data and was found to accurately predict the temperature of the circulated air as well as the temperature distribution of every static elements in a two-pass PV/T solar collector.(Author)

  18. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    Science.gov (United States)

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  19. Performance Optimization of Unglazed Nanofluid Photovoltaic/Thermal System: Energy and Exergy Analyses

    Directory of Open Access Journals (Sweden)

    M. Imtiaz Hussain

    2018-01-01

    Full Text Available The focus of this paper is to predict the transient response of a nanoengineered photovoltaic thermal (PV/T system in view of energy and exergy analyses. Instead of a circular-shaped receiver, a trapezoidal-shaped receiver is employed to increase heat transfer surface area with photovoltaic (PV cells for improvement of heat extraction and thus achievement of a higher PV/T system efficiency. The dynamic mathematical model is developed using MATLAB® software by considering real-time heat transfer coefficients. The proposed model is validated with experimental data from a previous study. Negligible discrepancies were found between measured and predicted data. The validated model was further investigated in detail using different nanofluids by dispersing copper oxide (CuO and aluminum oxide (Al2O3 in pure water. The overall performance of the nanoengineered PV/T system was compared to that of a PV/T system using water only, and optimal operating conditions were determined for maximum useful energy and exergy rates. The results indicated that the CuO/water nanofluid has a notable impact on the energy and exergy efficiencies of the PV/T system compared to that of Al2O3/water nanofluid and water only cases.

  20. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  1. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  2. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-01-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  3. Photovoltaics for Buildings Cutting-Edge PV

    International Nuclear Information System (INIS)

    Hayter, S. J.; Martin, R. L.

    1998-01-01

    Photovoltaic (PV) technology development for building-integrated applications (commonly called PV for Buildings) is one of the fastest growing areas in the PV industry. Buildings represent a huge potential market for photovoltaics because they consume approximately two-thirds of the electricity consumed in the US. The PV and buildings industries are beginning to work together to address issues including building codes and standards, integration, after-market servicing, education, and building energy efficiency. One of the most notable programs to encourage development of new PV-for-buildings products is the PV:BONUS program, supported by the US Department of Energy. Demand for these products from building designers has escalated since the program was initiated in 1993. This paper presents a range of PV-for-buildings issues and products that are currently influencing today's PV and buildings markets

  4. An insight on advantage of hybrid sun–wind-tracking over sun-tracking PV system

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Banybayat, Meisam; Tagheie, Yaghoub; Valeh-e-Sheyda, Peyvand

    2015-01-01

    Graphical abstract: Real photograph of hybrid sun–wind-tracking system. - Highlights: • Novel hybrid sun–wind-tracking system proposed to enhance PV cell performance. • The wind tracker can cool down the PV cell as sun-tracking system work. • The hybrid tracker achieved 7.4% increase in energy gain over the sun tracker. • The overall daily output energy gain was increased by 49.83% by using this system. - Abstract: This paper introduces the design and application of a novel hybrid sun–wind-tracking system. This hybrid system employs cooling effect of wind, besides the advantages of tracking sun for enhancing power output from examined hybrid photovoltaic cell. The principal experiment focuses on comparison between dual-axes sun-tracking and hybrid sun–wind-tracking photovoltaic (PV) panels. The deductions based on the research tests confirm that the overall daily output energy gain was increased by 49.83% compared with that of a fixed system. Moreover, an overall increase of about 7.4% in the output power was found for the hybrid sun–wind-tracking over the two-axis sun tracking system.

  5. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  6. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  7. Photovoltaic (PV) contribution to the primary frequency control

    International Nuclear Information System (INIS)

    Rafa, Adel Hamad

    2012-01-01

    Photovoltaic (PV) technology is among the most efficient and cost effective renewable energy kinds currently available on the market. The connection of a large number of PVs to the grid may influence the frequency and voltage stability of the power system. This paper proposes load-frequency control technique for system with high penetration of photovoltaic (PV). The proposed controller has been successfully implemented and tested using PSCAD/EMTDC. In this study, the impact of photovoltaic (PV) on frequency stability of the system is studies in detail. This study shows that large penetration of photovoltaic (PV) with load and frequency control has a significant impact on the stability and security level of electrical network.(author)

  8. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material

    International Nuclear Information System (INIS)

    Jouhara, H.; Milko, J.; Danielewicz, J.; Sayegh, M.A.; Szulgowska-Zgrzywa, M.; Ramos, J.B.; Lester, S.P.

    2016-01-01

    A novel flat heat pipe design has been developed and utilised as a building envelope and thermal solar collector with and without (PV) bonded directly to its surface. The design of the new solar collector has been validated through full scale testing in Cardiff, UK where solar/thermal, uncooled PV and PV/T tests were carried out on three identical systems, simultaneously. The tests showed a solar/thermal energy conversion efficiency of around 64% for the collector with no PV and 50% for the system with the PV layer on it. The effect of cooling on the solar/electrical energy conversion efficiency was also investigated and an efficiency increase of about 15% was recorded for the cooled PV system due to the provided homogenous cooling. The new flat heat pipe solar collector is given the name “heat mat” and, in addition to being an efficient solar collector type, it is also designed to convert a building envelope materials to become energy-active. A full size roof that utilise this new building envelope material is reported in this paper to demonstrate the way this new collector is integrated as a building envelope material to form a roof. A thermal absorption test, in a controlled environment, from the ambient to the heat mat with no solar radiation is also reported. The test has proved the heat mat as an efficient thermal absorber from the ambient to the intermediate fluid that deliver the heat energy to the heat pump system. - Highlights: • A new flat heat pipe PV/T system that can be used as building materials is reported. • The new solar collector enhanced the performance of the PV by about 15%. • The new solar collector is capable of absorbing heat from ambient efficiently. • The new system is efficient from the solar/thermal conversion point of view.

  9. Optimal stochastic management of renewable MG (micro-grids) considering electro-thermal model of PV (photovoltaic)

    International Nuclear Information System (INIS)

    Najibi, Fatemeh; Niknam, Taher; Kavousi-Fard, Abdollah

    2016-01-01

    This paper aims to report the results of the research conducted to one thermal and electrical model for photovoltaic. Moreover, one probabilistic framework is introduced for considering all uncertainties in the optimal energy management of Micro-Grid problem. It should be noted that one typical Micro-Grid is being studied as a case, including different renewable energy sources, such as Photovoltaic, Micro Turbine, Wind Turbine, and one battery as a storage device for storing energy. The uncertainties of market price variation, photovoltaic and wind turbine output power change and load demand error are covered by the suggested probabilistic framework. The Micro-Grid problem is of nonlinear nature because of the stochastic behavior of the renewable energy sources such as Photovoltaic and Wind Turbine units, and hence there is need for a powerful tool to solve the problem. Therefore, in addition to the simulated thermal model and suggested probabilistic framework, a new algorithm is also introduced. The Backtracking Search Optimization Algorithm is described as a useful method to optimize the MG (micro-grids) problem. This algorithm has the benefit of escaping from the local optima while converging fast, too. The proposed algorithm is also tested on the typical Micro-Grid. - Highlights: • Proposing an electro-thermal model for PV. • Proposing a new stochastic formulation for optimal operation of renewable MGs. • Introduction of a new optimization method based on BSO to explore the problem search space.

  10. Experimental Comparison of Two Configurations of Hybrid Photovoltaic Thermal Collectors

    International Nuclear Information System (INIS)

    Khaled Toufeka; Mourad Haddadib; Ali Mkc

    2011-01-01

    The combination of a thermal collector and a photovoltaic module in a single system allows for increased efficiency of the total conversion of solar energy. A synergistic effect can be obtained in a structure combining these two devices in a judicious manner to those of thermal and photovoltaic system installed separately. Production of total energy from hybrid collector depends on the input (that is to say, the. energy of solar radiation, air temperature and wind speed) and output which is the electric production and the temperature of the system. Thin production also depends on the mode of heal extraction. In this paper, an experimental Study of two configurations of hybrid collectors is described. The configuration that the absorber is made by galvanized steel and in the second, the absorber is a copper serpentine. The advantages of the first configuration are mainly due to low cost and simplicity but the second configuration has the advantage of promoting the heat transfer between cells and fluid. (authors)

  11. Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three-Phase-Islanded Microgrid Consisting of Hybrid Source PV/Battery Units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Guerrero, Josep M.

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method is not limited to the systems with separate PV...... in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  12. Grid-connected Photovoltaic Micro-inverter with New Hybrid Control LLC Resonant Converter

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Qingbo, Ke

    2016-01-01

    A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse-frequency modulat......A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse......-frequency modulation (PFM) and phase-shift pulse-width modulation (PS-PWM) is employed on a full-bridge LLC dc-dc converter, in order to achieve high efficiency when PV output voltage varies in a wide range. Moreover, a maximum power point tracking (MPPT) method based on power perturbation is implemented in the dc...

  13. Sustainable Heating, Cooling and Ventilation of a Plus-Energy House via Photovoltaic/Thermal Panels

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Sevela, Pavel

    2014-01-01

    Present work addresses the HVAC and energy concerns of the Technical University of Denmark's house, Fold, for the competition Solar Decathlon Europe 2012. Various innovative solutions are investigated; photovoltaic/thermal (PV/T) panels, utilization of ground as a heat source/sink and phase change...... two separate systems. PV/T panels enable the house to perform as a plus-energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively. The ground heat exchanger acts as the heat sink/source of the house. Free cooling enables the same cooling effect...

  14. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  15. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    International Nuclear Information System (INIS)

    Fu, H.D.; Pei, G.; Ji, J.; Long, H.; Zhang, T.; Chow, T.T.

    2012-01-01

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  16. GIS methodology and case study regarding assessment of the solar potential at territorial level: PV or thermal?

    Directory of Open Access Journals (Sweden)

    Loïc Quiquerez

    2015-06-01

    Full Text Available This paper presents a GIS-based methodology for assessing solar photovoltaic (PV and solar thermal potentials in urban environment. The consideration of spatial and temporal dimensions of energy resource and demand allows, for two different territories of the Geneva region, to determine the suitable building roof areas for solar installations, the solar irradiance on these areas and, finally, the electrical and/or thermal energy potentials related to the demand. Results show that the choice of combining PV and solar thermal for domestic hot water (DHW is relevant in both territories. Actually, the installation of properly sized solar thermal collectors doesn’t decrease much the solar PV potential, while allowing significant thermal production. However, solar collectors for combined DHW and space heating (SH require a much larger surface and, therefore, have a more important influence on the PV potential.

  17. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    Armstrong, S.; Hurley, W.G.

    2010-01-01

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  18. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  19. Performance analysis of a photovoltaic-thermochemical hybrid system prototype

    International Nuclear Information System (INIS)

    Li, Wenjia; Ling, Yunyi; Liu, Xiangxin; Hao, Yong

    2017-01-01

    Highlights: •A modular photovoltaic-thermochemical hybrid system prototype is proposed. •Net solar-electric efficiency up to 41% is achievable. •Stable solar power supply is achievable via convenient energy storage. •The modular design facilitates the scalability of the hybrid system. -- Abstract: A solar photovoltaic (PV) thermochemical hybrid system consisting of a point-focus Fresnel concentrator, a PV cell and a methanol thermochemical reactor is proposed. In particular, a reactor capable of operating under high solar concentration is designed, manufactured and tested. Studies on both kinetic and thermodynamic characteristics of the reactor and the system are performed. Analysis of numerical and experimental results shows that with cascaded solar energy utilization and synergy among different forms of energy, the hybrid system has the advantages of high net solar-electric efficiency (up to 41%), stable solar energy power supply, solar energy storage (via syngas) and flexibility in application scale. The hybrid system proposed in this work provides a potential solution to some key challenges of current solar energy utilization technologies.

  20. The rural villages electrification with a hybrid photovoltaic

    International Nuclear Information System (INIS)

    Kocev, Kiril; Dimitrov, Dimitar; Tugjarov, Gjorgji

    2002-01-01

    Depending on a daily load demand, distance from the utility grid and the available solar energy, the rural villages electrification with a hybrid photovoltaic (PV) system can be a cheaper solution than the classic electrification, by connecting them to the utility grid. Besides PV generator, the considered hybrid system is consisted of a battery and a diesel genset. For the concrete case - rural village with estimated daily load demand of 15.5 kWh/day, with the computer program PVFORM, which is modified for such hybrid system, were simulated a few hundreds PV systems, with different sizes of the PV generator and of the battery capacity. Analyzing the obtained results, it can be foreseen the influence of the component size on the system functionality. From the mass of possible system combinations, it is chosen one that has 42 % lower initial investment, than the initial investment for connection of the village to the utility grid. (Original)

  1. Singlet-Fission-Sensitized Hybrid Thin-Films For Next-Generation Photovoltaics

    Science.gov (United States)

    2016-04-12

    SECURITY CLASSIFICATION OF: This grant enabled the acquisition of equipment for the fabrication of organic and nanocrystal based photovoltaic (PV... Photovoltaics . The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 singlet fission, nanocrystal, triplet, hybrid, photovoltaic REPORT

  2. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  3. Performance Characterisation of a Hybrid Flat-Plate Vacuum Insulated Photovoltaic/Thermal Solar Power Module in Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Andrew Y. A. Oyieke

    2016-01-01

    Full Text Available A flat-plate Vacuum Insulated Photovoltaic and Thermal (VIPV/T system has been thermodynamically simulated and experimentally evaluated to assess the thermal and electrical performance as well as energy conversion efficiencies under a subtropical climate. A simulation model made of specified components is developed in Transient Systems (TRNSYS environment into which numerical energy balance equations are implemented. The influence of vacuum insulation on the system’s electrical and thermal yields has been evaluated using temperatures, current, voltage, and power flows over daily and annual cycles under local meteorological conditions. The results from an experiment conducted under steady-state conditions in Durban, South Africa, are compared with the simulation based on the actual daily weather data. The VIPV/T has shown improved overall and thermal efficiencies of 9.5% and 16.8%, respectively, while electrical efficiency marginally reduced by 0.02% compared to the conventional PV/T. The simulated annual overall efficiency of 29% (i.e., 18% thermal and 11% electrical has been realised, in addition to the solar fraction, overall exergy, and primary energy saving efficiencies of 39%, 29%, and 27%, respectively.

  4. Improving of the photovoltaic / thermal system performance using water cooling technique

    International Nuclear Information System (INIS)

    Hussien, Hashim A; Numan, Ali H; Abdulmunem, Abdulmunem R

    2015-01-01

    This work is devoted to improving the electrical efficiency by reducing the rate of thermal energy of a photovoltaic/thermal system (PV/T).This is achieved by design cooling technique which consists of a heat exchanger and water circulating pipes placed at PV module rear surface to solve the problem of the high heat stored inside the PV cells during the operation. An experimental rig is designed to investigate and evaluate PV module performance with the proposed cooling technique. This cooling technique is the first work in Iraq to dissipate the heat from PV module. The experimental results indicated that due to the heat loss by convection between water and the PV panel's upper surface, an increase of output power is achieved. It was found that without active cooling, the temperature of the PV module was high and solar cells could only achieve a conversion efficiency of about 8%. However, when the PV module was operated under active water cooling condition, the temperature was dropped from 76.8°C without cooling to 70.1°C with active cooling. This temperature dropping led to increase in the electrical efficiency of solar panel to 9.8% at optimum mass flow rate (0.2L/s) and thermal efficiency to (12.3%). (paper)

  5. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  6. The rural areas electrification with a hybrid photovoltaic systems

    International Nuclear Information System (INIS)

    Kocev, Kiril I.; Dimitrov, Dimitar; Tudzharov, Gjorgji

    2001-01-01

    Depending on a daily load demand, distance from the utility grid and the available solar energy, the rural villages electrification with a hybrid photovoltaic (PV) system can be a cheaper solution than the classic electrification, by connecting them to the utility grid. Besides PV generator, the considered hybrid system is consisted of a battery and a diesel gen set. For the concrete case - rural village with estimated daily load demand of 15.5 kWh/day, with the computer program PVFORM, which is modified for such hybrid system, were simulated a few hundreds PV systems, with different sizes of the PV generator and of the battery capacity. Analyzing the obtained results, it can be foreseen the influence of the component size on the system functionality. From the mass of possible system combinations, it is chosen one that has 42 % lower initial investment, than the initial investment for connection of the village to the utility grid. (Original)

  7. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-Cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zuboy, Jarrett; Woodhouse, Michael A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-01

    This presentation summarizes the findings from the report 'SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future.' This presentation was given as a webinar on September 26, 2017.

  8. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions

    International Nuclear Information System (INIS)

    Lau, K.Y.; Yousof, M.F.M.; Arshad, S.N.M.; Anwari, M.; Yatim, A.H.M.

    2010-01-01

    Standalone diesel generating system utilized in remote areas has long been practiced in Malaysia. Due to highly fluctuating diesel price, such a system is seemed to be uneconomical, especially in the long run if the supply of electricity for rural areas solely depends on such diesel generating system. This paper would analyze the potential use of hybrid photovoltaic (PV)/diesel energy system in remote locations. National Renewable Energy Laboratory's (NREL) HOMER software was used to perform the techno-economic feasibility of hybrid PV/diesel energy system. The investigation demonstrated the impact of PV penetration and battery storage on energy production, cost of energy and number of operational hours of diesel generators for the given hybrid configurations. Emphasis has also been placed on percentage fuel savings and reduction in carbon emissions of different hybrid systems. At the end of this paper, suitability of utilizing hybrid PV/diesel energy system over standalone diesel system would be discussed mainly based on different solar irradiances and diesel prices. (author)

  9. Efficiency gains of photovoltaic system using latent heat thermal energy storage

    NARCIS (Netherlands)

    Tan, Lippong; Date, Abhijit; Fernandes, Gabriel; Singh, Baljit; Ganguly, Sayantan

    This paper presents experimental assessments of the thermal and electrical performance of photovoltaic (PV) system by comparing the latent heat-cooled PV panel with the naturally-cooled equivalent. It is commonly known that the energy conversion efficiency of the PV cells declines with the increment

  10. A Standalone PV System with a Hybrid P&O MPPT Optimization Technique

    Directory of Open Access Journals (Sweden)

    S. Hota

    2017-12-01

    Full Text Available In this paper a maximum power point tracking (MPPT design for a photovoltaic (PV system using a hybrid optimization technique is proposed. For maximum power transfer, maximum harvestable power from a PV cell in a dynamically changing surrounding should be known. The proposed technique is compared with the conventional Perturb and Observe (P&O technique. A comparative analysis of power-voltage and current-voltage characteristics of a PV cell with and without the MPPT module when connected to the grid was performed in SIMULINK, to demonstrate the increment in the efficiency of the PV module after using the MPPT module.

  11. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  12. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Bahria, Sofiane; Kurucz, Ildikó; Aouli, M’heni; Sellami, Rabah

    2016-01-01

    Highlights: • The simulation results are in compliance with the experimental measurements indicated in the previous literature. • The accuracy of the numerical model is due to the presented energy analysis and also to the well-adopted correlations. • A comparative study between two solar photovoltaic/thermal air collectors was carried out. • The thermal efficiency of the analyzed hybrid collector increased by 30.85% compared to the basic configuration. • The air temperature supplied by a double-pass photovoltaic/thermal collector is very suitable for solar drying. - Abstract: In this paper, a configuration of photovoltaic-thermal hybrid solar collector embeddable in an indirect solar dryer system is studied. In the present structure of the solar photovoltaic/thermal air collector, the air goes through a double pass below and above the photovoltaic module. A system of electrical and thermal balance equations is developed and analyzed governing various electric and heat transfer parameters in the solar hybrid air collector. The numerical model planned for this study gives a good precision of results, which are close to the experimental ones (of previous literature), and makes it possible to have a good assessment of energy performance regarding the studied configuration (temperature, electric and thermal powers, electrical and thermal efficiencies, etc.). The numerical results show the energy effectiveness of this hybrid collector configuration and particularly its interesting use in an indirect solar dryer system that provides a more suitable air temperature for drying agricultural products. The values of the electrical, thermal and overall energy efficiencies reaches 10.5%, 70% and 90% respectively, with a mass flow rate of 0.0155 kg/s and weather data sample for the month of June in the Algiers site. The results presented in this study also reveal how important the effect of certain parameters and operating conditions on the performance of the hybrid

  13. 电热协同作用下太阳能热电联供系统输出特性分析%Output Characteristics Analysis of Solar Photovoltaic/Thermal System in Cooperation Between Thermal and Electric

    Institute of Scientific and Technical Information of China (English)

    史志国; 闫素英; 田瑞; 郭嘉; 李彦洁

    2015-01-01

    根据光伏/光热(PV/T)系统的能量平衡和能量转换原理,建立了 PV/T 系统的热电模型,针对 PV/T 系统的热电效率、电池板温度间的耦合问题,通过 MATLAB 迭代求解法,解决了 PV/T系统中热电参数耦合求解问题,得到了 PV/T 系统的效率曲线,分析计算了系统组件长度和工质流速等参数对性能曲线的影响;同时,针对 PV/T 系统与普通光伏组件进行了实验研究,试验测试了两系统的电压、电流、功率、板背温度等特性参数,并与仿真结果进行了对比。%Based on the energy balance and conversion principle,a thermal and electrical model for the solar photovoltaic/thermal (PV/T) system is developed to solve coupled thermal and electrical parameters by using the iteration method of MATLAB.The variation of thermal and electrical efficiency is given and the influence of the PV/T system assembly length and working medium velocity change on the performance curve of the PV/T system is analyzed.Experimental study is conducted to compare the simulated results with the experiment data of general photovoltaic assembly including voltage,current,power and temperature of the back panel.

  14. Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM System through Temperature Regulation and Performance Enhancement of Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2014-03-01

    Full Text Available The current research seeks to maintain high photovoltaic (PV efficiency and increased operating PV life by maintaining them at a lower temperature. Solid-liquid phase change materials (PCM are integrated into PV panels to absorb excess heat by latent heat absorption mechanism and regulate PV temperature. Electrical and thermal energy efficiency analysis of PV-PCM systems is conducted to evaluate their effectiveness in two different climates. Finally costs incurred due to inclusion of PCM into PV system and the resulting benefits are discussed in this paper. The results show that such systems are financially viable in higher temperature and higher solar radiation environment.

  15. Characteristics Study of Photovoltaic Thermal System with Emphasis on Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Yong Chuah Yee

    2018-01-01

    Full Text Available Solar energy is typically collected through photovoltaic (PV to generate electricity or through thermal collectors as heat energy, they are generally utilised separately. This project is done with the purpose of integrating the two systems to improve the energy efficiency. The idea of this photovoltaic-thermal (PVT setup design is to simultaneously cool the PV panel so it can operate at a lower temperature thus higher electrical efficiency and also store the thermal energy. The experimental data shows that the PVT setup increased the electrical efficiency of the standard PV setup from 1.64% to 2.15%. The integration of the thermal collector also allowed 37.25% of solar energy to be stored as thermal energy. The standard PV setup harnessed only 1.64% of the solar energy, whereas the PVT setup achieved 39.4%. Different flowrates were tested to determine its effects on the PVT setup’s electrical and thermal efficiency. The various flowrate does not significantly impact the electrical efficiency since it did not significantly impact the cooling of the panel. The various flowrates resulted in fluctuating thermal efficiencies, the relation between the two is inconclusive in this project.

  16. Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation

    Science.gov (United States)

    Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.

    2016-10-01

    The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.

  17. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    Science.gov (United States)

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump

    NARCIS (Netherlands)

    Bakker, M.; Zondag, H.A.

    2005-01-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. Hence, PVT panels are an alternative for a combination of separate PV panels and solar thermal collectors. A promising system concept,

  19. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  20. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    Science.gov (United States)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal

  1. Development of a test facility for PV-Wind hybrid energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Mustafa [Ege Univ., Izmir (Turkey). Ege Tech., Electronics Technolgy; Ege Univ., Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    To quantify the potential for performance improvements of photovoltaic-wind hybrid energy systems, a test facility has been installed at the Solar Energy Institute, Ege University. Hybrid system consist of a wind turbine, PV array, battery, AC and DC loads, inverters, charge regulators and a data logging and control unit. The collected data are first conditioned using precision electronic circuits and then interfaced to a PC using a data logging unit. The LABVIEW program is used to further process, display and store the collected data in the PC disk. The proposed data logging and control unit permits the rapid system development and has the advantage of flexibility in the case of changes, while it can be easily extended for controlling the of photovoltaic-wind hybrid energy system operation. (orig.)

  2. Analysis of the Primary Constraint Conditions of an Efficient Photovoltaic-Thermoelectric Hybrid System

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2016-12-01

    Full Text Available Electrical efficiency can be increased by combining photovoltaic (PV and the thermoelectric (TE systems. However, a simple and cursory combination is unsuitable because the negative impact of temperature on PV may be greater than its positive impact on TE. This study analyzed the primary constraint conditions based on the hybrid system model consisting of a PV and a TE generator (TEG, which includes TE material with temperature-dependent properties. The influences of the geometric size, solar irradiation and cold side temperature on the hybrid system performance is discussed based on the simulation. Furthermore, the effective range of parameters is demonstrated using the image area method, and the change trend of the area with different parameters illustrates the constraint conditions of an efficient PV-TE hybrid system. These results provide a benchmark for efficient PV-TEG design.

  3. Photovoltaics: PV takes off the UK

    International Nuclear Information System (INIS)

    Noble, Ray; Gregory, Jenny

    2000-01-01

    Despite historical ups and downs, there is still ambition to bring increasingly efficient photovoltaic (PV) systems to the market. PV for major remote telecommunications systems is now an established part of the market, many mobile phone systems are powered by PV and there is potential for increased use of home solar systems, especially in developing countries. Over the past few years, building-integrated PV (BIPV) has been on the increase. In 1999, global production from PV exceeded 200 MW and the UK installed capacity was greater than 1 MW. BIPV is a fast growing market and its characteristics and advantages are discussed. PV installations at Nottingham University, Greenwich Pavilion, BP Amoco Sunbury, Baglan Bay, BP filling stations, and Sainsbury's are described

  4. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2018-06-01

    Full Text Available The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC along with the thermal photovoltaic module (PVT where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work. Keywords: Photovoltaic thermal collectors, Electrical performance, Thermal performance, Compound parabolic concentrator, Jet impingement

  5. Fabrication and performance analysis of concentrated hybrid photovoltaic system

    Directory of Open Access Journals (Sweden)

    Murthy Krishna

    2018-01-01

    Full Text Available Sun is the most important source of renewable source of energy. During the past few decades there has been an ever-increasing interest in Photovoltaic (PV cells as it directly converts solar radiation into electricity. This paper involves the performance study of photovoltaic system under concentrated solar radiation. The main problem with the concentration solar energy is the drastic increase in temperature of the photovoltaic module resulting in a decrease in performance efficiency of the system. This problem of overheating of the system can be overcome by providing cooling which would ensure operation of the module in the optimal temperature range. Hence, the setup would function as a hybrid model serving the dual purpose of power generation while also utilizing the waste heat for water heating applications. The experimental set up consist of a novel arrangement of concentrator and reflector and the cooling system. The Hybrid Photovoltaic System was repeatedly tested under real time conditions on several days. A comparison was drawn between the results obtained from direct exposure of a standard photovoltaic module to that obtained from the hybrid system in order to better understand the improvement in performance parameters. The study shown a significant improvement of output of standard photovoltaic module under the concentrated solar radiation.

  6. Sizing PV-wind hybrid energy system for lighting

    OpenAIRE

    Mustafa Engin; Dilşad Engin

    2012-01-01

    Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the desi...

  7. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    Science.gov (United States)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  8. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  9. Overview of the Photovoltaic Manufacturing Technology (PVMaT) project

    International Nuclear Information System (INIS)

    Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

    1993-08-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R ampersand D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project's ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R ampersand D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ''generic'' problem areas are being addressed through a teamed research approach

  10. Effect of Tank Size on the Temperature Distributions for Hybrid Photovoltaic/Thermal Water Heaters

    OpenAIRE

    Al-Masri, Ahmad

    2016-01-01

    In the present study an investigation was conducted on the temperature distribution effect for several tank capacities (100 L, 120 L, 150 L and 200 L) having two different aspect ratios (H/D) for each capacity. Hot water is supplied to these tanks by a Hybrid PV/T collector of 4 m² illuminating area. The circulation of water within PV cells cools its surface area to solve the problem occurred in PV cells, where each 1°C increase in the surface module 0.45% of the electrical efficiency decreas...

  11. A Novel Hybrid Model for Short-Term Forecasting in PV Power Generation

    Directory of Open Access Journals (Sweden)

    Yuan-Kang Wu

    2014-01-01

    Full Text Available The increasing use of solar power as a source of electricity has led to increased interest in forecasting its power output over short-time horizons. Short-term forecasts are needed for operational planning, switching sources, programming backup, reserve usage, and peak load matching. However, the output of a photovoltaic (PV system is influenced by irradiation, cloud cover, and other weather conditions. These factors make it difficult to conduct short-term PV output forecasting. In this paper, an experimental database of solar power output, solar irradiance, air, and module temperature data has been utilized. It includes data from the Green Energy Office Building in Malaysia, the Taichung Thermal Plant of Taipower, and National Penghu University. Based on the historical PV power and weather data provided in the experiment, all factors that influence photovoltaic-generated energy are discussed. Moreover, five types of forecasting modules were developed and utilized to predict the one-hour-ahead PV output. They include the ARIMA, SVM, ANN, ANFIS, and the combination models using GA algorithm. Forecasting results show the high precision and efficiency of this combination model. Therefore, the proposed model is suitable for ensuring the stable operation of a photovoltaic generation system.

  12. Hybrid PV/wind system with quinary asymmetric inverter without increasing DC-link number

    Directory of Open Access Journals (Sweden)

    Aida Baghbany Oskouei

    2016-06-01

    Full Text Available This paper suggests quinary asymmetric inverter with coupled inductors and transformer, and uses it in hybrid system including photovoltaic (PV and wind. This inverter produces twenty-five-level voltage in addition to merits of multilevel inverter, has only one DC source. Then, it is adequate for hybrid systems, which prevents increasing DC-link and makes control of system easy. Proposed structure also provides isolation in the system and the switch numbers are reduced in this topology compared with other multilevel structures. In this system, battery is used as backup, where PV and wind have complementary nature. The performance of proposed inverter and hybrid system is validated with simulation results using MATLAB/SIMULINK software and experimental results based PCI-1716 data acquisition system.

  13. Study on an optimum ratio of PV output energy to WG output energy in PV/WG hybrid system; Taiyoko/furyoku hybrid hatsuden system no saiteki yoryohi ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S [Kandenko Co. Ltd., Tokyo (Japan)

    1996-10-27

    A photovoltaic power (PV) and wind generated power (WG) are an unlimited clean energy source, yet their output is unstable depending on the fluctuation of weather conditions such as solar radiation and wind velocity. Consequently, a large-scale power storage equipment is necessitated leading to a high cost especially in an independent system. As a solution, a method is available in which PV and WG are combined so that the effect may be utilized for stabilizing the output of a system as a whole, at a site where a fluctuation pattern is different between photovoltaic energy and wind energy. In building a hybrid system by PV and WG, sites with such supplementary effect existing were selected from the viewpoint of stabilizing the fluctuation of the power generation in the long run; and then, an examination was made on the optimum PV capacity ratio (%Ppo) in each site. As a result, it revealed that the %Ppo had great bearing on a ratio of PV energy fluctuation to WG, which was converted to a numerical formula. A comparatively simple examination by means of meteorological data also indicated that the share ratio was possibly optimized between the quantities of PV and WG energy. 4 refs., 2 figs., 2 tabs.

  14. Model validation of solar PV plant with hybrid data dynamic simulation based on fast-responding generator method

    Directory of Open Access Journals (Sweden)

    Zhao Dawei

    2016-01-01

    Full Text Available In recent years, a significant number of large-scale solar photovoltaic (PV plants have been put into operation or been under planning around the world. The model accuracy of solar PV plant is the key factor to investigate the mutual influences between solar PV plants and a power grid. However, this problem has not been well solved, especially in how to apply the real measurements to validate the models of the solar PV plants. Taking fast-responding generator method as an example, this paper presents a model validation methodology for solar PV plant via the hybrid data dynamic simulation. First, the implementation scheme of hybrid data dynamic simulation suitable for DIgSILENT PowerFactory software is proposed, and then an analysis model of solar PV plant integration based on IEEE 9 system is established. At last, model validation of solar PV plant is achieved by employing hybrid data dynamic simulation. The results illustrate the effectiveness of the proposed method in solar PV plant model validation.

  15. Studies of a photovoltaic-thermal solar dryi system for rural applications

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    Importance of solar drying in increasing worldwide. especially in areas where the use of abundant, renewable and clean solar energy is essentially advantageous. In developing countries and in rural areas the traditional open-air drying methods should be substituted by the more effective and more economic solar drying technologies. In the present work, a new design of a photovoltaic-thermal (PV/T) solar drying system was fabricated. An experimental study of PV/T solar air collector has been performed towards achieving n efficient design of air collector suitable foe a solar dryer. A series of experiments were conducted based on the ASHRAE standard, under Malaysia Climatic conditions. The performance of the collector is examined over a wide range of operating conditions. Results of the test are presented and discussed.(Author)

  16. Building Integrated PV and PV/Hybrid Products - The PV:BONUS Experience: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H.; Pierce, L. K.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Successes and lessons learned from PV:BONUS (Building Opportunities in the United States in PV). This program has funded the development of PV or PV/hybrid products for building applications.

  17. Combined photovoltaic and solar-thermal systems: overcoming barriers to market acceptance. Paper no. IGEC-1-136

    International Nuclear Information System (INIS)

    Collins, M.R.

    2005-01-01

    In 1997, the International Energy Association's (IEA) Photovoltaic Power Systems Program (PVSP) initiated IEA Task 7 to evaluate the technical status of combined Photovoltaic and Solar-Thermal systems (PV/T), and to formulate a roadmap for future development. Because the Task was initiated by the PVSP, however, individuals from the Solar Heating and Cooling Program (SHCP) were not invited to participate, and the Task Group lacked any significant expertise with solar-thermal systems. When the Task submitted its final report in 2002, it consisted of an accounting of existing systems and a list of the perceived market barriers. Without input from the SHCP, however, no move could be made to actually address those barriers. IEA Task 7, however, did recognize that the participation of the SHCP was needed, and in 1999 made an effort to initiate some discussion between the PVSP and the SHCP. The result was IEA Task 35 - PV/T Systems, which met for the first time in January of 2005. The new group intends to reevaluate the findings of Task 7, and to develop the means by which these market barriers can be overcome. The current discussion will provide an overview of existing and potential PV/T systems and their technical status. Further, it will report on the methodology established by the Task 35 work group to overcome the aforementioned market barriers. (author)

  18. The energy roof - Photovoltaics and solar collectors combined; PV und Kollektoren schoen kombiniert. Das Energiedach

    Energy Technology Data Exchange (ETDEWEB)

    Niederhaeusern, A.

    2008-07-01

    In this Interview with Giorgio Hefti, CEO of the Swiss Tritec group, the company's aims and the products offered are discussed. These include mains-connected and island-operated photovoltaic (PV) systems. The history of the company is briefly discussed, as is co-operation with local installers and the company's function as a general contractor for large installations. These include, amongst others, the PV-installation on the 'Stade de Suisse' football stadium in Berne. PV systems for single-family homes and their costs are examined. Also, mounting systems for combining PV and solar collectors (combined power and heat generation) are discussed, as are combinations of PV and heat-pumps. Hybrid PV-solar-collectors and their disadvantages are discussed as is the future of the Tritec group, which has grown continuously over the years and is active in several European countries.

  19. A GUI Based Software for Sizing Stand Alone AC Coupled Hybrid PV-Diesel Power System under Malaysia Climate

    Science.gov (United States)

    Syafiqah Syahirah Mohamed, Nor; Amalina Banu Mohamat Adek, Noor; Hamid, Nurul Farhana Abd

    2018-03-01

    This paper presents the development of Graphical User Interface (GUI) software for sizing main component in AC coupled photovoltaic (PV) hybrid power system based on Malaysia climate. This software provides guideline for PV system integrator to design effectively the size of components and system configuration to match the system and load requirement with geographical condition. The concept of the proposed software is balancing the annual average renewable energy generation and load demand. In this study, the PV to diesel generator (DG) ratio is introduced by considering the hybrid system energy contribution. The GUI software is able to size the main components in the PV hybrid system to meet with the set target of energy contribution ratio. The rated powers of the components to be defined are PV array, grid-tie inverter, bi-directional inverter, battery storage and DG. GUI is used to perform all the system sizing procedures to make it user friendly interface as a sizing tool for AC coupled PV hybrid system. The GUI will be done by using Visual Studio 2015 based on the real data under Malaysia Climate.

  20. An automotive thermoelectric-photovoltaic hybrid energy system using maximum power point tracking

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Chau, K.T.

    2011-01-01

    In recent years, there has been active research on exhaust gas waste heat energy recovery for automobiles. Meanwhile, the use of solar energy is also proposed to promote on-board renewable energy and hence to improve their fuel economy. In this paper, a new thermoelectric-photovoltaic (TE-PV) hybrid energy system is proposed and implemented for automobiles. The key is to newly develop the power conditioning circuit using maximum power point tracking so that the output power of the proposed TE-PV hybrid energy system can be maximized. An experimental system is prototyped and tested to verify the validity of the proposed system.

  1. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),

    Science.gov (United States)

    Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying could influence system costs in key market segments. This report examines two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof

  2. Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Zhao Jiafei; Song Yongchen; Lam, Wei-Haur; Liu Weiguo; Liu Yu; Zhang Yi; Wang DaYong

    2011-01-01

    This paper presents the design optimization of a photovoltaic/thermal (PV/T) system using both non-concentrated and concentrated solar radiation. The system consists of a photovoltaic (PV) module using silicon solar cell and a thermal unit based on the direct absorption collector (DAC) concept. First, the working fluid of the thermal unit absorbs the solar infrared radiation. Then, the remaining visible light is transmitted and converted into electricity by the solar cell. This arrangement prevents excessive heating of the solar cell which would otherwise negatively affects its electrical efficiency. The optical properties of the working fluid were modeled based on the damped oscillator Lorentz-Drude model satisfying the Kramers-Kroenig relations. The coefficients of the model were retrieved by inverse method based on genetic algorithm, in order to (i) maximize transmission of solar radiation between 200 nm and 800 nm and (ii) maximize absorption in the infrared part of the spectrum from 800 nm to 2000 nm. The results indicate that the optimum system can effectively and separately use the visible and infrared part of solar radiation. The thermal unit absorbs 89% of the infrared radiation for photothermal conversion and transmits 84% of visible light to the solar cell for photoelectric conversion. When reducing the mass flow rate, the outflow temperature of the working fluid reaches 74 o C, the temperature of the PV module remains around 31 o C at a constant electrical efficiency about 9.6%. Furthermore, when the incident solar irradiance increases from 800 W/m 2 to 8000 W/m 2 , the system generates 196 o C working fluid with constant thermal efficiency around 40%, and the exergetic efficiency increases from 12% to 22%.

  3. Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Guerrero, Josep M.; Oraee, Hashem

    2016-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method takes into account the available PV power...... and battery conditions of the units to share the load among them and power flow among different phases is performed automatically through three-phase units. Modified active power-frequency droop functions are used according to operating states of each unit and the frequency level is used as trigger...... for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  4. A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation

    Science.gov (United States)

    Lu, Longsheng; Wang, Xiaowu; Wang, Shuai; Liu, Xiaokang

    2017-07-01

    Hybrid photovoltaic thermal (PVT) technology refers to the integration of a photovoltaic module into a conventional solar thermal collector. Generally, the traditional design of a PVT collector has solar cells fixed on the top surface of an absorber in a flat-plate solar thermal collector. In this work, we presented a new concept of water-based PVT collector in which solar cells were directly placed on the bottom surface of its glass cover. A dynamic numerical model of this new PVT is developed and validated by experimental tests. With numerical analysis, it is found that at same covering factor, the electricity conversion efficiency of solar cells of the new PVT exceed that of the traditional PVT by nearly 10% while its thermal efficiency is approximately 30% lower than that of the traditional PVT. When the covering factor changes from 0.05 to 1, the thermal efficiency of the new PVT drops nearly 70%. The thermal efficiency of both the new PVT and the traditional PVT rise up as the water mass in tank increases. Meanwhile, the final water temperature in tank of the traditional PVT collector declines more than 17 °C, whereas that of the new PVT declines less than 6 °C, when the water mass increases from 100 to 300 kg.

  5. Hybrid photovoltaic-diesel-battery systems for remote energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Gabler, H.; Kiefer, K.; Preiser, K.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1997-12-31

    Photovoltaic solar generators combined with diesel engines and battery energy storage are powering isolated mountain lodges, information centres in nature parks, isolated farms or dwellings all over Europe. A total of 300000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaics, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilisation of the electric energy produced by the PV generator. (orig.) 8 refs.

  6. A methodology for optimal sizing of autonomous hybrid PV/wind system

    International Nuclear Information System (INIS)

    Diaf, S.; Diaf, D.; Belhamel, M.; Haddadi, M.; Louche, A.

    2007-01-01

    The present paper presents a methodology to perform the optimal sizing of an autonomous hybrid PV/wind system. The methodology aims at finding the configuration, among a set of systems components, which meets the desired system reliability requirements, with the lowest value of levelized cost of energy. Modelling a hybrid PV/wind system is considered as the first step in the optimal sizing procedure. In this paper, more accurate mathematical models for characterizing PV module, wind generator and battery are proposed. The second step consists to optimize the sizing of a system according to the loss of power supply probability (LPSP) and the levelized cost of energy (LCE) concepts. Considering various types and capacities of system devices, the configurations, which can meet the desired system reliability, are obtained by changing the type and size of the devices systems. The configuration with the lowest LCE gives the optimal choice. Applying this method to an assumed PV/wind hybrid system to be installed at Corsica Island, the simulation results show that the optimal configuration, which meet the desired system reliability requirements (LPSP=0) with the lowest LCE, is obtained for a system comprising a 125 W photovoltaic module, one wind generator (600 W) and storage batteries (using 253 Ah). On the other hand, the device system choice plays an important role in cost reduction as well as in energy production

  7. Decentralized Method for Load Sharing and Power Management in a PV/Battery Hybrid Source Islanded Microgrid

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Golsorkhi, Mohammad

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. Unlike the previous methods in the literature, there is no need to communication among the units......, the operation of each unit is divided into five states and modified active power-frequency droop functions are used according to operating states. The frequency level is used as trigger for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions...... and the proposed method is not limited to the systems with separate PV and battery units or systems with only one hybrid unit. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid...

  8. Efficiency maximization and performance evaluation of hybrid dual channel semitransparent photovoltaic thermal module using fuzzyfied genetic algorithm

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay

    2016-01-01

    Highlights: • Thermal modeling of novel dual channel semitransparent photovoltaic thermal hybrid module. • Efficiency maximization and performance evaluation of dual channel photovoltaic thermal module. • Annual performance has been evaluated for Srinagar, Jodhpur, Bangalore and New Delhi (India). • There are improvements in results for optimized system as compared to un-optimized system. - Abstract: The work has been carried out in two steps; firstly the parameters of hybrid dual channel semitransparent photovoltaic thermal module has been optimized using a fuzzyfied genetic algorithm. During the course of optimization, overall exergy efficiency is considered as an objective function and different design parameters of the proposed module have been optimized. Fuzzy controller is used to improve the performance of genetic algorithms and the approach is called as a fuzzyfied genetic algorithm. In the second step, the performance of the module has been analyzed for four cities of India such as Srinagar, Bangalore, Jodhpur and New Delhi. The performance of the module has been evaluated for daytime 08:00 AM to 05:00 PM and annually from January to December. It is to be noted that, an average improvement occurs in electrical efficiency of the optimized module, simultaneously there is also a reduction in solar cell temperature as compared to un-optimized module.

  9. Forecasting the Cell Temperature of PV Modules with an Adaptive System

    Directory of Open Access Journals (Sweden)

    Giuseppina Ciulla

    2013-01-01

    Full Text Available The need to reduce energy consumptions and to optimize the processes of energy production has pushed the technology towards the implementation of hybrid systems for combined production of electric and thermal energies. In particular, recent researches look with interest at the installation of hybrid system PV/T. To improve the energy performance of these systems, it is necessary to know the operating temperature of the photovoltaic modules. The determination of the operating temperature is a key parameter for the assessment of the actual performance of photovoltaic panels. In the literature, it is possible to find different correlations that evaluate the referring to standard test conditions and/or applying some theoretical simplifications/assumptions. Nevertheless, the application of these different correlations, for the same conditions, does not lead to unequivocal results. In this work an alternative method, based on the employment of artificial neural networks (ANNs, was proposed to predict the operating temperature of a PV module. This methodology does not require any simplification or physical assumptions. In the paper is described the ANN that obtained the best performance: a multilayer perception network. The results have been compared with experimental monitored data and with some of the most cited empirical correlations proposed by different authors.

  10. Analysis on PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive by 2030 in Japan

    International Nuclear Information System (INIS)

    Endo, E.; Ichinohe, M.

    2004-01-01

    The purpose of this paper is to analyze PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive against other energy technologies and make the target for PV capacity achievable by 2030 in Japan under expected carbon tax. For the analysis energy system of Japan is modeled by using MARKAL. According to the results of analysis, under 6000 JPY/t-C carbon tax, photovoltaics needs subsidy for a while even if we taking both fuel savings and Green Credit into account. For attaining the national target for PV capacity in 2010, photovoltaics needs more expensive buy-back than that in present, but after 2010 necessary buy-back decreases gradually. If 120 JPY/W PV system sales price is attained by 2030, photovoltaics becomes cost-competitive without any supports. Subsidy through buy-back becomes almost need not in 2030, if we can reduce it less than 170 JPY/W. The total subsidy meets peak in 2025. It is much more than ongoing subsidy to capital cost of PV systems, but annual revenue of the assumed carbon tax can afford enough the annual total subsidy. This means if photovoltaics can attain the PV system sales price, we should support it for a while by spending carbon tax revenue effectively and efficiently. (authors)

  11. Canadian PV [photovoltaic] commercial activity report for 1989

    International Nuclear Information System (INIS)

    1992-01-01

    The Canadian Photovoltaic Industries Association (CPIA) conducted a survey among 65 Canadian firms involved in the photovoltaic industry and technology to determine the degree of commercial activity. Overall revenue for these firms in 1989 increased nearly 15% to ca $15 million. Actual reported sales of photovoltaic (PV) modules totalled 400 kW for use in Canada and abroad, of which communications applications accounted for ca 40% of these sales. Export sales were significant, with 59% of reported sales sold as packages being exported. Sales of systems within Canada were fairly evenly distributed between Quebec, Ontario, the Prairies, and British Columbia. The private sector share of reported sales was 42% or greater in terms of both dollar or peak wattage. Residential-use and water-pumping segments of the market reported increased activity. Internationally, annual PV module sales in 1989 were reported to be 42 MW peak, a 20% increase from 1988. The USA has the world market share with 36%, followed by Japan at 30%. Survey respondents made suggestions for more equitable tax treatment for PV products, and saw environmental issues as having a major impact on marketing strategies. 27 refs., 11 tabs

  12. Performance of double -pass solar collector with CPC and fins for heat transfer enhancement

    Science.gov (United States)

    Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman

    2013-06-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  13. Performance of double –pass solar collector with CPC and fins for heat transfer enhancement

    International Nuclear Information System (INIS)

    Alfegi, Ebrahim M A; Abosbaia, Alhadi A S; Mezughi, Khaled M A; Sopian, Kamaruzzaman

    2013-01-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m 2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  14. Experimental and computational fluid dynamics analysis of a photovoltaic/thermal system with active cooling using aluminum fins

    Science.gov (United States)

    Ömeroǧlu, Gökhan

    2017-10-01

    Being the most widespread renewable energy generation system, photovoltaic (PV) systems face major problems, overheating and low overall conversion efficiency. The electrical efficiency of PV systems is adversely affected by significant increases in cell temperature upon exposure to solar irradiation. There have been several ways to remove excess heat and cool down the PV to maintain efficiency at fair levels. A hybrid photovoltaic/thermal system cooled by forced air circulation blown by a PV-powered fan was set up, and a rectangular control volume with cylindrical ends was built at the back of the PV panel where aluminum fins were placed in different arrangements and numbers. During the experiments, temperature and electrical output parameters were measured for three different air velocities (3.3, 3.9, and 4.5 m/s) and two different fin numbers and arrangements (54 pcs shifted and 108 pcs inline) under a constant radiation value of 1350 W/m2. While the electrical efficiency of the panel was reduced by almost 50% and decreased from 12% to 6.8% without active cooling, at 4.5-m/s air velocity and with 108 fins in inline arrangement, the electrical efficiency could be maintained at 11.5%. To compare and verify the experimental results, a heat transfer simulation model was developed with the ANSYS Fluent, and a good fit between the simulation and the test results was obtained.

  15. The market for photovoltaic (PV) technology

    International Nuclear Information System (INIS)

    Frantzis, L.; Vejtasa, K.M.

    1993-01-01

    This paper describes a study that was intended to provide the Electric Power Research Institute (EPRI) with a market analysis for photovoltaic (PV) technologies under development by EPRI and others. The analysis was to focus on markets and factors leading to significant incremental growth for PV demand, large enough to support more efficient scale PV manufacturing capacity. EPRI anticipates that PV ultimately could provide grid-connected power, however, the 1995--2010 market dynamics are uncertain. The specific objectives of this study, therefore, were to: determine what major future domestic US markets for PV technologies will emerge and provide enough volume to support significant improvements in manufacturing costs through manufacturing economies of scale; provide insight on what is needed to gain acceptance of PV technologies for electric power generation in those major markets; provide insight on when investments in demonstration and manufacturing facilities should be made and what is needed to be successful in each element of the business that these markets could support (e.g., technology development, manufacturing, sales, installation, and service); and provide key insights on the requirements for commercial success of PV in the utility sector

  16. Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-09-01

    Full Text Available Photovoltaic (PV panels convert a certain amount of incident solar radiation into electricity, while the rest is converted to heat, leading to a temperature rise in the PV. This elevated temperature deteriorates the power output and induces structural degradation, resulting in reduced PV lifespan. One potential solution entails PV thermal management employing active and passive means. The traditional passive means are found to be largely ineffective, while active means are considered to be energy intensive. A passive thermal management system using phase change materials (PCMs can effectively limit PV temperature rises. The PCM-based approach however is cost inefficient unless the stored thermal energy is recovered effectively. The current article investigates a way to utilize the thermal energy stored in the PCM behind the PV for domestic water heating applications. The system is evaluated in the winter conditions of UAE to deliver heat during water heating demand periods. The proposed system achieved a ~1.3% increase in PV electrical conversion efficiency, along with the recovery of ~41% of the thermal energy compared to the incident solar radiation.

  17. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Science.gov (United States)

    Jaaz, Ahed Hameed; Sopian, Kamaruzzaman; Gaaz, Tayser Sumer

    2018-06-01

    The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV) could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC) along with the thermal photovoltaic module (PVT) where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work.

  18. Sizing wind/photovoltaic hybrids for households in inner Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Barley, C.D.; Lew, D.J.; Flowers, L.T. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    Approximately 140,000 wind turbines currently provide electricity to about one-third of the non-grid-connected households in Inner Mongolia. However, these households often suffer from a lack of power during the low-wind summer months. This report describes an analysis of hybrid wind/photovoltaic (PV) systems for such households. The sizing of the major components is based on a subjective trade-off between the cost of the system and the percent unmet load, as determined by the Hybrid2 software in conjunction with a simplified time-series model. Actual resource data (wind speed and solar radiation) from the region are processed so as to best represent the scenarios of interest. Small wind turbines of both Chinese and U.S. manufacture are considered in the designs. The results indicate that combinations of wind and PV are more cost-effective than either one alone, and that the relative amount of PV in the design increases as the acceptable unmet load decreases and as the average wind speed decreases.

  19. Theoretical Analysis of Two Novel Hybrid Thermoelectric-Photovoltaic Systems Based on Cu₂ZnSnS₄ Solar Cells.

    Science.gov (United States)

    Lorenzi, Bruno; Contento, Gaetano; Sabatelli, Vincenzo; Rizzo, Antonella; Narducci, Dario

    2017-03-01

    The development and commercialization of Photovoltaic (PV) cells with good cost-efficiency trade-off not using critical raw materials (CRMs) is one of the strategies chosen by the European Community (EC) to address the Energy Roadmap 2050. In this context Cu2ZnSnS4 (CZTS) solar cells are attracting a major interest since they have the potential to combine low price with relatively high conversion efficiencies. Although a ≈9% lab scale efficiency has already been reported for CZTS this technology is still far from being competitive in terms of cost per peak-power (€/Wp) with other common materials. One possible near-future solution to increase the CZTS competiveness comes from thermoelectrics. Actually it has already been shown that Hybrid Thermoelectric-Photovoltaic Systems (HTEPVs) based on CIGS, another kesterite very similar to CZTS, can lead to a significant efficiency improvement. However it has been also clarified how the optimal hybridization strategy cannot come from the simple coupling of solar cells with commercial TEGs, but special layouts have to be implemented. Furthermore, since solar cell performances are well known to decrease with temperature, thermal decoupling strategies of the PV and TEG sections have to be taken. To address these issues, we developed a model for two different HTEPV solutions, both coupled with CZTS solar cells. In the first case we considered a Thermally-Coupled HTEPV device (TC-HTEPV) in which the TEG is placed underneath the solar cell and in thermal contact with it. The second system consists instead of an Optically-Coupled but thermally decoupled device (OC-HTEPV) in which part of the solar spectrum is focused by a non-imaging optical concentrator on the TEG hot side. For both solutions the model returns conversion efficiencies higher than that of the CZTS solar cell alone. Specifically, increases of ≈30% are predicted for both kind of systems considered.

  20. PV Obelisk - Information system with photovoltaics

    International Nuclear Information System (INIS)

    Ruoss, D.; Rasmussen, J.

    2004-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed

  1. Design, modeling and performance analysis of dual channel semitransparent photovoltaic thermal hybrid module in the cold environment

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay; Avasthi, D.V.

    2016-01-01

    Highlights: • Thermal modeling of novel dual channel semitransparent PVT hybrid module. • Exergy and carbon credit analysis has been performed. • Annual performance has been evaluated for Srinagar (India). • There are improvements in results for case-I as compared to case-II. - Abstract: In this work, thermal modeling and performance analysis of the dual channel semitransparent photovoltaic thermal (DCSPVT) module has been carried out. For extracting heat associated with the lower and upper surface of the solar cell, two channels have been proposed; (i) one is above the solar cell called upper channel and (ii) second is below the solar cell called lower channel. Firstly, thermal modeling of DCSPVT module has been developed. After that, performance analysis of the above system has been carried out for Srinagar, Indian climatic condition. Performance in terms of electrical gain (EG), thermal gain (TG), overall exergy gain (OEG), overall thermal gain (OTG), electrical efficiency (EE) and overall exergy efficiency (OEE) of the DCSPVT module (case-I) have been compared with single channel semitransparent photovoltaic thermal (SCSPVT) hybrid module (case-II). The average improvement in EG, TG, OEG, OTG of the case-I have been observed by 71.51%, 34.57%, 5.78% and 35.41% respectively as compared to case-II.

  2. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: liming@ynnu.edu.c [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China); Li, G.L. [School of Physics and Electronic Information, Yunnan Normal University, Kunming 650092 (China); Ji, X.; Yin, F.; Xu, L. [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China)

    2011-06-15

    Research highlights: {yields} A 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. {yields} Another 10 m{sup 2} TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. {yields} The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m{sup 2} TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating

  3. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, M.; Li, G.L.; Ji, X.; Yin, F.; Xu, L.

    2011-01-01

    Research highlights: → A 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. → Another 10 m 2 TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. → The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m 2 TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating silicon cell array are 7.51% and 42

  4. PV-BUK: Operating and maintenance costs of photovoltaic installations; PV-BUK - Betriebs- und Unterhaltskosten von PV-Anlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, S.; Toggweiler, P. [Enecolo AG, Moenchaltorf (Switzerland); Ruoss, D.; Schudel, P. [Envision, Lucerne (Switzerland); Kottmann, A.; Steinle, F. [BE Netz AG, Lucerne (Switzerland)

    2008-03-15

    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out to determine the costs for facility management, to estimate future cost development and to propose activities for the further reduction of the operation and maintenance costs of photovoltaic systems. Information on the cost situation was collected by literature study, as well as in interviews and surveys with photovoltaic (PV) experts and the owners of PV installations. The discussion of the results at a workshop with about 20 Swiss PV experts is noted. The results are presented and discussed. These show that operating costs per kWh decrease with the size of the PV system. Figures are quoted. The major part of the costs are quoted as being those for spare parts, especially for the inverter. The authors are of the opinion that, in future, costs for facility management will further decrease, as they are partly linked to capital and insurance costs. Potential for optimisation is said to exist in several areas of facility management such as, for example, in system monitoring and fast reaction in the case of malfunctions.

  5. PVSOFT99 - Photovoltaic (PV) System Sizing And Simulation Software

    African Journals Online (AJOL)

    A computer program (PVSOFT99) has been developed for sizing and simulation of stand-alone photovoltaic (PV) systems. Two distinct PV sizing algorithms, one based on the worst case and the other on the reliability concept, have been incorporated in the program. The reliability concept is generalized in that variation of ...

  6. Minimum long-term cost solution for remote telecommunication stations on the basis of photovoltaic-based hybrid power systems

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Ninou, I.; Zafirakis, D.

    2011-01-01

    In the case of the telecommunication (T/C) services' expansion to rural and remote areas, the market generally responds with the minimum investments required. Considering the existing situation, cost-effective operation of the T/C infrastructure installed in these regions (i.e. remote T/C stations) becomes critical. However, since in most cases grid-connection is not feasible, the up-to-now electrification solution for remote T/C stations is based on the operation of costly, oil consuming and heavy polluting diesel engines. Instead, the use of photovoltaic (PV)-based hybrid power stations is currently examined, using as a case study a representative remote T/C station of the Greek territory. In this context, the present study is concentrated on the detailed cost-benefit analysis of the proposed solution. More precisely, the main part of the analysis is devoted to develop a complete electricity production cost model, accordingly applied for numerous oil consumption and service period scenarios. Note that in all cases examined, zero load rejections is a prerequisite while minimum long-term cost solutions designated are favorably compared with the diesel-only solution. Finally, a sensitivity analysis, demonstrating the impact of the main economic parameters on the energy production cost of optimum sized PV-diesel hybrid power stations, is also provided. - Research highlights: → Expansion of telecommunication (T/C) in remote areas is vital for their development. → Off-grid T/C stations employed in such areas operate on diesel engines. → The use of PV-diesel-battery hybrid power stations is currently examined. → A detailed long-term electricity production cost model is developed. → Cost-effectiveness of the proposed system is reflected for numerous configurations.

  7. Optimal design of PV and HP system

    DEFF Research Database (Denmark)

    Nepper-Rasmussen, Bjarke Christian; Rasmussen, Theis Bo

    2015-01-01

    Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution is descr...... that the thermal storage with a BT is a better investment than a PV system without HP or no investment. Furthermore, it showed that the optimization model developed in this project is capable of finding the optimal combination of component sizes based on our data.......Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution...... is described, where the thermal energy is stored in a buffer tank (BT) capable of dispersing heat to either the heating system of a house or a hot water tank, for later use. The thermal storage solution including a BT can increase the self-consumption of residentially produced PV power and thereby shift...

  8. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  9. Effect of Thermoelectric Cooling (TEC module and the water flow heatsink on Photovoltaic (PV panel performance

    Directory of Open Access Journals (Sweden)

    Amelia A.R.

    2017-01-01

    Full Text Available Photovoltaic (PV panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  10. Effect of Thermoelectric Cooling (TEC) module and the water flow heatsink on Photovoltaic (PV) panel performance

    Science.gov (United States)

    Amelia, A. R.; Jusoh, MA; Shamira Idris, Ida

    2017-11-01

    Photovoltaic (PV) panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC) and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  11. Photovoltaics: Reviewing the European Feed-in-Tariffs and Changing PV Efficiencies and Costs

    Directory of Open Access Journals (Sweden)

    H. L. Zhang

    2014-01-01

    Full Text Available Feed-in-Tariff (FiT mechanisms have been important in boosting renewable energy, by providing a long-term guaranteed subsidy of the kWh-price, thus mitigating investment risks and enhancing the contribution of sustainable electricity. By ongoing PV development, the contribution of solar power increases exponentially. Within this significant potential, it is important for investors, operators, and scientists alike to provide answers to different questions related to subsidies, PV efficiencies and costs. The present paper therefore (i briefly reviews the mechanisms, advantages, and evolution of FiT; (ii describes the developments of PV, (iii applies a comprehensive literature-based model for the solar irradiation to predict the PV solar energy potential in some target European countries, whilst comparing output predictions with the monthly measured electricity generation of a 57 m² photovoltaic system (Belgium; and finally (iv predicts the levelized cost of energy (LCOE in terms of investment and efficiency, providing LCOE values between 0.149 and 0.313 €/kWh, as function of the overall process efficiency and cost. The findings clearly demonstrate the potential of PV energy in Europe, where FiT can be considerably reduced or even be eliminated in the near future.

  12. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  13. Photovoltaic (PV) energy in the Netherlands and Switzerland. A comparison

    International Nuclear Information System (INIS)

    Van der Loo, F.; Spiessens, P.

    1995-01-01

    The development of photovoltaic (PV) energy in Switzerland and the Netherlands is compared for a number of aspects. The Swiss have realized more PV capacity. Also the economic conditions to develop PV are better in Switzerland than in the Netherlands. In Switzerland the public support is mobilized for solar energy while in the Netherlands a social basis is created for wind energy. 3 ills., 3 tabs

  14. On application of a new hybrid maximum power point tracking (MPPT) based photovoltaic system to the closed plant factory

    International Nuclear Information System (INIS)

    Jiang, Joe-Air; Su, Yu-Li; Shieh, Jyh-Cherng; Kuo, Kun-Chang; Lin, Tzu-Shiang; Lin, Ta-Te; Fang, Wei; Chou, Jui-Jen; Wang, Jen-Cheng

    2014-01-01

    Highlights: • Hybrid MPPT method was developed and utilized in a PV system of closed plant factory. • The tracking of the maximum power output of PV system can be achieved in real time. • Hybrid MPPT method not only decreases energy loss but increases power utilization. • The feasibility of applying PV system to the closed plant factory has been examined. • The PV system significantly reduced CO 2 emissions and curtailed the fossil fuels. - Abstract: Photovoltaic (PV) generation systems have been shown to have a promising role for use in high electric-load buildings, such as the closed plant factory which is dependent upon artificial lighting. The power generated by the PV systems can be either directly supplied to the buildings or fed back into the electrical grid to reduce the high economic costs and environmental impact associated with the traditional energy sources such as nuclear power and fossil fuels. However, PV systems usually suffer from low energy-conversion efficiency, and it is therefore necessary to improve their performance by tackling the energy loss issues. The maximum power point tracking (MPPT) control technique is essential to the PV-assisted generation systems in order to achieve the maximum power output in real time. In this study, we integrate the previously proposed direct-prediction MPP method with a perturbation and observation (P and O) method to develop a new hybrid MPPT method. The proposed MPPT method is further utilized in the PV inverters in a PV system installed on the roof of a closed plant factory at National Taiwan University. The tested PV system is constructed as a two-stage grid-connected photovoltaic power conditioning (PVPC) system with a boost-buck full bridge design configuration. A control scheme based on the hybrid MPPT method is also developed and implemented in the PV inverters of the PVPC system to achieve tracking of the maximum power output of the PV system in real time. Based on experimental results

  15. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goodrich, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-30

    The installed capacity of global and U.S. photovoltaic (PV) systems has soared in recent years, driven by declining PV prices and government incentives. The U.S. Department of Energy’s (DOE) SunShot Initiative aims to make PV cost competitive without incentives by reducing the cost of PV-generated electricity by about 75% between 2010 and 2020. This summary report—based on research at Lawrence Berkeley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL)—examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices.

  16. A Combined Optical, Thermal and Electrical Performance Study of a V-Trough PV System—Experimental and Analytical Investigations

    Directory of Open Access Journals (Sweden)

    Haitham M. Bahaidarah

    2015-04-01

    Full Text Available The objective of this study was to achieve higher efficiency of a PV system while reducing of the cost of energy generation. Concentration photovoltaics was employed in the present case as it uses low cost reflectors to enhance the efficiency of the PV system and simultaneously reduces the cost of electricity generation. For this purpose a V-trough integrated with the PV system was employed for low concentration photovoltaic (LCPV. Since the electrical output of the concentrating PV system is significantly affected by the temperature of the PV cells, the motivation of the research also included studying the ability to actively cool PV cells to achieve the maximum benefit. The optical, thermal and electrical performance of the V-trough PV system was theoretically modeled and validated with experimental results. Optical modeling of V-trough was carried out to estimate the amount of enhanced absorbed radiation. Due to increase in the absorbed radiation the module temperature was also increased which was predicted by thermal model. Active cooling techniques were studied and the effect of cooling was analyzed on the performance of V-trough PV system. With absorbed radiation and module temperature as input parameters, electrical modeling was carried out and the maximum power was estimated. For the V-trough PV system, experiments were performed for validating the numerical models and very good agreement was found between the two.

  17. PV Obelisk - Information system with photovoltaics; PV-Obelisk Orientierungssystem mit Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, D.; Rasmussen, J.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed.

  18. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  19. Energy matrices evaluation and exergoeconomic analysis of series connected N partially covered (glass to glass PV module) concentrated-photovoltaic thermal collector: At constant flow rate mode

    International Nuclear Information System (INIS)

    Tripathi, Rohit; Tiwari, G.N.; Dwivedi, V.K.

    2017-01-01

    Highlights: • Fluid, other than water has been chosen for achieving higher outlet temperature. • Mass flow rate and number of collector have been optimized. • Three PVT systems have been compared for evaluating annual energy and exergy. • Life cycle cost analysis has been evaluated to obtain exergetic cost. • Proposed PVT systems have been compared on the basis of energy matrices. - Abstract: In present analysis, a comparative study has been carried out to evaluate the annual performances of three systems or cases at constant flow rate, namely: case (i): partially covered (25% PV module) N concentrated photovoltaic thermal collectors connected in series, case (ii): fully covered (100% PV module) N concentrated photovoltaic thermal collectors in series and case (iii): N (0% PV module) convectional compound parabolic concentrator collector connected in series. Comparison for three cases has also been carried out by considering fluid namely: ethylene glycol for higher outlet temperature and better thermal performance which can be applicable for heating and steaming or small industry purpose. The embodied energy, energy matrices, uniform annual cost, exergetic cost and carbon credits are also evaluated for same systems. The energy payback time is found to be 5.58 years and energy production factor is to be 0.17 on energy basis for case (iii) which is maximum. The exergetic cost has computed as 17.85 Rs/kW h for 30 years of life time of the system. It is observed that N conventional compound parabolic concentrator collector [case (iii)] is most suitable for steam cooking or space heating but not self-sustainable to run the dc power motor due to unavailability of electrical power.

  20. Overall energy, exergy and carbon credit analysis by different type of hybrid photovoltaic thermal air collectors

    International Nuclear Information System (INIS)

    Agrawal, Sanjay; Tiwari, G.N.

    2013-01-01

    Highlights: ► Comparative study of PVT air collectors. ► CO 2 analysis of all type of PVT air collectors. ► Study of thermal energy, exergy gain and exergy efficiency. ► Exergy efficiency of unglazed hybrid PVT tiles air collector is most efficient. - Abstract: In this paper, comparative analysis of different type of photovoltaic thermal (PVT) air collector namely: (i) unglazed hybrid PVT tiles, (ii) glazed hybrid PVT tiles and (iii) conventional hybrid PVT air collectors have been carried out for the composite climate of Srinagar (India). The comparative study has been carried out in terms of overall thermal energy and exergy gain, exergy efficiency and carbon credit earned by different type of hybrid PVT air collectors. It has been observed that overall annual thermal energy and exergy gain of unglazed hybrid PVT tiles air collector is higher by 27% and 29.3% respectively as compared to glazed hybrid PVT tiles air collector and by 61% and 59.8% respectively as compared to conventional hybrid PVT air collector. It has also been observed that overall annual exergy efficiency of unglazed and glazed hybrid PVT tiles air collector is higher by 9.6% and 53.8% respectively as compared to conventional hybrid PVT air collector. On the basis of comparative study, it has been concluded that CO 2 emission reduction per annum on the basis of overall thermal energy gain of unglazed and glazed hybrid PVT tiles air collector is higher by 62.3% and 27.7% respectively as compared to conventional hybrid PVT air collector and on the basis of overall exergy gain it is 59.7% and 22.7%.

  1. Electrical production for domestic and industrial applications using hybrid PV-wind system

    International Nuclear Information System (INIS)

    Essalaimeh, S.; Al-Salaymeh, A.; Abdullat, Y.

    2013-01-01

    Highlights: ► Modeling and building hybrid system of PV and wind turbine. ► Investigation of the electrical generation under Amman–Jordan’s climate. ► Configuration of theoretical and actual characteristics of the hybrid system. ► Testing effects of dust, inclination and load on the electrical generation. ► Financial analysis for various applications. - Abstract: The present work shows an experimental investigation of using a combination of solar and wind energies as hybrid system for electrical generation under the Jordanian climate conditions. The generated electricity has been utilized for different types of applications and mainly for space heating and cooling. The system has also integration with grid connection to have more reliable system. Measurements included the solar radiation intensity, the ambient temperature, the wind speed and the output power from the solar PV panels and wind turbine. The performance characteristic of the PV panels has been obtained by varying the load value through a variable resistance. Some major factors have been studied and practically measured; one of them is the dust effect on electrical production efficiency for photovoltaic panels. Another factor is the inclination of the PV panels, where varying the angle of inclination has a seasonal importance for gathering the maximum solar intensity. Through mathematical calculation and the collected and measured data, a simple payback period has been calculated of the hybrid system in order to study the economical aspects of installing such a system under Jordanian climate conditions and for different usages and local tariffs including domestic, industrial and commercial applications. It was found through this work that the generated electricity of hybrid system and under Jordanian climate conditions can be utilized for electrical heating and cooling through split units and resistive heaters.

  2. A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network

    Science.gov (United States)

    Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.

  3. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    Science.gov (United States)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  4. Explore the performance limit of a solar PV – thermochemical power generation system

    International Nuclear Information System (INIS)

    Li, Wenjia; Hao, Yong

    2017-01-01

    Highlights: •Theoretical net solar-to-electric efficiency of 51.5% is attainable. •Design of efficient PVT systems is governed by at least 5 key considerations. •Concentration ratio has the most pronounced influence on PVT system efficiency. •Efficient PV, low emissivity and high concentration deliver the best performance. -- Abstract: Performance limit of a solar hybrid power generation system integrating efficient photovoltaic (PV) cells and methanol thermal (T) decomposition is explored from a thermodynamic perspective within the capability of state-of-the-art technologies. This type of PVT system features potentially high “net solar-to-electric efficiency” in general, primarily resulting from a key difference in the design of the thermal part compared with conventional PVT systems, i.e. replacing heat engines by a thermochemical power generation module for thermal energy utilization. Key design parameters of the system, including PV cell type, emissivity, solar concentration ratio and solar concentrator type, are individually studied. A system combining all such optimized aspects is projected to achieve net solar-to-electric efficiencies up to 51.5%, after taking all major (e.g. optical, radiative) losses into consideration. This study reveals important insights and enriches understanding on design principles of efficient PVT systems aimed at comprehensive and effective utilization of solar energy.

  5. Design and preliminary operation of a hybrid syngas/solar PV/battery power system for off-grid applications: A case study in Thailand

    DEFF Research Database (Denmark)

    Kohsri, Sompol; Meechai, Apichart; Prapainainar, Chaiwat

    2018-01-01

    , in this study a customized hybrid power system integrating solar, biomass (syngas) power and battery storage system is evaluated a pilot scale for micro off-grid application. This paper shows that for a reliability of a hybrid syngas/solar PV system along with rechargeable batteries, the syngas generator can......Due to the irregular nature of solar resource, solar photovoltaic (PV) system alone cannot satisfy load on a 24/7 demand basis, especially with increasing regional population in developing countries such as Thailand. A hybrid solar PV/biomass based along with battery storage system has been drawing....... Furthermore, the generator has to be always synchronized during the commissioning time. Battery state of charge (SOC) in percent (%) connecting with syngas is greater than solar PV and the charging time appears significantly shorter than that one. All possible combinations between an innovation and existing...

  6. 太阳能光电热系统换热器性能实验研究%Experimental Research on Performance of Solar Energy Photovoltaic/thermal System in Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    庄春龙; 杨小凤; 张洪宇; 张连山

    2013-01-01

    A new kind of semicircle pipe⁃type stainless steel heat exchanger has been designed for solar energy photovoltaic/thermal(PV/T)application system. The PV/T characteristics of the PV/T module utilized in Chongqing area are analyzed through the comparative experiment of new kind of PV/T heat collection module with PV module system. The results show that the battery output power of PV/T system made of the semicircle pipe⁃type stainless steel heat exchanger is larger than that of photo⁃thermal (PV)system 26.48%,and the efficiency of radiant heat utility is larger than that of PV system about 23.70%under sunshiny cir⁃cumstance. The general energy efficiency(photovoltaic/thermal+thermal)of the PV/T reaches 25.70%. The new semicircle pipe⁃type heat exchanger increases the thermal area and raises the thermal efficiency,which provides the instructive reference to the inte⁃grative application of the solar photovoltaic/thermal in the feeblish solar radiation area like Chongqing.%  设计了新型半圆管形式的不锈钢板式换热器,对其作为太阳能光电热综合利用一体化系统集热组件的性能进行实验研究。通过新型集热光电热组件及光电组件系统的对比实验,研究该光电热组件在重庆地区夏季应用情况,分析其光电和光热特性。结果表明:在以晴朗为主的天气,半圆管形式的不锈钢板式光电热组件电热系统的电热性能与光电组件系统的相比较,前者的太阳能电池输出功率提高约26.48%,热利用效率提高23.70%以上,新型半圆管形式的光电热组件整体光电热(光电+光热)综合效率可达到25.70%,有效提高了光电热系统的综合效率。新型半圆管形式不锈钢板式换热器的换热面积增大,提高了换热效率,为太阳能光电热综合利用一体化系统在重庆等太阳辐射强度较小地区的应用提供了参考。

  7. A miniature concentrating photovoltaic and thermal system

    International Nuclear Information System (INIS)

    Kribus, Abraham; Kaftori, Daniel; Mittelman, Gur; Hirshfeld, Amir; Flitsanov, Yuri; Dayan, Abraham

    2006-01-01

    A novel miniature concentrating PV (MCPV) system is presented and analyzed. The system is producing both electrical and thermal energy, which is supplied to a nearby consumer. In contrast to PV/thermal (PV/T) flat collectors, the heat from an MCPV collector is not limited to low-temperature applications. The work reported here refers to the evaluation and preliminary design of the MCPV approach. The heat transport system, the electric and thermal performance, the manufacturing cost, and the resulting cost of energy in case of domestic water heating have been analyzed. The results show that the new approach has promising prospects

  8. PV/T slates - Energy-efficiency optimisation for buildings using simulation and measurement - Back-ventilated photovoltaics as an example; PV/T-Schiefer. Optimierung der Energieeffizienz von Gebaeuden durch gegenseitige Ergaenzung von Simulation und Messung am Beispiel der Hinterlueftung gebaeudeintegrierter Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This report for the Swiss Federal Office of Energy (SFOE) is the introductory report to a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. This introductory report summarises the findings of the project. The work reported on addresses open questions on the use of the heat and its optimal use. A mathematical model for the calculation of the dynamic gain is described. Reports 1 and 2 deal with an experimental outdoor set-up and in-situ measurements made on the prototype of a ventilated PV-tile system (PV/T-Slates). In report 3 the simulation model for the dynamic calculation of the heat gain from the PV/T-Slates using climatic data available is described in detail. Measured data from reports 1 and 2 are compared with the simulation results. In the yield atlas (report 4) the heat gain expected is subdivided into classes of temperature and presented for three locations in different Swiss climatic regions. In report 5 it is shown with the help of the yield-atlas how the degree of utilisation can be estimated. Two promising applications (domestic hot water preheating for a hotel in Lugano and seasonal ground heat storage for a Minergie low energy consumption house in Davos) are selected for detailed investigation using the new numerical model.

  9. Optimal Sizing and Control Strategy of renewable hybrid systems PV-Diesel Generator-Battery: application to the case of Djanet city of Algeria

    Directory of Open Access Journals (Sweden)

    Adel Yahiaoui

    2017-05-01

    Full Text Available A method for optimal sizing of hybrid system consisting of a Photovoltaic (PV panel, diesel generator, Battery banks and load is considered in this paper. To this end a novel approach is proposed. More precisely a methodology for the design and simulation of the behavior of Hybrid system PV-Diesel-Battery banks to electrify an isolated rural site in southern Algeria Illizi (Djanet. This methodology is based on the concept of the loss power supply probability. Sizing and simulation are performed using MATLAB. The technique developed in this study is to determine the number of photovoltaic panels, diesel generators and batteries needed to cover the energy deficit and respond to the growing rural resident energy demand. The obtained results demonstrate the superior capabilities of this proposed method.

  10. Energy management for a PEMFC–PV hybrid system

    International Nuclear Information System (INIS)

    Karami, Nabil; Moubayed, Nazih; Outbib, Rachid

    2014-01-01

    Highlights: • The proposed hybrid structure is a grid-connected system composed of a PV panel, a FC, a battery, and a SC. • The output voltage of each component is regulated using a buck converter controlled by a type-III compensator. • All these components share one DC bus. • Loads can be the used battery, the grid, a DC load and/or an AC load. • The proposed topology offers a simple management technique using a low cost system controller. - Abstract: Most renewable energy sources depend on climatic circumstances and lack consistency even during a single day. The Hybrid System (HS) solves this drawback by relying on many types of renewable sources and managing them to get a satisfactory continuous power. In this paper, a grid connected HS composed of a Proton Exchange Membrane Fuel Cell (PEMFC), a Photovoltaic panel (PV), a battery and a Supercapacitor (SC) is proposed. Sources are pushed to deliver their maximum power thanks to a Maximum Power Point Tracker (MPPT). The output voltage of each component is regulated using a buck converter controlled by a type-III compensator. Consequently, HS components share the power on a single DC bus. The proposed topology offers a simple management technique using an affordable system controller. In order to illustrate our approach, a prototype is modeled, simulated and implemented on an emulator of a real system

  11. Design of an optimized photovoltaic and microturbine hybrid power system for a remote small community: Case study of Palestine

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Solar data was analyzed in the location under consideration. • A program was developed to simulate the operation of the PV-microturbine hybrid system. • Different scenarios were analyzed to select and design the optimal system. • It is cost effective to power houses in remote areas with such hybrid systems. • The hybrid system had lower CO 2 emissions compared to a microturbine only operation. - Abstract: Hybrid systems are defined as systems that utilize more than one energy source to supply a certain load. The implementation of a hybrid system that is based upon Photovoltaic (PV) to supply power to remote and isolated locations is considered a viable option. This is especially true for areas that receive sufficient amounts of annual solar radiation. While analysis of hybrid systems that depend on diesel generators as backup sources can be found in many previous research works, detailed techno economic analysis of hybrid systems that depend on microturbines as backup sources are less addressed. A techno-economic analysis and the design of a complete hybrid system that comprises of Photovoltaic (PV) panels, a battery system, and a microturbine as a backup power source for a remote community is presented in this paper. The investigation of the feasibility of using the microturbines as backup sources in the hybrid systems is one of the purposes of this study. A scenario depending on PV standalone system and other scenario depending on microturbine only were also studied in this paper. The comparison between different scenarios with regards to the cost of energy and pollutant emissions was also conducted. A simulation program was developed to optimize both the sizes of the PV system and the battery bank, and consequently determine the detailed specifications of the different components that make up the hybrid system. The optimization of the PV tilt angle that maximizes the annual energy production was also carried out. The effect of the

  12. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  13. Applied photovoltaics as a practical education in renewable energy technologies

    International Nuclear Information System (INIS)

    Stoev, Mitko

    2009-01-01

    The optional course „Applied Photovoltaic” for MEng students specializing in Electronics at the Faculty of Electronics and Automation, TU-Plovdiv is presented. The main topics of the advanced PV course as a modern sustainable energetic based on the photovoltaic effect and energy from Sun as a renewable energy source; materials and technologies in photovoltaic; design of solar cells and PV modules and PV generators up to 100 kWp; BIPV and CIPV systems; hybrid PV systems; PV mounting; monitoring of PV systems and EC regulations for PV systems connected to the utility grid are discussed. The advanced teaching method by online e-platform with virtual resources is presented. Key words: PV education, PV technologies, applied photovoltaic, e-platform

  14. Feasibility of photovoltaic: thermoelectric hybrid modules

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526

    2011-01-01

    Outdoor performance of photovoltaic (PV) modules suffers from elevated temperatures. Conversion efficiency losses of up to about 25% can result, depending on the type of integration of the modules in the roof. Cooling of modules would therefore enhance annual PV performance. Instead of module

  15. Thermal performances of ETFE cushion roof integrated amorphous silicon photovoltaic

    International Nuclear Information System (INIS)

    Hu, Jianhui; Chen, Wujun; Qiu, Zhenyu; Zhao, Bing; Zhou, Jinyu; Qu, Yegao

    2015-01-01

    Highlights: • Thermal performances of a three layer ETFE cushion integrated a-Si PV is evaluated. • Temperature of a-Si PV obviously affects temperature field and temperature boundary. • The maximum temperature difference of 3.4 K between measured and numerical results. • Main transport mechanisms in upper and lower chambers are convection and conduction. • Heat transfer coefficients of this roof are less than those of other ETFE cushion roofs. - Abstract: Thermal performances of the ETFE cushion roof integrated amorphous silicon photovoltaic (a-Si PV) are essential to estimate building performances, such as temperature distribution and heat transfer coefficient. To investigate these thermal performances, an experimental mock-up composed of a-Si PV and a three-layer ETFE cushion roof was built and the experiment was carried out under summer sunny condition. Meanwhile, numerical model with real boundary conditions was performed in this paper. The experimental results show that the temperature sequence of the three layers was the middle, top and bottom layer and that the PV temperature caused by solar irradiance was 353.8 K. This gives evidence that the PV has a significant effect on the temperature distribution. The experimental temperature was in good agreement with the corresponding location of the numerical temperature since the maximum temperature difference was only 3.4 K. Therefore, the numerical results were justified and then used to analyze the airflow characteristics and calculate the thermal performances. For the airflow characteristics, it is found that the temperature distribution was not uniform and the main transport mechanisms in the upper and lower chambers formed by the three layers were the convection and conduction, respectively. For the thermal performances, the surface convective heat transfer coefficients were obtained, which have validated that thermal performances of the three-layer ETFE cushion integrated a-Si PV are better than

  16. Dynamic thermal analysis of a concentrated photovoltaic system

    Science.gov (United States)

    Avrett, John T., II; Cain, Stephen C.; Pochet, Michael

    2012-02-01

    Concentrated photovoltaic (PV) technology represents a growing market in the field of terrestrial solar energy production. As the demand for renewable energy technologies increases, further importance is placed upon the modeling, design, and simulation of these systems. Given the U.S. Air Force cultural shift towards energy awareness and conservation, several concentrated PV systems have been installed on Air Force installations across the country. However, there has been a dearth of research within the Air Force devoted to understanding these systems in order to possibly improve the existing technologies. This research presents a new model for a simple concentrated PV system. This model accurately determines the steady state operating temperature as a function of the concentration factor for the optical part of the concentrated PV system, in order to calculate the optimum concentration that maximizes power output and efficiency. The dynamic thermal model derived is validated experimentally using a commercial polysilicon solar cell, and is shown to accurately predict the steady state temperature and ideal concentration factor.

  17. Multi criteria sizing approach for Photovoltaic Thermal collectors supplying desalination plant

    International Nuclear Information System (INIS)

    Ammous, Mahmoud; Chaabene, Maher

    2015-01-01

    Highlights: • Concept of reverse osmosis desalination plant supplied by hybrid collectors. • Energy consumption optimization. • Plant modeling. • Sizing approach for a desalination plant supplied by hybrid collectors. - Abstract: Reverse osmosis desalination plants require both thermal and electrical energies in order to produce water. As Photovoltaic Thermal panels are able to provide the two energies, they become suitable to supply reverse osmosis plants mainly while installed in remote areas. Autonomous based desalination plants must be optimally sized to meet the criteria related to the reverse osmosis operating temperature, the plant autonomy, the needed water, etc. This paper presents a sizing approach for Photovoltaic Thermal collectors supplying reverse osmosis desalination plant to compute the optimal surface of Photovoltaic Thermal collectors and the tank volume with respect to the operating criteria. The approach is composed of three optimization consideration steps: the monthly average data, the fulfillment of the water need and a three day of autonomy for the water tank volume. The algorithm is tested for a case of study of 10 ha of tomato irrigation. The results converged to 700 m 2 of Photovoltaic Thermal collector’s surface and 3000 m 3 of water tank volume

  18. Modeling and Coordinated Control Strategy of Large Scale Grid-Connected Wind/Photovoltaic/Energy Storage Hybrid Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Lingguo Kong

    2015-01-01

    Full Text Available An AC-linked large scale wind/photovoltaic (PV/energy storage (ES hybrid energy conversion system for grid-connected application was proposed in this paper. Wind energy conversion system (WECS and PV generation system are the primary power sources of the hybrid system. The ES system, including battery and fuel cell (FC, is used as a backup and a power regulation unit to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic resources. Static synchronous compensator (STATCOM is employed to support the AC-linked bus voltage and improve low voltage ride through (LVRT capability of the proposed system. An overall power coordinated control strategy is designed to manage real-power and reactive-power flows among the different energy sources, the storage unit, and the STATCOM system in the hybrid system. A simulation case study carried out on Western System Coordinating Council (WSCC 3-machine 9-bus test system for the large scale hybrid energy conversion system has been developed using the DIgSILENT/Power Factory software platform. The hybrid system performance under different scenarios has been verified by simulation studies using practical load demand profiles and real weather data.

  19. Performance analysis of photovoltaic thermal (PVT) water collectors

    International Nuclear Information System (INIS)

    Fudholi, Ahmad; Sopian, Kamaruzzaman; Yazdi, Mohammad H.; Ruslan, Mohd Hafidz; Ibrahim, Adnan; Kazem, Hussein A.

    2014-01-01

    Highlights: • Performances analysis of PVT collector based on energy efficiencies. • New absorber designs of PVT collectors were presented. • Comparison present study with other absorber collector designs was presented. • High efficiencies were obtained for spiral flow absorber. - Abstract: The electrical and thermal performances of photovoltaic thermal (PVT) water collectors were determined under 500–800 W/m 2 solar radiation levels. At each solar radiation level, mass flow rates ranging from 0.011 kg/s to 0.041 kg/s were introduced. The PVT collectors were tested with respect to PV efficiency, thermal efficiency, and a combination of both (PVT efficiency). The results show that the spiral flow absorber exhibited the highest performance at a solar radiation level of 800 W/m 2 and mass flow rate of 0.041 kg/s. This absorber produced a PVT efficiency of 68.4%, a PV efficiency of 13.8%, and a thermal efficiency of 54.6%. It also produced a primary-energy saving efficiency ranging from 79% to 91% at a mass flow rate of 0.011–0.041 kg/s

  20. Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran

    Directory of Open Access Journals (Sweden)

    M Mohammadi Sarduei

    2017-05-01

    Full Text Available Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2, a heat exchanger in the tank (with volume of 300 L, a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected

  1. Phonon properties and slow organic-to-inorganic sub-lattice thermalization in hybrid perovskites

    Science.gov (United States)

    Chan, Maria; Chang, Angela; Xia, Yi; Sadasivam, Sridhar; Guo, Peijun; Kinaci, Alper; Lin, Hao-Wu; Darancet, Pierre; Schaller, Richard

    Organic-inorganic hybrid perovskite halide compounds have been investigated extensively for photovoltaics (PVs) and related applications. The thermal transport properties of hybrid perovskites, including phonon-carrier and phonon-phonon interactions, are of significance for their PV and solar thermoelectric applications. The interlocking organic and inorganic sublattices can be thought of as an extreme form of nanostructuring. A result of this nanostructuring is the large gap in phonon frequencies between the organic and inorganic sublattices, which is expected to create bottlenecks in phonon equilibration. In this work, we use a combination of ultrafast spectroscopy including photoluminescence and transient absorption, as well as first principles density functional theory (DFT), ab initio molecular dynamics calculations, phonon lifetimes derived from DFT force constants, and non-equilibrium phonon dynamics accounting for phonon lifetimes, to determine the phonon and charge interaction processes. We find evidence that thermalization of carriers occur at an atypically slow 50-100 ps time scale owing to the complex interplay between electronic and phonon excitations.

  2. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  3. Overview of PV simulation programs. Comparison to PVSUN; Oeversikt av PV simulerings-program. Jaemfoerelse med PVSUN

    Energy Technology Data Exchange (ETDEWEB)

    Perers, Bengt

    2007-02-15

    We have found a large number of PV simulation and calculation programmes available on Internet. Many of the programmes are free ware and can still be quite sophisticated like HOMER from NREL and RETSCreen from NRCan. We have made a closer look on the programmes PVSYST, HOMER, RETSCreen and compared to the Swedish PVSUN. All programmes are quite similar in use and in application areas and very easy to use nowadays. The main advantage with PVSUN for Swedish conditions is that it is based on TRNSYS knowledge available on research level. This means that the software can be adapted to new findings from research and development at a relatively low cost. The original question for this project about the availability of easy to use PV/T (photovoltaic/thermal) simulation softwares can be answered no. The PV/T technology is still mainly in the research and development stages.

  4. Thermal characteristics of a medium-level concentration photovoltaic unit with evaporation cooling

    Science.gov (United States)

    Kokotov, Yuri V.; Reyz, Michael A.; Fisher, Yossi

    2009-08-01

    The results of thermal analysis and experiments are presented for a 1-kW brand new medium-level (8X) concentration photovoltaic (CPV) unit that is cooled by evaporation and built as an elongated floating solar unit. The unit keeps the silicon PV elements at low and stable temperature around the clock, significantly outperforms competitors' systems in terms of the power output and the life span of identical PV elements. It is demonstrated theoretically and experimentally that the PV element temperature level exceeds the temperature level of water in the water basin (used as a heat sink) by just a few degrees.

  5. Field Experiments of PV-Thermal Collectors for Residential Application in Bangkok

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2012-04-01

    Full Text Available This study presents experimental results on Photovoltaic-thermal (PVT solar systems, the commercial photovoltaic (PV panels used as solar absorbers in PVT collectors, which are amorphous and multi-crystalline silicon. Testing was done with outdoor experiments in the climate of Bangkok corresponding to energy consumption behavior of medium size Thai families. The experimental results show that the thermal recovery of amorphous silicon PVT collector is almost the same as that of multi-crystalline silicon PVT collectors while electricity generation of multi crystalline silicon PVT is 1.2 times as much as that of amorphous silicon PVT. The maximum of heat gain from the PVT systems were obtained in March in summer. It was found that PVT collectors of unit area annually produced 1.1 × 103 kWh/m2 .year of heat and 55–83 kWh/m2.year of electricity, respectively. The results show that annual average solar factor of hot water supply is 0.45 for unit collector area. Economical evaluation based on energy costs in Thailand was conducted, which estimated the payback time would be 7 and 14 years for a-Si PVT and mc-Si PV, respectively.

  6. Design and performance test of CPC-PV/TE hybrid power generation system in greenhouse.%温室聚光光伏/温差联合发电系统的设计与性能试验

    Institute of Scientific and Technical Information of China (English)

    王立舒; 李琳; 梁秋艳; 丁修增; 王博林

    2015-01-01

    With the rapid development of agricultural science and technology, various types of environmental testing equipments and production facilities consume a lot of energy in greenhouse. Therefore, it is important to design a high-efficiency greenhouse power supply device. At the same time, the energy crisis in the 21st century and the air pollution caused by burning of fossil fuels become serious. It can not wait to solve the environmental pollution. Therefore, increasing the development and utilization of solar energy is imminent. Solar energy is a kind of clean and renewable energy, and the study of solar energy development and utilization has become a hot issue nowadays, but in general, its efficiency is low. In order to solve the problem of large fossil energy consumption in the greenhouse and the current inefficient use of solar energy, compound parabolic concentrator-photovoltaic / thermoelectric hybrid power generation system (CPC-PV/TE) based on the characteristics of greenhouse in Northeast China is proposed in the present paper. A system contains CPC, PV/TE hybrid system and flat heat pipe. CPC converges light to the surface of photovoltaic cells. It enhances light irradiation intensity. Photovoltaic cells use the photovoltaic effect principle to generate electricity. Attached to photovoltaic cells, thermoelectric power generator modules convert the excess heat generated by photovoltaic cells power generation to electricity power simultaneously. Flat heat pipe is used as heat transfer element, and then a certain amount of water is used to effectively transfer the rest of the heat. In order to express the performance of CPC-PV/TE hybrid power generation system accurately, a comprehensive energy transfer model has been established, and the efficiency of CPC-PV/TE hybrid system and PV or TE module alone under different levels of irradiation and various water flows has been discussed. The results show that the faster the cooling water flows, the higher the

  7. PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings

    International Nuclear Information System (INIS)

    Saber, Esmail M.; Lee, Siew Eang; Manthapuri, Sumanth; Yi, Wang; Deb, Chirag

    2014-01-01

    Air pollution and climate change increased the importance of renewable energy resources like solar energy in the last decades. Rack-mounted PhotoVoltaics (PV) and Building Integrated PhotoVoltaics (BIPV) are the most common photovoltaic systems which convert incident solar radiation on façade or surrounding area to electricity. In this paper the performance of different solar cell types is evaluated for the tropical weather of Singapore. As a case study, on-site measured data of PV systems implemented in a zero energy building in Singapore, is analyzed. Different types of PV systems (silicon wafer and thin film) have been installed on rooftop, façade, car park shelter, railing and etc. The impact of different solar cell generations, arrays environmental conditions (no shading, dappled shading, full shading), orientation (South, North, East or West facing) and inclination (between PV module and horizontal direction) is investigated on performance of modules. In the second stage of research, the whole PV systems in the case study are simulated in EnergyPlus energy simulation software with several PV performance models including Simple, Equivalent one-diode and Sandia. The predicted results by different models are compared with measured data and the validated model is used to provide simulation-based energy yield predictions for wide ranges of scenarios. It has been concluded that orientation of low-slope rooftop PV has negligible impact on annual energy yield but in case of PV external sunshade, east façade and panel slope of 30–40° are the most suitable location and inclination. - Highlights: • Characteristics of PV systems in tropics are analyzed in depth. • The ambiguity toward amorphous panel energy yield in tropics is discussed. • Equivalent-one diode and Sandia models can fairly predict the energy yield. • A general guideline is provided to estimate the energy yield of PV systems in tropics

  8. Key technical and non-technical challenges for mass deployment of photovoltaic solar energy (PV)

    International Nuclear Information System (INIS)

    Sinke, W.C.

    2001-12-01

    Photovoltaic solar energy (PV) is used for direct conversion of sunlight into electricity. It is not to be confused with low-temperature thermal solar energy (e.g. solar domestic hot water systems) and with solar electricity production using a conventional high-temperature steam cycle (using parabolic troughs or 'power towers'). Important features of PV are: inherently renewable; sustainable if well designed, manufactured, used, and disposed; no moving parts, quiet; reliable if well designed and engineered; modular (from milliwatts to multi-megawatts); suitable for a wide variety of applications (stand-alone and grid-connected); large potential (regionally and globally); intermittent; capacity factor (ratio of average system power to installed (=peak) power) =0.08-0.24. PV is among the major renewable energy technologies in all well known energy scenarios, although a substantial role in % of the total energy production can only be achieved on the long term (typically 40-60 years years). Fortunately, long before that the PV market may be a rapidly growing, multi-billion euro business, providing enormous economic opportunities and many jobs

  9. Demand response impacts on off-grid hybrid photovoltaic-diesel generator microgrids

    Directory of Open Access Journals (Sweden)

    Aaron St. Leger

    2015-08-01

    Full Text Available Hybrid microgrids consisting of diesel generator set(s and converter based power sources, such as solar photovoltaic or wind sources, offer an alternative to generator based off-grid power systems. The hybrid approach has been shown to be economical in many off-grid applications and can result in reduced generator operation, fuel requirements, and maintenance. However, the intermittent nature of demand and renewable energy sources typically require energy storage, such as batteries, to properly operate the hybrid microgrid. These batteries increase the system cost, require proper operation and maintenance, and have been shown to be unreliable in case studies on hybrid microgrids. This work examines the impacts of leveraging demand response in a hybrid microgrid in lieu of energy storage. The study is performed by simulating two different hybrid diesel generator—PV microgrid topologies, one with a single diesel generator and one with multiple paralleled diesel generators, for a small residential neighborhood with varying levels of demand response. Various system designs are considered and the optimal design, based on cost of energy, is presented for each level of demand response. The solar resources, performance of solar PV source, performance of diesel generators, costs of system components, maintenance, and operation are modeled and simulated at a time interval of ten minutes over a twenty-five year period for both microgrid topologies. Results are quantified through cost of energy, diesel fuel requirements, and utilization of the energy sources under varying levels of demand response. The results indicate that a moderate level of demand response can have significant positive impacts to the operation of hybrid microgrids through reduced energy cost, fuel consumption, and increased utilization of PV sources.

  10. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    Science.gov (United States)

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  11. Thermal and Performance Analysis of a Photovoltaic Module with an Integrated Energy Storage System

    Directory of Open Access Journals (Sweden)

    Manel Hammami

    2017-10-01

    Full Text Available This paper is proposing and analyzing an electric energy storage system fully integrated with a photovoltaic PV module, composed by a set of lithium-iron-phosphate (LiFePO4 flat batteries, which constitutes a generation-storage PV unit. The batteries were surface-mounted on the back side of the PV module, distant from the PV backsheet, without exceeding the PV frame size. An additional low-emissivity sheet was introduced to shield the batteries from the backsheet thermal irradiance. The challenge addressed in this paper is to evaluate the PV cell temperature increase, due to the reduced thermal exchanges on the back of the module, and to estimate the temperature of the batteries, verifying their thermal constraints. Two one-dimensional (1D thermal models, numerically implemented by using the thermal library of Simulink-Matlab accounting for all the heat exchanges, are here proposed: one related to the original PV module, the other related to the portion of the area of the PV module in correspondence of the proposed energy-storage system. Convective and radiative coefficients were then calculated in relation to different configurations and ambient conditions. The model validation has been carried out considering the PV module to be at the nominal operating cell temperature (NOCT, and by specific experimental measurements with a thermographic camera. Finally, appropriate models were used to evaluate the increasing cell batteries temperature in different environmental conditions.

  12. Performance of U.S. hybrid distributed energy systems: Solar photovoltaic, battery and combined heat and power

    International Nuclear Information System (INIS)

    Shah, Kunal K.; Mundada, Aishwarya S.; Pearce, J.M.

    2015-01-01

    Highlights: • Simulated PV + battery + CHP hybrid systems deployed in three U.S. regions. • Used hybrid optimization model for electric renewable pro microgrid analysis. • Limited size of each sub-module to singe family house size. • Results show that the electricity generated meets residential load demand. • Hybrid systems are technically viable in hot, moderate and cold climates in U.S. - Abstract: Until recently, the relatively high levelized cost of electricity from solar photovoltaic (PV) technology limited deployment; however, recent cost reductions, combined with various financial incentives and innovative financing techniques, have made PV fully competitive with conventional sources in many American regions. In addition, the costs of electrical storage have also declined enough to make PV + battery systems potentially economically viable for a mass-scale off-grid low-emission transition. However, many regions in the U.S. (e.g. Northern areas) cannot have off-grid PV systems without prohibitively large battery systems. Small-scale combined heat and power (CHP) systems provide a potential solution for off-grid power backup of residential-scale PV + battery arrays, while also minimizing emissions from conventional sources. Thus, an opportunity is now available to maximize the use of solar energy and gain the improved efficiencies possible with CHPs to deploy PV + battery + CHP systems throughout the U.S. The aim of this study is to determine the technical viability of such systems by simulating PV + battery + CHP hybrid systems deployed in three representative regions in the U.S., using the Hybrid Optimization Model for Electric Renewable (HOMER) Pro Microgrid Analysis tool. The results show that the electricity generated by each component of the hybrid system can be coupled to fulfill the residential load demand. A sensitivity analysis of these hybrid off grid systems is carried out as a function capacity factor of both the PV and CHP units. The

  13. Household photovoltaic market in Xining, Qingha province, China: the role of local PV business

    International Nuclear Information System (INIS)

    Ling, S.; Boardman, B.

    2002-01-01

    This paper assesses the present and future market for household photovoltaic (PV) systems in rural Northwest China, especially from the PV commerce at Xining, Qinghai Province. This unsubsidised free market is now met by the emerging PV industry in China, which includes cell and module manufacturers, and PV system distributors and assemblers. For widespread deployment of such a renewable energy technology, the development of a local free market seems more successful than donor- or 'government subsidy'-driven programmes. Presently, there is a thriving infant PV industry in Northwest China, mostly centred in Xining. Xining-based PV sales companies have extensive networks for selling, marketing and servicing household PV systems for rural farmers and nomads. Small systems are now ordinary items on sale in local shops. Based on interviews and fieldwork observations with seven major PV sales companies in Xining, the household PV market is assessed from the present business operations of these companies. Detail of primary sources is given with the aim of archiving seminal progress in the history of photovoltaic power. The results suggest that although the household PV market will continue to grow, current government and international sponsored PV programmes can create both opportunities and barriers for the infant PV market an industry in China. (author)

  14. Models used to assess the performance of photovoltaic systems.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Klise, Geoffrey T.

    2009-12-01

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

  15. Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method

    International Nuclear Information System (INIS)

    Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B.

    2014-01-01

    Highlights: • Five PCM are characterized using tow techniques for PV temperature regulation. • Thermophysical properties of interest are determined and compared with literature. • Determined PCM properties are discussed as criteria for PV temperature regulation. • One PCM identified as potential candidate for PV temperature regulation. - Abstract: Five solid–liquid phase change materials comprising three basic classes, paraffin waxes, salt hydrates and mixtures of fatty acids were thermophysically characterized for thermal regulation applications in photovoltaics. The PCM were investigated using Differential Scanning Calorimetry and Temperature History Method to find their thermophysical properties of interest. The relationship between thermophysical properties of the PCM and their choice as temperature regulators in photovoltaics is discussed in relation to the ambient conditions under which PV systems operate

  16. Low light illumination study on commercially available homojunction photovoltaic cells

    International Nuclear Information System (INIS)

    Russo, Johnny; Ray, William; Litz, Marc S.

    2017-01-01

    Highlights: • COTS PV cells are tested under indoor and narrow light spectra. • InGaP is the most efficient under low light conditions (0.5–100 μW_o_p_t/cm"2). • InGaP is selected for isotope battery. • Optimal incident wavelength (614 nm) for InGaP is identified in model. - Abstract: Low illumination (10"−"4 suns) and indoor light energy harvesting is needed to meet the demands of zero net energy (ZNE) building, Internet of Things (IoT), and beta-photovoltaic energy harvesting systems to power remote sensors. Photovoltaic (PV) solar cells under low intensity and narrow (±40 nm) light spectrum conditions are not well characterized nor developed, especially for commercially available devices and scalable systems. PV operating characteristics under 1 sun illumination decrease at lower light intensity and narrow spectrum conditions (efficiency drops from ∼25% at 100 mW_o_p_t/cm"2 to 2% at 1 μW_o_p_t/cm"2). By choosing a PV with a bandgap that matches the light source operating wavelength, the total system efficiency can be improved. By quantifying losses on homojunction photovoltaics (thermalization and leakage current), we have determined the theoretical optimized efficiency for a set of PV material and a selected set of light sources. We measure single-junction solar cells’ parameters under three different light sources (indoor light and narrow spectrum LED sources) with light intensities ranging from 0.5 to 100 μW_o_p_t/cm"2. Measurements show that indium gallium phosphide (InGaP) PV has the highest surface power density and conversion efficiency (29% under ≈1 μW_o_p_t/cm"2 from a 523 nm central peak LED). A beta-photovoltaic experimental study identifies InGaP to be optimized for use with the ZnS:Cu, Al and tritium at STP. The results have guided the selection of PV material for scalable isotope batteries and other low-light energy harvesting systems.

  17. Performance improvement of a battery/PV/fuel cell/grid hybrid energy system considering load uncertainty modeling using IGDT

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Majidi, Majid; Zare, Kazem

    2017-01-01

    Highlights: • Optimum performance of PV/battery/fuel cell/grid hybrid system under load uncertainty. • Employing information gap decision theory (IGDT) to model the load uncertainty. • Robustness and opportunity functions of IGDT are modeled for risk-averse and risk-taker. • Robust strategy of hybrid system's operation obtained from robustness function. • Opportunistic strategy of hybrid system's operation obtained from opportunity function. - Abstract: Nowadays with the speed that electrical loads are growing, system operators are challenged to manage the sources they use to supply loads which means that that besides upstream grid as the main sources of electric power, they can utilize renewable and non-renewable energy sources to meet the energy demand. In the proposed paper, a photovoltaic (PV)/fuel cell/battery hybrid system along with upstream grid has been utilized to supply two different types of loads: electrical load and thermal load. Operators should have to consider load uncertainty to manage the strategies they employ to supply load. In other words, operators have to evaluate how load variation would affect their energy procurement strategies. Therefore, information gap decision theory (IGDT) technique has been proposed to model the uncertainty of electrical load. Utilizing IGDT approach, robustness and opportunity functions are achieved which can be used by system operator to take the appropriate strategy. The uncertainty modeling of load enables operator to make appropriate decisions to optimize the system’s operation against possible changes in load. A case study has been simulated to validate the effects of proposed technique.

  18. Equivalent Circuit Analysis of Photovoltaic-Thermoelectric Hybrid Device with Different TE Module Structure

    Directory of Open Access Journals (Sweden)

    Haijun Chen

    2014-01-01

    Full Text Available Combining two different types of solar cells with different absorption bands into a hybrid cell is a very useful method to improve the utilization efficiency of solar energy. The experimental data of dye-sensitized solar cells (DSSCs and thermoelectric generators (TEG was simulated by equivalent circuit method, and some parameters of DSSCs were obtained. Then, the equivalent circuit model with the obtained parameters was used to optimize the structure design of photovoltaic- (PV- thermoelectric (TE hybrid devices. The output power (Pout first increases to a maximum and then decreases by increasing the TE prism size, and a smaller spacing between p-type prism and n-type prism of a TE p-n junction causes a higher output power of TEG and hybrid device. When the spacing between TE prisms is 15 μm and the optimal base side length of TE prism is 40 μm, the maximum theoretical efficiency reaches 24.6% according to the equivalent circuit analysis. This work would give some enlightenment for the development of high-performance PV-TE hybrid devices.

  19. A hybrid method for forecasting the energy output of photovoltaic systems

    International Nuclear Information System (INIS)

    Ramsami, Pamela; Oree, Vishwamitra

    2015-01-01

    Highlights: • We propose a novel hybrid technique for predicting the daily PV energy output. • Multiple linear regression, FFNN and GRNN artificial neural networks are used. • Stepwise regression is used to select the most relevant meteorological parameters. • SR-FFNN reduces the average dispersion and overall bias in prediction errors. • Accuracy metrics of hybrid models are better than those of single-stage models. - Abstract: The intermittent nature of solar energy poses many challenges to renewable energy system operators in terms of operational planning and scheduling. Predicting the output of photovoltaic systems is therefore essential for managing the operation and assessing the economic performance of power systems. This paper presents a new technique for forecasting the 24-h ahead stochastic energy output of photovoltaic systems based on the daily weather forecasts. A comparison of the performances of the hybrid technique with conventional linear regression and artificial neural network models has also been reported. Initially, three single-stage models were designed, namely the generalized regression neural network, feedforward neural network and multiple linear regression. Subsequently, a hybrid-modeling approach was adopted by applying stepwise regression to select input variables of greater importance. These variables were then fed to the single-stage models resulting in three hybrid models. They were then validated by comparing the forecasts of the models with measured dataset from an operational photovoltaic system. The accuracy of the each model was evaluated based on the correlation coefficient, mean absolute error, mean bias error and root mean square error values. Simulation results revealed that the hybrid models perform better than their corresponding single-stage models. Stepwise regression-feedforward neural network hybrid model outperformed the other models with root mean square error, mean absolute error, mean bias error and

  20. Rooftop photovoltaic (PV) systems : a cost–benefit analysis study of industrial halls

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2013-01-01

    Rooftop photovoltaic (PV) systems can be readily deployed on industrial halls with relatively large rooftop area. Feed-in tariff above the base price of electricity is offered in many countries to subsidize the high initial investment of PV systems. In order to fully capitalize the benefit of the

  1. Performance evaluation of photovoltaic-thermosyphon system for subtropical climate application

    Energy Technology Data Exchange (ETDEWEB)

    Chow, T.T.; He, W.; Chan, A.L.S. [Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China); Ji, J. [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Anhui (China)

    2007-01-15

    The rapid development and sales volume of photovoltaic (PV) modules has created a promising business environment in the foreseeable future. However, the current electricity cost from PV is still several times higher than from the conventional power generation. One way to shorten the payback period is to bring in the hybrid photovoltaic-thermal (PVT) technology, which multiplies the energy outputs from the same collector surface area. In this paper, the performance evaluation of a new water-type PVT collector system is presented. The thermal collection making use of the thermosyphon principle eliminates the expense of pumping power. Experimental rigs were successfully built. A dynamic simulation model of the PVT collector system was developed and validated by the experimental measurements, together with two other similar models developed for PV module and solar hot-water collector. These were then used to predict the energy outputs and the payback periods for their applications in the subtropical climate, with Hong Kong as an example. The numerical results show that a payback period of 12 year for the PVT collector system is comparable to the side-by-side system, and is much shorter than the plain PV application. This is a great encouragement in marketing the PVT technology. (author)

  2. Performance evaluation of photovoltaic-thermosyphon system for subtropical climate application

    International Nuclear Information System (INIS)

    Chow, T.T.; He, W.; Chan, A.L.S.; Ji, J.

    2007-01-01

    The rapid development and sales volume of photovoltaic (PV) modules has created a promising business environment in the foreseeable future. However, the current electricity cost from PV is still several times higher than from the conventional power generation. One way to shorten the payback period is to bring in the hybrid photovoltaic-thermal (PVT) technology, which multiplies the energy outputs from the same collector surface area. In this paper, the performance evaluation of a new water-type PVT collector system is presented. The thermal collection making use of the thermosyphon principle eliminates the expense of pumping power. Experimental rigs were successfully built. A dynamic simulation model of the PVT collector system was developed and validated by the experimental measurements, together with two other similar models developed for PV module and solar hot-water collector. These were then used to predict the energy outputs and the payback periods for their applications in the subtropical climate, with Hong Kong as an example. The numerical results show that a payback period of 12 year for the PVT collector system is comparable to the side-by-side system, and is much shorter than the plain PV application. This is a great encouragement in marketing the PVT technology. (author)

  3. Design of an off-grid hybrid PV/wind power system for remote mobile base station: A case study

    Directory of Open Access Journals (Sweden)

    Mulualem T. Yeshalem

    2017-01-01

    Full Text Available There is a clear challenge to provide reliable cellular mobile service at remote locations where a reliable power supply is not available. So, the existing Mobile towers or Base Transceiver Station (BTSs uses a conventional diesel generator with backup battery banks. This paper presents the solution to utilizing a hybrid of photovoltaic (PV solar and wind power system with a backup battery bank to provide feasibility and reliable electric power for a specific remote mobile base station located at west arise, Oromia. All the necessary modeling, simulation, and techno-economic evaluation are carried out using Hybrid Optimization Model for Electric Renewable (HOMER software. The best optimal system configurations namely PV/Battery and PV/Wind/Battery hybrid systems are compared with the conventional stand-alone diesel generator (DG system. Findings indicated that PV array and battery is the most economically viable option with the total net present cost (NPC of $\\$$57,508 and per unit cost of electricity (COE of $\\$$0.355. Simulation results show that the hybrid energy systems can minimize the power generation cost significantly and can decrease CO2 emissions as compared to the traditional diesel generator only. The sensitivity analysis is also carried out to analysis the effects of probable variation in solar radiation, wind speed, diesel price and average annual energy usage of the system load in the optimal system configurations.

  4. Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials

    International Nuclear Information System (INIS)

    Royo, Patricia; Ferreira, Víctor J.; López-Sabirón, Ana M.; Ferreira, Germán

    2016-01-01

    Growing demands for energy, gradual depletion of fossil resources and high environmental impacts require that current energy production models be replaced by more sustainable technology. Thus, research efforts focused on improving energy efficiency and material efficiency are considered extremely relevant. In the following work, the influence of incorporating PCMs (phase change materials) on electricity conversion efficiency discussed along with hot spot prevention and lifetime increases in BIPV (building-integrated photovoltaics). The main goal is to evaluate the operational temperature control in a BIPV with or without PCMs considering different climatic severities. A design parameter analysis was conducted, and the importance of suitable PCMs and proper system designs are revealed. Also, this study indicates that areas with different climatic severities must be considered for widespread evaluations of this technology application to impact diverse regions. Additionally, an environmental analysis based on the LCA (life cycle assessment) methodology was performed using the SimaPro software. The results show that a positive environmental impact is generated by PCM applications because of the decreased amount of consumed resources in BIPV manufacturing, which is related to the lifetime extension resulting from the ability of PCMs to store latent heat and prevent premature physical damage to the BIPV. - Highlights: • Thermal-regulating PV through innovative solutions based on PCM is focused. • A proper design parameter and PCM selection will enhance the PV performance. • T pv/pcm was reduced by 8°C and η pv/pcm improved by 3% compared to η pv , in Zaragoza. • The PCM-related thermal regulation reduces premature degradation in PV systems. • The application of PCM in PV improves the energy and environmental efficiency.

  5. Regulatory potential for increasing small scale grid connected photovoltaic (PV) deployment in Australia

    International Nuclear Information System (INIS)

    Sivaraman, Deepak; Horne, Ralph E.

    2011-01-01

    The last decade has seen significant innovation and change in regulatory incentives to support photovoltaic deployment globally. With high fossil fuel dependency and abundant solar resource availability in Australia, grid connected photovoltaics are a viable low carbon technology option in existing electricity grids. Drawing on international examples, the potential to increase grid PV deployment through government response and regulation is explored. For each renewable energy certificate (REC) earned by small scale photovoltaics until 2012, the market provides four additional certificates under the current banded renewable targets. Our analysis indicates that REC eligibility is not accurately estimated currently, and an energy model is developed to calculate the variance. The energy model estimates as much as 26% additional REC's to be obtained by a 3 kWp PV system, when compared to the currently used regulatory method. Moreover, the provision of REC's increases benefits to PV technologies, in the process distorting CO 2 abatement (0.21 tonne/REC) by 68%, when PV displaces peaking natural gas plants. Consideration of the secondary effects of a banded structure on emissions trading market is important in the context of designing a range of initiatives intended to support a transition to a low carbon electricity sector. - Research Highlights: →Grid connected photovoltaics hedge spikes in peak demand summer electricity prices. →Nationwide feed in tariff and new building regulations needed to increase PV deployment. →Australia has transitioned from a solar rebate to a banded solar credit structure. →The currently used regulatory deeming method underestimates REC eligibility by 27%. →The banded structure can potentially distort CO 2 abatement by as much as 68%.

  6. Economical feasibility study of thermal-photovoltaic concentrators facility in a pig farm of close cycle production; Estudio sobre la viabilidad economica de la instalacion de concentradores termico-fotovoltaicos en una explotacion agropecuaria de ciclo cerrado

    Energy Technology Data Exchange (ETDEWEB)

    Roca, J.; Ibanez, M.; Rosell, J. I.

    2004-07-01

    This paper presents an application of an hybrid generation device, where solar energy is converted into both electrical and thermal energy (heating and SDHW). The advantages of a PV/T collector are used in pig's farm of close cycle production. The system proposed is based in a reflector Fresnel concentrator and a PV/T collector which uses water as a cooling fluid. This hybrid generator has been designed and constructed at the University of Lleida. The two-axes sun tracking concentrator has an aperture area of 4,16 m2. It works under 12 suns of concentration. The installation of 12 PV/T units would cover 100% of the electrical demand during 7 months. The output power is 4,4 kW electrical and 24,0 kW thermal. The initial investment to install the PV/T facility is around 47.300 . The payback period is 12 years and the NPV is positive at the end of the, 30 years, lifetime period. (Author)

  7. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Khatib, Tamer; Elmenreich, Wilfried

    2014-01-01

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  8. Thermal modelling of PV module performance under high ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    When predicting the performance of photovoltaic (PV) generators, the actual performance is typically lower than test results conducted under standard test conditions because the radiant energy absorbed in the module under normal operation raises the temperature of the cell and other multilayer components. The increase in temperature translates to a lower conversion efficiency of the solar cells. In order to address these discrepancies, a thermal model of a characteristic PV module was developed to assess and predict its performance under real field-conditions. The PV module consisted of monocrystalline silicon cells in EVA between a glass cover and a tedlar backing sheet. The EES program was used to compute the equilibrium temperature profile in the PV module. It was shown that heat is dissipated towards the bottom and the top of the module, and that its temperature can be much higher than the ambient temperature. Modelling results indicate that 70-75 per cent of the absorbed solar radiation is dissipated from the solar cells as heat, while 4.7 per cent of the solar energy is absorbed in the glass cover and the EVA. It was also shown that the operating temperature of the PV module decreases with increased wind speed. 2 refs.

  9. PV Thermal systems: PV panels supplying renewable electricity and heat

    NARCIS (Netherlands)

    Helden, van W.G.J.; Zolingen, van R.J.C.; Zondag, H.A.

    2004-01-01

    With PV Thermal panels sunlight is converted into electricity and heat simultaneously. Per unit area the total efficiency of a PVT panel is higher than the sum of the efficiencies of separate PV panels and solar thermal collectors. During the last 20 years research into PVT techniques and concepts

  10. Optimal stochastic short-term thermal and electrical operation of fuel cell/photovoltaic/battery/grid hybrid energy system in the presence of demand response program

    International Nuclear Information System (INIS)

    Majidi, Majid; Nojavan, Sayyad; Zare, Kazem

    2017-01-01

    Highlights: • On-grid photovoltaic/battery/fuel cell system is considered as hybrid system. • Thermal and electrical operation of hybrid energy system is studied. • Hybrid energy system is used to reduce dependency on upstream grid for load serving. • Demand response program is proposed to manage the electrical load. • Demand response program is proposed to reduce hybrid energy system’s operation cost. - Abstract: In this paper, cost-efficient operation problem of photovoltaic/battery/fuel cell hybrid energy system has been evaluated in the presence of demand response program. Each load curve has off-peak, mid and peak time periods in which the energy prices are different. Demand response program transfers some amount of load from peak periods to other periods to flatten the load curve and minimize total cost. So, the main goal is to meet the energy demand and propose a cost-efficient approach to minimize system’s total cost including system’s electrical cost and thermal cost and the revenue from exporting power to the upstream grid. A battery has been utilized as an electrical energy storage system and a heat storage tank is used as a thermal energy storage system to save energy in off-peak and mid-peak hours and then supply load in peak hours which leads to reduction of cost. The proposed cost-efficient operation problem of photovoltaic/battery/fuel cell hybrid energy system is modeled by a mixed-integer linear program and solved by General algebraic modeling system optimization software under CPLEX solver. Two case studies are investigated to show the effects of demand response program on reduction of total cost.

  11. Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations

    International Nuclear Information System (INIS)

    Herrando, María; Markides, Christos N.

    2016-01-01

    Highlights: • Renewable heat and power generation in UK homes with PVT systems studied. • PVT/w generation: 2.3 MW_e h/yr (51% of demand) and 1.0 MW_t_h h/yr (36% hot water). • Optimised PVT/w system has 9–11 year payback periods (PV-only: 6.8 years). • Same system allows 16.0-t CO_2 reduction and 14-t primary fossil-fuel saving. • With a ∼2:1 support (£/W_e h:£/W_t_h h), PVT and PV have similar payback periods. - Abstract: A techno-economic analysis is undertaken to assess hybrid PV/solar-thermal (PVT) systems for distributed electricity and hot-water provision in a typical house in London, UK. In earlier work (Herrando et al., 2014), a system model based on a PVT collector with water as the cooling medium (PVT/w) was used to estimate average year-long system performance. The results showed that for low solar irradiance levels and low ambient temperatures, such as those associated with the UK climate, a higher coverage of total household energy demands and higher CO_2 emission savings can be achieved by the complete coverage of the solar collector with PV and a relatively low collector cooling flow-rate. Such a PVT/w system demonstrated an annual electricity generation of 2.3 MW h, or a 51% coverage of the household’s electrical demand (compared to an equivalent PV-only value of 49%), plus a significant annual water heating potential of to 1.0 MW h, or a 36% coverage of the hot-water demand. In addition, this system allowed for a reduction in CO_2 emissions amounting to 16.0 tonnes over a life-time of 20 years due to the reduction in electrical power drawn from the grid and gas taken from the mains for water heating, and a 14-tonne corresponding displacement of primary fossil-fuel consumption. Both the emissions and fossil-fuel consumption reductions are significantly larger (by 36% and 18%, respectively) than those achieved by an equivalent PV-only system with the same peak rating/installed capacity. The present paper proceeds further, by

  12. Photovoltaic Subcontract Program

    Energy Technology Data Exchange (ETDEWEB)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  13. Hybrid photovoltaic–thermal solar collectors dynamic modeling

    International Nuclear Information System (INIS)

    Amrizal, N.; Chemisana, D.; Rosell, J.I.

    2013-01-01

    Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.

  14. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  15. Electrical Rating of Concentrated Photovoltaic (CPV) Systems: Long-Term Performance Analysis and Comparison to Conventional PV Systems

    KAUST Repository

    Burhan, Muhammad

    2016-02-29

    The dynamic nature of meteorological data and the commercial availability of diverse photovoltaic systems, ranging from single-junction silicon-based PV panels to concentrated photovoltaic (CPV) systems utilizing multi-junction solar cells and a two-axis solar tracker, demand a simple but accurate methodology for energy planners and PV system designers to understand the economic feasibility of photovoltaic or renewable energy systems. In this paper, an electrical rating methodology is proposed that provides a common playing field for planners, consumers and PV manufacturers to evaluate the long-term performance of photovoltaic systems, as long-term electricity rating is deemed to be a quick and accurate method to evaluate economic viability and determine plant sizes and photovoltaic system power production. A long-term performance analysis based on monthly and electrical ratings (in kWh/m2/year) of two developed CPV prototypes, the Cassegrain mini dish and Fresnel lens CPVs with triple-junction solar cells operating under the meteorological conditions of Singapore, is presented in this paper. Performances are compared to other conventional photovoltaic systems.

  16. Sustainability assessment of a hybrid energy system

    International Nuclear Information System (INIS)

    Afgan, Nain H.; Carvalho, Maria G.

    2008-01-01

    A hybrid energy system in the form of the Object structure is the pattern for the structure of options in the evaluation of a hybrid system. The Object structure is defined as: Hybrid Energy System {[production (solar, wind, biomass, natural gas)] [utilization(electricity, heat, hydrogen)]}. In the evaluation of hybrid energy systems only several options are selected to demonstrate the sustainability assessment method application in the promotion of the specific quality of the hybrid energy system. In this analysis the following options are taken into a consideration: 1.Solar photo-voltaic power plant (PV PP), wind turbine power plant (WTPP) biomass thermal power plant (ThSTPP) for electricity, heat and hydrogen production. 2.Solar PV PP and wind power plant (WPP) for electricity and hydrogen production. 3.Biomass thermal steam turbine power plant (BThSTPP) and WPP for heat and hydrogen production. 4.Combined cycle gas turbine power plant for electricity and hydrogen production. 5.Cogeneration of electricity and water by the hybrid system. The sustainability assessment method is used for the evaluation of quality of the selected hybrid systems. In this evaluation the following indicators are used: economic indicator, environment indicator and social indicator

  17. Solar energy developments: photovoltaics

    International Nuclear Information System (INIS)

    Sivoththaman, S.

    2006-01-01

    The annual photovoltaic (PV) energy production crossed the 1 Gigawatt mark a couple of years ago, and continues to grow at rates exceeding 40%. The cost of PV has been continuously dropping due to increased production and also thanks to the technological advances made over the past two decades at the material, device, and system levels. Although PV is still considered expensive, cost-competitiveness is expected to be achieved in the next 5-10 years. With the current PV market 90% dominated by crystalline silicon (Si) material, advances are being made in tackling the Si shortage issue, and new approaches in feedstock refinement are getting shape. On the other hand, progress is being made on thin film-based advanced devices and on novel organic semiconductors. Novel concepts based on quantum physics and nanotechnology do have the ability to improve device performance beyond traditional theoretical limits. The domination of Si is expected to shift when these next generation technologies mature into industry-level scalability. On the system level, advanced back-end electronics provides more efficient power conditioning for modern PV modules. Systems level combinations such as solar thermal/PV hybrids and PV/hydrogen systems are also promising. An overview of recent technology developments will be presented with highlights in the Canadian scenario. (author)

  18. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    Science.gov (United States)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  19. EXERGY AND CARBON CREDITS FOR SERIES CONNECTED N PHOTOVOLTAIC THERMAL - COMPOUND PARABOLIC CONCENTRATOR (PVT-CPC) COLLECTOR: AT CONSTANT OUTLET TEMPERATURE

    OpenAIRE

    Rohit Tripathi 1,*, G. N. Tiwari 2

    2017-01-01

    In the present study, overall energy and exergy performance of partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) (25% covered by glass to glass PV module) collector connected in series have been carried out at constant outlet temperature mode. Further, comparison in performance for partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) [case (i)] and N compound parabolic concentrators (CPC) collector [case (ii)] connected in s...

  20. Hybrid Power Forecasting Model for Photovoltaic Plants Based on Neural Network with Air Quality Index

    Directory of Open Access Journals (Sweden)

    Idris Khan

    2017-01-01

    Full Text Available High concentration of greenhouse gases in the atmosphere has increased dependency on photovoltaic (PV power, but its random nature poses a challenge for system operators to precisely predict and forecast PV power. The conventional forecasting methods were accurate for clean weather. But when the PV plants worked under heavy haze, the radiation is negatively impacted and thus reducing PV power; therefore, to deal with haze weather, Air Quality Index (AQI is introduced as a parameter to predict PV power. AQI, which is an indication of how polluted the air is, has been known to have a strong correlation with power generated by the PV panels. In this paper, a hybrid method based on the model of conventional back propagation (BP neural network for clear weather and BP AQI model for haze weather is used to forecast PV power with conventional parameters like temperature, wind speed, humidity, solar radiation, and an extra parameter of AQI as input. The results show that the proposed method has less error under haze condition as compared to conventional model of neural network.

  1. New Multiphase Hybrid Boost Converter with Wide Conversion Ratio for PV System

    Directory of Open Access Journals (Sweden)

    Ioana-Monica Pop-Calimanu

    2014-01-01

    Full Text Available A new multiphase hybrid boost converter, with wide conversion ratio as a solution for photovoltaic energy system, is presented in this paper. To ensure that all the phases of the converter operate at the same switching frequency we use interleaving topology. The proposed converter can be used as an interface between the PV system and the DC load/inverter. This multiphase converter has the advantage of reduced value and physical size of the input and output capacitor as well as the effort for the inductors. To validate the operation of the converter we provide the analyses and the simulation results of the converter.

  2. User acceptance of diesel/PV hybrid system in an island community

    International Nuclear Information System (INIS)

    Phuangpornpitak, N.; Kumar, S.

    2011-01-01

    This paper presents the results of a study conducted at a rural (island) community to understand the role of PV hybrid system installed on an island. Until 2004, most islanders had installed diesel generators in their homes to generate electricity, which was directly supplied to appliances or stored in the batteries for later use. A field survey was carried out to study the user satisfaction of the PV hybrid system in the island community. The attitude of islanders to the PV hybrid system was mostly positive. The islanders can use more electricity, the supply of which can meet the demand. A comparison of pollutions before and after installation of the PV hybrid system was made along with the interviews with the users. The data show that the users are highly satisfied with the PV hybrid system which can reduce environmental impact, especially air and noise pollutions. New opportunities as a result of access to electric service include studying and reading at night that were not possible earlier. All the islanders use the PV hybrid system and more importantly, no one found that the system made their life worse as compared to the earlier state of affairs. (author)

  3. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  4. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  5. Impedance characterization of PV modules in outdoor conditions

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Thorsteinsson, Sune; Spataru, Sergiu

    2016-01-01

    Impedance spectroscopy (IS) has been used for laboratory characterizations of photovoltaic (PV) technologies under well controlled conditions. This work applies IS for outdoor characterization of PV panels, in order to observe the effect of irradiance (G) and temperature (T) on the PV module’s...

  6. Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes

    International Nuclear Information System (INIS)

    Peng, Jinqing; Lu, Lin; Yang, Hongxing; Ma, Tao

    2015-01-01

    Highlights: • A ventilated photovoltaic double-skin façade (PV-DSF) using semi-transparent a-Si was reported. • The impact of different ventilation modes on the power performance of PV-DSF was studied experimentally. • The SHGCs and U-values of PV-DSFs under different ventilation modes were calculated and compared. • An optimum operating strategy was proposed for this PV-DSF to achieve the best energy efficiency. - Abstract: This paper studied the thermal and power performances of a ventilated photovoltaic façade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin façade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400 mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum

  7. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    Science.gov (United States)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  8. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump

    International Nuclear Information System (INIS)

    Bakker, M.; Zondag, H.A.; Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.

    2005-03-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. Hence, PVT panels are an alternative for a combination of separate PV panels and solar thermal collectors. A promising system concept, consisting of 25 m 2 of PVT panels and a ground coupled heat pump, has been simulated in TRNSYS. It has been found that this system is able to cover 100% of the total heat demand for a typical newly-built Dutch one-family dwelling, while covering nearly all of its own electricity use and keeping the long-term average ground temperature constant. The cost of such a system has been compared to the cost of a reference system, where the PVT panels have been replaced with separate PV panels (26 m 2 ) and solar thermal collectors (7 m 2 ), but which is otherwise identical. The electrical and thermal yield of this reference system is equal to that of the PVT system. It has been found that both systems require a nearly identical initial investment. Finally, a view on future PVT markets is given. In general, the residential market is by far the most promising market. The system discussed in this paper is expected to be most successful in newly-built low-energy housing concepts

  9. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump

    International Nuclear Information System (INIS)

    Bakker, M.; Zondag, H.A.; Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.

    2005-01-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. Hence, PVT panels are an alternative for a combination of separate PV panels and solar thermal collectors. A promising system concept, consisting of 25 m 2 of PVT panels and a ground coupled heat pump, has been simulated in TRNSYS. It has been found that this system is able to cover 100% of the total heat demand for a typical newly-built Dutch one-family dwelling, while covering nearly all of its own electricity use and keeping the long-term average ground temperature constant. The cost of such a system has been compared to the cost of a reference system, where the PVT panels have been replaced with separate PV panels (26 m 2 ) and solar thermal collectors (7 m 2 ), but which is otherwise identical. The electrical and thermal yield of this reference system is equal to that of the PVT system. It has been found that both systems require a nearly identical initial investment. Finally, a view on future PVT markets is given. In general, the residential market is by far the most promising market. The system discussed in this paper is expected to be most successful in newly-built low-energy housing concepts. (Author)

  10. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    International Nuclear Information System (INIS)

    Khan, M Reyasudin Basir; Jidin, Razali; Shaaya, Sharifah Azwa; Pasupuleti, Jagadeesh

    2013-01-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  11. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    Science.gov (United States)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Azwa Shaaya, Sharifah

    2013-06-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  12. Building opportunities for photovoltaics in the U.S. Final report [PV BONUS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Nicklas

    1999-09-08

    The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the

  13. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    Science.gov (United States)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  14. Final Technical Report - Photovoltaics for You (PV4You) Program

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, J. M. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Sherwood, L. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Pulaski, J. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Cook, C. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Kalland, S. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Haynes, J. [Interstate Renewable Energy Council (IREC), New York, NY (United States)

    2005-08-14

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy's solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership

  15. ¬MPPT Pada Sistem PV Menggunakan Algoritma Firefly dan Modified P&O dengan Konverter Hybrid Cuk terkoneksi ke Grid Satu Phasa di Bawah Kondisi Partial Shaded

    Directory of Open Access Journals (Sweden)

    Dhuhari Chalis Bani

    2017-01-01

    Full Text Available Abstrak— Photovoltaic (PV merupakan sumber energi terbarukan yang paling banyak dijumpai di alam serta merupakn energi alternatif yang sangat pesat perkembangannya. Untuk mengahasilkan daya, sebuah PV dipengaruhi sebuah nilai intensitas cahaya matahari yang mengenainya. Sebuah sistem PV membutuhkan sebuah kontrol yang bertujuan untuk meningkatkan efisien daya PV tersebut. Kontrol ini adalah Maximum Power Point Tracking (MPPT yang dapat mengoptimalkan daya yang dihasilkan oleh PV.  Sebuah PV hanya menghasilkan nilai tegangan yang rendah, untuk itu perlu menggunakan koverter DC-DC step up untuk menaikan rasio tegangan DC tadi. Untuk mengoptimalkan sistem ini, diperlukan sebuah konverter yang efisien dan dapat menghasilkan rasio konversi tegangan yang tinggi. Pada penelitian menggunakan firefly algoritm (FFA dan modified perturb and observe (P&O sebagai MPPT untuk mendapatkan nilai daya optimal pada keluaran PV.  Konverter DC-DC yang digunakan adalah hybrid cuk converter boost mode yang memiliki rasio tegangan yang tinggi. Dari DC-link kemudian masuk ke inverter (VSI yang diinterkoneksi dengan grid menggunakan current control. Hasil analisis simulasi menunjukan bahwa FFA dan P&O mampu menghasilkan daya PV yang optimum dengan riak yang kecil dan konverter hybrid cuk converter boost mode dapat menghasilkan rasio tegangan yang lebih besar dibandingkan konverter cuk biasa.   Kata Kunci — PV, MPPT FFA, MPPT P&O, Hybrid Cuk Converter, DC-Link, Inverter Grid Connected

  16. Numerical and Experimental Study on Energy Performance of Photovoltaic-Heat Pipe Solar Collector in Northern China

    Directory of Open Access Journals (Sweden)

    Hongbing Chen

    2015-01-01

    Full Text Available Several studies have found that the decrease of photovoltaic (PV cell temperature would increase the solar-to-electricity conversion efficiency. Water type PV/thermal (PV/T system was a good choice but it could become freezing in cold areas of Northern China. This paper proposed a simple combination of common-used PV panel and heat pipe, called PV-heat pipe (PV-HP solar collector, for both electrical and thermal energy generation. A simplified one-dimensional steady state model was developed to study the electrical and thermal performance of the PV-HP solar collector under different solar radiations, water flow rates, and water temperatures at the inlet of manifold. A testing rig was conducted to verify the model and the testing data matched very well with the simulation values. The results indicated that the thermal efficiency could be minus in the afternoon. The thermal and electrical efficiencies decreased linearly as the inlet water temperature and water flow rate increased. The thermal efficiency increased while the electrical efficiency decreased linearly as the solar radiation increased.

  17. The Development of Monitoring and Control System of the Low PV/T Solar System

    OpenAIRE

    Okhorzina Alena; Bikbulatov Alexander; Yurchenko Alexey; Bernhard Norbert; Aldoshina Oksana

    2016-01-01

    The article presents an autonomous PV/T solar installation. Installing converts solar energy into electricity and heat. The description of its components and elements that enhance its effectiveness shows. The description of the control program and control of the installation is given. The control system provides for tracking the sun and cooling the photovoltaic module.

  18. Less CO2 by means of photovoltaic energy (PV)

    International Nuclear Information System (INIS)

    Alsema, E.A.; Van Brummelen, M.

    1992-11-01

    Regarding the title subject special attention is paid to the technical limitations of a fast introduction of the use of photovoltaic (PV) energy conversion. After a brief introduction on PV systems and the operation of a solar cell in chapter two, a state of the art is given of PV technology and possible price developments for PV modules and Balance-Of-System (BOS) components up to the year 2000 in chapters three and four. In chapter five the potential of installing grid-connected PV systems in the Netherlands is determined, taking into account the options of using existing buildings (PV systems on the roof), unexplored ground, in the verge of highways or railroads, industrial areas and airports. In chapter six non-economical bottlenecks for a large-scale introduction of grid-connected PV systems are discussed: the industrial production capacity for PV modules and other components, the fitting-in into the public electricity supply, and institutional aspects of installing PV systems on roofs. In chapter seven it is determined how much costs can be saved and CO 2 emission can be reduced when PV capacity is fitted-in into the Dutch electric power supply. The calculations are based on the Global Shift scenario. In chapter eight two scenarios (an optimistic scenario and a more realistic scenario) for the introduction of PV systems are outlined. For both scenarios the financial consequences and the contribution to the electric power supply are indicated. In chapter nine the net energy yield, being the result of the previously discussed introduction scenarios, is calculated, followed by a calculation of the avoided CO 2 emission, as well as the costs to avoid such emission. 25 figs., 15 tabs., 116 refs., 1 annex

  19. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim

    2017-12-01

    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  20. A novel PV/T-air dual source heat pump water heater system: Dynamic simulation and performance characterization

    International Nuclear Information System (INIS)

    Cai, Jingyong; Ji, Jie; Wang, Yunyun; Zhou, Fan; Yu, Bendong

    2017-01-01

    Highlights: • The PV/T evaporator and air source evaporator connect in parallel and operate simultaneously. • A dynamic model is developed to simulate the behavior of the system. • The thermal and electrical characteristics of the PV/T evaporator are evaluated. • The contribution of the air source evaporator and PV/T evaporator has been discussed. - Abstract: To enable the heat pump water heater maintain efficient operation under diverse circumstances, a novel PV/T-air dual source heat pump water heater (PV/T-AHPWH) has been proposed in this study. In the PV/T-AHPWH system, a PV/T evaporator and an air source evaporator connect in parallel and operate simultaneously to recover energy from both solar energy and environment. A dynamic model is presented to simulate the behavior of the PV/T-AHPWH system. On this basis, the influences of solar irradiation, ambient temperature and packing factor have been discussed, and the contributions of air source evaporator and PV/T evaporator are evaluated. The results reveal that the system can obtain efficient operation with the average COP above 2.0 under the ambient temperature of 10 °C and solar irradiation of 100 W/m 2 . The PV/T evaporator can compensate for the performance degradation of the air source evaporator caused by the increasing condensing temperature. As the evaporating capacity in PV/T evaporator remains at relatively low level under low irradiation, the air source evaporator can play the main role of recovering heat. Comparing the performance of dual source heat pump system employing PV/T collector with that utilizing normal solar thermal collector, the system utilizing PV/T evaporator is more efficient in energy saving and performance improvement.

  1. Performance Analysis of FLC Controlled PV-Wind Hybrid Power System for dc Load with Real-Time Data in Matlab, Simulink

    Directory of Open Access Journals (Sweden)

    A. V. Pavan Kumar

    2017-05-01

    Full Text Available Hybrid power system is a combination of different but complementary energy generation systems based on renewable energies. The Hybrid power system harnesses most of the power from the environmental conditions, reduces the losses and repetitive maintenance, thus improving efficiency and reliability of the system. This is achieved by proper coordination control between the Renewable Energy Sources (RES. This paper focuses on the implementation of Photovoltaic - Wind hybrid power system with real-time data of environmental conditions. The continuous real-time values of the solar irradiation and wind speed are obtained from the weather monitoring system at the location. The PV will be the primary source of generation during the day and wind generation can act as power conditioning. The Hybrid model is implemented in Matlab Simulink and its performance is examined under variable environmental conditions with a variable resistive load. A scale down experiment set-up of PV-Wind hybrid system is utilized to evaluate the performance of the proposed control logic. It has emerged from the simulation and experimental study that the hybrid system implemented with the real-time data maintains the output voltage constant irrespective of environmental conditions and load condition.

  2. Comparative Study Between Wind and Photovoltaic (PV) Systems

    Science.gov (United States)

    Taha, Wesam

    This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.

  3. Tools for PV (photovoltaic) plant operators: Nowcasting of passing clouds

    Czech Academy of Sciences Publication Activity Database

    Paulescu, M.; Badescu, V.; Brabec, Marek

    2013-01-01

    Roč. 54, č. 1 (2013), s. 104-112 ISSN 0360-5442 R&D Projects: GA MŠk LD12009 Institutional support: RVO:67985807 Keywords : PV (photovoltaic) plants * Sunshine number * Nowcasting * ARIMA (Autoregressive Integrated Moving Average ) modeling Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 4.159, year: 2013

  4. Optimizing economic benefit of rooftop photovoltaic (PV) systems through lowering energy demand of industrial halls

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2012-01-01

    Industrial halls are characterized with their relatively high roof-to-floor ratio, which facilitates ready deployment of photovoltaic (PV) systems on the rooftop. To promote deployment of PV systems, feed-in tariff (FIT) higher than the electricity rate is available in many countries to subsidize

  5. PV-wind hybrid system performance. A new approach and a case study

    International Nuclear Information System (INIS)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio; Mata, Montserrat; Llobet, Ermen

    2010-01-01

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  6. PV-wind hybrid system performance. A new approach and a case study

    Energy Technology Data Exchange (ETDEWEB)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio [Departamento de Energias Renovables, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Mata, Montserrat; Llobet, Ermen [Ecotecnia, Roc Boronat 78, 08005 Barcelona (Spain)

    2010-01-15

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  7. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia

    International Nuclear Information System (INIS)

    Halabi, Laith M.; Mekhilef, Saad; Olatomiwa, Lanre; Hazelton, James

    2017-01-01

    Highlights: • The performance of two decentralized power stations in Malaysia has been studied. • All possible scenarios of hybrid PV/diesel/battery system have been analyzed. • A comparison with the optimum design was included in this work using HOMER. • Sensitivity analysis showing the impact of main factors on the system was examined. • The advantages/disadvantages of utilizing each scenario are showed and clarified. - Abstract: This study considered two decentralized power stations in Sabah, Malaysia; each contains different combination of photovoltaic (PV), diesel generators, system converters, and storage batteries. The work was built upon previous related site surveys and data collections from each site. Verification of the site data sets, simulation of different operational scenarios, and a comparison with the optimum design were all considered in the work. This includes all possible standalone diesel generators, hybrid PV/diesel/battery, and 100% PV/battery scenarios for the proposed stations. HOMER software has been used in the modeling entire systems. The operational behaviors of different PV penetration levels were analyzed to accurately quantify the impact of PV integration. The performance of these stations was analyzed based on technical, economic and environmental constraints, besides, placing emphasis on comparative cost analysis between different operational scenarios. The results satisfied the load demand with the minimum total net present cost (NPC) and levelized cost of energy (LCOE). Moreover, sensitivity analysis was carried out to represents the effects of changing main parameters, such as; fuel, PV, battery prices, and load demand (load growth) on the system performance. Comparison of all operational behaviors scenarios was carried out to elucidate the advantages/disadvantages of utilizing each scenario. The impact of different PV penetration levels on the system performance and the generation of harmful emissions is also

  8. Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: ► We analyzed solar data in the location under consideration. ► We developed a program to simulate the operation of the PV-diesel generator hybrid system. ► We analyzed different scenarios to select and design the optimal system. ► It is cost effective to power houses in remote areas with such hybrid systems. ► The hybrid system had lower CO 2 emissions compared to a diesel generator only operation. - Abstract: A techno-economic analysis and the design of a complete hybrid system, consisting of photovoltaic (PV) panels, a battery system and a diesel generator as a backup power source for a typical Malaysian village household is presented in this paper. The specifications of the different components constructing the hybrid system were also determined. A scenario depending on a standalone PV and other scenario depending on a diesel generator only were also analyzed. A simulation program was developed to simulate the operation of these different scenarios. The scenario that achieves the minimum cost while meeting the load requirement was selected. The optimal tilt angle of the PV panels in order to increase the generated energy was obtained using genetic algorithm. In addition, sensitivity analysis was undertaken to evaluate the effect of change of some parameters on the cost of energy. The results indicated that the optimal scenario is the one that consists of a combination of the PV panels, battery bank and a diesel generator. Powering a rural house using this hybrid system is advantageous as it decreases operating cost, increases efficiencies, and reduces pollutant emissions

  9. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  10. The experimental study of a hybrid solar photo-Fenton and photovoltaic system for water purification

    International Nuclear Information System (INIS)

    Jin, Yanchao; Wang, Yiping; Huang, Qunwu; Zhu, Li; Cui, Yong; Cui, Lingyun; Lin, Chunyan

    2017-01-01

    Highlights: • A new solar photo-Fenton and photovoltaic system was performed for the first time. • Acid Red 26, Malachite Green and Reactive Blue 4 were discolored using the system. • The PV panel of the hybrid system could work under lower temperature. • The system achieved self-sufficient energy and could work autonomously. • Solar spectrum could be made full use for power generation and water purification. - Abstract: A new hybrid system that integrated a photovoltaic (PV) panel with a solar photo-Fenton (SPF) reactor was constructed to treat wastewater and generate electricity for the first time. The decolorization and photovoltaic performances of the hybrid system were tested outdoors by discoloring three dyes: Acid Red 26 (AR26), Malachite Green (MG) and Reactive Blue 4 (RB4). Lab scale experiments also had been done to confirm the impact of temperature on the SPF process. The lab scale results show that SPF process was more efficiency for decoloring the different dyes, compared with dark Fenton. The SPF followed a pseudo-first-order reaction and the reaction rate constant was improved about 3.5, 4.5 and 0.61 times for AR26, RB4 and MG respectively as the wastewater temperature increased from 20 to 50 °C. The decolorization difficulty of the three dyes followed this order: MG > AR26 > RB4. The results of the hybrid systems tested outdoors show that 200 mg/L MG had achieved 98.6% color removal after 3 h of treatment at a low catalyst dose (Fe"2"+ = 5 mg/L) under sunlight. For 100 mg/L MG, 99.3% color removal was observed after 70 min. The treatment time required for decolorization of AR26 and RB4 was more shorter. In the present of the water layer, the wastewater temperature was increased and that of the hybrid system was decreased. The average output power of the hybrid system was more than 12 W and sufficient to drive the system during all of the outdoor experiments. Our results suggest that the system could realize decolorization of different

  11. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we examine some of the limits to large-scale deployment of solar photovoltaics (PV) in traditional electric power systems. Specifically, we evaluate the ability of PV to provide a large fraction (up to 50%) of a utility system's energy by comparing hourly output of a simulated large PV system to the amount of electricity actually usable. The simulations use hourly recorded solar insolation and load data for Texas in the year 2000 and consider the constraints of traditional electricity generation plants to reduce output and accommodate intermittent PV generation. We find that under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. Several metrics are developed to examine this excess PV generation and resulting costs as a function of PV penetration at different levels of system flexibility. The limited flexibility of base load generators produces increasingly large amounts of unusable PV generation when PV provides perhaps 10-20% of a system's energy. Measures to increase PV penetration beyond this range will be discussed and quantified in a follow-up analysis

  12. Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes

    International Nuclear Information System (INIS)

    He, Wei; Zhou, JinZhi; Chen, Chi; Ji, Jie

    2014-01-01

    Highlights: • Thermoelectric heating system driven by heat pipe PV/T system was built and test. • Theoretical analysis has been done and simulation results have been validated by experiments. • The energetic efficiency and exergetic efficiency in summer and winter operation mode was analyzed and compared. - Abstract: This paper presents theoretical and experimental investigations of the winter operation mode of a thermoelectric cooling and heating system driven by a heat pipe photovoltaic/thermal (PV/T) panel. And the energy and exergy analysis of this system in summer and winter operation modes are also done. The winter operation mode of this system is tested in an experimental room which temperature is controlled at 18 °C. The results indicate the average coefficient of performance (COP) of thermoelectric module of this system can be about 1.7, the electrical efficiency of the PV/T panel can reach 16.7%, and the thermal efficiency of this system can reach 23.5%. The energy and exergy analysis show the energetic efficiency of the system in summer operation mode is higher than that of it in winter operation mode, but the exergetic efficiency in summer operation mode is lower than that in winter operation mode, on the contrary

  13. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absor

    Directory of Open Access Journals (Sweden)

    Mustofa

    2015-10-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperatures were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficiency was about 19%, while thermal efficiency of above 50% and correspondent cell efficiency of 11%, respectively.

  14. Thermal Performance and Reliability Analysis of Single-Phase PV Inverters with Reactive Power Injection Outside Feed-In Operating Hours

    DEFF Research Database (Denmark)

    Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    Reactive power support by photovoltaic (PV) systems is of increasingly interest, when compared to the conventional reactive power compensation devices. PV inverters can exchange reactive power with the utility grid in a decentralized manner even outside feed-in operation, especially at nights when...... there is no solar irradiance. However, reactive power injection causes additional power losses in the switching components leading to a temperature rise in the devices. Thus, this paper analyses the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance...... of their power switching components. A thermal analysis based on the mission profile (i.e., solar irradiance and ambient temperature) has been incorporated, so as to determine the additional temperature rise in the components induced by the operation outside feed-in hours. An analytical lifetime model has been...

  15. Data on Support Vector Machines (SVM model to forecast photovoltaic power

    Directory of Open Access Journals (Sweden)

    M. Malvoni

    2016-12-01

    Full Text Available The data concern the photovoltaic (PV power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled “Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data” (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015 [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA are applied to the Least Squares Support Vector Machines (LS-SVM to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

  16. A Non-Modeling Exploration of Residential Solar Photovoltaic (PV) Adoption and Non-Adoption

    Energy Technology Data Exchange (ETDEWEB)

    Moezzi, Mithra [Portland State Univ., Portland, OR (United States); Ingle, Aaron [Portland State Univ., Portland, OR (United States); Lutzenhiser, Loren [Portland State Univ., Portland, OR (United States); Sigrin, Benjamin O. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Although U.S. deployment of residential rooftop solar photovoltaic (PV) systems has accelerated in recent years, PV is still installed on less than 1 percent of single-family homes. Most research on household PV adoption focuses on scaling initial markets and modeling predicted growth rather than considering more broadly why adoption occurs. Among the studies that have investigated the characteristics of PV adoption, most collected data from adopters, sometimes with additional non-adopter data, and rarely from people who considered but did not adopt PV. Yet the vast majority of Americans are non-adopters, and they are a diverse group - understanding their ways of evaluating PV adoption is important. Similarly, PV is a unique consumer product, which makes it difficult to apply findings from studies of other technologies to PV. In addition, little research addresses the experience of households after they install PV. This report helps fill some of these gaps in the existing literature. The results inform a more detailed understanding of residential PV adoption, while helping ensure that adoption is sufficiently beneficial to adopters and even non-adopters.

  17. PV Status Report 2009. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2009-08-01

    Photovoltaics is a key technology option to realise the shift to a decarbonised energy supply. The solar resources in Europe and world wide are abundant and cannot be monopolised by one country. Regardless for what reasons and how fast the oil price and energy prices increase in the future, Photovoltaics and other renewable energies are the only ones to offer a reduction of prices rather than an increase in the future. As a response to the economic crisis, most of the G20 countries have designed economic recovery packages which include 'green stimulus' measures. However, compared to the new Chinese Energy Revitalisation Plan under discussion, the pledged investments in green energy are marginal. If no changes are made, China which now strongly supports its renewable energy industry, will emerge even stronger after the current financial crisis. In 2008, the Photovoltaic industry production almost doubled and reached a world-wide production volume of 7.3 GWp of Photovoltaic modules. Yearly growth rates over the last decade were in average more than 40%, which makes Photovoltaics one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect lower prices for consumers. The trend that thin-film Photovoltaics grew faster than the overall PV market continued in 2008. The Eighth Edition of the 'PV Status Report' tries to give an overview about the current activities regarding Research, Manufacturing and Market Implementation.

  18. Energy Management and Simulation of Photovoltaic/Hydrogen /Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Tariq Kamal

    2016-06-01

    Full Text Available This manuscript focuses on a hybrid power system combining a solar photovoltaic array and energy storage system based on hydrogen technology (fuel cell, hydrogen tank and electrolyzer and battery. The complete architecture is connected to the national grid through power converters to increase the continuity of power. The proposed a hybrid power system is designed to work under classical-based energy management algorithm. According to the proposed algorithm, the PV has the priority in meeting the load demands. The hydrogen technology is utilized to ensure long-term energy balance. The battery is used as a backup and/or high power device to take care of the load following problems of hydrogen technology during transient. The dynamic performance of a hybrid power system is tested under different solar radiation, temperature and load conditions for the simulation of 24 Hrs. The effectiveness of the proposed system in terms of power sharing, grid stability, power quality and voltage regulation is verified by Matlab simulation results.

  19. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Concentrated photovoltaic (CPV) system integrated with thermoelectric generators (TEGs) is a novel technology that has potential to offer high efficient system. In this study, a thermally coupled model of concentrated photovoltaic-thermoelctric (CPV/TEG) system is established to investigate...... feasibility of the hybrid system over wide range of solar concentrations and different types of heat sinks. The model takes into account critical design parameters in the CPV and the TEG module. The results of this study show that for thermoelectric materials with ZT ≈ 1, the CPV/TEG system is more efficient...

  20. A Novel Frequency Restoring Strategy of Hydro-PV Hybrid Microgrid

    DEFF Research Database (Denmark)

    Wei, Feng; Kai, Sun; Guan, Yajuan

    2014-01-01

    . The existence of frequency steady-state error and the slow active power/frequency dynamic response are inevitable. Therefore, a novel frequency restoring strategy for the hydro-PV hybrid microgrid based on the improved hierarchical control of PV systems is proposed in this paper. The output active power of PV......The conventional PV systems based on the voltage inverters only inject dispatched power to the utility grid when they work at a grid-connected mode in the hydro-PV hybrid microgrid. Due to the droop method employed for load sharing between generators, as well as the enormous inertia of system...... systems is controlled by an extra frequency restoring controller resided in the tertiary control level. The frequency steady-state error is eliminated through regulating and rebalancing the power flow between the hydropower and the PV system. The proposed strategy has verified through simulations...

  1. Models for a stand-alone PV system[Photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Hansen, L.H.; Bindner, H.

    2000-12-01

    This report presents a number of models for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against a system installed at Risoe National Laboratory. The work has been supported by the Danish Ministry of Energy, as a part of the activities in the Solar Energy Centre Denmark. The study is carried out at Risoe National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PV system, namely solar cells, battery, controller, inverter and load. The models for PV module and battery are based on the model descriptions found in the literature. The battery model is developed at UMASS and is known as the Kinetic Battery Model (KiBaM). The other component models in the PV system are based on simple electrical knowledge. The implementation is done using Matlab/Simulink, a simulation program that provides a graphical interface for building models as modular block diagrams. The non-linear behaviour of the battery, observed in the measurements, is investigated and compared to the KiBaM model's performance. A set of linear Black box models are estimated based on the battery measurements. The performance of the best linear Black box model is compared to the KiBaM model. A validation of each of the implemented mathematical model is performed by an interactive analysis and comparison between simulation results and measurements, acquired from the stand-alone PV system at Risoe. (au)

  2. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  3. A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources

    International Nuclear Information System (INIS)

    Bhandari, Binayak; Lee, Kyung-Tae; Lee, Caroline Sunyong; Song, Chul-Ki; Maskey, Ramesh K.; Ahn, Sung-Hoon

    2014-01-01

    Highlights: • We propose two hybridization methods for small off-grid power systems consisting solar (PV), wind, and micro-hydro sources. • One of the methods was implemented in a mini-grid connecting Thingan and Kolkhop villages in Makawanpur District, Nepal. • The results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. • This is the first implementation anywhere comprising of three renewable energy power, in a single off-grid power system. • This research may be applied as a practical guide for implementing similar systems in various locations. - Abstract: Several factors must be considered before adopting a full-phase power generation system based on renewable energy sources. Long-term necessary data (for one year if possible) should be collected before making any decisions concerning implementation of such a systems. To accurately assess the potential of available resources, we measured solar irradiation, wind speed, and ambient temperature at two high-altitude locations in Nepal: the Lama Hotel in Rasuwa District and Thingan in Makawanpur District. Here, we propose two practical, economical hybridization methods for small off-grid systems consisting entirely of renewable energy sources—specifically solar photovoltaic (PV), wind, and micro-hydro sources. One of the methods was tested experimentally, and the results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. Hydro, wind, and solar photovoltaic energy are the top renewable energy sources in terms of globally installed capacity. However, no reports have been published about off-grid hybrid systems comprised of all three sources, making this implementation the first of its kind anywhere. This research may be applied as a practical guide for implementing similar systems in various locations. Of the four off-grid PV systems installed by the authors for village electrification in Nepal, one was

  4. MPPT Based on Fuzzy Logic Controller (FLC) for Photovoltaic (PV) System in Solar Car

    OpenAIRE

    Aji, Seno; Ajiatmo, Dwi; Robandi, Imam; Suryoatmojo, Heri

    2013-01-01

    This paper presents a control called Maximum Power Point Tracking (MPPT) for photovoltaic (PV) system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC) is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cy...

  5. A Software Tool for Optimal Sizing of PV Systems in Malaysia

    Directory of Open Access Journals (Sweden)

    Tamer Khatib

    2012-01-01

    Full Text Available This paper presents a MATLAB based user friendly software tool called as PV.MY for optimal sizing of photovoltaic (PV systems. The software has the capabilities of predicting the metrological variables such as solar energy, ambient temperature and wind speed using artificial neural network (ANN, optimizes the PV module/ array tilt angle, optimizes the inverter size and calculate optimal capacities of PV array, battery, wind turbine and diesel generator in hybrid PV systems. The ANN based model for metrological prediction uses four meteorological variables, namely, sun shine ratio, day number and location coordinates. As for PV system sizing, iterative methods are used for determining the optimal sizing of three types of PV systems, which are standalone PV system, hybrid PV/wind system and hybrid PV/diesel generator system. The loss of load probability (LLP technique is used for optimization in which the energy sources capacities are the variables to be optimized considering very low LLP. As for determining the optimal PV panels tilt angle and inverter size, the Liu and Jordan model for solar energy incident on a tilt surface is used in optimizing the monthly tilt angle, while a model for inverter efficiency curve is used in the optimization of inverter size.

  6. Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector

    International Nuclear Information System (INIS)

    Bianchi, M.; Branchini, L.; Ferrari, C.; Melino, F.

    2014-01-01

    Highlights: • A feasibility study on a stand-alone solar–battery power generation system is carried out. • An in-house developed calculation code able to estimate photovoltaic panels behaviour is described. • The feasibility of replacing grid electricity with hybrid system is examined. • Guidelines for optimal photovoltaic design are given. • Guidelines for optimal storage sizing in terms of batteries number and capacity are given. - Abstract: The penetration of renewable sources into the grid, particularly wind and solar, have been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid stability, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on stand-alone photovoltaic (PV) energy system, energy storage is needed with the purpose of ensuring continuous power flow, to minimize or, if anything, to neglect electrical grid supply. A comprehensive study on a hybrid stand-alone photovoltaic power system using two different energy storage technologies has been performed. The study examines the feasibility of replacing electricity provided by the grid with hybrid system to meet household demand. In particular, this paper presents first results for photovoltaic (PV)/battery (B) hybrid configuration. The main objective of this paper is focused on PV/B system, to recommend hybrid system optimal design in terms of PV module number, PV module tilt, number and capacity of batteries to minimize or, if possible, to neglect grid supply. This paper is the early stage of a theoretical and experimental study in which two different hybrid power system configurations will be evaluated and compared: (i) PV/B system and (ii) PV/B/fuel cell (FC) system. The aim of the overall study will be the definition of the

  7. Performance analysis of a solar photochemical photovoltaic hybrid system for decolorization of Acid Red 26 (AR 26)

    International Nuclear Information System (INIS)

    Cui, Lingyun; Zhu, Li; Huang, Qunwu; Wang, Yiping; Jin, Yanchao; Sun, Yong; Cui, Yong; Chen, Miao; Fan, Jiangyang

    2017-01-01

    To reduce the power energy consumption of wastewater treatment and make full use of the solar spectrum, a new water purification system that integrated homogeneous solar photochemical (SPC) and photovoltaics (PV) was constructed to treat wastewater and generate electricity for the first time. Hydrogen peroxide (H_2O_2) and potassium persulfate (K_2S_2O_8) were chosen as oxidants in the system and have a comparative analysis. The results show that solar/K_2S_2O_8 has a higher decolorization efficiency than solar/H_2O_2, the accumulated ultraviolet energy in solar/K_2S_2O_8, needed for complete decolorization, is far lower than in solar/H_2O_2. Also temperature has a positive effect on the dark-K_2S_2O_8 processes especially in the range of 40–60 °C, and it follows pseudo-first-order kinetic relationship. Meanwhile, to investigate the influence of flow channel on PV, the short circuit current (I_s_c) and maximum output power (P_m) were monitored. It indicates that the presence of flow channel effectively decreases the working temperature of PV modules, while the I_s_c and P_m have a different degree reduce. Luckily, the impact is not big. Additionally, P_m in experiment system, though lower than reference system, is sufficient to drive the whole system. - Highlights: • The hybrid system combing homogenous photochemical with photovoltaics was firstly performed. • Solar/K_2S_2O_8 and solar/H_2O_2 is comparative analysis in the decolorization of AR 26. • K_2S_2O_8 can be activated by heat and irradiation simultaneously in the hybrid system. • The PV panel of the hybrid system could work under lower temperature. • Solar spectrum could be made full use for power generation and water purification.

  8. Comprehensive Benefit Evaluation of the Wind-PV-ES and Transmission Hybrid Power System Consideration of System Functionality and Proportionality

    Directory of Open Access Journals (Sweden)

    Huizheng Ji

    2017-01-01

    Full Text Available In the background of decreasing fossil fuels and increasing environmental pollution, the wind-photovoltaic energy storage and transmission hybrid power system (or called the wind-PV-ES and transmission hybrid system has become a strategic choice to achieve energy sustainability. However, the comprehensive benefit evaluation of such a combined power system is in a relatively blank state in China, which will hinder the reasonable and orderly development of this station. Four parts, the technical performance, economic benefit, ecological impact and social benefit, are considered in this paper, and a multi-angle evaluation index system of the wind-PV-ES and transmission system is designed. The projection pursuit model is used to evaluated system functionality conventionally; relative entropy theory is used to evaluate the system functionality simultaneously; and a comprehensive benefit evaluation model of the technique for order preference by similar to ideal solution (TOPSIS considering both system functionality and proportionality is constructed. Finally, the national demonstration station of the wind-PV-ES-transmission system is taken as an example to testify to the practicability and validity of the evaluation index system and model.

  9. Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module

    International Nuclear Information System (INIS)

    Qiu, Zhongzhu; Zhao, Xudong; Li, Peng; Zhang, Xingxing; Ali, Samira; Tan, Junyi

    2015-01-01

    Aim of the paper is to present a theoretical investigation into the energy performance of a novel PV/T module that employs the MPCM (Micro-encapsulated Phase Change Material) slurry as the working fluid. This involved (1) development of a dedicated mathematical model and computer program; (2) validation of the model by using the published data; (3) prediction of the energy performance of the MPCM (Microencapsulated Phase Change Material) slurry based PV/T module; and (4) investigation of the impacts of the slurry flow state, concentration ratio, Reynolds number and slurry serpentine size onto the energy performance of the PV/T module. It was found that the established model, based on the Hottel–Whillier assumption, is able to predict the energy performance of the MPCM slurry based PV/T system at a very good accuracy, with 0.3–0.4% difference compared to a validated model. Analyses of the simulation results indicated that laminar flow is not a favorite flow state in terms of the energy efficiency of the PV/T module. Instead, turbulent flow is a desired flow state that has potential to enhance the energy performance of PV/T module. Under the turbulent flow condition, increasing the slurry concentration ratio led to the reduced PV cells' temperature and increased thermal, electrical and overall efficiency of the PV/T module, as well as increased flow resistance. As a result, the net efficiency of the PV/T module reached the peak level at the concentration ratio of 5% at a specified Reynolds number of 3,350. Remaining all other parameters fixed, increasing the diameter of the serpentine piping led to the increased slurry mass flow rate, decreased PV cells' temperature and consequently, increased thermal, electrical, overall and net efficiencies of the PV/T module. In overall, the MPCM slurry based PV/T module is a new, highly efficient solar thermal and power configuration, which has potential to help reduce fossil fuel consumption and carbon emission to

  10. A wind-PV-battery hybrid power system at Sitakunda in Bangladesh

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Ghosh, Himangshu Ranjan

    2009-01-01

    The measured wind data of Local Government Engineering Department (LGED) for 2006 at 30 m height shows a good prospect for wind energy extraction at the site. For a few months and hours the speed is below the cut in speeds of the available turbines in the market. The predicted solar radiation data from directly related measured cloud cover and sunshine duration data of Bangladesh Meteorological Department (BMD) for 1992-2003 indicates that a reliable power system can be developed over the year if the solar energy technology is merged with the wind energy technologies for this site. This research work has studied on optimization of a wind-photovoltaic-battery hybrid system and its performance for a typical community load. The assessment shows that least cost of energy (COE) is about USD 0.363/kWh for a community using 169 kWh/day with 61 kW peak and having minimum amount of access or unused energy. Moreover, compared to the existing fossil fuel-based electricity supply, such an environment friendly system can mitigate about 25 t CO 2 /yr. The analysis also indicates that wind-PV-battery is economically viable as a replacement for conventional grid energy supply for a community at a minimum distance of about 17 km from grid.

  11. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absorbers Design

    Directory of Open Access Journals (Sweden)

    Mustofa Mustofa

    2017-03-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperaturs were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficieny was about 19%, while thermal efficiency of above 50% and correspondeng cell efficiency of 11%, respectively

  12. Quantification of Shading Tolerability for Photovoltaic Modules

    NARCIS (Netherlands)

    Ziar, H.; Asaei, Behzad; Farhangi, Shahrokh; Isabella, O.; Korevaar, M.A.N.; Zeman, M.

    2017-01-01

    Despite several decades of research in the field of photovoltaic (PV) systems, shading tolerance has still not been properly addressed. PV modules are influenced by shading concerning many factors, such as number and configuration of cells in the module, electrical and thermal characteristics of

  13. A thermal model for amorphous silicon photovoltaic integrated in ETFE cushion roofs

    International Nuclear Information System (INIS)

    Zhao, Bing; Chen, Wujun; Hu, Jianhui; Qiu, Zhenyu; Qu, Yegao; Ge, Binbin

    2015-01-01

    Highlights: • A thermal model is proposed to estimate temperature of a-Si PV integrated in ETFE cushion. • Nonlinear equation is solved by Runge–Kutta method integrated in a new program. • Temperature profiles varying with weather conditions are obtained and analyzed. • Numerical results are in good line with experimental results with coefficients of 0.821–0.985. • Reasons for temperature difference of 0.9–4.6 K are solar irradiance and varying parameters. - Abstract: Temperature characteristics of amorphous silicon photovoltaic (a-Si PV) integrated in building roofs (e.g. the ETFE cushions) are indispensible for evaluating the thermal performances of a-Si PV and buildings. To investigate the temperature characteristics and temperature value, field experiments and numerical modeling were performed and compared in this paper. An experimental mock-up composed of a-Si PV and a three-layer ETFE cushion structure was constructed and experiments were carried out under four typical weather conditions (winter sunny, winter cloudy, summer sunny and summer cloudy). The measured solar irradiance and air temperature were used as the real weather conditions for the thermal model. On the other side, a theoretical thermal model was developed based on energy balance equation which was expressed as that absorbed energy was equal to converted energy and energy loss. The corresponding differential equation of PV temperature varying with weather conditions was solved by the Runge–Kutta method. The comparisons between the experimental and numerical results were focusing on the temperature characteristics and temperature value. For the temperature characteristics, good agreement was obtained by correlation analysis with the coefficients of 0.821–0.985, which validated the feasibility of the thermal model. For the temperature value, the temperature difference between the experimental and numerical results was only 0.9–4.6 K and the reasons could be the dramatical

  14. Technical feasibility and financial analysis of hybrid wind-photovoltaic system with hydrogen storage for Cooma

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, B.D.; Aye, L. [Melbourne Univ., Victoria (Australia). Dept. of Civil and Environmental Engineering; Musgrave, P. [Snowy Hydro Ltd., Cooma, NSW (Australia)

    2005-01-01

    The feasibility of a stand-alone hybrid wind-photovoltaic (PV) system incorporating compressed hydrogen gas storage was studied for Cooma (Australia). Cooma has an average annual solar and wind energy availability of 1784 and 932 kWh/m{sup 2}, respectively. A system with 69 kWh{sub e}/day (load) and 483 kWh{sub e}(storage) was studied. Hydrogen is generated in electrolysers using excess electricity from the system. The system components were selected according to their availability and cost. The 'discounted cash flow' method, with the 'levelized energy cost' (LEC) as a financial indicator was used for analysis. Configurations with PV% of 100, 60, 12 and zero were analysed. The lowest LEC of AU $2.52/kWh{sub e} was found for 100% PV. The cost of hydrogen generation from 100% PV was AU $692/GJ of hydrogen. Fifty-two percent of the total project costs were due to the electrolyser. Hence, a reduction in the electrolyser cost would reduce the cost of the overall system. (Author)

  15. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC).

    Science.gov (United States)

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A

    2017-08-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current I SC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  16. Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study

    International Nuclear Information System (INIS)

    Valeh-e-Sheyda, Peyvand; Rahimi, Masoud; Karimi, Ebrahim; Asadi, Masomeh

    2013-01-01

    Highlights: ► Showing cooling potential of gas–liquid two-phase flow in microchannels for PV cell. ► Introducing the concept of using slug flow in microchannels for cooling of PV cells. ► In single-phase flow, increasing the liquid flow rate enhances the PV power. ► Showing that in two-phase flow the output power related the fluid flow regime. ► By coupling PV and microchannel an increase up to 38% in output power was observed. - Abstract: This paper reports the experimental data from performance of two-phase flows in a small hybrid microchannel solar cell. Using air and water as two-phase fluid, the experiments were conducted at indoor condition in an array of rectangular microchannels with a hydraulic diameter of 0.667 mm. The gas superficial velocity ranges were between 0 and 3.27 m s −1 while liquid flow rate was 0.04 m s −1 . The performance analysis of the PV cell at slug and transitional slug/annular flow regimes are the focus of this study. The influence of two-phase working fluid on PV cell cooling was compared with single-phase. In addition, the great potential of slug flow for heat removal enhancement in PV/T panel was investigated. The obtained data showed the proposed hybrid system could substantially increases the output power of PV solar cells

  17. Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method

    International Nuclear Information System (INIS)

    Lin, Chia-Hung; Huang, Cong-Hui; Du, Yi-Chun; Chen, Jian-Liung

    2011-01-01

    Highlights: → The FOICM can shorten the tracking time less than traditional methods. → The proposed method can work under lower solar radiation including thin and heavy clouds. → The FOICM algorithm can achieve MPPT for radiation and temperature changes. → It is easy to implement in a single-chip microcontroller or embedded system. -- Abstract: This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.

  18. The active control strategy on the output power for photovoltaic-storage systems based on extended PQ-QV-PV Node

    Science.gov (United States)

    Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi

    2017-05-01

    In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.

  19. A strategic research agenda for photovoltaic solar energy technology : report of the EU PV technology platform

    NARCIS (Netherlands)

    Sinke, W.C.; Zolingen, van R.J.C.; Ballif, C.; Bett, A.; Dimmler, B.; Dimova-Malinovska, D.; Fath, P.; Ferrazza, F.; Gabler, H.-J.; Hall, M.; Marti, A.; Mason, N.; Mellikov, E.; Milner, A.; Mogensen, P.; Panhuber, C.; Pearsall, N.; Poortmans, J.; Protogeropoulos, C.; Sarre, G.; Sarti, D.; Strauss, P.; Topic, M.; Zdanowicz, T.

    2007-01-01

    The EU PV Technology Platform [1] aims at joining forces on a European level to contribute to the further development of photovoltaic solar energy into a competitive technology that can be applied on a large scale and to the strengthening of the position of the European PV industry on the global

  20. Enhanced UV photoresponse of KrF-laser-synthesized single-wall carbon nanotubes/n-silicon hybrid photovoltaic devices.

    Science.gov (United States)

    Le Borgne, V; Gautier, L A; Castrucci, P; Del Gobbo, S; De Crescenzi, M; El Khakani, M A

    2012-06-01

    We report on the KrF-laser ablation synthesis, purification and photocurrent generation properties of single-wall carbon nanotubes (SWCNTs). The thermally purified SWCNTs are integrated into hybrid photovoltaic (PV) devices by spin-coating them onto n-Si substrates. These novel SWCNTs/n-Si hybrid devices are shown to generate significant photocurrent (PC) over the entire 250-1050 nm light spectrum with external quantum efficiencies (EQE) reaching up to ~23%. Our SWCNTs/n-Si hybrid devices are not only photoactive in the traditional spectral range of Si solar cells, but generate also significant PC in the UV domain (below 400 nm). This wider spectral response is believed to be the result of PC generation from both the SWCNTs themselves and the tremendous number of local p-n junctions created at the nanotubes/Si interface. To assess the prevalence of these two contributions, the EQE spectra and J-V characteristics of these hybrid devices were investigated in both planar and top-down configurations, as a function of SWCNTs' film thickness. A sizable increase in EQE in the near UV with respect to the silicon is observed in both configurations, with a more pronounced UV photoresponse in the planar mode, confirming thereby the role of SWCNTs in the photogeneration process. The PC generation is found to reach its maximum for an optimal the SWCNT film thickness, which is shown to correspond to the best trade-off between lowest electrical resistance and highest optical transparency. Finally, by analyzing the J-V characteristics of our SWCNTs/n-Si devices with an equivalent circuit model, we were able to point out the contribution of the various electrical components involved in the photogeneration process. The SWCNTs-based devices demonstrated here open up the prospect for their use in highly effective photovoltaics and/or UV-light sensors.

  1. Improving the efficiency of photovoltaic (PV) panels by oil coating

    International Nuclear Information System (INIS)

    Abd-Elhady, M.S.; Fouad, M.M.; Khalil, T.

    2016-01-01

    Highlights: • It is possible to improve the efficiency of PV panels by increasing the amount of light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the amount of sun light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the power output of the panel. • Coating PV panels with a layer of Labovac oil has to be applied in cold countries and not in hot regions. - Abstract: The objective of this research is to develop a new technique for improving the efficiency of Photovoltaic (PV) panels. This technique is done by coating the front surface of the PV panel by a fine layer of oil in order to increase the amount of light transmitted to the panel, and consequently its efficiency. Different types of oils are examined, including both mineral oils and natural oils. In case of mineral oils; vacuum pump oil (Labovac oil), engine oil (Mobil oil) and brake oil (Abro oil) are examined, while in case of natural oils; olive and sunflower oils are examined. An experimental setup has been developed to examine the performance of the PV panels as a function of oil coatings. The experimental setup consists of an artificial sun, the PV panel under investigation, a cooling system and a measuring system to measure the performance of the panel. It has been found that coating the PV panel with a fine layer of Labovac oil, ∼1 mm thick, improves the efficiency of the PV panel by more than 20%, and this is due to the high transmissivity of the Labovac oil compared to other oils. However, the Labovac oil has a drawback which is overheating of the panel due to its high transmissivity. Coating of PV panels with a fine layer of Labovac oil should be done only in cold regions, in order to avoid the heating effect that can decrease the power output of PV panels.

  2. Wafer integrated micro-scale concentrating photovoltaics

    Science.gov (United States)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  3. Technical model for optimising PV/diesel/battery hybrid power systems

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-08-31

    Full Text Available A solar-based power supply system, such as a photovoltaic (PV)-diesel-battery system, is a particularly attractive option for decentralised power supply in southern Africa where solar radiation is ubiquitous in most countries. Such systems can make...

  4. Optimal sizing study of hybrid wind/PV/diesel power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Belfkira, Rachid; Zhang, Lu; Barakat, Georges [Groupe de Recherche en Electrotechnique et Automatique du Havre, University of Le Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)

    2011-01-15

    In this paper, a methodology of sizing optimization of a stand-alone hybrid wind/PV/diesel energy system is presented. This approach makes use of a deterministic algorithm to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the total cost of the system is minimized while guaranteeing the availability of the energy. The collection of 6 months of data of wind speed, solar radiation and ambient temperature recorded for every hour of the day were used. The mathematical modeling of the main elements of the hybrid wind/PV/diesel system is exposed showing the more relevant sizing variables. A deterministic algorithm is used to minimize the total cost of the system while guaranteeing the satisfaction of the load demand. A comparison between the total cost of the hybrid wind/PV/diesel energy system with batteries and the hybrid wind/PV/diesel energy system without batteries is presented. The reached results demonstrate the practical utility of the used sizing methodology and show the influence of the battery storage on the total cost of the hybrid system. (author)

  5. Finite-Control-Set Model Predictive Control (FCS-MPC) for Islanded Hybrid Microgrids

    OpenAIRE

    Yi, Zhehan; Babqi, Abdulrahman J.; Wang, Yishen; Shi, Di; Etemadi, Amir H.; Wang, Zhiwei; Huang, Bibin

    2018-01-01

    Microgrids consisting of multiple distributed energy resources (DERs) provide a promising solution to integrate renewable energies, e.g., solar photovoltaic (PV) systems. Hybrid AC/DC microgrids leverage the merits of both AC and DC power systems. In this paper, a control strategy for islanded multi-bus hybrid microgrids is proposed based on the Finite-Control-Set Model Predictive Control (FCS-MPC) technologies. The control loops are expedited by predicting the future states and determining t...

  6. Temperature Dependences on Various Types of Photovoltaic (PV) Panel

    International Nuclear Information System (INIS)

    Audwinto, I A; Leong, C S; Sopian, K; Zaidi, S H

    2015-01-01

    Temperature is one of the key roles in PV technology performance, since with the increases of temperature the open-circuit voltage will drop accordingly so do the electrical efficiency and power output generation. Different types of Photovoltaic (PV) panels- silicon solar panels and thin film solar panels; mono-crystalline, poly-crystalline, CIS, CIGS, CdTe, back-contact, and bi-facial solar panel under 40°C to 70°C approximately with 5°C interval have been comparatively analyzed their actual performances with uniformly distribution of light illumination from tungsten halogen light source, ±500W/m 2 . DC-Electronic Load and Data Logger devices with “Lab View” data program interface were used to collect all the necessary parameters in this study. Time needed to achieve a certain degree of temperature was recorded. Generally, each of the panels needed 15 minutes to 20 minutes to reach 70°C. Halogen based light source is not compatible in short wave-length in response to thin-film solar cell. Within this period of times, all the panels are facing a performance loss up to 15%. Other parameters; P max , V max , I max , V oc , I sc , R serries , R shunt , Fillfactor were collected as study cases. Our study is important in determining Photovoltaic type selection and system design as for study or industrial needed under different temperature condition. (paper)

  7. Photovoltaic Subcontract Program, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K.A. (ed.)

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  8. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  9. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...... the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG....

  10. Photovoltaic Subcontract Program. Annual report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  11. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  12. Development and implementation of a dynamic TES dispatch control component in a PV-CSP techno-economic performance modelling tool

    Science.gov (United States)

    Hansson, Linus; Guédez, Rafael; Larchet, Kevin; Laumert, Bjorn

    2017-06-01

    The dispatchability offered by thermal energy storage (TES) in concentrated solar power (CSP) and solar hybrid plants based on such technology presents the most important difference compared to power generation based only on photovoltaics (PV). This has also been one reason for recent hybridization efforts of the two technologies and the creation of Power Purchase Agreement (PPA) payment schemes based on offering higher payment multiples during daily hours of higher (peak or priority) demand. Recent studies involving plant-level thermal energy storage control strategies are however to a large extent based on pre-determined approaches, thereby not taking into account the actual dynamics of thermal energy storage system operation. In this study, the implementation of a dynamic dispatch strategy in the form of a TRNSYS controller for hybrid PV-CSP plants in the power-plant modelling tool DYESOPT is presented. In doing this it was attempted to gauge the benefits of incorporating a day-ahead approach to dispatch control compared to a fully pre-determined approach determining hourly dispatch only once prior to annual simulation. By implementing a dynamic strategy, it was found possible to enhance technical and economic performance for CSP-only plants designed for peaking operation and featuring low values of the solar multiple. This was achieved by enhancing dispatch control, primarily by taking storage levels at the beginning of every simulation day into account. The sequential prediction of the TES level could therefore be improved, notably for evaluated plants without integrated PV, for which the predicted storage levels deviated less than when PV was present in the design. While also featuring dispatch performance gains, optimal plant configurations for hybrid PV-CSP was found to present a trade-off in economic performance in the form of an increase in break-even electricity price when using the dynamic strategy which was offset to some extent by a reduction in

  13. Implementing agreement on photovoltaic power systems - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2009. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented, as are activities planned for 2010. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids, PV environmental health and safety activities, performance and reliability of PV systems and high penetration PV in electricity grids. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  14. Photoluminescence and Photoconductivity to Assess Maximum Open-Circuit Voltage and Carrier Transport in Hybrid Perovskites and Other Photovoltaic Materials.

    Science.gov (United States)

    Braly, Ian L; Stoddard, Ryan J; Rajagopal, Adharsh; Jen, Alex K-Y; Hillhouse, Hugh W

    2018-06-06

    Photovoltaic (PV) device development is much more expensive and time consuming than the development of the absorber layer alone. This perspective focuses on two methods that can be used to rapidly assess and develop PV absorber materials independent of device development. The absorber material properties of quasi-Fermi level splitting and carrier diffusion length under steady effective one-Sun illumination are indicators of a material's ability to achieve high VOC and JSC. These two material properties can be rapidly and simultaneously assessed with steady-state absolute intensity photoluminescence and photoconductivity measurements. As a result, these methods are extremely useful for predicting the quality and stability of PV materials prior to PV device development. Here, we summarize the methods, discuss their strengths and weaknesses, and compare photoluminescence and photoconductivity results with device performance for four hybrid perovskite compositions of various bandgaps (1.35 to 1.82 eV), CISe, CIGSe, and CZTSe.

  15. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  16. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    for a renewable power supply? (G. Bopp); (17) Electrochemical energy storage for a stationary intermediate storage - Concepts and perspectives (M. Wohlfahrt-Mehrens); (18) Decentral photovoltaics: Autonomy, own consumption and grid relief by means of local power and heat storage systems (J. Binder); (19) Maximization of the lifetime of electric batteries in PV systems by means of battery hybrid storage systems (V. Spaeth); (20) Possibilities for grid integration of a high amount of photovoltaic power plants in the area of low performance (G. Wirth); (21) Change of load of grid components at the implementation of photovoltaic power into the power distribution system (G. Herold); (22) Feeding management and limitation of the supply of the active power to 70 % according to the new EEG 2012 (A. Umland); (23) Power quality and dynamic grid support: Do the medium voltage regulations correspond to the properties of PV inverters? (G. Doetter); (24) Perspectives of wafer based solar modules, technology and costs (R. Brendel); (25) Why is solar power not climate neutral but still environmentally friendly? Actual ecobalances to photovoltaics (M. Stucki); (26) Are photovoltaic power plants ''highly dangerous''? (H. Laukamp); (27) Power-to-Gas - Storage of renewable energies in the natural gas distribution system (M. Specht); (28) Utilization of own photovoltaic power - Fluctuation of radiation and load (B. Wille-Haussmann); (29) Arc detection in photovoltaic power plants - A system comparison between USA and Europe (A. Haeing); (30) 20 years 1,000 roofs program - Long-term experiences from Saxonia (M. Reiner); (31) Quality assurance of PV inverters - 20 years of field experiences with photovoltaic power plants in grid interconnection (J. Laschinski); (32) Experiences with the installation and operation of photovoltaic storage systems: Field tests of Sol-ion systems in southern Germany, Guadeloupe, Martinique and at research institutes (H.-D. Mohring); (33) Do

  17. Overview of PV Wind hybrid system activities in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Gabler, H.; Kiefer, K.; Preiser, K.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1997-12-31

    Photovoltaic solar generators combined with diesel engines, in some cases additionally with wind energy converters, and battery energy storage are powering isolated mountain lodges, information centers in nature parks, isolated farms or dwellings all over Europe. A total of 300,000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaic, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilization of the electric energy produced by the PV generator. [Espanol] Para la electrificacion en toda Europa de casas de campo en la montana, centros de informacion, parques naturales, granjas aisladas o conjuntos habitacionales, se estan usando generadores fotovoltaicos combinados con maquinas diesel, en algunos casos adicionalmente con convertidores de energia del viento y baterias para el almacenamiento de energia. Se estima que en Europa un total de 300,000 edificios no estan conectados a la red publica. Esto representa un gran mercado potencial para los sistemas fotovoltaicos, ya que a menudo la generacion fotovoltaica es menos costosa que una conexion a la empresa electrica. El Instituto Fraunhofer para Sistemas de Energia Solar ISE ha planeado, llevado a cabo y monitoreado alrededor de 30 sistemas hibridos remotos de suministro de energia con generadores fotovoltaicos

  18. Overview of PV Wind hybrid system activities in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G; Gabler, H; Kiefer, K; Preiser, K; Wiemken, E [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1998-12-31

    Photovoltaic solar generators combined with diesel engines, in some cases additionally with wind energy converters, and battery energy storage are powering isolated mountain lodges, information centers in nature parks, isolated farms or dwellings all over Europe. A total of 300,000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaic, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilization of the electric energy produced by the PV generator. [Espanol] Para la electrificacion en toda Europa de casas de campo en la montana, centros de informacion, parques naturales, granjas aisladas o conjuntos habitacionales, se estan usando generadores fotovoltaicos combinados con maquinas diesel, en algunos casos adicionalmente con convertidores de energia del viento y baterias para el almacenamiento de energia. Se estima que en Europa un total de 300,000 edificios no estan conectados a la red publica. Esto representa un gran mercado potencial para los sistemas fotovoltaicos, ya que a menudo la generacion fotovoltaica es menos costosa que una conexion a la empresa electrica. El Instituto Fraunhofer para Sistemas de Energia Solar ISE ha planeado, llevado a cabo y monitoreado alrededor de 30 sistemas hibridos remotos de suministro de energia con generadores fotovoltaicos

  19. Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel

    International Nuclear Information System (INIS)

    Chen, Fangliang; Yin, Huiming

    2016-01-01

    Highlights: • A BIPVT solar panel is designed and fabricated for energy efficient buildings. • A high-speed manufacture method is developed to produce the functionally graded materials. • Laboratory tests demonstrate BIPVT’s energy efficiency improvement and innovations. • The PV efficiency is enhanced ∼24% through temperature control of the panel by water flow. • The combined electric and thermal efficiency reaches >75% of solar irradiation. - Abstract: A building integrated photovoltaic-thermal (BIPVT) multifunctional roofing panel has been developed in this study to harvest solar energy in the form of PV electricity as well as heat energy through the collection of warm water. As a key component of the multifunctional building envelope, an aluminum/high-density polyethylene (HDPE) functionally graded material (FGM) panel embedded with aluminum water tubes has been fabricated through the vibration-sedimentation approach. The FGM layer gradually transits material phases from well-conductive side (with aluminum dominated) to another highly insulated side (with HDPE). The heat in the PV cells can be easily transferred into the conductive side of the FGM and then collected by the water flow in the embedded tubes. Therefore, the operational temperature of the PV cells can be significantly lowered down, which recovers the PV efficiency in hot weather. In this way, the developed BIPVT panel is able to efficiently harvest solar energy in the form of both PV electricity and heat. The performance of a prototype BIPVT panel has been evaluated in terms of its thermal efficiency via warm water collection and PV efficiency via the output electricity. The laboratory test results demonstrate that significant energy conversion efficiency improvement can be achieved for both electricity generation and heat collection by the presented BIPVT roofing system. Overall, the performance indicates a very promising prospective of the new BIPVT multifunctional roofing panel.

  20. Design and Analysis of Photovoltaic (PV) Power Plant at Different Locations in Malaysia

    Science.gov (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.

    2018-05-01

    Power generation from sun oriented vitality through a photovoltaic (PV) system is ended up prevalent over the world due to clean innovation. Geographical location of Malaysia is very favorable for PV power generation system. The Malaysian government has also taken different steps to increase the use of solar energy especially by emphasizing on building integrated PV (BIPV) system. Comparative study on the feasibility of BIPV installation at the different location of Malaysia is rarely found. On the other hand, solar cell temperature has a negative impact on the electricity generation. So in this study cost effectiveness and initial investment cost of building integrated grid connected solar PV power plant in different regions of Malaysia have been carried. The effect of PV solar cell temperature on the payback period (PBP) is also investigated. Highest PBP is 12.38 years at Selangor and lowest PBP is 9.70 years at Sabah (Kota Kinabalu). Solar cell temperature significantly increases the PBP of PV plant and highest 14.64% and lowest 13.20% raise of PBP are encountered at Penang and Sarawak respectively.

  1. Nighttime radiative cooling potential of unglazed and PV/T solar collectors: parametric and experimental analyses

    DEFF Research Database (Denmark)

    Pean, Thibault Quentin; Gennari, Luca; Olesen, Bjarne W.

    2015-01-01

    Nighttime radiative cooling technology has been studied both by means of simulations and experiments, to evaluate its potential and to validate the existing theoretical models used to describe it. Photovoltaic/thermal panels (PV/T) and unglazed solar collectors have been chosen as case studies....... The obtained values showed a good agreement with the ones found in the literature about solar panels or other kinds of heat sinks used for radiative cooling applications. The panels provided a cooling performance per night ranging between 0.2 and 0.9 kWh/m2 of panel. The COP values (defined as the ratio....... An experimental setup has been constructed and tested during summer of 2014, at the Technical University of Denmark. The cooling performance (heat loss) has been measured simultaneously for both types of panels, installed side-by-side. The experimental results have been compared with the results from a commercial...

  2. Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration

    Directory of Open Access Journals (Sweden)

    Mohammad Alobaid

    2018-06-01

    Full Text Available Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature.

  3. Analysis of the impact of thermal resistance of the roof on the performance of photovoltaic roof tiles

    Directory of Open Access Journals (Sweden)

    Kurz Dariusz

    2017-01-01

    Full Text Available The paper explores the issues related to the impact of thermal resistance of the roof on the electrical parameters of photovoltaic roof tiles. The methodology of determination of the thermal resistance and thermal transmittance factor was presented in accordance with the applicable legal regulations and standards. A test station was presented for the purpose of measurement of the parameters of photovoltaic roof tiles depending on the structure of the roof substrate. Detailed analysis of selected building components as well as their impact on the design thermal resistance factor and thermal transmittance factor was carried out. Results of our own studies, which indicated a relation between the type of the roof structure and the values of the electricity generated by photovoltaic tiles, were presented. Based on the calculations, it was concluded that the generated outputs in the respective constructions differ by maximum 6%. For cells with the highest temperature, the performance of the PV roof tiles on the respective roof constructions fell within the range between 0.4% and 1.2% (depending on the conducted measurement and amounted to 8.76% (in reference to 9.97% for roof tiles with the lowest temperature.

  4. Photovoltaic module with integrated power conversion and interconnection system - the European project PV-MIPS

    OpenAIRE

    Henze, N.; Engler, A.; Zacharias, P.

    2006-01-01

    Within the 6th framework program funded by the European Commission the project PV-MIPS (Photovoltaic Module with Integrated Power Conversion System) was launched in November 2004. Together with eleven European partners from Germany, Austria, Greece and the Netherlands a solar module with integrated in-verter shall be developed that can feed solar electricity directly into the grid. The challenging objective of the project is to reduce the total costs of a PV system. At the same time lifetime ...

  5. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT Collector with Jet Impingement and Compound Parabolic Concentrator (CPC

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2017-08-01

    Full Text Available This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT collector and compound parabolic concentrators (CPC on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C. It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  6. Modeling and control of a small solar fuel cell hybrid energy system

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Xin-jian; CAO Guang-yi

    2007-01-01

    This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.

  7. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  8. A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2017-01-01

    Full Text Available Wind power plant (WPP, photovoltaic generators (PV, cell-gas turbine (CGT, and pumped storage power station (PHSP are integrated into multienergy hybrid system (MEHS. Firstly, this paper presents MEHS structure and constructs a scheduling model with the objective functions of maximum economic benefit and minimum power output fluctuation. Secondly, in order to relieve the uncertainty influence of WPP and PV on system, robust stochastic theory is introduced to describe uncertainty and propose a multiobjective stochastic scheduling optimization mode by transforming constraint conditions with uncertain variables. Finally, a 9.6 MW WPP, a 6.5 MW PV, three CGT units, and an upper reservoir with 10 MW·h equivalent capacity are chosen as simulation system. The results show MEHS system can achieve the best operation result by using the multienergy hybrid generation characteristic. PHSP could shave peak and fill valley of load curve by optimizing pumping storage and inflowing generating behaviors based on the load supply and demand status and the available power of WPP and PV. Robust coefficients can relieve the uncertainty of WPP and PV and provide flexible scheduling decision tools for decision-makers with different risk attitudes by setting different robust coefficients, which could maximize economic benefits and minimize operation risks at the same time.

  9. Estimation of PV output power in moving and rocking hybrid energy marine ships

    International Nuclear Information System (INIS)

    Liu, Hongda; Zhang, Qing; Qi, Xiaoxia; Han, Yang; Lu, Fang

    2017-01-01

    Highlights: •A mathematical model for characterizing the ship PV output power is developed. •The impacts of the sea condition and ship type on the PV output power are analyzed. •The hybrid energy storage system is used to stabilize the PV fluctuation powers. •A SC configuration method based on maximum half period is applied. -- Abstract: In recent years, the application of solar energy and energy storage to ship power systems has shown promise as a method for both reducing annual carbon and nitrogen oxide emissions and improving ship energy efficiency in the maritime shipping industry. When a ship navigates at sea, it encounters a constant rocking motion that is affected by both the surrounding sea conditions and the ship’s navigation parameters. This motion increases the uncertainty involved in using solar energy and accelerates the aging of the ship’s energy storage battery to some extent. In this study, a universal mathematical model is established for the power generation by photovoltaic (PV) modules in which both the sea conditions and the ship’s integrated motion, including its basic movement along with the motion caused by rocking, are taken into account. Based on this model, the fluctuation characteristics of a ship’s PV output power are studied and determined using three different simulation scenarios. A binary energy storage scheme based on a decoupled PV output power is proposed in order to both stabilize the small-period PV power fluctuations and slow the aging of the actual battery caused by rocking. In addition, a super-capacitor (SC) configuration is constructed based on a maximum half cycle. Finally, the optimal energy storage capacities for this green ship are compared under both rocking and moving motion. In the case of rocking motion, the SCs are able to achieve an approximately 24.8–35.0% reduction in battery replacement. A shipping route between Shanghai, China and Sydney, Australia is considered to validate the practicality

  10. Model Predictive Control techniques with application to photovoltaic, DC Microgrid, and a multi-sourced hybrid energy system

    Science.gov (United States)

    Shadmand, Mohammad Bagher

    Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in

  11. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  12. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Balfour, John [High Performance PV, Phoenix, AZ (United States)

    2015-11-01

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how the reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.

  13. A review on photovoltaic/thermal hybrid solar technology

    International Nuclear Information System (INIS)

    Chow, T.T.

    2010-01-01

    A significant amount of research and development work on the photovoltaic/thermal (PVT) technology has been done since the 1970s. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. A range of theoretical models has been introduced and their appropriateness validated by experimental data. Important design parameters are identified. Collaborations have been underway amongst institutions or countries, helping to sort out the suitable products and systems with the best marketing potential. This article gives a review of the trend of development of the technology, in particular the advancements in recent years and the future work required. (author)

  14. Simulated potential for enhanced performance of mechanically stacked hybrid III-V/Si tandem photovoltaic modules using DC-DC converters

    Science.gov (United States)

    MacAlpine, Sara; Bobela, David C.; Kurtz, Sarah; Lumb, Matthew P.; Schmieder, Kenneth J.; Moore, James E.; Walters, Robert J.; Alberi, Kirstin

    2017-10-01

    This work examines a tandem module design with GaInP2 mechanically stacked on top of crystalline Si, using a detailed photovoltaic (PV) system model to simulate four-terminal (4T) unconstrained and two-terminal voltage-matched (2T VM) parallel architectures. Module-level power electronics is proposed for the 2T VM module design to enhance its performance over the breadth of temperatures experienced by a typical PV installation. Annual, hourly simulations of various scenarios indicate that this design can reduce annual energy losses to ˜0.5% relative to the 4T module configuration. Consideration is given to both performance and practical design for building or ground mount installations, emphasizing compatibility with existing standard Si modules.

  15. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.

    Science.gov (United States)

    Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin

    2015-07-09

    Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time ( t ig ), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO₂) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m². This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  16. Photovoltaic Subcontract Program, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  17. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  18. A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode

    DEFF Research Database (Denmark)

    Liu, Yao; Hou, Xiaochao; Wang, Xiaofeng

    2016-01-01

    The increasing penetration of renewable generators can be a significant challenge due to the fluctuation of their power generation. Energy storage (ES) units are one solution to improve power supply quality and guarantee system stability. In this paper, a hybrid microgrid is built based...... on photovoltaic (PV) generator and ES; and coordinated control is proposed and developed to achieve power management in a decentralized manner. This control scheme contains three different droop strategies according to characteristics of PV and ES. First, the modified droop control is proposed for PV, which can...... take full utilization of renewable energy and avoid regulating output active power frequently. Second, to maintain the direct current (DC) bus voltage stability, a novel droop control incorporating a constant power band is presented for DC-side ES. Third, a cascade droop control is designed...

  19. Passive hybridization of a photovoltaic module with lithium-ion battery cells: A model-based analysis

    Science.gov (United States)

    Joos, Stella; Weißhar, Björn; Bessler, Wolfgang G.

    2017-04-01

    Standard photovoltaic battery systems based on AC or DC architectures require power electronics and controllers, including inverters, MPP tracker, and battery charger. Here we investigate an alternative system design based on the parallel connection of a photovoltaic module with battery cells without any intermediate voltage conversion. This approach, for which we use the term passive hybridization, is based on matching the solar cell's and battery cell's respective current/voltage behavior. A battery with flat discharge characteristics can allow to pin the solar cell to its maximum power point (MPP) independently of the external power consumption. At the same time, upon battery full charge, voltage increase will drive the solar cell towards zero current and therefore self-prevent battery overcharge. We present a modeling and simulation analysis of passively hybridizing a 5 kWp PV system with a 5 kWh LFP/graphite lithium-ion battery. Dynamic simulations with 1-min time resolution are carried out for three exemplary summer and winter days using historic weather data and a synthetic single-family household consumer profile. The results demonstrate the feasibility of the system. The passive hybrid allows for high self-sufficiencies of 84.6% in summer and 25.3% in winter, which are only slightly lower than those of a standard system.

  20. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  1. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    International Nuclear Information System (INIS)

    Ben Dkhil, S.; Bourguiga, R.; Davenas, J.; Cornu, D.

    2012-01-01

    Highlights: ► Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. ► We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. ► The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. ► We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV–visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V oc and short-circuit current density J sc are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  2. Rooftop photovoltaic (PV) systems for industrial halls: Achieving economic benefit via lowering energy demand

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2012-01-01

    Industrial halls are characterized with their relatively high roof-to-floor ratio, which facilitates ready deployment of renewable energy generation, such as photovoltaic (PV) systems, on the rooftop. To promote deployment of renewable energy generation, feed-in tariff (FIT) higher than the

  3. Predicting High or Low Transfer Efficiency of Photovoltaic Systems Using a Novel Hybrid Methodology Combining Rough Set Theory, Data Envelopment Analysis and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Lee-Ing Tong

    2012-02-01

    Full Text Available Solar energy has become an important energy source in recent years as it generates less pollution than other energies. A photovoltaic (PV system, which typically has many components, converts solar energy into electrical energy. With the development of advanced engineering technologies, the transfer efficiency of a PV system has been increased from low to high. The combination of components in a PV system influences its transfer efficiency. Therefore, when predicting the transfer efficiency of a PV system, one must consider the relationship among system components. This work accurately predicts whether transfer efficiency of a PV system is high or low using a novel hybrid model that combines rough set theory (RST, data envelopment analysis (DEA, and genetic programming (GP. Finally, real data-set are utilized to demonstrate the accuracy of the proposed method.

  4. Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level

    International Nuclear Information System (INIS)

    Nawaz, I.; Tiwari, G.N.

    2006-01-01

    In this paper the energy payback time and CO 2 emissions of photovoltaic (PV) system have been analyzed. The embodied energy for production of PV module based on single crystal silicon, as well as for the manufacturing of other system components have been computed at macro- and micro-level assuming irradiation of 800-1200 W/m 2 in different climatic zones in India for inclined surface. The energy payback time with and without balance-of-system for open field and rooftop has been evaluated. It is found that the embodied energy at micro-level is significantly higher than embodied energy at macro-level. The effect of insolation, overall efficiency, lifetime of PV system on energy pay back time and CO 2 emissions have been studied with and without balance of system. A 1.2 kW p PV system of SIEMENS for mudhouse at IIT, Delhi based on macro- and micro-level has been evaluated. The CO 2 mitigation potential, the importance and role of PV system for sustainable development are also highlighted

  5. Estimation of Maximum Allowable PV Connection to LV Residential Power Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2011-01-01

    Maximum photovoltaic (PV) hosting capacity of low voltage (LV) power networks is mainly restricted by either thermal limits of network components or grid voltage quality resulted from high penetration of distributed PV systems. This maximum hosting capacity may be lower than the available solar...... potential of geographic area due to power network limitations even though all rooftops are fully occupied with PV modules. Therefore, it becomes more of an issue to know what exactly limits higher PV penetration level and which solutions should be engaged efficiently such as over sizing distribution...

  6. MPPT Based on Fuzzy Logic Controller (FLC for Photovoltaic (PV System in Solar Car

    Directory of Open Access Journals (Sweden)

    Seno Aji

    2013-12-01

    Full Text Available This paper presents a control called Maximum Power Point Tracking (MPPT for photovoltaic (PV system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cycle value is used to adjust the angle of ignition switch (MOSFET gate on the Boost converter. The proposed method was shown through simulation performed using PSIM and MATLAB software. Simulation results show that the system is able to improve the PV power extraction efficiency significantly by approximately 98% of PV’s power.

  7. Maximum Power Point Tracking for Brushless DC Motor-Driven Photovoltaic Pumping Systems Using a Hybrid ANFIS-FLOWER Pollination Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Neeraj Priyadarshi

    2018-04-01

    Full Text Available In this research paper, a hybrid Artificial Neural Network (ANN-Fuzzy Logic Control (FLC tuned Flower Pollination Algorithm (FPA as a Maximum Power Point Tracker (MPPT is employed to amend root mean square error (RMSE of photovoltaic (PV modeling. Moreover, Gaussian membership functions have been considered for fuzzy controller design. This paper interprets the Luo converter occupied brushless DC motor (BLDC-directed PV water pump application. Experimental responses certify the effectiveness of the suggested motor-pump system supporting diverse operating states. The Luo converter, a newly developed DC-DC converter, has high power density, better voltage gain transfer and superior output waveform and can track optimal power from PV modules. For BLDC speed control there is no extra circuitry, and phase current sensors are enforced for this scheme. The most recent attempt using adaptive neuro-fuzzy inference system (ANFIS-FPA-operated BLDC directed PV pump with advanced Luo converter, has not been formerly conferred.

  8. Regional PV power estimation and forecast to mitigate the impact of high photovoltaic penetration on electric grid.

    Science.gov (United States)

    Pierro, Marco; De Felice, Matteo; Maggioni, Enrico; Moser, David; Perotto, Alessandro; Spada, Francesco; Cornaro, Cristina

    2017-04-01

    The growing photovoltaic generation results in a stochastic variability of the electric demand that could compromise the stability of the grid and increase the amount of energy reserve and the energy imbalance cost. On regional scale, solar power estimation and forecast is becoming essential for Distribution System Operators, Transmission System Operator, energy traders, and aggregators of generation. Indeed the estimation of regional PV power can be used for PV power supervision and real time control of residual load. Mid-term PV power forecast can be employed for transmission scheduling to reduce energy imbalance and related cost of penalties, residual load tracking, trading optimization, secondary energy reserve assessment. In this context, a new upscaling method was developed and used for estimation and mid-term forecast of the photovoltaic distributed generation in a small area in the north of Italy under the control of a local DSO. The method was based on spatial clustering of the PV fleet and neural networks models that input satellite or numerical weather prediction data (centered on cluster centroids) to estimate or predict the regional solar generation. It requires a low computational effort and very few input information should be provided by users. The power estimation model achieved a RMSE of 3% of installed capacity. Intra-day forecast (from 1 to 4 hours) obtained a RMSE of 5% - 7% while the one and two days forecast achieve to a RMSE of 7% and 7.5%. A model to estimate the forecast error and the prediction intervals was also developed. The photovoltaic production in the considered region provided the 6.9% of the electric consumption in 2015. Since the PV penetration is very similar to the one observed at national level (7.9%), this is a good case study to analyse the impact of PV generation on the electric grid and the effects of PV power forecast on transmission scheduling and on secondary reserve estimation. It appears that, already with 7% of PV

  9. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  10. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    Science.gov (United States)

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  11. Simulation of hybrid renewable microgeneration systems for variable electricity prices

    International Nuclear Information System (INIS)

    Brandoni, C.; Renzi, M.; Caresana, F.; Polonara, F.

    2014-01-01

    This paper addresses a hybrid renewable system that consists of a micro-Combined Cooling Heat and Power (CCHP) unit and a solar energy conversion device. In addition to a traditional PV system, a High Concentrator Photovoltaic (HCPV) device, the design of which is suitable for building integration application, was also modelled and embedded in the hybrid system. The work identifies the optimal management strategies for the hybrid renewable system in an effort to minimise the primary energy usage, the carbon dioxide emissions and the operational costs for variable electricity prices that result from the day-ahead electricity market. An “ad hoc” model describes the performance of the HCPV module, PV and Internal Combustion Engine, whilst the other units were simulated based on their main characteristic parameters. The developed algorithm was applied to three different building typologies. The results indicate that the best configuration is the hybrid renewable system with PV, which can provide a yearly primary energy reduction of between 20% and 30% compared to separate production. The hybrid renewable system with HCPV becomes competitive with the PV technology when the level of solar radiation is high. - Highlights: • The paper addresses a hybrid renewable system that consists of a micro-CCHP unit and a solar energy conversion device. • Both PV and High Concentrator Photovoltaic (HCPV) systems have been modelled and embedded in the hybrid system. • The work identifies the optimal management strategies for variable electricity prices. • Hybrid renewable systems provide a yearly primary energy reduction of between 20% and 30% compared to separate production. • When the level of solar radiation is high, HCPV becomes competitive with the PV technology

  12. Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system

    International Nuclear Information System (INIS)

    Qiu, Zhongzhu; Ma, Xiaoli; Zhao, Xudong; Li, Peng; Ali, Samira

    2016-01-01

    Highlights: • An experimental investigation to a novel MPCM slurry based PV/T system was conducted. • The system had the reduced solar efficiency at a higher solar radiation. • The system had the increased solar efficiency at a higher slurry Reynolds number. • The most favourite MPCM concentration was around 10%. • The experimental results approved the accuracy of the established computer model. - Abstract: As a follow-on work of the authors’ theoretical study, the paper presented an experimental investigation into the energy performance of a novel PV/T thermal and power system employing the Micro-encapsulated Phase Change Material (MPCM) slurry as the working fluid. A prototype PV/T module of 800 mm × 1600 mm × 50 mm was designed and constructed based on the previous modelling recommendation. The performance of the PV/T module and associated thermal and power system were tested under various solar radiations, slurry Reynolds numbers and MPCM concentrations. It was found that (1) increasing solar radiation led to the increased PV/T module temperature, decreased solar thermal and electrical efficiencies and reduced slurry pressure drop; (2) increasing the slurry Reynolds number led to the increased solar thermal and electrical efficiencies, decreased module temperature, and increased pressure drop; and (3) increasing the MPCM concentration led to the reduced module temperature and increased pressure drop. The experimental results were used to examine the accuracy of the established computer model, giving a derivation scale ranging from 1.1% to 6.1% which is an acceptable error level for general engineering simulation. The recommended operational conditions of the PV/T system were (1) MPCM slurry weight concentration of 10%, (2) slurry Reynolds number of 3000, and (3) solar radiation of 500–700 W/m"2; at which the system could achieve the net overall solar efficiencies of 80.8–83.9%. To summarise, the MPCM slurry based PV/T thermal and power system

  13. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  14. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    International Nuclear Information System (INIS)

    Abdoulaye, D; Koalaga, Z; Zougmore, F

    2012-01-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  15. Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area

    Directory of Open Access Journals (Sweden)

    Soedibyo

    2016-01-01

    Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.

  16. PV Status Report 2010. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2010-08-01

    Photovoltaics is a solar power technology to generate Electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report combines international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last decade were on average more than 40 %, thus making Photovoltaics one of the fastest growing industries at present. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  17. Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry

    DEFF Research Database (Denmark)

    Zou, Hongyang; Du, Huibin; Ren, Jingzheng

    2017-01-01

    development from the perspective of technological innovation. By incorporating a Technological Innovation System (TIS) approach, the analysis performed here complements the previous literature, which has not provided agrounded itself in a theoretical framework for associated analyses. In addition......China’s photovoltaic (PV) industry has undergone dramatic development in recent years and is now the global market leader in terms of newly added capacity. However, market diffusion and adoption in China is not ideal. This paper examines the blocking and inducement mechanisms of China’s PV industry......, to determine the current market dynamics, we closely examine the market concentration trends as well as the vertical and horizontal integration of upstream and downstream actors and calculate the market concentration of the upstream and downstream integration (74.8% and 36.3%). The results of applying the TIS...

  18. PV-WEB: internet-based PV information tool

    International Nuclear Information System (INIS)

    Cowley, P.

    2003-01-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members

  19. PV-WEB: internet-based PV information tool

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, P

    2003-07-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members.

  20. PV power system using hybrid converter for LED indictor applications

    International Nuclear Information System (INIS)

    Tseng, Sheng-Yu; Wang, Hung-Yuan; Chen, Chien-Chih

    2013-01-01

    Highlights: • This paper presents a LED indictor driving circuit with a PV arrays as its power source. • The perturb-and-observe method is adopted to extract the maximum power of PV arrays. • The proposed circuit structure has a less component counts and higher conversion efficiency. • A prototype of LED indictor driving circuit has been implemented to verify its feasibility. • The proposed hybrid converter is suitable for LED inductor applications. - Abstract: This paper presents a LED indictor driving circuit with a PV arrays as its power source. The LED indictor driving circuit includes battery charger and discharger (LED driving circuit). In this research, buck converter is used as a charger, and forward converter with active clamp circuit is adopted as a discharger to drive the LED indictor. Their circuit structures use switch integration technique to simplify them and to form the proposed hybrid converter, which has a less component counts, lighter weight, smaller size, and higher conversion efficiency. Moreover, the proposed hybrid converter uses a perturb-and-observe method to extract the maximum power from PV arrays. Finally, a prototype of an LED indictor driving circuit with output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the LED inductor applications

  1. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Photovoltaic (PV panels account for a majority of the cost of photovoltaic thermal (PVT panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum efficiencies of 45% to 63% were observed for the double-path-parallel bifacial PVT panel based on the first law of thermodynamics. Single-path bifacial PVT panel represents the highest exergy efficiency (10%. Double-path-parallel bifacial PVT panel is the second preferred design as it generates up to 20% additional total energy compared with the single-path panel. However, the daily average exergy efficiency of a double-path-parallel panel is 0.35% lower than that of a single-path panel.

  2. Thermal Optimized Operation of the Single-Phase Full-Bridge PV Inverter under Low Voltage Ride-Through Mode

    DEFF Research Database (Denmark)

    Wang, Huai; Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    The efficiency of 98% has been reported on transformer-less photovoltaic (PV) inverters and the penetration of grid-connected PV systems is booming as well. In the future, the PV systems are expected to contribute to the grid stability by means of low voltage ride-through operation and grid suppo...

  3. Automatic Evaluation of Photovoltaic Power Stations from High-Density RGB-T 3D Point Clouds

    Directory of Open Access Journals (Sweden)

    Luis López-Fernández

    2017-06-01

    Full Text Available A low-cost unmanned aerial platform (UAV equipped with RGB (Red, Green, Blue and thermographic sensors is used for the acquisition of all the data needed for the automatic detection and evaluation of thermal pathologies on photovoltaic (PV surfaces and geometric defects in the mounting on photovoltaic power stations. RGB imagery is used for the generation of a georeferenced 3D point cloud through digital image preprocessing, photogrammetric and computer vision algorithms. The point cloud is complemented with temperature values measured by the thermographic sensor and with intensity values derived from the RGB data in order to obtain a multidimensional product (5D: 3D geometry plus temperature and intensity on the visible spectrum. A segmentation workflow based on the proper integration of several state-of-the-art geomatic and mathematic techniques is applied to the 5D product for the detection and sizing of thermal pathologies and geometric defects in the mounting in the PV panels. It consists of a three-step segmentation procedure, involving first the geometric information, then the radiometric (RGB information, and last the thermal data. No configuration of parameters is required. Thus, the methodology presented contributes to the automation of the inspection of PV farms, through the maximization of the exploitation of the data acquired in the different spectra (visible and thermal infrared bands. Results of the proposed workflow were compared with a ground truth generated according to currently established protocols and complemented with a topographic survey. The proposed methodology was able to detect all pathologies established by the ground truth without adding any false positives. Discrepancies in the measurement of damaged surfaces regarding established ground truth, which can reach the 5% of total panel surface for the visual inspection by an expert operator, decrease with the proposed methodology under the 2%. The geometric evaluation

  4. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2014-01-01

    Photovoltaic system (PV) maintenance and diagnostic tools are often based on performance models of the system, complemented with light current-voltage (I-V) measurements, visual inspection and/or thermal imaging. Although these are invaluable tools in diagnosing PV system performance losses and f...

  5. Design and Control of an Inverter for Photovoltaic Applications

    OpenAIRE

    Kjær, Søren Bækhøj

    2005-01-01

    The energy demand in the world is steadily increasing and new types of energy sources must be found in order to cover the future demands, since the conventional sources are about to be emptied. One type of renewable energy source is the photovoltaic (PV) cell, which converts sunlight to electrical current, without any form for mechanical or thermal interlink. PV cells are usually connected together to make PV modules, consisting of 72 PV cells, which generates a DC voltage between 23 Volt to ...

  6. The Villas Carrousel PV-Wind Hybrid Project

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz, Jorge M. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    A pilot project was carried out to supply electrical services for an ecological hotel (eco-hotel), using solar and wind energy in Southeast Mexico. Fifteen small photovoltaic-wind hybrid systems were designed and built by researchers of the Electrical Research Institute of Mexico (IIE), as part of a cooperation agreement with the mexican company Carrousel Operadora Turistica, aimed at developing a technology package to supply electrical services to similar hotels sited in remote areas. Each hybrid system includes one wind generator of 500W nominal capacity, one PV panel ranging in power from 150W to 320 Watts peak, one lead-acid battery bank of 570 ampere-hour in capacity, and an electronic charge controller. This paper describes the systems and summarizes the results from the first twelve months of operation. [Espanol] Se llevo a cabo un proyecto piloto para el suministro de servicios electricos a un hotel ecologico (eco-hotel), utilizando energia solar y energia del viento en el Sudeste de Mexico. Investigadores del Instituto de Investigaciones Electricas de Mexico, disenaron y construyeron quince pequenos sistemas hibridos fotovoltaicos-viento, como parte de un acuerdo de cooperacion con la compania mexicana Carrousel Operadora Turistica, orientado al desarrollo de un paquete tecnologico para proporcionar servicios de energia electrica a hoteles similares ubicados en areas remotas. Cada sistema hibrido incluye un aero-generador con capacidad nominal de 500W un panel foto-voltaico con una potencia que varia entre los 150W y los 320W pico, una banco de baterias de plomo-acido de 570 amperes-hora de capacidad y un controlador electronico de carga. Este articulo describe los sistemas y presenta un resumen de los resultados de los primeros doce meses de operacion.

  7. The Villas Carrousel PV-Wind Hybrid Project

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz, Jorge M [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    A pilot project was carried out to supply electrical services for an ecological hotel (eco-hotel), using solar and wind energy in Southeast Mexico. Fifteen small photovoltaic-wind hybrid systems were designed and built by researchers of the Electrical Research Institute of Mexico (IIE), as part of a cooperation agreement with the mexican company Carrousel Operadora Turistica, aimed at developing a technology package to supply electrical services to similar hotels sited in remote areas. Each hybrid system includes one wind generator of 500W nominal capacity, one PV panel ranging in power from 150W to 320 Watts peak, one lead-acid battery bank of 570 ampere-hour in capacity, and an electronic charge controller. This paper describes the systems and summarizes the results from the first twelve months of operation. [Espanol] Se llevo a cabo un proyecto piloto para el suministro de servicios electricos a un hotel ecologico (eco-hotel), utilizando energia solar y energia del viento en el Sudeste de Mexico. Investigadores del Instituto de Investigaciones Electricas de Mexico, disenaron y construyeron quince pequenos sistemas hibridos fotovoltaicos-viento, como parte de un acuerdo de cooperacion con la compania mexicana Carrousel Operadora Turistica, orientado al desarrollo de un paquete tecnologico para proporcionar servicios de energia electrica a hoteles similares ubicados en areas remotas. Cada sistema hibrido incluye un aero-generador con capacidad nominal de 500W un panel foto-voltaico con una potencia que varia entre los 150W y los 320W pico, una banco de baterias de plomo-acido de 570 amperes-hora de capacidad y un controlador electronico de carga. Este articulo describe los sistemas y presenta un resumen de los resultados de los primeros doce meses de operacion.

  8. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  9. Lighting rural and peri-urban homes of the Gambia using solar photovoltaics (PV)

    Energy Technology Data Exchange (ETDEWEB)

    Sanneh, E.S.; Hu, A.H. [National Taipei Univ. of Technology, Taiwan (China). Inst. of Environmental Engineering Technology

    2009-07-01

    The main fuel supplies of Gambia are fuel woods, petroleum products, and liquefied petroleum gas (LPG). This study considered the use of solar photovoltaic (PV) as a principal source of power for rural and peri-urban communities in Gambia. The country currently has high rates of poverty and malnutrition, and it is expected that the provision of electricity to communities will encourage economic growth. Gambia is also heavily dependent on foreign imports of oil. To date, PV systems have been used for water pumping, refrigeration, and telecommunications projects. The study showed that better access to sustainable energy services is needed at the micro-level to stimulate businesses and income-generating activities, as well as at the macro level to foster economic growth. Financing methods for developing solar energy in Gambia include credit financing; PV market transformative initiatives; revolving loan funds; and government-granted renewable energy concessions for institutionally-owned and maintained systems. A pilot program has been established to investigate the acceptability of PV lighting systems for rural populations. 46 refs., 2 tabs., 7 figs.

  10. Photovoltaic solar energy. Proceedings; Photovoltaische Solarenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    and limits (Mike Meinhardt); (17) Washing with the sun - Direct consumption of locally generated PV current by means of directed load shift in private households (Georg Bopp); (18) Efficiency by synergy. Export initiative renewable energies (Berthold Breid); (19) Modular PV power supply in the Empire of the Midth (Michael Wollny); (20) Breakthrough to a new era of PV hybrid systems with the help of standardised components communication? (Michael Mueller); (21) New PV stand-alone supply for frequency variable loads (Wolfgang Hernschier); (22) Characterization of solar batteries in long-term investigations according IEC 61427 (Wolfgang Wiesner); (23) Professional PV plant configuration - the status quo of the PV prpgrams (Mike Zehner); (24) Simulating renewable power projects with greenius{sup Free} (Volker Quaschning); (25) Analysis of the effect of shade and equivalent circuit of PV modules with the simulation software ''Solar Pro'' (Yusuke Mataki); (26) From data sheet values to the system gain - on realistic modelling of small PV generators (Hans Georg Beyer); (27) Form follows function - follows form function? - Ineractions between building functions and photovoltaic (Wolfgang Willkomm); (28) Market chances and technology perspectives for the Swiss facade construction by means of building integrated PV systems (Reto Miloni); (29) Passiv solar office building BIOHAUS Paderborn - architectonic overview and a first energy balance (Willi Ernst, Ralf Zirkler); (30) Building integration and education in Austria (Gernot Becker); (31) Photovoltaic and light (Thomas Herzog); (32) 10 years of test experience with the certification of design of photovoltaic modules (Andreas Cox); (32) Large size solar cells and the IEC 61215 - New challenges for the module junction (Eckehard Hofmueller); (33) Limits of power output optimisation of PV arrays by pre-sorting of PV modules (Werner Herrmann); (34) Coloured and patterned CIS modules (Dieter Geyer); (35) Energy

  11. Contribution to the optimal sizing of the hybrid photovoltaic systems

    International Nuclear Information System (INIS)

    Dimitrov, Dimitar

    2009-01-01

    In this thesis, hybrid photovoltaic (HPV) systems are considered, in which the electricity is generated by a photovoltaic generator, and additionally by a diesel genset. Within this, a software tool for optimal sizing and designing was developed, which was used for optimization of HPV systems, aimed for supplying a small rural village. For optimization, genetic algorithms were used, optimizing 10 HPV system parameters (rated power of the components, battery capacity, dispatching strategy parameters etc.). The optimization objective is to size and design systems that continuously supply the load, with the lowest net electricity cost. In order to speed up the optimization process, the most suitable genetic algorithm settings were chosen by an in-depth previous analysis. Using measurements, the characteristics of PV generator working in real conditions were obtained. According to this, input values for the PV generator simulation model were adapted. It is introduced a quasi-steady battery simulation model, which avoid the voltage and state-of-the-charge value variation problems, when constant current charging/discharging, within a time step interval, is used. This model takes into account the influence of the battery temperature to its operational characteristics. There were also introduced simulation model improvements to the other components in the HPV systems. Using long-term measurement records, validity of solar radiation and air temperature data was checked. It was also analyzed the sensitivity of the obtained optimized HPV systems to the variation of the prices of the: components, fuel and economic rates. Based on the values of multi-decade records for more locations in the Balkan region, it was estimated the occurrence probability of the solar radiation values. This was used for analysing the sensitivity of some HPV performances to the expected stochastic variations of the solar radiation values. (Author)

  12. Dynamic Analysis of a Hybrid Energy Storage System (H-ESS Coupled to a Photovoltaic (PV Plant

    Directory of Open Access Journals (Sweden)

    Linda Barelli

    2018-02-01

    Full Text Available Nowadays energy storage is strongly needed to allow grid safety and stability due to the wide penetration of renewable plants. Mainly economic and technological issues impede a relevant integration of conventional storage devices in the energy system. In this scenario, the hybridization of different storage technologies can be a techno-economic solution useful to overcome these issues and promote their diffusion. Hybridization allows multi-operation modes of the Energy Storage System (ESS, merging the positive features of base-technologies and extending their application ranges. This paper provides a dynamic analysis of a hybrid energy storage system (H-ESS consisting of a flywheel and a battery pack coupled to a photovoltaic generation plant and a residential load up to 20 kW. A dynamic model of the overall micro-grid (MG was developed implementing the H-ESS preliminary sizing and a suitable management algorithm. The instantaneous behavior of each component was evaluated. A brief summary of the MG performance at different weather and load conditions was provided together with a characterization of the impact of power fluctuations on the battery current and on the power exchange with the grid.

  13. Annual Report: Photovoltaic Subcontract Program FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  14. Benefits from the U.S. photovoltaic manufacturing technology project

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  15. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  16. RMS Current of a Photovoltaic Generator in Grid-Connected PV Systems: Definition and Application

    Directory of Open Access Journals (Sweden)

    P. J. Pérez

    2008-01-01

    Full Text Available This paper includes a definition of a new and original concept in the photovoltaic field, RMS current of a photovoltaic generator for grid-connected systems. The RMS current is very useful for calculating energy losses in cables used in a PV generator. As well, a current factor has been defined in order to simplify RMS current calculation. This factor provides an immediate (quick and easy calculation method for the RMS current that does not depend on the case particular conditions (orientation, location, etc.. RMS current and current factor values have been calculated for different locations and modules.

  17. Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system

    International Nuclear Information System (INIS)

    Wen, Shuli; Lan, Hai; Hong, Ying-Yi; Yu, David C.; Zhang, Lijun; Cheng, Peng

    2016-01-01

    Highlights: • An uncertainty model of PV generation on board is developed based on the experiments. • The moving and swinging of the ship are considered in the optimal ESS sizing problem. • Optimal sizing of ESS in a hybrid PV/diesel/ESS ship power system is gained by the interval optimization method. • Different cases were studied to show the significance of the proposed method considering the swinging effects on the cost. - Abstract: Owing to low efficiency of traditional ships and the serious environmental pollution that they cause, the use of solar energy and an energy storage system (ESS) in a ship’s power system is increasingly attracting attention. However, the swinging of a ship raises crucial challenges in designing an optimal system for a large oil tanker ship, which are associated with uncertainties in solar energy. In this study, a series of experiments are performed to investigate the characteristics of a photovoltaic (PV) system on a moving ship. Based on the experimental results, an interval uncertainty model of on-board PV generation is established, which considers the effect of the swinging of the ship. Due to the power balance equations, the outputs of the diesel generator and the ESS on a large oil tanker are also modeled using interval variables. An interval optimization method is developed to determine the optimal size of the ESS in this hybrid ship power system to reduce the fuel cost, capital cost of the ESS, and emissions of greenhouse gases. Variations of the ship load are analyzed using a new method, taking five operating conditions into account. Several cases are compared in detail to demonstrate the effectiveness of the proposed algorithm.

  18. Photovoltaic research and development

    CSIR Research Space (South Africa)

    Cummings, F

    2009-09-01

    Full Text Available Photovoltaic (PV) is the direct conversion of sunlight into electrical energy through a solar cell. This presentation consists of an introduction to photovoltaics, the South African PV research roadmap, a look at the CSIR PV research and development...

  19. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  20. Hybrid Neural Network Approach Based Tool for the Modelling of Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2015-01-01

    Full Text Available A hybrid neural network approach based tool for identifying the photovoltaic one-diode model is presented. The generalization capabilities of neural networks are used together with the robustness of the reduced form of one-diode model. Indeed, from the studies performed by the authors and the works present in the literature, it was found that a direct computation of the five parameters via multiple inputs and multiple outputs neural network is a very difficult task. The reduced form consists in a series of explicit formulae for the support to the neural network that, in our case, is aimed at predicting just two parameters among the five ones identifying the model: the other three parameters are computed by reduced form. The present hybrid approach is efficient from the computational cost point of view and accurate in the estimation of the five parameters. It constitutes a complete and extremely easy tool suitable to be implemented in a microcontroller based architecture. Validations are made on about 10000 PV panels belonging to the California Energy Commission database.

  1. Cooling design and evaluation for photovoltaic cells within constrained space in a CPV/CSP hybrid solar system

    International Nuclear Information System (INIS)

    Wang, Sheng; Shi, Junxiang; Chen, Hsiu-Hung; Schafer, Steven R.; Munir, Moiz; Stecker, Greg; Pan, Wei; Lee, Jong-Jan; Chen, Chung-Lung

    2017-01-01

    Highlights: • A practical cooling solution is proposed for a novel CPV/CSP hybrid solar system. • Both passive and active cooling techniques were systematically investigated. • Comprehensive experimental and numerical studies were conducted for optimal design. • Active cooling is in great need for a high waste heat flux of 21.8 W/cm 2 . • Passive cooling becomes attractive for a waste heat flux less than 13.0 W/cm 2 . - Abstract: A hybrid solar energy system has been designed by combining the advantages of concentrated solar power (CSP) technology and high performance concentrated photovoltaic (CPV) cells which outperforms either single technology. Thermal management is crucial to CPV cells in this hybrid solar system, as concentrated solar radiation onto the PV cells leads to higher heat flux. If the heat is not dissipated effectively, it can cause obvious temperature rise and efficiency reduction in the cell. In addition, the constrained space available for PV cell cooling in such hybrid solar systems presents more challenges. In this study both passive cooling and active cooling techniques were systematically investigated in both numerical and experimental ways. For the passive cooling method, two different designs from off-the-shelf heat pipes with radial fins or annular fins were proposed and studied under various heat rejection requirements. Results shows that heat pipes with radial fins exhibited narrow capability of dumping the heat, while heat pipes with annular fins presented better performances under the same conditions. Numerical optimal designs of annular fin numbers and fin gaps were then carried out and experimentally validated, indicating a capability of dumping moderate waste heat (∼45 W). For active cooling technique, a comprehensive study of designing plate fin heatsinks were conducted corresponding to high Ingress Protection (IP) rated off-the-shelf fans. Results show that with a less than 2 W fan power consumption, this active

  2. The impact of photovoltaic (PV) installations on downwind particulate matter concentrations: Results from field observations at a 550-MWAC utility-scale PV plant.

    Science.gov (United States)

    Ravikumar, Dwarakanath; Sinha, Parikhit

    2017-10-01

    With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM 2.5 and PM 10 (PM with aerodynamic diameters construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM 2.5 and PM 10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM 2.5 and PM 10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM 2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions. This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM

  3. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology

    Directory of Open Access Journals (Sweden)

    Akash Kumar Shukla

    2016-11-01

    Full Text Available System simulation is necessary to investigate the feasibility of Solar PV system at a given location. This study is done to evaluate the feasibility of grid connected rooftop solar photovoltaic system for a residential Hostel building at MANIT, Bhopal, India (Latitude: 23° 16′ N, Longitude: 77° 36′ E. The study focuses on the use of Solargis PV Planner software as a tool to analyze the performance a 110 kWp solar photovoltaic rooftop plant and also compares the performances of different PV technologies based on simulated energy yield and performance ratio. Solargis proves to easy, fast, accurate and reliable software tool for the simulation of solar PV system.

  4. Photovoltaics in Poland

    International Nuclear Information System (INIS)

    Pietruszko, Stanislaw M.

    2003-01-01

    The legislative framework and financing possibilities for photovoltaics (PV) in Poland are presented. Barriers that exist or can be encountered in implementing PV technology in Poland are identified. This paper also discusses future prospects and possibilities for developing photovoltaics in Poland. Finally, the paper suggests ways to promote, disseminate, and deploy PV technology in Poland. (Author)

  5. Integration of thermal photovoltaic hybrid sensors to the building. Final report july 2004. Integrated research project 6.2; Integration de capteurs hybrides photovoltaiques thermiques au bati. Rapport final juillet 2004. Projet de recherche integre 6.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The electricity and the heat are two complementary energies necessary for the accommodation. A thermal solar installation needs the electric power for the coolant fluid flow. This research project concerns the optimization of integrated solutions to the building, providing simultaneously these two energies. This document presents the proposed researches programs: analysis of the socio-economic aspects, the physical phenomena knowledge, simulation of the behavior, experimentation, hybrid components integration, simulation of the photovoltaic modules operating and thermal simulation of an electric converter. (A.L.B.)

  6. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  7. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Concentrated photovoltaic (CPV) system integrated with thermoelectric generators (TEGs) is a novel technology that has potential to offer high efficient system. In this study, a thermally coupled model of concentrated photovoltaic-thermoelctric (CPV/TEG) system is established to investigate...... than CPV-only system. The results indicate that contribution of the TEG in power generation enhances at high sun concentrations. Depending to critical design parameters of the CPV and the TEG, there are optimal values for heat transfer coefficient in the heat sink that offer minimum energy cost....... feasibility of the hybrid system over wide range of solar concentrations and different types of heat sinks. The model takes into account critical design parameters in the CPV and the TEG module. The results of this study show that for thermoelectric materials with ZT ≈ 1, the CPV/TEG system is more efficient...

  8. A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System

    Directory of Open Access Journals (Sweden)

    Shivashankar Sukumar

    2017-10-01

    Full Text Available Solar power generation is intermittent in nature. It is nearly impossible for a photovoltaic (PV system to supply power continuously and consistently to a varying load. Operating a controllable source like a fuel cell in parallel with PV can be a solution to supply power to variable loads. In order to coordinate the power supply from fuel cells and PVs, a power management system needs to be designed for the microgrid system. This paper presents a power management system for a grid-connected PV and solid oxide fuel cell (SOFC, considering variation in the load and solar radiation. The objective of the proposed system is to minimize the power drawn from the grid and operate the SOFC within a specific power range. Since the PV is operated at the maximum power point, the power management involves the control of SOFC active power where a proportional and integral (PI controller is used. The control parameters of the PI controller Kp (proportional constant and Ti (integral time constant are determined by the genetic algorithm (GA and simplex method. In addition, a fuzzy logic controller is also developed to generate appropriate control parameters for the PI controller. The performance of the controllers is evaluated by minimizing the integral of time multiplied by absolute error (ITAE criterion. Simulation results showed that the fuzzy-based PI controller outperforms the PI controller tuned by the GA and simplex method in managing the power from the hybrid source effectively under variations of load and solar radiation.

  9. A Hierarchical Optimal Operation Strategy of Hybrid Energy Storage System in Distribution Networks with High Photovoltaic Penetration

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2018-02-01

    Full Text Available In this paper, a hierarchical optimal operation strategy for a hybrid energy storage system (HESS is proposed, which is suitable to be utilized in distribution networks (DNs with high photovoltaic (PV penetration to achieve PV power smoothing, voltage regulation and price arbitrage. Firstly, a fuzzy-logic based variable step-size control strategy for an ultracapacitor (UC with the improvement of the lifetime of UC and tracking performance is adopted to smooth PV power fluctuations. The impact of PV forecasting errors is eliminated by adjusting the UC power in real time. Secondly, a coordinated control strategy, which includes centralized and local controls, is proposed for lithium-ion batteries. The centralized control is structured to determine the optimal battery unit for voltage regulation or price arbitrage according to lithium-ion battery performance indices. A modified lithium-ion battery aging model with better accuracy is proposed and the coupling relationship between the lifetime and the effective capacity is also considered. Additionally, the local control of the selected lithium-ion battery unit determines the charging/discharging power. A case study is used to validate the operation strategy and the results show that the lifetime equilibrium among different lithium-ion battery units can be achieved using the proposed strategy.

  10. Economical and environmental analysis of thermal and photovoltaic solar energy as source of heat for industrial processes

    Science.gov (United States)

    Pérez-Aparicio, Elena; Lillo-Bravo, Isidoro; Moreno-Tejera, Sara; Silva-Pérez, Manuel

    2017-06-01

    Thermal energy for industrial processes can be generated using thermal (ST) or photovoltaic (PV) solar energy. ST energy has traditionally been the most favorable option due to its cost and efficiency. Current costs and efficiencies values make the PV solar energy become an alternative to ST energy as supplier of industrial process heat. The aim of this study is to provide a useful tool to decide in each case which option is economically and environmentally the most suitable alternative. The methodology used to compare ST and PV systems is based on the calculation of the levelized cost of energy (LCOE) and greenhouse gas emissions (GHG) avoided by using renewable technologies instead of conventional sources of energy. In both cases, these calculations depend on costs and efficiencies associated with ST or PV systems and the conversion factor from thermal or electrical energy to GHG. To make these calculations, a series of hypotheses are assumed related to consumer and energy prices, operation, maintenance and replacement costs, lifetime of the system or working temperature of the industrial process. This study applies the methodology at five different sites which have been selected taking into account their radiometric and meteorological characteristics. In the case of ST energy three technologies are taken into account, compound parabolic concentrator (CPC), linear Fresnel collector (LFC) and parabolic trough collector (PTC). The PV option includes two ways of use of generated electricity, an electrical resistance or a combination of an electrical resistance and a heat pump (HP). Current values of costs and efficiencies make ST system remains as the most favorable option. These parameters may vary significantly over time. The evolution of these parameters may convert PV systems into the most favorable option for particular applications.

  11. Mission Profile Based Sizing of IGBT Chip Area for PV Inverter Applications

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Yang, Yongheng

    2016-01-01

    Maximizing the total energy generation is of importance for Photovoltaic (PV) plants. This paper proposes a method to optimize the IGBT chip area for PV inverters to minimize the annual energy loss of the active switches based on long-term operation conditions (i.e., mission profile). The design...... yearly mission profile. Simulation results are given to verify the thermal characteristics. Furthermore, a Monte Carlo based lifetime evaluation is presented to check the IGBT reliability. The proposed design method enables a reliability-oriented energy optimized sizing of active switches for PV inverter...

  12. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2012-01-01

    Full Text Available The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the TRNSYS 16 computation environment and the energy performance was evaluated based on year round simulation results. The results show that the system COP can reach 4.1 under the subtropical climate of Hong Kong, and as compared to the conventional heating system, a high fractional factor of energy saving at 67% can be obtained. The energy performances of the same system under different climatic conditions, that include three other cities in France, were analyzed and compared. Economic implications were also considered in this study.

  13. PV Status Report 2008. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-09-01

    Photovoltaics is a solar power technology to generate electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report is to combine international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact-finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last five years were on average more than 40%, thus making Photovoltaics one of the fastest growing industries at present. Business analysts predict that the market volume will increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  14. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  15. Artificial neural Network-Based modeling and monitoring of photovoltaic generator

    Directory of Open Access Journals (Sweden)

    H. MEKKI

    2015-03-01

    Full Text Available In this paper, an artificial neural network based-model (ANNBM is introduced for partial shading detection losses in photovoltaic (PV panel. A Multilayer Perceptron (MLP is used to estimate the electrical outputs (current and voltage of the photovoltaic module using the external meteorological data: solar irradiation G (W/m2 and the module temperature T (°C. Firstly, a database of the BP150SX photovoltaic module operating without any defect has been used to train the considered MLP. Subsequently, in the first case of this study, the developed model is used to estimate the output current and voltage of the PV module considering the partial shading effect. Results confirm the good ability of the ANNBM to detect the partial shading effect in the photovoltaic module with logical accuracy. The proposed strategy could also be used for the online monitoring and supervision of PV modules.

  16. Optimization of an off-grid hybrid PV-wind-diesel-battery system

    Energy Technology Data Exchange (ETDEWEB)

    Merei, Ghada [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); Sauer, Dirk Uwe [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); RWTH Aachen Univ. (Germany). Inst. for Power Generation and Storage Systems (PGS)

    2012-07-01

    The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents the modelling and optimisation of a stand-alone hybrid energy system. The system consists of photovoltaic (PV) panels and a wind turbine as renewable power sources, a diesel generator for back-up power and batteries to store excess energy and to improve the system reliability. For storage the technologies of lithium-ion, lead-acid, vanadium redox-flow or a combination thereof are considered. In order to use different battery technologies at once, a battery management system (BMS) is needed. The presented BMS minimises operation cost while taking into account different battery operating points and ageing mechanisms. The system is modelled and implemented in Matlab/Simulink. As input, the model uses data of the irradiation, wind speed and air temperature measured in ten minute intervals for ten years in Aachen, Germany. The load is assumed to be that of a rural UMTS/GSM base station for telecommunication. For a timeframe of 20 years, the performance is evaluated and the total costs are determined. Using a genetic algorithm, component sizes and settings are then varied and the system re-evaluated to minimise the overall cost. The optimisation results show that using batteries in combination with the renewables is economic and ecologic. However, the best solution is to combine redox-flow batteries with the renewables. In addition, a power supply system consisting only of batteries, PV and wind generators can satisfy the power demand.

  17. Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study

    International Nuclear Information System (INIS)

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Heaney, Mike

    2015-01-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with sub-hourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. - Highlights: • We propose an analytical framework to estimate grid integration costs for solar PV. • Increased operating costs from variability and uncertainty in solar PV are computed. • A case study of a utility in Arizona is conducted. • Grid integration costs are found in the $1.0–4.4/MWh range for a 17% PV penetration. • Increased system flexibility is essential for minimizing grid integration costs

  18. Buck-Boost/Forward Hybrid Converter for PV Energy Conversion Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2014-01-01

    Full Text Available This paper presents a charger and LED lighting (discharger hybrid system with a PV array as its power source for electronic sign indicator applications. The charger adopts buck-boost converter which is operated in constant current mode to charge lead-acid battery and with the perturb and observe method to extract maximum power of PV arrays. Their control algorithms are implemented by microcontroller. Moreover, forward converter with active clamp circuit is operated in voltage regulation condition to drive LED for electronic sign applications. To simplify the circuit structure of the proposed hybrid converter, switches of two converters are integrated with the switch integration technique. With this approach, the proposed hybrid converter has several merits, which are less component counts, lighter weight, smaller size, and higher conversion efficiency. Finally, a prototype of LED driving system under output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the electronic sign indicator applications.

  19. Influence of reflectance from flat aluminum concentrators on energy efficiency of PV/Thermal collector

    International Nuclear Information System (INIS)

    Kostic, Ljiljana T.; Pavlovic, Tomislav M.; Pavlovic, Zoran T.

    2010-01-01

    In this paper the results of the influence of reflectance from flat plate solar radiation concentrators made of Al sheet and Al foil on energy efficiency of PV/Thermal collector are presented. The total reflectance from concentrators made of Al sheet and Al foil is almost the same, but specular reflectance which is bigger in concentrators made of Al foil results in increase of solar radiation intensity concentration factor. With the increase of solar radiation intensity concentration factor, total daily thermal and electrical energy generated by PV/Thermal collector with concentrators increase. In this work also optimal position of solar radiation concentrators made of Al sheet and Al foil and appropriate thermal and electrical efficiency of PV/Thermal collector have been determined. Total energy generated by PV/Thermal collector with concentrators made of Al foil in optimal position is higher than total energy generated by PV/Thermal collector with concentrators made of Al sheet.

  20. PV potential and potential PV rent in European regions

    DEFF Research Database (Denmark)

    Hansen, Anders Chr.; Thorn, Paul

    2013-01-01

    The paper provides a GIS based model for assessing the potentials of photovoltaic electricity in Europe by NUTS 2 regions. The location specific energy potential per PV-­‐panel area is estimated based on observations of solar irradiation, conversion efficiency, levelised costs and the social value...... of PV-­‐electricity. Combined with the potential density of PV-­‐panel area based on land cover and environental restrictions, the PV energy potential and the potential PV ressource rent is calculated. These calculations enbable the model to estimate the regional patterns at NUTS 2 level...

  1. A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2016-08-01

    Full Text Available The increasing penetration of renewable generators can be a significant challenge due to the fluctuation of their power generation. Energy storage (ES units are one solution to improve power supply quality and guarantee system stability. In this paper, a hybrid microgrid is built based on photovoltaic (PV generator and ES; and coordinated control is proposed and developed to achieve power management in a decentralized manner. This control scheme contains three different droop strategies according to characteristics of PV and ES. First, the modified droop control is proposed for PV, which can take full utilization of renewable energy and avoid regulating output active power frequently. Second, to maintain the direct current (DC bus voltage stability, a novel droop control incorporating a constant power band is presented for DC-side ES. Third, a cascade droop control is designed for alternating current (AC-side ES. Thus, the ES lifetime is prolonged. Moreover, interlinking converters (ICs provide a bridge between AC/DC buses in a hybrid microgrid. The power control of IC is enabled when the AC- or DC-side suffer from active power demand shortage. In particular, if the AC microgrid does not satisfy the reactive power demand, IC then acts as a static synchronous compensator (STATCOM. The effectiveness of the proposed strategies is verified by simulations.

  2. Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands

    International Nuclear Information System (INIS)

    Trapani, Kim; Millar, Dean L.

    2013-01-01

    Highlights: ► Significant cost and carbon savings for offshore PV integration. ► Maximum savings at circa 315 MW for thin film PV integration. ► Minimum generating capacity of turbines significant in cost of electricity. ► Part-load efficiencies of current system could hugely limit the integration of renewables. - Abstract: The islands of Malta are located in the Mediterranean basin enjoying 5.3 kW h/m 2 /day of solar insolation, at a latitude of 35°50N. Electricity generation for the islands is dependent upon imported fossil fuels for combustion. The available solar resource could be exploited to offset the current generation of electricity using solar photovoltaic technology (PV). Due to the limited land availability onshore, the offshore environment surrounding the Maltese islands were considered for the installation of PV floating on the sea surface. The output from such an installation would have to be integrated with the existing conventional electricity generation infrastructure, which currently relies on gas and steam turbine technology. To assess the feasibility of floating PV being integrated with the existing fossil plant, monthly trend consumption data for Malta were analysed. The change in gasoil and heavy fuel oil (HFO) consumption resulting from the part load efficiency variation and the displacement of electricity generation from the PVs were estimated. A cost analysis was prepared for the system integration analysis specifically accounting for the reduction in combustion of fossil fuels at the power station and the capital expenditures and operating costs due to the floating PV installation. Aside from the basic cost-benefit of a floating PV installation, CO 2 savings are also considered

  3. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    International Nuclear Information System (INIS)

    Wu, Chihhui; Neuner III, Burton; Shvets, Gennady; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve

    2012-01-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley–Queisser limit for emitter temperatures above T e = 1200 K, and achieves an efficiency as high as 41% for T e = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented

  4. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions

    International Nuclear Information System (INIS)

    Baneshi, Mehdi; Hadianfard, Farhad

    2016-01-01

    Highlights: • A hybrid electricity generation system for a large electricity consumer was studied. • The PV and wind electricity potentials under given climate conditions were evaluated. • Technical, economical, and environmental issues of different systems were discussed. • The optimum configuration of components was obtained. • The impacts of governmental incentives on economic viability of systems were examined. - Abstract: This paper aims to study the techno-economical parameters of a hybrid diesel/PV/wind/battery power generation system for a non-residential large electricity consumer in the south of Iran. As a case study, the feasibility of running a hybrid system to meet a non-residential community’s load demand of 9911 kWh daily average and 725 kW peak load demand was investigated. HOMER Pro software was used to model the operation of the system and to identify the appropriate configuration of it based on comparative technical, economical, and environmental analysis. Both stand alone and grid connected systems were modeled. The impacts of annual load growth and governmental energy policies such as providing low interest loan to renewable energy projects, carbon tax, and modifying the grid electricity price on viability of the system were discussed. Results show that for off-grid systems the cost of electricity (COE) and the renewable fraction of 9.3–12.6 ₵/kWh and 0–43.9%, respectively, are achieved with photovoltaic (PV) panel, wind turbine, and battery sizes of 0–1000 kW, 0–600 kW, and 1300 kWh, respectively. For on grid systems without battery storage the range of COE and renewable fraction are 5.7–8.4 ₵/kWh and 0–53%, respectively, for the same sizes of PV panel and wind turbine.

  5. Conference on photovoltaic energy network parity

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Masson, Gaetan; Henzelmann, Orsten; Joly, Jean-Pierre; Guillemoles, Jean-Francois; Auffret, Jean-Marc; Berger, Arnaud; Binder, Jann; Martin, David; Beck, Bernhard; Mahuet, Audrey; Mueller, Thorsten; Contamin, Raphael

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the present day and future challenges of the development, support and market integration of photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on support models to renewable energy sources, research results on self-consumption and business models for the renewable energies sector. This document brings together the available presentations (slides) made during this event: 1 - Overview of France's PV support policies (Pierre-Marie Abadie); 2 - Grid parity: first step towards PV competitiveness (Gaetan Masson); 3 - How competitive is solar power? Requirements and impact on the European industry (Orsten Henzelmann); 4 - Key elements of the National Institute of Solar energy - INeS (Jean-Pierre Joly); 5 - Research priorities according to the Paris Institute of Photovoltaics (Jean-Francois Guillemoles); 6 - Bosch Solar energy (Jean-Marc Auffret); 7 - Financing and insuring photovoltaics - History and future prospects (Arnaud Berger); 8 - Decentralized Photovoltaics: Autonomy, Self-Consumption and Reduction of Grid Loading through electrical and Thermal Storage (Jann Binder); 9 - Off Grid systems, mini grid and grid parity, field feedback and perspectives. From the producer-consumer to the smart grid: experience feedback of PV management models (David Martin); 10 - Benefits for solar power plants in respect of grid stabilization (Bernhard Beck); 11 - Renewable energies integration to electricity market: impacts and challenges (Audrey Mahuet); 12 - Promotion of PV in Germany: Feed-in tariffs, self-consumption and direct selling - Review and forecast (Thorsten Mueller); 13 - How to support renewable electricity in France? (Raphael Contamin)

  6. New MPPT algorithm for PV applications based on hybrid dynamical approach

    KAUST Repository

    Elmetennani, Shahrazed

    2016-10-24

    This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.

  7. New MPPT algorithm for PV applications based on hybrid dynamical approach

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Djemai, M.; Tadjine, M.

    2016-01-01

    This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.

  8. Practical roadmap and limits to nanostructured photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Richard R. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Osedach, Timothy P. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Brown, Patrick R. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Rowehl, Jill A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bulovic, Vladimir [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-12-22

    The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power conversion efficiency (PCE). With the emergence of a multitude of nanostructured photovoltaic (nano-PV) device architectures, the question has arisen of where both the practical and the fundamental limits of performance reside in these new systems. Here, the former is addressed a posteriori. The specific challenges associated with improving the electrical power conversion efficiency of various nano-PV technologies are discussed and several approaches to reduce their thermal losses beyond the single bandgap limit are reviewed. Critical considerations related to the module lifetime and cost that are unique to nano-PV architectures are also addressed. The analysis suggests that a practical single-junction laboratory power conversion efficiency limit of 17% and a two-cell tandem power conversion efficiency limit of 24% are possible for nano-PVs, which, when combined with operating lifetimes of 10 to 15 years, could position them as a transformational technology for solar energy markets. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Study on the optimization of stand-alone type photovoltaic systems. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Geun; Song, Jin Soo; Kim, Boo ho; Park, I June; Jung, Meung Woong; Yoo, Kyun Joung; Kim, Hong Woo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The objectives of this study are to make a maximization of the operating efficiency of photovoltaic power systems, to improve stand- align PV systems design, technical operation and system analysis, and to promote technical cooperation of mutual interest in the area of IEA/PVPS program. This study aims to investigating the problems of applied photovoltaic power systems currently in operation to improve a system design, seeking remedies of individual PVPS applications to improve the system efficiency and reliability and to raise the system economics, and reporting the international movements of PV system dissemination and technical cooperation for developing countries. For the purpose of this works 1) Investigations of applications of existing photovoltaic power systems: - Photovoltaic electric sources used for expressway lamps - Optimum design of solar light with low pressure sodium lamps under 8 hours lighting a day at night by program-able electronic timer. 2) Comparative analyses of Marado PV system and propose a new reliable PV-diesel hybrid system and high efficiency operations. 3) Overall review of Hahwado 60 KWp PV system extending from 25 KWp and the remote monitoring systems for measurement of its operating results. 4) Introduction of IEA/PVPS international cooperating program, especially in task III for stand- alone PV systems and isolated islands and Exco meeting. As results, investigative findings of PVPS currently in operation and the work for improvement - Propose a prescription of Marado PV systems being blocked up by explosion of electrical demands from residence, parallel operational dual inverter with a big capacity. - There are shortage of solar generated power due to shortage of solar cell capacity that results in an increased operating time of diesel generator. Hence the insolation capacity of solar cell per household is continuously increased from the 0.5 KWp to 2 KWp in Hanwado island electrification.

  10. Dynamic simulation and thermo-economic analysis of a PhotoVoltaic/Thermal collector heating system for an indoor–outdoor swimming pool

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; De Luca, Giuseppina; Figaj, Rafal Damian; Vanoli, Laura

    2015-01-01

    Highlights: • A PV/T heating system for indoor–outdoor swimming pools is proposed. • A comparison among some thermal pool models available in literature is carried out. • Dynamic simulations of the thermal behavior of the swimming-pools are performed. • PV/T thermal energy is used to heat the swimming pool and for DHW production. • Energy and economic parametric analyses of the proposed system are presented. - Abstract: This paper presents an analysis of an innovative renewable energy plant serving an existing indoor/outdoor swimming pool located in Naples. The proposed solar hybrid system is designed in order to balance the remarkable energy demand of the swimming pool facility and to ensure suitable comfort conditions for swimmers. With the aim to accomplish such goals, the dynamic thermal behavior of the swimming pool was analyzed as a function of the thermo-hygrometric conditions of the indoor space and on the meteorological conditions of the pool site. In order to properly design and size the proposed renewable energy system, different thermal pool loss formulations for the calculation of the swimming pool thermal balance, in indoor and outdoor regimes, are adopted. The solar hybrid system consists of a water cooled photovoltaic/thermal collectors plant (PV/T), designed to meet a part of the facility demands of electricity and heat. Electricity is completely utilized by the facility, while the produced thermal energy is primarily used to meet the pool thermal demand and secondarily for sanitary hot water scopes. In order to carry out dynamic simulations and sensitivity analyses, the system performance is designed and dynamically simulated in TRNSYS environment. The developed simulation model enables the calculation of both the indoor and outdoor swimming pool thermal losses and the overall energy and economic system performance. Such results are obtained as a function of the thermo-hygrometric conditions of the environment, of the occupants and the

  11. Research and Development Needs for Building-Integrated Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  12. Solar cooling between thermal and photovoltaic: An energy and economic comparative study in the Mediterranean conditions

    International Nuclear Information System (INIS)

    Noro, M.; Lazzarin, R.M.

    2014-01-01

    This paper considers different cooling systems and investigates the most promising alternatives when solar energy is to be used to supply the cooling demand. All the systems are evaluated during a summer cooling season by the energetic and economic point of view by dynamic simulation for two different climates. For Milan (Cfb climate) the highest OSE (overall system efficiency) is reached by LiBr (lithium-bromide) double effect absorption chiller driven by parabolic through collector (0.53). In terms of the collecting surface area, the best systems for Milan feature 0.08 m 2  MJ −1 per day both for electric system (mono-crystalline photovoltaic coupled to water cooled chiller) and thermal system (PTC (parabolic trough collectors) coupled to double effect water-LiBr absorption chiller). Southern latitudes like Trapani (Csa climate) allow a quite better performance for thermal solar cooling solutions. The NPV (net present worths) of electric solar cooling solutions are favorable with respect to the traditional solution and the DPV (discounted payback periods) are all lower than the period of economic analysis above all for water cooled chillers. Finally a sensitivity analysis of the specific investment cost (€ MJ −1 per day) is carried out regarding the investment cost of collectors, the solar ratio and the interest rate. - Highlights: • Solar cooling is obtained with solar thermal or PV (photovoltaic) with easy available equipment. • In the past PV driven systems for solar cooling were not considered as too expensive. • An energy/economic comparison is carried out for the various solar cooling systems. • Sensitivity analyses are carried out varying different parameters

  13. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  14. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  15. Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites

    KAUST Repository

    Saliba, Michael; Tan, Kwan Wee; Sai, Hiroaki; Moore, David T.; Scott, Trent; Zhang, Wei; Estroff, Lara A.; Wiesner, Ulrich; Snaith, Henry J.

    2014-01-01

    We investigate the thermally induced morphological and crystalline development of methylammonium lead mixed halide perovskite (CH 3NH3PbI3-xClx) thin films and photovoltaic device performance with meso-superstructured and planar heterojunction architectures. We observe that a short rapid thermal annealing at 130 °C leads to the growth of large micron-sized textured perovskite domains and improved the short circuit currents and power conversion efficiencies up to 13.5% for the planar heterojunction perovskite solar cells. This work highlights the criticality of controlling the thin film crystallization mechanism of hybrid perovskite materials for high-performing photovoltaic applications. © 2014 American Chemical Society.

  16. Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites

    KAUST Repository

    Saliba, Michael

    2014-07-31

    We investigate the thermally induced morphological and crystalline development of methylammonium lead mixed halide perovskite (CH 3NH3PbI3-xClx) thin films and photovoltaic device performance with meso-superstructured and planar heterojunction architectures. We observe that a short rapid thermal annealing at 130 °C leads to the growth of large micron-sized textured perovskite domains and improved the short circuit currents and power conversion efficiencies up to 13.5% for the planar heterojunction perovskite solar cells. This work highlights the criticality of controlling the thin film crystallization mechanism of hybrid perovskite materials for high-performing photovoltaic applications. © 2014 American Chemical Society.

  17. Design, Operation, Control, and Economics of a Photovoltaic/Fuel Cell/Battery Hybrid Renewable Energy System for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Zachary S. Whiteman

    2015-06-01

    Full Text Available Meeting rapidly growing global energy demand—without producing greenhouse gases or further diminishing the availability of non-renewable resources—requires the development of affordable low-emission renewable energy systems. Here, we develop a hybrid renewable energy system (HRES for automotive applications—specifically, a roof-installed photovoltaic (PV array combined with a PEM fuel cell/NiCd battery bus currently operating shuttle routes on the University of Delaware campus. The system’s overall operating objectives—meeting the total power demand of the bus and maintaining the desired state of charge (SOC of the NiCd battery—are achieved with appropriately designed controllers: a logic-based “algebraic controller” and a standard PI controller. The design, implementation, and performance of the hybrid system are demonstrated via simulation of real shuttle runs under various operating conditions. The results show that both control strategies perform equally well in enabling the HRES to meet its objectives under typical operating conditions, and under sudden cloud cover conditions; however, at consistently high bus speeds, battery SOC maintenance is better, and the system consumes less hydrogen, with PI control. An economic analysis of the PV investment necessary to realize the HRES design objectives indicates a return on investment of approximately 30% (a slight, but nonetheless positive, ~$550 profit over the bus lifetime in Newark, DE, establishing the economic viability of the proposed addition of a PV array to the existing University of Delaware fuel cell/battery bus.

  18. Photovoltaics in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bolcso, S L

    1983-06-01

    A literature review was carried out for the purpose of summarizing the current conditions existing and affecting photovoltaics (PV) technology in a Canadian context. Information is presented concerning: PV device materials and efficiencies; PV cell manufacturing techniques; other materials/device designs; photovoltaic costs, markets, and research and development; PV and microelectronics; and Canadian strengths and opportunities. It was concluded that PV's simplicity, amenability to mass production and environmentally benign nature will likely assure it a faster and eventually greater market penetration than any other renewable energy form (and possibly some conventional forms). It is recommended that the Ministry of State, Science and Technology coordinate a joint microelectronics-photovoltaic research effort, by: indentifying areas where joint efforts would be mutually beneficial; identifying the strategic value of PV; identifying a set of goals for Canadian programs; coordinating efforts between government, universities and industry; developing supporting strategies for the mining and smelting of indigenous semiconducting materials; determining the economic support required to develop a silicon processing plant for the production of microelectronic chips and PV cells; developing Canadian expertise in providing complete PV systems competitive in world markets; and developing a marketing strategy for a coordinated PV/microelectronics effort. 60 refs., 17 figs., 12 tabs.

  19. Carbon nanotube charge collectors for nanoimprinted hybrid perovskite photovoltaics (Conference Presentation)

    Science.gov (United States)

    Zakhidov, Anvar A.; Haroldson, Ross; Saranin, Danila; Martinez, Patricia; Ishteev, Artur

    2017-06-01

    The hybrid (organo-inorganic) lead-halide perovskites revolutionized the field of solar cell research due to the impressive power conversion efficiencies of up to 21% recently reported in perovskite based solar cells. This talk will present first the general concepts of excitonic photovoltaics, as compared to conventional Si-type solar cells, asking a question: is hybrid perovskite PV an excitonic solar cell or not? Do we need excitons dissociation at D-A interfaces or CNT charge collectors? Then I will show our recent experimental results on the fast spectroscopy of excitons, magnetic field effect on generation of correlated (e-h) pairs. Also will discuss our Hall effect results, that allows to evaluate intrinsic charge carrier transport and direct measurements of mobility in these materials performed for the first time in steady-state dc transport regime. From these measurements, we have obtained the electron-hole recombination coefficient, the carrier diffusion length and lifetime. Our main results include the intrinsic Hall carrier mobility reaching up to 60 cm2V-1s-1 in perovskite single crystals, carrier lifetimes of up to 3 ms (surprisingly too long!), and carrier diffusion lengths as long as 650 μm (huge if compared to organic and even best inorganic materials). Our results also demonstrate that photocarrier recombination in these disordered solution-processed perovskites is as weak as in the best (high-purity single crystals) of conventional direct-band inorganic semiconductors. Moreover, as we show in our experiment, carrier trapping in perovskites is also strongly suppressed, which accounts for such long carrier lifetimes and diffusion lengths, significantly longer than similar parameters in the best inorganic semiconductors, such e.g. as GaAs. All these remarkable transport properties of hybrid perovskites need to be understood from fundamental physics point of view. Looks like we need some new concepts to explain the mysterious properties of

  20. Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires

    International Nuclear Information System (INIS)

    Wang, Zhangyuan; Qiu, Feng; Yang, Wansheng; Zhao, Xudong; Mei, Sheng

    2016-01-01

    Highlights: • Proposing a novel heat pipe BIPV/T system. • Conducting experiments to investigate the performance of the system. • Establishing the relation between the system performance and operating parameters. - Abstract: Heat pipe building integrated photovoltaic/thermal system (heat pipe BIPV/T system) can produce both the electrical and thermal energies at the same time, which have been paid enormous attentions since the energy crisis in the 1970s. In this paper, the heat pipe BIPV/T system with the metal wires filling into the space between the finned heat pipes and insulation has been proposed, which will be expected to enhance the heat transfer and improve the electrical generation of the system. To investigate the thermal performance of the system, the variations of the temperatures, e.g., flat-plate glass cover, PV panel, filling space, heat pipe, and tank water, as well as the ambient temperature, were measured, and the system’s thermal efficiency was calculated and studied for different simulated solar radiations and water flow rates. It was found that the temperatures of the flat-plate glass cover, PV panels, filling space, and heat pipe presented the similar variation pattern when the ambient temperature was stable. The tank water temperature could reach the maximum of 53.83 °C when the simulated solar radiation was at 900 W/m"2 and the water flow rate was at 200 l/h. The linear relation between the system efficiency and (T_m_e_a_n − T_a_m_b)/I had been setup. The maximum thermal efficiency was found at 44.04% with the simulated solar radiation of 300 W/m"2 and water flow rate of 200 l/h, and 7.9% for the maximum electrical efficiency. Compared with the traditional systems of the previous research, the proposed system performed well with additional features, e.g., low cost, waste materials recycling. This research will be helpful in indicating the potential research area of the low-carbon-emission and energy-saving technology for the

  1. PV-DSM: Policy actions to speed commercialization

    International Nuclear Information System (INIS)

    Hoff, T.; Wenger, H.J.; Keane, D.M.

    1993-01-01

    Pacific Gas and Electric Company (PG ampersand E) recently applied Demand-Side Management (DSM) evaluation techniques to photovoltaic (PV) technology to develop the concept of photovoltaics as a Demand-Side Management option (PV-DSM). The analysis demonstrated that PV-DSM has the potential to be economically attractive. Two criticisms in response to that analysis are that the assumptions of 25 year financing and a 25 year evaluation period are unrealistic. This paper responds to those criticisms and documents the mathematical relationships to calculate the value of PV-DSM from a customer's perspective. It demonstrates how regulatory and government agencies could implement policies to resolve both issues and speed PV commercialization

  2. Perspectives for solar thermal applications in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Leu, Tzong-Shyng; Chung, Kung-Ming

    2016-01-01

    Taiwan has long depended on imported fossil energy. The government is thus actively promoting the use of renewable energy. Since 2000, domestic installations of solar water heaters have increased substantially because of the long-term subsidies provided for such systems. However, data on the annual installation area of solar collectors in recent years indicated that the solar thermal industry in Taiwan has reached a bottleneck. The long-term policy providing subsidies must thus be revised. It is proposed that future thermal applications in Taiwan should focus on building-integrated solar thermal, photovoltaic/thermal, and industrial heating processes. Regarding building-integrated solar thermal systems, the current subsidy model can be continued (according to area of solar collectors); nevertheless, the application of photovoltaic/thermal and industrial heating systems must be determined according to the thermal output of such systems. - Highlights: •The long-term subsidization for solar water heaters has lost effectiveness. •Solar thermal applications include BIST, PV/T and industrial heating process. •A performance-based subsidy policy should be implemented.

  3. 12 Conception et réalisation des capteurs hybrides photovoltaïque ...

    African Journals Online (AJOL)

    user

    hybrides photovoltaïque-thermiques à air intégrables en toitures des bâtiments. Pour ces .... de la position du moyen de stockage sur les performances du système. ... propriétés thermo-physiques des matériaux sont supposées constantes et .... L'évolution des températures de tous les éléments des capteurs atteignent le.

  4. Comparing Photovoltaic (PV) Costs and Deployment Drivers in the Japanese and U.S. Residential and Commercial Markets

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seel, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-19

    Japan has re-emerged in 2013 as one of the world's fastest-growing and largest photovoltaic (PV) markets (Renewable Energy World 2013). Year-over-year growth in Japanese installed capacity in the first half of 2013 was about 270%. Japan's PV market was on pace to triple in 2013 compared with 2012, with approximately 2.7 GW installed during the first half of 2013 (compared to about 1.6 GW in the United States). This places Japan's market among the world's largest PV markets, along with China, Germany, and the United States. This report explores details of the rapidly changing Japanese market, and similarities and differences between the Japanese and U.S. markets. We collected data from a diverse group of Japanese PV installers, and we gathered additional Japanese and U.S. data from published sources as well as internal analyses.

  5. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, A.; James, T.; Woodhouse, M.

    2012-02-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

  6. Economic analysis of hybrid power systems (PV/diesel) in different climatic zones of Tamil Nadu

    International Nuclear Information System (INIS)

    Suresh Kumar, U.; Manoharan, P.S.

    2014-01-01

    Highlights: • Investigation on economic feasibility of PV/diesel system in various climatic zones. • HOMER is used to solve economic feasibility analysis. • By the sensitivity analysis, the net present cost is reduced. • Optimum climatic zone in Tamil Nadu, India is recommended. - Abstract: With the increasing threat to environment and the fast depleting fossil fuel resources, hybrid power systems consisting of two or more renewable energy sources such as solar PV, wind, biomass, ocean thermal-with or without the back up of diesel generator have come to the forefront. These hybrid systems are normally integrated with battery banks for total reliability; such systems have brought about better quality of life in remote areas of developing economics. The remote areas in the state of Tamil Nadu in India possess excellent renewable energy sources. These areas fall under different climatic zones, are sparsely populated and are in the process of development. Though these areas are connected to the grid, Tamil Nadu grid is not stable; it is currently experiencing 40% short fall in generation. Thus grid power is available to these remote areas only for 10 h a day and even when available, there are voltage frequency problems. This paper analyses the economic feasibility of installing and operating hybrid systems in these areas. The areas are divided into different climatic zones and the hybrid system economy is analyzed for each climatic zone on the basis of NPC (net present cost), consumption of diesel and renewable fraction for all climate zones. The analysis indicates that the interior climatic zone – the area would be the optimum climatic zone to install HPS PV/diesel. The sensitivity analysis proves that the NPC of such a system can be reduced. It is suggested that due to high initial cost, government subsidy is necessary to adopt the system on a large scale. Such a profit will encourage development of renewable energy utilization and bring about rapid

  7. Annual performance of building-integrated photovoltaic/water-heating system for warm climate application

    International Nuclear Information System (INIS)

    Chow, T.T.; Chan, A.L.S.; Fong, K.F.; Lin, Z.; He, W.; Ji, J.

    2009-01-01

    A building-integrated photovoltaic/water-heating (BiPVW) system is able to generate higher energy output per unit collector area than the conventional solar systems. Through computer simulation with energy models developed for this integrative solar system in Hong Kong, the results showed that the photovoltaic/water-heating (PVW) system has economic advantages over the conventional photovoltaic (PV) installation. The system thermal performance under natural water circulation was found better than the pump-circulation mode. For a specific BiPVW system at a vertical wall of a fully air-conditioned building and with collectors equipped with flat-box-type thermal absorber and polycrystalline silicon cells, the year-round thermal and cell conversion efficiencies were found respectively 37.5% and 9.39% under typical Hong Kong weather conditions. The overall heat transmission through the PVW wall is reduced to 38% of the normal building facade. When serving as a water pre-heating system, the economical payback period was estimated around 14 years. This greatly enhances the PV market opportunities. (author)

  8. PAPER PRINTED PHOTOVOLTAIC CELLS: EMERGING METHOD OF PV CELL PRODUCTION

    OpenAIRE

    Nikhil S. Mane*, Avinash M. Patil2, Vishal P. Patil3

    2017-01-01

    An Solar energy is a renewable method for the energy production. The use of solar energy is increasing day by day and share of solar energy is increasing in the power sector of India. But as per pollution increases with energy consumption the need of solar energy will goes on increase in recent future as solar energy is a best option in both thermal and photovoltaic energy conversion processes. Photovoltaic cells are compact and has no movable parts which provides them effectiveness and easy ...

  9. Prismatic TIR (total internal reflection) low-concentration PV (photovoltaics)-integrated façade for low latitudes

    International Nuclear Information System (INIS)

    Sabry, Mohamed

    2016-01-01

    Low-concentration Façade-integrated Photovoltaic system in the form of TIR (total internal reflection) prismatic segmented façade could play an effective role in reducing the direct component of solar radiation transmitting through buildings, hence reducing both cooling and artificial lighting load on such buildings. A prismatic segmented façade is capable of allowing diffused skylight to transmit through it to the building interior, while preventing most of the direct solar radiation and converting it into clean energy by means of the integrated PV (​photovoltaics) cells. A range of prismatic TIR segmented façades with different head angles has been designed based on the geographical latitude of the chosen location. Each façade configuration is simulated by ray-tracing technique and its performance is investigated against realistic direct solar radiation data in two clear sky days representing summer and winter of the targeted location. Ray tracing simulations revealed that all of the selected configurations could collect most of the direct solar radiation in summer. In contrary, larger head angle of the segmented façade could collect wider intervals around the noon time till reaching a head angle of 23° at which most of the incident direct solar radiation could be collected. - Highlights: • 5 different head angles of prismatic segmented PV-integrated Façade are ray-traced. • Transmitted and PV-collected solar radiation percentages are determined. • DNI daily profiles with associated solar altitudes and azimuth data are simulated. • Expected transmitted and PV collected solar radiation are calculated for the proposed segments.

  10. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases

    KAUST Repository

    Munir, Rahim

    2016-11-07

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  11. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases

    KAUST Repository

    Munir, Rahim; Sheikh, Arif D.; Abdelsamie, Maged; Hu, Hanlin; Yu, Liyang; Zhao, Kui; Kim, Taesoo; El Tall, Omar; Li, Ruipeng; Smilgies, Detlef M.; Amassian, Aram

    2016-01-01

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  12. Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites

    International Nuclear Information System (INIS)

    Alonso-Abella, M.; Chenlo, F.; Nofuentes, G.; Torres-Ramírez, M.

    2014-01-01

    This work is aimed at looking into the impact of the solar spectrum distribution on the energy yield of some PV (photovoltaic) materials on both monthly and annual time scales. The relative spectral responses of eight different PV solar cells – representative of each considered technology – have been selected. Modeling solar spectra in four sites located in the north hemisphere together with a 12-month experimental campaign in which spectral irradiances were periodically recorded in two of these sites located in Spain have provided highly interesting results. Regardless of the site, the considered amorphous silicon and cadmium telluride PV cells experience the most noticeable modeled and experimental variations of their monthly spectral gains, whilst flatter seasonal ones are identified in the remaining considered PV technologies. Thus, the maximum monthly variations of these spectral gains take place in the a-Si PV cell, ranging from −16% (winter) to 4% (summer) in Stuttgart. Anyway, the monthly spread of the spectral effects decreases as the latitude of the site does. Last, the impact of the solar spectrum distribution is remarkably reduced when the period of integration is enlarged up to a year. In fact, annual spectral gains keep below 2.2% for all the studied technologies and sites. - Highlights: • Monthly and annual spectral effects on eight different PV (photovoltaic) technologies studied. • Modeled spectra in four sites combined with relative spectral responses. • Measured spectra (12 months) in two sites combined with relative spectral responses. • Higher bandgap technologies: noticeable monthly variations in their spectral gains. • Annual spectral gains keep below 2.2% for all the studied technologies and sites

  13. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  14. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Warner, C. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  15. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    -based local grid is supplied. In this case, the PV-battery system will operate as a PQ bus to inject the desired active and reactive powers to local grid, while the hydropower station will act as a slack bus which maintains its voltage amplitude and frequency. An integrated small-signal state-space model......, a hierarchical controller for hybrid PV-battery-hydropower microgrid is proposed in order to achieve the parallel operation of hydropower and PV-battery system with different rates, and to guarantee power sharing performance among PV voltage controlled inverters, while the required power to hydropower...

  16. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  17. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  18. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  19. Photovoltaic. Solar thermal. Solar thermal electricity

    International Nuclear Information System (INIS)

    2009-01-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  20. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  1. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    International Nuclear Information System (INIS)

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-01-01

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V OC = 1.041 V, J SC = 2.97 mA/cm 2 , FF = 32.3%) to 2.6% (V OC = 1.336 V, J SC = 4.65 mA/cm 2 , FF = 41.98%) due to the eliminated interfacial series resistance.

  2. A low cost wireless data acquisition system for a remote photovoltaic (PV) water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoubi, A.; Mechlouch, R. F.; Brahim, A. B. [National School of Engineering of Gabes, Gabes University, Chemical and Processes Engineering Department, Gabes (Tunisia)

    2011-07-01

    This paper presents the design and development of a 16F877 microcontroller-based wireless data acquisition system and a study of the feasibility of different existing methodologies linked to field data acquisition from remote photovoltaic (PV) water pumping systems. Various existing data transmission techniques were studied, especially satellite, radio, Global System for Mobile Communication (GSM) and General Packet Radio Service (GPRS). The system's hardware and software and an application to test its performance are described. The system will be used for reading, storing and analyzing information from several PV water pumping stations situated in remote areas in the arid region of the south of Tunisia. The remote communications are based on the GSM network and, in particular, on the Short text Message Service (SMS). With this integrated system, we can compile a complete database of the different parameters related to the PV water pumping systems of Tunisia. This data could be made available to interested parties over the Internet. (authors)

  3. SIZING AND COSTING OPTIMISATION OF A TYPICAL WIND/PV HYBRID ELECTRICITY GENERATION SYSTEM FOR A TYPICAL RESIDENTIAL BUILDING IN URBAN ARMIDALE NSW, AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Yasser Maklad

    2014-04-01

    Full Text Available This study investigates the wind and solar electricity generation availability and potentiality for residential buildings in Armidale NSW, Australia. The main purpose of this study is to design an appropriate wind-PV hybrid system to cover the electricity consumption of typical residential buildings of various occupancy rates and relevant various average electrical daily consumption. In order to do achieve that, monthly average solar irradiance monthly average wind speed historical data observed at weather station belongs to the Australian bureau of meteorology in Armidale town over a fourteen years period from 1997–2010. Simulation of solar photovoltaic panels and wind turbines were conducted to obtain the optimal hybrid system sizing and best efficient with lowest cost. Correlations between the solar and wind power data were carried out on an hourly, daily, and monthly basis. It is shown that the hybrid system can be applied for the efficient and economic utilization of wind and solar renewable energy sources.

  4. Firefighter Safety for PV Systems

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Sera, Dezso; Spataru, Sergiu

    2015-01-01

    An important and highly discussed safety issue for photovoltaic (PV) systems is that as long as the PV panels are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters that is independent of the state of the inverter's dc disconnection switch...

  5. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    Science.gov (United States)

    Azoumah, Y.; Yamegueu, D.; Py, X.

    2012-02-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  6. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    International Nuclear Information System (INIS)

    Azoumah, Y; Yamegueu, D; Py, X

    2012-01-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original 'flexy energy' concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  7. The case for better PV forecasting

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Rising levels of PV penetration mean increasingly sophisticated forecasting technologies are needed to maintain grid stability and maximise the economic value of PV systems. The Grid Integration working group of the European Technology and Innovation Platform – Photovoltaics (ETIP PV) shares the ...

  8. A local energy management of a hybrid PV-storage based distributed generation for microgrids

    International Nuclear Information System (INIS)

    Choudar, Adel; Boukhetala, Djamel; Barkat, Said; Brucker, Jean-Michel

    2015-01-01

    Highlights: • The proposed system is based on photovoltaic system, batteries and ultra-capacitors. • Batteries are used as an energy source, ultra-capacitors are used as a fast power regulator. • An energy management strategy, to operate a grid connected active PV system (APS). • Different levels of the control system are studied and organized in a hierarchical control structure. • Different operating modes are explained (island, limited PV power, normal, fast recovering). - Abstract: The presented work focuses on energy management strategy, to operate a grid connected active PV system (APS) in a microgrid. A microgrid is a smart grid in a small scale which can be stand-alone or grid-tied. The proposed system is based on photovoltaic system, batteries and ultra-capacitors. Three converters are used to interface the elements of the APS to a common DC-link capacitor. The presented control strategy manages the power flow between the converters and the grid through the DC-link in order to maintain the grid power demand coming from the grid operator. Batteries are used as an energy source, to stabilize and permit the APS units to run at a constant and stable output power, damping peak surges in electricity demand and to store the excess of energy from the PV array. Ultra-capacitors are used as a fast power regulator to: limit the battery’s current, regulate the DC-link voltage when the disconnection mode occurs and to deliver a smooth power to the grid, despite primary source and load fluctuations. Several operating modes are presented to manage locally the power flows between the various sources, taking into account the state of charge of batteries (SOC), the energy level of ultra-capacitors (Lev), the available PV power and the power demand from the grid operator

  9. Proposed Framework of Hybrid Photovoltaic Thermal Systems to Ecotourism in Malaysia

    Directory of Open Access Journals (Sweden)

    Hajibeigy Mohammad Taghi

    2018-01-01

    Full Text Available Ecotourism is widely recognized for its positive impacts to the environment. Ecotourism is defined as nature-based tourist experiences, which visitors travel to regions for the purpose of appreciating their natural beauty, relaxation and being harmonious with Mother Nature. Ecotourism probably had its foundations in the ethics of conservation, which can help maintain what’s left of nature and fosters environmental education. Employing the sustainable energy, paying more attention to the natural resources and developing existing natural resources will have a direct impact to healthier sustainable environment for the inhabitant. If not all, most of the ecotourism sites are located in the remote area in which to utilize electrical energy from the normal grid is difficult or very costly. On the irony, utilizing the conventional non-renewable energy have negative effect and ruins the ecotourism sites. Therefore, utilizing Hybrid Photovoltaic Thermal (PVT systems is a fit alternative energy source to serve the limited energy demands of ecotourists sites. The amount of the energy production depends on the visitors’ capacity of the site. Since the rural area enjoys the cheap and large field, it is easier to plan and assemble the PVT systems to suffice the needed energy. In this research the sustainability of local environment along with the sustainable usage of energy were considered. This paper presents the sustainable energy usage of tourism in Malaysia and aims to address the impact of sustainable and non-sustainable on the rural area of ecotourism. This paper also addresses some of the emission, carbon reduction and climate change issues that the world is expected to meet soon.

  10. Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    of solar energy. Moreover, a novel transformer configuration enables variable turns ratio controlled by the phase between the two current excitations subjected to the primary windings, allowing a wider input/output range. 1 kW experimental prototype has been built to demonstrate a wellmanaged power flow......Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... different single-input single-output (SISO) dc/dc converters would have been used. To reduce the cost and improve the power density of the system, an integrated three-port isolated dc/dc converter is proposed in this paper. It can realize all functions of the energy delivery due to the fluctuation nature...

  11. Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof

    Energy Technology Data Exchange (ETDEWEB)

    Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

    2009-10-15

    Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

  12. Analysis of the Influence of the Stability Factors of PV/T-SAHP on the Performance of the System

    Directory of Open Access Journals (Sweden)

    Haitao Wang

    2015-12-01

    Full Text Available The integrated photovoltaic/thermal collector (PV/T with solar assisted heat pump (SAHP often operates under an undesigned condition. Against the backdrop of heat pump system oscillation resulting from the mismatching between collectors area and compressor capacity, this work explores the dynamic performance of heat pump system at a fixed compressor frequency when the condensing water temperature and electronic expansion valve (EEV opening are variable or invariable. We also consider why the system is unstable and propose the theory of SAHP system stability. Also, a preliminary performance analysis is made on SAHP system that is respectively influenced by an inverter compressor and EEV. The MSS(Minimum Stable Signal line theory is proposed to account for system unstabilty in the research of the match between EEV and evaporators, that is to say, the critical problem of keep the system stability is to find out how evaporators superheat under the circumstance of specified loads and its corresponding EEV opening, in other words, to find the MSS line.

  13. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2016-01-01

    This article proposes a fault identification method, based on the complementary analysis of the light and dark current-voltage (I-V) characteristics of the photovoltaic (PV) module, to distinguish between four important degradation modes that lead to power loss in PV modules: (a) degradation of t...

  14. Calculating electrical and thermal characteristics of multiple PV array configurations installed in the tropics

    International Nuclear Information System (INIS)

    Effendy Ya’acob, M.; Hizam, Hashim; Htay, Myo Than; Radzi, M. Amran M.; Khatib, Tamer; Bakri A, M.

    2013-01-01

    Highlights: • Electrical and temperature characteristics of multiple PV array configurations. • Ten months tropical field analysis implying SNL model for array parameter. • Review on T c equations and GEV analysis for rapid fluctuating environmental data. • CPV array projects the highest ΔT of 2.72 °C with G e of 0.36 W/m 2 . • Fixed flat array produces highest parameter values of I sc , V oc , I mp , V mp and P mp . - Abstract: This study intends to define the electrical characteristics and temperature equations of PV array installed in the tropics based on Sandia National Laboratory (SNL) model. Ten units of 1 kW rated PV array namely Fixed Flat (FF), Tracking Flat (TF) and Concentrating (CPV) have been installed at Universiti Putra Malaysia (UPM), Serdang District, Malaysia at the coordinate of 2°59′20′′N:101°43′30′′E with tropical-based ground conditions. Electrical characteristics are the main elements of contributions where five operating conditions for CEEG PV Module are applied based on the SNL model to produce array parameter values. It is found that FF array projects the highest operating value of 12.06 A (I sc ), 11.55 A (I mp ), 524.78 V (V oc ), 89.5 V (V mp ), and 1033.7 W (P mp ) with good regression fit and strong correlation R 2 of more than 0.5. The versatility and accuracy of this work have been validated and applied for three different types of PV array system installed in the equatorial doldrum spot of uniform temperature–irradiance, high in humidity–rainfall and generally light wind field conditions. The parameters are calculated using filtered field data sampled at STC of 5% tolerance. Focal point of calculating array temperature (T array ) as means of thermal effect on multiple PV array configurations is highlighted based on recent study on T c equations and Generalized Extreme Value (GEV) analysis using field data at site

  15. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ......The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration...

  16. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as

  17. Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load

    CSIR Research Space (South Africa)

    Sichilalu, S

    2016-10-01

    Full Text Available This paper presents an optimal energy management strategy for a grid-tied photovoltaic–wind-fuel cell hybrid power supply system. The hybrid system meets the load demand consisting of an electrical load and a heat pump water heater supplying thermal...

  18. Simulation of an active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Abdelhakim, Lotfi

    2016-01-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  19. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  20. A cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of demand response program: ε-constraint method and fuzzy satisfying approach

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Majidi, Majid; Najafi-Ghalelou, Afshin; Ghahramani, Mehrdad; Zare, Kazem

    2017-01-01

    Highlights: • Cost-emission performance of PV/battery/fuel cell hybrid energy system is studied. • Multi-objective optimization model for cost-emission performance is proposed. • ε-constraint method is proposed to produce Pareto solutions of multi-objective model. • Fuzzy satisfying approach selected the best optimal solution from Pareto solutions. • Demand response program is proposed to reduce both cost and emission. - Abstract: Optimal operation of hybrid energy systems is a big challenge in power systems. Nowadays, in addition to the optimum performance of energy systems, their pollution issue has been a hot topic between researchers. In this paper, a multi-objective model is proposed for economic and environmental operation of a battery/fuel cell/photovoltaic (PV) hybrid energy system in the presence of demand response program (DRP). In the proposed paper, the first objective function is minimization of total cost of hybrid energy system. The second objective function is minimization of total CO_2 emission which is in conflict with the first objective function. So, a multi-objective optimization model is presented to model the hybrid system’s optimal and environmental performance problem with considering DRP. The proposed multi-objective model is solved by ε-constraint method and then fuzzy satisfying technique is employed to select the best possible solution. Also, positive effects of DRP on the economic and environmental performance of hybrid system are analyzed. A mixed-integer linear program is used to simulate the proposed model and the obtained results are compared with weighted sum approach to show the effectiveness of proposed method.

  1. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  2. Transient Model of Hybrid Concentrated Photovoltaic with Thermoelectric Generator

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Qing, Shaowei; Rezaniakolaei, Alireza

    2017-01-01

    Transient performance of a concentrated photovoltaic thermoelectric (CPV-TEG) hybrid system is modeled and investigated. A heat sink with water, as the working fluid has been implemented as the cold reservoir of the hybrid system to harvest the heat loss from CPV cell and to increase the efficiency...

  3. Characterization of a low concentrator photovoltaics module

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.A. [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Dyk, E.E. van, E-mail: ernest.vandyk@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Vorster, F.J.; Okullo, W.; Munji, M.K. [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Booysen, P. [Setsolar, P. O. Box 15934, Panorama 7506 (South Africa)

    2012-05-15

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  4. Characterization of a low concentrator photovoltaics module

    International Nuclear Information System (INIS)

    Butler, B.A.; Dyk, E.E. van; Vorster, F.J.; Okullo, W.; Munji, M.K.; Booysen, P.

    2012-01-01

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  5. Characterization of a low concentrator photovoltaics module

    Science.gov (United States)

    Butler, B. A.; van Dyk, E. E.; Vorster, F. J.; Okullo, W.; Munji, M. K.; Booysen, P.

    2012-05-01

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  6. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  7. Practical considerations for solar energy thermally enhanced photo-luminescence (TEPL) (Conference Presentation)

    Science.gov (United States)

    Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel

    2017-04-01

    While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.

  8. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    Science.gov (United States)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be

  9. PV installations, protection and the code

    Energy Technology Data Exchange (ETDEWEB)

    Silecky, L. [Mersen, Toronto, ON (Canada)

    2010-12-15

    This article discussed the need for improved standards in Ontario's solar industry to ensure safety for the systems and also safety for the workers. Photovoltaic cells used in solar arrays can now deliver between 50 vDC to 600 vDC. The workings of such a high voltage photocell must be understood in order to understand its protection needs. Since PVs are semiconductors and susceptible to damage from short circuits and overloads, a fast-acting overcurrent protective device (OCPD) should be used. Combiner boxes are also needed to provide a clean method of safely connecting all the wires that are needed in the system, including surge protection and a means of isolation between the PV array and the inverter. Section 50 of the Canadian Electrical Code outlines the requirements for solar PV systems, but it does not mention the protection of DC circuits, including DC fuse protectors which are manufactured to provide a high degree of protection for the PV array. As the photovoltaic (PV) market continues to grow in Ontario, the PV industry also has a responsibility to ensure it is in compliance with codes and standards related to photovoltaic systems. This author suggested that Article 690 of the National Electric Code (NEC) is a good document to use when determining the requirements for PV systems. 3 figs.

  10. Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mohammadnia, Ali

    2014-01-01

    Highlights: • Simulation of an enhanced ICSSWH system combined with PV panel was conducted. • The present model dose not uses any photovoltaic driven water pump. • High packing factor and tank water mass are caused to high PVT system efficiency. • Larger area of the collector is resulted to lower total PVT system efficiency. - Abstract: A photovoltaic–thermal (PVT) module is a combination of a photovoltaic (PV) panel and a thermal collector for co-generation of heat and electricity. An integrated collector-storage solar water heater (ICSSWH) system, due to its simple and compact structure, offers a promising approach for the solar water heating in the varied climates. The combination of the ICSSWH system with a PV solar system has not been reported. In this paper, simulation of an enhanced ICSSWH system combined with the PV panel has been conducted. The proposed design acts passive. Therefore, it does not use any photovoltaic driven water pump to maintain a flow of water inside the collector. The effects of the solar cell packing factor, the tank water mass and the collector area on the performance of the present PVT system have been investigated. The simulation results showed that the high solar cell packing factor and the tank water mass are caused to the high total PVT system efficiency. Also, larger area of the collector is resulted to lower total PVT system efficiency

  11. Studies on battery storage requirement of PV fed wind-driven induction generators

    International Nuclear Information System (INIS)

    Rajan Singaravel, M.M.; Arul Daniel, S.

    2013-01-01

    Highlights: ► Sizing of battery storage for PV fed wind-driven IG system is taken up. ► Battery storage is also used to supply reactive power for wind-driven IG. ► Computation of LPSP by incorporating uncertainties of irradiation and wind speed. ► Sizing of hybrid power system components to ensure zero LPSP. ► Calculated storage size satisfied the constraints and improves battery life. - Abstract: Hybrid stand-alone renewable energy systems based on wind–solar resources are considered to be economically better and reliable than stand-alone systems with a single source. An isolated hybrid wind–solar system has been considered in this work, where the storage (battery bank) is necessary to supply the required reactive power for a wind-driven induction generator (IG) during the absence of power from a photovoltaic (PV) array. In such a scheme, to ensure zero Loss of Power Supply Probability (LPSP) and to improve battery bank life, a sizing procedure has been proposed with the incorporation of uncertainties in wind-speed and solar-irradiation level at the site of erection of the plant. Based on the proposed procedure, the size of hybrid power system components and storage capacity are determined. Storage capacity has been calculated for two different requirements. The first requirement of storage capacity is common to any hybrid scheme, which is; to supply both real and reactive power in the absence of wind and solar sources. The second requirement is to supply reactive power alone for the IG during the absence of photovoltaic power, which is unique to the hybrid scheme considered in this work. Storage capacity calculations for different conditions using the proposed approach, satisfies the constraints of maintaining zero LPSP and also improved cycle life of the battery bank

  12. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    Science.gov (United States)

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    Photovoltaic (PV) devices that harvest the energy provided by the sun have great potential as renewable energy sources, yet uptake has been hampered by the increased cost of solar electricity compared with fossil fuels. Hybrid metal halide perovskites have recently emerged as low-cost active materials in PV cells with power conversion efficiencies now exceeding 20%. Rapid progress has been achieved over only a few years through improvements in materials processing and device design. In addition, hybrid perovskites appear to be good light emitters under certain conditions, raising the prospect of applications in low-cost light-emitting diodes and lasers. Further optimization of such hybrid perovskite devices now needs to be supported by a better understanding of how light is converted into electrical currents and vice versa. This Account provides an overview of charge-carrier recombination and mobility mechanisms encountered in such materials. Optical-pump-terahertz-probe (OPTP) photoconductivity spectroscopy is an ideal tool here, because it allows the dynamics of mobile charge carriers inside the perovskite to be monitored following excitation with a short laser pulse whose photon energy falls into the range of the solar spectrum. We first review our insights gained from transient OPTP and photoluminescence spectroscopy on the mechanisms dominating charge-carrier recombination in these materials. We discuss that mono-molecular charge-recombination predominantly originates from trapping of charges, with trap depths being relatively shallow (tens of millielectronvolts) for hybrid lead iodide perovskites. Bimolecular recombination arises from direct band-to-band electron-hole recombination and is found to be in significant violation of the simple Langevin model. Auger recombination exhibits links with electronic band structure, in accordance with its requirement for energy and momentum conservation for all charges involved. We further discuss charge-carrier mobility

  13. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  14. Grid-connected photovoltaic systems for Malaysian residential sector: Effects of component costs, feed-in tariffs, and carbon taxes

    International Nuclear Information System (INIS)

    Lau, K.Y.; Muhamad, N.A.; Arief, Y.Z.; Tan, C.W.; Yatim, A.H.M.

    2016-01-01

    Blessed with abundant solar radiation, Malaysia has a huge potential for grid-connected PV (photovoltaic) installations, particularly for its fast-growing residential sector. Nevertheless, Malaysia's PV installation capacity is relatively small compared with the global PV capacity. Significantly, the pricing mechanisms for grid-connected PV projects need to be appropriately assessed to build up the public's confidence to invest in PV projects. In this paper, we analyze the effects of component costs, FiTs (feed-in tariffs), and carbon taxes on grid-connected PV systems in Malaysian residential sector using the HOMER (Hybrid Optimization of Multiple Energy Resources) software. Results demonstrate that the implementation of grid-connected PV systems is highly feasible with PV array costs of $ 1120/kW or lower. For higher PV array costs up to $ 2320/kW, introducing an FiT rate three times higher ($ 0.30/kWh) than the grid tariff for a 100 kW grid sale capacity will, NPC-wise, prioritize grid-connected PV systems over the utility grid. By implementing the FiT ($ 0.50/kWh) and the carbon tax ($ 36/metric ton) schemes simultaneously, grid-connected PV systems will remain as the optimal systems even for costly PV arrays (up to $ 4000/kW). The findings are of paramount importance as far as PV pricing variability is concerned. - Highlights: • Grid-connected PV for Malaysian residential sector has been analyzed using HOMER. • Component costs, feed-in tariffs, and carbon taxes affect optimal system types. • Grid-connected PV projects are feasible for low PV array costs ($ 1120/kW or lower). • For higher PV array and inverter costs, feed-in tariffs should be implemented. • Combining feed-in tariffs with carbon taxes are effective for further lowering NPCs.

  15. Space and industrial markets for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, C.R.; Hardingham, C.M.

    2000-07-01

    This report presents a review of applications, technologies and markets for photovoltaic power (PV) supplies. A brief history of PV and PV principles is presented, and an overview of the satellite industry is given. Space arrays, space PV, terrestrial PV, and thermo photovoltaics are examined. Targets and constraints in space and terrestrial solar cells are compared, and details of commercial market sizes for given technologies in space and terrestrial PV in 1999, and technical barriers to be overcome towards development of existing products are tabulated. The scope for cross-culture interaction in all aspects of manufacturing, testing and evaluation in the PV devices are considered. (UK)

  16. Space and industrial markets for photovoltaics

    International Nuclear Information System (INIS)

    Huggins, C.R.; Hardingham, C.M.

    2000-01-01

    This report presents a review of applications, technologies and markets for photovoltaic power (PV) supplies. A brief history of PV and PV principles is presented, and an overview of the satellite industry is given. Space arrays, space PV, terrestrial PV, and thermo photovoltaics are examined. Targets and constraints in space and terrestrial solar cells are compared, and details of commercial market sizes for given technologies in space and terrestrial PV in 1999, and technical barriers to be overcome towards development of existing products are tabulated. The scope for cross-culture interaction in all aspects of manufacturing, testing and evaluation in the PV devices are considered. (UK)

  17. Evaluation of photovoltaic panel temperature in realistic scenarios

    International Nuclear Information System (INIS)

    Du, Yanping; Fell, Christopher J.; Duck, Benjamin; Chen, Dong; Liffman, Kurt; Zhang, Yinan; Gu, Min; Zhu, Yonggang

    2016-01-01

    Highlights: • The developed realistic model captures more reasonably the thermal response and hysteresis effects. • The predicted panel temperature is as high as 60 °C under a solar irradiance of 1000 W/m"2 in no-wind weather. • In realistic scenarios, the thermal response normally takes 50–250 s. • The actual heating effect may cause a photoelectric efficiency drop of 2.9–9.0%. - Abstract: Photovoltaic (PV) panel temperature was evaluated by developing theoretical models that are feasible to be used in realistic scenarios. Effects of solar irradiance, wind speed and ambient temperature on the PV panel temperature were studied. The parametric study shows significant influence of solar irradiance and wind speed on the PV panel temperature. With an increase of ambient temperature, the temperature rise of solar cells is reduced. The characteristics of panel temperature in realistic scenarios were analyzed. In steady weather conditions, the thermal response time of a solar cell with a Si thickness of 100–500 μm is around 50–250 s. While in realistic scenarios, the panel temperature variation in a day is different from that in steady weather conditions due to the effect of thermal hysteresis. The heating effect on the photovoltaic efficiency was assessed based on real-time temperature measurement of solar cells in realistic weather conditions. For solar cells with a temperature coefficient in the range of −0.21%∼−0.50%, the current field tests indicated an approximate efficiency loss between 2.9% and 9.0%.

  18. Characterization of a photovoltaic-thermal module for Fresnel linear concentrator

    International Nuclear Information System (INIS)

    Chemisana, D.; Ibanez, M.; Rosell, J.I.

    2011-01-01

    Highlights: → A combined domed Fresnel lens - CPC PVT system is designed and characterized. → Electrical and thermal experiments have been performed. → CFD analysis has been used to determine thermal characteristic dimensionless numbers. - Abstract: An advanced solar unit is designed to match the needs of building integration and concentrating photovoltaic/thermal generation. The unit proposed accurately combines three elements: a domed linear Fresnel lens as primary concentrator, a compound parabolic reflector as secondary concentrator and a photovoltaic-thermal module. In this work the photovoltaic-thermal generator is built, analysed and characterized. Models for the electrical and thermal behaviour of the module are developed and validated experimentally. Applying a thermal resistances approach the results from both models are combined. Finally, efficiency electrical and thermal curves are derived from theoretical analysis showing good agreement with experimental measurements.

  19. Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  20. Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems

    Science.gov (United States)

    Wang, Caisheng

    Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power