WorldWideScience

Sample records for hybrid peptide synthetases

  1. Substrate specificity of hybrid modules from peptide synthetases

    NARCIS (Netherlands)

    Elsner, A; Engert, H; Saenger, W; Hamoen, L; Venema, G; Bernhard, F

    1997-01-01

    Homologous modules from two different peptide synthetases were analyzed for functionally equivalent regions. Hybrids between the coding regions of the phenylalanine-activating module of tyrocidine synthetase and the valine activating module of surfactin synthetase were constructed by combining the t

  2. Insect-specific polyketide synthases (PKSs), potential PKS-nonribosomal peptide synthetase hybrids, and novel PKS clades in tropical fungi.

    Science.gov (United States)

    Amnuaykanjanasin, Alongkorn; Phonghanpot, Suranat; Sengpanich, Nattapong; Cheevadhanarak, Supapon; Tanticharoen, Morakot

    2009-06-01

    Polyketides draw much attention because of their potential use in pharmaceutical and biotechnological applications. This study identifies an abundant pool of polyketide synthase (PKS) genes from local isolates of tropical fungi found in Thailand in three different ecological niches: insect pathogens, marine inhabitants, and lichen mutualists. We detected 149 PKS genes from 48 fungi using PCR with PKS-specific degenerate primers. We identified and classified 283 additional PKS genes from 13 fungal genomes. Phylogenetic analysis of all these PKS sequences the comprising ketosynthase (KS) conserved region and the KS-acyltransferase interdomain region yielded results very similar to those for phylogenies of the KS domain and suggested a number of remarkable points. (i) Twelve PKS genes amplified from 12 different insect-pathogenic fungi form a tight cluster, although along with two PKS genes extracted from genomes of Aspergillus niger and Aspergillus terreus, in reducing clade III. Some of these insect-specific fungal PKSs are nearly identical. (ii) We identified 38 new PKS-nonribosomal peptide synthetase hybrid genes in reducing clade II. (iii) Four distinct clades were discovered with more than 75% bootstrap support. We propose to designate the novel clade D1 with 100% bootstrap support "reducing clade V." The newly cloned PKS genes from these tropical fungi should provide useful and diverse genetic resources for future research on the characterization of polyketide compounds synthesized by these enzymes.

  3. The mycosubtilin synthetase of Bacillus subtilis ATCC6633 : A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase

    NARCIS (Netherlands)

    Duitman, EH; Hamoen, LW; Rembold, M; Venema, G; Seitz, H; Saenger, W; Bernhard, F; Reinhardt, R; Schmidt, M; Ullrich, C; Stein, T; Leenders, F; Vater, J

    1999-01-01

    Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a p-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Cl

  4. Characterization and localization of a hybrid non-ribosomal peptide synthetase and polyketide synthase gene from the toxic dinoflagellate Karenia brevis.

    Science.gov (United States)

    López-Legentil, Susanna; Song, Bongkeun; DeTure, Michael; Baden, Daniel G

    2010-02-01

    The toxic dinoflagellate Karenia brevis, a causative agent of the red tides in Florida, produces a series of toxic compounds known as brevetoxins and their derivatives. Recently, several putative genes encoding polyketide synthase (PKS) were identified from K. brevis in an effort to elucidate the genetic systems involved in brevetoxin production. In this study, novel PKS sequences were isolated from three clones of K. brevis. Eighteen unique sequences were obtained for the PKS ketosynthase (KS) domain of K. brevis. Phylogenetic comparison with closely related PKS genes revealed that 16 grouped with cyanobacteria sequences, while the remaining two grouped with Apicomplexa and previously reported sequences for K. brevis. A fosmid library was also constructed to further characterize PKS genes detected in K. brevis Wilson clone. Several fosmid clones were positive for the presence of PKS genes, and one was fully sequenced to determine the full structure of the PKS cluster. A hybrid non ribosomal peptide synthetase and PKS (NRPS-PKS) gene cluster of 16,061 bp was isolated. In addition, we assessed whether the isolated gene was being actively expressed using reverse transcription polymerase chain reaction (RT-PCR) and determined its localization at the cellular level by chloroplast isolation. RT-PCR analyses revealed that this gene was actively expressed in K. brevis cultures. The hybrid NRPS-PKS gene cluster was located in the chloroplast, suggesting that K. brevis acquired the ability to produce some of its secondary metabolites through endosymbiosis with ancestral cyanobacteria. Further work is needed to determine the compound produced by the NRPS-PKS hybrid, to find other PKS gene sequences, and to assess their role in K. brevis toxin biosynthetic pathway.

  5. Dissecting and Exploiting Nonribosomal Peptide Synthetases

    Institute of Scientific and Technical Information of China (English)

    Qing-Tao SHEN; Xiu-Lan CHEN; Cai-Yun SUN; Yu-Zhong ZHANG

    2004-01-01

    A large number of therapeutically useful cyclic and linear peptides of bacteria or fungal origin are synthesized via a template-directed, nucleic-acid-independent nonribosomal mechanism. This process is carried out by mega-enzymes called nonribosomal peptide synthetases (NRPSs). NRPSs contain repeated coordinated groups of active sites called modules, and each module is composed of several domains with different catalytic activities. The familiarity to these domains lays base for the future genetic engineering of NRPSs to generate entirely "unnature" Products. The details about NRPSs domain structures and the exploitation of NRPSs are described in this review.

  6. Portability of oxidase domains in nonribosomal peptide synthetase modules.

    Science.gov (United States)

    Schneider, Tanya L; Walsh, Christopher T

    2004-12-21

    Oxazole and thiazole rings are present in numerous nonribosomal peptide natural products. Oxidase domains are responsible for catalyzing the oxidation of thiazolines and oxazolines to yield fully aromatic heterocycles. Unlike most domains, the placement of oxidase domains within assembly line modules varies. Noting this tolerance, we investigated the portability of an oxidase domain to a heterologous assembly line. The epimerase domain of PchE, involved in pyochelin biosynthesis, was replaced with the oxidase domain from MtaD, involved in myxothiazol biosynthesis. The chimeric module was expressed in soluble form as a flavin mononucleotide-containing flavoprotein. The functionality of the inserted oxidase domain was assayed within PchE and in transfer of the growing siderophore acyl chain from PchE to the next downstream module. While pyochelin-like product release was not observed downstream, the robust activity of the transplanted oxidase domain and the ability of the chimeric module to produce an advanced intermediate bound to the synthetase underscore the possibility of future engineering within nonribosomal peptide synthetase pathways using oxidase domains.

  7. SCREENING OF ANTIMICROBIAL ACTIVITY AND GENES CODING POLYKETIDE SYNTHETASE AND NONRIBOSOMAL PEPTIDE SYNTHETASE OF ACTINOMYCETE ISOLATES

    Directory of Open Access Journals (Sweden)

    Silvia Kovácsová

    2013-12-01

    Full Text Available The aim of this study was to observe antimicrobial activity using agar plate diffusion method and screening genes coding polyketide synthetase (PKS-I and nonribosomal peptide synthetase (NRPS from actinomycetes. A total of 105 actinomycete strains were isolated from arable soil. Antimicrobial activity was demonstrated at 54 strains against at least 1 of total 12 indicator organisms. Antifungal properties were recorded more often than antibacterial properties. The presence of PKS-I and NRPS genes were founded at 61 of total 105 strains. The number of strains with mentioned biosynthetic enzyme gene fragments matching the anticipated length were 19 (18% and 50 (47% respectively. Overall, five actinomycete strains carried all the biosynthetical genes, yet no antimicrobial activity was found against any of tested pathogens. On the other hand, twenty-one strains showed antimicrobial activity even though we were not able to amplify any of the PKS or NRPS genes from them. Combination of the two methods showed broad-spectrum antimicrobial activity of actinomycetes isolated from arable soil, which indicate that actinomycetes are valuable reservoirs of novel bioactive compounds.

  8. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.

    Science.gov (United States)

    Sun, Xun; Li, Hao; Alfermann, Jonas; Mootz, Henning D; Yang, Haw

    2014-12-23

    Nonribosomal peptide synthetases (NRPS) incorporate assorted amino acid substrates into complex natural products. The substrate is activated via the formation of a reactive aminoacyl adenylate and is subsequently attached to the protein template via a thioester bond. The reactive nature of such intermediates, however, leads to side reactions that also break down the high-energy anhydride bond. The off-pathway kinetics or their relative weights compared to that of the on-pathway counterpart remains generally elusive. Here, we introduce multiplatform kinetics profiling to quantify the relative weights of on- and off-pathway reactions. Using the well-defined stoichiometry of thioester formation, we integrate a mass spectrometry (MS) kinetics assay, a high-performance liquid chromatography (HPLC) assay, and an ATP-pyrophosphate (PPi) exchange assay to map out a highly efficient on-pathway kinetics profile of the substrate activation and intermediate uploading (>98% relative weight) for wide-type gramicidin S synthetase A (GrsA) and a 87% rate profile for a cysteine-free GrsA mutant. Our kinetics profiling approach complements the existing enzyme-coupled byproduct-release assays, unraveling new mechanistic insights of substrate activation/channeling in NRPS enzymes.

  9. Common peptides study of aminoacyl-tRNA synthetases.

    Directory of Open Access Journals (Sweden)

    Assaf Gottlieb

    Full Text Available BACKGROUND: Aminoacyl tRNA synthetases (aaRSs constitute an essential enzyme super-family, providing fidelity of the translation process of mRNA to proteins in living cells. They are common to all kingdoms and are of utmost importance to all organisms. It is thus of great interest to understand the evolutionary relationships among them and underline signature motifs defining their common domains. RESULTS: We utilized the Common Peptides (CPs framework, based on extracted deterministic motifs from all aaRSs, to study family-specific properties. We identified novel aaRS-class related signatures that may supplement the current classification methods and provide a basis for identifying functional regions specific to each aaRS class. We exploited the space spanned by the CPs in order to identify similarities between aaRS families that are not observed using sequence alignment methods, identifying different inter-aaRS associations across different kingdom of life. We explored the evolutionary history of the aaRS families and evolutionary origins of the mitochondrial aaRSs. Lastly, we showed that prevalent CPs significantly overlap known catalytic and binding sites, suggesting that they have meaningful functional roles, as well as identifying a motif shared between aaRSs and a the Biotin-[acetyl-CoA carboxylase] synthetase (birA enzyme overlapping binding sites in both families. CONCLUSIONS: The study presents the multitude of ways to exploit the CP framework in order to extract meaningful patterns from the aaRS super-family. Specific CPs, discovered in this study, may play important roles in the functionality of these enzymes. We explored the evolutionary patterns in each aaRS family and tracked remote evolutionary links between these families.

  10. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL synthesizes the β-amino fatty acid lipopeptides puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum.

    Directory of Open Access Journals (Sweden)

    Jan Mareš

    Full Text Available A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea. Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides.

  11. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis.

    Science.gov (United States)

    Gaudelli, Nicole M; Long, Darcie H; Townsend, Craig A

    2015-04-16

    Non-ribosomal peptide synthetases are giant enzymes composed of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks. The structurally and stereochemically diverse peptides generated in this manner underlie the biosynthesis of a large sector of natural products. Many of their derived metabolites are bioactive such as the antibiotics vancomycin, bacitracin, daptomycin and the β-lactam-containing penicillins, cephalosporins and nocardicins. Penicillins and cephalosporins are synthesized from a classically derived non-ribosomal peptide synthetase tripeptide (from δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase). Here we report an unprecedented non-ribosomal peptide synthetase activity that both assembles a serine-containing peptide and mediates its cyclization to the critical β-lactam ring of the nocardicin family of antibiotics. A histidine-rich condensation domain, which typically performs peptide bond formation during product assembly, also synthesizes the embedded four-membered ring. We propose a mechanism, and describe supporting experiments, that is distinct from the pathways that have evolved to the three other β-lactam antibiotic families: penicillin/cephalosporins, clavams and carbapenems. These findings raise the possibility that β-lactam rings can be regio- and stereospecifically integrated into engineered peptides for application as, for example, targeted protease inactivators.

  12. Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis.

    Science.gov (United States)

    Bloudoff, Kristjan; Fage, Christopher D; Marahiel, Mohamed A; Schmeing, T Martin

    2017-01-03

    Nonribosomal peptide synthetases (NRPSs) are a family of multidomain, multimodule enzymes that synthesize structurally and functionally diverse peptides, many of which are of great therapeutic or commercial value. The central chemical step of peptide synthesis is amide bond formation, which is typically catalyzed by the condensation (C) domain. In many NRPS modules, the C domain is replaced by the heterocyclization (Cy) domain, a homologous domain that performs two consecutive reactions by using hitherto unknown catalytic mechanisms. It first catalyzes amide bond formation, and then the intramolecular cyclodehydration between a Cys, Ser, or Thr side chain and the backbone carbonyl carbon to form a thiazoline, oxazoline, or methyloxazoline ring. The rings are important for the form and function of the peptide product. We present the crystal structure of an NRPS Cy domain, Cy2 of bacillamide synthetase, at a resolution of 2.3 Å. Despite sharing the same fold, the active sites of C and Cy domains have important differences. The structure allowed us to probe the roles of active-site residues by using mutational analyses in a peptide synthesis assay with intact bacillamide synthetase. The drastically different effects of these mutants, interpreted by using our structural and bioinformatic results, provide insight into the catalytic mechanisms of the Cy domain and implicate a previously unexamined Asp-Thr dyad in catalysis of the cyclodehydration reaction.

  13. Immunotherapeutic potential of N-formylated peptides of ESAT-6 and glutamine synthetase in experimental tuberculosis.

    Science.gov (United States)

    Mir, Shabir Ahmad; Sharma, Sadhna

    2014-02-01

    Recent understanding of the pathogenesis of tuberculosis allows the possible application of immunotherapy for the treatment of tuberculosis. Therapies that would upregulate the host anti mycobacterial innate and/or adaptive immune response have been supposed to be useful in the treatment of tuberculosis. Since N-formyl peptides are products of bacterial metabolism, and their binding to a specific phagocyte receptor (FPR) induces chemotaxis and activation of phagocytes that are critical effectors in our innate immune system, it is reasonable to assume that the interaction between these two counterparts (i.e. formylated peptides and FPR) is also important in host defence against M. tuberculosis. In the present study the direct immunotherapeutic potential of N-formylated peptides of two non-classically secreted proteins (early secreted antigenic target-6 and glutamine synthetase) of M. tuberculosis H37Rv was evaluated. Treatment of M. tuberculosis H37Rv infected mice with N-formylated peptides of early secreted antigenic target-6 (ESAT-6) and glutamine synthetase (GS) markedly reduced the bacilli load in their lungs (p < 0.001) and spleen (p < 0.01) as compared to the untreated mice. In addition, the histopathological changes were observed to be in correlation with the CFU data with minor areas of consolidation in the lung sections of N-formylated peptide treated infected mice as compared to those of the untreated mice. Further, these N-formylated peptides were able to confer an additional therapeutic effect when given in combination with the anti tuberculosis drugs and hence can be used as an adjunct to the conventional chemotherapy against tuberculosis.

  14. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  15. Chemical Probes Allow Structural Insight into the Condensation Reaction of Nonribosomal Peptide Synthetases.

    Science.gov (United States)

    Bloudoff, Kristjan; Alonzo, Diego A; Schmeing, T Martin

    2016-03-17

    Nonribosomal peptide synthetases (NRPSs) synthesize a vast variety of small molecules, including antibiotics, antitumors, and immunosuppressants. The NRPS condensation (C) domain catalyzes amide bond formation, the central chemical step in nonribosomal peptide synthesis. The catalytic mechanism and substrate determinants of the reaction are under debate. We developed chemical probes to structurally study the NRPS condensation reaction. These substrate analogs become covalently tethered to a cysteine introduced near the active site, to mimic covalent substrate delivery by carrier domains. They are competent substrates in the condensation reaction and behave similarly to native substrates. Co-crystal structures show C domain-substrate interactions, and suggest that the catalytic histidine's principle role is to position the α-amino group for nucleophilic attack. Structural insight provided by these co-complexes also allowed us to alter the substrate specificity profile of the reaction with a single point mutation.

  16. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles.

    Science.gov (United States)

    Piel, Jörn

    2002-10-29

    Many drug candidates from marine and terrestrial invertebrates are suspected metabolites of uncultured bacterial symbionts. The antitumor polyketides of the pederin family, isolated from beetles and sponges, are an example. Drug development from such sources is commonly hampered by low yields and the difficulty of sustaining invertebrate cultures. To obtain insight into the true producer and find alternative supplies of these rare drug candidates, the putative pederin biosynthesis genes were cloned from total DNA of Paederus fuscipes beetles, which use this compound for chemical defense. Sequence analysis of the gene cluster and adjacent regions revealed the presence of ORFs with typical bacterial architecture and homologies. The ped cluster, which is present only in beetle specimens with high pederin content, is located on a 54-kb region bordered by transposase pseudogenes and encodes a mixed modular polyketide synthase/nonribosomal peptide synthetase. Notably, none of the modules contains regions with homology to acyltransferase domains, but two copies of isolated monodomain acyltransferase genes were found at the upstream end of the cluster. In line with an involvement in pederin biosynthesis, the upstream cluster region perfectly mirrors pederin structure. The unexpected presence of additional polyketide synthase/nonribosomal peptide synthetase modules reveals surprising insights into the evolutionary relationship between pederin-type pathways in beetles and sponges.

  17. D-Lysergyl peptide synthetase from the ergot fungus Claviceps purpurea.

    Science.gov (United States)

    Riederer, B; Han, M; Keller, U

    1996-11-01

    The ergot fungus Claviceps purpurea produces the medically important ergopeptines, which consist of a cyclol-structured tripeptide and D-lysergic acid linked by an amide bond. An enzyme activity capable of non-ribosomal synthesis of D-lysergyl-L-alanyl-L-phenylalanyl-L-proline lactam, the non-cyclol precursor of the ergopeptine ergotamine, has been purified about 18-fold from the ergotamine-producing C. purpurea strain D1. Analysis of radioactively labeled enzyme-substrate complexes revealed a 370-kDa lysergyl peptide synthetase 1 (LPS 1) carrying the amino acid activation domains for alanine, phenylalanine, and proline. The activation of D-lysergic acid is catalyzed by a 140-kDa peptide synthetase (LPS 2) copurifying with LPS 1. LPS 1 and LPS 2 contain 4'-phosphopantetheine and bind their substrates covalently by thioester linkage. Kinetic analysis of the synthesis reaction revealed a Km of approximately 1.4 microM for both D-lysergic acid and its structural homolog dihydrolysergic acid, which is one to two orders of magnitude lower than the Km values for the other amino acids involved. The Km values for the amino acids reflect their relative concentrations in the cellular pool of C. purpurea. This may indicate that in in vivo conditions D-lysergyl peptide formation is limited by the D-lysergic acid concentration in the cell. In vitro, the multienzyme preparation catalyzes the formation of several different D-lysergyl peptide lactams according to the amino acids supplied. Specific antiserum was used to detect LPS 1 in various C. purpurea strains. In C. purpurea wild type, the enzyme was expressed at all stages of cultivation and in different media, suggesting that it is produced constitutively.

  18. Molecular Cross-Talk between Nonribosomal Peptide Synthetase Carrier Proteins and Unstructured Linker Regions.

    Science.gov (United States)

    Harden, Bradley J; Frueh, Dominique P

    2017-01-24

    Nonribosomal peptide synthetases (NRPSs) employ multiple domains separated by linker regions to incorporate substrates into natural products. During synthesis, substrates are covalently tethered to carrier proteins that translocate between catalytic partner domains. The molecular parameters that govern translocation and associated linker remodeling remain unknown. Here, we used NMR to characterize the structure, dynamics, and invisible states of a peptidyl carrier protein flanked by its linkers. We showed that the N-terminal linker stabilizes and interacts with the protein core while modulating dynamics at specific sites involved in post-translational modifications and/or domain interactions. The results detail the molecular communication between peptidyl carrier proteins and their linkers and could guide efforts in engineering NRPSs to obtain new pharmaceuticals.

  19. Diversity of Nonribosomal Peptide Synthetase Genes in the Microbial Metagenomes of Marine Sponges

    Directory of Open Access Journals (Sweden)

    Ute Hentschel

    2012-05-01

    Full Text Available Genomic mining revealed one major nonribosomal peptide synthetase (NRPS phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis.

  20. Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsu-Hua; Chiang, Yi Ming; Entwistle, Ruth; Ahuja, Mammeet; Lee, Kuan-Han; Bruno, Kenneth S.; Wu, Tung-Kung; Oakley, Berl R.; Wang, Clay C.

    2012-04-10

    Genome sequencing of Aspergillus species including A. nidulans has revealed that there are far more secondary metabolite biosynthetic gene clusters than secondary metabolites isolated from these organisms. This implies that these organisms can produce additional secondary metabolites have not yet been elucidated. The A. nidulans genome contains twelve nonribosomal peptide synthetase (NRPS), one hybrid polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS), and fourteen NRPS-like genes. The only NRPS-like gene in A. nidulans with a known product is tdiA which is involved in terrequinone A biosynthesis. To attempt to identify the products of these NRPS-like genes, we replaced the native promoters of the NRPS-like genes with the inducible alcohol dehydrogenase (alcA) promoter. Our results demonstrated that induction of the single NRPS-like gene AN3396.4 led to the enhanced production of microperfuranone. Furthermore, heterologous expression of AN3396.4 in A. niger confirmed that only one NRPS-like gene, AN3396.4, is necessary for the production of microperfuranone.

  1. Argininosuccinate Synthetase Is a Functional Target for a Snake Venom Anti-hypertensive Peptide

    Science.gov (United States)

    Guerreiro, Juliano R.; Lameu, Claudiana; Oliveira, Eduardo F.; Klitzke, Clécio F.; Melo, Robson L.; Linares, Edlaine; Augusto, Ohara; Fox, Jay W.; Lebrun, Ivo; Serrano, Solange M. T.; Camargo, Antonio C. M.

    2009-01-01

    Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-de pend ent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, α-methyl-dl-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases. PMID:19491403

  2. The Role of a Nonribosomal Peptide Synthetase in l-Lysine Lactamization During Capuramycin Biosynthesis.

    Science.gov (United States)

    Liu, Xiaodong; Jin, Yuanyuan; Cui, Zheng; Nonaka, Koichi; Baba, Satoshi; Funabashi, Masanori; Yang, Zhaoyong; Van Lanen, Steven G

    2016-05-03

    Capuramycins are one of several known classes of natural products that contain an l-Lys-derived l-α-amino-ɛ-caprolactam (l-ACL) unit. The α-amino group of l-ACL in a capuramycin is linked to an unsaturated hexuronic acid component through an amide bond that was previously shown to originate by an ATP-independent enzymatic route. With the aid of a combined in vivo and in vitro approach, a predicted tridomain nonribosomal peptide synthetase CapU is functionally characterized here as the ATP-dependent amide-bond-forming catalyst responsible for the biosynthesis of the remaining amide bond present in l-ACL. The results are consistent with the adenylation domain of CapU as the essential catalytic component for l-Lys activation and thioesterification of the adjacent thiolation domain. However, in contrast to expectations, lactamization does not require any additional domains or proteins and is likely a nonenzymatic event. The results set the stage for examining whether a similar NRPS-mediated mechanism is employed in the biosynthesis of other l-ACL-containing natural products and, just as intriguingly, how spontaneous lactamization is avoided in the numerous NRPS-derived peptides that contain an unmodified l-Lys residue.

  3. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product

    Indian Academy of Sciences (India)

    MANGAL SINGH; SANDEEP CHAUDHARY; DIPTI SAREEN

    2017-03-01

    Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are themajor multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically importantantibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid,followed by their condensation to synthesize a linear or cyclic natural product. The studies on NRPS domains, theknowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic screening of theever-expanding sequenced microbial genomic data for the identification of novel NRPS/PKS clusters and thusdeciphering novel non-ribosomal peptides (NRPs). Adenylation domain is an integral part of the NRPSs and is thesubstrate selecting unit for the final assembled NRP. In some cases, it also requires a small protein, the MbtHhomolog, for its optimum activity. The presence of putative adenylation domain and MbtH homologs in a sequencedgenome can help identify the novel secondary metabolite producers. The role of the adenylation domain in the NRPSgene clusters and its characterization as a tool for the discovery of novel cryptic NRPS gene clusters are discussed.

  4. Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants

    Directory of Open Access Journals (Sweden)

    Niran Roongsawang

    2010-12-01

    Full Text Available Lipopeptide biosurfactants (LPBSs consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors such as swarming motility and biofilm formation. Among the bacterial genera, Bacillus (Gram-positive and Pseudomonas (Gram-negative have received the most attention because they produce a wide range of effective LPBSs that are potentially useful for agricultural, chemical, food, and pharmaceutical industries. The biosynthetic mechanisms and gene regulation systems of LPBSs have been extensively analyzed over the last decade. LPBSs are generally synthesized in a ribosome-independent manner with megaenzymes called nonribosomal peptide synthetases (NRPSs. Production of active‑form NRPSs requires not only transcriptional induction and translation but also post‑translational modification and assemblage. The accumulated knowledge reveals the versatility and evolutionary lineage of the NRPSs system. This review provides an overview of the structural and functional diversity of LPBSs and their different biosynthetic mechanisms in Bacillus and Pseudomonas, including both typical and unique systems. Finally, successful genetic engineering of NRPSs for creating novel lipopeptides is also discussed.

  5. Peptoid-Peptide hybrid backbone architectures

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2010-01-01

    -amino acids (alpha/beta-peptides) have been investigated in some detail as well. The present Minireview is a survey of the literature concerning hybrid structures of alpha-amino acids and peptoids, including beta-peptoids (N-alkyl-beta-alanine oligomers), and is intended to give an overview of this area......Peptidomimetic oligomers and foldamers have received considerable attention for over a decade, with beta-peptides and the so-called peptoids (N-alkylglycine oligomers) representing prominent examples of such architectures. Lately, hybrid or mixed backbones consisting of both alpha- and beta...

  6. Nonribosomal Peptide Synthetase Genes pesL and pes1 Are Essential for Fumigaclavine C Production in Aspergillus fumigatus

    DEFF Research Database (Denmark)

    O'Hanlon, Karen A.; Gallagher, Lorna; Schrettl, Markus

    2012-01-01

    The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end product...... of the complex ergot alkaloid (EA) pathway in A. fumigatus. Deletion of either pesL (ΔpesL) or pes1 (Δpes1) resulted in complete loss of fumigaclavine C biosynthesis, relatively increased production of fumitremorgins such as TR-2, fumitremorgin C and verruculogen, increased sensitivity to H2O2, and increased...... sensitivity to the antifungals, voriconazole, and amphotericin B. Deletion of pesL resulted in severely reduced virulence in an invertebrate infection model (P

  7. A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis

    Directory of Open Access Journals (Sweden)

    Daniel Braga

    2016-12-01

    Full Text Available Auriculamide is the first natural product known from the predatory bacterium Herpetosiphon aurantiacus. It is composed of three unusual building blocks, including the non-proteinogenic amino acid 3-chloro-L-tyrosine, the α-hydroxy acid L-isoleucic acid, and a methylmalonyl-CoA-derived ethane unit. A candidate genetic locus for auriculamide biosynthesis was identified and encodes four enzymes. Among them, the non-canonical 199 kDa four-domain nonribosomal peptide synthetase, AulA, is extraordinary in that it features two consecutive adenylation domains. Here, we describe the functional characterization of the recombinantly produced AulA. The observed activation of 3-methyl-2-oxovaleric acid by the enzyme supports the hypothesis that it participates in the biosynthesis of auriculamide. An artificially truncated version of AulA that lacks the first adenylation domain activated this substrate like the full-length enzyme which shows that the first adenylation domain is dispensable. Additionally, we provide evidence that the enzyme tolerates structural variation of the substrate. α-Carbon substituents significantly affected the substrate turnover. While all tested aliphatic α-keto acids were accepted by the enzyme and minor differences in chain size and branches did not interfere with the enzymatic activity, molecules with methylene α-carbons led to low turnover. Such enzymatic plasticity is an important attribute to help in the perpetual search for novel molecules and to access a greater structural diversity by mutasynthesis.

  8. The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis.

    Science.gov (United States)

    Oves-Costales, Daniel; Kadi, Nadia; Challis, Gregory L

    2009-11-21

    Siderophores are high-affinity ferric iron chelators biosynthesised and excreted by most microorganisms that play an important role in iron acquisition. Siderophore-mediated scavenging of ferric iron from hosts contributes significantly to the virulence of pathogenic microbes. As a consequence siderophore biosynthesis is an attractive target for chemotherapeutic intervention. Two main pathways for siderophore biosynthesis exist in microbes. One pathway involves nonribosomal peptide synthetase (NRPS) multienzymes while the other is NRPS-independent. The enzymology of NRPS-mediated siderophore biosynthesis has been extensively studied for more than a decade. In contrast, the enzymology of NRPS-independent siderophore (NIS) biosynthesis was overlooked for almost thirty years since the first genetic characterisation of the NIS biosynthetic pathway to aerobactin. However, the past three years have witnessed an explosion of interest in the enzymology of NIS synthetases, the key enzymes in the assembly of siderophores via the NIS pathway. The biochemical characterisation of ten purified recombinant synthetases has been reported since 2007, along with the first structural characterisation of a synthetase by X-ray crystallography in 2009. In this feature article we summarise the recent progress that has been made in understanding the long-overlooked enzymology of NRPS-independent siderophore biosynthesis, highlight important remaining questions, and suggest likely directions for future research.

  9. Peptide markers of aminoacyl tRNA synthetases facilitate taxa counting in metagenomic data

    Directory of Open Access Journals (Sweden)

    Persi Erez

    2012-02-01

    Full Text Available Abstract Background Taxa counting is a major problem faced by analysis of metagenomic data. The most popular method relies on analysis of 16S rRNA sequences, but some studies employ also protein based analyses. It would be advantageous to have a method that is applicable directly to short sequences, of the kind extracted from samples in modern metagenomic research. This is achieved by the technique proposed here. Results We employ specific peptides, deduced from aminoacyl tRNA synthetases, as markers for the occurrence of single genes in data. Sequences carrying these markers are aligned and compared with each other to provide a lower limit for taxa counts in metagenomic data. The method is compared with 16S rRNA searches on a set of known genomes. The taxa counting problem is analyzed mathematically and a heuristic algorithm is proposed. When applied to genomic contigs of a recent human gut microbiome study, the taxa counting method provides information on numbers of different species and strains. We then apply our method to short read data and demonstrate how it can be calibrated to cope with errors. Comparison to known databases leads to estimates of the percentage of novelties, and the type of phyla involved. Conclusions A major advantage of our method is its simplicity: it relies on searching sequences for the occurrence of just 4000 specific peptides belonging to the S61 subgroup of aaRS enzymes. When compared to other methods, it provides additional insight into the taxonomic contents of metagenomic data. Furthermore, it can be directly applied to short read data, avoiding the need for genomic contig reconstruction, and taking into account short reads that are otherwise discarded as singletons. Hence it is very suitable for a fast analysis of next generation sequencing data.

  10. Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis

    Directory of Open Access Journals (Sweden)

    Iyer Lakshminarayan M

    2010-08-01

    Full Text Available Abstract Background Recent studies point to a great diversity of non-ribosomal peptide synthesis systems with major roles in amino acid and co-factor biosynthesis, secondary metabolism, and post-translational modifications of proteins by peptide tags. The least studied of these systems are those utilizing tRNAs or aminoacyl-tRNA synthetases (AAtRS in non-ribosomal peptide ligation. Results Here we describe novel examples of AAtRS related proteins that are likely to be involved in the synthesis of widely distributed peptide-derived metabolites. Using sensitive sequence profile methods we show that the cyclodipeptide synthases (CDPSs are members of the HUP class of Rossmannoid domains and are likely to be highly derived versions of the class-I AAtRS catalytic domains. We also identify the first eukaryotic CDPSs in fungi and in animals; they might be involved in immune response in the latter organisms. We also identify a paralogous version of the methionyl-tRNA synthetase, which is widespread in bacteria, and present evidence using contextual information that it might function independently of protein synthesis as a peptide ligase in the formation of a peptide- derived secondary metabolite. This metabolite is likely to be heavily modified through multiple reactions catalyzed by a metal-binding cupin domain and a lysine N6 monooxygenase that are strictly associated with this paralogous methionyl-tRNA synthetase (MtRS. We further identify an analogous system wherein the MtRS has been replaced by more typical peptide ligases with the ATP-grasp or modular condensation-domains. Conclusions The prevalence of these predicted biosynthetic pathways in phylogenetically distant, pathogenic or symbiotic bacteria suggests that metabolites synthesized by them might participate in interactions with the host. More generally, these findings point to a complete spectrum of recruitment of AAtRS to various non-ribosomal biosynthetic pathways, ranging from the

  11. Nonribosomal peptide synthetase genes pesL and pes1 are essential for Fumigaclavine C production in Aspergillus fumigatus.

    Science.gov (United States)

    O'Hanlon, Karen A; Gallagher, Lorna; Schrettl, Markus; Jöchl, Christoph; Kavanagh, Kevin; Larsen, Thomas O; Doyle, Sean

    2012-05-01

    The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end product of the complex ergot alkaloid (EA) pathway in A. fumigatus. Deletion of either pesL (ΔpesL) or pes1 (Δpes1) resulted in complete loss of fumigaclavine C biosynthesis, relatively increased production of fumitremorgins such as TR-2, fumitremorgin C and verruculogen, increased sensitivity to H(2)O(2), and increased sensitivity to the antifungals, voriconazole, and amphotericin B. Deletion of pesL resulted in severely reduced virulence in an invertebrate infection model (P < 0.001). These findings indicate that NRP synthesis plays an essential role in mediating the final prenylation step of the EA pathway, despite the apparent absence of NRP synthetases in the proposed EA biosynthetic cluster for A. fumigatus. Liquid chromatography/diode array detection/mass spectrometry analysis also revealed the presence of fumiquinazolines A to F in both A. fumigatus wild-type and ΔpesL strains. This observation suggests that alternative NRP synthetases can also function in fumiquinazoline biosynthesis, since PesL has been shown to mediate fumiquinazoline biosynthesis in vitro. Furthermore, we provide here the first direct link between EA biosynthesis and virulence, in agreement with the observed toxicity associated with EA exposure. Finally, we demonstrate a possible cluster cross-talk phenomenon, a theme which is beginning to emerge in the literature.

  12. Targeted Disruption of Nonribosomal Peptide Synthetase pes3 Augments the Virulence of Aspergillus fumigatus

    DEFF Research Database (Denmark)

    O'Hanlon, Karen A.; Cairns, Timothy; Stack, Deirdre

    2011-01-01

    that in contrast to other NRP synthetases, deletion of pes3 significantly increases the virulence of A. fumigatus, whereby the pes3 deletion strain (A. fumigatus Δpes3) exhibited heightened virulence (increased killing) in invertebrate (P corticosteroid model...... of murine pulmonary aspergillosis. Complementation restored the wild-type phenotype in the invertebrate model. Deletion of pes3 also resulted in increased susceptibility to the antifungal, voriconazole (P

  13. The Stress-responsive and Host-oriented Role of Nonribosomal Peptide Synthetases in an Entomopathogenic Fungus, Beauveria bassiana.

    Science.gov (United States)

    Liu, Hang; Xie, Linan; Wang, Jing; Guo, Qiannan; Yang, Shengnan; Liang, Pei; Wang, Chengshu; Lin, Min; Xu, Yuquan; Zhang, Liwen

    2016-11-14

    Beauveria bassiana infects numbers of pest species and is known to produce insecticidal substances, e.g., the nonribosomal peptides (NRPs) beauvericin and bassianolide. However, most NRPs and their biological roles in B. bassiana remain undiscovered. To identify NRPs that potentially contribute to pathogenesis, the 21 predicted NRP synthetases (NRPSs) or NRPS-like proteins of B. bassiana ARSEF2860 were primarily ranked into three functional groups: basic metabolism (7 NRPSs), pathogenicity (12 NRPSs) and unknown function (2 NRPSs). Based on the transcript levels during in vivo growth on diamondback moth (Plutella xylostella, Linnaeus), half of the Group II NRPSs were likely to be involved in infection. Given that the metabolites biosynthesized by these NRPSs remaining to determined, our result underlines the importance of NRPSome in fungal pathogenesis, and will serve as a guide for future genomic mining projects to discover functionally essential and structurally diverse NRPs in fungal genomes.

  14. Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis.

    Science.gov (United States)

    Yeh, Hsu-Hua; Chiang, Yi-Ming; Entwistle, Ruth; Ahuja, Manmeet; Lee, Kuan-Han; Bruno, Kenneth S; Wu, Tung-Kung; Oakley, Berl R; Wang, Clay C C

    2012-11-01

    Genome sequencing of Aspergillus species including Aspergillus nidulans has revealed that there are far more secondary metabolite biosynthetic gene clusters than secondary metabolites isolated from these organisms. This implies that these organisms can produce additional secondary metabolites, which have not yet been elucidated. The A. nidulans genome contains 12 nonribosomal peptide synthetase (NRPS), one hybrid polyketide synthase/NRPS, and 14 NRPS-like genes. The only NRPS-like gene in A. nidulans with a known product is tdiA, which is involved in terrequinone A biosynthesis. To attempt to identify the products of these NRPS-like genes, we replaced the native promoters of the NRPS-like genes with the inducible alcohol dehydrogenase (alcA) promoter. Our results demonstrated that induction of the single NRPS-like gene AN3396.4 led to the enhanced production of microperfuranone. Furthermore, heterologous expression of AN3396.4 in Aspergillus niger confirmed that only one NRPS-like gene, AN3396.4, is necessary for the production of microperfuranone.

  15. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M.

    2016-09-05

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.

  16. Biological activities of cecropin B-thanatin hybrid peptides.

    Science.gov (United States)

    Hongbiao, W; Baolong, N; Mengkui, X; Lihua, H; Weifeng, S; Zhiqi, M

    2005-12-01

    Ten kinds of hybrid peptides containing the N-terminal residues of cecropin B (CB) and C-terminal of thanatin (TH) were constructed and expressed as gluthathion S-transferase (GST)-fusion proteins. Variants were screened for the better biological activity, which was paralleled with the degree of growth inhibition of the transformant cells. The hybrid CB-TH g was selected as the best one among those hybrids by in vivo monitoring method and was chemical synthesized for in vitro antimicrobial activity analysis. The hybrid peptide showed rescued activity against several test strains when compared with the truncated isoforms of TH, suggesting that the peptides with different structure and mechanism could be used as templates for hybrid peptides design.

  17. The production of Multiple Small Peptaibol Families by Single 14-Module Peptide Synthetases in Trichoderma/Hypocrea

    Energy Technology Data Exchange (ETDEWEB)

    Degenkolb, Thomas; Aghchehb, Razieh Karimi; Dieckmann, Ralf; Neuhof, Torsten; Baker, Scott E.; Druzhinina, Irina S.; Kubicek, Christian P.; Brückner, Hans; von Dohren, Hans

    2012-03-01

    The most common peptaibibiotic structures are 11-residue peptaibols found widely distributed in the genus Trichoderma/Hypocrea. Frequently associated are 14-residue peptaibols sharing partial sequence identity. Genome sequencing projects of 3 Trichoderma strains of the major clades reveal the presence of up to 3 types of nonribosomal peptide synthetases with 7, 14, or 18-20 amino acid adding modules. We here provide evidence that the 14-module NRPS type found in T. virens, T. reesei (teleomorph Hypocrea jecorina) and T. atroviride produces both 11- and 14- residue peptaibols based on the disruption of the respective NRPS gene of T. reesei, and bioinformatic analysis of their amino acid activating domains and modules. The structures of these peptides may be predicted from the gene structures and have been confirmed by analysis of families of 11- and 14-residue peptaibols from the strain 618, termed hypojecorins A (23 sequences determined, 4 new) and B (3 new sequences), and the recently established trichovirins A from T. virens. The distribution of 11- and 14-residue products is strain-specific and depends on growth conditions as well. Possible mechanisms of module skipping are discussed.

  18. Vibriobactin biosynthesis in Vibrio cholerae: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains.

    Science.gov (United States)

    Keating, T A; Marshall, C G; Walsh, C T

    2000-12-19

    The Vibrio cholerae siderophore vibriobactin is biosynthesized from three molecules of 2,3-dihydroxybenzoate (DHB), two molecules of L-threonine, and one of norspermidine. Of the four genes positively implicated in vibriobactin biosynthesis, we have here expressed, purified, and assayed the products of three: vibE, vibB, and vibH. All three are homologous to nonribosomal peptide synthetase (NRPS) domains: VibE is a 2,3-dihydroxybenzoate-adenosyl monophosphate ligase, VibB is a bifunctional isochorismate lyase-aryl carrier protein (ArCP), and VibH is a novel amide synthase that represents a free-standing condensation (C) domain. VibE and VibB are homologous to EntE and EntB from Escherichia coli enterobactin synthetase; VibE activates DHB as the acyl adenylate and then transfers it to the free thiol of the phosphopantetheine arm of VibB's ArCP domain. VibH then condenses this DHB thioester (the donor) with the small molecule norspermidine (the acceptor), forming N(1)-(2, 3-dihydroxybenzoyl)norspermidine (DHB-NSPD) with a k(cat) of 600 min(-1) and a K(m) for acyl-VibB of 0.88 microM and for norspermidine of 1.5 mM. Exclusive monoacylation of a primary amine of norspermidine was observed. VibH also tolerates DHB-acylated EntB and 1,7-diaminoheptane, octylamine, and hexylamine as substrates, albeit at lowered catalytic efficiencies. DHB-NSPD possesses one of three acylations required for mature vibriobactin, and its formation confirms VibH's role in vibriobactin biosynthesis. VibH is a unique NRPS condensation domain that acts upon an upstream carrier-protein-bound donor and a downstream amine, turning over a soluble amide product, in contrast to an archetypal NRPS-embedded C domain that condenses two carrier protein thioesters.

  19. New Insight into the Ochratoxin A Biosynthetic Pathway through Deletion of a Nonribosomal Peptide Synthetase Gene in Aspergillus carbonarius

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, A.; Bruno, K. S.; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, S. E.

    2012-09-14

    Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium species, is composed of a dihydroisocoumarin ring linked to phenylalanine and its biosynthetic pathway has not yet been completely elucidated. Most of the knowledge regarding the genetic and enzymatic aspects of OTA biosynthesis has been obtained in Penicillium species. In Aspergillus species only pks genes involved in the initial steps of the pathway have been partially characterized. In our study, the inactivation of a gene encoding a nonribosomal peptide synthetase in OTA producing A. carbonarius ITEM 5010 has removed the ability of the fungus to produce OTA. This is the first report on the involvement of an nrps gene product in OTA biosynthetic pathway in Aspergillus species. The absence of OTA and ochratoxin α-the isocoumaric derivative of OTA, and the concomitant increase of ochratoxin β- the dechloro analog of ochratoxin α- were observed in the liquid culture of transformed strain. The data provide the first evidence that the enzymatic step adding phenylalanine to polyketide dihydroisocoumarin precedes the chlorination step to form OTA in A. carbonarius, and that ochratoxin α is a product of hydrolysis of OTA, giving an interesting new insight in the biosynthetic pathway of the toxin.

  20. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Directory of Open Access Journals (Sweden)

    Grigoris D. Amoutzias

    2016-04-01

    Full Text Available Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs and polyketides (PKs are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes and type-I polyketide synthases (PKSes-I, respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  1. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes.

    Science.gov (United States)

    Amoutzias, Grigoris D; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-04-16

    Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  2. Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein’s omega-site and the GPI lipid anchor’s phosphoethanolamine

    Science.gov (United States)

    Eisenhaber, Birgit; Eisenhaber, Stephan; Kwang, Toh Yew; Grüber, Gerhard; Eisenhaber, Frank

    2014-01-01

    The transamidase subunit GAA1/GPAA1 is predicted to be the enzyme that catalyzes the attachment of the glycosylphosphatidyl (GPI) lipid anchor to the carbonyl intermediate of the substrate protein at the ω-site. Its ~300-amino acid residue lumenal domain is a M28 family metallo-peptide-synthetase with an α/β hydrolase fold, including a central 8-strand β-sheet and a single metal (most likely zinc) ion coordinated by 3 conserved polar residues. Phosphoethanolamine is used as an adaptor to make the non-peptide GPI lipid anchor look chemically similar to the N terminus of a peptide. PMID:24743167

  3. Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine.

    Science.gov (United States)

    Eisenhaber, Birgit; Eisenhaber, Stephan; Kwang, Toh Yew; Grüber, Gerhard; Eisenhaber, Frank

    2014-01-01

    The transamidase subunit GAA1/GPAA1 is predicted to be the enzyme that catalyzes the attachment of the glycosylphosphatidyl (GPI) lipid anchor to the carbonyl intermediate of the substrate protein at the ω-site. Its ~300-amino acid residue lumenal domain is a M28 family metallo-peptide-synthetase with an α/β hydrolase fold, including a central 8-strand β-sheet and a single metal (most likely zinc) ion coordinated by 3 conserved polar residues. Phosphoethanolamine is used as an adaptor to make the non-peptide GPI lipid anchor look chemically similar to the N terminus of a peptide.

  4. Peptoids and peptide-peptoid hybrid biopolymers as peptidomimetics.

    Science.gov (United States)

    Stawikowski, Maciej J

    2013-01-01

    Peptoids (oligomers of N-substituted glycine residues) and peptide-peptoid hybrid polymers (peptomers) are interesting classes of compounds mimicking structure and function of biologically active peptides. The oligomeric peptidomimetics such as peptoids are particularly important compounds since they provide access to an enormous molecular diversity, by variation of the building blocks. The modular structure of peptoids, ease of synthesis, and high compatibility with existing peptide chemistry synthetic protocols, make peptoids and peptoid-containing peptidomimetics ideal tools for structure-activity and drug discovery related studies.

  5. The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins.

    Science.gov (United States)

    Lohman, Jeremy R; Ma, Ming; Cuff, Marianne E; Bigelow, Lance; Bearden, Jessica; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2014-07-01

    Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl-carrier proteins (PCPs) or acyl-carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs.

  6. Instructing cells with programmable peptide DNA hybrids

    Science.gov (United States)

    Freeman, Ronit; Stephanopoulos, Nicholas; Álvarez, Zaida; Lewis, Jacob A.; Sur, Shantanu; Serrano, Chris M.; Boekhoven, Job; Lee, Sungsoo S.; Stupp, Samuel I.

    2017-07-01

    The native extracellular matrix is a space in which signals can be displayed dynamically and reversibly, positioned with nanoscale precision, and combined synergistically to control cell function. Here we describe a molecular system that can be programmed to control these three characteristics. In this approach we immobilize peptide-DNA (P-DNA) molecules on a surface through complementary DNA tethers directing cells to adhere and spread reversibly over multiple cycles. The DNA can also serve as a molecular ruler to control the distance-dependent synergy between two peptides. Finally, we use two orthogonal DNA handles to regulate two different bioactive signals, with the ability to independently up- or downregulate each over time. This enabled us to discover that neural stem cells, derived from the murine spinal cord and organized as neurospheres, can be triggered to migrate out in response to an exogenous signal but then regroup into a neurosphere as the signal is removed.

  7. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43.

    Directory of Open Access Journals (Sweden)

    Jason M van Rooyen

    Full Text Available In Toxoplasma gondii, as in other eukaryotes, a subset of the amino-acyl-tRNA synthetases are arranged into an abundant cytoplasmic multi-aminoacyl-tRNA synthetase (MARS complex. Through a series of genetic pull-down assays, we have identified the enzymes of this complex as: methionyl-, glutaminyl-, glutamyl-, and tyrosyl-tRNA synthetases, and we show that the N-terminal GST-like domain of a partially disordered hybrid scaffold protein, Tg-p43, is sufficient for assembly of the intact complex. Our gel filtration studies revealed significant heterogeneity in the size and composition of isolated MARS complexes. By targeting the tyrosyl-tRNA synthetases subunit, which was found exclusively in the complete 1 MDa complex, we were able to directly visualize MARS particles in the electron microscope. Image analyses of the negative stain data revealed the observed heterogeneity and instability of these complexes to be driven by the intrinsic flexibility of the domain arrangements within the MARS complex. These studies provide unique insights into the assembly of these ubiquitous but poorly understood eukaryotic complexes.

  8. Molecular detection via hybrid peptide-semiconductor photonic devices

    Science.gov (United States)

    Estephan, E.; Saab, M.-b.; Martin, M.; Cloitre, T.; Larroque, C.; Cuisinier, F. J. G.; Malvezzi, A. M.; Gergely, C.

    2011-03-01

    The aim of this work was to investigate the possibilities to support device functionality that includes strongly confined and localized light emission and detection processes within nano/micro-structured semiconductors for biosensing applications. The interface between biological molecules and semiconductor surfaces, yet still under-explored is a key issue for improving biomolecular recognition in devices. We report on the use of adhesion peptides, elaborated via combinatorial phage-display libraries for controlled placement of biomolecules, leading to user-tailored hybrid photonic systems for molecular detection. An M13 bacteriophage library has been used to screen 1010 different peptides against various semiconductors to finally isolate specific peptides presenting a high binding capacity for the target surfaces. When used to functionalize porous silicon microcavities (PSiM) and GaAs/AlGaAs photonic crystals, we observe the formation of extremely thin (detection was monitored via both linear and nonlinear optical measurements. Our linear reflectance spectra demonstrate an enhanced detection resolution via PSiM devices, when functionalized with the Si-specific peptide. Molecular capture at even lower concentrations (femtomols) is possible via the second harmonic generation of GaAs/AlGaAs photonic crystals when functionalized with GaAs-specific peptides. Our work demonstrates the outstanding value of adhesion peptides as interface linkers between semiconductors and biological molecules. They assure an enhanced molecular detection via both linear and nonlinear answers of photonic crystals.

  9. Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani.

    Science.gov (United States)

    Romans-Fuertes, Patricia; Sondergaard, Teis Esben; Sandmann, Manuela Ilse Helga; Wollenberg, Rasmus Dam; Nielsen, Kristian Fog; Hansen, Frederik T; Giese, Henriette; Brodersen, Ditlev Egeskov; Sørensen, Jens Laurids

    2016-11-01

    Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate knockout mutants of two candidate non-ribosomal peptide synthetases (NRPS29 and NRPS30). Comparative studies of secondary metabolites in the two deletion mutants and wild type confirmed the absence of sansalvamide in the NRPS30 deletion mutant, implicating this synthetase in the biosynthetic pathway for sansalvamide. Sansalvamide is structurally related to the cyclic hexadepsipeptide destruxin, which both contain an α-hydroxyisocaproic acid (HICA) unit. A gene cluster responsible for destruxin production has previously been identified in Metarhizium robertsii together with a hypothetical biosynthetic pathway. Using comparative bioinformatic analyses of the catalytic domains in the destruxin and sansalvamide NRPSs, we were able to propose a model for sansalvamide biosynthesis. Orthologues of the gene clusters were also identified in species from several other genera including Acremonium chrysogenum and Trichoderma virens, which suggests that the ability to produce compounds related to destruxin and sansalvamide is widespread.

  10. Role of the C-terminal extension peptide of plastid located glutamine synthetase from Medicago truncatula: Crucial for enzyme activity and needless for protein import into the plastids.

    Science.gov (United States)

    Ferreira, Maria João; Vale, Diogo; Cunha, Luis; Melo, Paula

    2017-02-01

    Glutamine synthetase (GS), a key enzyme in plant nitrogen metabolism, is encoded by a small family of highly homologous nuclear genes that produce cytosolic (GS1) and plastidic (GS2) isoforms. Compared to GS1, GS2 proteins have two extension peptides, one at the N- and the other at the C-terminus, which show a high degree of conservation among plant species. It has long been known that the N-terminal peptide acts as a transit peptide, targeting the protein to the plastids however, the function of the C-terminal extension is still unknown. To investigate whether the C-terminal extension influences the activity of the enzyme, we produced a C-terminal truncated version of Medicago truncatula GS2a in Escherechia coli and studied its catalytic properties. The activity of the truncated protein was found to be lower than that of MtGS2a and with less affinity for glutamate. The importance of the C-terminal extension for the protein import into the chloroplast was also assessed by transient expression of fluorescently-tagged MtGS2a truncated at the C-terminus, which was correctly detected in the chloroplast. The results obtained in this work demonstrate that the C-terminal extension of M. truncatula GS2a is important for the activity of the enzyme and does not contain crucial information for the import process.

  11. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7.

    Science.gov (United States)

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-02-06

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH₂), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17-29) (FV-LL), FV7-magainin 2 (9-21) (FV-MA) and FV7-cecropin A (1-8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17-29) (LL), magainin 2 (9-21) (MA) and cecropin A (1-8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents.

  12. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7

    Science.gov (United States)

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-01-01

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH2), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17–29) (FV-LL), FV7-magainin 2 (9–21) (FV-MA) and FV7-cecropin A (1–8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17–29) (LL), magainin 2 (9–21) (MA) and cecropin A (1–8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents. PMID:28178190

  13. Novel Hybrid Virtual Screening Protocol Based on Molecular Docking and Structure-Based Pharmacophore for Discovery of Methionyl-tRNA Synthetase Inhibitors as Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2013-07-01

    Full Text Available Methione tRNA synthetase (MetRS is an essential enzyme involved in protein biosynthesis in all living organisms and is a potential antibacterial target. In the current study, the structure-based pharmacophore (SBP-guided method has been suggested to generate a comprehensive pharmacophore of MetRS based on fourteen crystal structures of MetRS-inhibitor complexes. In this investigation, a hybrid protocol of a virtual screening method, comprised of pharmacophore model-based virtual screening (PBVS, rigid and flexible docking-based virtual screenings (DBVS, is used for retrieving new MetRS inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen the Specs (202,408 compounds database, a structurally diverse chemical database. Fifteen hit compounds were selected from the final hits and shifted to experimental studies. These results may provide important information for further research of novel MetRS inhibitors as antibacterial agents.

  14. Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide: role in arginine and nitric oxide production.

    Science.gov (United States)

    Guerreiro, Juliano R; Lameu, Claudiana; Oliveira, Eduardo F; Klitzke, Clécio F; Melo, Robson L; Linares, Edlaine; Augusto, Ohara; Fox, Jay W; Lebrun, Ivo; Serrano, Solange M T; Camargo, Antonio C M

    2009-07-24

    Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-de pend ent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-dl-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.

  15. Antifungal Activity and Action Mechanism of Histatin 5-Halocidin Hybrid Peptides against Candida ssp

    Science.gov (United States)

    Han, Juhye; Jyoti, Md. Anirban; Song, Ho-Yeon; Jang, Woong Sik

    2016-01-01

    The candidacidal activity of histatin 5 is initiated through cell wall binding, followed by translocation and intracellular targeting, while the halocidin peptide exerts its activity by attacking the Candida cell membrane. To improve antimicrobial activities and to understand the killing mechanism of two peptides, six hybrid peptides were designed by conjugating histatin 5 and halocidin. A comparative approach was established to study the activity, salt tolerance, cell wall glucan binding assay, cytotoxicity, generation of ROS and killing kinetics. CD spectrometry was conducted to evaluate secondary structures of these hybrid peptides. Furthermore the cellular localization of hybrid peptides was investigated by confocal fluorescence microscopy. Of the six hybrid congeners, di-PH2, di-WP2 and HHP1 had stronger activities than other hybrid peptides against all tested Candida strains. The MIC values of these peptides were 1–2, 2–4 and 2–4 μg/ml, respectively. Moreover, none of the hybrid peptides was cytotoxic in the hemolytic assay and cell-based cytotoxicity assay. Confocal laser microscopy showed that di-PH2 and HHP1 were translocated into cytoplasm whereas di-WP2 was accumulated on surface of C. albicans to exert their candidacidal activity. All translocated peptides (Hst 5, P113, di-PH2) were capable of generating intracellular ROS except HHP1. Additionally, the KFH residues at C-terminal end of these peptides were assumed for core sequence for active translocation. PMID:26918792

  16. Localization of two human autoantigen genes by PCR screening and in situ hybridization-glycyl-tRNA synthetase locates to 7p15 and Alanyl-tRNA synthetase locates to 16q22

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.C.; Pai, S.I.; Liu, P. [National Inst. of Health, Bethesda, MD (United States); Ge, Q.; Targoff, I.N. [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States)

    1995-11-01

    Aminoacyl-tRNA synthetases (aminoacyl-RS) catalyze the attachment of an amino acid to its cognate tRNA. Five of 20 human aminoacyl-RS (histidyl-RS, threonyl-RS, isoleucyl-RS, glycyl-RS, and alanyl-RS) have been identified as targets of autoantibodies in the autoimmune disease polymyositis/dermatomyositis (PM/DM; 9). A sixth autoantigenic amino-acyl-RS, lysyl-RS, was recently reported. The genes for histidyl-RS and threonyl-RS have been assigned to chromosome 5, as have the genes for leucyl-RS and arginyl-RS. Six other aminoacyl-RS (glutamyl-prolyl-RS, valyl-RS, cysteinyl-RS, methionyl-RS, tryptophanyl-RS, and asparaginyl-RS) were assigned to chromosomes 1, 6, 11, 12, 14, and 18, respectively. The reason for a preponderance of aminoacyl-RS genes on chromosome 5 is unknown, but it has been suggested that regulatory relatedness might be a factor. Recently the entire or partial cDNA sequences for two autoantigenic aminoacyl-RS genes, glycyl-RS (gene symbol GARS; 4) and alanyl-RS (gene symbol AARS; 1), were reported. To understand further the genesis of autoimmune responses to aminoacyl-RS and to determine whether genes for autoantigenic aminoacyl-RS colocalize to chromosome 5, we have determined the chromosomal site of the GARS and AARS genes by PCR-based screening of somatic cell hybrid panels and by fluorescence in situ hybridization (FISH) analysis. 10 refs., 1 fig.

  17. A sensitive single-enzyme assay system using the non-ribosomal peptide synthetase BpsA for measurement of L-glutamine in biological samples

    Science.gov (United States)

    Brown, Alistair S.; Robins, Katherine J.; Ackerley, David F.

    2017-01-01

    The ability to rapidly, economically and accurately measure L-glutamine concentrations in biological samples is important for many areas of research, medicine or industry, however there is room for improvement on existing methods. We describe here how the enzyme BpsA, a single-module non-ribosomal peptide synthetase able to convert L-glutamine into the blue pigment indigoidine, can be used to accurately measure L-glutamine in biological samples. Although indigoidine has low solubility in aqueous solutions, meaning direct measurements of indigoidine synthesis do not reliably yield linear standard curves, we demonstrate that resolubilisation of the reaction end-products in DMSO overcomes this issue and that spontaneous reduction to colourless leuco-indigoidine occurs too slowly to interfere with assay accuracy. Our protocol is amenable to a 96-well microtitre format and can be used to measure L-glutamine in common bacterial and mammalian culture media, urine, and deproteinated plasma. We show that active BpsA can be prepared in high yield by expressing it in the apo-form to avoid the toxicity of indigoidine to Escherichia coli host cells, then activating it to the holo-form in cell lysates prior to purification; and that BpsA has a lengthy shelf-life, retaining >95% activity when stored at either −20 °C or 4 °C for 24 weeks. PMID:28139746

  18. Comparative analysis of oligonucleotide primers for high-throughput screening of genes encoding adenylation domains of nonribosomal peptide synthetases in actinomycetes.

    Science.gov (United States)

    Bakal, Tomas; Goo, Kian-Sim; Najmanova, Lucie; Plhackova, Kamila; Kadlcik, Stanislav; Ulanova, Dana

    2015-11-01

    In the biosynthesis of diverse natural bioactive products the adenylation domains (ADs) of nonribosomal peptide synthetases select specific precursors from the cellular pool and activate them for further incorporation into the scaffold of the final compound. Therefore, the drug discovery programs employing PCR-based screening studies of microbial collections or metagenomic libraries often use AD-coding genes as markers of relevant biosynthetic gene clusters. However, due to significant sequence diversity of ADs, the conventional approach using only one primer pair in a single screening experiment could be insufficient for maximal coverage of AD abundance. In this study, the widely used primer pair A3F/A7R was compared with the newly designed aa194F/aa413R one by 454 pyrosequencing of two sets of actinomycete strains from highly dissimilar environments: subseafloor sediments and forest soil. Individually, none of the primer pairs was able to cover the overall diversity of ADs. However, due to slightly shifted specificity of the primer pairs, the total number and diversity of identified ADs were noticeably extended when both primer pairs were used in a single assay. Additionally, the efficiency of AD detection by different primer combinations was confirmed on the model of Salinispora tropica genomic DNA of known sequence.

  19. Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    Full Text Available Antimicrobial peptides have attracted considerable attention because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance which is the most common source of failure in bacterial infection treatment along with biofilms. The method to design hybrid peptide integrating different functional domains of peptides has many advantages. In this study, we designed an embedded-hybrid peptide R-FV-I16 by replacing a functional defective sequence RR7 with the anti-biofilm sequence FV7 embedded in the middle position of peptide RI16. The results demonstrated that the synthetic hybrid the peptide R-FV-I16 had potent antimicrobial activity over a wide range of Gram-negative and Gram-positive bacteria, as well as anti-biofilm activity. More importantly, R-FV-I16 showed lower hemolytic activity and cytotoxicity. Fluorescent assays demonstrated that R-FV-I16 depolarized the outer and the inner bacterial membranes, while scanning electron microscopy and transmission electron microscopy further indicated that this peptide killed bacterial cells by disrupting the cell membrane, thereby damaging membrane integrity. Results from SEM also provided evidence that R-FV-I16 inherited anti-biofilm activity from the functional peptide sequence FV7. Embedded-hybrid peptides could provide a new pattern for combining different functional domains and showing an effective avenue to screen for novel antimicrobial agents.

  20. Ribbon structure stabilized by C10 and C12 turns in αγ hybrid peptide.

    Science.gov (United States)

    Wani, Naiem Ahmad; Kant, Rajni; Gupta, Vivek Kumar; Aravinda, Subrayashastry; Rai, Rajkishor

    2016-04-01

    The present study describes the synthesis and crystallographic analysis of αγ hybrid peptides, Boc-Gpn-L-Pro-NHMe (1), Boc-Aib-Gpn-L-Pro-NHMe (2), and Boc-L-Pro-Aib-Gpn-L-Pro-NHMe (3). Peptides 1 and 2 adopt expanded 12-membered (C12 ) helical turn over γα segment. Peptide 3 promotes the ribbon structure stabilized by type II β-turn (C10 ) followed by the expanded C12 helical γα turn. Both right-handed and left-handed helical conformations for Aib residue are observed in peptides 2 and 3, respectively.

  1. Type I pyridoxal 5'-phosphate dependent enzymatic domains embedded within multimodular nonribosomal peptide synthetase and polyketide synthase assembly lines.

    Science.gov (United States)

    Milano, Teresa; Paiardini, Alessandro; Grgurina, Ingeborg; Pascarella, Stefano

    2013-10-23

    Pyridoxal 5'-phosphate (PLP)-dependent enzymes of fold type I, the most studied structural class of the PLP-dependent enzyme superfamily, are known to exist as stand-alone homodimers or homotetramers. These enzymes have been found also embedded in multimodular and multidomain assembly lines involved in the biosynthesis of polyketides (PKS) and nonribosomal peptides (NRPS). The aim of this work is to provide a proteome-wide view of the distribution and characteristics of type I domains covalently integrated in these assemblies in prokaryotes. An ad-hoc Hidden Markov profile was calculated using a sequence alignment derived from a multiple structural superposition of distantly related PLP-enzymes of fold type I. The profile was utilized to scan the sequence databank and to collect the proteins containing at least one type I domain linked to a component of an assembly line in bacterial genomes. The domains adjacent to a carrier protein were further investigated. Phylogenetic analysis suggested the presence of four PLP-dependent families: Aminotran_3, Beta_elim_lyase and Pyridoxal_deC, occurring mainly within mixed NRPS/PKS clusters, and Aminotran_1_2 found mainly in PKS clusters. Sequence similarity to the reference PLP enzymes with solved structures ranged from 24 to 42% identity. Homology models were built for each representative type I domain and molecular docking simulations with putative substrates were carried out. Prediction of the protein-protein interaction sites evidenced that the surface regions of the type I domains embedded within multienzyme assemblies were different from those of the self-standing enzymes; these structural features appear to be required for productive interactions with the adjacent domains in a multidomain context. This work provides a systematic view of the occurrence of type I domain within NRPS and PKS assembly lines and it predicts their structural characteristics using computational methods. Comparison with the corresponding stand

  2. Multifunctional hybrid networks based on self assembling peptide sequences

    Science.gov (United States)

    Sathaye, Sameer

    The overall aim of this dissertation is to achieve a comprehensive correlation between the molecular level changes in primary amino acid sequences of amphiphilic beta-hairpin peptides and their consequent solution-assembly properties and bulk network hydrogel behavior. This has been accomplished using two broad approaches. In the first approach, amino acid substitutions were made to peptide sequence MAX1 such that the hydrophobic surfaces of the folded beta-hairpins from the peptides demonstrate shape specificity in hydrophobic interactions with other beta-hairpins during the assembly process, thereby causing changes to the peptide nanostructure and bulk rheological properties of hydrogels formed from the peptides. Steric lock and key complementary hydrophobic interactions were designed to occur between two beta-hairpin molecules of a single molecule, LNK1 during beta-sheet fibrillar assembly of LNK1. Experimental results from circular dichroism, transmission electron microscopy and oscillatory rheology collectively indicate that the molecular design of the LNK1 peptide can be assigned the cause of the drastically different behavior of the networks relative to MAX1. The results indicate elimination or significant reduction of fibrillar branching due to steric complementarity in LNK1 that does not exist in MAX1, thus supporting the original hypothesis. As an extension of the designed steric lock and key complementarity between two beta-hairpin molecules of the same peptide molecule. LNK1, three new pairs of peptide molecules LP1-KP1, LP2-KP2 and LP3-KP3 that resemble complementary 'wedge' and 'trough' shapes when folded into beta-hairpins were designed and studied. All six peptides individually and when blended with their corresponding shape complement formed fibrillar nanostructures with non-uniform thickness values. Loose packing in the assembled structures was observed in all the new peptides as compared to the uniform tight packing in MAX1 by SANS analysis. This

  3. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    Science.gov (United States)

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  4. Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons.

    Science.gov (United States)

    Li, Xu; Morgenroth, Eberhard; Raskin, Lutgarde

    2008-12-01

    The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.

  5. Identificaiton of Shc Src Homology 2 Domain-Binding Peptoid – Peptide Hybrids

    Science.gov (United States)

    Choi, Won Jun; Kim, Sung Eun; Stephen, Andrew G.; Weidlich, Iwona; Giubellino, Alessio; Liu, Fa; Worthy, Karen M.; Bindu, Lakshman; Fivash, Matthew J.; Nicklaus, Marc C.; Bottaro, Donald P.; Fisher, Robert J.; Burke, Terrence R.

    2009-01-01

    A fluorescence anisotropy (FA) competition – based Shc Src homology 2 (SH2) domain-binding was established using the high affinity fluorescein isothiocyanate (FITC)-containing peptide, FITC-NH-(CH2)4-CO-pY-Q-G-L-S-amide (8; Kd = 0.35 μM). Examination of a series of open – chain bis-alkenylamide containing peptides, prepared as ring – closing metathesis precursors, showed that the highest affinities were obtained by replacement of the original Gly residue with Nα-substituted Gly (NSG) “peptoid” residues. This provided peptoid-peptide hybrids of the form, “Ac-pY-Q-[NSG]-L-amide.” Depending on the NSG substituent, certain of these hybrids exhibited up to 40 – fold higher Shc SH2 domain binding affinity than the parent Gly-containing peptide (IC50 = 248 μM), (for example, N-homo-allyl analogue 50; IC50 = 6 μM). To our knowledge, this work represents the first successful example of the application of peptoid-peptide hybrids in the design of SH2 domain-binding antagonists. These results could provide a foundation for further structural optimization of Shc SH2 domain-binding peptide mimetics. PMID:19226165

  6. Identification of Shc Src homology 2 domain-binding peptoid-peptide hybrids.

    Science.gov (United States)

    Choi, Won Jun; Kim, Sung-Eun; Stephen, Andrew G; Weidlich, Iwona; Giubellino, Alessio; Liu, Fa; Worthy, Karen M; Bindu, Lakshman; Fivash, Matthew J; Nicklaus, Marc C; Bottaro, Donald P; Fisher, Robert J; Burke, Terrence R

    2009-03-26

    A fluorescence anisotropy (FA) competition-based Shc Src homology 2 (SH2) domain-binding was established using the high affinity fluorescein isothiocyanate (FITC) containing peptide, FITC-NH-(CH2)4-CO-pY-Q-G-L-S-amide (8; Kd = 0.35 microM). Examination of a series of open-chain bis-alkenylamide containing peptides, prepared as ring-closing metathesis precursors, showed that the highest affinities were obtained by replacement of the original Gly residue with N alpha-substituted Gly (NSG) "peptoid" residues. This provided peptoid-peptide hybrids of the form "Ac-pY-Q-[NSG]-L-amide." Depending on the NSG substituent, certain of these hybrids exhibited up to 40-fold higher Shc SH2 domain-binding affinity than the parent Gly-containing peptide (IC50 = 248 microM) (for example, for N-homoallyl analogue 50, IC50 = 6 microM). To our knowledge, this work represents the first successful example of the application of peptoid-peptide hybrids in the design of SH2 domain-binding antagonists. These results could provide a foundation for further structural optimization of Shc SH2 domain-binding peptide mimetics.

  7. Hybrid Block Copolymers Constituted by Peptides and Synthetic Polymers: An Overview of Synthetic Approaches, Supramolecular Behavior and Potential Applications

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-02-01

    Full Text Available Hybrid block copolymers based on peptides and synthetic polymers, displaying different types of topologies, offer new possibilities to integrate the properties and functions of biomacromolecules and synthetic polymers in a single hybrid material. This review provides a current status report of the field concerning peptide-synthetic polymer hybrids. The first section is focused on the different synthetic approaches that have been used within the last three years for the preparation of peptide-polymer hybrids having different topologies. In the last two sections, the attractive properties, displayed in solution or in the solid state, together with the potential applications of this type of macromolecules or supramolecular systems are highlighted.

  8. Cytotoxic activity to acute myeloid leukemia cells by Antp-TPR hybrid peptide targeting Hsp90.

    Science.gov (United States)

    Horibe, Tomohisa; Kawamoto, Megumi; Kohno, Masayuki; Kawakami, Koji

    2012-07-01

    We previously reported that Antp-TPR hybrid peptide inhibited the interaction of Hsp90 with TPR2A and had selective cytotoxic activity discriminating between normal and cancer cells to induce cancer cell death. In this study, we investigated the cytotoxic activity of Antp-TPR peptide toward acute myeloid leukemia (AML) cells. It was demonstrated that Antp-TPR peptide induced AML cell death in cell lines such as U937, K562, THP-1, and HL-60 via activation of caspases 3 and 7, and disruption of mitochondrial membrane potential. Conversely, Antp-TPR peptide did not reduce the viability of normal cells including peripheral blood mononuclear cells (PBMCs), although both geldanamycin and 17-AAG, small-molecule inhibitors of Hsp90, mediated cytotoxicity to these normal cells at low concentrations. In addition, mutation analysis of TPR peptide demonstrated that the highly conserved amino acids Lys and Arg were critical to the cytotoxic activity. These results indicated that Antp-TPR hybrid peptide would provide potent and selective therapeutic options in the treatment of AML.

  9. Characterization of cereulide synthetase, a toxin-producing macromolecular machine.

    Directory of Open Access Journals (Sweden)

    Diego A Alonzo

    Full Text Available Cereulide synthetase is a two-protein nonribosomal peptide synthetase system that produces a potent emetic toxin in virulent strains of Bacillus cereus. The toxin cereulide is a depsipeptide, as it consists of alternating aminoacyl and hydroxyacyl residues. The hydroxyacyl residues are derived from keto acid substrates, which cereulide synthetase selects and stereospecifically reduces with imbedded ketoreductase domains before incorporating them into the growing depsipeptide chain. We present an in vitro biochemical characterization of cereulide synthetase. We investigate the kinetics and side chain specificity of α-keto acid selection, evaluate the requirement of an MbtH-like protein for adenylation domain activity, assay the effectiveness of vinylsulfonamide inhibitors on ester-adding modules, perform NADPH turnover experiments and evaluate in vitro depsipeptide biosynthesis. This work also provides biochemical insight into depsipeptide-synthesizing nonribosomal peptide synthetases responsible for other bioactive molecules such as valinomycin, antimycin and kutzneride.

  10. Improved glucose control and reduced body weight in rodents with dual mechanism of action peptide hybrids.

    Directory of Open Access Journals (Sweden)

    James L Trevaskis

    Full Text Available Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209, comprised of a glucagon-like peptide-1 receptor (GLP1-R agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lep(ob/Lep (ob mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides.

  11. Designed hybrid TPR peptide targeting Hsp90 as a novel anticancer agent

    Directory of Open Access Journals (Sweden)

    Ohara Koji

    2011-01-01

    Full Text Available Abstract Background Despite an ever-improving understanding of the molecular biology of cancer, the treatment of most cancers has not changed dramatically in the past three decades and drugs that do not discriminate between tumor cells and normal tissues remain the mainstays of anticancer therapy. Since Hsp90 is typically involved in cell proliferation and survival, this is thought to play a key role in cancer, and Hsp90 has attracted considerable interest in recent years as a potential therapeutic target. Methods We focused on the interaction of Hsp90 with its cofactor protein p60/Hop, and engineered a cell-permeable peptidomimetic, termed "hybrid Antp-TPR peptide", modeled on the binding interface between the molecular chaperone Hsp90 and the TPR2A domain of Hop. Results It was demonstrated that this designed hybrid Antp-TPR peptide inhibited the interaction of Hsp90 with the TPR2A domain, inducing cell death of breast, pancreatic, renal, lung, prostate, and gastric cancer cell lines in vitro. In contrast, Antp-TPR peptide did not affect the viability of normal cells. Moreover, analysis in vivo revealed that Antp-TPR peptide displayed a significant antitumor activity in a xenograft model of human pancreatic cancer in mice. Conclusion These results indicate that Antp-TPR peptide would provide a potent and selective anticancer therapy to cancer patients.

  12. Large Improvements in MS/MS Based Peptide Identification Rates using a Hybrid Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, William R.; Rawlins, Mitchell M.; Baxter, Douglas J.; Callister, Stephen J.; Lipton, Mary S.; Bryant, Donald A.

    2011-05-06

    We have developed a hybrid method for identifying peptides from global proteomics studies that significantly increases sensitivity and specificity in matching peptides to tandem mass spectra using database searches. The method increased the number of spectra that can be assigned to a peptide in a global proteomics study by 57-147% at an estimated false discovery rate of 5%, with clear room for even greater improvements. The approach combines the general utility of using consensus model spectra typical of database search methods1-3 with the accuracy of the intensity information contained in spectral libraries4-6. This hybrid approach is made possible by recent developments that elucidated the statistical framework common to both data analysis and statistical thermodynamics, resulting in a chemically inspired approach to incorporating fragment intensity information into both database searches and spectral library searches. We applied this approach to proteomics analysis of Synechococcus sp. PCC 7002, a cyanobacterium that is a model organism for studies of photosynthetic carbon fixation and biofuels development. The increased specificity and sensitivity of this approach allowed us to identify many more peptides involved in the processes important for photoautotrophic growth.

  13. Biosynthesis of xyrrolin, a new cytotoxic hybrid polyketide/non-ribosomal peptide pyrroline with anticancer potential, in Xylaria sp. BCC 1067.

    Science.gov (United States)

    Phonghanpot, Suranat; Punya, Juntira; Tachaleat, Anuwat; Laoteng, Kobkul; Bhavakul, Vanida; Tanticharoen, Morakot; Cheevadhanarak, Supapon

    2012-04-16

    A gene from Xylaria sp. BCC 1067, pks3, that encodes a putative 3660-residue hybrid polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) was characterised by targeted gene disruption in combination with comprehensive product identification. Studies of the features of a corresponding mutant, YA3, allowed us to demonstrate that pks3 is responsible for the synthesis of a new pyrroline compound, named xyrrolin, in the wild-type Xylaria sp. BCC 1067. The structure of xyrrolin was established by extensive spectroscopic and spectrometric analyses, including low- and high-resolution MS, IR, (1)H NMR, (13)C NMR, (13)C NMR with Dept135, HMQC 2D NMR, HMBC 2D NMR and COSY 2D NMR. On the basis of the Pks3 domain organisation and the chemical structure of xyrrolin, we proposed that biosynthesis of this compound requires the condensation of a tetraketide and an L-serine unit, followed by Dieckmann or reductive cyclisation and enzymatic removal of ketone residue(s). Bioassays of the pure xyrrolin further displayed cytotoxicity against an oral cavity (KB) cancer cell line.

  14. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    Science.gov (United States)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  15. Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 in Metarhizium anisopliae var. anisopliae

    Science.gov (United States)

    A 19,818 kb genomic region harboring six predicted ORFs was identified in M. anisopliae ARSEF 2575. ORF4, putatively encoding a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) was targeted using Agrobacterium-mediated gene knockout. Homologous recombinants failed to produce det...

  16. Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo.

    Science.gov (United States)

    Al-Ahmady, Zahraa S; Al-Jamal, Wafa' T; Bossche, Jeroen V; Bui, Tam T; Drake, Alex F; Mason, A James; Kostarelos, Kostas

    2012-10-23

    The present study describes leucine zipper peptide-lipid hybrid nanoscale vesicles engineered by self-assembled anchoring of the amphiphilic peptide within the lipid bilayer. These hybrid vesicles aim to combine the advantages of traditional temperature-sensitive liposomes (TSL) with the dissociative, unfolding properties of a temperature-sensitive peptide to optimize drug release under mild hyperthermia, while improving in vivo drug retention. The secondary structure of the peptide and its thermal responsiveness after anchoring onto liposomes were studied with circular dichroism. In addition, the lipid-peptide vesicles (Lp-peptide) showed a reduction in bilayer fluidity at the inner core, as observed with DPH anisotropy studies, while the opposite effect was observed with an ANS probe, indicating peptide interactions with both the headgroup region and the hydrophobic core. A model drug molecule, doxorubicin, was successfully encapsulated in the Lp-peptide vesicles at higher than 90% efficiency following the remote loading, pH-gradient methodology. The release of doxorubicin from Lp-peptide hybrids in vitro indicated superior serum stability at physiological temperatures compared to lysolipid-containing temperature-sensitive liposomes (LTSL) without affecting the overall thermo-responsive nature of the vesicles at 42 °C. A similar stabilizing effect was observed in vivo after intravenous administration of the Lp-peptide vesicles by measuring (14)C-doxorubicin blood kinetics that also led to increased tumor accumulation after 24 h. We conclude that Lp-peptide hybrid vesicles present a promising new class of TSL that can offer previously unexplored opportunities for the development of clinically relevant mild hyperthermia-triggered therapeutic modalities.

  17. Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery

    Science.gov (United States)

    Xie, Yanyan; Zhao, Jun; Huang, Renliang; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2016-04-01

    We report a new approach to constructing a peptide-polysaccharide hybrid hydrogel via the calcium-ion-triggered co-assembly of fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) peptide and alginate. Calcium ions triggered the self-assembly of Fmoc-FF peptide into nanofibers with diameter of about 30 nm. Meanwhile, alginate was rapidly crosslinked by the calcium ions, leading to the formation of stable hybrid hydrogel beads. Compared to alginate or Fmoc-FF hydrogel alone, the hybrid Fmoc-FF/alginate hydrogel had much better stability in both water and a phosphate-buffered solution (PBS), probably because of the synergistic effect of noncovalent and ionic interactions. Furthermore, docetaxel was chosen as a drug model, and it was encapsulated by hydrogel beads to study the in vitro release behavior. The sustained and controlled docetaxel release was obtained by varying the concentration ratio between Fmoc-FF peptide and alginate.

  18. Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 and NG-393 metabolites in Metarhizium anisopliae

    Science.gov (United States)

    A 19,818 kb genomic region harboring six predicted ORFs was identified in M. anisopliae ARSEF 2575. The ORF4 CDS, putatively encoding a hybrid polyketide synthase/nonribosomal peptide synthetase (PKS-NRPS) was targeted using Agrobacterium-mediated gene knockout. Homologous, but not heterolog...

  19. Preparation and characterization of gold nanoparticles capped by peptide-biphenyl hybrids.

    Science.gov (United States)

    Pérez, Yolanda; Mann, Enrique; Herradón, Bernardo

    2011-07-15

    Gold nanoparticles were prepared using peptide-biphenyl hybrids (PBHs) as capping agents. AuNPs were characterized by different techniques including UV-Vis, TEM, EDX, FT-IR, elemental analysis, (1)H NMR and (13)C CP/MAS NMR spectroscopy. TEM analysis showed that AuNPs present diameters in the range of 1.8-3.7 nm, depending on the structure and the amount of the capping PBH used. FT-IR spectroscopy and solid-state (13)C NMR revealed that the carboxylic group of PBHs, especially in the case of the acid ligands, interacts with the gold surface (in the form of carboxylate). The results confirm that PBHs are excellent stabilizers of AuNPs, being one of the first examples on the use of peptidomimetics-gold hybrid materials.

  20. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    Science.gov (United States)

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Molecular Design: Network Architecture and Its Impact on the Organization and Mechanics of Peptide-Polyurea Hybrids.

    Science.gov (United States)

    Matolyak, Lindsay; Keum, Jong; Korley, LaShanda T J

    2016-12-12

    Nature has achieved controlled and tunable mechanics via hierarchical organization driven by physical and covalent interactions. Polymer-peptide hybrids have been designed to mimic natural materials utilizing these architectural strategies, obtaining diverse mechanical properties, stimuli responsiveness, and bioactivity. Here, utilizing a molecular design pathway, peptide-polyurea hybrid networks were synthesized to investigate the role of architecture and structural interplay on peptide hydrogen bonding, assembly, and mechanics. Networks formed from poly(β-benzyl-l-aspartate)-poly(dimethylsiloxane) copolymers covalently cross-linked with a triisocyanate yielded polyurea films with a globular-like morphology and parallel β-sheet secondary structures. The geometrical constraints imposed by the network led to an increase in peptide loading and ∼7x increase in Young's modulus while maintaining extensibility (∼160%). Thus, the interplay of physical and chemical bonds allowed for the modulation of resulting mechanical properties. This investigation provides a framework for the utilization of structural interplay and mechanical tuning in polymer-peptide hybrids, which offers a pathway for the design of future hybrid biomaterial systems.

  2. Peptide-micelle Hybrids Containing Fasudil for Targeted Delivery to the Pulmonary Arteries and Arterioles to Treat PAH

    Science.gov (United States)

    Gupta, Nilesh; Ibrahim, Hany M.; Ahsan, Fakhrul

    2017-01-01

    This study investigates the respirability and efficacy of peptide-micelle hybrid nanoparticles as carriers for inhalational therapy of pulmonary arterial hypertension (PAH). CARSKNKDC (CAR), a cell penetrating and lung homing peptide, conjugated DSPE-PEG micelles containing fasudil, an investigational anti-PAH drug, were prepared by solvent evaporation method and characterized for various physicochemical properties. The pharmacokinetics and pharmacological efficacy of hybrid particles containing fasudil were evaluated in healthy rats and monocrotaline induced PAH rats, respectively. CAR-micelles containing fasudil had an entrapment efficiency of ∼58%, showed controlled release of the drug, and were monodispersed with an average size of ∼14nm. NMR scan confirmed the drug's presence in the core of peptide-micelle hybrid particles. Compared with plain micelles, CAR peptide increased the cellular uptake by ∼1.7-fold and extended the drug half-life by ∼5-fold. The formulations were more prone to accumulate in the pulmonary vasculature than in the peripheral blood, which is evident from the ratio of the extent of reduction of pulmonary and systemic arterial pressures. On the whole, this study demonstrates that peptide-polymer hybrid micelles can serve as inhalational carriers for PAH therapy. PMID:25266507

  3. Peptide-micelle hybrids containing fasudil for targeted delivery to the pulmonary arteries and arterioles to treat pulmonary arterial hypertension.

    Science.gov (United States)

    Gupta, Nilesh; Ibrahim, Hany M; Ahsan, Fakhrul

    2014-11-01

    This study investigates the respirability and efficacy of peptide-micelle hybrid nanoparticles as carriers for inhalational therapy of pulmonary arterial hypertension (PAH). CARSKNKDC (CAR), a cell-penetrating and lung-homing peptide, conjugated polyethylene glycol-distearoyl-phosphoethanolamine micelles containing fasudil, an investigational anti-PAH drug, were prepared by solvent evaporation method and characterized for various physicochemical properties. The pharmacokinetics and pharmacological efficacy of hybrid particles containing fasudil were evaluated in healthy rats and monocrotaline-induced PAH rats. CAR micelles containing fasudil had an entrapment efficiency of approximately 58%, showed controlled release of the drug, and were monodispersed with an average size of approximately 14 nm. Nuclear magnetic resonance scan confirmed the drug's presence in the core of peptide-micelle hybrid particles. Compared with plain micelles, CAR peptide increased the cellular uptake by approximately 1.7-fold and extended the drug half-life by approximately fivefold. The formulations were more prone to accumulate in the pulmonary vasculature than in the peripheral blood, which is evident from the ratio of the extent of reduction of pulmonary and systemic arterial pressures. On the whole, this study demonstrates that peptide-polymer hybrid micelles can serve as inhalational carriers for PAH therapy.

  4. Antiparallel Self-Association of a γ,α-Hybrid Peptide: More Relevance of Weak Interactions.

    Science.gov (United States)

    Venugopalan, Paloth; Kishore, Raghuvansh

    2015-08-01

    To learn how a preorganized peptide-based molecular template, together with diverse weak non-covalent interactions, leads to an effective self-association, we investigated the conformational characteristics of a simple γ,α-hybrid model peptide, Boc-γ-Abz-Gly-OMe. The single-crystal X-ray diffraction analysis revealed the existence of a fully extended β-strand-like structure stabilized by two non-conventional C-H⋅⋅⋅O=C intramolecular H-bonds. The 2D (1) H NMR ROESY experiment led us to propose that the flat topology of the urethane-γ-Abz-amide moiety is predominantly preserved in a non-polar environment. The self-association of the energetically more favorable antiparallel β-strand-mimic in solid-state engenders an unusual 'flight of stairs' fabricated through face-to-face and edge-to-edge Ar⋅⋅⋅Ar interactions. In conjunction with FT-IR spectroscopic analysis in chloroform, we highlight that conformationally semi-rigid γ-Abz foldamer in appositely designed peptides may encourage unusual β-strand or β-sheet-like self-association and supramolecular organization stabilized via weak attractive forces.

  5. Hybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation.

    Science.gov (United States)

    Chu, Te-Wei; Feng, Jiayue; Yang, Jiyuan; Kopeček, Jindřich

    2015-12-28

    This work presents a new concept in hybrid hydrogel design. Synthetic water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) polymers grafted with multiple peptide nucleic acids (PNAs) are crosslinked upon addition of the linker DNA. The self-assembly is mediated by the PNA-DNA complexation, which results in the formation of hydrophilic polymer networks. We show that the hydrogels can be produced through two different types of complexations. Type I hydrogel is formed via the PNA/DNA double-helix hybridization. Type II hydrogel utilizes a unique "P-form" oligonucleotide triple-helix that comprises two PNA sequences and one DNA. Microrheology studies confirm the respective gelation processes and disclose a higher critical gelation concentration for the type I gel when compared to the type II design. Scanning electron microscopy reveals the interconnected microporous structure of both types of hydrogels. Type I double-helix hydrogel exhibits larger pore sizes than type II triple-helix gel. The latter apparently contains denser structure and displays greater elasticity as well. The designed hybrid hydrogels have potential as novel biomaterials for pharmaceutical and biomedical applications.

  6. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    Directory of Open Access Journals (Sweden)

    Yuji Miyahara

    2013-02-01

    Full Text Available Peptide nucleic acid (PNA has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  7. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes.

    Science.gov (United States)

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-02-07

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  8. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Storrs, Richard Wood [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by 31P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 Å of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an α-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  9. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Storrs, R.W.

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by [sup 31]P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 [Angstrom] of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an [alpha]-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  10. Identification of novel helper epitope peptides of Survivin cancer-associated antigen applicable to developing helper/killer-hybrid epitope long peptide cancer vaccine.

    Science.gov (United States)

    Ohtake, Junya; Ohkuri, Takayuki; Togashi, Yuji; Kitamura, Hidemitsu; Okuno, Kiyotaka; Nishimura, Takashi

    2014-09-01

    We identified novel helper epitope peptides of Survivin cancer antigen, which are presented to both HLA-DRB1*01:01 and DQB1*06:01. The helper epitope also contained three distinct Survivin-killer epitopes presented to HLA-A*02:01 and A*24:02. This 19 amino-acids epitope peptide (SU18) induced weak responses of Survivin-specific CD4(+) and CD8(+) T cells though it contained both helper and killer epitopes. To enhance the vaccine efficacy, we synthesized a long peptide by conjugating SU18 peptide and another DR53-restricted helper epitope peptide (SU22; 12 amino-acids) using glycine-linker. We designated this artificial 40 amino-acids long peptide containing two helper and three killer epitopes as Survivin-helper/killer-hybrid epitope long peptide (Survivin-H/K-HELP). Survivin-H/K-HELP allowed superior activation of IFN-γ-producing CD4(+) Th1 cells and CD8(+) Tc1 cells compared with the mixture of its component peptides (SU18 and SU22) in the presence of OK-432-treated monocyte-derived DC (Mo-DC). Survivin-H/K-HELP-pulsed Mo-DC pretreated with OK-432 also exhibited sustained antigen-presentation capability of stimulating Survivin-specific Th1 cells compared with Mo-DC pulsed with a mixture of SU18 and SU22 short peptides. Moreover, we demonstrated that Survivin-H/K-HELP induced a complete response in a breast cancer patient with the induction of cellular and humoral immune responses. Thus, we believe that an artificially synthesized Survivin-H/K-HELP will become an innovative cancer vaccine.

  11. A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells

    Directory of Open Access Journals (Sweden)

    Kawamoto Megumi

    2011-08-01

    Full Text Available Abstract Background Transferrin receptor (TfR is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and the regulation of cell growth. Recent studies have shown the elevated expression levels of TfR on cancer cells compared with normal cells. The elevated expression levels of this receptor in malignancies, which is the accessible extracellular protein, can be a fascinating target for the treatment of cancer. We have recently designed novel type of immunotoxin, termed "hybrid peptide", which is chemically synthesized and is composed of target-binding peptide and lytic peptide containing cationic-rich amino acids components that disintegrates the cell membrane for the cancer cell killing. The lytic peptide is newly designed to induce rapid killing of cancer cells due to conformational change. In this study, we designed TfR binding peptide connected with this novel lytic peptide and assessed the cytotoxic activity in vitro and in vivo. Methods In vitro: We assessed the cytotoxicity of TfR-lytic hybrid peptide for 12 cancer and 2 normal cell lines. The specificity for TfR is demonstrated by competitive assay using TfR antibody and siRNA. In addition, we performed analysis of confocal fluorescence microscopy and apoptosis assay by Annexin-V binding, caspase activity, and JC-1 staining to assess the change in mitochondria membrane potential. In vivo: TfR-lytic was administered intravenously in an athymic mice model with MDA-MB-231 cells. After three weeks tumor sections were histologically analyzed. Results The TfR-lytic hybrid peptide showed cytotoxic activity in 12 cancer cell lines, with IC50 values as low as 4.0-9.3 μM. Normal cells were less sensitive to this molecule, with IC50 values > 50 μM. Competition assay using TfR antibody and knockdown of this receptor by siRNA confirmed the specificity of the TfR-lytic hybrid peptide. In addition, it was revealed that this molecule can disintegrate the cell membrane of T47

  12. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides

    Science.gov (United States)

    Zitnay, Jared L.; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P.; Buehler, Markus J.; Yu, S. Michael; Weiss, Jeffrey A.

    2017-03-01

    Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury.

  13. A hydro/organo/hybrid gelator: a peptide lipid with turning aspartame head groups.

    Science.gov (United States)

    Mukai, Masaru; Minamikawa, Hiroyuki; Aoyagi, Masaru; Asakawa, Masumi; Shimizu, Toshimi; Kogiso, Masaki

    2013-04-01

    This work presents a novel bola-type peptide lipid which can gelate water, organic solvents, and water/organic-solvent mixtures. In its molecular structure, an amphiphilic dipeptide aspartame (L-α-aspartyl-L-phenylalanine methyl ester) is connected at both ends of an alkylene linker. The different morphologies in the hydrogel (helical nanotapes) and the organogel (tape-like nanostructures) were visualized by energy-filtering transmission electron microscopy (EF-TEM) and energy-filtering scanning electron microscopy (FE-SEM), and the molecular arrangement was examined using X-ray diffraction (XRD), infrared (IR) spectroscopy, and circular dichroism (CD) spectroscopy. Possessing a hydrophilic aspartic acid group and a (relatively) hydrophobic phenylalanine methyl ester group, the dipeptide head group can turn about in response to solvent polarity. As a consequence, the solvent condition changed the molecular packing of the gelator and affected the overall supramolecular structure of the gel. It is noted that the peptide lipid gelated mixed solvents of water and organic solvents such as dichloromethane, liquid-paraffin, olive-oil, silicone-oils, and so on. The present hybrid gel can simultaneously hold hydrophilic and hydrophobic functional materials.

  14. Lighting up silica nanotubes transcribed from the submicron structure of a metal-peptide hybrid

    Science.gov (United States)

    Pu, Fang; Ren, Jinsong

    2013-09-01

    Fluorescent silica nanotubes are attracting increasing interest because of their versatile applicability in a range of diverse fields. By using sol-gel transcription of tetraethylorthosilicate (TEOS) from various soft templates, silica nanotubes can be conveniently prepared. Metal-peptide hybrids with well-defined nanostructures and outstanding functionalities are very interesting candidates to serve as templates. Herein, we demonstrate that glutathione (GSH) can act as a building block for a bioinspired structure with dimensions down to the nanoscale, based on specific interactions between metal ions and the peptide. Congo red is able to selectively stain the nanofibres obtained, and appears apple-green in colour, implying that Congo red is promising to serve as an effective and convenient probe for determining the self-assembly of GSH and copper ions. Furthermore, silica nanotubes are synthesized using the nanofibres as a template in a very simple way. The silica nanotubes can be lit up by biomolecule-templated metal nanoparticles or nanoclusters and emit bright fluorescence. This work will certainly open up new opportunities in fabricating a broad range of nanostructured materials with versatile functionalities.

  15. Carbohydrate analysis on hybrid poly(dimethylsiloxane)/glass chips dynamically coated with ionic complementary peptide.

    Science.gov (United States)

    Li, Nan; Hai, Xiaoman; Yu, Xiaoling; Dang, Fuquan

    2017-01-20

    A facile and efficient dynamic coating method using an ionic complementary peptide was established for high-performance separation of 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled carbohydrates in a hybrid poly(dimethylsiloxane) (PDMS)/glass microfluidic channel. EAK16-II with a sequence of [(Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys)2] can readily self-organize into a complete coating layer tightly adsorbed on both hydrophobic PDMS and hydrophilic glass surfaces, which efficiently suppressed nonspecific analyte adsorption and minimized electroosmotic flow (EOF). Separation conditions were systematically investigated with respect to EAK16-II concentration, running buffer, buffer pH, and field strength (Esep). Under the optimal conditions, rapid and reproducible separations of maltodextrin ladder, glycans from glucosamine capsules, tablets, and pomegranate peel extracts were achieved with over 450000 theoretical plates per meter in the hybrid PDMS/glass microchannels dynamically coated with 1.0mg/mL EAK16-II-0.05% n-dodecyl β-d-maltoside (DDM), and the relative standard deviation (RSD) values were less than 3.2% (n=4) for the migration times. The present work provides a facile and efficient means to minimize EOF and nonspecific analyte adsorption in microfluidic chips fabricated in various substrates, thereby broadening the applications of microfluidic chips in complicated biological assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Tambralli, Ajay; Blakeney, Bryan; Anderson, Joel; Kushwaha, Meenakshi; Andukuri, Adinarayana; Jun, Ho-Wook [Department of Biomedical Engineering, University of Alabama at Birmingham, 801 Shelby Building, 1825 University Boulevard, Birmingham, AL 35294 (United States); Dean, Derrick [Department of Materials Science and Engineering, University of Alabama at Birmingham, BEC 254, 1150 10th Ave South, Birmingham, AL 35294 (United States)], E-mail: hwjun@uab.edu

    2009-06-01

    Nanofibrous electrospun poly ({epsilon}-caprolactone) (ePCL) scaffolds have inherent structural advantages, but lack of bioactivity has limited their usefulness in biomedical applications. Thus, here we report the development of a hybrid, nanostructured, extracellular matrix (ECM) mimicking scaffold by a combination of ePCL nanofibers and self-assembled peptide amphiphile (PA) nanofibers. The PAs have ECM mimicking characteristics including a cell adhesive ligand (RGDS) and matrix metalloproteinase-2 (MMP-2) mediated degradable sites. Transmission electron microscope imaging verified successful PA self-assembly into nanofibers (diameters of 8-10 nm) using a solvent evaporation method. This evaporation method was then used to successfully coat PAs onto ePCL nanofibers (diameters of 300-400 nm), to develop hybrid, bioactive scaffolds. Scanning electron microscope characterization showed that the PA coatings did not interfere with the porous ePCL nanofiber network. Human mesenchymal stem cells (hMSCs) were seeded onto the hybrid scaffolds to evaluate their bioactivity. Significantly greater attachment and spreading of hMSCs were observed on ePCL nanofibers coated with PA-RGDS as compared to ePCL nanofibers coated with PA-S (no cell adhesive ligand) and uncoated ePCL nanofibers. Overall, this novel strategy presents a new solution to overcome the current bioactivity challenges of electrospun scaffolds and combines the unique characteristics of ePCL nanofibers and self-assembled PA nanofibers to provide an ECM mimicking environment. This has great potential to be applied to many different electrospun scaffolds for various biomedical applications.

  17. Modeling the tetraphenylalanine-PEG hybrid amphiphile: from DFT calculations on the peptide to molecular dynamics simulations on the conjugate.

    Science.gov (United States)

    Zanuy, David; Hamley, Ian W; Alemán, Carlos

    2011-07-21

    The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helical-like arrangements. Furthermore, calculations indicate that backbone···side chain interactions involving the N-H of the amide groups and the π clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand, MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.

  18. [Anti-synthetase syndrome].

    Science.gov (United States)

    Novak, Srdan

    2012-01-01

    Antysynthetase syndrome is considered as a group ofidiopathic inflammatory myositis with charcteristic serologic hallmark--antibodies which recognise the aminoacyl-tRNA synthetasses (ARS). Clinical picture of those patients contains myositis and/or intersticial lung disease (ILD) and/or arthritis and/or fever and/or Raynaud phenomenon and sometimes characteristic look of mechanic's hands. Myositis can be overt, sometimes even absent, while IBP is major cause of morbidity and determines the outcome of the disease. Untill now eight different any-synthetase autoantibodies are recognised, and most frequent are findings of anti-histidyl-tRNa synthetase antibodies. Patients with other ARS autoantibodies usually have severe ILD. Drug of choice are steroids in dosage of 1 mg/kg with immunosupresive agent (azatioprin or methotrexate) while in severe IBP cyclophosphamide is needed. Recently succsesful treatment with rituximab in combination with cyclophosphamide is reported.

  19. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide.

    Science.gov (United States)

    Hwang, Jeongmin; San, Boi Hoa; Turner, Neill J; White, Lisa J; Faulk, Denver M; Badylak, Stephen F; Li, Yang; Yu, S Michael

    2017-04-15

    Decellularized extracellular matrix (ECM) derived from tissues and organs are emerging as important scaffold materials for regenerative medicine. Many believe that preservation of the native ECM structure during decellularization is highly desirable. However, because effective techniques to assess the structural damage in ECM are lacking, the disruptive effects of a decellularization method and the impact of the associated structural damage upon the scaffold's regenerative capacity are often debated. Using a novel collagen hybridizing peptide (CHP) that specifically binds to unfolded collagen chains, we investigated the molecular denaturation of collagen in the ECM decellularized by four commonly used cell-removing detergents: sodium dodecyl sulfate (SDS), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), sodium deoxycholate (SD), and Triton X-100. Staining of the detergent-treated porcine ligament and urinary bladder matrix with carboxyfluorescein-labeled CHP demonstrated that SDS and Triton X-100 denature the triple helical collagen molecule while CHAPS and SD do not, although second harmonic generation imaging and transmission electron microscopy (TEM) revealed that all four detergents disrupt collagen fibrils. Our findings from the CHP staining were further confirmed by the circular dichroism spectra of intact triple helical collagen molecules in CHAPS and SD solutions, and the TEM images of CHP-conjugated gold nanoparticles binding only to the SDS and Triton X-100 treated collagen fibrils. CHP is a powerful new tool for direct and reliable measurement of denatured collagen molecules in decellularized tissues. It is expected to have wide applications in the development and standardization of the tissue/organ decellularization technology. Preservation of the native ECM structure in decellularized tissues is highly desirable, since denaturation of ECM molecules (e.g., collagen) during decellularization can strongly influence the cellular response

  20. High in vitro antimicrobial activity of β-peptoid-peptide hybrid oligomers against planktonic and biofilm cultures of Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Liu, Yang; Knapp, Kolja Michael; Yang, Liang

    2013-01-01

    An array of β-peptoid-peptide hybrid oligomers displaying different amino acid/peptoid compositions and chain lengths was studied with respect to antimicrobial activity against Staphylococcus epidermidis both in planktonic and biofilm cultures, comparing the effects with those of the common...... higher concentrations were needed to eradicate mature (24-h-old) biofilms completely. Chiral and guanidinylated hybrids exhibited the fastest killing effects against slow-growing cells and had more favourable antibiofilm properties than analogues only containing lysine or lacking chirality in the β...

  1. Comparison of Engineered Peptide-Glycosaminoglycan Microfibrous Hybrid Scaffolds for Potential Applications in Cartilage Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Steven M. Romanelli

    2015-07-01

    Full Text Available Advances in tissue engineering have enabled the ability to design and fabricate biomaterials at the nanoscale that can actively mimic the natural cellular environment of host tissue. Of all tissues, cartilage remains difficult to regenerate due to its avascular nature. Herein we have developed two new hybrid polypeptide-glycosaminoglycan microfibrous scaffold constructs and compared their abilities to stimulate cell adhesion, proliferation, sulfated proteoglycan synthesis and soluble collagen synthesis when seeded with chondrocytes. Both constructs were designed utilizing self-assembled Fmoc-protected valyl cetylamide nanofibrous templates. The peptide components of the constructs were varied. For Construct I a short segment of dentin sialophosphoprotein followed by Type I collagen were attached to the templates using the layer-by-layer approach. For Construct II, a short peptide segment derived from the integrin subunit of Type II collagen binding protein expressed by chondrocytes was attached to the templates followed by Type II collagen. To both constructs, we then attached the natural polymer N-acetyl glucosamine, chitosan. Subsequently, the glycosaminoglycan chondroitin sulfate was then attached as the final layer. The scaffolds were characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, atomic force microscopy and scanning electron microscopy. In vitro culture studies were carried out in the presence of chondrocyte cells for both scaffolds and growth morphology was determined through optical microscopy and scanning electron microscopy taken at different magnifications at various days of culture. Cell proliferation studies indicated that while both constructs were biocompatible and supported the growth and adhesion of chondrocytes, Construct II stimulated cell adhesion at higher rates and resulted in the formation of three dimensional cell-scaffold matrices within 24 h. Proteoglycan

  2. Genetics Home Reference: glutathione synthetase deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions glutathione synthetase deficiency glutathione synthetase deficiency Enable Javascript to view the expand/ ... boxes. Download PDF Open All Close All Description Glutathione synthetase deficiency is a disorder that prevents the ...

  3. Assembling high activity phosphotriesterase composites using hybrid nanoparticle peptide-DNA scaffolded architectures

    Science.gov (United States)

    Breger, Joyce C.; Buckhout-White, Susan; Walper, Scott A.; Oh, Eunkeu; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2017-06-01

    Nanoparticle (NP) display potentially offers a new way to both stabilize and, in many cases, enhance enzyme activity over that seen for native protein in solution. However, the large, globular and sometimes multimeric nature of many enzymes limits their ability to attach directly to the surface of NPs, especially when the latter are colloidally stabilized with bulky PEGylated ligands. Engineering extended protein linkers into the enzymes to achieve direct attachment through the PEG surface often detrimentally alters the enzymes catalytic ability. Here, we demonstrate an alternate, hybrid biomaterials-based approach to achieving directed enzyme assembly on PEGylated NPs. We self-assemble a unique architecture consisting of a central semiconductor quantum dot (QD) scaffold displaying controlled ratios of extended peptide-DNA linkers which penetrate through the PEG surface to directly couple enzymes to the QD surface. As a test case, we utilize phosphotriesterase (PTE), an enzyme of bio-defense interest due to its ability to hydrolyze organophosphate nerve agents. Moreover, this unique approach still allows PTE to maintain enhanced activity while also suggesting the ability of DNA to enhance enzyme activity in and of itself.

  4. Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method

    Science.gov (United States)

    Machado, António; Castro, Joana; Cereija, Tatiana; Almeida, Carina

    2015-01-01

    Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6–99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis. PMID:25737820

  5. Porous silicon-cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides.

    Science.gov (United States)

    Rytkönen, Jussi; Arukuusk, Piret; Xu, Wujun; Kurrikoff, Kaido; Langel, Ulo; Lehto, Vesa-Pekka; Närvänen, Ale

    2014-02-01

    The largest obstacle to the use of oligonucleotides as therapeutic agents is the delivery of these large and negatively charged biomolecules through cell membranes into intracellular space. Mesoporous silicon (PSi) is widely recognized as a potential material for drug delivery purposes due to its several beneficial features like large surface area and pore volume, high loading capacity, biocompatibility, and biodegradability. In the present study, PSi nanoparticles stabilized by thermal oxidation or thermal carbonization and subsequently modified by grafting aminosilanes on the surface are utilized as an oligonucleotide carrier. Splice correcting oligonucleotides (SCOs), a model oligonucleotide drug, were loaded into the positively charged PSi nanoparticles with a loading degree as high as 14.3% (w/w). Rapid loading was achieved by electrostatic interactions, with the loading efficiencies reaching 100% within 5 min. The nanoparticles were shown to deliver and release SCOs, in its biologically active form, inside cells when formulated together with cell penetrating peptides (CPP). The biological effect was monitored with splice correction assay and confocal microscopy utilizing HeLa pLuc 705 cells. Furthermore, the use of PSi carrier platform in oligonucleotide delivery did not reduce the cell viability. Additionally, the SCO-CPP complexes formed in the pores of the carrier were stabilized against proteolytic digestion. The advantageous properties of protecting and releasing the cargo and the possibility to further functionalize the carrier surface make the hybrid nanoparticles a potential system for oligonucleotide delivery.

  6. Top-down mass spectrometry of hybrid materials with hydrophobic peptide and hydrophilic or hydrophobic polymer blocks.

    Science.gov (United States)

    Alalwiat, Ahlam; Grieshaber, Sarah E; Paik, Bradford A; Kiick, Kristi L; Jia, Xinqiao; Wesdemiotis, Chrys

    2015-11-21

    A multidimensional mass spectrometry (MS) methodology is introduced for the molecular level characterization of polymer-peptide (or polymer-protein) copolymers that cannot be crystallized or chromatographically purified. It encompasses electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALDI) coupled with mass analysis, tandem mass spectrometry (MS(2)) and gas-phase separation by ion mobility mass spectrometry (IM-MS). The entire analysis is performed in the mass spectrometer ("top-down" approach) within milliseconds and with high sensitivity, as demonstrated for hybrid materials composed of hydrophobic poly(tert-butyl acrylate) (PtBA) or hydrophilic poly(acrylic acid) (PAA) blocks tethered to the hydrophobic decapeptide VPGVGVPGVG (VG2) via triazole linkages. The composition of the major products can be rapidly surveyed by MALDI-MS and MS(2). For a more comprehensive characterization, the ESI-IM-MS (and MS(2)) combination is more suitable, as it separates the hybrid materials based on their unique charges and shapes from unconjugated polymer and partially hydrolyzed products. Such separation is essential for reducing spectral congestion, deconvoluting overlapping compositions and enabling straightforward structural assignments, both for the hybrid copolymers as well as the polymer and peptide reactants. The IM dimension also permits the measurement of collision cross-sections (CCSs), which reveal molecular architecture. The MS and MS(2) spectra of the mobility separated ions conclusively showed that [PtBA-VG2]m and [PAA-VG2]m chains with the expected compositions and sequences were formed. Single and double copolymer blocks (m = 1-2) could be detected. Further, the CCSs of the hybrids, which were prepared via azide/alkyne cycloadditions, confirmed the formation of macrocyclic structures. The top-down methodology described would be particularly useful for the detection and identification of peptide/protein-polymer conjugates which are

  7. Prediction of “Aggregation-Prone” Peptides with Hybrid Classification Approach

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2015-01-01

    Full Text Available Protein aggregation is a biological phenomenon caused by misfolding proteins aggregation and is associated with a wide variety of diseases, such as Alzheimer’s, Parkinson’s, and prion diseases. Many studies indicate that protein aggregation is mediated by short “aggregation-prone” peptide segments. Thus, the prediction of aggregation-prone sites plays a crucial role in the research of drug targets. Compared with the labor-intensive and time-consuming experiment approaches, the computational prediction of aggregation-prone sites is much desirable due to their convenience and high efficiency. In this study, we introduce two computational approaches Aggre_Easy and Aggre_Balance for predicting aggregation residues from the sequence information; here, the protein samples are represented by the composition of k-spaced amino acid pairs (CKSAAP. And we use the hybrid classification approach to predict aggregation-prone residues, which integrates the naïve Bayes classification to reduce the number of features, and two undersampling approaches EasyEnsemble and BalanceCascade to deal with samples imbalance problem. The Aggre_Easy achieves a promising performance with a sensitivity of 79.47%, a specificity of 80.70% and a MCC of 0.42; the sensitivity, specificity, and MCC of Aggre_Balance reach 70.32%, 80.70% and 0.42. Experimental results show that the performance of Aggre_Easy and Aggre_Balance predictor is better than several other state-of-the-art predictors. A user-friendly web server is built for prediction of aggregation-prone which is freely accessible to public at the website.

  8. High-throughput sequencing of peptoids and peptide-peptoid hybrids by partial edman degradation and mass spectrometry.

    Science.gov (United States)

    Thakkar, Amit; Cohen, Allison S; Connolly, Michael D; Zuckermann, Ronald N; Pei, Dehua

    2009-03-09

    A method for the rapid sequence determination of peptoids [oligo(N-substituted glycines)] and peptide-peptoid hybrids selected from one-bead-one-compound combinatorial libraries has been developed. In this method, beads carrying unique peptoid (or peptide-peptoid) sequences were subjected to multiple cycles of partial Edman degradation (PED) by treatment with a 1:3 (mol/mol) mixture of phenyl isothiocyanate (PITC) and 9-fluorenylmethyl chloroformate (Fmoc-Cl) to generate a series of N-terminal truncation products for each resin-bound peptoid. After PED, the Fmoc group was removed from the N-terminus and any reacted side chains via piperidine treatment. The resulting mixture of the full-length peptoid and its truncation products was analyzed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry, to reveal the sequence of the full-length peptoid. With a slight modification, the method was also effective in the sequence determination of peptide-peptoid hybrids. This rapid, high-throughput, sensitive, and inexpensive sequencing method should greatly expand the utility of combinatorial peptoid libraries in biomedical and materials research.

  9. Hierarchical structures based on self-assembling beta-hairpin peptides and their application as biomaterials and hybrid materials

    Science.gov (United States)

    Altunbas, Aysegul

    Self-assembly represents a robust and powerful paradigm for the bottom-up construction of nanostructures. Self-assembled peptide hydrogels are emerging as promising routes to novel multifunctional materials. The 20 amino acid MAX1and MAX8 peptides self-assemble into a three dimensional network of entangled, branched fibrils rich in beta-sheet secondary structure with a high density of lysine groups exposed on the fibril-surfaces. These hydrogels form self-supporting structures that shear thin upon application of shear and then immediately recover to a solid hydrogel upon cessation of shear which facilitates the local delivery of the hydrogel into a site in vivo. Templated condensation of silica precursors on self-assembled nanoscale peptide fibrils with various surface functionalities can be used to mimic biosilicification. This template-defined approach towards biomineralization was utilized for the controlled fabrication of 3D hybrid nanostructures. We report a study on the structure-property relationship of self-assembled peptide hydrogels where mineralization of individual fibrils through sol-gel chemistry was achieved. The nanostructure and consequent mechanical characteristics of these hybrid networks can be modulated by changing the stoichiometric parameters of the sol-gel process. Construction of such organic-inorganic hybrid networks by sol-gel processing of self-assembled peptide hydrogels has improved mechanical properties and resulted in materials with ˜ 3 orders of magnitude higher stiffness. The physical characterization of the hybrid networks via electron microscopy and small angle scattering is detailed and correlated with changes in the network mechanical behavior. The resultant high fidelity templating process suggests that the peptide substrate can be used to template the coating of other functional inorganic materials. Self-assembling peptide hydrogels encapsulating an anti-tumorigenic drug, curcumin, have been prepared and demonstrated to be

  10. Characterization of Peptides from Capsicum annuum Hybrid Seeds with Inhibitory Activity Against α-Amylase, Serine Proteinases and Fungi.

    Science.gov (United States)

    Vieira Bard, Gabriela C; Nascimento, Viviane V; Ribeiro, Suzanna F F; Rodrigues, Rosana; Perales, Jonas; Teixeira-Ferreira, André; Carvalho, André O; Fernandes, Katia Valevski S; Gomes, Valdirene M

    2015-04-01

    Over the last several years, the activity of antimicrobial peptides (AMPs), isolated from plant species, against different microorganisms has been demonstrated. More recently, some of these AMPs have been described as potent inhibitors of α-amylases and serine proteinases from insects and mammals. The aim of this work was to obtain AMPs from protein extracts of a hybrid Capsicum (Ikeda × UENF 1381) seeds and to evaluate their microbial and enzyme inhibitory activities. Initially, proteins were extracted from the Capsicum hybrid seeds in buffer (sodium phosphate pH 5.4,) and precipitated with ammonium sulfate (90% saturated). Extract of hybrid seeds was subjected to size exclusion chromatography, and three fractions were obtained: S1, S2 and S3. The amino acid sequence, obtained by mass spectrometry, of the 6 kDa peptide from the S3 fraction, named HyPep, showed 100% identity with PSI-1.2, a serine protease inhibitor isolated from C. annuum seeds, however the bifunctionality of this inhibitor against two enzymes is being shown for the first time in this work. The S3 fraction showed the highest antifungal activity, inhibiting all the yeast strains tested, and it also exhibited inhibitory activity against human salivary and Callosobruchus maculatus α-amylases as well as serine proteinases.

  11. Amino Acid-Dependent Attenuation of Toll-like Receptor Signaling by Peptide-Gold Nanoparticle Hybrids.

    Science.gov (United States)

    Yang, Hong; Fung, Shan-Yu; Xu, Shuyun; Sutherland, Darren P; Kollmann, Tobias R; Liu, Mingyao; Turvey, Stuart E

    2015-07-28

    Manipulation of immune responsiveness using nanodevices provides a potential approach to treat human diseases. Toll-like receptor (TLR) signaling plays a central role in the pathophysiology of many acute and chronic human inflammatory diseases, and pharmacological regulation of TLR responses is anticipated to be beneficial in many of these inflammatory conditions. Here we describe the discovery of a unique class of peptide-gold nanoparticle hybrids that exhibit a broad inhibitory activity on TLR signaling, inhibiting signaling through TLRs 2, 3, 4, and 5. As exemplified using TLR4, the nanoparticles were found to inhibit both arms of TLR4 signaling cascade triggered by the prototypical ligand, lipopolysaccharide (LPS). Through structure-activity relationship studies, we identified the key chemical components of the hybrids that contribute to their immunomodulatory activity. Specifically, the hydrophobicity and aromatic ring structure of the amino acids on the peptides were essential for modulating TLR4 responses. This work enhances our fundamental understanding of the role of nanoparticle surface chemistry in regulating innate immune signaling, and identifies specific nanoparticle hybrids that may represent a unique class of anti-inflammatory therapeutics for human inflammatory diseases.

  12. Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes.

    Science.gov (United States)

    Stender, H; Kurtzman, C; Hyldig-Nielsen, J J; Sørensen, D; Broomer, A; Oliveira, K; Perry-O'Keefe, H; Sage, A; Young, B; Coull, J

    2001-02-01

    A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.

  13. Fibrin Association at Hybrid Biointerfaces Made of Clot-Binding Peptides and Polythiophene.

    Science.gov (United States)

    Puiggalí-Jou, A; Del Valle, Luis J; Armelin, Elaine; Alemán, Carlos

    2016-10-01

    The properties as biointerfaces of electroactive conducting polymer-peptide biocomposites formed by poly(3,4-ethylenedioxythiophene) (PEDOT) and CREKA or CR(NMe)EKA peptide sequences (where Glu has been replaced by N-methyl-Glu in the latter) have been compared. CREKA is a linear pentapeptide that recognizes clotted plasma proteins and selectively homes to tumors, while CR(NMe)EKA is an engineer to improve such properties by altering peptide-fibrin interactions. Differences between PEDOT-CREKA and PEDOT-CR(NMe)EKA reflect dissemblance in the organization of the peptides into the polymeric matrix. Both peptides affect fibrinogen thrombin-catalyzed polymerization causing the immediate formation of fibrin, whereas in the absence of thrombin this phenomenon is only observed for CR(NMe)EKA. Consistently, the fibrin-adsorption capacity is higher for PEDOT-CR(NMe)EKA than for PEDOT-CREKA, even though in both cases adsorbed fibrin exhibits round-like morphologies rather than the characteristic fibrous structure. PEDOT-peptide films coated with fibrin are selective in terms of cell adhesion, promoting the attachment of metastatic cells with respect to normal cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Homology modeling and molecular docking studies of Bacillomycin and Iturin synthetases with novel ligands for the production of therapeutic lipopeptides.

    Science.gov (United States)

    Eswari, Jujjavarapu Satya; Dhagat, Swasti; Kaser, Shubham; Tiwari, Anoop

    2017-08-15

    Lipopeptide synthetases play an important role in the production of lipopeptides. Lipopeptides are molecules made up of peptides and fatty acid moieties and have shown to have a broad range of antimicrobial activity. As infectious diseases have caused severe health problems mainly resulting from the development of antibiotic resistant strains of disease causing microorganisms there is a need of alternatives to antibiotics. The lipopeptide synthetase of the corresponding lipopeptides can be used as templates to design these as drugs using computational techniques. The objective of this study was homology modeling and molecular docking of two lipopeptide synthetases, bacillomycin D synthetase and iturin A synthetase, with their ligands as a means of drug design. Schrödinger software was used for homology modeling and molecular docking. After the identification of ligands, molecular docking of these ligands with the lipopeptide (bacillomycin and iturin) synthetases was performed. The docking was tested on the parameters of docking score and glide energy. 5 out of 21 ligands were found to dock with bacillomycin D synthetase whereas 8 out of 20 ligands docked with the iturin A synthetase. The knowledge of the docking sites and docking characteristics of the lipopeptide synthetases mentioned in the paper with the ligands can provide advantages of high speed and reliability, reduced costs on chemicals and experiments and the ethical issues concerned with the use of animal models for screening of drug toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Fluorescence detection of KRAS2 mRNA hybridization in lung cancer cells with PNA-peptides containing an internal thiazole orange.

    Science.gov (United States)

    Sonar, Mahesh V; Wampole, Matthew E; Jin, Yuan-Yuan; Chen, Chang-Po; Thakur, Mathew L; Wickstrom, Eric

    2014-09-17

    We previously developed reporter-peptide nucleic acid (PNA)-peptides for sequence-specific radioimaging and fluorescence imaging of particular mRNAs in cells and tumors. However, a direct test for PNA-peptide hybridization with RNA in the cytoplasm would be desirable. Thiazole orange (TO) dye at the 5' end of a hybridization agent shows a strong increase in fluorescence quantum yield when stacked upon a 5' terminal base pair, in solution and in cells. We hypothesized that hybridization agents with an internal TO could distinguish a single base mutation in RNA. Thus, we designed KRAS2 PNA-IGF1 tetrapeptide agents with an internal TO adjacent to the middle base of the 12th codon, a frequent site of cancer-initiating mutations. Our molecular dynamics calculations predicted a disordered bulge with weaker hybridization resulting from a single RNA mismatch. We observed that single-stranded PNA-IGF1 tetrapeptide agents with an internal TO showed low fluorescence, but fluorescence escalated 5-6-fold upon hybridization with KRAS2 RNA. Circular dichroism melting curves showed ∼10 °C higher Tm for fully complementary vs single base mismatch TO-PNA-peptide agent duplexes with KRAS2 RNA. Fluorescence measurements of treated human lung cancer cells similarly showed elevated cytoplasmic fluorescence intensity with fully complementary vs single base mismatch agents. Sequence-specific elevation of internal TO fluorescence is consistent with our hypothesis of detecting cytoplasmic PNA-peptide:RNA hybridization if a mutant agent encounters the corresponding mutant mRNA.

  16. Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material

    Science.gov (United States)

    Fry, H. Christopher; Liu, Yuzi; Dimitrijevic, Nada M.; Rajh, Tijana

    2014-08-01

    In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL3K3-CO2H and c16-AHL3K9-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design.

  17. Structural features of peptoid-peptide hybrids in lipid-water interfaces

    DEFF Research Database (Denmark)

    Uggerhøj, Lars Erik; Munk, Jens K; Hansen, Paul R;

    2014-01-01

    The inclusion of peptoid monomers into antimicrobial peptides (AMPs) increases their proteolytic resistance, but introduces conformational flexibility (reduced hydrogen bonding ability and cis/trans isomerism). We here use NMR spectroscopy to answer how the insertion of a peptoid monomer influenc...

  18. MapReduce implementation of a hybrid spectral library-database search method for large-scale peptide identification.

    Science.gov (United States)

    Kalyanaraman, Ananth; Cannon, William R; Latt, Benjamin; Baxter, Douglas J

    2011-11-01

    A MapReduce-based implementation called MR-MSPolygraph for parallelizing peptide identification from mass spectrometry data is presented. The underlying serial method, MSPolygraph, uses a novel hybrid approach to match an experimental spectrum against a combination of a protein sequence database and a spectral library. Our MapReduce implementation can run on any Hadoop cluster environment. Experimental results demonstrate that, relative to the serial version, MR-MSPolygraph reduces the time to solution from weeks to hours, for processing tens of thousands of experimental spectra. Speedup and other related performance studies are also reported on a 400-core Hadoop cluster using spectral datasets from environmental microbial communities as inputs. The source code along with user documentation are available on http://compbio.eecs.wsu.edu/MR-MSPolygraph. ananth@eecs.wsu.edu; william.cannon@pnnl.gov. Supplementary data are available at Bioinformatics online.

  19. Unbiased Selection of Peptide-Peptoid Hybrids Specific for Lung Cancer Compared to Normal Lung Epithelial Cells.

    Science.gov (United States)

    Matharage, Jaya M; Minna, John D; Brekken, Rolf A; Udugamasooriya, D Gomika

    2015-12-18

    To develop widely applicable diagnostic and potentially therapeutic approaches overcoming protein heterogeneity in human cancer, we have developed a technology to unbiasedly select high specificity compound(s) that bind any biomolecule (e.g., proteins, lipids, carbohydrates) presented on the cancer cell surface but not on normal cells. We utilized a peptidomimetic based on-bead two-color (OBTC) combinatorial cell screen that can detect differences between two cell surfaces at high accuracy by looking for beads (where each bead in the library had one peptide-peptoid hybrid on the surface) that only bound cancer but not normal cells. We screened a library of 393 216 compounds targeting HCC4017 lung adenocarcinoma cells (labeled in red) in the presence of HBEC30KT normal bronchial epithelial cells (labeled in green) derived from the same tissue of the same patient. This screen identified a peptide-peptoid hybrid called PPS1 which displayed high specific binding for HCC4017 cancer cells over HBEC30KT cells. Specificity was validated through on-bead, ELISA-like and magnetic bead pulldown studies, while a scrambled version of PPS1 did not show any binding. Of interest, the simple dimeric version (PPS1D1) displayed cytotoxic activity on HCC4017 cells, but not on normal HBEC30KT cells. PPS1D1 also strongly accumulated in HCC4017 lung cancer xenografts in mice over control constructs. We conclude that such combinatorial screens using tumor and normal cells from the same patient have significant potential to develop new reagents for cancer biology, diagnosis, and potentially therapy.

  20. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    Directory of Open Access Journals (Sweden)

    Laakso Kati

    2007-10-01

    Full Text Available Abstract Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1 and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains.

  1. Peptide nucleic acid fluorescence in situ hybridization for identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii.

    Science.gov (United States)

    Zhang, Xiaofeng; Wu, Shan; Li, Ke; Shuai, Jiangbing; Dong, Qiang; Fang, Weihuan

    2012-07-02

    A fluorescent in situ hybridization (FISH) method in conjunction with fluorescin-labeled peptide nucleic acid (PNA) probes (PNA-FISH) for detection of Listeria species was developed. In silico analysis showed that three PNA probes Lis-16S-1, Lm-16S-2 and Liv-16S-5 were suitable for specific identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii, respectively. These probes were experimentally verified by their reactivity against 19 strains of six Listeria species (excluding newly described species Listeria marthii and Listeria rocourtiae) and eight other bacterial species. The PNA-FISH method was optimized as 30 min of hybridization with 0.2% Triton X-100 in the solution and used to identify 85 Listeria strains from individual putative Listeria colonies on PALCAM agar plates streaked from selectively enriched cultures of 780 food or food-related samples. Of the 85 Listeria strains, thirty-seven were identified as L. monocytogenes with the probe Lm-16S-2 and two as L. ivanovii with the probe Liv-16S-5 which was in agreement with the results obtained by the API LISTERIA method. Thus, the PNA-FISH protocol has the potential for identification of pathogenic Listeria spp. from food or food-related samples.

  2. PK20, a new opioid-neurotensin hybrid peptide that exhibits central and peripheral antinociceptive effects

    Directory of Open Access Journals (Sweden)

    Tsuda Yuko

    2010-12-01

    Full Text Available Abstract Background The clinical treatment of various types of pain relies upon the use of opioid analgesics. However most of them produce, in addition to the analgesic effect, several side effects such as the development of dependence and addiction as well as sedation, dysphoria, and constipation. One solution to these problems are chimeric compounds in which the opioid pharmacophore is hybridized with another type of compound to incease antinociceptive effects. Neurotensin-induced antinociception is not mediated through the opioid system. Therefore, hybridizing neurotensin with opioid elements may result in a potent synergistic antinociceptor. Results Using the known structure-activity relationships of neurotensin we have synthesized a new chimeric opioid-neurotensin compound PK20 which is characterized by a very strong antinociceptive potency. The observation that the opioid antagonist naltrexone did not completely reverse the antinociceptive effect, indicates the partial involvement of the nonopioid component in PK20 in the produced analgesia. Conclusions The opioid-neurotensin hybrid analogue PK20, in which opioid and neurotensin pharmacophores overlap partially, expresses high antinociceptive tail-flick effects after central as well as peripheral applications.

  3. Preparation of shell cross-linked nano-objects from hybrid-peptide block copolymers.

    Science.gov (United States)

    Rodríguez-Hernández, Juan; Babin, Jérôme; Zappone, Bruno; Lecommandoux, Sébastien

    2005-01-01

    Supramolecular structures formed by self-assembly of diblock copolymers in solution are stable over restricted environmental conditions: concentration, temperature, pH, or ion strength among others. To enlarge their domain of application, it appears necessary to develop stabilization strategies. We report here different strategies to stabilize the shell of micelles formed by self-assembly of amphiphilic polydiene-b-polypeptide diblock copolymers. For this purpose, covalent bonds can be formed between either amine or carboxylic acid groups distributed along the soluble peptide block and a cross-linking agent that contains respectively aldehyde or amine functions. Shell stabilization affords systems with unique properties that combine three main advantages: shape persistence, control of the porosity, and stimuli-responsive behavior. The covalent capture of such macromolecular objects has been studied by light scattering, AFM, and conductimetry measurements.

  4. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system

    Science.gov (United States)

    Inostroza-Brito, Karla E.; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H.; Monge-Marcet, Amàlia; Ferreira, Daniela S.; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L.; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S.; Mata, Alvaro

    2015-11-01

    Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.

  5. Drug Release Kinetics, Cell Uptake, and Tumor Toxicity of Hybrid VVVVVVKK Peptide-Assembled Polylactide Nanoparticles

    Science.gov (United States)

    Jabbari, Esmaiel; Yang, Xiaoming; Moeinzadeh, Seyedsina; He, Xuezhong

    2013-01-01

    An exciting approach to tumor delivery is encapsulation of the drug in self-assembled polymer-peptide nanoparticles. The objective of this work was to synthesize a conjugate of low molecular weight polylactide (LMW PLA) and V6K2 peptide, and investigate self-assembly, drug release kinetics, cell uptake and toxicity, drug pharmacokinetics, and tumor cell invasion with Doxorubicin (DOX) or paclitaxel (PTX). The results for PLA-V6K2 self-assembled NPs were compared with those of polyethylene glycol stabilized PLA (PLA-EG) NPs. The size of PLA-V6K2 and PLA-EG NPs were 100±20 and 130±50 nm, respectively, with polydispersity index of 1.04 and 1.14. The encapsulation efficiency of DOX in PLA-V6K2 and PLA-EG NPs was 44±9% and 55±5%, respectively, and that of PTX was >90 for both NP types. The release of DOX and PTX from PLA-V6K2 was slower than that of PLA-EG and the release rate was relatively constant with time. Based on molecular dynamic simulation, the less hydrophobic DOX was distributed in the lactide core as well as the peptide shell while the hydrophobic PTX was localized mainly to the lactide core. PLA-V6K2 NPs had significantly higher cell uptake by 4T1 mouse breast carcinoma cells compared to PLA-EG NPs, which was attributed to the electrostatic interactions between the peptide and negatively charged moieties on the cell membrane. PLA-V6K2 NPs showed no toxicity to marrow stromal cells. DOX loaded PLA-V6K2 NPs showed higher toxicity to 4T1 cells and the DNA damage response and apoptosis was delayed compared to the free DOX. DOX or PTX encapsulated in PLA-V6K2 NPs significantly reduced invasion of 4T1 cells compared to those cells treated with the drug in PLA-EG NPs. Invasion of 4T1 cells treated with DOX in PLA-V6K2 and PLA-EG NPs was 5±1% and 30±5%, respectively, and that of PTX was 11±2% and 40±7%. The AUC of DOX in PLA-V6K2 NPs was 67% and 21% higher than those of free DOX and PLA-EG NPs, respectively. DOX loaded PLA-V6K2 NPs injected in C3He

  6. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.

    1986-03-05

    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  7. Distribution of glutamine synthetase and carbamoyl-phosphate synthetase I in vertebrate liver.

    OpenAIRE

    Smith, D. D.; Campbell, J. W.

    1988-01-01

    Mitochondrial glutamine synthetase (EC 6.3.1.2) is the primary ammonia-detoxifying enzyme in avian liver and is therefore analogous in function to carbamoyl-phosphate synthetase I (ammonia) (EC 6.3.4.16) in mammalian liver. In mammalian liver, glutamine synthetase is cytosolic and its distribution is restricted to a few hepatocytes around the terminal venules. These cells do not express carbamoyl-phosphate synthetase I. Using immunocytochemistry, we show here that there is little or no zonati...

  8. Fluorometric polyethyleneglycol-peptide hybrid substrates for quantitative assay of protein disulfide isomerase

    DEFF Research Database (Denmark)

    Christiansen, Camilla; St Hilaire, Phaedria M; Winther, Jakob R.

    2004-01-01

    In eukaryotic cells the enzyme protein disulfide isomerase (PDI) is responsible for the formation and reshuffling of disulfide bonds in secretory proteins. The reaction carried out by PDI involves interaction with a highly complex mixture of polypeptide molecules that are in the process of folding....... This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type...... of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation...

  9. N-Terminal Fatty Acid Substitution Increases the Leishmanicidal Activity of CA(1-7)M(2-9), a Cecropin-Melittin Hybrid Peptide

    Science.gov (United States)

    Chicharro, Cristina; Granata, Cesare; Lozano, Rosario; Andreu, David; Rivas, Luis

    2001-01-01

    In order to improve the leishmanicidal activity of the synthetic cecropin A-melittin hybrid peptide CA(1-7)M(2-9) (KWKLFKKIGAVLKVL-NH2), a systematic study of its acylation with saturated linear fatty acids was carried out. Acylation of the Nɛ-7 lysine residue led to a drastic decrease in leishmanicidal activity, whereas acylation at lysine 1, in either the α or the ɛ NH2 group, increased up to 3 times the activity of the peptide against promastigotes and increased up to 15 times the activity of the peptide against amastigotes. Leishmanicidal activity increased with the length of the fatty acid chain, reaching a maximum for the lauroyl analogue (12 carbons). According to the fast kinetics, dissipation of membrane potential, and parasite membrane permeability to the nucleic acid binding probe SYTOX green, the lethal mechanism was directly related to plasma membrane permeabilization. PMID:11502512

  10. Design and characterization of hybrid peptide sol-gel materials for the solid state induction of neuronal differentiation

    Science.gov (United States)

    Jedlicka, Sabrina S.

    2007-12-01

    Cell-based therapeutics are a rapidly growing area of research, with considerable promise in the treatment of neurological diseases. One of the primary limitations to neuronal cell-based devices is the necessity to maintain cells in an immature or undifferentiated state in culture prior to transplantation. In many cases, the undifferentiated cell does not express the desired characteristics for implantation. Biologically functional nanomaterials provide the ability to manipulate the direct extracellular environment surrounding cells; influencing their fate and differentiation path. The ability to engineer the interface between the cells and culture materials provides a repeatable, stable means of directing cells down a specific growth path determined by endogenous signaling pathways. This materials approach to cellular engineering can limit the need for added exogenous growth factors, "feeder" layers, or animal sera, in addition to creating a homogenous cell population for transplantation. In this work, hybrid peptide ormosil materials were developed; designed to mimic the developing mammalian brain during corticogenesis. These materials have been developed to enhance the GABAergic phenotype of P19 embryonic carcinoma cells and immature immortalized neurons. The ability to develop a homogenous, directed cell population has implications in stem cell research, regenerative medicine, cell-based devices and biosensing technology.

  11. Multiple and sequential data acquisition method: an improved method for fragmentation and detection of cross-linked peptides on a hybrid linear trap quadrupole Orbitrap Velos mass spectrometer.

    Science.gov (United States)

    Rudashevskaya, Elena L; Breitwieser, Florian P; Huber, Marie L; Colinge, Jacques; Müller, André C; Bennett, Keiryn L

    2013-02-05

    The identification and validation of cross-linked peptides by mass spectrometry remains a daunting challenge for protein-protein cross-linking approaches when investigating protein interactions. This includes the fragmentation of cross-linked peptides in the mass spectrometer per se and following database searching, the matching of the molecular masses of the fragment ions to the correct cross-linked peptides. The hybrid linear trap quadrupole (LTQ) Orbitrap Velos combines the speed of the tandem mass spectrometry (MS/MS) duty circle with high mass accuracy, and these features were utilized in the current study to substantially improve the confidence in the identification of cross-linked peptides. An MS/MS method termed multiple and sequential data acquisition method (MSDAM) was developed. Preliminary optimization of the MS/MS settings was performed with a synthetic peptide (TP1) cross-linked with bis[sulfosuccinimidyl] suberate (BS(3)). On the basis of these results, MSDAM was created and assessed on the BS(3)-cross-linked bovine serum albumin (BSA) homodimer. MSDAM applies a series of multiple sequential fragmentation events with a range of different normalized collision energies (NCE) to the same precursor ion. The combination of a series of NCE enabled a considerable improvement in the quality of the fragmentation spectra for cross-linked peptides, and ultimately aided in the identification of the sequences of the cross-linked peptides. Concurrently, MSDAM provides confirmatory evidence from the formation of reporter ions fragments, which reduces the false positive rate of incorrectly assigned cross-linked peptides.

  12. A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice.

    Science.gov (United States)

    Gault, Victor A; Bhat, Vikas K; Irwin, Nigel; Flatt, Peter R

    2013-12-06

    Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon bind to related members of the same receptor superfamily and exert important effects on glucose homeostasis, insulin secretion, and energy regulation. The present study assessed the biological actions and therapeutic utility of novel GIP/glucagon/GLP-1 hybrid peptides. Nine novel peptides were synthesized and exhibited complete DPP-IV resistance and enhanced in vitro insulin secretion. The most promising peptide, [dA(2)]GLP-1/GcG, stimulated cAMP production in GIP, GLP-1, and glucagon receptor-transfected cells. Acute administration of [dA(2)]GLP-1/GcG in combination with glucose significantly lowered plasma glucose and increased plasma insulin in normal and obese diabetic (ob/ob) mice. Furthermore, [dA(2)]GLP-1/GcG elicited a protracted glucose-lowering and insulinotropic effect in high fat-fed mice. Twice daily administration of [dA(2)]GLP-1/GcG for 21 days decreased body weight and nonfasting plasma glucose and increased circulating plasma insulin concentrations in high fat-fed mice. Furthermore, [dA(2)]GLP-1/GcG significantly improved glucose tolerance and insulin sensitivity by day 21. Interestingly, locomotor activity was increased in [dA(2)]GLP-1/GcG mice, without appreciable changes in aspects of metabolic rate. Studies in knock-out mice confirmed the biological action of [dA(2)]GLP-1/GcG via multiple targets including GIP, GLP-1, and glucagon receptors. The data suggest significant promise for novel triple-acting hybrid peptides as therapeutic options for obesity and diabetes.

  13. Streptomyces hygroscopicus Has Two Glutamine Synthetase Genes

    NARCIS (Netherlands)

    Kumada, Y.; Takano, E.; Nagaoka, Kozo; Thompson, C.J.

    1990-01-01

    Streptomyces hygroscopicus, which produces the glutamine synthetase inhibitor phosphinothricin, possesses at least two genes (glnA and glnB) encoding distinct glutamine synthetase isoforms (GSI and GSII). The glnB gene was cloned from S. hygroscopicus DNA by complementation in an Escherichia coli gl

  14. EFFECT OF UP-REGULATION OF S-ADOMET SYNTHETASE ON TAXOL-INDUCED APOPTOSIS IN HUMAN BREAST CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    Chen Lirong; Zheng Shu; Fan Weimin; Zhang Suzhan

    1998-01-01

    Objective:To investigate the gene regulation of taxolinduced apoptosis. Methods: Northern blot hybridization,enzyme activity assay of S-AdoMet synthetase and flow cytometry were performed in the investigation of expression in the Mrna level and biological action of SAdoMet synthetase in taxol-induced apoptosis in human breast cancer cell line (Bcap 37). Results: Up-regulation of S-AdoMet synthetase expression was resulted by taxol treatment and the expression peaked at 48hours. Moreover,the up-regulation of S-AdoMet synthetase was associated with cytotoxicity of antimicrotubule agents including taxol and colchicine.Inhibition rate of S-AdoMet synthetase activity by 1%DMSO was 34% in taxol-treated cells and 14% in taxoluntreated cells compared to control groups, respectively.Posttreatment with 1% DMSO following pretreatment with individual antitumor agent for 3 hrs promoted apoptotic cell death of taxol-,colchicine-,and adriamycintreated Bcap37 cells. Conclusion : The induction of apoptosis enhanced by post-treatment with DMSO in taxol-treated cells is probably linked to its inhibition on enzyme activity of S-AdoMet synthetase ,suggesting that the increased expression of S-AdoMet synthetase possibly plays an important role in protecting cells from DNA fragmentation in taxol-induced apoptosis.

  15. Molecular cloning and regulation of expression of the genes for initiation factor 3 and two aminoacyl-tRNA synthetases.

    Science.gov (United States)

    Elseviers, D; Gallagher, P; Hoffman, A; Weinberg, B; Schwartz, I

    1982-10-01

    A 22-kilobase fragment of the Escherichia coli chromosome which contains the genes for translation initiation factor 3, phenylalanyl-tRNA synthetase, and threonyl-tRNA synthetase was cloned into plasmid pACYC184. The hybrid plasmid (designated pID1) complements a temperature-sensitive pheS lesion in E. coli NP37. pID1-transformed NP37 overproduce initiation factor 3 and phenylalanyl-tRNA synthetase. Gene expression from pID1 was studied in vitro in a coupled transcription-translation system and in minicells. The results suggest that the genes for initiation factor 3 and phenylalanyl- and threonyl-tRNA synthetase are regulated by different mechanisms.

  16. Covalent aspartylation of aspartyl-tRNA synthetase from Bakers' yeast by its cognat aspartyl adenylate: identification of the labeled residues

    Energy Technology Data Exchange (ETDEWEB)

    Mejdoub, H.; Kern, D.; Giege, R.; Ebel, J.P.; Boulanger, Y.; Reinbolt, J.

    1987-04-07

    Aspartyl-tRNA synthetase from bakers' yeast gives an unstable complex with the cognate adenylate, which reacts after dissociation with amino acid side chains of the protein. This leads to a covalent incorporation of (/sup 14/C)-aspartic acid into aspartyl-tRNA synthetase via amide or ester bonds formed between the ..cap alpha..-carboxyl group of activated aspartic acid and accessible lysines, serines, and threonines. This property is used to label the peptides at the surface of the enzyme. The main labeled residues have been identified, and their location in the primary structure is discussed in relation to structural properties of aspartyl-tRNA synthetase.

  17. Foldamers to nanotubes: influence of amino acid side chains in the hierarchical assembly of α,γ(4)-hybrid peptide helices.

    Science.gov (United States)

    Jadhav, Sandip V; Misra, Rajkumar; Gopi, Hosahudya N

    2014-12-08

    Supramolecular assembly of various artificially folded 12-helical architectures composed of γ(4) -Val, γ(4) -Leu and γ(4) -Phe residues is investigated. In contrast to the 12-helices composed of γ(4) -Val and γ(4) -Leu residues, the helices with γ(4) -Phe residues displayed unique elongated nanotubular architectures. The elongated nanotube assembly was further explored as a template for biomineralization of silver ions to silver nanowires. A comparative study using an analogous α-peptide helix reveals the importance of the spatial arrangement of aromatic side chains along the helical cylinder in a 12-helix. These results suggested that the proteolytically and structurally stable α,γ(4) -hybrid peptide 12-helices may serve as a new generation of potential templates in the design of functional biomaterials.

  18. Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1

    Directory of Open Access Journals (Sweden)

    Wagner Martin

    2006-03-01

    Full Text Available Abstract Background Cereulide, a depsipeptide structurally related to valinomycin, is responsible for the emetic type of gastrointestinal disease caused by Bacillus cereus. Recently, it has been shown that this toxin is produced by a nonribosomal peptide synthetase (NRPS, but its exact genetic organization and biochemical synthesis is unknown. Results The complete sequence of the cereulide synthetase (ces gene cluster, which encodes the enzymatic machinery required for the biosynthesis of cereulide, was dissected. The 24 kb ces gene cluster comprises 7 CDSs and includes, besides the typical NRPS genes like a phosphopantetheinyl transferase and two CDSs encoding enzyme modules for the activation and incorporation of monomers in the growing peptide chain, a CDS encoding a putative hydrolase in the upstream region and an ABC transporter in the downstream part. The enzyme modules responsible for incorporation of the hydroxyl acids showed an unusual structure while the modules responsible for the activation of the amino acids Ala and Val showed the typical domain organization of NRPS. The ces gene locus is flanked by genetic regions with high homology to virulence plasmids of B. cereus, Bacillus thuringiensis and Bacillus anthracis. PFGE and Southern hybridization showed that the ces genes are restricted to emetic B. cereus and indeed located on a 208 kb megaplasmid, which has high similarities to pXO1-like plasmids. Conclusion The ces gene cluster that is located on a pXO1-like virulence plasmid represents, beside the insecticidal and the anthrax toxins, a third type of B. cereus group toxins encoded on megaplasmids. The ces genes are restricted to emetic toxin producers, but pXO1-like plasmids are also present in emetic-like strains. These data might indicate the presence of an ancient plasmid in B. cereus which has acquired different virulence genes over time. Due to the unusual structure of the hydroxyl acid incorporating enzyme modules of Ces

  19. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    Improving crop nitrogen (N) utilization efficiency (NUE) is of major importance in modern agriculture in order to reduce the amount of N fertilizer used for crop production. There is a high demand for development of crops which are able to produce high yields but with a concomitantly lower N...... fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...... and wildtype control. However, when grown to maturity the differences between transgenic lines and wildtype were highly dependent on the growth conditions applied. The transgenic lines had a higher N utilization efficiency (NUtE) than wildtype control, but only when exposed to a mild N stress following...

  20. Genetics Home Reference: phosphoribosylpyrophosphate synthetase superactivity

    Science.gov (United States)

    ... synthetase superactivity ( PRS superactivity ) is characterized by the overproduction and accumulation of uric acid (a waste product ... chemical processes) in the blood and urine. The overproduction of uric acid can lead to gout, which ...

  1. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    Science.gov (United States)

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  2. Three independent techniques localize expression of transcript afp-11 and its bioactive peptide products to the paired AVK neurons in Ascaris suum: in situ hybridization, immunocytochemistry, and single cell mass spectrometry.

    Science.gov (United States)

    Jarecki, Jessica L; Viola, India R; Andersen, Kari M; Miller, Andrew H; Ramaker, Megan A; Vestling, Martha M; Stretton, Antony O

    2013-03-20

    We utilized three independent techniques, immunocytochemistry (ICC), single cell mass spectrometry (MS), and in situ hybridization (ISH), to localize neuropeptides and their transcripts in the nervous system of the nematode Ascaris suum . AF11 (SDIGISEPNFLRFa) is an endogenous peptide with potent paralytic effects on A. suum locomotory behavior. A highly specific antibody to AF11 showed robust immunostaining for AF11 in the paired AVK neurons in the ventral ganglion. We traced the processes from the AVK neurons into the ventral nerve cord and identified them as ventral cord interneurons. MS and MS/MS of single dissected AVKs detected AF11, two previously characterized peptides (AF25 and AF26), seven novel sequence-related peptides, including several sharing a PNFLRFamide C-terminus, and peptide NY, a peptide with an unrelated sequence. Also present in a subset of AVKs was AF2, a peptide encoded by the afp-4 transcript. By sequencing the afp-11 transcript, we discovered that it encodes AF11, all the AF11-related peptides detected by MS in AVK, and peptide NY. ISH detected the afp-11 transcript in AVK neurons, consistent with other techniques. ISH did not detect afp-11 in the ALA neuron, although both ICC and MS found AF11 in ca. 30% of ALAs. All 10 AF11-related peptides reduced acetylcholine-induced muscle contraction, but they differed in their rate of reversal of inhibition after removal of the peptide.

  3. Quantitative analysis of low-abundance serological proteins with peptide affinity-based enrichment and pseudo-multiple reaction monitoring by hybrid quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Kim, Kwang Hoe; Ahn, Yeong Hee; Ji, Eun Sun; Lee, Ju Yeon; Kim, Jin Young; An, Hyun Joo; Yoo, Jong Shin

    2015-07-02

    Multiple reaction monitoring (MRM) is commonly used for the quantitative analysis of proteins during mass pectrometry (MS), and has excellent specificity and sensitivity for an analyte in a complex sample. In this study, a pseudo-MRM method for the quantitative analysis of low-abundance serological proteins was developed using hybrid quadrupole time-of-flight (hybrid Q-TOF) MS and peptide affinity-based enrichment. First, a pseudo-MRM-based analysis using hybrid Q-TOF MS was performed for synthetic peptides selected as targets and spiked into tryptic digests of human serum. By integrating multiple transition signals corresponding to fragment ions in the full scan MS/MS spectrum of a precursor ion of the target peptide, a pseudo-MRM MS analysis of the target peptide showed an increased signal-to-noise (S/N) ratio and sensitivity, as well as an improved reproducibility. The pseudo-MRM method was then used for the quantitative analysis of the tryptic peptides of two low-abundance serological proteins, tissue inhibitor of metalloproteinase 1 (TIMP1) and tissue-type protein tyrosine phosphatase kappa (PTPκ), which were prepared with peptide affinity-based enrichment from human serum. Finally, this method was used to detect femtomolar amounts of target peptides derived from TIMP1 and PTPκ, with good coefficients of variation (CV 2.7% and 9.8%, respectively), using a few microliters of human serum from colorectal cancer patients. The results suggest that pseudo-MRM using hybrid Q-TOF MS, combined with peptide affinity-based enrichment, could become a promising alternative for the quantitative analysis of low-abundance target proteins of interest in complex serum samples that avoids protein depletion.

  4. Novel expression pattern of cytosolic gln synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata

    NARCIS (Netherlands)

    Berry, A.M.; Murphy, T.M.; Okubara, P.A.; Jacobsen, K.R.; Swensen, S.M.; Pawlowski, K.

    2004-01-01

    Gln synthetase (GS) is the key enzyme of primary ammonia assimilation in nitrogen-fixing root nodules of legumes and actinorhizal (Frankia-nodulated) plants. In root nodules of Datisca glomerata (Datiscaceae), transcripts hybridizing to a conserved coding region of the abundant nodule isoform, DgGS1

  5. Novel expression pattern of cytosolic gln synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata

    NARCIS (Netherlands)

    Berry, A.M.; Murphy, T.M.; Okubara, P.A.; Jacobsen, K.R.; Swensen, S.M.; Pawlowski, K.

    2004-01-01

    Gln synthetase (GS) is the key enzyme of primary ammonia assimilation in nitrogen-fixing root nodules of legumes and actinorhizal (Frankia-nodulated) plants. In root nodules of Datisca glomerata (Datiscaceae), transcripts hybridizing to a conserved coding region of the abundant nodule isoform,

  6. Differentiation of Boc-protected alpha,delta-/delta,alpha- and beta,delta-/delta,beta-hybrid peptide positional isomers by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Raju, G; Ramesh, V; Srinivas, R; Sharma, G V M; Shoban Babu, B

    2010-06-01

    Two new series of Boc-N-alpha,delta-/delta,alpha- and beta,delta-/delta,beta-hybrid peptides containing repeats of L-Ala-delta(5)-Caa/delta(5)-Caa-L-Ala and beta(3)-Caa-delta(5)-Caa/delta(5)-Caa-beta(3)-Caa (L-Ala = L-alanine, Caa = C-linked carbo amino acid derived from D-xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MS(n) spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc-group, and the side chain. The dipeptide positional isomers are differentiated by the collision-induced dissociation (CID) of the protonated peptides. The loss of 2-methylprop-1-ene is more pronounced for Boc-NH-L-Ala-delta-Caa-OCH(3) (1), whereas it is totally absent for its positional isomer Boc-NH-delta-Caa-L-Ala-OCH(3) (7), instead it shows significant loss of t-butanol. On the other hand, second isomeric pair shows significant loss of t-butanol and loss of acetone for Boc-NH-delta-Caa-beta-Caa-OCH(3) (18), whereas these are insignificant for its positional isomer Boc-NH-beta-Caa-delta-Caa-OCH(3) (13). The tetra- and hexapeptide positional isomers also show significant differences in MS(2) and MS(3) CID spectra. It is observed that 'b' ions are abundant when oxazolone structures are formed through five-membered cyclic transition state and cyclization process for larger 'b' ions led to its insignificant abundance. However, b(1)(+) ion is formed in case of delta,alpha-dipeptide that may have a six-membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di-, tetra-, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers.

  7. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    Science.gov (United States)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  8. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    Science.gov (United States)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  9. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe.

    Science.gov (United States)

    Laopa, Praethong S; Vilaivan, Tirayut; Hoven, Voravee P

    2013-01-07

    As inspired by the Dot blot analysis, a well known technique in molecular biology and genetics for detecting biomolecules, a new paper-based platform for colorimetric detection of specific DNA sequences employing peptide nucleic acid (PNA) as a probe has been developed. In this particular study, a pyrrolidinyl PNA bearing a conformationally rigid d-prolyl-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) was used as a probe. The filter paper was modified to be positively charged with grafted polymer brushes of quaternized poly(dimethylamino)ethyl methacrylate (QPDMAEMA) prepared by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate from the filter paper via ARGET ATRP followed by quaternization with methyl iodide. Following the Dot blot format, a DNA target was first immobilized via electrostatic interactions between the positive charges of the QPDMAEMA brushes and negative charges of the phosphate backbone of DNA. Upon hybridization with the biotinylated pyrrolidinyl peptide nucleic acid (b-PNA) probe, the immobilized DNA can be detected by naked eye observation of the yellow product generated by the enzymatic reaction employing HRP-labeled streptavidin. It has been demonstrated that this newly developed assay was capable of discriminating between complementary and single base mismatch targets at a detection limit of at least 10 fmol. In addition, the QPDMAEMA-grafted filter paper exhibited a superior performance to the commercial membranes, namely Nylon 66 and nitrocellulose.

  10. Fischer carbene mediated covalent grafting of a peptide nucleic acid on gold surfaces and IR optical detection of DNA hybridization with a transition metalcarbonyl label

    Science.gov (United States)

    Srivastava, Pratima; Ghasemi, Mahsa; Ray, Namrata; Sarkar, Amitabha; Kocabova, Jana; Lachmanova, Stepanka; Hromadova, Magdalena; Boujday, Souhir; Cauteruccio, Silvia; Thakare, Pramod; Licandro, Emanuela; Fosse, Céline; Salmain, Michèle

    2016-11-01

    Amine-reactive surfaces comprising N-hydroxysuccinimide ester groups as well as much more unusual Fischer alkoxymetallocarbene groups were generated on gold-coated surfaces via self-assembled monolayers of carboxy- and azido-terminated thiolates, respectively. These functions were further used to immobilize homothymine peptide nucleic acid (PNA) decamer in a covalent fashion involving the primary amine located at its N-terminus. These stepwise processes were monitored by polarization modulation reflection - absorption infrared spectroscopy (PM-RAIRS) that gave useful information on the molecular composition of the organic layers. PNA grafting and hybridization with complementary DNA strand were successfully transduced by quartz crystal microbalance (QCM) measurements. Unfortunately, attempts to transduce the hybridization optically by IR in a label-free fashion were inconclusive. Therefore we undertook to introduce an IR reporter group, namely a transition metalcarbonyl (TMC) entity at the 5‧ terminus of complementary DNA. Evidence for the formation of PNA-DNA heteroduplex was brought by the presence of ν(Ctbnd O) bands in the 2000 cm-1 region of the IR spectrum of the gold surface owing to the metalcarbonyl label.

  11. Peptide Nucleic Acid-Fluorescence In Situ Hybridization for Detection of Staphylococci From Endophthalmitis Isolates: A Proof-of-Concept Study.

    Science.gov (United States)

    Patel, Nimesh; Miller, Darlene; Relhan, Nidhi; Flynn, Harry W

    2017-08-01

    Rapid identification of pathogens causing endophthalmitis may improve treatment outcomes through early administration of species-specific medication. The current study reports a new molecular application of peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) with Staphylococcus-specific molecular PNA probes for the potential rapid detection of common pathogens causing endophthalmitis. An experimental study was designed to evaluate the proof of concept at the microbiology laboratory of the Bascom Palmer Eye Institute. Stored culture-positive staphylococci endophthalmitis isolates obtained from prior vitreous samples (n = 15), along with broth as negative controls (n = 5) were used. Inoculum was prepared to a final concentration of 1 × 105 colony-forming units/mL to ensure that the isolates were viable. Smears of samples were fixed and hybridized using QuickFISH protocol with probes for Staphylococcus. With PNA-FISH technique, Staphylococcus aureus was identified in 9 of 10 samples and coagulase-negative staphylococci were identified in 10 of 10 samples. Detection time was 20 minutes. This study serves a proof of concept using a new microbial detection system with FISH probes, and may have the potential for clinical use in the rapid and accurate identification of isolates from patients with endophthalmitis.

  12. let-65 is cytoplasmic methionyl tRNA synthetase in C. elegans

    Directory of Open Access Journals (Sweden)

    Maha Z. Alriyami

    2014-12-01

    Full Text Available Cytoplasmic methionyl tRNA synthetase (MetRS is one of more than 20 cytoplasmic aminoacyl tRNA synthetase enzymes (ARS. This family of enzymes catalyzes a process fundamental for protein translation. Using a combination of genetic mapping, oligonucleotide array comparative genomic hybridization, and phenotypic correlation, we show that mutations in the essential gene, let-65, reside within the predicted Caenorhabditis elegans homologue of MetRS, which we have named mars-1. We demonstrate that the lethality associated with alleles of let-65 is fully rescued by a transgenic array that spans the mars-1 genomic region. Furthermore, sequence analysis reveals that six let-65 alleles lead to the alteration of highly conserved amino acids.

  13. Technetium-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianquan; Guo Haixun [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Miao Yubin, E-mail: ymiao@salud.unm.ed [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131 (United States); Department of Dermatology, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-11-15

    Introduction: The purpose of this study was to examine whether {sup 99m}Tc-labeled Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone ({alpha}-MSH) hybrid peptide targeting both melanocortin-1 (MC1) and {alpha}{sub v{beta}3} integrin receptors was superior in melanoma targeting to {sup 99m}Tc-labeled {alpha}-MSH or RGD peptide targeting only the MC1 or {alpha}{sub v{beta}3} integrin receptor. Methods: RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were designed to target both MC1 and {alpha}{sub v{beta}3} integrin receptors, MC1 receptor only and {alpha}{sub v{beta}3} integrin receptor only, respectively. The MC1 or {alpha}{sub v{beta}3} integrin receptor binding affinities of three peptides were determined in M21 human melanoma cells. The melanoma targeting properties of {sup 99m}Tc-labeled RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were determined in M21 human melanoma-xenografted nude mice. Meanwhile, the melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was blocked with various non-radiolabeled peptides in M21 melanoma xenografts. Results: RGD-Lys-(Arg{sup 11})CCMSH displayed 2.0 and 403 nM binding affinities to both MC1 and {alpha}{sub v{beta}3} integrin receptors, whereas RAD-Lys-(Arg{sup 11})CCMSH or RGD-Lys-(Arg{sup 11})CCMSHscramble lost their {alpha}{sub v{beta}3} integrin receptor binding affinity by greater than 248-fold or MC1 receptor binding affinity by more than 100-fold, respectively. The melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was 2.49 and 2.24 times (P < .05) the melanoma uptakes of {sup 99m}Tc-RAD-Lys-(Arg{sup 11})CCMSH and {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSHscramble at 2 h post-injection, respectively. Either RGD or (Arg{sup 11})CCMSH peptide co-injection could block 42% and 57% of the tumor uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH, whereas the coinjection of RGD+(Arg{sup 11})CCMSH peptide mixture

  14. Synthesis of Glu-tRNA(Gln) by engineered and natural aminoacyl-tRNA synthetases.

    Science.gov (United States)

    Rodríguez-Hernández, Annia; Bhaskaran, Hari; Hadd, Andrew; Perona, John J

    2010-08-10

    A protein engineering approach to delineating which distinct elements of homologous tRNA synthetase architectures are responsible for divergent RNA-amino acid pairing specificities is described. Previously, we constructed a hybrid enzyme in which 23 amino acids from the catalytic domain of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) were replaced with the corresponding residues of human glutamyl-tRNA synthetase (GluRS). The engineered hybrid (GlnRS S1/L1/L2) synthesizes Glu-tRNA(Gln) more than 10(4)-fold more efficiently than GlnRS. Detailed comparison of kinetic parameters between GlnRS S1/L1/L2 and the naturally occurring Methanothermobacter thermautotrophicus GluRS(ND), which is also capable of Glu-tRNA(Gln) synthesis, now shows that both k(cat) and K(m) for glutamate are recapitulated in the engineered enzyme, but that K(m) for tRNA is 200-fold higher. Thus, the simultaneous optimization of paired amino acid and tRNA binding sites found in a naturally occurring enzyme is not recapitulated in a hybrid that is successfully engineered for amino acid complementarity. We infer that the GlnRS architecture has differentiated to match only cognate amino acid-RNA pairs, and that the substrate selection functions do not operate independently of each other. Design and characterization of four additional hybrids identify further residues involved in improving complementarity for glutamate and in communicating between amino acid and tRNA binding sites. The robust catalytic function demonstrated in this engineered system offers a novel platform for exploring the stereochemical origins of coding as a property of the ancient Rossmann fold.

  15. Role of Motif III in Catalysis by Acetyl-CoA Synthetase

    Directory of Open Access Journals (Sweden)

    Cheryl Ingram-Smith

    2012-01-01

    Full Text Available The acyl-adenylate-forming enzyme superfamily, consisting of acyl- and aryl-CoA synthetases, the adenylation domain of the nonribosomal peptide synthetases, and luciferase, has three signature motifs (I–III and ten conserved core motifs (A1–A10, some of which overlap the signature motifs. The consensus sequence for signature motif III (core motif A7 in acetyl-CoA synthetase is Y-X-S/T/A-G-D, with an invariant fifth position, highly conserved first and fourth positions, and variable second and third positions. Kinetic studies of enzyme variants revealed that an alteration at any position resulted in a strong decrease in the catalytic rate, although the most deleterious effects were observed when the first or fifth positions were changed. Structural modeling suggests that the highly conserved Tyr in the first position plays a key role in active site architecture through interaction with a highly conserved active-site Gln, and the invariant Asp in the fifth position plays a critical role in ATP binding and catalysis through interaction with the 2′- and 3′-OH groups of the ribose moiety. Interactions between these Asp and ATP are observed in all structures available for members of the superfamily, consistent with a critical role in substrate binding and catalysis for this invariant residue.

  16. Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18.

    Science.gov (United States)

    Bao, Baolong; Pestinger, Valerie; Hassan, Yousef I; Borgstahl, Gloria E O; Kolar, Carol; Zempleni, Janos

    2011-05-01

    Holocarboxylase synthetase (HCS) mediates the binding of biotin to lysine (K) residues in histones H2A, H3 and H4; HCS knockdown disturbs gene regulation and decreases stress resistance and lifespan in eukaryotes. We tested the hypothesis that HCS interacts physically with histone H3 for subsequent biotinylation. Co-immunoprecipitation experiments were conducted and provided evidence that HCS co-localizes with histone H3 in human cells; physical interactions between HCS and H3 were confirmed using limited proteolysis assays. Yeast two-hybrid (Y2H) studies revealed that the N-terminal and C-terminal domains in HCS participate in H3 binding. Recombinant human HCS was produced and exhibited biological activity, as evidenced by biotinylation of its known substrate, recombinant p67. Recombinant histone H3.2 and synthetic H3-based peptides were also good targets for biotinylation by recombinant HCS (rHCS) in vitro, based on tracing histone-bound biotin with [(3)H]biotin, streptavidin and anti-biotin antibody. Biotinylation site-specific antibodies were generated and revealed that both K9 and K18 in H3 were biotinylated by HCS. Collectively, these studies provide conclusive evidence that HCS interacts directly with histone H3, causing biotinylation of K9 and K18. We speculate that the targeting of HCS to distinct regions in human chromatin is mediated by DNA sequence, biotin, RNA, epigenetic marks or chromatin proteins.

  17. Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Chakraburtty, Rekha; White, Janet; Takano, Eriko; Bibb, Mervyn

    1996-01-01

    An internal segment of the (p)ppGpp synthetase gene, relA, of Streptomyces coelicolor A3(2) was amplified from genomic DNA using the polymerase chain reaction and used as a hybridization probe to isolate the complete gene from a cosmid library. relA lies downstream of a gene (apt) that apparently en

  18. Focused upon hybridization: rapid and high sensitivity detection of DNA using isotachophoresis and peptide nucleic acid probes.

    Science.gov (United States)

    Ostromohov, Nadya; Schwartz, Ortal; Bercovici, Moran

    2015-09-15

    We present a novel assay for rapid and high sensitivity detection of nucleic acids without amplification. Utilizing the neutral backbone of peptide nucleic acids (PNA), our method is based on the design of low electrophoretic mobility PNA probes, which do not focus under isotachophoresis (ITP) unless bound to their target sequence. Thus, background noise associated with free probes is entirely eliminated, significantly improving the signal-to-noise ratio while maintaining a simple single-step assay requiring no amplification steps. We provide a detailed analytical model and experimentally demonstrate the ability to detect targets as short as 17 nucleotides (nt) and a limit of detection of 100 fM with a dynamic range of 5 decades. We also demonstrate that the assay can be successfully implemented for detection of DNA in human serum without loss of signal. The assay requires 15 min to complete, and it could potentially be used in applications where rapid and highly sensitive amplification-free detection of nucleic acids is desired.

  19. Sustained release of hepatocyte growth factor by cationic self-assembling peptide/heparin hybrid hydrogel improves β-cell survival and function through modulating inflammatory response

    Science.gov (United States)

    Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping

    2016-01-01

    Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786

  20. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    Science.gov (United States)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  1. Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; San-Bento, Rita; Nielsen, Jens

    2010-01-01

    Saccharomyces cerevisiae has in several cases been proven to be a suitable host for the production of natural products and was recently exploited for the production of non-ribosomal peptides. Synthesis of non-ribosomal peptides (NRPs) is mediated by NRP synthetases (NRPSs), modular enzymes, which...

  2. Dual receptor-targeting ⁹⁹mTc-labeled Arg-Gly-Asp-conjugated Alpha-Melanocyte stimulating hormone hybrid peptides for human melanoma imaging.

    Science.gov (United States)

    Xu, Jingli; Yang, Jianquan; Miao, Yubin

    2015-04-01

    The aim of this study was to examine whether the substitution of the Lys linker with the aminooctanoic acid (Aoc) and polyethylene glycol (PEG) linker could substantially decrease the non-specific renal uptake of (99m)Tc-labeled Arg-Gly-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) hybrid peptides. The RGD motif {Arg-Gly-Asp-DTyr-Asp} was coupled to [Cys(3,4,10), D-Phe(7), Arg(11)]α-MSH₃₋₁₃ via the Aoc or PEG₂ linker to generate RGD-Aoc-(Arg(11))CCMSH and RGD-PEG-(Arg(11))CCMSH. The biodistribution results of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH were examined in M21 human melanoma-xenografted nude mice. The substitution of Lys linker with Aoc and PEG₂ linker significantly reduced the renal uptake of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH by 58% and 63% at 2h post-injection. The renal uptake of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH was 27.93 ± 3.98 and 22.01 ± 9.89% ID/g at 2 h post-injection. (99m)Tc-RGD-Aoc-(Arg(11))CCMSH displayed higher tumor uptake than (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH (2.35 ± 0.12 vs. 1.71 ± 0.25% ID/g at 2 h post-injection). The M21 human melanoma lesions could be clearly visualized by SPECT/CT using (99m)Tc-RGD-Aoc-(Arg(11))CCMSH as an imaging probe. The favorable effect of Aoc and PEG₂ linker in reducing the renal uptake provided a new insight into the design of novel dual receptor-targeting radiolabeled peptides. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Overexpression of glutamine synthetases confers transgenic rice herbicide resistance

    Institute of Scientific and Technical Information of China (English)

    Sun Hui; Huang Qiman; Su Jin

    2005-01-01

    Glutamine synthetase (GS, E.C.6.3.1.2) is a key enzyme involved in the assimilation of inorganic nitrogen in higher plants and gram-negative microorganisms. GS is the targeting enzyme of a herbicide phosphinothricin (PPT) or Basta. In order to generate PPT-resistant transgenic rice via overexpression of GS, we constructed a plant expression vector p2GS harboring two different isoenzymes GS1 and GS2 cDNAs under the control of constitutive promoters of rice Act1 and maize Ubiquitin(Ubi) genes. The p2GS was introduced into rice genome by Agrobacterium-mediated transformation and confirmed by PCR and Southern blot hybridization. GS-transgene expression was first detected by Northern blot analyses. Results from Basta test indicated that GS-transgenic plants can tolerate as high as 0.3% Basta solution. In addition, our results also demonstrated that GS overexpression conferred transformed rice calli PPT resistance. Thus, GS cassette can serve as a selective marker gene instead of bar cassette for selection of PPT transformants.

  4. In vivo modification of Azotobacter chroococcum glutamine synthetase.

    Science.gov (United States)

    Muñoz-Centeno, M C; Cejudo, F J; Paneque, A

    1994-03-15

    A monospecific anti-(glutamine synthetase) antibody raised against glutamine synthetase of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 immunoreacted with glutamine synthetase from the N2-fixing heterotrophic bacterium Azotobacter chroococcum. In Western-blotting experiments this antibody recognized a single protein of a molecular mass of 59 kDa corresponding to glutamine synthetase subunit. This protein was in vivo-labelled in response to addition of ammonium, both [3H]adenine and H(3)32PO4 preincubation of the cells being equally effective. Nevertheless, the amount of glutamine synthetase present in A. chroococcum was independent of the available nitrogen source. Modified, inactive glutamine synthetase was re-activated by treatment with snake-venom phosphodiesterase but not by alkaline phosphatase. L-Methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, prevented the enzyme from being covalently modified. We conclude that, in A. chroococcum, glutamine synthetase is adenylylated in response to ammonium and that for the modification to take place ammonium must be metabolized.

  5. Retinal Vasculitis in Anti-Synthetase Syndrome.

    Science.gov (United States)

    Donovan, Christopher P; Pecen, Paula E; Baynes, Kimberly; Ehlers, Justis P; Srivastava, Sunil K

    2016-09-01

    A 31-year-old woman with a history of anti-synthetase syndrome-related myositis and interstitial lung disease presented with acute-onset blurry vision and rash on her hands and feet. Visual acuity was hand motion in her right eye and 20/40 in her left eye. Dilated fundus exam showed extensive retinal vasculitis, diffuse intraretinal hemorrhages, and subretinal fluid. Optical coherence tomography revealed significant macular thickening, and fluorescein angiography revealed vascular leakage with peripheral nonperfusion. Aggressive systemic immunosuppression was initiated, with gradual resolution of her disease during 8 months of follow-up. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:874-879.]. Copyright 2016, SLACK Incorporated.

  6. The microsomal dicarboxylyl-CoA synthetase.

    Science.gov (United States)

    Vamecq, J; de Hoffmann, E; Van Hoof, F

    1985-09-15

    Dicarboxylic acids are products of the omega-oxidation of monocarboxylic acids. We demonstrate that in rat liver dicarboxylic acids (C5-C16) can be converted into their CoA esters by a dicarboxylyl-CoA synthetase. During this activation ATP, which cannot be replaced by GTP, is converted into AMP and PPi, both acting as feedback inhibitors of the reaction. Thermolabile at 37 degrees C, and optimally active at pH 6.5, dicarboxylyl-CoA synthetase displays the highest activity on dodecanedioic acid (2 micromol/min per g of liver). Cell-fractionation studies indicate that this enzyme belongs to the hepatic microsomal fraction. Investigations about the fate of dicarboxylyl-CoA esters disclosed the existence of an oxidase, which could be measured by monitoring the production of H2O2. In our assay conditions this H2O2 production is dependent on and closely follows the CoA consumption. It appears that the chain-length specificity of the handling of dicarboxylic acids by this catabolic pathway (activation to acyl-CoA and oxidation with H2O2 production) parallels the pattern of the degradation of exogenous dicarboxylic acids in vivo.

  7. Aminoacyl-tRNA synthetases database.

    Science.gov (United States)

    Szymanski, M; Deniziak, M A; Barciszewski, J

    2001-01-01

    Aminoacyl-tRNA synthetases (AARSs) are at the center of the question of the origin of life. They constitute a family of enzymes integrating the two levels of cellular organization: nucleic acids and proteins. AARSs arose early in evolution and are believed to be a group of ancient proteins. They are responsible for attaching amino acid residues to their cognate tRNA molecules, which is the first step in the protein synthesis. The role they play in a living cell is essential for the precise deciphering of the genetic code. The analysis of AARSs evolutionary history was not possible for a long time due to a lack of a sufficiently large number of their amino acid sequences. The emerging picture of synthetases' evolution is a result of recent achievements in genomics [Woese,C., Olsen,G.J., Ibba,M. and Söll,D. (2000) Microbiol. Mol. Biol. Rev., 64, 202-236]. In this paper we present a short introduction to the AARSs database. The updated database contains 1047 AARS primary structures from archaebacteria, eubacteria, mitochondria, chloroplasts and eukaryotic cells. It is the compilation of amino acid sequences of all AARSs known to date, which are available as separate entries via the WWW at http://biobases.ibch.poznan.pl/aars/.

  8. Inhibition of αIIbβ3 Ligand Binding by an αIIb Peptide that Clasps the Hybrid Domain to the βI Domain of β3.

    Directory of Open Access Journals (Sweden)

    Wen Hwa Lee

    Full Text Available Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313-320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384 and the β1 domain (E297 as well as an intrapeptide bond (pE315-pR317 were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding.

  9. Priming immunization against cholera toxin and E. coli heat-labile toxin by a cholera toxin short peptide-beta-galactosidase hybrid synthesized in E. coli.

    OpenAIRE

    Jacob, C O; Leitner, M.; Zamir, A.; Salomon, D.; Arnon, R

    1985-01-01

    A synthetic oligodeoxynucleotide encoding for a small peptide was employed for the expression of this peptide in a form suitable for immunization. The encoded peptide, namely, the region 50-64 of the B subunit of cholera toxin (CTP3), had previously been identified as a relevant epitope of cholera toxin. Thus, multiple immunizations with its conjugate to a protein carrier led to an efficient neutralizing response against native cholera toxin. Immunization with the resulting fusion protein of ...

  10. Glutamine Synthetase: Role in Neurological Disorders.

    Science.gov (United States)

    Jayakumar, Arumugam R; Norenberg, Michael D

    2016-01-01

    Glutamine synthetase (GS) is an ATP-dependent enzyme found in most species that synthesizes glutamine from glutamate and ammonia. In brain, GS is exclusively located in astrocytes where it serves to maintain the glutamate-glutamine cycle, as well as nitrogen metabolism. Changes in the activity of GS, as well as its gene expression, along with excitotoxicity, have been identified in a number of neurological conditions. The literature describing alterations in the activation and gene expression of GS, as well as its involvement in different neurological disorders, however, is incomplete. This review summarizes changes in GS gene expression/activity and its potential contribution to the pathogenesis of several neurological disorders, including hepatic encephalopathy, ischemia, epilepsy, Alzheimer's disease, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and astroglial neoplasms. This review also explores the possibility of targeting GS in the therapy of these conditions.

  11. Mechanistic issues in asparagine synthetase catalysis.

    Science.gov (United States)

    Richards, N G; Schuster, S M

    1998-01-01

    The enzymatic synthesis of asparagine is an ATP-dependent process that utilizes the nitrogen atom derived from either glutamine or ammonia. Despite a long history of kinetic and mechanistic investigation, there is no universally accepted catalytic mechanism for this seemingly straightforward carboxyl group activating enzyme, especially as regards those steps immediately preceding amide bond formation. This chapter considers four issues dealing with the mechanism: (a) the structural organization of the active site(s) partaking in glutamine utilization and aspartate activation; (b) the relationship of asparagine synthetase to other amidotransferases; (c) the way in which ATP is used to activate the beta-carboxyl group; and (d) the detailed mechanism by which nitrogen is transferred.

  12. Primary structure of the succinyl-CoA synthetase of Escherichia coli.

    Science.gov (United States)

    Buck, D; Spencer, M E; Guest, J R

    1985-10-22

    The primary structure of the succinyl-CoA synthetase of Escherichia coli has been deduced from the nucleotide sequence of a 2451-base-pair segment of DNA containing the corresponding sucC (beta subunit) and sucD (alpha subunit) genes. The genes are located at one end of a gene cluster that encodes several citric acid cycle enzymes: gltA-sdhCDAB-sucABCD; gltA, citrate synthase; sdh, succinate dehydrogenase; sucA and sucB, the dehydrogenase (E1) and succinyltransferase (E2) components of the 2-oxoglutarate dehydrogenase complex. The sucC and sucD genes are separated from the sucA and sucB genes by a 273-base-pair segment containing four palindromic units, but they appear to be expressed from a sucABCD read-through transcript that extends from the suc promoter to a potential rho-independent terminator at the distal end of sucD. The stop codon of the sucC gene overlaps the sucD initiation codon by a single nucleotide, indicating close translational coupling of the sucC and sucD genes. The sucC gene comprises 1161 base pairs (388 codons, excluding the stop codon), and it encodes a polypeptide of Mr 41 390 corresponding to the beta subunit of succinyl-CoA synthetase. The sucD gene comprises 864 base pairs (288 codons, excluding the start and stop codons), and it encodes a product of Mr 29 644, corresponding to the alpha subunit of succinyl-CoA synthetase. The alpha subunit contains a 12-residue amino acid sequence that is identical with the histidine peptide previously isolated from the phosphoenzyme. This sequence forms part of one of the two potential nucleotide binding sites detected in the alpha subunit.

  13. The McbB component of microcin B17 synthetase is a zinc metalloprotein.

    Science.gov (United States)

    Zamble, D B; McClure, C P; Penner-Hahn, J E; Walsh, C T

    2000-12-26

    The microcin B17 synthetase converts glycine, serine, and cysteine residues in a polypeptide precursor into oxazoles and thiazoles during the maturation of the Escherichia coli antibiotic Microcin B17. This multimeric enzyme is composed of three subunits (McbB, McbC, and McbD), and it employs both ATP and FMN as cofactors. The McbB subunit was purified as a fusion with the maltose-binding protein (MBP), and metal analysis revealed that this protein binds 0.91+/-0.17 zinc atoms. Upon incubation of MBP-McbB with excess zinc, the stoichiometry increased to two atoms of zinc bound, but metal binding to the second site resulted in a decrease in the heterocyclization activity when MBP-McbB was reconstituted with the other components of the synthetase. Apo-protein was prepared by using p-hydroxymercuriphenylsulfonic acid (PMPS), and loss of the metal caused a severe reduction in enzymatic activity. However, if dithiothreitol was added to the PMPS reactions within a few minutes, enzymatic activity was retained and MBP-McbB could be reconstituted with zinc. Spectroscopic analysis of the cobalt-containing protein and extended X-ray absorption fine structure analysis of the zinc-containing protein both provide evidence for a tetrathiolate coordination sphere. Site-directed mutants of MBP-McbB as well as the synthetase tagged with the calmodulin-binding peptide were constructed. Activity assays and metal analysis were used to determine which of the six cysteines in McbB are metal ligands. These results suggest that the zinc cofactor in McbB plays a structural role.

  14. Signal enhancement for gene detection based on a redox reaction of [Fe(CN)(6)](4-) mediated by ferrocene at the terminal of a peptide nucleic acid as a probe with hybridization-amenable conformational flexibility.

    Science.gov (United States)

    Aoki, Hiroshi; Tao, Hiroaki

    2008-07-01

    Electrochemically enhanced DNA detection was demonstrated by utilizing the couple of a synthesized ferrocene-terminated peptide nucleic acid (PNA) with a cysteine anchor and a sacrificial electron donor [Fe(CN)(6)](4-). DNA detection sensors were prepared by modifying a gold electrode surface with a mixed monolayer of the probe PNA and 11-hydroxy-1-undecanethiol (11-HUT), protecting [Fe(CN)(6)](4-) from any unexpected redox reaction. Before hybridization, the terminal ferrocene moiety of the probe was subject to a redox reaction due to the flexible probe structure and, in the presence of [Fe(CN)(6)](4-), the observed current was amplified based on regeneration of the ferrocene moiety. Hybridization decreased the redox current of the ferrocene. This occurred because hybridization rigidified the probe structure: the ferrocene moiety was then removed from the electrode surface, and the redox reaction of [Fe(CN)(6)](4-) was again prevented. The change in the anodic current before and after hybridization was enhanced 1.75-fold by using the electron donor [Fe(CN)(6)](4-). Sequence-specific detection of the complementary target DNA was also demonstrated.

  15. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    OpenAIRE

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-01-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxi...

  16. Cyclization of polyketides and non-ribosomal peptides on and off their assembly lines.

    Science.gov (United States)

    Pang, Bo; Wang, Min; Liu, Wen

    2016-02-01

    Modular polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that serve as templates to program the assembly of short carboxylic acids and amino acids in a primarily co-linear manner. The variation, combination, permutation and evolution of their functional units (e.g., modules, domains and proteins) along with their association with external enzymes have resulted in the generation of numerous versions of templates, the roles of which have not been fully recognized in the structural diversification of polyketides, non-ribosomal peptides and their hybrids present in nature. In this Highlight, we focus on the assembly-line enzymology and associated chemistry by providing examples of some newly characterized cyclization reactions that occur on and off the assembly lines during and after chain elongation for the purpose of elucidating the template effects of PKSs and NRPSs. A fundamental understanding of the underlying biosynthetic logic would facilitate the elucidation of chemical information contained within the PKS or NRPS templates and benefit the development of strategies for genome mining, biosynthesis-inspired chemical synthesis and combinatorial biosynthesis.

  17. Sensibilidad in vitro de micobacterias a dos péptidos sintéticos híbridos con actividad antimicrobiana In-vitro activity of two hybrid synthetic peptides having antimicrobial activity against mycobacteria

    Directory of Open Access Journals (Sweden)

    E. Zerbini

    2006-12-01

    Full Text Available El aumento de aislamientos clínicos de Mycobacterium tuberculosis resistentes a las drogas esenciales y de casos de micobacteriosis diseminadas debidas al complejo Mycobacterium avium hacen necesario investigar nuevos agentes antimicobacterianos. Los péptidos antimicrobianos son un nuevo grupo de antibióticos que poseen un mecanismo de acción particular. Algunos de ellos, como la cecropina y la melitina, han sido aislados de insectos y han demostrado buena actividad in vitro contra bacterias gram positivas y gram negativas. Híbridos sintéticos de esos péptidos han presentado mayor actividad que los péptidos individuales. En este trabajo se evaluó la actividad in vitro de dos péptidos híbridos sintéticos de melitina y cecropina contra M. tuberculosis, complejo M. avium, Mycobacterium fortuitum y Mycobacterium smegmatis. Se determinó la concentración inhibitoria mínima empleando la técnica de macrodilución en caldo. Luego se estableció la concentración bactericida mínima en medio Lowenstein Jensen. Los péptidos evaluados mostraron ser activos in vitro contra M. smegmatis, mientras que no presentaron ninguna actividad contra las otras micobacterias estudiadas.The increase in both Mycobacterium tuberculosis human clinical isolates resistant to the essential drugs and cases of disseminated micobacteriosis due to Mycobacterium avium Complex, underlines the need to investigate new antimicobacterial agents. The antimicrobial peptides are a new group of active antibiotics with a particular mechanism of action. Some of them, like cecropin and melittin, isolated from insects, have demonstrated good in vitro activity against Gram-positive and Gram-negative bacteria. Synthetic hybrids of those peptides have been more active than individual peptides. In this study, the in vitro activity of two hybrid synthetic peptides from melittin and cecropin against M. tuberculosis, M. avium Complex, Mycobacterium fortuitum and Mycobacterium smegmatis

  18. PRS1 is a key member of the gene family encoding phosphoribosylpyrophosphate synthetase in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Carter, Andrew T.; Beiche, Flora; Hove-Jensen, Bjarne;

    1997-01-01

    In Saccharomyces cerevisiae the metabolite phosphoribosyl-pyrophosphate (PRPP) is required for purine, pyrimidine, tryptophan and histidine biosynthesis. Enzymes that can synthesize PRPP can be encoded by at least four genes. We have studied 5-phospho-ribosyl-1(α)-pyrophosphate synthetases (PRS......) genetically and biochemically. Each of the four genes, all of which are transcribed, has been disrupted in haploid yeast strains of each mating type and although all disruptants are able to grow on complete medium, differences in growth rate and enzyme activity suggest that disruption of PRS1 or PRS3 has...... a significant effect on cell metabolism, whereas disruption of PRS2 or PRS4 has little measurable effect. Using Western blot analysis with antisera raised against peptides derived from the non-homology region (NHR) and the N-terminal half of the PRS1 gene product it has been shown that the NHR is not removed...

  19. Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon.

    Science.gov (United States)

    Nguyen, T Van; Lee, J Eugene; Sweredoski, Michael J; Yang, Seung-Joo; Jeon, Seung-Je; Harrison, Joseph S; Yim, Jung-Hyuk; Lee, Sang Ghil; Handa, Hiroshi; Kuhlman, Brian; Jeong, Ji-Seon; Reitsma, Justin M; Park, Chul-Seung; Hess, Sonja; Deshaies, Raymond J

    2016-03-17

    Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation.

  20. Expression of the plastid-located glutamine synthetase of Medicago truncatula. Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids.

    Science.gov (United States)

    Melo, Paula M; Lima, Lígia M; Santos, Isabel M; Carvalho, Helena G; Cullimore, Julie V

    2003-05-01

    In this paper, we report the cloning and characterization of the plastid-located glutamine synthetase (GS) of Medicago truncatula Gaertn (MtGS2). A cDNA was isolated encoding a GS2 precursor polypeptide of 428 amino acids composing an N-terminal transit peptide of 49 amino acids. Expression analysis, by Westerns and by northern hybridization, revealed that MtGS2 is expressed in both photosynthetic and non-photosynthetic organs. Both transcripts and proteins of MtGS2 were detected in substantial amounts in root nodules, suggesting that the enzyme might be performing some important role in this organ. Surprisingly, about 40% of the plastid GS in nodules occurred in the non-processed precursor form (preGS2). This precursor was not detected in any other organ studied and moreover was not observed in non-fixing nodules. Cellular fractionation of nodule extracts revealed that preGS2 is associated with the plastids and that it is catalytically inactive. Immunogold electron microscopy revealed a frequent coincidence of GS with the plastid envelope. Taken together, these results suggest a nodule-specific accumulation of the GS2 precursor at the surface of the plastids in nitrogen-fixing nodules. These results may reflect a regulation of GS2 activity in relation to nitrogen fixation at the level of protein import into nodule plastids.

  1. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    Science.gov (United States)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  2. [Evaluation of peptide nucleic acid fluorescent in situ hybridization (PNA FISH) method in the identifi cation of Candida species isolated from blood cultures].

    Science.gov (United States)

    Aydemir, Gonca; Koç, Ayşe Nedret; Atalay, Mustafa Altay

    2016-04-01

    In recent years, increased number of patients who are hospitalized in intensive care units, received immunosuppressive therapy and treated with broad-spectrum antibiotics that can lead an increase in the incidence of systemic candidiasis. In these patients, the most common clinical manifestation is candidemia. Since the identification of Candida species isolated from blood cultures is time consuming by conventional (morphological and biochemical) methods, rapid, reliable and accurate methods are needed. For this purpose novel systems have been developed to identify the agent directly. The aim of this study was to evaluate the peptide nucleic acid fluorescent in situ hybridization (PNA FISH) method for the identification of Candida species by comparing with the conventional methods. A total of 50 patients who were admitted to Erciyes University Medical Faculty Hospital clinics and followed with prediagnosis of systemic fungal infections whose blood cultures were positive for the yeasts between July 2011 and July 2012 were included in the study. The conventional identification of Candida isolates was performed by considering macroscopic and microscopic morphology, germ tube test, cycloheximide sensitivity, urease activity and carbohydrate assimilation patterns with API 20C AUX (bioMerieux, France) test. PNA FISH method was conducted by the use of a commercial kit namely Yeast Traffic Light(®) PNA FISH (AdvanDx, USA). According to morphological and biochemical characteristics (conventional methods), 19 (38%) out of 50 Candida isolates were identified as C.albicans, 12 (24%) as C.glabrata, five (10%) as C.parapsilosis, five (10%) as C.kefyr, four (8%) as C.krusei, two (4%) as C.guilliermondii, two (4%) as C.tropicalis and one (2%) as C.lusitaniae. On the other hand, 24 (48%) of the isolates were identified as C.albicans/C.parapsilosis (with green fluorescence), 16 (32%) as C.glabrata/C.krusei (with red fluorescence) and one (%2) as C.tropicalis (with yellow

  3. Glutamine synthetase induced spinal seizures in rats.

    Science.gov (United States)

    Shin, Dong Won; Yoon, Young Sul; Matsumoto, Masato; Huang, Wencheng; Ceraulo, Phil; Young, Wise

    2003-02-01

    Glutamine synthetase (GS) is a key enzyme in the regulation of glutamate neurotransmission in the central nervous system. It is responsible for converting glutamate to glutamine, consuming one ATP and NH3 in the process. Glutamate is neurotoxic when it accumulates in extracellular fluids. We investigated the effects of GS in both a spinal cord injury (SCI) model and normal rats. 0.1-ml of low (2- micro M) and high (55- micro M) concentrations of GS were applied, intrathecally, to the spinal cord of rats under pentobarbital anesthesia. Immediately after an intrathecal injection into the L1-L3 space, the rats developed convulsive movements. These movements initially consisted of myoclonic twitches of the paravertebral muscles close to the injection site, repeated tonic and clonic contractions and extensions of the hind limbs (hind limb seizures) that spread to the fore limbs, and finally rotational axial movements of the body. An EMG of the paravertebral muscles, fore and hind limbs, showed the extent of the muscle activities. GS (2- micro M) caused spinal seizures in the rats after the SCI, and GS (6- micro M) produced seizures in the uninjured anesthetized rats. Denatured GS (70 degrees C, 1 hour) also produced spinal seizures, although higher concentrations were required. We suggest that GS may be directly blocking the release of GABA, or the receptors, in the spinal cord.

  4. The glutamine synthetase gene family in Populus

    Directory of Open Access Journals (Sweden)

    Cánovas Francisco M

    2011-08-01

    Full Text Available Abstract Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1 and 1 which codes for the choroplastic GS isoform (GS2. Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types.

  5. Evolutionary divergence of chloroplast FAD synthetase proteins

    Directory of Open Access Journals (Sweden)

    Arilla-Luna Sonia

    2010-10-01

    Full Text Available Abstract Background Flavin adenine dinucleotide synthetases (FADSs - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history. Results Using a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus. Conclusions A structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity.

  6. Structure of the adenylation-peptidyl carrier protein didomain of the Microcystis aeruginosa microcystin synthetase McyG.

    Science.gov (United States)

    Tan, Xiao-Feng; Dai, Ya-Nan; Zhou, Kang; Jiang, Yong-Liang; Ren, Yan-Min; Chen, Yuxing; Zhou, Cong-Zhao

    2015-04-01

    Microcystins, which are the most common cause of hepatotoxicity associated with cyanobacterial water blooms, are assembled in vivo on a large multienzyme complex via a mixed nonribosomal peptide synthetase/polyketide synthetase (NRPS/PKS). The biosynthesis of microcystin in Microcystis aeruginosa PCC 7806 starts with the enzyme McyG, which contains an adenylation-peptidyl carrier protein (A-PCP) didomain for loading the starter unit to assemble the side chain of an Adda residue. However, the catalytic mechanism remains unclear. Here, the 2.45 Å resolution crystal structure of the McyG A-PCP didomain complexed with the catalytic intermediate L-phenylalanyl-adenylate (L-Phe-AMP) is reported. Each asymmetric unit contains two protein molecules, one of which consists of the A-PCP didomain and the other of which comprises only the A domain. Structural analyses suggest that Val227 is likely to be critical for the selection of hydrophobic substrates. Moreover, two distinct interfaces demonstrating variable crosstalk between the PCP domain and the A domain were observed. A catalytic cycle for the adenylation and peptide transfer of the A-PCP didomain is proposed.

  7. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    Science.gov (United States)

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  8. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  9. Characterization of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne; Hove-Jensen, Bjarne; Garber, Bruce B.;

    1985-01-01

    This study describes the isolation and characterization of a mutant (strain GP122) of Salmonella typhimurium with a partial deficiency of phosphoribosylpyrophosphate (PRPP) synthetase activity. This strain was isolated in a purE deoD gpt purine auxotroph by a procedure designed to select guanosine......-utilizing mutants. Strain GP122 had roughly 15% of the PRPP synthetase activity and 25% of the PRPP pool of its parent strain. The mutant exhibited many of the predicted consequences of a decreased PRPP pool and a defective PRPP synthetase enzyme, including: poor growth on purine bases; decreased accumulation of 5...... phosphoribosyltransferase, enzymes involved in the pyrimidine de novo biosynthetic pathway; growth stimulation by PRPP-sparing compounds (e.g. guanosine, histidine); poor growth in low phosphate medium; and increased heat lability of the defective enzyme. This mutant strain also had increased levels of guanosine 5...

  10. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    Science.gov (United States)

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. Copyright © 2016 by the American Academy of Pediatrics.

  11. Leader Peptide Establishes Dehydration Order, Promotes Efficiency, and Ensures Fidelity During Lacticin 481 Biosynthesis.

    Science.gov (United States)

    Thibodeaux, Christopher J; Wagoner, Joshua; Yu, Yi; van der Donk, Wilfred A

    2016-05-25

    The mechanisms by which lanthipeptide synthetases control the order in which they catalyze multiple chemical processes are poorly understood. The lacticin 481 synthetase (LctM) cleaves eight chemical bonds and forms six new chemical bonds in a controlled and ordered process. Two general mechanisms have been suggested for the temporal and spatial control of these transformations. In the spatial positioning model, leader peptide binding promotes certain reactions by establishing the spatial orientation of the substrate peptide relative to the synthetase active sites. In the intermediate structure model, the LctM-catalyzed dehydration and cyclization reactions that occur in two distinct active sites orchestrate the overall process by imparting a specific structure into the maturing peptide that facilitates the ensuing reaction. Using isotopically labeled LctA analogues with engineered lacticin 481 biosynthetic machinery and mass spectrometry analysis, we show here that the LctA leader peptide plays critical roles in establishing the modification order and enhancing the catalytic efficiency and fidelity of the synthetase. The data are most consistent with a mechanistic model for LctM where both spatial positioning and intermediate structure contribute to efficient biosynthesis.

  12. Assignment of two human autoantigen genes-isoleucyl-tRNA synthetase locates to 9q21 and lysyl-tRNA synthetase locates to 16q23-q24

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.C.; Blinder, J.; Pai, S.I. [National Inst. of Health, Bethesda, MD (United States)] [and others

    1996-08-15

    Protein synthesis is initiated by the attachment of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (aaRS). Five of twenty human aaRS (histidyl-RS, threonyl-RS, alanyl-RS, glycyl-RS, and isoleucyl-RS) have been identified as targets of autoantibodies in the autoimmune disease polymyositis/dermatomyositis. Autoantibodies to human lysyl-RS, a sixth autoantigenic aminoacyl-RS, were recently identified. The genes for histidyl-RS and threonyl-RS have been localized to chromosome 5, and we recently reported that the genes for alanyl-RS and glycyl-RS localize to chromosomes 16 and 7, respectively. To understand the genesis of autoimmune responses to aaRS better, we have used PCR-based screening of somatic cell hybrid panels and fluorescence in situ hybridization (FISH) to assign the genes for isoleucyl-RS and lysyl-RS. 19 refs., 1 fig.

  13. Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase.

    Science.gov (United States)

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Balish, Rebecca S; Meagher, Richard B

    2005-06-01

    Cysteine sulfhydryl-rich peptide thiols are believed to play important roles in the detoxification of many heavy metals and metalloids such as arsenic, mercury, and cadmium in plants. The gamma-glutamylcysteine synthetase (gamma-ECS) catalyzes the synthesis of the dipeptidethiol gamma-glu-cys (gamma-EC), the first step in the biosynthesis of phytochelatins (PCs). Arabidopsis thaliana, engineered to express the bacterial gamma-ECS gene under control of a strong constitutive actin regulatory sequence (A2), expressed gamma-ECS at levels approaching 0.1% of total protein. In response to arsenic, mercury, and cadmium stresses, the levels of gamma-EC and its derivatives, glutathione (GSH) and PCs, were increased in the A2::ECS transgenic plants to three- to 20-fold higher concentrations than the increases that occurred in wild-type (WT). Compared to cadmium and mercury treatments, arsenic treatment most significantly increased levels of gamma-EC and PCs in both the A2::ECS transgenic and WT plants. The A2::ECS transgenic plants were highly resistant to arsenic and weakly resistant to mercury. Although exposure to cadmium produced three- to fivefold increases in levels of gamma-EC-related peptides in the A2::ECS lines, these plants were significantly more sensitive to Cd(II) than WT and trace levels of Cd(II) blocked resistance to arsenic and mercury. A few possible mechanisms for gamma-ECS-enhanced arsenic and mercury resistance and cadmium hypersensitivity are discussed.

  14. Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates Mg x ATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-D-ribosyl (alpha-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, alpha,beta-methylene ATP ...

  15. Glutamine Synthetase Deficiency in Murine Astrocytes Results in Neonatal Death

    NARCIS (Netherlands)

    Y. He; T.B.M. Hakvoort; J.L.M. Vermeulen; W.T. Labruyere; D.R. de Waart; W.S. van der Hel; J.M. Ruijter; H.B.M. Uylings; W.H. Lamers

    2010-01-01

    Glutamine synthetase (GS) is a key enzyme in the "glutamine-glutamate cycle" between astrocytes and neurons, but its function in vivo was thus far tested only pharmacologically. Crossing GS(fl/lacZ) or GS(fl/f)l mice with hGFAP-Cre mice resulted in prenatal excision of the GS(fl) allele in astrocyte

  16. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    Science.gov (United States)

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.

  17. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    Science.gov (United States)

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  18. Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats

    DEFF Research Database (Denmark)

    Galbo, H; Saugmann, P; Richter, Erik

    1979-01-01

    Rats were either physically trained by a 12 wk swimming program or were freely eating or weight matched, sedentary controls. Trained rats had a higher relative liver weight and total hepatic glycogen synthetase (EC 2.4.1.11) activity and a lower phosphorylase (EC 2.4.1.1) activity than the other...

  19. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  20. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling.

    Science.gov (United States)

    Bernard, Stéphanie M; Habash, Dimah Z

    2009-01-01

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  1. Biodiscovery of aluminum binding peptides

    Science.gov (United States)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  2. Evolution of cyclic peptide protease inhibitors.

    Science.gov (United States)

    Young, Travis S; Young, Douglas D; Ahmad, Insha; Louis, John M; Benkovic, Stephen J; Schultz, Peter G

    2011-07-05

    We report a bacterial system for the evolution of cyclic peptides that makes use of an expanded set of amino acid building blocks. Orthogonal aminoacyl-tRNA synthetase/tRNA(CUA) pairs, together with a split intein system were used to biosynthesize a library of ribosomal peptides containing amino acids with unique structures and reactivities. This peptide library was subsequently used to evolve an inhibitor of HIV protease using a selection based on cellular viability. Two of three cyclic peptides isolated after two rounds of selection contained the keto amino acid p-benzoylphenylalanine (pBzF). The most potent peptide (G12: GIXVSL; X=pBzF) inhibited HIV protease through the formation of a covalent Schiff base adduct of the pBzF residue with the ε-amino group of Lys 14 on the protease. This result suggests that an expanded genetic code can confer an evolutionary advantage in response to selective pressure. Moreover, the combination of natural evolutionary processes with chemically biased building blocks provides another strategy for the generation of biologically active peptides using microbial systems.

  3. Evaluation of multiple reaction monitoring cubed for the analysis of tachykinin related peptides in rat spinal cord using a hybrid triple quadrupole-linear ion trap mass spectrometer.

    Science.gov (United States)

    Pailleux, Floriane; Beaudry, Francis

    2014-02-01

    Targeted peptide methods generally use HPLC-MS/MRM approaches. Although dependent on the instrumental resolution, interferences may occur while performing analysis of complex biological matrices. HPLC-MS/MRM(3) is a technique, which provides a significantly better selectivity, compared with HPLC-MS/MRM assay. HPLC-MS/MRM(3) allows the detection and quantitation by enriching standard MRM with secondary product ions that are generated within the linear ion trap. Substance P (SP) and neurokinin A (NKA) are tachykinin peptides playing a central role in pain transmission. The objective of this study was to verify whether HPLC-MS/MRM(3) could provide significant advantages over a more traditional HPLC-MS/MRM assay for the quantification of SP and NKA in rat spinal cord. The results suggest that reconstructed MRM(3) chromatograms display significant improvements with the nearly complete elimination of interfering peaks but the sensitivity (i.e. signal-to-noise ratio) was severely reduced. The precision (%CV) observed was between 3.5% and 24.1% using HPLC-MS/MRM and in the range of 4.3-13.1% with HPLC-MS/MRM(3), for SP and NKA. The observed accuracy was within 10% of the theoretical concentrations tested. HPLC-MS/MRM(3) may improve the assay sensitivity to detect difference between samples by reducing significantly the potential of interferences and therefore reduce instrumental errors.

  4. Bioinformatics Tools for the Discovery of New Nonribosomal Peptides

    DEFF Research Database (Denmark)

    Leclère, Valérie; Weber, Tilmann; Jacques, Philippe

    2016-01-01

    -dimensional structure of the peptides can be compared with the structural patterns of all known NRPs. The presented workflow leads to an efficient and rapid screening of genomic data generated by high throughput technologies. The exploration of such sequenced genomes may lead to the discovery of new drugs (i......This chapter helps in the use of bioinformatics tools relevant to the discovery of new nonribosomal peptides (NRPs) produced by microorganisms. The strategy described can be applied to draft or fully assembled genome sequences. It relies on the identification of the synthetase genes...

  5. Clone and functional analysis of Seryl-tRNA synthetase and Tyrosyl-tRNA synthetase from silkworm, Bombyx mori

    Science.gov (United States)

    Hu, Jingsheng; Tian, Jianghai; Li, Fanchi; Xue, Bin; Hu, Jiahuan; Cheng, Xiaoyu; Li, Jinxin; Shen, Weide; Li, Bing

    2017-01-01

    Aminoacyl-tRNA synthetases are the key enzymes for protein synthesis. Glycine, alanine, serine and tyrosine are the major amino acids composing fibroin of silkworm. Among them, the genes of alanyl-tRNA synthetase (AlaRS) and glycyl-tRNA synthetase (GlyRS) have been cloned. In this study, the seryl-tRNA synthetase (SerRS) and tyrosyl-tRNA synthetase (TyrRS) genes from silkworm were cloned. Their full length are 1709 bp and 1868 bp and contain open reading frame (ORF) of 1485 bp and 1575 bp, respectively. RT-PCR examination showed that the transcription levels of SerRS, TyrRS, AlaRS and GlyRS are significantly higher in silk gland than in other tissues. In addition, their transcription levels are much higher in middle and posterior silk gland than in anterior silk gland. Moreover, treatment of silkworms with phoxim, an inhibitor of silk protein synthesis, but not TiO2 NP, an enhancer of silk protein synthesis, significantly reduced the transcription levels of aaRS and content of free amino acids in posterior silk gland, therefore affecting silk protein synthesis, which may be the mechanism of phoxim-silking disorders. Furthermore, low concentration of TiO2 NPs showed no effect on the transcription of aaRS and content of free amino acids, suggesting that TiO2 NPs promotes silk protein synthesis possibly by increasing the activity of fibroin synthase in silkworm. PMID:28134300

  6. Molecular cloning, sequencing and expression in Escherichia coli cells Thermus thermophilus leucyl-tRNA synthetase

    Directory of Open Access Journals (Sweden)

    Kovalenko O. P.

    2011-12-01

    Full Text Available Aim. Cloning and sequencing of the T. thermophilus leucyl-tRNA synthetase (LeuRSTT followed by the creation of genetically engineered construct for protein expression in E.coli cells and its purification. Methods. Searching for the LeuRSTT gene was performed by Southern blot hybridization with chromosomal DNA, where digoxigenin-labeled PCR fragments of DNA were used as probes. Results. The gene of T. thermophilus HB27 leucyl-tRNA synthetase was cloned and sequenced. The open reading frame encodes a polypeptide chain of 878 amino acid residues in length (molecular mass 101 kDa. Comparison of the amino acid sequence of T. thermophilus LeuRS with that of the enzymes from other organisms showed that LeuRSTT was a part of the group of similar enzymes of prokaryotes, formed by the proteins of protobacteriae, rickettsia and mitochondria of eukaryotes. The resulting phylogenetic tree of LeuRSs reveals dichotomous branching into two lines: prokaryotic/eukaryotic mitochondrial and arhaeal/eukaryotic cytosolic proteins. Differences between prokaryotic and arhaeal branches of the LeuRSs phylogenetic tree are primarily due to the structure of two domains of the enzyme – the editing and the C-terminal. T. thermophilus LeuRS was expressed in E. coli cells by cloning the corresponding gene into pET29b vector. Conclusions. The cloned T. thermophilus leuS gene and expressed recombinant protein will be used for structural and functional studies on LeuRSTT, including X-ray analysis of the enzyme and its mutant forms in complex with different substrates

  7. Expression of the pgsB encoding the poly-gamma-DL-glutamate synthetase of Bacillus subtilis (natto).

    Science.gov (United States)

    Kimura, Keitarou; Tran, Lam-Son Phan; Do, Thi-Huyen; Itoh, Yoshifumi

    2009-05-01

    An industrial strain of Bacillus subtilis (natto) was used to produce poly-gamma-DL-glutamate (gammaPGA), a polymer of DL-glutamate linked by a gamma-peptide bond. In spite of efforts to improve gammaPGA production by modifying the medium, little attention has been paid to the expression of the gammaPGA synthetase gene. In this study, we investigated the expression of the gammaPGA synthetic gene and the gammaPGA product under various conditions with the LacZ-fusion of the synthetic gene (pgsB-lacZ). The 5' upstream regulatory region of the pgsB gene was also investigated by constructing deletion mutations of lacZ-fusion. The pgsB-lacZ was clearly expressed in the early stationary phase and was abolished by degU gene disruption. The results showed that pgsB-lacZ expression was repressed in rich media, and that gammaPGA production was limited by the substrate supply rather than by the amount of synthetase. Adding D-glutamate to the medium reduced gammaPGA production and synthetic gene expression. The transcription start point was determined by primer extension, and it was found that up to -721 bp (translation start point = +1) of the 5' untranslated region (UTR) was required for optimal pgsB-lacZ fusion gene expression.

  8. A Strong Promoter Provided with the Gene Encoding Arginyl-tRNA Synthetase(argS) from Escherichia coli.

    Science.gov (United States)

    Liu, Mo-Fang; Li, Tong; Yin, Zhao-Bao; Xu, Min-Gang; Wang, En-Duo; Wang, Yin-Lai

    2000-01-01

    Previous studies showed that the gene argS encoding the arginyl-tRNA synthetase(ArgRS) from Escherichia coli(E.coli), was overexpressed 1 000 folds in the E.coli transformant TG1/pUC-argS, while the gene leuS, encoding the leucyl-tRNA synthetase(LeuRS) from E.coli, was only overproduced 35-fold in the same case. To investigate why the expression of these two aminoacyl-tRNA synthetase genes is so different, a fused gene (termed parg-leuS) was constructed by replacement of the 5' flanking region of leuS to 5' flanking region of argS. In the E.coli transformant TG1/pUC-parg-leuS, the activity of LeuRS was only improved 8.5-fold, which was much lower than that of the transformant harboring the recombinant plasmid pUC18-leuS or pKK-leuS. However, by RNA dot hybridization the amount of mRNA produced in the transcription of parg-leuS was about 5 times than that of the wild type leuS, and was similar to that of pKK-leuS, suggesting that the promoter of argS is very strong. Analysis of the secondary structure around the initiation codon among three mRNAs showed that the secondary structure of the mRNA from parg-leuS was the strongest of the three mRNAs. From the results, it could be deduced that expression of the fused gene parg-leuS might be controlled at the translational level and the strong secondary structure of this mRNA may hinder translation initiation and result in a low translation efficiency.

  9. MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis.

    Science.gov (United States)

    Murdeshwar, Maya S; Chatterji, Dipankar

    2012-08-01

    In the noninfectious soil saprophyte Mycobacterium smegmatis, intracellular levels of the stress alarmones guanosine tetraphosphate and guanosine pentaphosphate, together termed (p)ppGpp, are regulated by the enzyme Rel(Msm). This enzyme consists of a single, bifunctional polypeptide chain that is capable of both synthesizing and hydrolyzing (p)ppGpp. The rel(Msm) knockout strain of M. smegmatis (Δrel(Msm)) is expected to show a (p)ppGpp null [(p)ppGpp(0)] phenotype. Contrary to this expectation, the strain is capable of synthesizing (p)ppGpp in vivo. In this study, we identify and functionally characterize the open reading frame (ORF), MSMEG_5849, that encodes a second functional (p)ppGpp synthetase in M. smegmatis. In addition to (p)ppGpp synthesis, the 567-amino-acid-long protein encoded by this gene is capable of hydrolyzing RNA·DNA hybrids and bears similarity to the conventional RNase HII enzymes. We have classified this protein as actRel(Msm) in accordance with the recent nomenclature proposed and have named it MS_RHII-RSD, indicating the two enzymatic activities present [RHII, RNase HII domain, originally identified as domain of unknown function 429 (DUF429), and RSD, RelA_SpoT nucleotidyl transferase domain, the SYNTH domain responsible for (p)ppGpp synthesis activity]. MS_RHII-RSD is expressed and is constitutively active in vivo and behaves like a monofunctional (p)ppGpp synthetase in vitro. The occurrence of the RNase HII and (p)ppGpp synthetase domains together on the same polypeptide chain is suggestive of an in vivo role for this novel protein as a link connecting the essential life processes of DNA replication, repair, and transcription to the highly conserved stress survival pathway, the stringent response.

  10. Aminoacyl-tRNA Synthetase Complexes in Evolution

    Directory of Open Access Journals (Sweden)

    Svitlana Havrylenko

    2015-03-01

    Full Text Available Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS, and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.

  11. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    Science.gov (United States)

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source.

  12. Phosphoribosylpyrophosphate synthetase of Escherichia coli, Identification of a mutant enzyme

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1982-01-01

    , stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib....... Kinetic analysis of the mutant PRib-PP synthetase revealed an apparent Km for ATP and ribose 5-phosphate of 1.0 mM and 240 μM respectively, compared to 60 μM and 45 μM respectively for the wild-type enzyme. ADP, which inhibits the wild-type enzyme at a concentration of 0.5 mM ribose 5-phosphate...

  13. Hemolytic anemia and metabolic acidosis: think about glutathione synthetase deficiency.

    Science.gov (United States)

    Ben Ameur, Salma; Aloulou, Hajer; Nasrallah, Fehmi; Kamoun, Thouraya; Kaabachi, Naziha; Hachicha, Mongia

    2015-02-01

    Glutathione synthetase deficiency (GSSD) is a rare disorder of glutathione metabolism with varying clinical severity. Patients may present with hemolytic anemia alone or together with acidosis and central nervous system impairment. Diagnosis is made by clinical presentation and detection of elevated concentrations of 5-oxoproline in urine and low glutathione synthetase activity in erythrocytes or cultured skin fibroblasts. The prognosis seems to depend on early diagnosis and treatment. We report a 4 months old Tunisian male infant who presented with severe metabolic acidosis with high anion gap and hemolytic anemia. High level of 5-oxoproline was detected in her urine and diagnosis of GSSD was made. Treatment consists of the correction of acidosis, blood transfusion, and supplementation with antioxidants. He died of severe metabolic acidosis and sepsis at the age of 15 months.

  14. Phosphoribosylpyrophosphate synthetase of Escherichia coli, Identification of a mutant enzyme

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1982-01-01

    . Kinetic analysis of the mutant PRib-PP synthetase revealed an apparent Km for ATP and ribose 5-phosphate of 1.0 mM and 240 μM respectively, compared to 60 μM and 45 μM respectively for the wild-type enzyme. ADP, which inhibits the wild-type enzyme at a concentration of 0.5 mM ribose 5-phosphate......, stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib...

  15. Glutamine synthetase gene evolution: A good molecular clock

    Energy Technology Data Exchange (ETDEWEB)

    Pesole, G.; Lanvave, C.; Saccone, C. (Consiglio Nazionale delle Richerche, Bari (Italy)); Bozzetti, M.P. (Univ. di Bari (Italy)); Preparata, G. (Univ. di Milano (Italy))

    1991-01-15

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves.

  16. Reinvestigation of aminoacyl-tRNA synthetase core complex by affinity purification-mass spectrometry reveals TARSL2 as a potential member of the complex.

    Directory of Open Access Journals (Sweden)

    Kyutae Kim

    Full Text Available Twenty different aminoacyl-tRNA synthetases (ARSs link each amino acid to their cognate tRNAs. Individual ARSs are also associated with various non-canonical activities involved in neuronal diseases, cancer and autoimmune diseases. Among them, eight ARSs (D, EP, I, K, L, M, Q and RARS, together with three ARS-interacting multifunctional proteins (AIMPs, are currently known to assemble the multi-synthetase complex (MSC. However, the cellular function and global topology of MSC remain unclear. In order to understand the complex interaction within MSC, we conducted affinity purification-mass spectrometry (AP-MS using each of AIMP1, AIMP2 and KARS as a bait protein. Mass spectrometric data were funneled into SAINT software to distinguish true interactions from background contaminants. A total of 40, 134, 101 proteins in each bait scored over 0.9 of SAINT probability in HEK 293T cells. Complex-forming ARSs, such as DARS, EPRS, IARS, Kars, LARS, MARS, QARS and RARS, were constantly found to interact with each bait. Variants such as, AIMP2-DX2 and AIMP1 isoform 2 were found with specific peptides in KARS precipitates. Relative enrichment analysis of the mass spectrometric data demonstrated that TARSL2 (threonyl-tRNA synthetase like-2 was highly enriched with the ARS-core complex. The interaction was further confirmed by coimmunoprecipitation of TARSL2 with other ARS core-complex components. We suggest TARSL2 as a new component of ARS core-complex.

  17. Glutamine synthetase localization in cortisol-induced chick embryo retinas

    OpenAIRE

    1980-01-01

    We report here for the first time, in chick retina, Muller cell localization of glutamine synthetase (GS) activity by an immunohistochemical technique, in agreement with previous reports of glial localization of this enzyme in rat brain and retina. Age- dependent changes in the endogenous enzyme activity as well as cortisol- induced changes in GS activity, both in ovo and in vitro, measured biochemically, reflect the changes observed by staining.

  18. Glutamine synthetase activity in the ruminal bacterium Succinivibrio dextrinosolvens.

    OpenAIRE

    Patterson, J A; Hespell, R B

    1985-01-01

    Succinivibrio dextrinosolvens C18 was found to possess glutamine synthetase (GS), urease, glutamate dehydrogenase, and several other nitrogen assimilation enzymes. When grown in continuous culture under ammonia limitation, both GS and urease activities were high and glutamate dehydrogenase activity was low, but the opposite activity pattern was observed for growth in the presence of ample ammonia. The addition of high-level (15 mM) ammonium chloride to ammonia-limited cultures resulted in a r...

  19. Study of thymidylate synthetase-function by laser Raman spectroscopy.

    Science.gov (United States)

    Sharma, R K; Kisliuk, R L; Verma, S P; Wallach, D F

    1975-05-23

    The Laser-Raman spectra of thymidylate synthetase have been obtained with 488 nm excitation from an argon ion laser. Raman bands observed in the range 600-800 cm-minus-1 have been assigned to functional groups of constituent amino acids. The band positions and intensities in the Amide I (1600-1700 cm-minus-1) and Amide III (1200-1300 cm-minus-1) regions, suggest that the enzyme is a mixture of alpha-helical and unordered conformations. Low levels of beta-structure cannot be excluded. The spectra of the ternary complex formed by reacting thymidylate synthetase with (+)-L-methylenetetrahydrofolate and fluorodeoxyuridylate reveals a new band at 1618 cm-minus-1 assigned to the C=N stretching vibration. This band may be due to formation of dihydrofolate or an iminium ion. The overall secondary structure of thymidylate synthetase does not change on formation of the ternary complex. However, the spectrum of the complex indicates local changes in groups such as ionized carboxyl (1400 cm-minus-1), tryptophan (1003 cm-minus-1) and CH-3, CH-2 deformation modes (1440-1470 cm-minus-1).

  20. Mitochondrial aminoacyl-tRNA synthetases in human disease.

    Science.gov (United States)

    Konovalova, Svetlana; Tyynismaa, Henna

    2013-04-01

    Mitochondrial aminoacyl-tRNA synthetases (mtARSs) are essential in the process of transferring genetic information from mitochondrial DNA to the complexes of the oxidative phosphorylation system. These synthetases perform an integral step in the initiation of mitochondrial protein synthesis by charging tRNAs with their cognate amino acids. All mtARSs are encoded by nuclear genes, nine of which have recently been described as disease genes for mitochondrial disorders. Unexpectedly, the clinical presentations of these diseases are highly specific to the affected synthetase. Encephalopathy is the most common manifestation but again with gene-specific outcomes. Other clinical presentations include myopathy with anemia, cardiomyopathy, tubulopathy and hearing loss with female ovarian dysgenesis. Here we review the described mutation types and the associated patient phenotypes. The identified mutation spectrum suggests that only mutation types that allow some residual tRNA-charging activity can result in the described mtARS diseases but the molecular mechanisms behind the selective tissue involvement are not currently understood.

  1. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    Science.gov (United States)

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-04-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover.

  2. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense.

    Science.gov (United States)

    Van Dommelen, Anne; Spaepen, Stijn; Vanderleyden, Jozef

    2009-04-01

    Glutamine synthetase, a key enzyme in nitrogen metabolism of both prokaryotes and eukaryotes, is strictly regulated. One means of regulation is the modulation of activity through adenylylation catalyzed by adenylyltransferases. Using PCR primers based on conserved sequences in glutamine synthetase adenylyltransferases, we amplified part of the glnE gene of Azospirillum brasilense Sp7. The complete glnE sequence of A. brasilense Sp245 was retrieved from the draft genome sequence of this organism (http://genomics.ornl.gov/research/azo/). Adenylyltransferase is a bifunctional enzyme consisting of an N-terminal domain responsible for deadenylylation activity and a C-terminal domain responsible for adenylylation activity. Both domains are partially homologous to each other. Residues important for catalytic activity were present in the deduced amino acid sequence of the A. brasilense Sp245 glnE sequence. A glnE mutant was constructed in A. brasilense Sp7 by inserting a kanamycin resistance cassette between the two active domains of the enzyme. The resulting mutant was unable to adenylylate the glutamine synthetase enzyme and was impaired in growth when shifted from nitrogen-poor to nitrogen-rich medium.

  3. Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs

    OpenAIRE

    Merritt, Ethan A.; Arakaki, Tracy L; Gillespie, J Robert; Larson, Eric T.; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J.; Kim, Jessica; Li ZHANG; Verlinde, Christophe L M J; Fan, Erkang; Zucker, Frank; Buckner, Frederick S.; Van Voorhis, Wesley C.; Hol, Wim G. J.

    2010-01-01

    Crystal structures of histidyl-tRNA synthetase from the eukaryotic parasites Trypanosoma brucei and Trypanosoma cruzi provide a first structural view of a eukaryotic form of this enzyme, and reveal differences from bacterial homologs. Histidyl-tRNA synthetases in general contain an extra domain inserted between conserved motifs 2 and 3 of the Class II aminoacyl-tRNA synthetase catalytic core. The current structures show that the three dimensional topology of this domain is very different in b...

  4. Expression of glutamine synthetase in balloon cells: a basis of their antiepileptic role?

    Science.gov (United States)

    Buccoliero, Anna Maria; Barba, Carmen; Giordano, Flavio; Baroni, Gianna; Genitori, Lorenzo; Guerrini, Renzo; Taddei, Gian Luigi

    2015-01-01

    Glutamine synthetase is an enzyme involved in the clearance of glutamate, the most potent excitatory neurotransmitter. We studied the immunohistochemical expression of glutamine synthetase in neocortical samples from 5 children who underwent surgery for pharmacoresistant epilepsy and a histological diagnosis of focal cortical dysplasia IIb. In all cases, balloon cells, but not dysmorphic neurons, were immunopositive for glutamine synthetase. This finding suggests that balloon cells can be involved in the neutralization of glutamate and play a protective anti-seizure role.

  5. Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering

    DEFF Research Database (Denmark)

    Nielsen, Maria Lund; Petersen, Thomas Isbrandt; Petersen, Lene Maj

    2016-01-01

    Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) each give rise to a vast array of complex bioactive molecules with further complexity added by the existence of natural PKS-NRPS fusions. Rational genetic engineering for the production of natural product derivatives...

  6. Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Eric Banan-Mwine Daliri

    2017-04-01

    Full Text Available The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  7. Bioactive Peptides.

    Science.gov (United States)

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  8. Layer-by-layer assembly of peptide based bioorganic–inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, Steven M. [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States); Fath, Karl R. [The City University of New York, Queens College, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367 (United States); The Graduate Center, The City University of New York, 365 Fifth Avenue, NY 10016 (United States); Phekoo, Aruna P. [The City University of New York, Queens College, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367 (United States); Knoll, Grant A. [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States); Banerjee, Ipsita A., E-mail: banerjee@fordham.edu [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States)

    2015-06-01

    In this work we have developed a new family of biocomposite scaffolds for bone tissue regeneration by utilizing self-assembled fluorenylmethyloxycarbonyl protected Valyl-cetylamide (FVC) nanoassemblies as templates. To tailor the assemblies for enhanced osteoblast attachment and proliferation, we incorporated (a) Type I collagen, (b) a hydroxyapatite binding peptide sequence (EDPHNEVDGDK) derived from dentin sialophosphoprotein and (c) the osteoinductive bone morphogenetic protein-4 (BMP-4) to the templates by layer-by-layer assembly. The assemblies were then incubated with hydroxyapatite nanocrystals blended with varying mass percentages of TiO{sub 2} nanoparticles and coated with alginate to form three dimensional scaffolds for potential applications in bone tissue regeneration. The morphology was examined by TEM and SEM and the binding interactions were probed by FITR spectroscopy. The scaffolds were found to be non-cytotoxic, adhered to mouse preosteoblast MC3T3-E1 cells and promoted osteogenic differentiation as indicated by the results obtained by alkaline phosphatase assay. Furthermore, they were found to be biodegradable and possessed inherent antibacterial capability. Thus, we have developed a new family of tissue-engineered biocomposite scaffolds with potential applications in bone regeneration. - Highlights: • Fmoc-val-cetylamide assemblies were used as templates. • Collagen, a short dentin sialophosphoprotein derived sequence and BMP-4 were incorporated. • Hydroxyapatite–TiO{sub 2} nanocomposite blends and alginate were incorporated. • The 3D scaffold biocomposites adhered to preosteoblasts and promoted osteoblast differentiation. • The biocomposites also displayed antimicrobial activity.

  9. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes.

    Directory of Open Access Journals (Sweden)

    Liselotte Hardy

    Full Text Available Bacterial vaginosis (BV, a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1% and a specificity of 89.4% (95% confidence interval: 76.1% - 96% of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis.

  10. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes.

    Science.gov (United States)

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis.

  11. Inhibition of AAC(6′)-Ib-Mediated Resistance to Amikacin in Acinetobacter baumannii by an Antisense Peptide-Conjugated 2′,4′-Bridged Nucleic Acid-NC-DNA Hybrid Oligomer

    Science.gov (United States)

    Lopez, Christina; Arivett, Brock A.; Actis, Luis A.

    2015-01-01

    Multiresistant Acinetobacter baumannii, a common etiologic agent of severe nosocomial infections in compromised hosts, usually harbors aac(6′)-Ib. This gene specifies resistance to amikacin and other aminoglycosides, seriously limiting the effectiveness of these antibiotics. An antisense oligodeoxynucleotide (ODN4) that binds to a duplicated sequence on the aac(6′)-Ib mRNA, one of the copies overlapping the initiation codon, efficiently inhibited translation in vitro. An isosequential nuclease-resistant hybrid oligomer composed of 2′,4′-bridged nucleic acid-NC (BNANC) residues and deoxynucleotides (BNANC-DNA) conjugated to the permeabilizing peptide (RXR)4XB (“X” and “B” stand for 6-aminohexanoic acid and β-alanine, respectively) (CPPBD4) inhibited translation in vitro at the same levels observed in testing ODN4. Furthermore, CPPBD4 in combination with amikacin inhibited growth of a clinical A. baumannii strain harboring aac(6′)-Ib in liquid cultures, and when both compounds were used as combination therapy to treat infected Galleria mellonella organisms, survival was comparable to that seen with uninfected controls. PMID:26169414

  12. Inhibition effect of isopropanol on acetyl-CoA synthetase expression level of acetoclastic methanogen, Methanosaeta concilii.

    Science.gov (United States)

    Ince, Bahar; Koksel, Gozde; Cetecioglu, Zeynep; Oz, Nilgun Ayman; Coban, Halil; Ince, Orhan

    2011-11-10

    Isopropanol is a widely found solvent in industrial wastewaters, which have commonly been treated using anaerobic systems. In this study, inhibitory effect of isopropanol on the key microbial group in anaerobic bioreactors, acetoclastic methanogens, was investigated. Anaerobic sludges in serum bottles were repeatedly fed with acetate and isopropanol; and quantitative real-time PCR was used for determining effect of isopropanol on the expression level of a key enzyme in acetoclastic methane production, acetyl-CoA synthetase of Methanosaeta concilii. Active Methanosaeta spp. cells were also quantified using Fluorescent in situ hybridization (FISH). Transcript abundance of acetyl-CoA synthetase was 1.23±0.62×10(6) mRNAs/mL in the uninhibited reactors with 222 mL cumulative methane production. First exposure to isopropanol resulted in 71.2%, 84.7%, 89.2% and 94.6% decrease in mRNA level and 35.0%, 65.0%, 91.5% and 100.0% reduction in methane production for isopropanol concentrations of 0.1 M, 0.5 M, 1.0 M and 2.0 M, respectively. Repeated exposures resulted in higher inhibitions; and at the end of test, fluorescent intensities of active Methanosaeta cells were significantly decreased due to isopropanol. The overall results indicated that isopropanol has an inhibitory effect on acetoclastic methanogenesis; and the inhibition can be detected by monitoring level of acetyl-CoA transcripts and rRNA level.

  13. Quaternary structure of the yeast Arc1p-aminoacyl-tRNA synthetase complex in solution and its compaction upon binding of tRNAs

    Science.gov (United States)

    Koehler, Christine; Round, Adam; Simader, Hannes; Suck, Dietrich; Svergun, Dmitri

    2013-01-01

    In the yeast Saccharomyces cerevisiae, the aminoacyl-tRNA synthetases (aaRS) GluRS and MetRS form a complex with the auxiliary protein cofactor Arc1p. The latter binds the N-terminal domains of both synthetases increasing their affinity for the transfer-RNA (tRNA) substrates tRNAMet and tRNAGlu. Until now, structural information was available only on the enzymatic domains of the individual aaRSs but not on their complexes with associated cofactors. We have analysed the yeast Arc1p-complexes in solution by small-angle X-ray scattering (SAXS). The ternary complex of MetRS and GluRS with Arc1p, displays a peculiar extended star-like shape, implying possible flexibility of the complex. We reconstituted in vitro a pentameric complex and demonstrated by electrophoretic mobility shift assay that the complex is active and contains tRNAMet and tRNAGlu, in addition to the three protein partners. SAXS reveals that binding of the tRNAs leads to a dramatic compaction of the pentameric complex compared to the ternary one. A hybrid low-resolution model of the pentameric complex is constructed rationalizing the compaction effect by the interactions of negatively charged tRNA backbones with the positively charged tRNA-binding domains of the synthetases. PMID:23161686

  14. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium.

    Science.gov (United States)

    Hansen, Frederik T; Gardiner, Donald M; Lysøe, Erik; Fuertes, Patricia Romans; Tudzynski, Bettina; Wiemann, Philipp; Sondergaard, Teis Esben; Giese, Henriette; Brodersen, Ditlev E; Sørensen, Jens Laurids

    2015-02-01

    Members of the genus Fusarium produce a plethora of bioactive secondary metabolites, which can be harmful to humans and animals or have potential in drug development. In this study we have performed comparative analyses of polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) from ten different Fusarium species including F. graminearum (two strains), F. verticillioides, F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi, F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum (12 strains). This led to identification of 52 NRPS and 52 PKSs orthology groups, respectively, and although not all PKSs and NRPSs are assumed to be intact or functional, the analyses illustrate the huge secondary metabolite potential in Fusarium. In our analyses we identified a core collection of eight NRPSs (NRPS2-4, 6, 10-13) and two PKSs (PKS3 and PKS7) that are conserved in all strains analyzed in this study. The identified PKSs and NRPSs were named based on a previously developed classification system (www.FusariumNRPSPKS.dk). We suggest this system be used when PKSs and NRPSs have to be classified in future sequenced Fusarium strains. This system will facilitate identification of orthologous and non-orthologous NRPSs and PKSs from newly sequenced Fusarium genomes and will aid the scientific community by providing a common nomenclature for these two groups of genes/enzymes.

  15. Anthranilate-activating modules from fungal nonribosomal peptide assembly lines.

    Science.gov (United States)

    Ames, Brian D; Walsh, Christopher T

    2010-04-20

    Fungal natural products containing benzodiazepinone- and quinazolinone-fused ring systems can be assembled by nonribosomal peptide synthetases (NRPS) using the conformationally restricted beta-amino acid anthranilate as one of the key building blocks. We validated that the first module of the acetylaszonalenin synthetase of Neosartorya fischeri NRRL 181 activates anthranilate to anthranilyl-AMP. With this as a starting point, we then used bioinformatic predictions about fungal adenylation domain selectivities to identify and confirm an anthranilate-activating module in the fumiquinazoline A producer Aspergillus fumigatus Af293 as well as a second anthranilate-activating NRPS in N. fischeri. This establishes an anthranilate adenylation domain code for fungal NRPS and should facilitate detection and cloning of gene clusters for benzodiazepine- and quinazoline-containing polycyclic alkaloids with a wide range of biological activities.

  16. Regulation of glutamine synthetase, aspartokinase, and total protein turnover in Klebsiella aerogenes.

    Science.gov (United States)

    Fulks, R M; Stadtman, E R

    1985-12-13

    When suspensions of Klebsiella aerogenes are incubated in a nitrogen-free medium there is a gradual decrease in the levels of acid-precipitable protein and of aspartokinase III (lysine-sensitive) and aspartokinase I (threonine-sensitive) activities. In contrast, the level of glutamine synthetase increases slightly and then remains constant. Under these conditions, the glutamine synthetase and other proteins continue to be synthesized as judged by the incorporation of [14C]leucine into the acid-precipitable protein fraction and into protein precipitated by anti-glutamine synthetase antibodies, by the fact that growth-inhibiting concentrations of chloramphenicol also inhibit the incorporation of [14C]leucine into protein and into protein precipitated by anti-glutamine synthetase antibody, and by the fact that chloramphenicol leads to acceleration in the loss of aspartokinases I and III and promotes a net decrease in the level of glutamine synthetase and its cross-reactive protein. The loss of aspartokinases I and III in cell suspensions is stimulated by glucose and is inhibited by 2,4-dinitrophenol. Glucose also stimulates the loss of aspartokinases and glutamine synthetase in the presence of chloramphenicol. Cell-free extracts of K. aerogenes catalyze rapid inactivation of endogenous glutamine synthetase as well as exogenously added pure glutamine synthetase. This loss of glutamine synthetase is not associated with a loss of protein that cross-reacts with anti-glutamine synthetase antibodies. The inactivation of glutamine synthetase in extracts is not due to adenylylation. It is partially prevented by sulfhydryl reagents, Mn2+, antimycin A, 2,4-dinitrophenol, EDTA, anaerobiosis and by dialysis. Following 18 h dialysis, the capacity of extracts to catalyze inactivation of glutamine synthetase is lost but can be restored by the addition of Fe2+ (or Ni2+) together with ATP (or other nucleoside di- and triphosphates. After 40-60 h dialysis Fe3+ together with NADH (but

  17. Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major

    Directory of Open Access Journals (Sweden)

    Gowri V S

    2012-11-01

    Full Text Available Abstract Background Leishmania major, a protozoan parasite, is the causative agent of cutaneous leishmaniasis. Due to the development of resistance against the currently available anti-leishmanial drugs, there is a growing need for specific inhibitors and novel drug targets. In this regards, aminoacyl tRNA synthetases, the linchpins of protein synthesis, have received recent attention among the kinetoplastid research community. This is the first comprehensive survey of the aminoacyl tRNA synthetases, their paralogs and other associated proteins from L. major. Results A total of 26 aminoacyl tRNA synthetases were identified using various computational and bioinformatics tools. Phylogenetic analysis and domain architectures of the L. major aminoacyl tRNA synthetases suggest a probable archaeal/eukaryotic origin. Presence of additional domains or N- or C-terminal extensions in 11 aminoacyl tRNA synthetases from L. major suggests possibilities such as additional tRNA binding or oligomerization or editing activity. Five freestanding editing domains were identified in L. major. Domain assignment revealed a novel asparagine tRNA synthetase paralog, asparagine synthetase A which has been so far reported from prokaryotes and archaea. Conclusions A comprehensive bioinformatic analysis revealed 26 aminoacyl tRNA synthetases and five freestanding editing domains in L. major. Identification of two EMAP (endothelial monocyte-activating polypeptide II-like proteins similar to human EMAP II-like proteins suggests their participation in multisynthetase complex formation. While the phylogeny of tRNA synthetases suggests a probable archaeal/eukaryotic origin, phylogeny of asparagine synthetase A strongly suggests a bacterial origin. The unique features identified in this work provide rationale for designing inhibitors against parasite aminoacyl tRNA synthetases and their paralogs.

  18. Peptide identification

    Science.gov (United States)

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  19. Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction.

    Science.gov (United States)

    Abe, Tomoko; Hashimoto, Yoshiteru; Zhuang, Ye; Ge, Yin; Kumano, Takuto; Kobayashi, Michihiko

    2016-01-22

    We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.

  20. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of colistin resistant A......Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment...

  1. Glutamine versus ammonia utilization in the NAD synthetase family.

    Directory of Open Access Journals (Sweden)

    Jessica De Ingeniis

    Full Text Available NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS. Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS

  2. An Arabidopsis embryonic lethal mutant with reduced expression of alanyl—t RNA synthetase gene

    Institute of Scientific and Technical Information of China (English)

    SUNJIANGE; XIAOLIYAO; 等

    1998-01-01

    In present paper,one of the T-DNA insertional embryonic lethal mutant of Arabidopsis is identified and designated as acd mutant.The embryo developmant of this mutant is arrested in globular stage,The cell division pattern is abnormal during early embryogenesis and results in distubed cellular differentiation.Most of mutant embryos are finally degenerated and aborted in globular stage,However,a few of them still can germinate in agar palte and produce seedlings with shoter hypoctyl and distorted shoot meristem.To understand the molecular basis of the phenotype of this mutant,the joint fragment of T-DNA/plant DNA is isolated by plasmid rescue and Dig-labeled as probe for cDNA library screening.According to the sequence analysis and similarity searching,a 936 bp cDNA sequence(EMBL accession #:Y12555)from selectoed positive clone shows a 99.8%(923/925bp) sequence homolgy with Alanyl-tRNA Synthetase(AlaRS) gene of Arabidopsis thaliana.Furthermore,the data of in situ hybridization experiment indicate that the expression of Ala RS gene is weak in early embryogenesis and declines along with globular embryodevelopment in this mutant Accordingly,the reduced expression of Ala RS gene may be closely related to the morphological changes in early embryogenesis of this lethal mutant.

  3. A novel molecular mechanism to explain biotin-unresponsive holocarboxylase synthetase deficiency.

    Science.gov (United States)

    Mayende, Lungisa; Swift, Rachel D; Bailey, Lisa M; Soares da Costa, Tatiana P; Wallace, John C; Booker, Grant W; Polyak, Steven W

    2012-01-01

    Biotin (vitamins H and B7) is an important micronutrient as defects in its availability, metabolism or adsorption can cause serious illnesses, especially in the young. A key molecule in the biotin cycle is holocarboxylase synthetase (HLCS), which attaches biotin onto the biotin-dependent enzymes. Patients with congenital HLCS deficiency are prescribed oral biotin supplements that, in most cases, reverse the clinical symptoms. However, some patients respond poorly to biotin therapy and have an extremely poor long-term prognosis. Whilst a small number of mutations in the HLCS gene have been implicated, the molecular mechanisms that lead to the biotin-unresponsive phenotype are not understood. To improve our understanding of HLCS, limited proteolysis was performed together with yeast two-hybrid analysis. A structured domain within the N-terminal region that contained two missense mutations was identified in patients who were refractory to biotin therapy, namely p.L216R and p.L237P. Genetic studies demonstrated that the interaction between the enzyme and the protein substrate was disrupted by mutation. Further dissection of the binding mechanism using surface plasmon resonance demonstrated that the mutations reduced affinity for the substrate through a >15-fold increase in dissociation rate. Together, these data provide the first molecular explanation for HLCS-deficient patients that do not respond to biotin therapy.

  4. Inactivation of Glutamine Synthetase by Ammonia Shock in the Gram-Positive Bacterium Streptomyces cattleya.

    Science.gov (United States)

    Wax, R; Synder, L; Kaplan, L

    1982-10-01

    In cultures of the gram-positive bacterium Streptomyces cattleya, a rapid inactivation of glutamine synthetase was seen after ammonia shock. pH activity curves for ammonia-shocked and control cultures are shown. A peak of glutamine synthetase activity was seen during fermentation for production of the antibiotic thienamycin.

  5. Inactivation of Glutamine Synthetase by Ammonia Shock in the Gram-Positive Bacterium Streptomyces cattleya

    OpenAIRE

    Wax, Richard; Synder, Linda; Kaplan, Louis

    1982-01-01

    In cultures of the gram-positive bacterium Streptomyces cattleya, a rapid inactivation of glutamine synthetase was seen after ammonia shock. pH activity curves for ammonia-shocked and control cultures are shown. A peak of glutamine synthetase activity was seen during fermentation for production of the antibiotic thienamycin.

  6. Roles of Long-chain Acyl Coenzyme A Synthetase in Absorption and Transport of Fatty Acid

    Institute of Scientific and Technical Information of China (English)

    Fan Gao; Xue-feng Yang; Nian Fu; Yang Hu; Yan Ouyang; Kai Qing

    2016-01-01

    Abstract Long-chain acyl coenzyme A synthetase (ACSL) is a member of the synthetase family encoded by a multigene family; it plays an important role in the absorption and transport of fatty acid. Here we review the roles of ACSL in the regulating absorption and transport of fatty acid, as well as the connection between ACSL and some metabolic diseases.

  7. Primer Dependent and Independent Forms of Soluble Starch Synthetase from Developing Barley Endosperms

    DEFF Research Database (Denmark)

    Kreis, M.

    1980-01-01

    The activity of soluble starch synthetase (ADP-glucose: agr-1,4-glucan agr-4-glucosyltransferase) in the non-purified extract from 16 day-old Bomi barley endosperms (Hordeum vulgare L.) was low and the reaction was non-linear when plotted against protein concentration. Starch synthetase was purif...

  8. [The anti-synthetase syndrome: muscle disease and multisystem disorder at the same time

    NARCIS (Netherlands)

    Hengstman, G.J.D.; Venrooij, W.J.W. van; Hoogen, F.H.J. van den; Engelen, B.G.M. van

    2003-01-01

    In three women, aged 60, 45 and 38 years, who presented with exertional dyspnoea (due to lung fibrosis) and Raynaud's phenomenon, dermatomyopathy and Raynaud's phenomenon, and symmetrical arthralgia and myalgia, respectively, the anti-synthetase syndrome was diagnosed. The anti-synthetase syndrome c

  9. The Mitochondrial Aminoacyl tRNA Synthetases: Genes and Syndromes.

    Science.gov (United States)

    Diodato, Daria; Ghezzi, Daniele; Tiranti, Valeria

    2014-01-01

    Mitochondrial respiratory chain (RC) disorders are a group of genetically and clinically heterogeneous diseases. This is because protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis and maintenance of mitochondria, including mitochondrial DNA (mtDNA) replication, transcription, and translation, require nuclear-encoded genes. In the past decade, a growing number of syndromes associated with dysfunction of mtDNA translation have been reported. This paper reviews the current knowledge of mutations affecting mitochondrial aminoacyl tRNAs synthetases and their role in the pathogenic mechanisms underlying the different clinical presentations.

  10. The Mitochondrial Aminoacyl tRNA Synthetases: Genes and Syndromes

    Directory of Open Access Journals (Sweden)

    Daria Diodato

    2014-01-01

    Full Text Available Mitochondrial respiratory chain (RC disorders are a group of genetically and clinically heterogeneous diseases. This is because protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis and maintenance of mitochondria, including mitochondrial DNA (mtDNA replication, transcription, and translation, require nuclear-encoded genes. In the past decade, a growing number of syndromes associated with dysfunction of mtDNA translation have been reported. This paper reviews the current knowledge of mutations affecting mitochondrial aminoacyl tRNAs synthetases and their role in the pathogenic mechanisms underlying the different clinical presentations.

  11. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    DEFF Research Database (Denmark)

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J

    2011-01-01

    Long chain acyl-CoA synthetase 1 (ACSL1) contributes 50 to 90% of total ACSL activity in liver, adipose tissue, and heart and appears to direct the use of long chain fatty acids for energy. Although the functional importance of ACSL1 is becoming clear, little is understood about its post...... and acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  12. Structural pattern matching of nonribosomal peptides

    Directory of Open Access Journals (Sweden)

    Leclère Valérie

    2009-03-01

    Full Text Available Abstract Background Nonribosomal peptides (NRPs, bioactive secondary metabolites produced by many microorganisms, show a broad range of important biological activities (e.g. antibiotics, immunosuppressants, antitumor agents. NRPs are mainly composed of amino acids but their primary structure is not always linear and can contain cycles or branchings. Furthermore, there are several hundred different monomers that can be incorporated into NRPs. The NORINE database, the first resource entirely dedicated to NRPs, currently stores more than 700 NRPs annotated with their monomeric peptide structure encoded by undirected labeled graphs. This opens a way to a systematic analysis of structural patterns occurring in NRPs. Such studies can investigate the functional role of some monomeric chains, or analyse NRPs that have been computationally predicted from the synthetase protein sequence. A basic operation in such analyses is the search for a given structural pattern in the database. Results We developed an efficient method that allows for a quick search for a structural pattern in the NORINE database. The method identifies all peptides containing a pattern substructure of a given size. This amounts to solving a variant of the maximum common subgraph problem on pattern and peptide graphs, which is done by computing cliques in an appropriate compatibility graph. Conclusion The method has been incorporated into the NORINE database, available at http://bioinfo.lifl.fr/norine. Less than one second is needed to search for a pattern in the entire database.

  13. Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases

    DEFF Research Database (Denmark)

    Knudsen, Michael; Søndergaard, Dan Ariel; Tofting-Olesen, Claus;

    2016-01-01

    .g.~antibiotics. There is thus an interest in predicting the compound synthesized by an NRPS from its primary structure (amino acid sequence) alone, as this would enable an in silico search of whole genomes for NRPS enzymes capable of synthesizing potentially useful compounds. Results: NRPS synthesis happens in a conveyor belt...

  14. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles

    OpenAIRE

    Piel, Jörn

    2002-01-01

    Many drug candidates from marine and terrestrial invertebrates are suspected metabolites of uncultured bacterial symbionts. The antitumor polyketides of the pederin family, isolated from beetles and sponges, are an example. Drug development from such sources is commonly hampered by low yields and the difficulty of sustaining invertebrate cultures. To obtain insight into the true producer and find alternative supplies of these rare drug candidates, the putative pederin biosynthesis genes were ...

  15. Comparison of peptide nucleic acid fluorescence in situ hybridization assays with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry for the identification of bacteria and yeasts from blood cultures and cerebrospinal fluid cultures.

    Science.gov (United States)

    Calderaro, A; Martinelli, M; Motta, F; Larini, S; Arcangeletti, M C; Medici, M C; Chezzi, C; De Conto, F

    2014-08-01

    Peptide nucleic acid fluorescence in situ hybridization (PNA FISH) is a molecular diagnostic tool for the rapid detection of pathogens directly from liquid media. The aim of this study was to prospectively evaluate PNA FISH assays in comparison with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) identification, as a reference method, for both blood and cerebrospinal fluid (CSF) cultures, during a 1-year investigation. On the basis of the Gram stain microscopy results, four different PNA FISH commercially available assays were used ('Staphylococcus aureus/CNS', 'Enterococcus faecalis/OE', 'GNR Traffic Light' and 'Yeasts Traffic Light' PNA FISH assays, AdvanDx). The four PNA FISH assays were applied to 956 positive blood cultures (921 for bacteria and 35 for yeasts) and 11 CSF cultures. Among the 921 blood samples positive for bacteria, PNA FISH gave concordant results with MALDI-TOF MS in 908/921 (98.64%) samples, showing an agreement of 99.4% in the case of monomicrobial infections. As regards yeasts, the PNA FISH assay showed a 100% agreement with the result obtained by MALDI-TOF MS. When PNA FISH assays were tested on the 11 CSF cultures, the results agreed with the reference method in all cases (100%). PNA FISH assays provided species identification at least one work-day before the MALDI-TOF MS culture-based identification. PNA FISH assays showed an excellent efficacy in the prompt identification of main pathogens, yielding a significant reduction in reporting time and leading to more appropriate patient management and therapy in cases of sepsis and severe infections.

  16. Circumstantial evidence for a role of glutamine-synthetase in suicide.

    Science.gov (United States)

    Kalkman, Hans O

    2011-06-01

    Suicide occurs during depression, schizophrenia, diabetes and epilepsy. A common denominator of these disorders is the presence of inflammation. Inflammatory cytokines affect function and expression of the glial enzyme glutamine synthetase and post mortem studies indicate that brain glutamine synthetase function is suppressed in mood disorders and epilepsy. In a study of schizophrenia brains, the expression of glutamine synthetase was reduced in those cases where the cause of death was suicide. The glycogen synthase kinase 3 (GSK3) inhibitor, lithium, which has a proven efficacy against suicide, increased in an animal experiment the expression of glutamine synthetase. Based on these data one could reason that suicide may be prevented by centrally acting GSK3 inhibitors. However, since inhibition of glutamine synthetase may lead to a deficit in glutamine and as consequence a GABA and glutamate deficit, even simple food supplementation with glutamine might help to reduce suicide.

  17. Holocarboxylase synthetase deficiency pre and post newborn screening

    Directory of Open Access Journals (Sweden)

    Taraka R. Donti

    2016-06-01

    Full Text Available Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis.

  18. C-Peptide Test

    Science.gov (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities C-peptide Share this page: Was this page helpful? Also known as: Insulin C-peptide; Connecting Peptide Insulin; Proinsulin C-peptide Formal ...

  19. Antenatal and postnatal radiologic diagnosis of holocarboxylase synthetase deficiency: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Bandaralage, Sahan P.S. [Gold Coast Hospital and Health Service, Southport, Queensland (Australia); Griffith University, School of Medicine, Southport, Queensland (Australia); Farnaghi, Soheil [Caboolture Hospital, Caboolture, Queensland (Australia); Dulhunty, Joel M.; Kothari, Alka [Redcliffe Hospital, Redcliffe, Queensland (Australia); The University of Queensland, School of Medicine, Herston, Queensland (Australia)

    2016-03-15

    Holocarboxylase synthetase deficiency results in impaired activation of enzymes implicated in glucose, fatty acid and amino acid metabolism. Antenatal imaging and postnatal imaging are useful in making the diagnosis. Untreated holocarboxylase synthetase deficiency is fatal, while antenatal and postnatal biotin supplementation is associated with good clinical outcomes. Although biochemical assays are required for definitive diagnosis, certain radiologic features assist in the diagnosis of holocarboxylase synthetase deficiency. To review evidence regarding radiologic diagnostic features of holocarboxylase synthetase deficiency in the antenatal and postnatal period. A systematic review of all published cases of holocarboxylase synthetase deficiency identified by a search of Pubmed, Scopus and Web of Science. A total of 75 patients with holocarboxylase synthetase deficiency were identified from the systematic review, which screened 687 manuscripts. Most patients with imaging (19/22, 86%) had abnormal findings, the most common being subependymal cysts, ventriculomegaly and intraventricular hemorrhage. Although the radiologic features of subependymal cysts, ventriculomegaly, intraventricular hemorrhage and intrauterine growth restriction may be found in the setting of other pathologies, these findings should prompt consideration of holocarboxylase synthetase deficiency in at-risk children. (orig.)

  20. Effect of Liver Damage and Hyperbaric Oxygenation on Glutamine Synthetase of Hepatocytes.

    Science.gov (United States)

    Savilov, P N; Yakovlev, V N

    2016-01-01

    Activity of glutamine synthetase in the hepatocytes of healthy animals and animals with chronic CCl4-induced hepatitis was studied on white mature female rats after liver resection (15-20% of organ weight) and hyperbaric oxygenation (3 atm, 50 min, 3 times). Surgically operated left and non-operated middle lobes of the liver were analyzed on day 3 after liver resection and exposure to hyperbaric oxygenation. On day 65 of CCl4 poisoning, activity of glutamine synthetase decreased in both lobes and did not recover on day 3 after toxin cessation. Liver resection under conditions of CCl4-induced hepatitis restored reduced activity of glutamine synthetase in both liver lobes to the normal level. In healthy rats, the increase in glutamine synthetase activity after liver resection was found only in the middle lobe of the liver. Hyperbaric oxygenation enhanced the stimulatory effect of liver resection on glutamine synthetase activity in hepatocytes during chronic CCl4-induced hepatitis. In healthy animals with liver resection, activity of glutamine synthetase did not change after hyperbaric oxygenation, while normally oxygenation inhibited glutamine synthetase activity.

  1. Encapsulation of glutamine synthetase in mouse erythrocytes: a new procedure for ammonia detoxification.

    Science.gov (United States)

    Kosenko, Elena A; Venediktova, Natalia I; Kudryavtsev, Andrey A; Ataullakhanov, Fazoil I; Kaminsky, Yury G; Felipo, Vicente; Montoliu, Carmina

    2008-12-01

    There are a number of pathological situations in which ammonia levels increase leading to hyperammonemia, which may cause neurological alterations and can lead to coma and death. Currently, there are no efficient treatments allowing rapid and sustained decrease of ammonia levels in these situations. A way to increase ammonia detoxification would be to increase its incorporation in glutamine by glutamine synthetase. The aim of this work was to develop a procedure to encapsulate glutamine synthetase in mouse erythrocytes and to assess whether administration of these erythrocytes containing glutamine synthetase (GS) reduce ammonia levels in hyperammonemic mice. The procedure developed allowed the encapsulation of 3 +/- 0.25 IU of GS / mL of erythrocytes with a 70% cell recovery. Most metabolites, including ATP, remained unaltered in glutamine synthetase-loaded erythrocytes (named ammocytes by us) compared with native erythrocytes. The glutamine synthetase-loaded ammocytes injected in mice survived and retained essentially all of their glutamine synthetase activity for at least 48 h in vivo. Injection of these ammocytes into hyperammonemic mice reduced ammonia levels in the blood by about 50%. The results reported indicate that ammocytes are able to keep their integrity, normal energy metabolism, the inserted glutamine synthetase activity, and can be useful to reduce ammonia levels in hyperammonemic situations.

  2. Solubilization, partial purification, and immunodetection of squalene synthetase from tobacco cell suspension cultures.

    Science.gov (United States)

    Hanley, K; Chappell, J

    1992-01-01

    Squalene synthetase, an integral membrane protein and the first committed enzyme for sterol biosynthesis, was solubilized and partially purified from tobacco (Nicotiana tabacum) cell suspension cultures. Tobacco microsomes were prepared and the enzyme was solubilized from the lipid bilayer using a two-step procedure. Microsomes were initially treated with concentrations of octyl-beta-d-thioglucopyranoside and glycodeoxycholate below their critical micelle concentration, 4.5 and 1.1 millimolar, respectively, to remove loosely associated proteins. Complete solubilization of the squalene synthetase enzyme activity was achieved after a second treatment at detergent concentrations above or at their critical micelle concentration, 18 and 2.2 millimolar, respectively. The detergent-solubilized enzyme was further purified by a combination of ultrafiltration, gel permeation, and Fast Protein Liquid Chromatography anion exchange. A 60-fold purification and 20% recovery of the enzyme activity was achieved. The partially purified squalene synthetase protein was used to generate polyclonal antibodies from mice that efficiently inhibited synthetase activity in an in vitro assay. The apparent molecular mass of the squalene synthetase protein as determined by immunoblot analysis of the partially purified squalene synthetase protein separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 47 kilodaltons. The partially purified squalene synthetase activity was optimal at pH 6.0, exhibited a K(m) for farnesyl diphosphate of 9.5 micromolar, and preferred NADPH as a reductant rather than NADH.

  3. Cytoplasmic methionyl-tRNA synthetase from Bakers' yeast. A monomer with a post-translationally modified N terminus.

    Science.gov (United States)

    Fasiolo, F; Gibson, B W; Walter, P; Chatton, B; Biemann, K; Boulanger, Y

    1985-12-15

    Methionyl-tRNA synthetase has been purified from a yeast strain carrying the MES1 structural gene on a high copy number plasmid (pFL1). The purified enzyme is a monomer of Mr = 85,000 in contrast to its counterpart from Escherichia coli which is a dimer made up of identical subunits (Mr = 76,000; Dardel, F., Fayat, G., and Blanquet, S. (1984) J. Bacteriol. 160, 1115-1122). The yeast enzyme was not amenable to Edman's degradation indicating a blocked NH2 terminus. Its primary structure as derived from the DNA sequence (Walter, P., Gangloff, J., Bonnet, J., Boulanger, Y., Ebel, J.P., and Fasiolo, F. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2437-2441) has been confirmed using the fast atom bombardment-mass spectrometric method. This method was applied to tryptic digests of the carboxymethylated enzyme and the corresponding data provided extensive coverage of the translated DNA sequence, thus confirming its correctness. The ambiguity concerning which of the three NH2-terminally located methionine codons is the initiation codon was easily resolved from peptides identified in this region. It was possible to show that the first methionine had been removed and that the new NH2 terminus, serine, had been acetylated. A comparison between the yeast and E. coli sequences shows that the former has an N-terminal extension of about 200 residues as compared to the latter. It also lacks the C-terminal domain which is responsible for the dimerization of the E. coli methionyl-tRNA synthetase.

  4. Seryl-tRNA Synthetases in Translation and Beyond

    Directory of Open Access Journals (Sweden)

    Marko Močibob

    2016-06-01

    Full Text Available For a long time seryl-tRNA synthetases (SerRSs stood as an archetypal, canonical aminoacyl-tRNA synthetases (aaRS, exhibiting only basic tRNA aminoacylation activity and with no moonlighting functions beyond protein biosynthesis. The picture has changed substantially in recent years after the discovery that SerRSs play an important role in antibiotic production and resistance and act as a regulatory factor in vascular development, as well as after the discovery of mitochondrial morphogenesis factor homologous to SerRS in insects. In this review we summarize the recent research results from our laboratory, which advance the understanding of seryl-tRNA synthetases and further paint the dynamic picture of unexpected SerRS activities. SerRS from archaeon Methanothermobacter thermautotrophicus was shown to interact with the large ribosomal subunit and it was postulated to contribute to a more efficient translation by the"tRNA channeling" hypothesis. Discovery of the atypical SerRS in a small number of methanogenic archaea led to the discovery of a new family of enzymes in numerous bacteria - amino acid:[carrier protein] ligases (aa:CP ligases. These SerRS homologues resigned tRNA aminoacylation activity, and instead adopted carrier proteins as the acceptors of activated amino acids. The crystal structure of the aa:CP ligase complex with the carrier protein revealed that the interactions between two macromolecules are incomparable to tRNA binding by the aaRS and consequently represent a true evolutionary invention. Kinetic investigations of SerRSs and the accuracy of amino acid selection revealed that SerRSs possess pre-transfer proofreading activity, challenging the widely accepted presumption that hydrolytic proofreading activity must reside in an additional, separate editing domain, not present in SerRSs. Finally, the plant tRNA serylation system is discussed, which is particularly interesting due to the fact that protein biosynthesis takes place

  5. Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke.

    Science.gov (United States)

    Jeitner, Thomas M; Battaile, Kevin; Cooper, Arthur J L

    2015-12-01

    The following article addresses some seemingly paradoxical observations concerning cerebral glutamine synthetase in ischemia-reperfusion injury. In the brain, this enzyme is predominantly found in astrocytes and catalyzes part of the glutamine-glutamate cycle. Glutamine synthetase is also thought to be especially sensitive to inactivation by the oxygen- and nitrogen-centered radicals generated during strokes. Despite this apparent sensitivity, glutamine synthetase specific activity is elevated in the affected tissues during reperfusion. Given the central role of the glutamine-glutamate cycle in the brain, we sought to resolve these conflicting observations with the view of providing an alternative perspective for therapeutic intervention in stroke.

  6. Regulation of Anabaena sp. strain PCC 7120 glutamine synthetase activity in a Synechocystis sp. strain PCC 6803 derivative strain bearing the Anabaena glnA gene and a mutated host glnA gene.

    Science.gov (United States)

    Mérida, A; Flores, E; Florencio, F J

    1992-01-01

    The glnA gene from Synechocystis sp. strain PCC 6803 was cloned by hybridization with the glnA gene from Anabaena sp. strain PCC 7120, and a deletion-insertion mutation of the Synechocystis gene was generated in vitro. A strain derived from Synechocystis sp. strain PCC 6803 which contained integrated into the chromosome, in addition to its own glnA gene, the Anabaena glnA gene was constructed. From that strain, a Synechocystis sp. glnA mutant could be obtained by transformation with the inactivated Synechocystis glnA gene; this mutant grew by using Anabaena glutamine synthetase and was not a glutamine auxotroph. A Synechocystis sp. glnA mutant could not be obtained, however, from the wild-type Synechocystis sp. The Anabaena glutamine synthetase enzyme was subject to ammonium-promoted inactivation when expressed in the Synechocystis strain but not in the Anabaena strain itself.

  7. MOLECULAR EVOLUTION OF GLUTAMINE SYNTHETASE II AND III IN THE CHROMALVEOLATES(1).

    Science.gov (United States)

    Ghoshroy, Sohini; Robertson, Deborah L

    2012-06-01

    Glutamine synthetase (GS) is encoded by three distinct gene families (GSI, GSII, and GSIII) that are broadly distributed among the three domains of life. Previous studies established that GSII and GSIII isoenzymes were expressed in diatoms; however, less is known about the distribution and evolution of the gene families in other chromalveolate lineages. Thus, GSII cDNA sequences were isolated from three cryptophytes (Guillardia theta D. R. A. Hill et Wetherbee, Cryptomonas phaseolus Skuja, and Pyrenomonas helgolandii Santore), and GSIII was sequenced from G. theta. Red algal GSII sequences were obtained from Bangia atropurpurea (Mertens ex Roth) C. Agardh; Compsopogon caeruleus (Balbis ex C. Agardh) Mont.; Flintiella sanguinaria F. D. Ott and Porphyridium aerugineum Geitler; Rhodella violacea (Kornmann) Wehrmeyer and Dixoniella grisea (Geitler) J. L. Scott, S. T. Broadwater, B. D. Saunders, J. P. Thomas et P. W. Gabrielson; and Stylonema alsidii (Zanardini) K. M. Drew. In Bayesian inference and maximum-likelihood (ML) phylogenetic analyses, chromalveolate GSII sequences formed a weakly supported clade that nested among sequences from glaucophytes, red algae, green algae, and plants. Red algal GSII sequences formed two distinct clades. The largest clade contained representatives from the Cyanidiophytina and Rhodophytina and grouped with plants and green algae. The smaller clade (C. caeruleus, Porphyra yezoensis, and S. alsidii) nested within the chromalveolates, although its placement was unresolved. Chromalveolate GSIII sequences formed a well-supported clade in Bayesian and ML phylogenies, and mitochondrial transit peptides were identified in many of the sequences. There was strong support for a stramenopile-haptophyte-cryptophyte GSIII clade in which the cryptophyte sequence diverged from the deepest node. Overall, the evolutionary history of the GS gene families within the algae is complex with evidence for the presence of orthologous and paralogous sequences

  8. Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation.

    Science.gov (United States)

    Bott, Alex J; Peng, I-Chen; Fan, Yongjun; Faubert, Brandon; Zhao, Lu; Li, Jinyu; Neidler, Sarah; Sun, Yu; Jaber, Nadia; Krokowski, Dawid; Lu, Wenyun; Pan, Ji-An; Powers, Scott; Rabinowitz, Joshua; Hatzoglou, Maria; Murphy, Daniel J; Jones, Russell; Wu, Song; Girnun, Geoffrey; Zong, Wei-Xing

    2015-12-01

    c-Myc is known to promote glutamine usage by upregulating glutaminase (GLS), which converts glutamine to glutamate that is catabolized in the TCA cycle. Here we report that in a number of human and murine cells and cancers, Myc induces elevated expression of glutamate-ammonia ligase (GLUL), also termed glutamine synthetase (GS), which catalyzes the de novo synthesis of glutamine from glutamate and ammonia. This is through upregulation of a Myc transcriptional target thymine DNA glycosylase (TDG), which promotes active demethylation of the GS promoter and its increased expression. Elevated expression of GS promotes cell survival under glutamine limitation, while silencing of GS decreases cell proliferation and xenograft tumor growth. Upon GS overexpression, increased glutamine enhances nucleotide synthesis and amino acid transport. These results demonstrate an unexpected role of Myc in inducing glutamine synthesis and suggest a molecular connection between DNA demethylation and glutamine metabolism in Myc-driven cancers.

  9. Astrocyte glutamine synthetase: pivotal in health and disease.

    Science.gov (United States)

    Rose, Christopher F; Verkhratsky, Alexei; Parpura, Vladimir

    2013-12-01

    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease.

  10. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase.

    Science.gov (United States)

    Kosikowska, Paulina; Bochno, Marta; Macegoniuk, Katarzyna; Forlani, Giuseppe; Kafarski, Paweł; Berlicki, Łukasz

    2016-12-01

    Inhibition of glutamine synthetase (GS) is one of the most promising strategies for the discovery of novel drugs against tuberculosis. Forty-three bisphosphonic and bis-H-phosphinic acids of various scaffolds, bearing aromatic substituents, were screened against recombinant GS from Mycobacterium tuberculosis. Most of the studied compounds exhibited activities in micromolar range, with N-(3,5-dichlorophenyl)-2-aminoethylidenebisphoshonic acid, N-(3,5-difluorophenyl)-2-aminoethylidene-bisphoshonic acid and N-(3,4-dichlorophenyl)-1-hydroxy-1,1-ethanebisphosphonic acid showing the highest potency with kinetic parameters similar to the reference compound - L-methionine-S-sulfoximine. Moreover, these inhibitors were found to be much more effective against pathogen enzyme than against the human ortholog. Thus, with the bone-targeting properties of the bisphosphonate compounds in mind, this activity/selectivity profile makes these compounds attractive agents for the treatment of bone tuberculosis.

  11. In Silico Discovery of Aminoacyl-tRNA Synthetase Inhibitors

    Directory of Open Access Journals (Sweden)

    Yaxue Zhao

    2014-01-01

    Full Text Available Aminoacyl-tRNA synthetases (aaRSs are enzymes that catalyze the transfer of amino acids to their cognate tRNA. They play a pivotal role in protein synthesis and are essential for cell growth and survival. The aaRSs are one of the leading targets for development of antibiotic agents. In this review, we mainly focused on aaRS inhibitor discovery and development using in silico methods including virtual screening and structure-based drug design. These computational methods are relatively fast and cheap, and are proving to be of great benefit for the rational development of more potent aaRS inhibitors and other pharmaceutical agents that may usher in a much needed generation of new antibiotics.

  12. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  13. Recent advances in engineering nonribosomal peptide assembly lines.

    Science.gov (United States)

    Winn, M; Fyans, J K; Zhuo, Y; Micklefield, J

    2016-02-01

    Nonribosomal peptides are amongst the most widespread and structurally diverse secondary metabolites in nature with many possessing bioactivity that can be exploited for therapeutic applications. Due to the major challenges associated with total- and semi-synthesis, bioengineering approaches have been developed to increase yields and generate modified peptides with improved physicochemical properties or altered bioactivity. Here we review the major advances that have been made over the last decade in engineering the biosynthesis of nonribosomal peptides. Structural diversity has been introduced by the modification of enzymes required for the supply of precursors or by heterologous expression of tailoring enzymes. The modularity of nonribosomal peptide synthetase (NRPS) assembly lines further supports module or domain swapping methodologies to achieve changes in the amino acid sequence of nonribosomal peptides. We also review the new synthetic biology technologies promising to speed up the process, enabling the creation and optimisation of many more assembly lines for heterologous expression, offering new opportunities for engineering the biosynthesis of novel nonribosomal peptides.

  14. High cerebral guanidinoacetate and variable creatine concentrations in argininosuccinate synthetase and lyase deficiency : Implications for treatment?

    NARCIS (Netherlands)

    van Spronsen, F. J.; Reijngoud, D. J.; Verhoeven, N. M.; Soorani-Lunsing, R. J.; Jakobs, C.; Sijens, P. E.

    2006-01-01

    Cerebral creatine and guanidinoacetate and blood and urine metabolites were studied in four patients with argininosuccinate synthetase (ASS) or argininosuccinate lyase (ASL) deficiency receiving large doses of arginine. Urine and blood metabolites varied largely. Cerebral guanidinoacetate was

  15. 3-substituted anilines as scaffolds for the construction of glutamine synthetase and DXP-reductoisomerase inhibitors

    CSIR Research Space (South Africa)

    Mutorwa, M

    2009-01-01

    Full Text Available -1 Synthetic Communications Volume 39, Issue 15, 2009 3-Substituted Anilines as Scaffolds for the Construction of Glutamine Synthetase and DXP-Reductoisomerase Inhibitors Marius Mutorwaa, Sheriff Salisua, Gregory L. Blatchbc, Colin Kenyond & Perry T...

  16. Regulation of active site coupling in glutamine-dependent NAD[superscript +] synthetase

    Energy Technology Data Exchange (ETDEWEB)

    LaRonde-LeBlanc, Nicole; Resto, Melissa; Gerratana, Barbara; (Maryland)

    2009-05-21

    NAD{sup +} is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD{sup +} biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD{sup +} synthetase, which catalyzes the ATP-dependent formation of NAD{sup +} at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD{sup +} synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD{sup +} synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-{angstrom} intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.

  17. High cerebral guanidinoacetate and variable creatine concentrations in argininosuccinate synthetase and lyase deficiency : Implications for treatment?

    NARCIS (Netherlands)

    van Spronsen, F. J.; Reijngoud, D. J.; Verhoeven, N. M.; Soorani-Lunsing, R. J.; Jakobs, C.; Sijens, P. E.

    2006-01-01

    Cerebral creatine and guanidinoacetate and blood and urine metabolites were studied in four patients with argininosuccinate synthetase (ASS) or argininosuccinate lyase (ASL) deficiency receiving large doses of arginine. Urine and blood metabolites varied largely. Cerebral guanidinoacetate was increa

  18. ATP/GTP hydrolysis is required for oxazole and thiazole biosynthesis in the peptide antibiotic microcin B17.

    Science.gov (United States)

    Milne, J C; Eliot, A C; Kelleher, N L; Walsh, C T

    1998-09-22

    In the maturation of the Escherichia coli antibiotic Microcin B17, the product of the mcbA gene is modified posttranslationally by the multimeric Microcin synthetase complex (composed of McbB, C, and D) to cyclize four Cys and four Ser residues to four thiazoles and four oxazoles, respectively. The purified synthetase shows an absolute requirement for ATP or GTP in peptide substrate heterocyclization, with GTP one-third as effective as ATP in initial rate studies. The ATPase/GTPase activity of the synthetase complex is conditional in that ADP or GDP formation requires the presence of substrate; noncyclizable versions of McbA bind to synthetase, but do not induce the NTPase activity. The stoichiometry of ATP hydrolysis and heterocycle formation is 5:1 for a substrate that contains two potential sites of modification. However, at high substrate concentrations (>50Km) heterocycle formation is inhibited, while ATPase activity occurs undiminished, consistent with uncoupling of NTP hydrolysis and heterocycle formation at high substrate concentrations. Sequence homology reveals that the McbD subunit has motifs reminiscent of the Walker B box in ATP utilizing enzymes and of motifs found in small G protein GTPases. Mutagenesis of three aspartates to alanine in these motifs (D132, D147, and D199) reduced Microcin B17 production in vivo and heterocycle formation in vitro, suggesting that the 45 kDa McbD has a regulated ATPase/GTPase domain in its N-terminal region necessary for peptide heterocyclization.

  19. Diffuse glutamine synthetase overexpression restricted to areas of peliosis in a β-catenin-activated hepatocellular adenoma: a potential pitfall in glutamine synthetase interpretation.

    Science.gov (United States)

    Berry, Ryan S; Gullapalli, Rama R; Wu, Jin; Morris, Katherine; Hanson, Joshua A

    2014-08-01

    Hepatocellular adenomas have recently been classified into four subtypes based on molecular findings: hepatocyte nuclear factor 1α (HNF1α) inactivated, inflammatory/telangiectatic, β-catenin activated, and unclassifiable. β-catenin-activated adenomas have the potential for malignant transformation and are thus important to recognize. Diffuse glutamine synthetase immunohistochemical positivity has been shown to be a reliable surrogate marker for β-catenin activation, though variations in staining patterns may be difficult to interpret. We report a case of a peliotic adenoma that was morphologically consistent with a β-catenin wild-type hepatocellular adenoma but harbored a β-catenin mutation by molecular analysis. The tumor lacked nuclear β-catenin positivity and demonstrated a hitherto undescribed pattern of glutamine synthetase overexpression restricted to areas of peliosis with mostly negative staining in non-peliotic areas. This pattern was initially interpreted as physiologic and may represent a potential pitfall in glutamine synthetase interpretation.

  20. Peptide arrays for screening cancer specific peptides.

    Science.gov (United States)

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis.

  1. Glutamine synthetase 2 is not essential for biosynthesis of compatible solutes in Halobacillus halophilus

    OpenAIRE

    Anna eShiyan; Melanie eThompson; Saskia eKöcher; Michaela eTausendschön; Helena eSantos; Inga eHänelt; Volker eMüller

    2014-01-01

    Halobacillus halophilus, a moderately halophilic bacterium isolated from salt marshes, produces various compatible solutes to cope with osmotic stress. Glutamate and glutamine are dominant compatible solutes at mild salinities. Glutamine synthetase activity in cell suspensions of Halobacillus halophilus wild type was shown to be salt dependent and chloride modulated. A possible candidate to catalyze glutamine synthesis is glutamine synthetase A2, whose transcription is stimulated by chloride....

  2. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence.

    Science.gov (United States)

    Avila-Ospina, Liliana; Marmagne, Anne; Talbotec, Joël; Krupinska, Karin; Masclaux-Daubresse, Céline

    2015-04-01

    Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to the three HvGS1 and two HvASN sequences previously reported, two prokaryotic-like HvGS1 and three HvASN cDNA sequences were identified. Gene structures were then characterized, obtaining full genomic sequences. The response of the five HvGS1 and five HvASN genes to leaf senescence was then studied. Developmental senescence was studied using primary and flag leaves. Dark-exposure or low-nitrate conditions were also used to trigger stress-induced senescence. Well-known senescence markers such as the chlorophyll and Rubisco contents were monitored in order to characterize senescence levels in the different leaves. The three eukaryotic-like HvGS1_1, HvGS1_2, and HvGS1_3 sequences showed the typical senescence-induced reduction in gene expression described in many plant species. By contrast, the two prokaryotic-like HvGS1_4 and HvGS1_5 sequences were repressed by leaf senescence, similar to the HvGS2 gene, which encodes the chloroplast glutamine synthetase isoenzyme. There was a greater contrast in the responses of the five HvASN and this suggested that these genes are needed for N remobilization in senescing leaves only when plants are well fertilized with nitrate. Responses of the HvASN sequences to dark-induced senescence showed that there are two categories of asparagine synthetases, one induced in the dark and the other repressed by the same conditions.

  3. Synthetic methodology for the preparation of nucleic acid containing peptides

    NARCIS (Netherlands)

    Heden-van Noort, Gerbrand Jan van der

    2012-01-01

    Dit proefschrift beschrijft de ontwikkeling van nieuwe methoden voor de synthese van hybride biomoleculen die samengesteld zijn uit een peptide- en een nucleïnezuurfragment. Zulke hybride moleculen komen in de natuur voor en hebben belangrijke functies. In dit proefschrift wordt aandacht besteed aan

  4. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  5. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats.

    Science.gov (United States)

    Eid, Tore; Ghosh, Arko; Wang, Yue; Beckström, Henning; Zaveri, Hitten P; Lee, Tih-Shih W; Lai, James C K; Malthankar-Phatak, Gauri H; de Lanerolle, Nihal C

    2008-08-01

    An excess of extracellular glutamate in the hippocampus has been linked to the generation of recurrent seizures and brain pathology in patients with medically intractable mesial temporal lobe epilepsy (MTLE). However, the mechanism which results in glutamate excess in MTLE remains unknown. We recently reported that the glutamate-metabolizing enzyme glutamine synthetase is deficient in the hippocampus in patients with MTLE, and we postulated that this deficiency is critically involved in the pathophysiology of the disease. To further explore the role of glutamine synthetase in MTLE we created a novel animal model of hippocampal glutamine synthetase deficiency by continuous (approximately 28 days) microinfusion of methionine sulfoximine (MSO: 0.625 to 2.5 microg/h) unilaterally into the hippocampus in rats. This treatment led to a deficiency in hippocampal glutamine synthetase activity by 82-97% versus saline. The majority (>95%) of the MSO-treated animals exhibited recurrent seizures that continued for several weeks. Some of the MSO-treated animals exhibited neuropathological features that were similar to mesial temporal sclerosis, such as hippocampal atrophy and patterned loss of hippocampal neurons. However, many MSO-treated animals displayed only minimal injury to the hippocampus, with no clear evidence of mesial temporal sclerosis. These findings support the hypothesis that a deficiency in hippocampal glutamine synthetase causes recurrent seizures, even in the absence of classical mesial temporal sclerosis, and that restoration of glutamine synthetase may represent a novel approach to therapeutic intervention in this disease.

  6. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  7. Protein- and peptide-modified synthetic polymeric biomaterials.

    Science.gov (United States)

    Krishna, Ohm D; Kiick, Kristi L

    2010-01-01

    This review presents an overview on bio-hybrid approaches of integrating the structural and functional features of proteins and peptides with synthetic polymers and the resulting unique properties in such hybrids, with a focus on bioresponsive/bioactive systems with biomaterials applications. The review is divided in two broad sections. First, we describe several examples of bio-hybrids produced by combining versatile synthetic polymers with proteins/enzymes and drugs that have resulted in (1) hybrid materials based on responsive polymers, (2) responsive hydrogels based on enzyme-catalyzed reactions, protein-protein interactions and protein-drug sensing, and (3) dynamic hydrogels based on conformational changes of a protein. Next, we present hybrids produced by combining synthetic polymers with peptides, classified based on the properties of the peptide domain: (1) peptides with different conformations, such as alpha-helical, coiled-coil, and beta-sheet; (2) peptides derived from structural protein domains such as silk, elastin, titin, and collagen; and (3) peptides with other biofunctional properties such as cell-binding domains and enzyme-recognized degradation domains. (c) 2010 Wiley Periodicals, Inc.

  8. Aminoacyl-tRNA Synthetases in the Bacterial World.

    Science.gov (United States)

    Giegé, Richard; Springer, Mathias

    2016-05-01

    Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and

  9. Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design

    Science.gov (United States)

    Cai, Xiaofeng; Nowak, Sarah; Wesche, Frank; Bischoff, Iris; Kaiser, Marcel; Fürst, Robert; Bode, Helge. B.

    2017-04-01

    The production of natural product compound libraries has been observed in nature for different organisms such as bacteria, fungi and plants; however, little is known about the mechanisms generating such chemically diverse libraries. Here we report mechanisms leading to the biosynthesis of the chemically diverse rhabdopeptide/xenortide peptides (RXPs). They are exclusively present in entomopathogenic bacteria of the genera Photorhabdus and Xenorhabdus that live in symbiosis with nematodes delivering them to insect prey, which is killed and utilized for nutrition by both nematodes and bacteria. Chemical diversity of the biologically active RXPs results from a combination of iterative and flexible use of monomodular nonribosomal peptide synthetases including substrate promiscuity, enzyme cross-talk and enzyme stoichiometry as shown by in vivo and in vitro experiments. Together, this highlights several of nature's methods for diversification, or evolution, of natural products and sheds light on the biosynthesis of the bioactive RXPs.

  10. Actinobacterial acyl coenzyme A synthetases involved in steroid side-chain catabolism.

    Science.gov (United States)

    Casabon, Israël; Swain, Kendra; Crowe, Adam M; Eltis, Lindsay D; Mohn, William W

    2014-02-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 10(5) ± 0.03 × 10(5) M(-1) s(-1)) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2'-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 10(5) ± 0.1 × 10(5) M(-1) s(-1) and 3.2 × 10(5) ± 0.3 × 10(5) M(-1) s(-1), respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid

  11. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia.

    Science.gov (United States)

    Verlander, Jill W; Chu, Diana; Lee, Hyun-Wook; Handlogten, Mary E; Weiner, I David

    2013-09-01

    Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+ -free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism.

  12. Regulation of expression from the glnA promoter of Escherichia coli in the absence of glutamine synthetase.

    OpenAIRE

    Rothstein, D M; Pahel, G; Tyler, B.; Magasanik, B

    1980-01-01

    One of the suspected regulators of glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2] in enteric bacteria is glutamine synthetase itself. We isolated Escherichia coli strains carrying fusions of the beta-galactosidase structural gene to the promoter of the glutamine synthetase gene, with the aid of the Casadaban Mud1 (ApR, lac, cts62) phage. Some aspects of regulation were retained in haploid fusion strains despite the absence of glutamine synthetase, whereas other as...

  13. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine

    DEFF Research Database (Denmark)

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman

    2004-01-01

    . Screening of antibodies from a hybridoma library led to the identification of an acyl-CoA synthetase 5-specific monoclonal antibody. Protein synthesis, mRNA expression, and the enzyme activity of acyl-CoA synthetase 5 were studied by several methods in human small intestinal tissues with Crohn's disease...... or coeliac disease, respectively. Acyl-CoA synthetase 5 mRNA and protein levels were substantially reduced in injured small intestinal mucosa. Moreover, impaired synthesis of the acyl-CoA synthetase 5 protein was reflected by a decrease in intramucosal enzyme activity. Subtle changes of the acyl...

  14. Nitric oxide synthetase and Helicobacter pylori in patients undergoing appendicectomy.

    LENUS (Irish Health Repository)

    Kell, M R

    2012-02-03

    BACKGROUND: This study was designed to determine whether Helicobacter pylori forms part of the normal microenvironment of the appendix, whether it plays a role in the pathogenesis of acute appendicitis, and whether it is associated with increased expression of inducible nitric oxide synthetase (iNOS) in appendicular macrophages. METHODS: Serology for H. pylori was performed on 51 consecutive patients undergoing emergency appendicectomy. Appendix samples were tested for urease activity, cultured and stained for H. pylori, graded according to the degree of inflammatory infiltrate, and probed immunohistochemically for iNOS expression. RESULTS: The mean age of the patients was 21 (range 7-51) years. Seventeen patients (33 per cent) were seropositive for H. pylori but no evidence of H. pylori was found in any appendix specimen. However, an enhanced inflammatory cell infiltration was observed in seropositive patients (P < 0.04) and the expression of macrophage iNOS in the mucosa of normal and inflamed appendix specimens was increased (P < 0.01). CONCLUSION: H. pylori does not colonize the appendix and is unlikely to be a pathogenic stimulus for appendicitis. Priming effects on mucosal immunology downstream from the foregut may occur after infection with H. pylori.

  15. Cloning, expression, and purification of glutamine synthetase from Clostridum acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Usdin, K.P.; Zappe, H.; Jones, D.T.; Woods, D.R.

    1986-09-01

    A glutamine synthetase (GS) gene, glnA, from the gram-positive obligate anaerobe Clostridium acetobutylicum was cloned on recombinant plasmid pHZ200 and enabled Escherichia coli glnA deletion mutants to utilize (NH/sub 4/)/sub 2/ as a sole source of nitrogen. The cloned C. acetobutylicum gene was expressed from a regulatory region contained within the cloned DNA fragment. glnA expression was subject to nitrogen regulation in E. coli. This cloned glnA DNA did not enable an E. coli glnA ntrB ntrC deletion mutant to utilize arginine or low levels of glutamine as sole nitrogen sources, and failed to activate histidase activity in this strain which contained the Klebsiella aerogenes hut operon. The GS produced by pHZ200 was purified and had an apparent subunit molecular weight of approximately 59,000. There was no DNA or protein homology between the cloned C. acetobutylicum glnA gene and GS and the corresponding gene and GS from E. coli. The C. acetobutylicum GS was inhibited by Mg/sup 2 +/ in the ..gamma..-glutamyl transferase assay, but there was no evidence that the GS was adenylylated.

  16. Glutamine synthetase of Streptomyces cattleya: purification and regulation of synthesis.

    Science.gov (United States)

    Paress, P S; Streicher, S L

    1985-08-01

    Glutamine synthetase (GS; EC 6.3.1.2) from Streptomyces cattleya was purified using a single affinity-gel chromatography step, and some of its properties were determined. Levels of GS in S. cattleya cells varied by a factor of 8 depending upon the source of nitrogen in the growth medium. Of 24 nitrogen sources examined only glutamine or NH4Cl utilization resulted in very low GS activity. Addition of NH4Cl to a culture with high GS levels appeared to stop further synthesis and resulted in a progressive decrease in the specific activity of the enzyme. The GS inhibitor methionine sulphoximine (MSX) inhibited GS activity but had no effect on exponentially growing cells. The presence of MSX either lengthened or shortened the period between spore inoculation and initiation of exponential growth, depending on the source of nitrogen. In glutamine minimal medium MSX produced earlier and more efficient spore germination while in glutamate or nitrate minimal medium germination was delayed by its presence.

  17. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  18. Prostaglandin synthetase inhibitors in the treatment of nephrogenic diabetes insipidus.

    Science.gov (United States)

    Monn, E

    1981-01-01

    Two boys with classical NDI have been treated with prostaglandin synthetase inhibitors. A boy, 7 years old, was treated with low solute-load diet and diuretics from his first year of life. His main complaint was nocturnal enuresis. He responded within one day to indomethacin 25 mg twice daily, and the urine volume was reduced from 4 1/2--6 litre/day to 2 1/2--3 litre/day. There is almost no enuresis. A boy, 7 months old, had a basal daily urine volume of 1.6--1.8 litre. A low solute-load diet and diuretics reduced urine volume to 1 litre, but he still needed gastric tube feeding. With the addition of acetylsalicylic acid, 75 mg three times daily, the urine volume was reduced to 600 ml, and he needed no more tube feeding. Both boys are doing well on the above-mentioned regimens, and no side effects have been observed after 1 year of treatment.

  19. The first report of Japanese patients with asparagine synthetase deficiency.

    Science.gov (United States)

    Yamamoto, Takahiro; Endo, Wakaba; Ohnishi, Hidenori; Kubota, Kazuo; Kawamoto, Norio; Inui, Takehiko; Imamura, Atsushi; Takanashi, Jun-Ichi; Shiina, Masaaki; Saitsu, Hirotomo; Ogata, Kazuhiro; Matsumoto, Naomichi; Haginoya, Kazuhiro; Fukao, Toshiyuki

    2017-03-01

    Asparagine synthetase (ASNS) deficiency was recently discovered as a metabolic disorder of non-essential amino acids, and presents as severe progressive microcephaly, intellectual disorder, dyskinetic quadriplegia, and intractable seizures. Two Japanese children with progressive microcephaly born to unrelated patients were analyzed by whole exome sequencing and novel ASNS mutations were identified. The effects of the ASNS mutations were analyzed by structural evaluation and in silico predictions. We describe the first known Japanese patients with ASNS deficiency. Their clinical manifestations were very similar to reported cases of ASNS deficiency. Progressive microcephaly was noted during the prenatal period in patient 1 but only after birth in patient 2. Both patients had novel ASNS mutations: patient 1 had p.L145S transmitted from his mother and p.L247W which was absent from his mother, while patient 2 carried p.V489D and p.W541Cfs*5, which were transmitted from his mother and father, respectively. Three of the four mutations were predicted to affect protein folding, and in silico analyses suggested that they would be pathogenic. We report the first two Japanese patients with ASNS deficiency. Disease severity appears to vary among patients, as is the case for other non-essential amino acid metabolic disorders. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. The plastidial folylpolyglutamate synthetase and root apical meristem maintenance

    Science.gov (United States)

    Srivastava, Avinash C; Tang, Yuhong; Díaz de la Garza, Rocío I

    2011-01-01

    Folylpolyglutamate synthetase (FPGS) catalyzes the attachment of glutamate residues to the folate molecule in plants. Three isoforms of FPGS have been identified in Arabidopsis and these are localized in the plastid (AtDFB), mitochondria (AtDFC) and cytosol (AtDFD). We recently determined that mutants in the AtDFB (At5G05980) gene disrupt primary root development in Arabidopsis thaliana seedlings. Transient expression of AtDFB-green fluorescent protein (GFP) fusion under the control of the native AtDFB promoter in Nicotiana tabacum leaf epidermal cells verified the plastid localization of AtDFB. Furthermore, low concentrations of methotrexate (MTX), a compound commonly used as a folate antagonist in plant and mammalian cells induced primary root defects in wild type seedlings that were similar to atdfb. In addition, atdfb seedlings were more sensitive to MTX when compared to wild type. Quantitative (q) RT-PCR showed lower transcript levels of the mitochondrial and cytosolic FPGS in roots of 7-day-old atdfb seedling suggesting feedback regulation of AtDFB on the expression of other FPGS isoforms during early seedling development. The primary root defects of atdfb, which can be traced in part to altered quiescent center (QC) identity, pave the way for future studies that could link cell type specific folate and FPGS isoform requirements to whole organ development. PMID:21502816

  1. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    Science.gov (United States)

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.

  2. Enzymatic Production of Glutathione by Bifunctional γ-Glutamylcysteine Synthetase/Glutathione Synthetase Coupled with In Vitro Acetate Kinase-Based ATP Generation.

    Science.gov (United States)

    Jiang, Yu; Tao, Rongsheng; Shen, Zhengquan; Sun, Liangdong; Zhu, Fuyun; Yang, Sheng

    2016-12-01

    Glutathione (γ-glutamyl-L-cysteinylglycine, GSH) is a pharmaceutical compound often used in food additives and the cosmetics industry. GSH can be produced biologically from L-glutamic acid, L-cysteine, and glycine through an enzymatic process traditionally involving two sequential adenosine triphosphate (ATP)-dependent reactions catalyzed by γ-glutamylcysteine synthetase (γ-GCS or GSHI, EC 6.3.2.2) and GSH synthetase (GS or GSHII, EC 6.3.2.3). Here, we report the enzymatic production of GSH by recombinant cell-free bifunctional γ-glutamylcysteine synthetase/glutathione synthetase (γ-GCS-GS or GshF) coupled with in vitro acetate kinase-based ATP generation. GSH production by an acetate kinase-integrated Escherichia coli Rosetta(DE3) mutant expressing Streptococcus thermophilus GshF reached 18.3 ± 0.1 g l(-1) (59.5 ± 0.3 mM) within 3 h, with a molar yield of 0.75 ± 0.00 mol mol(-1) added cysteine and a productivity of 6.1 ± 0.0 g l(-1) h(-1). This is the highest GSH titer reported to date. This newly developed biocatalytic process offers a promising approach for meeting the industrial requirements for GSH production.

  3. A peptide study of the relationship between the collagen triple-helix and amyloid.

    Science.gov (United States)

    Parmar, Avanish S; Nunes, Ana Monica; Baum, Jean; Brodsky, Barbara

    2012-10-01

    Type XXV collagen, or collagen-like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro-Hyp-Gly)₁₀ , an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)(n) domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple-helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple-helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple-helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly-Xaa-Yaa sequence and required the triple-helix conformation. The inhibitory effect of the collagen triple-helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation.

  4. Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi.

    Science.gov (United States)

    Soukup, Alexandra A; Keller, Nancy P; Wiemann, Philipp

    2016-01-01

    Filamentous fungi are historically known as rich sources for production of biologically active natural products, so-called secondary metabolites. One particularly pharmaceutically relevant chemical group of secondary metabolites is the nonribosomal peptides synthesized by nonribosomal peptide synthetases (NRPSs). As most of the fungal NRPS gene clusters leading to production of the desired molecules are not expressed under laboratory conditions, efforts to overcome this impediment are crucial to unlock the full chemical potential of each fungal species. One way to activate these silent clusters is by overexpressing and deleting global regulators of secondary metabolism. The conserved fungal-specific regulator of secondary metabolism, LaeA, was shown to be a valuable target for sleuthing of novel gene clusters and metabolites. Additionally, modulation of chromatin structures by either chemical or genetic manipulation has been shown to activate cryptic metabolites. Furthermore, NRPS-derived molecules seem to be affected by cross talk between the specific gene clusters and some of these metabolites have a tissue- or developmental-specific regulation. This chapter summarizes how this knowledge of different tiers of regulation can be combined to increase production of NRPS-derived metabolites in fungal species.

  5. Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi

    Science.gov (United States)

    Soukup, Alexandra A.; Keller, Nancy P.; Wiemann, Philipp

    2016-01-01

    Filamentous fungi are historically known as rich sources for production of biologically active natural products, so-called secondary metabolites. One particularly pharmaceutically relevant chemical group of secondary metabolites is the nonribosomal peptides synthesized by nonribosomal peptide synthetases (NRPSs). As most of the fungal NRPS gene clusters leading to production of the desired molecules are not expressed under laboratory conditions, efforts to overcome this impediment are crucial to unlock the full chemical potential of each fungal species. One way to activate these silent clusters is by overexpressing and deleting global regulators of secondary metabolism. The conserved fungal-specific regulator of secondary metabolism, LaeA, was shown to be a valuable target for sleuthing of novel gene clusters and metabolites. Additionally, modulation of chromatin structures by either chemical or genetic manipulation has been shown to activate cryptic metabolites. Furthermore, NRPS-derived molecules seem to be affected by cross talk between the specific gene clusters and some of these metabolites have a tissue- or developmental-specific regulation. This chapter summarizes how this knowledge of different tiers of regulation can be combined to increase production of NRPS-derived metabolites in fungal species. PMID:26831707

  6. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A., E-mail: merritt@u.washington.edu [Medical Structural Genomics of Pathogenic Protozoa, (United States); University of Washington, Seattle, WA 98195 (United States)

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  7. Calcium regulates the expression of a Dictyostelium discoideum asparaginyl tRNA synthetase gene

    Indian Academy of Sciences (India)

    Jyoti K Jaiswal; Vidyanand Nanjundiah

    2003-12-01

    In a screen for calcium-regulated gene expression during growth and development of Dictyostelium discoideum we have identified an asparaginyl tRNA synthetase (ddAsnRS) gene, the second tRNA synthetase gene identified in this organism. The ddAsnRS gene shows many unique features. One, it is repressed by lowering cellular calcium, making it the first known calcium-regulated tRNA synthetase. Two, despite the calcium-dependence, its expression is unaltered during the cell cycle, making this the first D. discoideum gene to show a calcium-dependent but cell cycle phase-independent expression. Finally, the N-terminal domain of the predicted ddAsnRS protein shows higher sequence similarity to Glutaminyl tRNA synthetases than to other Asn tRNA synthetases. These unique features of the AsnRS from this primitive eukaryote not only point to a novel mechanism regulating the components of translation machinery and gene expression by calcium, but also hint at a link between the evolution of GlnRS and AsnRS in eukaryotes.

  8. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases.

    Science.gov (United States)

    Chatton, B; Walter, P; Ebel, J P; Lacroute, F; Fasiolo, F

    1988-01-05

    S1 mapping on the VAS1 structural gene indicates the existence of two classes of transcripts initiating at distinct in-frame translation start codons. The longer class of VAS1 transcripts initiates upstream of both ATG codons located 138 base pairs away and the shorter class downstream of the first ATG. A mutation that destroys the first AUG on the long message results in respiratory deficiency but does not affect viability. Mutation of the ATG at position 139 leads to lethality because the initiating methionine codon of the essential cytoplasmic valyl-tRNA synthetase has been destroyed. N-terminal protein sequence data further confirm translation initiation at ATG-139 for the cytoplasmic valyl-tRNA synthetase. From these results, we conclude that the VAS1 single gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. The presequence of the mitochondrial valyl-tRNA synthetase shows amino acid composition but not the amphiphilic character of imported mitochondrial proteins. From mutagenesis of the ATG-139 we conclude that the presequence specifically targets the cytoplasmically synthesized mitochondrial valyl-tRNA synthetase to the mitochondrial outer membrane and prevents binding of the enzyme core to cytoplasmic tRNAVal.

  9. The effect of glial glutamine synthetase inhibition on recognition and temporal memories in the rat.

    Science.gov (United States)

    Kant, Deepika; Tripathi, Shweta; Qureshi, Munazah F; Tripathi, Shweta; Pandey, Swati; Singh, Gunjan; Kumar, Tankesh; Mir, Fayaz A; Jha, Sushil K

    2014-02-07

    The glutamate neurotransmitter is intrinsically involved in learning and memory. Glial glutamine synthetase enzyme synthesizes glutamine, which helps maintain the optimal neuronal glutamate level. However, the role of glutamine synthetase in learning and memory remains unclear. Using associative trace learning task, we investigated the effects of methionine sulfoximine (MSO) (glutamine synthetase inhibitor) on recognition and temporal memories. MSO and vehicle were injected (i.p.) three hours before training in separate groups of male Wistar rats (n=11). Animals were trained to obtain fruit juice after following a set of sequential events. Initially, house-light was presented for 15s followed by 5s trace interval. Thereafter, juice was given for 20s followed by 20s inter-presentation interval. A total of 75 presentations were made over five sessions during the training and testing periods. The average number of head entries to obtain juice per session and during individual phases at different time intervals was accounted as an outcome measure of recognition and temporal memories. The total head entries in MSO and vehicle treated animals were comparable on training and testing days. However, it was 174.90% (p=0.08), 270.61% (pGlutamine synthetase inhibition did not induce recognition memory deficit, while temporal memory was altered, suggesting that glutamine synthetase modulates some aspects of mnemonic processes.

  10. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.

    Science.gov (United States)

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed.

  11. Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis †.

    Science.gov (United States)

    Jakubowski, Hieronim

    2017-02-09

    Aminoacyl-tRNA synthetases (AARSs) have evolved "quality control" mechanisms which prevent tRNA aminoacylation with non-protein amino acids, such as homocysteine, homoserine, and ornithine, and thus their access to the Genetic Code. Of the ten AARSs that possess editing function, five edit homocysteine: Class I MetRS, ValRS, IleRS, LeuRS, and Class II LysRS. Studies of their editing function reveal that catalytic modules of these AARSs have a thiol-binding site that confers the ability to catalyze the aminoacylation of coenzyme A, pantetheine, and other thiols. Other AARSs also catalyze aminoacyl-thioester synthesis. Amino acid selectivity of AARSs in the aminoacyl thioesters formation reaction is relaxed, characteristic of primitive amino acid activation systems that may have originated in the Thioester World. With homocysteine and cysteine as thiol substrates, AARSs support peptide bond synthesis. Evolutionary origin of these activities is revealed by genomic comparisons, which show that AARSs are structurally related to proteins involved in coenzyme A/sulfur metabolism and non-coded peptide bond synthesis. These findings suggest that the extant AARSs descended from ancestral forms that were involved in non-coded Thioester-dependent peptide synthesis, functionally similar to the present-day non-ribosomal peptide synthetases.

  12. Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis †

    Directory of Open Access Journals (Sweden)

    Hieronim Jakubowski

    2017-02-01

    Full Text Available Aminoacyl-tRNA synthetases (AARSs have evolved “quality control” mechanisms which prevent tRNA aminoacylation with non-protein amino acids, such as homocysteine, homoserine, and ornithine, and thus their access to the Genetic Code. Of the ten AARSs that possess editing function, five edit homocysteine: Class I MetRS, ValRS, IleRS, LeuRS, and Class II LysRS. Studies of their editing function reveal that catalytic modules of these AARSs have a thiol-binding site that confers the ability to catalyze the aminoacylation of coenzyme A, pantetheine, and other thiols. Other AARSs also catalyze aminoacyl-thioester synthesis. Amino acid selectivity of AARSs in the aminoacyl thioesters formation reaction is relaxed, characteristic of primitive amino acid activation systems that may have originated in the Thioester World. With homocysteine and cysteine as thiol substrates, AARSs support peptide bond synthesis. Evolutionary origin of these activities is revealed by genomic comparisons, which show that AARSs are structurally related to proteins involved in coenzyme A/sulfur metabolism and non-coded peptide bond synthesis. These findings suggest that the extant AARSs descended from ancestral forms that were involved in non-coded Thioester-dependent peptide synthesis, functionally similar to the present-day non-ribosomal peptide synthetases.

  13. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  14. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  15. Functional analysis of Leishmania cyclopropane fatty acid synthetase.

    Directory of Open Access Journals (Sweden)

    Samuel O Oyola

    Full Text Available The single gene encoding cyclopropane fatty acid synthetase (CFAS is present in Leishmania infantum, L. mexicana and L. braziliensis but absent from L. major, a causative agent of cutaneous leishmaniasis. In L. infantum, usually causative agent of visceral leishmaniasis, the CFAS gene is transcribed in both insect (extracellular and host (intracellular stages of the parasite life cycle. Tagged CFAS protein is stably detected in intracellular L. infantum but only during the early log phase of extracellular growth, when it shows partial localisation to the endoplasmic reticulum. Lipid analyses of L. infantum wild type, CFAS null and complemented parasites detect a low abundance CFAS-dependent C19Δ fatty acid, characteristic of a cyclopropanated species, in wild type and add-back cells. Sub-cellular fractionation studies locate the C19Δ fatty acid to both ER and plasma membrane-enriched fractions. This fatty acid is not detectable in wild type L. major, although expression of the L. infantum CFAS gene in L. major generates cyclopropanated fatty acids, indicating that the substrate for this modification is present in L. major, despite the absence of the modifying enzyme. Loss of the L. infantum CFAS gene does not affect extracellular parasite growth, phagocytosis or early survival in macrophages. However, while endocytosis is also unaffected in the extracellular CFAS nulls, membrane transporter activity is defective and the null parasites are more resistant to oxidative stress. Following infection in vivo, L. infantum CFAS nulls exhibit lower parasite burdens in both the liver and spleen of susceptible hosts but it has not been possible to complement this phenotype, suggesting that loss of C19Δ fatty acid may lead to irreversible changes in cell physiology that cannot be rescued by re-expression. Aberrant cyclopropanation in L. major decreases parasite virulence but does not influence parasite tissue tropism.

  16. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    Science.gov (United States)

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.

  17. Blockade of Glutamine Synthetase Enhances Inflammatory Response in Microglial Cells

    Science.gov (United States)

    Palmieri, Erika M.; Menga, Alessio; Lebrun, Aurore; Hooper, Douglas C.; Butterfield, D. Allan

    2017-01-01

    Abstract Aims: Microglial cells are brain-resident macrophages engaged in surveillance and maintained in a constant state of relative inactivity. However, their involvement in autoimmune diseases indicates that in pathological conditions microglia gain an inflammatory phenotype. The mechanisms underlying this change in the microglial phenotype are still unclear. Since metabolism is an important modulator of immune cell function, we focused our attention on glutamine synthetase (GS), a modulator of the response to lipopolysaccharide (LPS) activation in other cell types, which is expressed by microglia. Results: GS inhibition enhances release of inflammatory mediators of LPS-activated microglia in vitro, leading to perturbation of the redox balance and decreased viability of cocultured neurons. GS inhibition also decreases insulin-mediated glucose uptake in microglia. In vivo, microglia-specific GS ablation enhances expression of inflammatory markers upon LPS treatment. In the spinal cords from experimental autoimmune encephalomyelitis (EAE), GS expression levels and glutamine/glutamate ratios are reduced. Innovation: Recently, metabolism has been highlighted as mediator of immune cell function through the discovery of mechanisms that (behind these metabolic changes) modulate the inflammatory response. The present study shows for the first time a metabolic mechanism mediating microglial response to a proinflammatory stimulus, pointing to GS activity as a master modulator of immune cell function and thus unraveling a potential therapeutic target. Conclusions: Our study highlights a new role of GS in modulating immune response in microglia, providing insights into the pathogenic mechanisms associated with inflammation and new strategies of therapeutic intervention. Antioxid. Redox Signal. 26, 351–363. PMID:27758118

  18. Functional interactions between a glutamine synthetase promoter and MYB proteins.

    Science.gov (United States)

    Gómez-Maldonado, Josefa; Avila, Concepción; Torre, Fernando; Cañas, Rafael; Cánovas, Francisco M; Campbell, Malcolm M

    2004-08-01

    In Scots pine (Pinus sylvestris), ammonium assimilation is catalysed by glutamine synthetase (GS) [EC 6.3.1.2], which is encoded by two genes, PsGS1a and PsGS1b. PsGS1b is expressed in the vascular tissue throughout the plant body, where it is believed to play a role in recycling ammonium released by various facets of metabolism. The mechanisms that may underpin the transcriptional regulation of PsGS1b were explored. The PsGS1b promoter contains a region that is enriched in previously characterized cis-acting elements, known as AC elements. Pine nuclear proteins bound these AC element-rich regions in a tissue-specific manner. As previous experiments had shown that R2R3-MYB transcription factors could interact with AC elements, the capacity of the AC elements in the PsGS1b promoter to interact with MYB proteins was examined. Two MYB proteins from loblolly pine (Pinus taeda), PtMYB1 and PtMYB4, bound to the PsGS1b promoter were able to activate transcription from this promoter in yeast, arabidopsis and pine cells. Immunolocalization experiments revealed that the two MYB proteins were most abundant in cells previously shown to accumulate PsGS1b transcripts. Immunoprecipitation analysis and supershift electrophoretic mobility shift assays implicated these same two proteins in the formation of complexes between pine nuclear extracts and the PsGS1b promoter. Given that these MYB proteins were previously shown to have the capacity to activate gene expression related to lignin biosynthesis, we hypothesize that they may function to co-regulate lignification, a process that places significant demands on nitrogen recycling, and GS, the major enzyme involved in the nitrogen recycling pathway.

  19. Effects of Cecropin A-Magainin Hybrid Peptide on Small Intestinal Mucosal Structure, Mucosal Immune Function and Intestinal Microflora in Mice%天蚕素 A-马盖宁杂合肽对小鼠小肠黏膜结构、小肠黏膜免疫功能和肠道菌群的影响

    Institute of Scientific and Technical Information of China (English)

    杨田田; 于龙魅; 刘二强; 陈香君; 朱明星; 王秀青

    2014-01-01

    本试验旨在研究天蚕素A-马盖宁杂合肽对小鼠小肠黏膜结构、黏膜免疫功能和肠道菌群的影响。选取18只健康且体重相近的 BALB/c 小鼠随机分成3组:对照组(生理盐水0.75 mL/d灌胃)、低剂量杂合肽组(0.26 mg/mL的杂合肽0.75 mL/d灌胃)、高剂量杂合肽组(0.52 mg/mL的杂合肽0.75 mL/d灌胃)。试验期为6周。结果表明:1)2个杂合肽组十二指肠绒毛长度均显著大于对照组( P<0.05),各段小肠的隐窝深度均显著低于对照组( P<0.05),各段小肠绒毛长度/隐窝深度均显著高于对照组( P<0.05)。2)与对照组相比,2个杂合肽组各段小肠黏膜内免疫球蛋白A阳性表达水平均显著升高(P<0.05)。3)2个杂合肽组小肠黏膜内白细胞介素(IL)-2、干扰素-γ(IFN-γ)及IL-4含量均显著高于对照组(P<0.05),而IFN-γ/IL-4各组之间差异不显著( P>0.05)。4)2个杂合肽组盲肠内容物中的大肠杆菌数量均显著低于对照组(P<0.05),双歧杆菌与乳酸杆菌数量均显著高于对照组(P<0.05)。由此得出,天蚕素A-马盖宁杂合肽灌胃能改善机体小肠黏膜结构;可促进免疫球蛋白A的表达来提高小肠黏膜免疫防御功能;可促进IL-2及IFN-γ的分泌来提高肠道细胞免疫水平,促进IL-4的分泌以提高肠道体液免疫水平并能够保持辅助性T细胞( Th)1/Th2的平衡状态;可有效降低肠道致病菌大肠杆菌的数量并显著增加肠道益生菌双歧杆菌和乳酸杆菌的数量。%This experiment was to study the effects of cecropin A-magainin hybrid peptide on small intestinal mucosal structure, mucosal immune function and intestinal microflora in mice. The eighteen healthy BALB/c mice with similar weight were randomly divided into three groups: control group ( given 0.75 mL saline water by gastric lavage) , low dose of hybrid peptide

  20. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  1. Continuous recording of long-chain acyl-coenzyme A synthetase activity using fluorescently labeled bovine serum albumin

    DEFF Research Database (Denmark)

    Demant, Erland J.F.; Nystrøm, Birthe T.

    2001-01-01

    acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes......acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes...

  2. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  3. Nitrogen metabolism enzymes, soluble protein and free proline content in soybean genotypes and their F1 hybrids

    Directory of Open Access Journals (Sweden)

    Kereši Sanja T.

    2008-01-01

    Full Text Available Nitrate reductase and glutamine synthetase activity, as well as free proline and soluble protein content were measured in eight soybean parent genotypes and six F1 hybrids. The aim of this study was to determine variability and the mode of inheritance for these parameters, and point out the genotypes of interest for future breeding programs. Analysed genotypes and their F1 hybrids expressed significant differences in activities of nitrate reductase and glutamine synthetase enzymes, as well as in soluble proteins and free proline contents. Since mode of inheritance for all investigated traits was in most cases dominance or heterosis, it can be concluded that these parameters are under control of dominant genes. The obtained results suggest that genotypes with favorable traits, such as variety Linda, line 1511, and F1 hybrids (Linda x LN92-7369 and (Balkan x BL-8, could be of interest as a good starting material for further breeding programs.

  4. Identification of autoantibodies to tyrosil-tRNA synthetase in heart disfunctions

    Directory of Open Access Journals (Sweden)

    Ryabenko D. V.

    2010-09-01

    Full Text Available Aim. To investigate the levels of specific autoantibodies against tyrosyl-tRNA synthetase and its individual modules in the blood serum of people with heart failure caused by dilated cardiomyopathy, myocarditis and ischemic heart disease compared with healthy donors. Methods. Recombinant proteins were obtained using bacterial strains transformed with appropriate plasmid vectors and were purified by chromatography on Ni-NTA-agarose. The levels of specific autoantibodies were investigated by ELISA. Results. The increased levels of autoantibodies specific to tyrosyl-tRNA synthetase, its N-terminal catalytic module and non-catalytic C-module, were found in the blood serum of patients, compared with healthy donors. Conclusions. The results obtained demonstrate the possible role of tyrosyl-tRNA synthetase in adaptive changes of the myocardium in response to stress factors.

  5. 19-Year Follow-up of A Patient With Severe Glutathione Synthetase Deficiency

    Science.gov (United States)

    Atwal, Paldeep S.; Medina, Casey R.; Burrage, Lindsay C.; Sutton, V. Reid

    2016-01-01

    Glutathione synthetase deficiency is a rare autosomal recessive disorder resulting in low levels of glutathione and an increased susceptibility to oxidative stress. Patients with glutathione synthetase deficiency typically present in the neonatal period with hemolytic anemia, metabolic acidosis and neurological impairment. Lifelong treatment with antioxidants has been recommended in an attempt to prevent morbidity and mortality associated with the disorder. Here we present a 19-year-old female who was diagnosed with glutathione synthetase deficiency shortly after birth and who has been closely followed in our metabolic clinic. Despite an initial severe presentation, she has had normal intellectual development and few complications of her disorder with a treatment regimen that includes polycitra (citric acid, potassium citrate and sodium citrate), vitamin C, vitamin E and selenium. PMID:26984560

  6. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis.

    Science.gov (United States)

    Fedorova, Ksenia; Kayumov, Airat; Woyda, Kathrin; Ilinskaja, Olga; Forchhammer, Karl

    2013-05-02

    The Bacillus subtilis glutamine synthetase (GS) plays a dual role in cell metabolism by functioning as catalyst and regulator. GS catalyses the ATP-dependent synthesis of glutamine from glutamate and ammonium. Under nitrogen-rich conditions, GS becomes feedback-inhibited by high intracellular glutamine levels and then binds transcription factors GlnR and TnrA, which control the genes of nitrogen assimilation. While GS-bound TnrA is no longer able to interact with DNA, GlnR-DNA binding is shown to be stimulated by GS complex formation. In this paper we show a new physiological feature of the interaction between glutamine synthetase and TnrA. The transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in vivo and in vitro, while the GlnR protein does not affect the activity of the enzyme.

  7. In vitro reactivation of in vivo ammonium-inactivated glutamine synthetase from Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Mérida, A; Candau, P; Florencio, F J

    1991-12-16

    Glutamine synthetase from Synechocystis sp. strain PCC 6803 is inactivated by ammonium addition to cells growing with nitrate as the nitrogen source. The enzyme can be reactivated in vitro by different methods such as alkaline phosphatase treatment, but not phosphodiesterase, by raising the pH of the crude extract to values higher than 8, by increasing the ionic strength of the cell-free extract, or by preincubation with organic solvents, such as 2-propanol and ethanol. These results suggest that the loss of glutamine synthetase activity promoted by ammonium involves the non-covalent binding of a phosphorylated compound to the enzyme and support previous results that rule out the existence of an adenylylation/deadenylylation system functioning in the regulation of cyanobacterial glutamine synthetase.

  8. Archaeal RibL: a new FAD synthetase that is air sensitive.

    Science.gov (United States)

    Mashhadi, Zahra; Xu, Huimin; Grochowski, Laura L; White, Robert H

    2010-10-12

    FAD synthetases catalyze the transfer of the AMP portion of ATP to FMN to produce FAD and pyrophosphate (PP(i)). Monofunctional FAD synthetases exist in eukaryotes, while bacteria have bifunctional enzymes that catalyze both the phosphorylation of riboflavin and adenylation of FMN to produce FAD. Analyses of archaeal genomes did not reveal the presence of genes encoding either group, yet the archaea contain FAD. Our recent identification of a CTP-dependent archaeal riboflavin kinase strongly indicated the presence of a monofunctional FAD synthetase. Here we report the identification and characterization of an archaeal FAD synthetase. Methanocaldococcus jannaschii gene MJ1179 encodes a protein that is classified in the nucleotidyl transferase protein family and was previously annotated as glycerol-3-phosphate cytidylyltransferase (GCT). The MJ1179 gene was cloned and its protein product heterologously expressed in Escherichia coli. The resulting enzyme catalyzes the adenylation of FMN with ATP to produce FAD and PP(i). The MJ1179-derived protein has been designated RibL to indicate that it follows the riboflavin kinase (RibK) step in the archaeal FAD biosynthetic pathway. Aerobically isolated RibL is active only under reducing conditions. RibL was found to require divalent metals for activity, the best activity being observed with Co(2+), where the activity was 4 times greater than that with Mg(2+). Alkylation of the two conserved cysteines in the C-terminus of the protein resulted in complete inactivation. RibL was also found to catalyze cytidylation of FMN with CTP, making the modified FAD, flavin cytidine dinucleotide (FCD). Unlike other FAD synthetases, RibL does not catalyze the reverse reaction to produce FMN and ATP from FAD and PP(i). Also in contrast to other FAD synthetases, PP(i) inhibits the activity of RibL.

  9. Sequence determination and modeling of structural motifs for the smallest monomeric aminoacyl-tRNA synthetase.

    OpenAIRE

    Hou, Y M; Shiba, K; Mottes, C; Schimmel, P.

    1991-01-01

    Polypeptide chains of 19 previously studied Escherichia coli aminoacyl-tRNA synthetases are as large as 951 amino acids and, depending on the enzyme, have quaternary structures of alpha, alpha 2, alpha 2 beta 2, and alpha 4. These enzymes have been organized into two classes which are defined by sequence motifs that are associated with specific three-dimensional structures. We isolated, cloned, and sequenced the previously uncharacterized gene for E. coli cysteine-tRNA synthetase (EC 6.1.1.16...

  10. Phosphoribosylpyrophosphate synthetase of Escherichia coli, Identification of a mutant enzyme

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1982-01-01

    From an Escherichia coli purine auxotroph a mutant defective in phosphoribosylpyrophosphate (PRib-PP) synthetase has been isolated and partially characterized. In contrast to the parental strain, the mutant was able to grow on nucleosides as purine source, whereas growth on purine bases was reduced......, stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib...

  11. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE.

    Science.gov (United States)

    Jonsson, Anders; Nordlund, Stefan; Teixeira, Pedro Filipe

    2009-10-01

    In the nitrogen-fixing bacterium Rhodospirillum rubrum, the GlnE adenylyltransferase (encoded by glnE) catalyzes reversible adenylylation of glutamine synthetase, thereby regulating nitrogen assimilation. We have generated glnE mutant strains that are unable to adenylylate glutamine synthetase (GS). Surprisingly, the activity of GS was lower in the mutants than in the wild type, even when grown in nitrogen-fixing conditions. Our results support the proposal that R. rubrum can only cope with the absence of an adenylylation system in the presence of lowered GS expression or activity. In general terms, this report also provides further support for the central role of GS in bacterial metabolism.

  12. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions

    DEFF Research Database (Denmark)

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Hausmann, Corinne D;

    2011-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation...... in the catalytic efficiency of serine attachment to tRNA, but had no effect on the activity of MtArgRS. Further, the most pronounced improvements in the aminoacylation activity of MtSerRS induced by MtArgRS were observed under conditions of elevated temperature and osmolarity. These data indicate that formation...

  13. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.

    Science.gov (United States)

    Iamurri, Samantha M; Daugherty, Ashley B; Edmondson, Dale E; Lutz, Stefan

    2013-12-01

    The preparation of flavin mononucleotide (FMN) and FMN analogs from their corresponding riboflavin precursors is traditionally performed in a two-step procedure. After initial enzymatic conversion of riboflavin to flavin adenine dinucleotide (FAD) by a bifunctional FAD synthetase, the adenyl moiety of FAD is hydrolyzed with snake venom phosphodiesterase to yield FMN. To simplify the protocol, we have engineered the FAD synthetase from Corynebacterium ammoniagenes by deleting its N-terminal adenylation domain. The newly created biocatalyst is stable and efficient for direct and quantitative phosphorylation of riboflavin and riboflavin analogs to their corresponding FMN cofactors at preparative-scale.

  14. Crystal structure of yeast FAD synthetase (Fad1) in complex with FAD.

    Science.gov (United States)

    Leulliot, Nicolas; Blondeau, Karine; Keller, Jenny; Ulryck, Nathalie; Quevillon-Cheruel, Sophie; van Tilbeurgh, Herman

    2010-05-21

    Flavin adenine dinucleotide (FAD) synthetase is an essential enzyme responsible for the synthesis of FAD by adenylation of riboflavin monophosphate (FMN). We have solved the 1.9 A resolution structure of Fad1, the yeast FAD synthetase, in complex with the FAD product in the active site. The structure of Fad1 shows it to be a member of the PP-ATPase superfamily. Important conformational differences in the two motifs involved in binding the phosphate moieties of FAD compared to the Candida glabrata FMNT ortholog suggests that this loop is dynamic and undergoes substantial conformational changes during its catalytic cycle.

  15. Correlation of exon 3 β-catenin mutations with glutamine synthetase staining patterns in hepatocellular adenoma and hepatocellular carcinoma.

    Science.gov (United States)

    Hale, Gillian; Liu, Xinxin; Hu, Junjie; Xu, Zhong; Che, Li; Solomon, David; Tsokos, Christos; Shafizadeh, Nafis; Chen, Xin; Gill, Ryan; Kakar, Sanjay

    2016-11-01

    The current clinical practice is based on the assumption of strong correlation between diffuse glutamine synthetase expression and β-catenin activation in hepatocellular adenoma and hepatocellular carcinoma. This high correlation is based on limited data and may represent an oversimplification as glutamine synthetase staining patterns show wide variability in clinical practice. Standardized criteria for interpreting diverse glutamine synthetase patterns, and the association between each pattern and β-catenin mutations is not clearly established. This study examines the correlation between glutamine synthetase staining patterns and β-catenin mutations in 15 typical hepatocellular adenomas, 5 atypical hepatocellular neoplasms and 60 hepatocellular carcinomas. Glutamine synthetase staining was classified into one of the three patterns: (a) diffuse homogeneous: moderate-to-strong cytoplasmic staining in >90% of lesional cells, without a map-like pattern, (b) diffuse heterogeneous: moderate-to-strong staining in 50-90% of lesional cells, without a map-like pattern, and (c) patchy: moderate-to-strong staining in glutamine synthetase staining (homogeneous or heterogeneous), an exon 3 β-catenin mutation was detected in 33% (2/6) of typical hepatocellular adenoma, 75% (3/4) of atypical hepatocellular neoplasm and 17% (8/47) of hepatocellular carcinomas. An exon 3 mutation was also observed in 15% (2/13) of hepatocellular carcinomas with patchy glutamine synthetase staining. The results show a modest correlation between diffuse glutamine synthetase immunostaining and exon 3 β-catenin mutations in hepatocellular adenoma and hepatocellular carcinoma with discrepancy rates >50% in both hepatocellular adenoma and hepatocellular carcinoma. The interpretation of β-catenin activation based on glutamine synthetase staining should be performed with caution, and the undetermined significance of various glutamine synthetase patterns should be highlighted in pathology reports.

  16. Construction of plant expression vectors carrying glnA gene encoding glutamine synthetase and regeneration of transgenic rice plants

    Institute of Scientific and Technical Information of China (English)

    苏金; 张雪琴; 颜秋生; 陈章良; 尤崇杓

    1995-01-01

    The glnA gene encoding glutamine synthetase (GS) was amplified from Azospirillum brasilenseSp7 with PCR technique.The amplified 1.4-kb DNA fragment flanked with a BamH Ⅰ site at each end wascloned into EcoR V site of Bluescript-SK vector.A recombinant plasmid pGSJ1 containing this 1.4-kb DNA frag-ment was selected by restriction digestion analysis.The sequencing data also confirmed that the amplified 1.4-kbDNA fragment was undoubtedly the glnA gene of A.brasilense Sp7.Then the 1.4-kb BamH Ⅰ fragment was ex-cised from pGSJ1.A glnA plant expression vector pAGNB92 with rice actin 1 (Act1) promoter was constructedby using colony in situ hybridization to screen positive clones,and 3 rounds of ligation and transformation wereperformed.Protoplasts isolated from rice (Oryza sativa,L.Japonica) cell suspension line (cv.T986) weretransformed with the glnA plant expression vector pAGNB92 carrying neomycin phosphotransferase Ⅱ (NPT Ⅱ)gene by PEG fusion or electroporation.G418~ calli were used to detect NPT Ⅱ enzyme activity.The resultsshow that G418~ calli possess high positive hybridization signal with the frequency of 37%.The regeneratedG418~NPTII~+ rice plants were used for PCR amplification of glnA gene,and a 1.4-kb DNA fragment was ampli-fied from glnA-transgenic rice plants (R0 generation).The results of Southern blot hybridization prove that the1.4-kb DNA fragment amplified from the total DNA of glnA transgenic rice plants is indeed the glnA gene of A.brasilense Sp7.Northern blot hybridization was carried out using the same glnA gene as probe.The glnAgene was expressed in the transgenic rice plants.Bioassays also confirmed that the glnA transgenic rice plantsgrew much better than that of the control plants under a condition with nitrogen poor source (0.75 mmol/L).

  17. Functional analysis of expressed peptides that bind yeast STE proteins.

    Science.gov (United States)

    Caponigro, Giordano; Abedi, Majid; Kamb, Alexander

    2003-08-15

    Peptides are potentially useful for target validation and other reverse genetic applications. For instance, if a specific protein is susceptible to peptide inhibition, it may have a higher probability of being vulnerable to small molecules. We used the yeast two-hybrid technique to identify and study peptide binders for three yeast proteins involved in pheromone response: Ste11p, Ste18p, and Ste50p. A subset of peptide binders was shown to inhibit pheromone response in cells using two different functional assays. In addition, we utilized a variant of the yeast two-hybrid method to examine relative binding affinities based on competitive interactions in yeast. Our results suggest that binding affinity and inhibitory potency of peptides do not correlate perfectly and that peptide-protein interactions can be complex and unpredictable. Taken together these results suggest that while peptides are useful as in vivo inhibitors of protein function, caution must be exercised when choosing peptides for further studies and when inferring affinities from expression phenotypes.

  18. Hepatoprotective effects of rice-derived peptides against acetaminophen-induced damage in mice.

    Science.gov (United States)

    Kawakami, Kayoko; Moritani, Chie; Uraji, Misugi; Fujita, Akiko; Kawakami, Koji; Hatanaka, Tadashi; Suzaki, Etsuko; Tsuboi, Seiji

    2017-03-01

    Glutathione, the most abundant intracellular antioxidant, protects cells against reactive oxygen species induced oxidative stress and regulates intracellular redox status. We found that rice peptides increased intracellular glutathione levels in human hepatoblastoma HepG2 cells. Acetaminophen is a commonly used analgesic. However, an overdose of acetaminophen causes severe hepatotoxicity via depletion of hepatic glutathione. Here, we investigated the protective effects of rice peptides on acetaminophen-induced hepatotoxicity in mice. ICR mice were orally administered rice peptides (0, 100 or 500 mg/kg) for seven days, followed by the induction of hepatotoxicity via intraperitoneal injection of acetaminophen (700 mg/kg). Pretreatment with rice peptides significantly prevented increases in serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels and protected against hepatic glutathione depletion. The expression of γ-glutamylcysteine synthetase, a key regulatory enzyme in the synthesis of glutathione, was decreased by treatment with acetaminophen, albeit rice peptides treatment recovered its expression compared to that achieved treatment with acetaminophen. In addition, histopathological evaluation of the livers also revealed that rice peptides prevented acetaminophen-induced centrilobular necrosis. These results suggest that rice peptides increased intracellular glutathione levels and could protect against acetaminophen-induced hepatotoxicity in mice.

  19. Regulation of Amidase Formation in Mutants from Pseudomonas aeruginosa PAO Lacking Glutamine Synthetase Activity

    NARCIS (Netherlands)

    Janssen, Dick B.; Herst, Patricia M.; Joosten, Han M.L.J.; Drift, Chris van der

    1982-01-01

    The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation

  20. The PRPP Synthetase Spectrum: What Does it Demonstrate About Nucleotide Syndromes?

    NARCIS (Netherlands)

    Duley, J.A.; Christodoulou, J.; Brouwer, A.P.M. de

    2011-01-01

    Defects in X-linked phosphoribosylpyrophosphate synthetase 1 (PRPS1) manifest as follows: (1) PRS-I enzyme "superactivity" (gain-of-function mutations affecting allosteric regions); (2) PRS-I overexpression (which may be linked to miRNA mutation); (3) severe PRS-I deficiency/Arts syndrome (missense

  1. Augmenting ureagenesis in patients with partial carbamyl phosphate synthetase 1deficiency with N-carbamylglutamate

    Science.gov (United States)

    Ah Mew, Nicholas; McCarter, Robert; Daikhin, Yevgeny; Lichter, Uta; Nissim, Ilana; Yudkoff, Marc; Tuchman, and Mendel

    2014-01-01

    Identical studies employing stable isotopes were performed before and after a 3-day trial of oral N-carbamylglutamate (NCG) in 5 subjects with late onset carbamyl phosphate synthetase deficiency. NCG augmented ureagenesis and decreased plasma ammonia in 4 of 5 subjects. There was marked improvement in nitrogen metabolism with long-term NCG administration in one subject. PMID:24880889

  2. Augmenting ureagenesis in patients with partial carbamyl phosphate synthetase 1deficiency with N-carbamylglutamate

    OpenAIRE

    Ah Mew, Nicholas; McCarter, Robert; Daikhin, Yevgeny; Lichter, Uta; Nissim, Ilana; Yudkoff, Marc; Tuchman, and Mendel

    2014-01-01

    Identical studies employing stable isotopes were performed before and after a 3-day trial of oral N-carbamylglutamate (NCG) in 5 subjects with late onset carbamyl phosphate synthetase deficiency. NCG augmented ureagenesis and decreased plasma ammonia in 4 of 5 subjects. There was marked improvement in nitrogen metabolism with long-term NCG administration in one subject.

  3. Studies towards the synthesis of ATP analogs as potential glutamine synthetase inhibitors

    CSIR Research Space (South Africa)

    Salisu, S

    2011-05-01

    Full Text Available -1 Synthetic Communications, 41: 2216?2225 DOI: 10.1080/00397911.2010.501473 Studies Towards the Synthesis of ATP Analogs as Potential Glutamine Synthetase Inhibitors Sheriff Salisu a , Colin Kenyon b & Perry T. Kaye a a Department of Chemistry...

  4. Glutamine synthetase sequence evolution in the mycobacteria and their use as molecular markers for Actinobacteria speciation

    Directory of Open Access Journals (Sweden)

    Wiid Ian JF

    2009-02-01

    Full Text Available Abstract Background Although the gene encoding for glutamine synthetase (glnA is essential in several organisms, multiple glnA copies have been identified in bacterial genomes such as those of the phylum Actinobacteria, notably the mycobacterial species. Intriguingly, previous reports have shown that only one copy (glnA1 is essential for growth in M. tuberculosis, while the other copies (glnA2, glnA3 and glnA4 are not. Results In this report it is shown that the glnA1 and glnA2 encoded glutamine synthetase sequences were inherited from an Actinobacteria ancestor, while the glnA4 and glnA3 encoded GS sequences were sequentially acquired during Actinobacteria speciation. The glutamine synthetase sequences encoded by glnA4 and glnA3 are undergoing reductive evolution in the mycobacteria, whilst those encoded by glnA1 and glnA2 are more conserved. Conclusion Different selective pressures by the ecological niche that the organisms occupy may influence the sequence evolution of glnA1 and glnA2 and thereby affecting phylogenies based on the protein sequences they encode. The findings in this report may impact the use of similar sequences as molecular markers, as well as shed some light on the evolution of glutamine synthetase in the mycobacteria.

  5. Regulation of Amidase Formation in Mutants from Pseudomonas aeruginosa PAO Lacking Glutamine Synthetase Activity

    NARCIS (Netherlands)

    Janssen, Dick B.; Herst, Patricia M.; Joosten, Han M.L.J.; Drift, Chris van der

    1982-01-01

    The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation

  6. Noncoding RNA of Glutamine Synthetase I Modulates Antibiotic Production in Streptomyces coelicolor A3(2)

    OpenAIRE

    D'Alia, Davide; Nieselt, Kay; Steigele, Stephan; Mueller, Jonas; Verburg, Ilse; Takano, Eriko; Alia, Davide D’; Müller, Jonas

    2010-01-01

    Overexpression of antisense chromosomal cis-encoded noncoding RNAss (ncRNAs) in glutamine synthetase I resulted in a decrease in growth, protein synthesis, and antibiotic production in Streptomyces coelicolor. In addition, we predicted 3,597 cis-encoded ncRNAs and validated 13 of them experimentally, including several ncRNAs that are differentially expressed in bacterial hormone-defective mutants.

  7. A novel therapeutic target for peripheral nerve injury-related diseases: aminoacyl-tRNA synthetases

    Directory of Open Access Journals (Sweden)

    Byung Sun Park

    2015-01-01

    Full Text Available Aminoacyl-tRNA synthetases (AminoARSs are essential enzymes that perform the first step of protein synthesis. Beyond their original roles, AminoARSs possess non-canonical functions, such as cell cycle regulation and signal transduction. Therefore, AminoARSs represent a powerful pharmaceutical target if their non-canonical functions can be controlled. Using AminoARSs-specific primers, we screened mRNA expression in the spinal cord dorsal horn of rats with peripheral nerve injury created by sciatic nerve axotomy. Of 20 AminoARSs, we found that phenylalanyl-tRNA synthetase beta chain (FARSB, isoleucyl-tRNA synthetase (IARS and methionyl-tRNA synthetase (MARS mRNA expression was increased in spinal dorsal horn neurons on the injured side, but not in glial cells. These findings suggest the possibility that FARSB, IARS and MARS, as a neurotransmitter, may transfer abnormal sensory signals after peripheral nerve damage and become a new target for drug treatment.

  8. ISOLATION AND CHARACTERIZATION OF THE RAT GENE FOR CARBAMOYLPHOSPHATE SYNTHETASE-I

    NARCIS (Netherlands)

    VANDENHOFF, MJB; VANDEZANDE, LPWGM; DINGEMANSE, MA; DAS, AT; LABRUYERE, W; MOORMAN, AFM; CHARLES, R; LAMERS, WH; Jacobus Mgn Van De Zande, Louis

    1995-01-01

    Carbamoylphosphate synthetase I (CbmPS) is first expressed in rat hepatocytes shortly before birth. After birth, expression of CbmPS gradually becomes confined to the hepatocytes surrounding the portal veins. To obtain insight into the spatiotemporal regulation of its expression, the rat CbmPS gene

  9. Draft Genome Sequences of Five Novel Polyketide Synthetase-Containing Mouse Escherichia coli Strains

    Science.gov (United States)

    Mannion, Anthony; Shen, Zeli; Feng, Yan; Garcia, Alexis

    2016-01-01

    We report herein the draft genomes of five novel Escherichia coli strains isolated from surveillance and experimental mice housed at MIT and the Whitehead Institute and describe their genomic characteristics in context with the polyketide synthetase (PKS)-containing pathogenic E. coli strains NC101, IHE3034, and A192PP.

  10. Structure of the gene encoding phosphoribosylpyrophosphate synthetase (prsA>) in Salmonella typhimurium

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Hove-Jensen, Bjarne; Switzer, Robert L.

    1988-01-01

    The Salmonella typhimurium gene prsA, which encodes phosphoribosylpyrophosphate synthetase, has been cloned, and the nucleotide sequence has been determined. The amino acid sequence derived from the S. typhimurium gene is 99% identical to the derived Escherichia coli sequence and 47% identical to...

  11. Effects of univalent cations on the activity of particulate starch synthetase.

    Science.gov (United States)

    Nitsos, R E; Evans, H J

    1969-09-01

    An investigation was made to determine the univalent cation requirements of starch synthetase from a variety of plant species of economic importance. The particulate enzyme from sweet corn was shown to have an absolute requirement for potassium, with the optimum activation occurring at 0.05 M KCl. Rubidium, cesium, and ammonium were 80% as effective as potassium while sodium and lithium were respectively 21% and 8% as effective as potassium. The K(A) for potassium was determined to be 6 mM. In the case of the particulate starch synthetase from wheat, bush beans, field corn, soybeans, peas, or potatoes, considerable stimulation of enzyme activity was obtained by the addition of potassium to the reaction mixture. In these studies, low enzyme activity was observed in the absence of added potassium, but the content of endogenous univalent cations in the reactions may be sufficient to account for the activities observed. Anions of various types had no effect on starch synthetase activity. Divalent cations produced slight activation in the presence or absence of potassium. All efforts to show a potassium requirement for glycogen synthetase from rat liver have been negative.

  12. Changes in Activities of Glutamine Synthetase during Grain Filling and Their Relation to Rice Quality

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Four japonica rice varieties differed in cooking and eating qualities were used in a pot experiment to study the relationship between the activities of glutamine synthetase during grain filling and rice quality. The activities of glutamine synthetase gradually increased and then declined as a single peak curve in the course of grain filling. The 15th day after heading was a turning point, before which the enzymatic activities in the inferior rice varieties with high protein content were higher than those in the superior rice varietie with low protein content, and after which it was converse. The activity of glutamine synthetase in grain was correlated with the taste meter value, peak viscosity and breakdown negatively at the early stage of grain filling whereas positively at the middle and late stages. Moreover, it was correlated with the protein content of rice grain and setback positively at the early stage and negatively at the middle and late stages. The correlation degree varied with the course of grain filling. From 15 days to 20 days after heading was a critical stage, in which the direction of correlation between the activity of glutamine synthetase and taste meter value and RVA properties of rice changed.

  13. 2'-phosphodiesterase and 2',5'-oligoadenylate synthetase activities in the lowest metazoans, sponge [porifera

    DEFF Research Database (Denmark)

    Saby, Emilie; Poulsen, Jesper Buchhave; Justesen, Just;

    2009-01-01

    Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2′,5′-oligoadenylate synthetase (OAS). The components of the antiviral 2′,5′-oligoadenylate (2–5A) system (OAS, 2′-Phosphodiesterase (2′-PDE) and RNAse L) of vertebrates have...

  14. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    Phosphoribosyl-diphosphate (PPRibP) synthetase from Bacillus subtiliis has been purified to near homogeneity from an Escherichia coli Δprs strain bearing the cloned B. subtilis prs gene, encoding PPRibP synthentase, on a plasmid. The Mr of the subunit (34,000) and its amino-terminal amino acid...

  15. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats

    DEFF Research Database (Denmark)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne

    2014-01-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains...

  16. The effect of portacaval anastomosis on the expression of glutamine synthetase and ornithine aminotransferase in perivenous hepatocytes.

    Science.gov (United States)

    da Silva, Robin; Levillain, Oliver; Brosnan, John T; Araneda, Silvia; Brosnan, Margaret E

    2013-05-01

    There is functional zonation of metabolism across the liver acinus, with glutamine synthetase restricted to a narrow band of cells around the terminal hepatic venules. Portacaval anastomosis, where there is a major rerouting of portal blood flow from the portal vein directly to the vena cava bypassing the liver, has been reported to result in a marked decrease in the activity of glutamine synthetase. It is not known whether this represents a loss of perivenous hepatocytes or whether there is a specific loss of glutamine synthetase. To answer this question, we have determined the activity of glutamine synthetase and another enzyme from the perivenous compartment, ornithine aminotransferase, as well as the immunochemical localization of both glutamine synthetase and ornithine aminotransferase in rats with a portacaval shunt. The portacaval shunt caused a marked decrease in glutamine synthetase activity and an increase in ornithine aminotransferase activity. Immunohistochemical analysis showed that the glutamine synthetase and ornithine aminotransferase proteins maintained their location in the perivenous cells. These results indicate that there is no generalized loss of perivenous hepatocytes, but rather, there is a significant alteration in the expression of these proteins and hence metabolism in this cell population.

  17. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  18. Molecular cloning and characterization of glutamine synthetase, a tegumental protein from Schistosoma japonicum.

    Science.gov (United States)

    Qiu, Chunhui; Hong, Yang; Cao, Yan; Wang, Fei; Fu, Zhiqiang; Shi, Yaojun; Wei, Meimei; Liu, Shengfa; Lin, Jiaojiao

    2012-12-01

    Glutamine synthetase catalyzes the synthesis of glutamine, providing nitrogen for the production of purines, pyrimidines, amino acids, and other compounds required in many pivotal cellular events. Herein, a full-length cDNA encoding Schistosoma japonicum glutamine synthetase (SjGS) was isolated from 21-day schistosomes. The entire open reading frame of SjGS contains a 1,095-bp coding region corresponding to 364 amino acids with a calculated molecular weight of 40.7 kDa. NCBIP blast shows that the putative amino acid of SjGS contains a classic β-grasp domain and a catalytic domain of glutamine synthetase. The relative mRNA expression of SjGS was evaluated in 7-, 13-, 21-, 28-, 35-, and 42-day worms of S. japonicum in the final host and higher expression at day 21, and 42 worms were observed. This protein was also detected in worm extracts using Western blot. Immunofluorescence studies indicated that the SjGS protein was mainly distributed on tegument and parenchyma in 28-day adult worms. The recombinant glutamine synthetase with a molecular weight of 45 kDa was expressed in Escherichia coli and purified in its active form. The enzyme activity of the recombinant protein was 3.30 ± 0.67 U.μg-1. The enzyme activity was highly stable over a wide range of pH (6-9) and temperature (25-40 °C) under physiological conditions. The transcription of SjGS was upregulated in praziquantel-treated worms at 2-, 4-, and 24-h posttreatment compared with the untreated control. As a first step towards the clarification of the role of glutamine synthetase in schistosome species, we have cloned and characterized cDNAs encoding SjGS in S. japonicum, and the data presented suggest that SjGS is an important molecule in the development of the schistosome.

  19. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara (SSRL); (Maryland)

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  20. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  1. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  2. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  3. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  4. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  5. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  6. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  7. Cloning, molecular characterization, and phylogeny of two evolutionary distinct glutamine synthetase isoforms in the green microalga Haematococcus pluvialis (Chlorophyceae).

    Science.gov (United States)

    Reinecke, Diana L; Zarka, Aliza; Leu, Stefan; Boussiba, Sammy

    2016-12-01

    Haematococcus pluvialis (Chlorophyta) is a widely used microalga of great economic potential, yet its molecular genetics and evolution are largely unknown. We present new detailed molecular and phylogenetic analysis of two glutamine synthetase (GS) enzymes and genes (gln) under the Astaxanthin-inducing conditions of light- and nitrogen-stress. Structure analysis identified key residues and confirmed two decameric GS2 holoenzymes, a cytoplasmic enzyme, termed GS2c , and a plastidic form, termed GS2p , due to chloroplast-transit peptides at its N-terminus. Gene expression analysis showed dissociation of mRNA, protein, and enzyme activity levels for both GS2 under different growth conditions, indicating the strong post-transcriptional regulation. Data-mining identified novel and specified published gln genes from Prasinophyceae, Chlorophyta, Trebouxiophyceae, Charophyceae, Bryophyta, Lycopodiophyta, Spermatophyta, and Rhodophyta. Phylogenetic analysis found homologues to the cytosolic GS2c of H. pluvialis in all other photo- and non-photosynthetic Eukaryota. The chloroplastic GS2p was restricted to Chlorophyta, Bryophyta, some Proteobacteria and Fungii; no homologues were identified in Spermatophyta or other Eukaryota. This indicates two independent prokaryotic donors for these two gln genes in H. pluvialis. Combined phylogenetic analysis of GS, chl-b synthase, elongation factor, and light harvesting complex homologues project a newly refined model of Viridiplantae evolution. Herein, a GS1 evolved into the cytosolic GS2c and was passed on to all Eukaryota. Later, the chloroplastic GS2p entered the Archaeplastida lineage via a horizontal gene transfer at the divergence of Chlorophyta and Rhodophyta lineages. GS2p persisted in Chlorophyta and Bryophyta, but was lost during Spermatophyta evolution. These data suggest the revision of GS classification and nomenclature, and extend our understanding of the photosynthetic Eukaryota evolution.

  8. The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a.

    Directory of Open Access Journals (Sweden)

    Juan Jesús Molina-Rueda

    Full Text Available BACKGROUND: Glutamine synthetase (GS plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4 expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD family were reciprocally regulated in GS poplar when compared with the wild-type control, in all tissues examined. SOD was the only gene family found to exhibit such patterns. RESULTS: In silico analysis of the Populus genome identified 12 SOD genes and two genes encoding copper chaperones for SOD (CCSs. The poplar SODs form three phylogenetic clusters in accordance with their distinct metal co-factor requirements and gene structure. Nearly all poplar SODs and CCSs are present in duplicate derived from whole genome duplication, in sharp contrast to their predominantly single-copy Arabidopsis orthologs. Drought stress triggered plant-wide down-regulation of the plastidic copper SODs (CSDs, with concomitant up-regulation of plastidic iron SODs (FSDs in GS poplar relative to the wild type; this was confirmed at the activity level. We also found evidence for coordinated down-regulation of other copper proteins, including plastidic CCSs and polyphenol oxidases, in GS poplar under drought conditions. CONCLUSIONS: Both gene duplication and expression divergence have contributed to the expansion and transcriptional diversity of the Populus SOD/CCS families. Coordinated down-regulation of major copper proteins in drought-tolerant GS poplars supports the copper cofactor economy model where copper supply is preferentially allocated for plastocyanins to sustain photosynthesis during drought. Our results also extend previous findings on the compensatory regulation between chloroplastic CSDs and FSDs, and suggest that this

  9. Identification of critical amino acid residues of Saccharomyces cerevisiae carbamoyl-phosphate synthetase: definition of the ATP site involved in carboxy-phosphate formation.

    Science.gov (United States)

    Zheng, W; Lim, A L; Powers-Lee, S G

    1997-08-15

    Carbamoyl-phosphate synthetases (CPSases) utilize two molecules of ATP at two homologous domains, B and C, with ATP(B) used to form the enzyme-bound intermediate carboxy-phosphate and ATP(C) used to phosphorylate the carbamate intermediate. To further define the role of one CPSase peptide suggested by affinity labeling studies to be near the ATP(B) site, we have carried out site-directed mutagenic analysis of peptide 234-242 of the Saccharomyces cerevisiae arginine-specific CPSase. Mutants E234A, E234D, E236A, E236D and E238A were unable to complement the CPSase-deficient yeast strain LPL26 whereas mutants Y237A, E238D, R241K, R241E and R241P supported LPL26 growth as well as wild-type CPSase. Kinetic analysis of E234A and Y237A indicated impaired utilization of ATP(B) but not of ATP(C). D242A, a temperature-sensitive mutant, retained no detectable activity when assayed in vitro. These findings, together with the affinity labeling data and primary sequence analysis, strongly suggest that the yeast CPSase peptide 234-242 is located at the ATP(B) site and that some of its residues are important for functioning of the enzyme. D242 appears to occupy a critical structural position and E234, E236 and E238 appear to be critical for function, with the spatial arrangement of the carboxyl side chain also critical for E234 and E236.

  10. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  11. Recognition of epoxy with phage displayed peptides.

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2013-07-01

    The development of a general approach for non-destructive chemical and biological functionalization of epoxy could expand opportunities for both fundamental studies and creating various device platforms. Epoxy shows unique electrical, mechanical, chemical and biological compatibility and has been widely used for fabricating a variety of devices. Phage display has emerged as a powerful method for selecting peptides that possess enhanced selectivity and binding affinity toward a variety of targets. In this letter, we demonstrate for the first time a powerful yet benign approach for identifying binding motifs to epoxy via comprehensively screened phage displayed peptides. Our results show that the epoxy can be selectively recognized with peptide-displaying phages. Further, along with the development of epoxy-based microstructures; recognition of the epoxy with phage displayed peptides can be specifically localized in these microstructures. We anticipate that these results could open up exciting opportunities in the use of peptide-recognized epoxy in fundamental biochemical recognition studies, as well as in applications ranging from analytical devices, hybrid materials, surface and interface, to cell biology. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Preparation of the multienzyme system gramicidin S-synthetase 2 with an aqueous three-phase system.

    Science.gov (United States)

    Kirchner, A; Simonis, M; von Döhren, H

    1987-06-19

    The distribution of gramicidin S-synthetase activity from disrupted cells suspended in aqueous two- and three-phase systems was investigated. An optimized three-phase system containing 5% dextran, 8% Ficoll, 11% PEG and 6.7% disrupted cells was found to be effective in extracting gramicidin S-synthetase activity. The activity yield achieved was higher in comparison to other preparation methods, and the subsequent purification steps were greatly facilitated. The time needed for the preparation of the labile gramicidin S-synthetase was considerably reduced. The combination of the aqueous phase extraction with chromatographic methods yielded 19 mg gramicidin S-synthetase 2 in essentially pure form from 30 g (wet weight) of cells.

  13. Smart self-assembled hybrid hydrogel biomaterials.

    Science.gov (United States)

    Kopeček, Jindřich; Yang, Jiyuan

    2012-07-23

    Hybrid biomaterials are systems created from components of at least two distinct classes of molecules, for example, synthetic macromolecules and proteins or peptide domains. The synergistic combination of two types of structures may produce new materials that possess unprecedented levels of structural organization and novel properties. This Review focuses on biorecognition-driven self-assembly of hybrid macromolecules into functional hydrogel biomaterials. First, basic rules that govern the secondary structure of peptides are discussed, and then approaches to the specific design of hybrid systems with tailor-made properties are evaluated, followed by a discussion on the similarity of design principles of biomaterials and macromolecular therapeutics. Finally, the future of the field is briefly outlined.

  14. Holocarboxylase synthetase interacts physically with euchromatic histone-lysine N-methyltransferase, linking histone biotinylation with methylation events.

    Science.gov (United States)

    Li, Yong; Hassan, Yousef I; Moriyama, Hideaki; Zempleni, Janos

    2013-08-01

    Holocarboxylase synthetase (HCS) catalyzes the binding of the vitamin biotin to histones H3 and H4, thereby creating rare histone biotinylation marks in the epigenome. These marks co-localize with K9-methylated histone H3 (H3K9me), an abundant gene repression mark. The abundance of H3K9me marks in transcriptionally competent loci decreases when HCS is knocked down and when cells are depleted of biotin. Here we tested the hypothesis that the creation of H3K9me marks is at least partially explained by physical interactions between HCS and histone-lysine N-methyltransferases. Using a novel in silico protocol, we predicted that HCS-interacting proteins contain a GGGG(K/R)G(I/M)R motif. This motif, with minor variations, is present in the histone-lysine N-methyltransferase EHMT1. Physical interactions between HCS and the N-terminal, ankyrin and SET domains in EHMT1 were confirmed using yeast-two-hybrid assays, limited proteolysis assays and co-immunoprecipitation. The interactions were stronger between HCS and the N-terminus in EHMT1 compared with the ankyrin and SET domains, consistent with the localization of the HCS-binding motif in the EHMT1 N-terminus. HCS has the catalytic activity to biotinylate K161 within the binding motif in EHMT1. Mutation of K161 weakened the physical interaction between EHMT1 and HCS, but it is unknown whether this effect was caused by loss of biotinylation or loss of the motif. Importantly, HCS knockdown decreased the abundance of H3K9me marks in repeats, suggesting that HCS plays a role in creating histone methylation marks in these loci. We conclude that physical interactions between HCS and EHMT1 mediate epigenomic synergies between biotinylation and methylation events. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Functionalized periodic mesoporous organosilicas for enhanced and selective peptide enrichment.

    Science.gov (United States)

    Wan, Jingjing; Qian, Kun; Zhang, Jun; Liu, Fang; Wang, Yunhua; Yang, Pengyuan; Liu, Baohong; Yu, Chengzhong

    2010-05-18

    The analysis of peptides by the mass spectrometry (MS) technique is important in modern life science. The enrichment of peptides can increase the detection efficiency and is sometimes indispensable for collecting the information on proteins with low-abundance. Herein, we first report that functionalized periodic mesoporous organosilica (PMO) materials have a superior peptide enrichment property. It is demonstrated that the PMO materials with an organo-bridged (-CH(2)-) hybrid wall composition display a highly enhanced peptide enrichment ability compared to the pure silica material (SBA-15) with similar mesostructured parameters and morphology. More importantly, by surface modification of PMO with amino groups (denoted NH(2)-PMO), PMO and NH(2)-PMO with opposite charged surfaces (-25.2 and +39.0 mV, respectively) show selective affinities for positively and negatively charged peptides, respectively. By directly adding PMO, NH(2)-PMO as well as pure silica materials to the peptides solution with a low concentration (1-2 fmol/microL), 36 and 28 peptides can be detected from the BSA digestion in the presence of PMO and NH(2)-PMO, respectively, while only 6 and 4 are monitored in the case of SBA-15 enrichment and from solution without enrichment, respectively. Moreover, 69.4% (25 of 36) of enriched peptides by PMO have pI > or = 6 and 80% (21 of 28) of enriched peptides by NH(2)-PMO possess pI PMO and PMO enrichment together, 51 peptides can be identified with a MOWSE score of 333. It is also noted that similar conclusions can also be obtained from the peptides solution originated from other proteins. This might be an important contribution to the understanding of the interaction between peptides and porous hosts, and the proposed method is promising for the development of both material science and biotechnology.

  16. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  17. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...

  18. Bacillus subtilis GlnR contains an autoinhibitory C-terminal domain required for the interaction with glutamine synthetase.

    Science.gov (United States)

    Wray, Lewis V; Fisher, Susan H

    2008-04-01

    The Bacillus subtilis GlnR transcription factor regulates gene expression in response to changes in nitrogen availability. Glutamine synthetase transmits the nitrogen regulatory signal to GlnR. The DNA-binding activity of GlnR is activated by a transient protein-protein interaction with feedback-inhibited glutamine synthetase that stabilizes GlnR-DNA complexes. This signal transduction mechanism was analysed by creating mutant GlnR proteins with partial or complete truncations of their C-terminal domains. The truncated GlnR proteins were found to constitutively repress gene expression in vivo. This constitutive repression did not require glutamine synthetase. Purified mutant GlnR proteins bound DNA in vitro more tightly than wild-type GlnR protein and this binding was not activated by feedback-inhibited glutamine synthetase. While full-length GlnR is monomeric, the truncated GlnR proteins contained significant levels of dimers. These results indicate that the C-terminal region of GlnR acts as an autoinhibitory domain that prevents GlnR dimerization and thus impedes DNA binding. The GlnR C-terminal domain is also required for the interaction between GlnR and feedback-inhibited glutamine synthetase. Compared with the full-length GlnR protein, the truncated GlnR proteins were defective in their interaction with feedback-inhibited glutamine synthetase in cross-linking experiments.

  19. Diversity of Nonribosomal Peptide Synthetase Genes in the AnticancerProducing Actinomycetes Isolated from Marine Sediment in Indonesia

    OpenAIRE

    Camelia Herdini; Shinta Hartanto; Sofia Mubarika; Bambang Hariwiyanto; Nastiti Wijayanti; Akira Hosoyama; Atsushi Yamazoe; Hideaki Nojiri; Jaka Widada

    2016-01-01

    Marine actinomycetes is a group of bacteria that is highly potential in producing novel bioactive compound. It has unique characteristics and is different from other terrestrial ones. Extreme environmental condition is suspected to lead marine actinomycetes produce different types of bioactive compound found previously. The aim of this study was to explore the presence and diversity of NRPS genes in 14 anticancer-producing actinomycetes isolated from marine sediment in Indonesia. ...

  20. The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in Talaromyces islandicus (“Penicillium islandicum”)

    DEFF Research Database (Denmark)

    Schafhauser, Thomas; Kirchner, Norbert; Kulik, Andreas

    2016-01-01

    Talaromyces islandicus (“Penicillium islandicum”) is a widespread foodborne mold that produces numerous secondary metabolites, among them potent mycotoxins belonging to different chemical classes. A notable metabolite is the hepatotoxic and carcinogenic pentapeptide cyclochlorotine that contains...

  1. Natural aminoacyl tRNA synthetase fragment enhances cardiac function after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Margaret E McCormick

    Full Text Available A naturally-occurring fragment of tyrosyl-tRNA synthetase (TyrRS has been shown in higher eukaryotes to 'moonlight' as a pro-angiogenic cytokine in addition to its primary role in protein translation. Pro-angiogenic cytokines have previously been proposed to be promising therapeutic mechanisms for the treatment of myocardial infarction. Here, we show that systemic delivery of the natural fragment of TyRS, mini-TyrRS, improves heart function in mice after myocardial infarction. This improvement is associated with reduced formation of scar tissue, increased angiogenesis of cardiac capillaries, recruitment of c-kitpos cells and proliferation of myocardial fibroblasts. This work demonstrates that mini-TyrRS has beneficial effects on cardiac repair and regeneration and offers support for the notion that elucidation of the ever expanding repertoire of noncanonical functions of aminoacyl tRNA synthetases offers unique opportunities for development of novel therapeutics.

  2. Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase

    Science.gov (United States)

    Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.

    1987-01-01

    The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.

  3. Molecular analysis of intragenic recombination at the tryptophan synthetase locus in Neurospora crassa

    Indian Academy of Sciences (India)

    A. Wiest; D. Barchers; M. Eaton; R. Henderson; R. Schnittker; K. Mccluskey

    2013-12-01

    Fifteen different classically generated and mapped mutations at the tryptophan synthetase locus in Neurospora crassa have been characterized to the level of the primary sequence of the gene. This sequence analysis has demonstrated that intragenic recombination is accurate to order mutations within one open reading frame. While classic genetic analysis correctly ordered the mutations, the position of mutations characterized by gene sequence analysis was more accurate. A leaky mutation was found to have a wild-type primary sequence. The presence of unique polymorphisms in the primary sequence of the trp-3 gene from strain 861 confirms that it has a unique history relative to the other strains studied. Most strains that were previously shown to be immunologically nonreactive with antibody preparations raised against tryptophan synthetase protein were shown to have nonsense mutations. This work defines 14 alleles of the N. crassa trp-3 gene.

  4. Structure of Human Phosphopantothenoylcysteine Synthetase at 2.3 Å Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Manoj, N.; Strauss, E.; Begley, T.P.; Ealick, S.E.

    2010-12-01

    The structure of human phosphopantothenoylcysteine (PPC) synthetase was determined at 2.3 {angstrom} resolution. PPC synthetase is a dimer with identical monomers. Some features of the monomer fold resemble a group of NAD-dependent enzymes, while other features resemble the ribokinase fold. The ATP, phosphopantothenate, and cysteine binding sites were deduced from modeling studies. Highly conserved ATP binding residues include Gly43, Ser61, Gly63, Gly66, Phe230, and Asn258. Highly conserved phosphopantothenate binding residues include Asn59, Ala179, Ala180, and Asp183 from one monomer and Arg55 from the adjacent monomer. The structure predicts a ping pong mechanism with initial formation of an acyladenylate intermediate, followed by release of pyrophosphate and attack by cysteine to form the final products PPC and AMP.

  5. Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy

    DEFF Research Database (Denmark)

    Elo, Jenni M; Yadavalli, Srujana S; Euro, Liliya

    2012-01-01

    the mitochondrial phenylalanyl transfer RNA (tRNA) synthetase (mtPheRS) in two patients with fatal epileptic mitochondrial encephalopathy. The mutations affected highly conserved amino acids, p.I329T and p.D391V. Recently, a homozygous FARS2 variant p.Y144C was reported in a Saudi girl with mitochondrial...... was impaired. Our results imply that the three FARS2 mutations directly impair aminoacylation function and stability of mtPheRS, leading to a decrease in overall tRNA charging capacity. This study establishes a new genetic cause of infantile mitochondrial Alpers encephalopathy and reports a new mitochondrial......Next-generation sequencing has turned out to be a powerful tool to uncover genetic basis of childhood mitochondrial disorders. We utilized whole-exome analysis and discovered novel compound heterozygous mutations in FARS2 (mitochondrial phenylalanyl transfer RNA synthetase), encoding...

  6. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor.

    Science.gov (United States)

    Mirando, Adam C; Fang, Pengfei; Williams, Tamara F; Baldor, Linda C; Howe, Alan K; Ebert, Alicia M; Wilkinson, Barrie; Lounsbury, Karen M; Guo, Min; Francklyn, Christopher S

    2015-08-14

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.

  7. Gene Targeting and Expression Modulation by Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    Peptide nucleic acids (PNA) are artificial structural mimics of nucleic acids capable of sequence specific hybridization to both RNA and DNA. Thus they have obvious potential as gene targeting agents for drug discovery approaches. An overview with emphasis on recent progress on RNA "interference"...

  8. Cyclic peptide inhibitors of the β-sliding clamp in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Kjelstrup, Susanne; Hansen, Paula Melo Paulon; Thomsen, Line Elnif;

    2013-01-01

    Interaction between pairs of Staphylococcus aureus replication proteins was detected in an Escherichia coli based two-hybrid analysis. A reverse two-hybrid system was constructed for selection of compounds that hindered interaction between interacting protein pairs. A number of cyclic peptides...

  9. Foreign gene expression in Hansenula polymorpha. A system for the synthesis of small functional peptides

    NARCIS (Netherlands)

    Faber, K.N.; Westra, S.; Waterham, H.R.; Keizer-Gunnink, I.; Harder, W.; AB, G.; Veenhuis, M.

    1996-01-01

    We describe the synthesis and purification of two functional peptides, namely human insulin-like growth factor II (IGF-II) and Xenopus laevis magainin II in Hansenula polymorpha after their synthesis as hybrid proteins fused to the C terminus of endogenous amine oxidase. The hybrid genes, placed und

  10. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    OpenAIRE

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a ...

  11. Cylindrospermopsin and Saxitoxin Synthetase Genes in Cylindrospermopsis raciborskii Strains from Brazilian Freshwater

    OpenAIRE

    Caroline Hoff-Risseti; Felipe Augusto Dörr; Patricia Dayane Carvalho Schaker; Ernani Pinto; Vera Regina Werner; Marli Fatima Fiore

    2013-01-01

    The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX), while cylindrospermopsin (CYN), which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene seq...

  12. A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors.

    Science.gov (United States)

    Esposito, Marta; Szadocka, Sára; Degiacomi, Giulia; Orena, Beatrice S; Mori, Giorgia; Piano, Valentina; Boldrin, Francesca; Zemanová, Júlia; Huszár, Stanislav; Barros, David; Ekins, Sean; Lelièvre, Joel; Manganelli, Riccardo; Mattevi, Andrea; Pasca, Maria Rosalia; Riccardi, Giovanna; Ballell, Lluis; Mikušová, Katarína; Chiarelli, Laurent R

    2017-06-09

    Despite its great potential, the target-based approach has been mostly unsuccessful in tuberculosis drug discovery, while whole cell phenotypic screening has delivered several active compounds. However, for many of these hits, the cellular target has not yet been identified, thus preventing further target-based optimization of the compounds. In this context, the newly validated drug target CTP synthetase PyrG was exploited to assess a target-based approach of already known, but untargeted, antimycobacterial compounds. To this purpose the publically available GlaxoSmithKline antimycobacterial compound set was assayed, uncovering a series of 4-(pyridin-2-yl)thiazole derivatives which efficiently inhibit the Mycobacterium tuberculosis PyrG enzyme activity, one of them showing low activity against the human CTP synthetase. The three best compounds were ATP binding site competitive inhibitors, with Ki values ranging from 3 to 20 μM, but did not show any activity against a small panel of different prokaryotic and eukaryotic kinases, thus demonstrating specificity for the CTP synthetases. Metabolic labeling experiments demonstrated that the compounds directly interfere not only with CTP biosynthesis, but also with other CTP dependent biochemical pathways, such as lipid biosynthesis. Moreover, using a M. tuberculosis pyrG conditional knock-down strain, it was shown that the activity of two compounds is dependent on the intracellular concentration of the CTP synthetase. All these results strongly suggest a role of PyrG as a target of these compounds, thus strengthening the value of this kind of approach for the identification of new scaffolds for drug development.

  13. Localization and nucleotide specificity of Blastocystis succinyl-CoA synthetase

    OpenAIRE

    Hamblin, Karleigh; Standley, Daron M; Rogers, Matthew B; Stechmann, Alexandra; Andrew J. Roger; Maytum, Robin; Giezen, Mark van der

    2008-01-01

    The anaerobic lifestyle of the intestinal parasite Blastocystis raises questions about the biochemistry and function of its mitochondria-like organelles. We have characterized the Blastocystis succinyl-CoA synthetase (SCS), a tricarboxylic acid cycle enzyme that conserves energy by substrate-level phosphorylation. We show that SCS localizes to the enigmatic Blastocystis organelles, indicating that these organelles might play a similar role in energy metabolism as classic mitochondria. Althoug...

  14. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase

    OpenAIRE

    Bowles, Tawnya L.; Kim, Randie; Galante, Joseph; Parsons, Colin M.; Virudachalam, Subbulakshmi; Kung, Hsing-Jien; Bold, Richard J.

    2008-01-01

    Eukaryotic cells can synthesize the non-essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is under-expressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers ha...

  15. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system

    Science.gov (United States)

    D'Amelio, F.; Eng, L. F.; Gibbs, M. A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  16. Reassimilation of Photorespiratory Ammonium in Lotus japonicus Plants Deficient in Plastidic Glutamine Synthetase.

    Science.gov (United States)

    Pérez-Delgado, Carmen M; García-Calderón, Margarita; Márquez, Antonio J; Betti, Marco

    2015-01-01

    It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4(+) accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4(+) when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4(+). Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4(+) when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity.

  17. Glutamine synthetase immunor present in oligodendroglia of regions of the central nervous system

    Science.gov (United States)

    D'Amelio, Fernando; Eng, Lawrence F.; Gibbs, Michael A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  18. Expression of glutamine synthetase and cell proliferation in human idiopathic epiretinal membrane

    OpenAIRE

    Kase, S; Saito, W; Yokoi, M; K. Yoshida; Furudate, N; Muramatsu, M; Saito, A.; Kase, M; Ohno, S

    2006-01-01

    Background/aim: The mechanisms of the cellular origin and cell proliferation in the idiopathic epiretinal membrane (ERM) are unsolved. The aim of this study was to examine the expression of cell cycle related molecules and glutamine synthetase (GS), which is expressed in Müller cells and their processes, in ERM tissues. Methods: The ERMs were surgically removed using pars plana vitrectomy. Formalin fixed, paraffin embedded ERM tissues were analysed by immunohistochemistry with anti-cycli...

  19. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones.

    Science.gov (United States)

    Clemente, Maria R; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-06-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.

  20. [Isolation of tyrosyl-tRNA-synthetase from Thermus thermophilus HB-27].

    Science.gov (United States)

    Iaremchuk, A D; Tukalo, M A; Egorova, S P; Konovalenko, A V; Matsuka, G Kh

    1990-01-01

    A method for isolating tyrosyl-tRNA synthetase from Thermus thermophilus is described, including ammonium sulfate fractionation, chromatography on DEAE-sepharose, hydroxyapatite, heparin-sepharose and hydrophobic chromatography on Toyopearl HW-65. The yield of the purified enzyme was 1.6 mg per 1 kg of T. thermophilus cells. The enzyme is a dimer protein of the alpha 2 type with molecular weight of 100 kDa.

  1. Reassimilation of Photorespiratory Ammonium in Lotus japonicus Plants Deficient in Plastidic Glutamine Synthetase.

    Directory of Open Access Journals (Sweden)

    Carmen M Pérez-Delgado

    Full Text Available It is well established that the plastidic isoform of glutamine synthetase (GS2 is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4(+ accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4(+ when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1, glutamate dehydrogenase (GDH and asparagine synthetase (ASN was observed in the mutant in correspondence with the diminishment of NH4(+. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4(+ when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H-dependent GDH activity.

  2. Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy.

    Science.gov (United States)

    Elo, Jenni M; Yadavalli, Srujana S; Euro, Liliya; Isohanni, Pirjo; Götz, Alexandra; Carroll, Christopher J; Valanne, Leena; Alkuraya, Fowzan S; Uusimaa, Johanna; Paetau, Anders; Caruso, Eric M; Pihko, Helena; Ibba, Michael; Tyynismaa, Henna; Suomalainen, Anu

    2012-10-15

    Next-generation sequencing has turned out to be a powerful tool to uncover genetic basis of childhood mitochondrial disorders. We utilized whole-exome analysis and discovered novel compound heterozygous mutations in FARS2 (mitochondrial phenylalanyl transfer RNA synthetase), encoding the mitochondrial phenylalanyl transfer RNA (tRNA) synthetase (mtPheRS) in two patients with fatal epileptic mitochondrial encephalopathy. The mutations affected highly conserved amino acids, p.I329T and p.D391V. Recently, a homozygous FARS2 variant p.Y144C was reported in a Saudi girl with mitochondrial encephalopathy, but the pathogenic role of the variant remained open. Clinical features, including postnatal onset, catastrophic epilepsy, lactic acidemia, early lethality and neuroimaging findings of the patients with FARS2 variants, resembled each other closely, and neuropathology was consistent with Alpers syndrome. Our structural analysis of mtPheRS predicted that p.I329T weakened ATP binding in the aminoacylation domain, and in vitro studies with recombinant mutant protein showed decreased affinity of this variant to ATP. Furthermore, p.D391V and p.Y144C were predicted to disrupt synthetase function by interrupting the rotation of the tRNA anticodon stem-binding domain from a closed to an open form. In vitro characterization indicated reduced affinity of p.D391V mutant protein to phenylalanine, whereas p.Y144C disrupted tRNA binding. The stability of p.I329T and p.D391V mutants in a refolding assay was impaired. Our results imply that the three FARS2 mutations directly impair aminoacylation function and stability of mtPheRS, leading to a decrease in overall tRNA charging capacity. This study establishes a new genetic cause of infantile mitochondrial Alpers encephalopathy and reports a new mitochondrial aminoacyl-tRNA synthetase as a cause of mitochondrial disease.

  3. Yeast Two-Hybrid: State of the Art

    Directory of Open Access Journals (Sweden)

    Van Criekinge Wim

    1999-01-01

    Full Text Available Genome projects are approaching completion and are saturating sequence databases. This paper discusses the role of the two-hybrid system as a generator of hypotheses. Apart from this rather exhaustive, financially and labour intensive procedure, more refined functional studies can be undertaken. Indeed, by making hybrids of two-hybrid systems, customised approaches can be developed in order to attack specific function-related problems. For example, one could set-up a "differential" screen by combining a forward and a reverse approach in a three-hybrid set-up. Another very interesting project is the use of peptide libraries in two-hybrid approaches. This could enable the identification of peptides with very high specificity comparable to "real" antibodies. With the technology available, the only limitation is imagination.

  4. Effect of post-silking drought on nitrogen partitioning and gene expression patterns of glutamine synthetase and asparagine synthetase in two maize (Zea mays L.) varieties.

    Science.gov (United States)

    Li, Yajun; Wang, Meiling; Zhang, Fengxia; Xu, Yadong; Chen, Xiaohong; Qin, Xiaoliang; Wen, Xiaoxia

    2016-05-01

    Glutamine synthetase (GS) and asparagine synthetase (AS) are proposed to have important function in plant nitrogen (N) remobilization, but their roles under drought stress are not well defined. In this study, the expression dynamics of GS and AS genes were analyzed in two maize varieties (ZD958 and NH101) in relation to post-silking drought stress induced nitrogen partitioning. ZD958 was a 'stay-green' variety with 5% nitrogen harvest index (NHI) lower than NH101. From silking to maturity, the amount of nitrogen remobilized from ear-leaves in ZD958 was evidently lower than NH101, and post-silking drought stress increased the nitrogen remobilization for both varieties. In ear-leaves, the expression of ZmGln1-3 was enhanced under drought stress. Three AS genes (ZmAS1, ZmAS2 and ZmAS3) were differentially regulated by post-silking drought treatment, of which the expression of ZmAS3 was stimulated at late stage of leaf senescence. In NH101, the expression level of ZmAS3 was markedly higher than that in ZD958. In developing grains, there were no significant differences in expression patterns of GS and AS genes between well water and drought treated plants. Drought stress altered maize N partitioning at the whole-plant level, and the up-regulation of GS and AS genes may contribute to the higher leaf nitrogen remobilization when exposed to drought treatments.

  5. Food safety: Structure and expression of the asparagine synthetase gene family of wheat.

    Science.gov (United States)

    Gao, Runhong; Curtis, Tanya Y; Powers, Stephen J; Xu, Hongwei; Huang, Jianhua; Halford, Nigel G

    2016-03-01

    Asparagine is an important nitrogen storage and transport molecule, but its accumulation as a free amino acid in crops has implications for food safety because free asparagine is a precursor for acrylamide formation during cooking and processing. Asparagine synthesis occurs by the amidation of aspartate, catalysed by asparagine synthetase, and this study concerned the expression of asparagine synthetase (TaASN) genes in wheat. The expression of three genes, TaASN1-3, was studied in different tissues and in response to nitrogen and sulphur supply. The expression of TaASN2 in the embryo and endosperm during mid to late grain development was the highest of any of the genes in any tissue. Both TaASN1 and TaASN2 increased in expression through grain development, and in the grain of field-grown plants during mid-development in response to sulphur deprivation. However, only TaASN1 was affected by nitrogen or sulphur supply in pot-based experiments, showing complex tissue-specific and developmentally-changing responses. A putative N-motif or GCN4-like regulatory motif was found in the promoter of TaASN1 genes from several cereal species. As the study was completed, a fourth gene, TaASN4, was identified from recently available genome data. Phylogenetic analysis showed that other cereal species have similar asparagine synthetase gene families to wheat.

  6. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis

    Science.gov (United States)

    Ranade, Ranae M.; Zhang, Zhongsheng; Dranow, David M.; Myers, Janette B.; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E.; Davies, Douglas R.; Lorimer, Donald; Boyle, Stephen M.; Barrett, Lynn K.; Buckner, Frederick S.; Fan, Erkang; Van Voorhis, Wesley C.

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment. PMID:27500735

  7. Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue.

    Science.gov (United States)

    Levine, R L

    1983-10-10

    Intracellular proteolytic degradation of glutamine synthetase occurs in two distinct steps in Escherichia coli (Levine, R. L., Oliver, C. N., Fulks, R. M., and Stadtman, E. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2120-2124). In the first step, a mixed function oxidation modifies the glutamine synthetase. The modified enzyme, which is catalytically inactive, becomes susceptible to proteolytic attack. In the second step, a protease specific for the modified enzyme catalyzes the actual proteolytic degradation. The oxidatively modified glutamine synthetase was studied to determine the chemical differences between it and the native enzyme. Only a single alteration was found; one of sixteen histidine residues/subunit was altered by the oxidative modification. The modification introduced a carbonyl group into the protein, permitting isolation of a stable dinitrophenylhydrazone. No other differences were detected between the native and modified proteins. Specifically, the cysteine, methionine, phenylalanine, tyrosine, and tryptophan contents were not altered. A number of other prokaryotic and eukaryotic enzymes are also susceptible to oxidative modification. This covalent modification may be important in intracellular proteolysis, in mammalian host defense systems, in prevention of autolysis, in aging processes, and in oxygen toxicity.

  8. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase.

    Science.gov (United States)

    Sharma, Arvind; Sharma, Amit

    2015-02-01

    The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.

  9. Structural basis for the binding of succinate to succinyl-CoA synthetase.

    Science.gov (United States)

    Huang, Ji; Fraser, Marie E

    2016-08-01

    Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2.2 Å resolution. Succinate binds in the carboxy-terminal domain of the β-subunit. The succinate-binding site is near both the active-site histidine residue that is phosphorylated in the reaction and the free thiol of CoA. The carboxy-terminal domain rearranges when succinate binds, burying this active site. However, succinate is not in position for transfer of the phosphoryl group from phosphohistidine. Here, it is proposed that when the active-site histidine residue has been phosphorylated by GTP, the phosphohistidine displaces phosphate and triggers the movement of the carboxylate of succinate into position to be phosphorylated. The structure shows why succinyl-CoA synthetase is specific for succinate and does not react appreciably with citrate nor with the other C4-dicarboxylic acids of the citric acid cycle, fumarate and oxaloacetate, but shows some activity with L-malate.

  10. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor.

    Science.gov (United States)

    Fang, Pengfei; Han, Hongyan; Wang, Jing; Chen, Kaige; Chen, Xin; Guo, Min

    2015-06-18

    Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development.

  11. (p)ppGpp synthetases regulate the pathogenesis of zoonotic Streptococcus suis.

    Science.gov (United States)

    Zhu, Jiawen; Zhang, Tengfei; Su, Zhipeng; Li, Lu; Wang, Dong; Xiao, Ran; Teng, Muye; Tan, Meifang; Zhou, Rui

    2016-10-01

    (p)ppGpp-mediated stringent response is one of the main adaption mechanism in bacteria, and the ability to adapt to environment is linked to the pathogenesis of bacterial pathogens. In the zoonotic pathogen Streptococcus suis, there are two (p)ppGpp synthetases, RelA and RelQ. To investigate the regulatory functions of (p)ppGpp/(p)ppGpp synthetases on the pathogenesis of S. suis, the phenotypes of the [(p)ppGpp(0)] mutant ΔrelAΔrelQ and its parental strain were compared. Light and electron microscopy observation showed that the mutant strain had a longer chain-length than its parental strain. Disruption of relA and relQ led to decreased adhesive and invasive ability to HEp-2 cells, and increased sensitivity to the blood killing and phagocytosis. Mouse infection experiments showed that the mutant strain was attenuated and easier to be cleaned up in vivo. Quantitative reverse transcription PCR (qRT-PCR) analysis indicated that the expressions of virulence related genes involving in morphology and virulence were down-regulated in the mutant strain. Our study demonstrated that the (p)ppGpp synthetases or (p)ppGpp can regulate the pathogenesis of this important zoonotic pathogen.

  12. Cyclic peptide inhibitors of the β-sliding clamp in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Kjelstrup, Susanne; Hansen, Paula Melo Paulon; Thomsen, Line Elnif;

    2013-01-01

    Interaction between pairs of Staphylococcus aureus replication proteins was detected in an Escherichia coli based two-hybrid analysis. A reverse two-hybrid system was constructed for selection of compounds that hindered interaction between interacting protein pairs. A number of cyclic peptides......, from a library generated by the split intein-mediated circular ligation of peptides and proteins technology, were found to interfere with dimerization of the β-sliding clamp of the replisome. Two 8-mer peptides were analyzed in more detail. Both inhibited DNA replication, led to SOS induction, altered...

  13. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... stems from a synergy between the positive peptide charge and membrane-active acyl moiety, supported by its pH-dependency, whereby the effect increased with decreasing pH and concomitant charge increase. The extent of permeation enhancing effect was highly dependent on acylation chain length and position...

  14. Topical peptides as cosmeceuticals

    Directory of Open Access Journals (Sweden)

    Varadraj Vasant Pai

    2017-01-01

    Full Text Available Peptides are known to have diverse biological roles, most prominently as signaling/regulatory molecules in a broad variety of physiological processes including defense, immunity, stress, growth, homeostasis and reproduction. These aspects have been used in the field of dermatology and cosmetology to produce short, stable and synthetic peptides for extracellular matrix synthesis, pigmentation, innate immunity and inflammation. The evolution of peptides over the century, which started with the discovery of penicillin, has now extended to their usage as cosmeceuticals in recent years. Cosmeceutical peptides may act as signal modulators of the extracellular matrix component, as structural peptides, carrier peptides and neurotransmitter function modulators. Transdermal delivery of peptides can be made more effective by penetration enhancers, chemical modification or encapsulation of peptides. The advantages of using peptides as cosmeceuticals include their involvement in many physiological functions of the skin, their selectivity, their lack of immunogenicity and absence of premarket regulatory requirements for their use. However, there are disadvantages: clinical evidence for efficacy is often weak, absorption may be poor due to low lipophilicity, high molecular weight and binding to other ingredients, and prices can be quite high.

  15. Peptide Directed 3D Assembly of Nanoparticles through Biomolecular Interaction

    Science.gov (United States)

    Kaur, Prerna

    The current challenge of the 'bottom up' process is the programmed self-assembly of nanoscale building blocks into complex and larger-scale superstructures with unique properties that can be integrated as components in solar cells, microelectronics, meta materials, catalysis, and sensors. Recent trends in the complexity of device design demand the fabrication of three-dimensional (3D) superstructures from multi-nanomaterial components in precise configurations. Bio mimetic assembly is an emerging technique for building hybrid materials because living organisms are efficient, inexpensive, and environmentally benign material generators, allowing low temperature fabrication. Using this approach, a novel peptide-directed nanomaterial assembly technology based on bio molecular interaction of streptavidin and biotin is presented for assembling nanomaterials with peptides for the construction of 3D peptide-inorganic superlattices with defined 3D shape. We took advantage of robust natural collagen triple-helix peptides and used them as nanowire building blocks for 3D peptide-gold nanoparticles superlattice generation. The type of 3D peptide superlattice assembly with hybrid NP building blocks described herein shows potential for the fabrication of complex functional device which demands precise long-range arrangement and periodicity of NPs.

  16. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes

    OpenAIRE

    Wang, Yanxin; Watford, Malcolm

    2006-01-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. C...

  17. Diversity of nature's assembly lines - recent discoveries in non-ribosomal peptide synthesis.

    Science.gov (United States)

    Payne, Jennifer A E; Schoppet, Melanie; Hansen, Mathias Henning; Cryle, Max J

    2016-12-20

    The biosynthesis of complex natural products by non-ribosomal peptide synthetases (NRPSs) and the related polyketide synthases (PKSs) represents a major source of important bioactive compounds. These large, multi-domain machineries are able to produce a fascinating range of molecules due to the nature of their modular architectures, which allows natural products to be assembled and tailored in a modular, step-wise fashion. In recent years there has been significant progress in characterising the important domains and underlying mechanisms of non-ribosomal peptide synthesis. More significantly, several studies have uncovered important examples of novel activity in many NRPS domains. These discoveries not only greatly increase the structural diversity of the possible products of NRPS machineries but - possibly more importantly - they improve our understanding of what is a highly important, yet complex, biosynthetic apparatus. In this review, several recent examples of novel NRPS function will be introduced, which highlight the range of previously uncharacterised activities that have now been detected in the biosynthesis of important natural products by these mega-enzyme synthetases.

  18. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  19. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields.......Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  20. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  1. Avian host defense peptides

    NARCIS (Netherlands)

    Cuperus, Tryntsje; Coorens, M.; van Dijk, A.; Haagsman, H.P.

    2013-01-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense

  2. Bacteriocin Inducer Peptides

    Science.gov (United States)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  3. APD: the Antimicrobial Peptide Database

    OpenAIRE

    Wang, Zhe; Wang, Guangshun

    2004-01-01

    An antimicrobial peptide database (APD) has been established based on an extensive literature search. It contains detailed information for 525 peptides (498 antibacterial, 155 antifungal, 28 antiviral and 18 antitumor). APD provides interactive interfaces for peptide query, prediction and design. It also provides statistical data for a select group of or all the peptides in the database. Peptide information can be searched using keywords such as peptide name, ID, length, net charge, hydrophob...

  4. Piezoelectric peptide-based nanogenerator enhanced by single-electrode triboelectric nanogenerator

    Science.gov (United States)

    Nguyen, Vu; Kelly, Steve; Yang, Rusen

    2017-07-01

    Peptide has recently been demonstrated as a sustainable and smart material for piezoelectric energy conversion. Although the power output was improved compared to other biomaterials, the use of a piezoelectric device alone can only capture the energy from the minute deformation in materials. In comparison, the triboelectric effect can convert mechanical energy from large motion. Consequently, utilizing both piezoelectric and triboelectric effects is of significant research interest due to their complementary energy conversion mechanisms. Here we demonstrated a hybrid nanogenerator that combined a peptide-based piezoelectric nanogenerator with a single-electrode triboelectric nanogenerator. Our device structure enabled the voltage and current outputs of each individual type of nanogenerator to be superposed in the hybrid nanogenerator, producing overall constructive outputs. The design of our device also enabled a simplified configuration of hybrid nanogenerator. This study is important not only for the enhancement of peptide-based piezoelectric device but also for the future design of hybrid piezoelectric and triboelectric nanogenerators.

  5. The acetaminophen metabolite N-acetyl-p-benzoquinone imine (NAPQI) inhibits glutathione synthetase in vitro; a clue to the mechanism of 5-oxoprolinuric acidosis?

    Science.gov (United States)

    Walker, Valerie; Mills, Graham A; Anderson, Mary E; Ingle, Brandall L; Jackson, John M; Moss, Charlotte L; Sharrod-Cole, Hayley; Skipp, Paul J

    2017-02-01

    1. Metabolic acidosis due to accumulation of l-5-oxoproline is a rare, poorly understood, disorder associated with acetaminophen treatment in malnourished patients with chronic morbidity. l-5-Oxoprolinuria signals abnormal functioning of the γ-glutamyl cycle, which recycles and synthesises glutathione. Inhibition of glutathione synthetase (GS) by N-acetyl-p-benzoquinone imine (NAPQI) could contribute to 5-oxoprolinuric acidosis in such patients. We investigated the interaction of NAPQI with GS in vitro. 2. Peptide mapping of co-incubated NAPQI and GS using mass spectrometry demonstrated binding of NAPQI with cysteine-422 of GS, which is known to be essential for GS activity. Computational docking shows that NAPQI is properly positioned for covalent bonding with cysteine-422 via Michael addition and hence supports adduct formation. 3. Co-incubation of 0.77 μM of GS with NAPQI (25-400 μM) decreased enzyme activity by 16-89%. Inhibition correlated strongly with the concentration of NAPQI and was irreversible. 4. NAPQI binds covalently to GS causing irreversible enzyme inhibition in vitro. This is an important novel biochemical observation. It is the first indication that NAPQI may inhibit glutathione synthesis, which is pivotal in NAPQI detoxification. Further studies are required to investigate its biological significance and its role in 5-oxoprolinuric acidosis.

  6. Two novel cyclic peptides are key components of the antimicrobial activity of the Greenlandic isolate Pseudomonas sp. In5

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Phippen, Christopher; Nielsen, Kristian F.

    Pseudomonas sp. are a rich source of secondary metabolites including bioactive non-ribosomal peptides (NRPs) and polyketides. NRPs are synthesised in large assembly lines by multi-domain modular enzymes known as NRP-synthetases (NRPS). Nunamycin and nunapeptin are two cyclic NRPs synthesised...... by the Greenlandic isolate Pseudomonas sp. In5. Nunamycin shows antifungal activity against the basidiomycete Rhizoctonia solani whereas the only partially structure elucidated nunapeptin appears most active against the ascomycete Fusarium graminearum and the oomycete Pythium aphanidermatum. Originally isolated from...

  7. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase.

    Science.gov (United States)

    Dong, Xianchi; Zhou, Minyun; Zhong, Chen; Yang, Bei; Shen, Ning; Ding, Jianping

    2010-03-01

    The ancient and ubiquitous aminoacyl-tRNA synthetases constitute a valuable model system for studying early evolutionary events. So far, the evolutionary relationship of tryptophanyl- and tyrosyl-tRNA synthetase (TrpRS and TyrRS) remains controversial. As TrpRS and TyrRS share low sequence homology but high structural similarity, a structure-based method would be advantageous for phylogenetic analysis of the enzymes. Here, we present the first crystal structure of an archaeal TrpRS, the structure of Pyrococcus horikoshii TrpRS (pTrpRS) in complex with tryptophanyl-5' AMP (TrpAMP) at 3.0 A resolution which demonstrates more similarities to its eukaryotic counterparts. With the pTrpRS structure, we perform a more complete structure-based phylogenetic study of TrpRS and TyrRS, which for the first time includes representatives from all three domains of life. Individually, each enzyme shows a similar evolutionary profile as observed in the sequence-based phylogenetic studies. However, TyrRSs from Archaea/Eucarya cluster with TrpRSs rather than their bacterial counterparts, and the root of TrpRS locates in the archaeal branch of TyrRS, indicating the archaeal origin of TrpRS. Moreover, the short distance between TrpRS and archaeal TyrRS and that between bacterial and archaeal TrpRS, together with the wide distribution of TrpRS, suggest that the emergence of TrpRS and subsequent acquisition by Bacteria occurred at early stages of evolution.

  8. Independent transcription of glutamine synthetase (glnA2) and glutamine synthetase adenylyltransferase (glnE) in Mycobacterium bovis and Mycobacterium tuberculosis.

    Science.gov (United States)

    Hotter, Grant S; Mouat, Pania; Collins, Desmond M

    2008-09-01

    Mycobacterium bovis and Mycobacterium tuberculosis possess four glutamine synthetase homologues, two of which, glnA1 and glnA2, are required for virulence and are located on the bacterial chromosome on either side of glutamine synthetase adenylyltransferase (glnE). While glnA1 is encoded on the complementary strand, glnA2 is located 48bp upstream from glnE, raising the possibility that glnA2 and glnE may be co-transcribed. However, previous studies in M. bovis and M. tuberculosis have painted a contradictory picture of the (co)transcriptional status of glnA2 and glnE. Given the importance of the genes at the glnA1-glnE-glnA2 locus, we sought to clarify the transcriptional status of glnA2 and glnE in both M. bovis and M. tuberculosis. Reverse transcription-PCR demonstrated that glnA2 and glnE were independently transcribed in all six M. bovis and M. tuberculosis strains examined. Northern analysis of the glnA2 transcript in M. bovis AF2122/97 and M. tuberculosis H37Rv showed that it was monocistronic. These results predicted the presence of a glnE transcriptional start site in the glnA2-glnE intergenic region. An identical start site was confirmed in M. bovis AF2122/97 and M. tuberculosis H37Rv using 5' rapid amplification of cDNA ends. Typical mycobacterial -10 and -35 sequences are associated with this start site.

  9. Peptide Synthesis on a Next-Generation DNA Sequencing Platform.

    Science.gov (United States)

    Svensen, Nina; Peersen, Olve B; Jaffrey, Samie R

    2016-09-01

    Methods for displaying large numbers of peptides on solid surfaces are essential for high-throughput characterization of peptide function and binding properties. Here we describe a method for converting the >10(7) flow cell-bound clusters of identical DNA strands generated by the Illumina DNA sequencing technology into clusters of complementary RNA, and subsequently peptide clusters. We modified the flow-cell-bound primers with ribonucleotides thus enabling them to be used by poliovirus polymerase 3D(pol) . The primers hybridize to the clustered DNA thus leading to RNA clusters. The RNAs fold into functional protein- or small molecule-binding aptamers. We used the mRNA-display approach to synthesize flow-cell-tethered peptides from these RNA clusters. The peptides showed selective binding to cognate antibodies. The methods described here provide an approach for using DNA clusters to template peptide synthesis on an Illumina flow cell, thus providing new opportunities for massively parallel peptide-based assays.

  10. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class...... examples of different peptide QSAR studies, this review highlights some of the missing links and illuminates some of the questions that would be interesting to challenge in a more systematic fashion. Expert opinion: Computer-aided peptide QSAR using molecular descriptors may provide the necessary edge...

  11. [Preparation and characterization of the recombinant protein containing immunomimetic peptide of benzo[a]pyrene].

    Science.gov (United States)

    Apal'ko, S V; Lunin, V G; Filipenko, M L; Matveeva, V A; Liashchuk, A M; Lavrova, N V; Sherina, E A; Aver'ianov, A V; Kostianko, M V; Glushkov, A N

    2011-01-01

    Two recombinant plasmids were constructed. The first plasmid contained the hybrid gene composed of immunomimetic peptide of benzo[a]pyrene, of the protein pIII of bacteriophage M13 and of cellulose binding domain encoding sequences. The second plasmid contained the hybrid gene composed of the signal peptide of the protein pIII of bacteriophage M13, of immunomimetic peptide of benzo[a]pyrene, of the protein pill of bacteriophage M13 and of cellulose binding domain sequences. The obtained recombinant plasmids were used in expression of chimeric protein containing immunomimetic peptide ofbenzo[a]pyrene based on strain E. coli M15. The lack of the recombinant protein expression using first plasmid was demonstrated. In the same time, it was shown that accumulation of recombinant protein contained immunomimetic peptide with signal peptide of the protein pIIIl of bacteriophage was present. This chimeric protein was produced in "mature" (without signal peptide) and "unprocessing" (with signal peptide) forms. Using the Western-blot analysis, it was shown that the "mature" form only specifically bound to the B2 monoclonal antibody against benzo[a]pyrene. Thus, we expressed, purified, and characterized the recombinant protein containing immunomimetic peptide of benzo[a]pyrene.

  12. Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, Nicholas M.; Ramezani-Dakhel, Hadi; Slocik, Joseph M.; Briggs, Beverly D.; Ren, Yang; Frenkel, Anatoly I.; Petkov, Valeri; Heinz, Hendrik; Naik, Rajesh R.; Knecht, Mark R.

    2015-05-01

    Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then eluddated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences

  13. Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater.

    Directory of Open Access Journals (Sweden)

    Caroline Hoff-Risseti

    Full Text Available The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX, while cylindrospermopsin (CYN, which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene sequences were obtained for all strains, while cyrB and cyrC gene fragments were observed in two strains. These nucleotide sequences were translated into amino acids, and the predicted protein functions and domains confirmed their identity as CYN synthetase genes. Attempts to PCR amplify cyrJ gene fragments from the four strains were unsuccessful. Phylogenetic analysis grouped the nucleotide sequences together with their homologues found in known CYN synthetase clusters of C. raciborskii strains with high bootstrap support. In addition, fragments of sxtA, sxtB and sxtI genes involved in STX production were also obtained. Extensive LC-MS analyses were unable to detect CYN in the cultured strains, whereas the production of STX and its analogues was confirmed in CENA302, CENA305 and T3. To our knowledge, this is the first study reporting the presence of cyr genes in South American strains of C. raciborskii and the presence of sxt and cyr genes in a single C. raciborskii strain. This discovery suggests a shift in the type of cyanotoxin production over time of South American strains of C. raciborskii and contributes to the reconstruction of the evolutionary history and diversification of cyanobacterial toxins.

  14. Xylan synthetase activity in differentiated xylem cells of sycamore trees (Acer pseudoplatanus).

    Science.gov (United States)

    Dalessandro, G; Northcote, D H

    1981-01-01

    Particulate enzymic preparations obtained from homogenates of differentiated xylem cells isolated from sycamore trees, catalyzed the formation of a radioactive xylan in the presence of UDP-D-[U-(14)C]xylose as substrate. The synthesized xylan was not dialyzable through Visking cellophane tubing. Successive extraction with cold water, hot water and 5% NaOH dissolved respectively 15, 5 and 80% of the radioactive polymer. Complete acid hydrolysis of the water-insoluble polysaccharide synthesized from UDP-D-[U-(14)C]xylose released all the radioactivity as xylose. β-1,4-Xylodextrins, degree of polymerization 2, 3, 4, 5 and 6, were obtained by partial acid hydrolysis (fuming HCl or 0.1 M HCl) of radioactive xylan. The polymer was hydrolysed to xylose, xylobiose and xylotriose by Driselase which contains 1,4-β xylanase activities. Methylation and then hydrolysis of the xylan released two methylated sugars which were identified as di-O-methyl[(14)C]xylose and tri-O-methyl-[(14)C]xylose, suggesting a 1→4-linked polymer. The linkage was confirmed by periodate oxidation studies. The apparent Km value of the synthetase for UDP-D-xylose was 0.4 mM. Xylan synthetase activity was not potentiated in the presence of a detergent. The enzymic activity was stimulated by Mg(2+) and Mn(2+) ions, although EDTA in the range of concentrations between 0.01 and 1 mM did not affect the reaction rate. It appears that the xylan synthetase system associated with membranes obtained from differentiated xylem cells of sycamore trees may serve for catalyzing the in vivo synthesis of the xylan main chain during the biogenesis of the plant cell wall.

  15. delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme

    NARCIS (Netherlands)

    van der Lende, T.R.; de Kamp, M.; den Berg, M.van; Sjollema, K.; Bovenberg, R.A.L.; Veenhuis, M; Konings, W.N; Driessen, A.J.M.

    2002-01-01

    Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-alpha-aminoadipate, L-cysteme, and L-

  16. δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme

    NARCIS (Netherlands)

    Lende, Ted R. van der; Kamp, Mart van de; Berg, Marco van den; Sjollema, Klaas; Bovenberg, Roel A.L.; Veenhuis, Marten; Konings, Wil N.; Driessen, Arnold J.M.

    2002-01-01

    Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-α-aminoadipate, L-cysteine, and L-valine into

  17. Phosphorolytic activity of Escherichia coli glycyl-tRNA synthetase towards its cognate aminoacyl adenylate detected by 31P-NMR spectroscopy and thin-layer chromatography

    DEFF Research Database (Denmark)

    Led, Jens Jørgen; Switon, Werner K.; Jensen, Kaj Frank

    1983-01-01

    The catalytic activity of highly purified Escherichia coli glycyl-tRNA synthetase has been studied by 31P-NMR spectroscopy and thin-layer chromatography on poly(ethyleneimine)-cellulose. It was found that this synthetase, besides the activation of its cognate amino acid and the syntheses...

  18. Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization.

    Science.gov (United States)

    Bernstein, Hans-Gert; Bannier, Jana; Meyer-Lotz, Gabriela; Steiner, Johann; Keilhoff, Gerburg; Dobrowolny, Henrik; Walter, Martin; Bogerts, Bernhard

    2014-11-01

    Glutamine synthetase catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a pivotal role in glutamate and glutamine homoeostasis. Despite a plethora of studies on this enzyme, knowledge about the regional and cellular distribution of this enzyme in human brain is still fragmentary. Therefore, we mapped fourteen post-mortem brains of psychically healthy individuals for the distribution of the glutamine synthetase immunoreactive protein. It was found that glutamine synthetase immunoreactivity is expressed in multiple gray and white matter astrocytes, but also in oligodendrocytes, ependymal cells and certain neurons. Since a possible extra-astrocytic expression of glutamine synthetase is highly controversial, we paid special attention to its appearance in oligodendrocytes and neurons. By double immunolabeling of mouse brain slices and cultured mouse brain cells for glutamine synthetase and cell-type-specific markers we provide evidence that besides astrocytes subpopulations of oligodendrocytes, microglial cells and neurons express glutamine synthetase. Moreover, we show that glutamine synthetase-immunopositive neurons are not randomly distributed throughout human and mouse brain, but represent a subpopulation of nitrergic (i.e. neuronal nitric oxide synthase expressing) neurons. Possible functional implications of an extra-astrocytic localization of glutamine synthetase are discussed.

  19. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium.

    Science.gov (United States)

    Mérida, A; Candau, P; Florencio, F J

    1991-07-01

    Glutamine synthetase activity from Synechocystis sp. strain PCC 6803 is regulated as a function of the nitrogen source available in the medium. Addition of 0.25 mM NH4Cl to nitrate-grown cells promotes a clear short-term inactivation of glutamine synthetase, whose enzyme activity decreases to 5 to 10% of the initial value in 25 min. The intracellular levels of glutamine, determined under various conditions, taken together with the results obtained with azaserine (an inhibitor of transamidases), rule out the possibility that glutamine per se is responsible for glutamine synthetase inactivation. Nitrogen starvation attenuates the ammonium-mediated glutamine synthetase inactivation, indicating that glutamine synthetase regulation is modulated through the internal balance between carbon-nitrogen compounds and carbon compounds. The parallelism observed between the glutamine synthetase activity and the internal concentration of alpha-ketoglutarate suggests that this metabolite could play a role as a positive effector of glutamine synthetase activity in Synechocystis sp. Despite the similarities of this physiological system to that described for enterobacteria, the lack of in vivo 32P labeling of glutamine synthetase during the inactivation process excludes the existence of an adenylylation-deadenylylation system in this cyanobacterium.

  20. δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme

    NARCIS (Netherlands)

    Lende, Ted R. van der; Kamp, Mart van de; Berg, Marco van den; Sjollema, Klaas; Bovenberg, Roel A.L.; Veenhuis, Marten; Konings, Wil N.; Driessen, Arnold J.M.

    2002-01-01

    Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-α-aminoadipate, L-cysteine, and L-valine into

  1. delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme

    NARCIS (Netherlands)

    van der Lende, T.R.; de Kamp, M.; den Berg, M.van; Sjollema, K.; Bovenberg, R.A.L.; Veenhuis, M; Konings, W.N; Driessen, A.J.M.

    2002-01-01

    Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-alpha-aminoadipate, L-cysteme, and

  2. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus

    Energy Technology Data Exchange (ETDEWEB)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki [Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India); Jeyakanthan, Jeyaraman [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Baba, Seiki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kuroishi, Chizu; Ebihara, Akio; Shinkai, Akeo [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Kuramitsu, Seiki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Shiro, Yoshitsugu [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Sekar, Kanagaraj, E-mail: sekar@serc.iisc.ernet.in [Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India); Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Yokoyama, Shigeyuki, E-mail: sekar@serc.iisc.ernet.in [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India)

    2007-02-01

    DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K{sub 2}) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit.

  3. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine-relevance to the treatment of neurological diseases.

    Science.gov (United States)

    Jeitner, Thomas M; Cooper, Arthur J L

    2014-12-01

    At high concentrations, the glutamine synthetase inhibitor L-methionine-S,R-sulfoximine (MSO) is a convulsant, especially in dogs. Nevertheless, sub-convulsive doses of MSO are neuroprotective in rodent models of hyperammonemia, acute liver disease, and amyotrophic lateral sclerosis and suggest MSO may be clinically useful. Previous work has also shown that much lower doses of MSO are required to produce convulsions in dogs than in primates. Evidence from the mid-20th century suggests that humans are also less sensitive. In the present work, the inhibition of recombinant human glutamine synthetase by MSO is shown to be biphasic-an initial reversible competitive inhibition (K i 1.19 mM) is followed by rapid irreversible inactivation. This K i value for the human enzyme accounts, in part, for relative insensitivity of primates to MSO and suggests that this inhibitor could be used to safely inhibit glutamine synthetase activity in humans.

  4. Isolation of mutants deficient in acetyl-CoA synthetase and a possible regulator of acetate induction in Aspergillus niger.

    Science.gov (United States)

    Sealy-Lewis, H M; Fairhurst, V

    1998-07-01

    Acetate-non-utilizing mutants in Aspergillus niger were selected by resistance to 1.2% propionate in the presence of 0.1% glucose. Mutants showing normal morphology fell into two complementation groups. One class of mutant lacked acetyl-CoA synthetase but had high levels of isocitrate lyase, while the second class showed reduced levels of both acetyl-CoA synthetase and isocitrate lyase compared to the wild-type strain. By analogy with mutants selected by resistance to 1.2% propionate in Aspergillus nidulans, the properties of the mutants in A. niger suggest that the mutations are either in the structural gene for acetyl-CoA synthetase (acuA) or in a possible regulatory gene of acetate induction (acuB). A third class of mutant in a different complementation group was obtained which had abnormal morphology (yellow mycelium and few conidia); the specific lesion in these mutants has not been determined.

  5. A Tyrosine-Dependent Riboswitch Controls the Expression of a Tyrosyl-tRNA Synthetase from Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Paula Bustamante

    2016-06-01

    Full Text Available Expression of aminoacyl-tRNA synthetases is regulated by a variety of mechanisms at the level of transcription or translation. A T-box dependent transcription termination / antitermination riboswitch system that responds to charged / uncharged tRNA regulates expression of aminoacyl tRNA synthetase genes in Gram-positive bacteria. TyrZ, the gene encoding tyrosyl-tRNA synthetase from Acidithiobacillus ferrooxidans, a Gram-negative acidophilic bacterium that participates in bioleaching of minerals, resembles the gene from Bacillus subtilis including the 5´-untranslated region encoding the riboswitch. Transcription of A. ferrooxidans tyrZ is induced by the presence of tyrosine by a mechanism involving antitermination of transcription. This mechanism is probably adapted to the low supply of amino acids of acidic environments of autotrophic bioleaching microorganisms. This work is licensed under a Creative Commons Attribution 4.0 International License.

  6. Mitochondrial aminoacyl-tRNA synthetase single-nucleotide polymorphisms that lead to defects in refolding but not aminoacylation

    DEFF Research Database (Denmark)

    Banerjee, Rajat; Reynolds, Noah M; Yadavalli, Srujana S

    2011-01-01

    Defects in organellar translation are the underlying cause of a number of mitochondrial diseases, including diabetes, deafness, encephalopathy, and other mitochondrial myopathies. The most common causes of these diseases are mutations in mitochondria-encoded tRNAs. It has recently become apparent...... that mutations in nuclear-encoded components of the mitochondrial translation machinery, such as aminoacyl-tRNA synthetases (aaRSs), can also lead to disease. In some cases, mutations can be directly linked to losses in enzymatic activity; however, for many, their effect is unknown. To investigate how aa......RS mutations impact function without changing enzymatic activity, we chose nonsynonymous single-nucleotide polymorphisms (nsSNPs) that encode residues distal from the active site of human mitochondrial phenylalanyl-tRNA synthetase. The phenylalanyl-tRNA synthetase variants S57C and N280S both displayed wild...

  7. Diversity-oriented peptide stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    as a powerful method for peptide stapling. However, to date CuAAC stapling has not provided a simple method for obtaining peptides that are easily diversified further. In the present study, we report a new diversity-oriented peptide stapling (DOPS) methodology based on CuAAC chemistry. Stapling of peptides...

  8. Association of IDDM and attenuated response of 2',5'-oligoadenylate synthetase to yellow fever vaccine

    DEFF Research Database (Denmark)

    Bonnevie-Nielsen, V; Larsen, M L; Frifelt, J J

    1989-01-01

    Basal and yellow fever vaccination-induced 2',5'-oligoadenylate synthetase (2',5'A) activity was determined in blood mononuclear cells (peripheral blood lymphocytes [PBLs]) from insulin-dependent diabetes mellitus (IDDM) and matched control subjects. The live attenuated yellow fever vaccine...... represented a primary stimulus in all subjects. First, basal 2',5'A activity increased severalfold in response to yellow fever vaccination. In IDDM subjects, this increase was significantly lower (P = .025). Second, the 2',5'A activity increased proportionately to the higher basal 2',5'A activity in IDDM...

  9. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase.

    Science.gov (United States)

    Hassan, Yousef I; Zempleni, Janos

    2008-12-01

    Holocarboxylase synthetase catalyzes the covalent binding of biotin to histones in humans and other eukaryotes. Eleven biotinylation sites have been identified in histones H2A, H3, and H4. K12-biotinylated histone H4 is enriched in heterochromatin, repeat regions, and plays a role in gene repression. About 30% of the histone H4 molecules are biotinylated at K12 in histone H4 in human fibroblast telomeres. The abundance of biotinylated histones at distinct genomic loci depends on biotin availability. Decreased histone biotinylation decreases life span and stress resistance in Drosophila. Low enrichment of biotinylated histones at transposable elements impairs repression of these elements.

  10. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    Science.gov (United States)

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  11. Redox status affects the catalytic activity of glutamyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Katz, Assaf; Banerjee, Rajat; de Armas, Merly

    2010-01-01

    Glutamyl-tRNA synthetases (GluRS) provide Glu-tRNA for different processes including protein synthesis, glutamine transamidation and tetrapyrrole biosynthesis. Many organisms contain multiple GluRSs, but whether these duplications solely broaden tRNA specificity or also play additional roles in t...... inactivation by hemin plus hydrogen peroxide. The sensitivity to oxidation of A. ferrooxidans GluRS1 might provide a means to regulate tetrapyrrole and protein biosynthesis in response to extreme changes in both the redox and heme status of the cell via a single enzyme....

  12. The implication of dihydrofolate reductase and dihydropteroate synthetase gene mutations in modification of Plasmodium falciparum characteristics

    DEFF Research Database (Denmark)

    A-Elbasit, Ishraga E; Alifrangis, Michael; Khalil, Insaf F

    2007-01-01

    the effects of dhfr/dhps mutations on parasite characteristics other than SP resistance. METHOD: Parasite infections obtained from 153 Sudanese patients with uncomplicated falciparum malaria treated with SP or SP + chloroquine, were successfully genotyped at nine codons in the dhfr/dhps genes by PCR......BACKGROUND: The Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) are enzymes of central importance in parasite metabolism. The dhfr and dhps gene mutations are known to be associated with sulphadoxine/pyrimethamine (SP) resistance. OBJECTIVE: To investigate...

  13. Evolution of the 2'-5'-Oligoadenylate Synthetase family in eukaryotes and bacteria

    DEFF Research Database (Denmark)

    Kjær, Karina Hansen; Poulsen, Jesper Buchhave; Reitamm, Tonu

    2009-01-01

    The 2′-5′-oligoadenylate synthetase (OAS) belongs to a nucleotidyl transferase family that includes poly(A) polymerases and CCA-adding enzymes. In mammals and birds, the OAS functions in the interferon system but it is also present in an active form in sponges, which are devoid of the interferon...... may have evolved from an ancestor of cartilaginous fishes, and that the OAS2 and the OAS3 genes evolved from a mammalian ancestor. OAS proteins function in the interferon system in mammals. This system is only found in jawed vertebrates. We therefore suggest that the original function of OAS may...

  14. Total glutamine synthetase levels in cerebrospinal fluid of Alzheimer's disease patients are unchanged.

    Science.gov (United States)

    Timmer, Nienke M; Herbert, Megan K; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    2015-03-01

    Decreased cerebral protein and activity levels of glutamine synthetase (GS) have been reported for Alzheimer's disease (AD) patients. Using a recently established method, we quantified total GS levels in cerebrospinal fluid (CSF) from AD patients and control subjects. Furthermore, we investigated if total GS levels in CSF could differentiate AD from frontotemperal dementia and dementia with Lewy bodies patients. As we found no significantly altered total GS levels in any of the patient groups compared with control subjects, we conclude that levels of total GS in CSF have no diagnostic value for AD, dementia with Lewy bodies, or frontotemperal dementia.

  15. A radiochemical method for carbamoyl-phosphate synthetase I: application to rats fed a hyperproteic diet

    OpenAIRE

    Arriarán, Sofía; Agnelli, Silvia; Fernández López, José Antonio; Remesar Betlloch, Xavier; Alemany, Marià

    2012-01-01

    A method for the measurement of carbamoyl-phosphate synthetase I activity in animal tissues has been developed using the livers of rats under normal and hyperproteic diets. The method is based on the incorporation of 14C-ammonium bicarbonate to carbamoyl-phosphate in the presence of ATP-Mg and N-acetyl-glutamate. The reaction is stopped by chilling, lowering the pH and adding ethanol. Excess bicarbonate is flushed out under a gentle stream of cold CO2. The only label remaining in the medium w...

  16. Evolution of the 2'-5'-Oligoadenylate Synthetase family in eukaryotes and bacteria

    DEFF Research Database (Denmark)

    Kjær, Karina Hansen; Poulsen, Jesper Buchhave; Reitamm, Tonu

    2009-01-01

    The 2′-5′-oligoadenylate synthetase (OAS) belongs to a nucleotidyl transferase family that includes poly(A) polymerases and CCA-adding enzymes. In mammals and birds, the OAS functions in the interferon system but it is also present in an active form in sponges, which are devoid of the interferon...... may have evolved from an ancestor of cartilaginous fishes, and that the OAS2 and the OAS3 genes evolved from a mammalian ancestor. OAS proteins function in the interferon system in mammals. This system is only found in jawed vertebrates. We therefore suggest that the original function of OAS may...

  17. Anti-antimicrobial Peptides

    Science.gov (United States)

    Ryan, Lloyd; Lamarre, Baptiste; Diu, Ting; Ravi, Jascindra; Judge, Peter J.; Temple, Adam; Carr, Matthew; Cerasoli, Eleonora; Su, Bo; Jenkinson, Howard F.; Martyna, Glenn; Crain, Jason; Watts, Anthony; Ryadnov, Maxim G.

    2013-01-01

    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance. PMID:23737519

  18. Hybrid microelectronic technology

    Science.gov (United States)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  19. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  20. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    Energy Technology Data Exchange (ETDEWEB)

    Torreira, Eva [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Seabra, Ana Rita [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Marriott, Hazel; Zhou, Min [University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Llorca, Óscar [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Robinson, Carol V. [University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Carvalho, Helena G. [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Fernández-Tornero, Carlos, E-mail: cftornero@cib.csic.es [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Pereira, Pedro José Barbosa, E-mail: cftornero@cib.csic.es [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)

    2014-04-01

    The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.

  1. Antimicrobial Peptides in Echinoderms

    OpenAIRE

    Li, C; Haug, T; K Stensvåg

    2010-01-01

    Antimicrobial peptides (AMPs) are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, d...

  2. Immunotherapy with Allergen Peptides

    OpenAIRE

    Larché Mark

    2007-01-01

    Specific allergen immunotherapy (SIT) is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cro...

  3. N-acetylglutamate synthetase deficiency: diagnosis, management and follow-up of a rare disorder of ammonia detoxication.

    Science.gov (United States)

    Schubiger, G; Bachmann, C; Barben, P; Colombo, J P; Tönz, O; Schüpbach, D

    1991-03-01

    We report the 9-year follow-up of a patient suffering from N-acetylglutamate synthetase deficiency, an urea cycle disorder leading to severe neonatal hyperammonaemia. Hitherto two patients from two families with this inborn error of metabolism had been observed. Our management consisted mainly of a protein-restricted diet and oral treatment with N-carbamylglutamate, an activator of carbamylphosphate synthetase, together with arginine or citrulline. The somatic development was normal whereas a moderate psychomotor retardation was diagnosed. The patient died after an episode of coma and prolonged generalized convulsions at the age of 9.5 years.

  4. Activity of interferon-dependent 2',5'-oligoadenylate synthetase in rat lymphoid cells under transformed environment conditions

    Science.gov (United States)

    Ostapchenko, L. I.; Mikhailik, I. V.; Prokopova, K. V.

    It is detected that interferon-dependent 2',5'-oligoadenylate synthetase is a sensitive index of immunocompetent cells functional state under transformed environment conditions. Microgravitation and ionising radiation induce increase of investigated enzyme activity in rat lymphocytes, which can be a result of lymphoid cells compensatory mechanisms starting in response to stress factors action. Administration of interferon inductors permits to stimulate the 2',5'-oligoadenylate synthetase, which enables one to correct pathological changes in the cells and to intensify adaptive reactions of immune systems.

  5. Activation of 2'-5' oligoadenylate synthetase by single-stranded and double-stranded RNA aptamers

    DEFF Research Database (Denmark)

    Hartmann, R; Norby, P L; Martensen, P M

    1998-01-01

    A number of small RNA molecules that are high affinity ligands for the 46-kDa form of human 2'-5' oligoadenylate synthetase have been identified by the SELEX method. Surface plasmon resonance analysis indicates that these RNAs bind to the enzyme with dissociation constants in the nanomolar range......-stranded RNA, can also be activated by RNA ligands with little secondary structure. Since 2'-5' oligoadenylate synthetase possesses no homology to other known RNA-binding proteins, the development of small specific ligands by SELEX should facilitate studies of RNA-protein interactions and may reveal novel...

  6. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis.

    Science.gov (United States)

    Sabatino, Giuseppina; Papini, Anna M

    2008-11-01

    Solid-phase strategies speed up the production of both short- and long-sequence peptides compared with solution methodologies. Therefore, solid-phase peptide synthesis (SPPS), proposed by Merrifield in the early 1960s, contributed to the 'Peptide Revolution' in the fields of diagnostics, and drug and vaccine development. Since then, peptide chemistry research has aimed to optimize these synthetic procedures, focusing on areas such as amide bond formation (the coupling step), solid supports and automation. Particular attention was devoted to the environmental impact of SPPS: the requirement for large amounts of organic solvents meant high costs for industrial peptide manufacturing that needed to be reduced. SPPS, alone or in hybrid technologies, has become strategic for the production of peptides as active pharmaceutical ingredients on a commercial scale.

  7. Comparison of histidine recognition in human and trypanosomatid histidyl-tRNA synthetases.

    Science.gov (United States)

    Koh, Cho Yeow; Wetzel, Allan B; de van der Schueren, Will J; Hol, Wim G J

    2014-11-01

    As part of a project aimed at obtaining selective inhibitors and drug-like compounds targeting tRNA synthetases from trypanosomatids, we have elucidated the crystal structure of human cytosolic histidyl-tRNA synthetase (Hs-cHisRS) in complex with histidine in order to be able to compare human and parasite enzymes. The resultant structure of Hs-cHisRS•His represents the substrate-bound state (H-state) of the enzyme. It provides an interesting opportunity to compare with ligand-free and imidazole-bound structures Hs-cHisRS published recently, both of which represent the ligand-free state (F-state) of the enzyme. The H-state Hs-cHisRS undergoes conformational changes in active site residues and several conserved motif of HisRS, compared to F-state structures. The histidine forms eight hydrogen bonds with HisRS of which six engage the amino and carboxylate groups of this amino acid. The availability of published imidazole-bound structure provides a unique opportunity to dissect the structural roles of individual chemical groups of histidine. The analysis revealed the importance of the amino and carboxylate groups, of the histidine in leading to these dramatic conformational changes of the H-state. Further, comparison with previously published trypanosomatid HisRS structures reveals a pocket in the F-state of the parasite enzyme that may provide opportunities for developing specific inhibitors of Trypanosoma brucei HisRS.

  8. Purification and characterization of recombinant Plasmodium falciparum adenylosuccinate synthetase expressed in Escherichia coli.

    Science.gov (United States)

    Jayalakshmi, R; Sumathy, K; Balaram, Hemalatha

    2002-06-01

    Most parasitic protozoa lack the de novo purine biosynthetic pathway and rely exclusively on the salvage pathway for their purine nucleotide requirements. Enzymes of the salvage pathway are, therefore, candidate drug targets. We have cloned the Plasmodium falciparum adenylosuccinate synthetase gene. In the parasite, adenylosuccinate synthetase is involved in the synthesis of AMP from IMP formed during the salvage of the purine base, hypoxanthine. The gene was shown to code for a functionally active protein by functional complementation in a purA mutant strain of Escherichia coli, H1238. This paper reports the conditions for hyperexpression of the recombinant protein in E. coli BL21(DE3) and purification of the protein to homogeneity. The enzyme was found to require the presence of dithiothreitol during the entire course of the purification for activity. Glycerol and EDTA were found to stabilize enzyme activity during storage. The specific activity of the purified protein was 1143.6 +/- 36.8 mUnits/mg. The K(M)s for the three substrates, GTP, IMP, and aspartate, were found to be 4.8 microM, 22.8 microM, and 1.4 mM, respectively. The enzyme was a dimer on gel filtration in buffers of low ionic strength but equilibrated between a monomer and a dimer in buffers of increased ionic strength.

  9. Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs.

    Science.gov (United States)

    Merritt, Ethan A; Arakaki, Tracy L; Gillespie, J Robert; Larson, Eric T; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J; Kim, Jessica; Zhang, Li; Verlinde, Christophe L M J; Fan, Erkang; Zucker, Frank; Buckner, Frederick S; van Voorhis, Wesley C; Hol, Wim G J

    2010-03-26

    Crystal structures of histidyl-tRNA synthetase (HisRS) from the eukaryotic parasites Trypanosoma brucei and Trypanosoma cruzi provide a first structural view of a eukaryotic form of this enzyme and reveal differences from bacterial homologs. HisRSs in general contain an extra domain inserted between conserved motifs 2 and 3 of the Class II aminoacyl-tRNA synthetase catalytic core. The current structures show that the three-dimensional topology of this domain is very different in bacterial and archaeal/eukaryotic forms of the enzyme. Comparison of apo and histidine-bound trypanosomal structures indicates substantial active-site rearrangement upon histidine binding but relatively little subsequent rearrangement after reaction of histidine with ATP to form the enzyme's first reaction product, histidyladenylate. The specific residues involved in forming the binding pocket for the adenine moiety differ substantially both from the previously characterized binding site in bacterial structures and from the homologous residues in human HisRSs. The essentiality of the single HisRS gene in T. brucei is shown by a severe depression of parasite growth rate that results from even partial suppression of expression by RNA interference.

  10. Biosynthesis of branched-chain amino acids in Schizosaccharomyces pombe: properties of acetohydroxy acid synthetase.

    Science.gov (United States)

    McDonald, R A; Satyanarayana, T; Kaplan, J G

    1973-04-01

    The regulatory properties of acetohydroxy acid synthetase (AHAS), the first enzyme in the biosynthetic pathway to valine and the second in the isoleucine pathway, were investigated in the fission yeast Schizosaccharomyces pombe. The enzyme was partially purified from crude extracts by protamine sulfate treatment, ammonium sulfate fractionation, and gel filtration through Sephadex G-25. AHAS from S. pombe is unique in that its activity shows a single peak around pH 6.5; high sensitivity to feedback inhibition by valine at this pH (K(i) = 0.1 mM) indicates that the enzyme is involved in valine biosynthesis. Pyruvate saturation kinetics of AHAS extracted from cells grown on glycerol as sole carbon and energy source were normal and hyperbolic. In contrast, the enzyme from glucose-grown cells exhibited sigmoidal saturation kinetics, an effect which disappeared when the synthetase from such cells was partially purified. This phenomenon was shown to be due to competition for pyruvate between AHAS and pyruvate decarboxylase; the latter enzyme is present in large amounts in cells fermenting glucose. Valine inhibition is noncompetitive in nature, and this effector exhibits homotropic cooperative effects; isoleucine is a less-potent inhibitor of AHAS activity. Mercurial treatment reversibly desensitized the enzyme to valine inhibition. On the basis of these data, the S. pombe AHAS appears to be an allosteric regulatory enzyme with the properties of a negative V system.

  11. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion.

    Science.gov (United States)

    Szabó, C; Dawson, V L

    1998-07-01

    Oxidative and nitrosative stress can trigger DNA strand breakage, which then activates the nuclear enzyme poly(ADP-ribose) synthetase (PARS). This enzyme has also been termed poly(ADP-ribose) polymerase (PARP) or poly(ADP-ribose) transferase (pADPRT). Rapid activation of the enzyme depletes the intracellular concentration of its substrate, nicotinamide adenine dinucleotide, thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. This process can result in cell dysfunction and cell death. In this article, Csaba Szabó and Valina Dawson overview the impact of pharmacological inhibition or genetic inactivation of PARS on the course of oxidant-induced cell death in vitro, and in inflammation and reperfusion injury in vivo. A major trigger for DNA damage in pathophysiological conditions is peroxynitrite, a cytotoxic oxidant formed by the reaction between the free radicals nitric oxide and superoxide. The pharmacological inhibition of poly(ADP-ribose) synthetase is a novel approach for the experimental therapy of various forms of inflammation and shock, stroke, myocardial and intestinal ischaemia-reperfusion, and diabetes mellitus.

  12. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies.

  13. Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Marta Spodenkiewicz

    2016-10-01

    Full Text Available Glutamine synthetase (GS is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS can cause an ultra-rare recessive inborn error of metabolism—congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition.

  14. Exploring the Catalytic Mechanism of Human Glutamine Synthetase by Computer Simulations.

    Science.gov (United States)

    Issoglio, Federico M; Campolo, Nicolas; Zeida, Ari; Grune, Tilman; Radi, Rafael; Estrin, Dario A; Bartesaghi, Silvina

    2016-10-13

    Glutamine synthetase is an important enzyme that catalyzes the ATP-dependent formation of glutamine from glutamate and ammonia. In mammals, it plays a key role in preventing excitotoxicity in the brain and detoxifying ammonia in the liver. In plants and bacteria, it is fundamental for nitrogen metabolism, being critical for the survival of the organism. In this work, we show how the use of classical molecular dynamics simulations and multiscale quantum mechanics/molecular mechanics simulations allowed us to examine the structural properties and dynamics of human glutamine synthetase (HsGS), as well as the reaction mechanisms involved in the catalytic process with atomic level detail. Our results suggest that glutamine formation proceeds through a two-step mechanism that includes a first step in which the γ-glutamyl phosphate intermediate forms, with a 5 kcal/mol free energy barrier and a -8 kcal/mol reaction free energy, and then a second rate-limiting step involving the ammonia nucleophilic attack, with a free energy barrier of 19 kcal/mol and a reaction free energy of almost zero. A detailed analysis of structural features within each step exposed the relevance of the acid-base equilibrium related to protein residues and substrates in the thermodynamics and kinetics of the reactions. These results provide a comprehensive study of HsGS dynamics and establish the groundwork for further analysis regarding changes in HsGS activity, as occur in natural variants and post-translational modifications.

  15. Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis.

    Science.gov (United States)

    Spodenkiewicz, Marta; Diez-Fernandez, Carmen; Rüfenacht, Véronique; Gemperle-Britschgi, Corinne; Häberle, Johannes

    2016-10-19

    Glutamine synthetase (GS) is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS) can cause an ultra-rare recessive inborn error of metabolism-congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i) this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii) early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition.

  16. Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme

    Directory of Open Access Journals (Sweden)

    Ana Rita Seabra

    2015-07-01

    Full Text Available Glutamine Synthetase (GS catalyses the first step at which nitrogen is brought into cellular metabolism and is also involved in the reassimilation of ammonium released by a number of metabolic pathways. Due to its unique position in plant nitrogen metabolism, GS plays essential roles in all aspects of plant development, from germination to senescence, and is a key component of nitrogen use efficiency (NUE and plant yield. Understanding the mechanisms regulating GS activity is therefore of utmost importance and a great effort has been dedicated to understand how GS is regulated in different plant species. The present review summarizes exciting recent developments concerning the structure and regulation of glutamine synthetase isoenzymes, using the model legume Medicago truncatula. These include the understanding of the structural determinants of both the cytosolic and plastid located isoenzymes, the existence of a seed-specific GS gene unique to M. truncatula and closely related species and the discovery that GS isoenzymes are regulated by nitric oxide at the post-translational level. The data is discussed and integrated with the potential roles of the distinct GS isoenzymes within the whole plant context.

  17. Glutamine synthetase 2 is not essential for biosynthesis of compatible solutes in Halobacillus halophilus.

    Science.gov (United States)

    Shiyan, Anna; Thompson, Melanie; Köcher, Saskia; Tausendschön, Michaela; Santos, Helena; Hänelt, Inga; Müller, Volker

    2014-01-01

    Halobacillus halophilus, a moderately halophilic bacterium isolated from salt marshes, produces various compatible solutes to cope with osmotic stress. Glutamate and glutamine are dominant compatible solutes at mild salinities. Glutamine synthetase activity in cell suspensions of Halobacillus halophilus wild type was shown to be salt dependent and chloride modulated. A possible candidate to catalyze glutamine synthesis is glutamine synthetase A2, whose transcription is stimulated by chloride. To address the role of GlnA2 in the biosynthesis of the osmolytes glutamate and glutamine, a deletion mutant (ΔglnA2) was generated and characterized in detail. We compared the pool of compatible solutes and performed transcriptional analyses of the principal genes controlling the solute production in the wild type strain and the deletion mutant. These measurements did not confirm the hypothesized role of GlnA2 in the osmolyte production. Most likely the presence of another, yet to be identified enzyme has the main contribution in the measured activity in crude extracts and probably determines the total chloride-modulated profile. The role of GlnA2 remains to be elucidated.

  18. Binding of Divalent Magnesium by Escherichia coli Phosphoribosyl Diphosphate Synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates MgATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-d-ribosyl a-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, a,ß-methylene ATP and (+)-1-a,2-a,3...... of substrates and products indicated a role of Mg2+ in preparing the active site of phosphoribosyl diphosphate synthetase for binding of the highly phosphorylated ligands MgATP and phosphoribosyl diphosphate, as evaluated by analysis of the effects of the inhibitors adenosine and ribose 1,5-bisphosphate....... Calcium ions, which inhibit the enzyme even in the presence of high concentrations of Mg2+, appeared to compete with free Mg2+ for binding to its activator site on the enzyme. Analysis of the inhibition of Mg2+ binding by MgADP indicated that MgADP binding to the allosteric site may occur in competition...

  19. H2S synthetase AtD-CDes involves in ethylene and drought regulated stomatal movement

    Institute of Scientific and Technical Information of China (English)

    Lixia Hou; Dan Zhu; Qian Ma; Dandan Zhang; Xin Liu

    2016-01-01

    The endogenous hydrogen sulfide (H2S),as a new gasotransmitter,participates in many plant physiological processes.In this study,we found that both ethylene and drought strongly induced H2S synthetase AtD-CDes gene expression and enzymatic activity.H2S synthesis inhibitors restrained the ethylene and drought induced stomatal closure in Arabidopsis.The H2S synthetase mutant Atd-cdes was insensitive to ethylene and drought,and overexpression of AtD-CDes conferred the transgenic plants more sensitive to ethylene and drought.Sequence analysis of AtD-CDes promoter showed that it contained ethylene response cis element ERE,and abiotic stress responsive cis elements MBS,LTR,and ABRE.The AtDCDes promoter fused with GUS was transformed into Arabidopsis thaliana to get AtD-CDes promoter::GUS transgenic plants.When treated with ethylene and drought stress,the enzymatic activity of β-glucuronidase was higher in the leaves and stomata of transgenic Arabidopsis.Analyses of GUS activity from the transgenic plants harboring different fragments of the promoter shows that the key section of AtD-CDes promoter response to ethylene was from the-697 to-408 bp,and the key section response to drought stress was from-90 to-1 bp.These results suggested that the H2S produced from AtD-CDes may mediate ethylene and drought-induced stomatal movement.

  20. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone.

    Science.gov (United States)

    Steinchen, Wieland; Schuhmacher, Jan S; Altegoer, Florian; Fage, Christopher D; Srinivasan, Vasundara; Linne, Uwe; Marahiel, Mohamed A; Bange, Gert

    2015-10-27

    Nucleotide-based second messengers serve in the response of living organisms to environmental changes. In bacteria and plant chloroplasts, guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) [collectively named "(p)ppGpp"] act as alarmones that globally reprogram cellular physiology during various stress conditions. Enzymes of the RelA/SpoT homology (RSH) family synthesize (p)ppGpp by transferring pyrophosphate from ATP to GDP or GTP. Little is known about the catalytic mechanism and regulation of alarmone synthesis. It also is unclear whether ppGpp and pppGpp execute different functions. Here, we unravel the mechanism and allosteric regulation of the highly cooperative alarmone synthetase small alarmone synthetase 1 (SAS1) from Bacillus subtilis. We determine that the catalytic pathway of (p)ppGpp synthesis involves a sequentially ordered substrate binding, activation of ATP in a strained conformation, and transfer of pyrophosphate through a nucleophilic substitution (SN2) reaction. We show that pppGpp-but not ppGpp-positively regulates SAS1 at an allosteric site. Although the physiological significance remains to be elucidated, we establish the structural and mechanistic basis for a biological activity in which ppGpp and pppGpp execute different functional roles.

  1. Natriuretic Peptides, Diagnostic and Prognostic Biomarkers

    NARCIS (Netherlands)

    J.H.W. Rutten (Joost)

    2010-01-01

    textabstractIn humans, the natriuretic peptide family consists of three different types of peptides: atrial natriuretic peptide (synonym: atrial natriuretic factor), B-type natriuretic peptide (synonym: brain natriuretic peptide) and C-natriuretic peptide.1 Atrial natriuretic peptide (ANP) was the f

  2. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  3. Hybrid Qualifications

    DEFF Research Database (Denmark)

    has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...... masters», i.e. by producing skills for the labour market and enabling individuals to progress more or less directly to higher education. The specific focus of this book is placed on conditions, structures and processes which help to combine VET with qualifications leading into higher education...

  4. Natriuretic Peptides, Diagnostic and Prognostic Biomarkers

    OpenAIRE

    Rutten, Joost

    2010-01-01

    textabstractIn humans, the natriuretic peptide family consists of three different types of peptides: atrial natriuretic peptide (synonym: atrial natriuretic factor), B-type natriuretic peptide (synonym: brain natriuretic peptide) and C-natriuretic peptide.1 Atrial natriuretic peptide (ANP) was the fi rst natriuretic peptide to be discovered and in humans ANP is predominantly formed in the cardiomyocytes of the atria.2 B-type natriuretic peptide (BNP) was fi rst discovered in porcine brain hen...

  5. Electron transfer in peptides.

    Science.gov (United States)

    Shah, Afzal; Adhikari, Bimalendu; Martic, Sanela; Munir, Azeema; Shahzad, Suniya; Ahmad, Khurshid; Kraatz, Heinz-Bernhard

    2015-02-21

    In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.

  6. Application of peptide nucleic acid towards development of nanobiosensor arrays.

    Science.gov (United States)

    Singh, Ravindra P; Oh, Byung-Keun; Choi, Jeong-Woo

    2010-10-01

    Peptide nucleic acid (PNA) is the modified DNA or DNA analogue with a neutral peptide backbone instead of a negatively charged sugar phosphate. PNA exhibits chemical stability, resistant to enzymatic degradation inside living cell, recognizing specific sequences of nucleic acid, formation of stable hybrid complexes like PNA/DNA/PNA triplex, strand invasion, extraordinary thermal stability and ionic strength, and unique hybridization relative to nucleic acids. These unique physicobiochemical properties of PNA enable a new mode of detection, which is a faster and more reliable analytical process and finds applications in the molecular diagnostics and pharmaceutical fields. Besides, a variety of unique characteristic features, PNAs replace DNA as a probe for biomolecular tool in the molecular genetic diagnostics, cytogenetics, and various pharmaceutical potentials as well as for the development of sensors/arrays/chips and many more investigation purposes. This review paper discusses the various current aspects related with PNAs, making a new hot device in the commercial applications like nanobiosensor arrays.

  7. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  8. Continuity Controlled Hybrid Automata

    OpenAIRE

    Bergstra, J. A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of hybrid automata as timed transition systems. We also relate the synchronized product operator on hybrid automata to the parallel composition operator of the process algebra. It turns out that the f...

  9. Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.

    Science.gov (United States)

    Awano, Tomotsugu; Wilming, Anja; Tomita, Hiroya; Yokooji, Yuusuke; Fukui, Toshiaki; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-01-01

    The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales.

  10. Molecular cloning of rat acss3 and characterization of mammalian propionyl-CoA synthetase in the liver mitochondrial matrix.

    Science.gov (United States)

    Yoshimura, Yukihiro; Araki, Aya; Maruta, Hitomi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-12-21

    Among the three acyl-CoA synthetase short-chain family members (ACSS), ACSS3 is poorly characterized. To characterize ACSS3, we performed molecular cloning and protein expression of rat acss3 and determined its intracellular localization, tissue distribution, and substrate specificity. Transient expression of rat ACSS3 in HeLa cells resulted in a 10-fold increase of acetyl-CoA synthetase activity compared with that in control cells. The acss3 transcripts are expressed in a wide range of tissues, with the highest levels observed in liver tissue followed by kidney tissue. Subcellular fractionation using liver tissue showed that ACSS3 is localized into the mitochondrial matrix. Among the short-chain fatty acids examined, recombinant ACSS3, purified from Escherichia coli cells transformed with the plasmid containing rat acss3, preferentially utilized propionate with a KM value of 0.19 mM. Knockdown of acss3 in HepG2 cells resulted in a significant decrease of ACSS3 expression level and propionyl-CoA synthetase activity in cell lysates. Levels of ACSS3 in the liver and the activity of propionyl-CoA synthetase in the mitochondria were significantly increased by fasting. These results suggested that ACSS3 is a liver mitochondrial matrix enzyme with high affinity to propionic acid, and its expression level is upregulated under ketogenic conditions.

  11. Activation of 2'-5' oligoadenylate synthetase by single-stranded and double-stranded RNA aptamers

    DEFF Research Database (Denmark)

    Hartmann, R; Norby, P L; Martensen, P M

    1998-01-01

    A number of small RNA molecules that are high affinity ligands for the 46-kDa form of human 2'-5' oligoadenylate synthetase have been identified by the SELEX method. Surface plasmon resonance analysis indicates that these RNAs bind to the enzyme with dissociation constants in the nanomolar range...

  12. Cloning, molecular characterization, and phylogeny of two evolutionary distinct glutamine synthetase isoforms in the green microalga Haematococcus pluvialis (Chlorophyceae)

    NARCIS (Netherlands)

    Reinecke, Diana L.; Zarka, Aliza; Leu, Stefan; Boussiba, Sammy

    2016-01-01

    Haematococcus pluvialis (Chlorophyta) is a widely used microalga of great economic potential, yet its molecular genetics and evolution are largely unknown. We present new detailed molecular and phylogenetic analysis of two glutamine synthetase (GS) enzymes and genes (gln) under the Astaxanthin-induc

  13. The function of the three phosphoribosyl pyrophosphate synthetase (Prs) genes in hyphal growth and conidiation in Aspergillus nidulans.

    Science.gov (United States)

    Jiang, Ping; Wei, Wen-Fan; Zhong, Guo-Wei; Zhou, Xiao-Gang; Qiao, Wei-Ran; Fisher, Reinhard; Lu, Ling

    2017-02-01

    Phosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyses the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three PRPP synthase-homologous genes (AnprsA, AnprsB and AnprsC), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, AnprsB and AnprsC are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.

  14. The function of the three phosphoribosyl-pyrophosphate synthetase (Prs) genes in hyphal growth and conidiation in Aspergillus nidulans.

    Science.gov (United States)

    Jiang, Ping; Wei, Wen-Fan; Zhong, Guo-Wei; Zhou, Xiao-Gang; Qiao, Wei-Ran; Lu, Ling

    2017-01-12

    Phosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyzes the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total PRPP synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthase-homologous genes (AnprsA, B, and C), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, B and C are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time-point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.

  15. Structure of the gene encoding phosphoribosylpyrophosphate synthetase (prsA) in Salmonella typhimurium

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Hove-Jensen, Bjarne; Switzer, Robert L.

    1988-01-01

    in a 416-base-pair 5' untranslated leader in the prsA transcript, which was shown by deletion to be necessary for maximal synthesis of phosphoribosylpyrophosphate synthetase. The S. typhimurium leader contains a 115-base-pair insert relative to the E. coli leader. The insert appears to have no functional...... significance....

  16. Nitrogen Control in Pseudomonas aeruginosa : Mutants Affected in the Synthesis of Glutamine Synthetase, Urease, and NADP-Dependent Glutamate Dehydrogenase

    NARCIS (Netherlands)

    Janssen, Dick B.; Habets, Winand J.A.; Marugg, Joey T.; Drift, Chris van der

    1982-01-01

    Mutants were isolated from Pseudomonas aeruginosa that were impaired in the utilization of a number of nitrogen sources. In contrast to the wild-type strain, these mutants appeared to be unable to derepress the formation of glutamine synthetase and urease under nitrogen-limited growth conditions, wh

  17. Purification and Properties of a Prokaryote Type Glutamine Synthetase from the Bialaphos Producer Streptomyces hygroscopicus SF1293

    NARCIS (Netherlands)

    Kumada, Yoichi; Takano, Eriko; Nagaoka, Kozo

    1990-01-01

    A prokaryote type glutamine synthetase (GS) was purified from a bialaphos (BA)-producing organism, Streptomyces hygroscopicus SF1293 (SF1293). The GS (GS I) consisted of a 55,000 dalton subunit, and its N-terminal amino acid sequence was similar to that of S. coelicolor GS. GS I was highly sensitive

  18. Noncoding RNA of Glutamine Synthetase I Modulates Antibiotic Production in Streptomyces coelicolor A3(2)▿ ‡

    OpenAIRE

    D'Alia, Davide; Nieselt, Kay; Steigele, Stephan; Müller, Jonas; Verburg, Ilse; Takano, Eriko

    2009-01-01

    Overexpression of antisense chromosomal cis-encoded noncoding RNAss (ncRNAs) in glutamine synthetase I resulted in a decrease in growth, protein synthesis, and antibiotic production in Streptomyces coelicolor. In addition, we predicted 3,597 cis-encoded ncRNAs and validated 13 of them experimentally, including several ncRNAs that are differentially expressed in bacterial hormone-defective mutants.

  19. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells.

    NARCIS (Netherlands)

    Matthews, G.D.; Gur, N.; Koopman, W.J.H.; Pines, O.; Vardimon, L.

    2010-01-01

    Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS

  20. Ricinus communis contains and acyl-CoA synthetase that preferentially activates ricinoleate to its CoA thioester

    Science.gov (United States)

    As part of our effort to identify enzymes that are critical for producing large amounts of ricinoleate in castor oil, we have isolated three cDNAs encoding acyl-CoA synthetase (ACS) in the castor plant. Analysis of the cDNA sequences reveals that two of them, designated RcACS 2 and RcACS 4, contain...