On Using Particle Finite Element for Hydrodynamics Problems Solving
Directory of Open Access Journals (Sweden)
E. V. Davidova
2015-01-01
Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \
A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4
Park, Young-Keun; Fahrenthold, Eric P.
2004-01-01
An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.
Densification simulation of compacted Al powders using multi-particle finite element method
Institute of Scientific and Technical Information of China (English)
Kyung-Hun LEE; Jung-Min LEE; Byung-Min KIM
2009-01-01
The powder compaction simulations were performed to demonstrate deformation behavior of particles and estimate the effect of different punch speeds and particle diameters on the relative density of powder by a multi-particle finite element model(MPFEM). Individual particle discretized with a finite element mesh allows for a full description of the contact mechanics. In order to verify the reliability of compaction simulation by MPFEM, the compaction tests of porous aluminum with average particle size of 20 μm and 3 μm were performed at different ram speeds of 5, 15, 30 and 60 mm/min by MTS servo-hydraulic tester. The results show that the slow ram speed is of great advantage for powder densification in low compaction force due to sufficient particle rearrangement and compaction force increases with decrease in average particle size of aluminum.
Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method
Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín
2013-09-01
Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.
Performance of mixed formulations for the particle finite element method in soil mechanics problems
Monforte, Lluís; Carbonell, Josep Maria; Arroyo, Marcos; Gens, Antonio
2017-07-01
This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy's law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.
The least square particle finite element method for simulating large amplitude sloshing flows
Institute of Scientific and Technical Information of China (English)
Bo Tang; Junfeng Li; Tianshu Wang
2008-01-01
Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper: The least square finite element method (LSFEM) is employed to spatially discrete the Navier-Stokes equations, and to avoid the stabilization issues due to the incompressibility condition for equal-order interpolation of the velocity and the pressure, as usually used in Galerkin method to satisfy the well-known LBB condition. The LSPFEM also uses the Lagrangian description to model the motion of nodes (particles). A mesh which connects these nodes is constructed by a triangulation algorithm to avoid the mesh distortion. A quasi α-shapes algorithm is used to identify the free surface boundary. The nodes are viewed as particles which can freely move and even separate from the main fluid domain. Finally this method is used to study the large amplitude sloshing evolution in two dimensional tanks. The results are compared with those obtained by Flow-3d with good agreement.
Performance of mixed formulations for the particle finite element method in soil mechanics problems
Monforte, Lluís; Carbonell, Josep Maria; Arroyo, Marcos; Gens, Antonio
2016-11-01
This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy's law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.
Salazar, Fernando; San-Mauro, Javier; Celigueta, Miguel Ángel; Oñate, Eugenio
2017-07-01
Dam bottom outlets play a vital role in dam operation and safety, as they allow controlling the water surface elevation below the spillway level. For partial openings, water flows under the gate lip at high velocity and drags the air downstream of the gate, which may cause damages due to cavitation and vibration. The convenience of installing air vents in dam bottom outlets is well known by practitioners. The design of this element depends basically on the maximum air flow through the air vent, which in turn is a function of the specific geometry and the boundary conditions. The intrinsic features of this phenomenon makes it hard to analyse either on site or in full scaled experimental facilities. As a consequence, empirical formulas are frequently employed, which offer a conservative estimate of the maximum air flow. In this work, the particle finite element method was used to model the air-water interaction in Susqueda Dam bottom outlet, with different gate openings. Specific enhancements of the formulation were developed to consider air-water interaction. The results were analysed as compared to the conventional design criteria and to information gathered on site during the gate operation tests. This analysis suggests that numerical modelling with the PFEM can be helpful for the design of this kind of hydraulic works.
Salazar, Fernando; San-Mauro, Javier; Celigueta, Miguel Ángel; Oñate, Eugenio
2016-06-01
Dam bottom outlets play a vital role in dam operation and safety, as they allow controlling the water surface elevation below the spillway level. For partial openings, water flows under the gate lip at high velocity and drags the air downstream of the gate, which may cause damages due to cavitation and vibration. The convenience of installing air vents in dam bottom outlets is well known by practitioners. The design of this element depends basically on the maximum air flow through the air vent, which in turn is a function of the specific geometry and the boundary conditions. The intrinsic features of this phenomenon makes it hard to analyse either on site or in full scaled experimental facilities. As a consequence, empirical formulas are frequently employed, which offer a conservative estimate of the maximum air flow. In this work, the particle finite element method was used to model the air-water interaction in Susqueda Dam bottom outlet, with different gate openings. Specific enhancements of the formulation were developed to consider air-water interaction. The results were analysed as compared to the conventional design criteria and to information gathered on site during the gate operation tests. This analysis suggests that numerical modelling with the PFEM can be helpful for the design of this kind of hydraulic works.
Possibilities of the particle finite element method for fluid-soil-structure interaction problems
Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín
2011-09-01
We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.
Rodríguez, J. M.; Jonsén, P.; Svoboda, A.
2017-01-01
Metal cutting is one of the most common metal-shaping processes. In this process, specified geometrical and surface properties are obtained through the break-up of material and removal by a cutting edge into a chip. The chip formation is associated with large strains, high strain rates and locally high temperatures due to adiabatic heating. These phenomena together with numerical complications make modeling of metal cutting difficult. Material models, which are crucial in metal-cutting simulations, are usually calibrated based on data from material testing. Nevertheless, the magnitudes of strains and strain rates involved in metal cutting are several orders of magnitude higher than those generated from conventional material testing. Therefore, a highly desirable feature is a material model that can be extrapolated outside the calibration range. In this study, a physically based plasticity model based on dislocation density and vacancy concentration is used to simulate orthogonal metal cutting of AISI 316L. The material model is implemented into an in-house particle finite-element method software. Numerical simulations are in agreement with experimental results, but also with previous results obtained with the finite-element method.
On Hybrid and mixed finite element methods
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
New Variational Formulations of Hybrid Stress Elements
Pian, T. H. H.; Sumihara, K.; Kang, D.
1984-01-01
In the variational formulations of finite elements by the Hu-Washizu and Hellinger-Reissner principles the stress equilibrium condition is maintained by the inclusion of internal displacements which function as the Lagrange multipliers for the constraints. These versions permit the use of natural coordinates and the relaxation of the equilibrium conditions and render considerable improvements in the assumed stress hybrid elements. These include the derivation of invariant hybrid elements which possess the ideal qualities such as minimum sensitivity to geometric distortions, minimum number of independent stress parameters, rank sufficient, and ability to represent constant strain states and bending moments. Another application is the formulation of semiLoof thin shell elements which can yield excellent results for many severe test cases because the rigid body nodes, the momentless membrane strains, and the inextensional bending modes are all represented.
Advances in the study of hybrid finite elements
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance
Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.
2016-06-01
The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.
A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS
Institute of Scientific and Technical Information of China (English)
Tian-xiao Zhou; Xiao-ping Xie
2003-01-01
In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.
A hybrid transfinite element approach for nonlinear transient thermal analysis
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
A new computational approach for transient nonlinear thermal analysis of structures is proposed. It is a hybrid approach which combines the modeling versatility of contemporary finite elements in conjunction with transform methods and classical Bubnov-Galerkin schemes. The present study is limited to nonlinearities due to temperature-dependent thermophysical properties. Numerical test cases attest to the basic capabilities and therein validate the transfinite element approach by means of comparisons with conventional finite element schemes and/or available solutions.
A hybrid-stress element based on Hamilton principle
Cen, Song; Zhang, Tao; Li, Chen-Feng; Fu, Xiang-Rong; Long, Yu-Qiu
2010-08-01
A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3 β here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3 β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.
Alternative ways for formulation of hybrid stress elements
Pian, T. H. H.; Chen, D.-P.
1982-01-01
An element stiffness matrix can be derived by the conventional potential energy principle and, indirectly, also by generalized variational principles, such as the Hu-Washizu principle and the Hellinger-Reissner principle. The present investigation has the objective to show an approach which is concerned with the formulation of incompatible elements for solid continuum and for plate bending problems by the Hellinger-Reissner principle. It is found that the resulting scheme is equivalent to that considered by Tong (1982) for the construction of hybrid stress elements. In Tong's scheme the inversion of a large flexibility matrix can be avoided. It is concluded that the introduction of additional internal displacement modes in mixed finite element formulations by the Hellinger-Reissner principle and the Hu-Washizu principle can lead to element stiffness matrices which are equivalent to the assumed stress hybrid method.
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
A new formulation of hybrid/mixed finite element
Pian, T. H. H.; Kang, D.; Chen, D.-P.
1983-01-01
A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.
Optimization strategy for element sizing in hybrid power systems
del Real, Alejandro J.; Arce, Alicia; Bordons, Carlos
This paper presents a procedure to evaluate the optimal element sizing of hybrid power systems. In order to generalize the problem, this work exploits the "energy hub" formulation previously presented in the literature, defining an energy hub as an interface among energy producers, consumers and the transportation infrastructure. The resulting optimization minimizes an objective function which is based on costs and efficiencies of the system elements, while taking into account the hub model, energy and power constraints and estimated operational conditions, such as energy prices, input power flow availability and output energy demand. The resulting optimal architecture also constitutes a framework for further real-time control designs. Moreover, an example of a hybrid storage system is considered. In particular, the architecture of a hybrid plant incorporating a wind generator, batteries and intermediate hydrogen storage is optimized, based on real wind data and averaged residential demands, also taking into account possible estimation errors. The hydrogen system integrates an electrolyzer, a fuel cell stack and hydrogen tanks. The resulting optimal cost of such hybrid power plant is compared with the equivalent hydrogen-only and battery-only systems, showing improvements in investment costs of almost 30% in the worst case.
Optimization strategy for element sizing in hybrid power systems
Energy Technology Data Exchange (ETDEWEB)
del Real, Alejandro J.; Arce, Alicia; Bordons, Carlos [Departamento de Ingenieria de Sistemas y Automatica, Universidad de Sevilla, 41092 Sevilla (Spain)
2009-08-01
This paper presents a procedure to evaluate the optimal element sizing of hybrid power systems. In order to generalize the problem, this work exploits the ''energy hub'' formulation previously presented in the literature, defining an energy hub as an interface among energy producers, consumers and the transportation infrastructure. The resulting optimization minimizes an objective function which is based on costs and efficiencies of the system elements, while taking into account the hub model, energy and power constraints and estimated operational conditions, such as energy prices, input power flow availability and output energy demand. The resulting optimal architecture also constitutes a framework for further real-time control designs. Moreover, an example of a hybrid storage system is considered. In particular, the architecture of a hybrid plant incorporating a wind generator, batteries and intermediate hydrogen storage is optimized, based on real wind data and averaged residential demands, also taking into account possible estimation errors. The hydrogen system integrates an electrolyzer, a fuel cell stack and hydrogen tanks. The resulting optimal cost of such hybrid power plant is compared with the equivalent hydrogen-only and battery-only systems, showing improvements in investment costs of almost 30% in the worst case. (author)
Higher-order hybrid stress triangular Mindlin plate element
Li, Tan; Ma, Xu; Xili, Jing; Chen, Wanji
2016-12-01
A 6-node triangular hybrid stress element is presented for Mindlin plate in this paper. The proposed element, denoted by TH6-27β, can pass both the zero shear stress patch test and the non-zero constant shear stress enhanced patch test and, it can be employed to analyze very thin plate. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is used successfully to derive the displacement interpolation along each side of the element. According to the equilibrium equations, an appropriate stress approximation is rationally obtained. The assumed stress field is modified by using 27β instead of 15β to improve the accuracy. Numerical results show that the element is free of shear locking, and reliable for thick and thin plates. Moreover, it has no spurious zero energy modes and with geometric invariance (coordinate invariance, node sequencing independence).
Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications
Changyong Cao; Qing-Hua Qin
2015-01-01
An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM) and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field) are employed. The formulations for...
Recent advances in hybrid/mixed finite elements
Pian, T. H. H.
1985-01-01
In formulations of Hybrid/Mixed finite element methods respectively by the Hellinger-Reissner principle and the Hu-Washizu principle, the stress equilibrium equations are brought in as conditions of constraint through the introduction of additional internal displacement parameters. These two approaches are more flexible and have better computing efficiencies. A procedure for the choice of assumed stress terms for 3-D solids is suggested. Example solutions are given for plates and shells using the present formulations and the idea of semiloof elements.
DEFORMATION RIGIDITY OF ASSUMED STRESS MODES IN HYBRID ELEMENTS
Institute of Scientific and Technical Information of China (English)
ZHANG Can-hui; HUANG Qian; FENG Wei
2006-01-01
The new methods to determine the zero-energy deformation modes in the hybrid elements and the zero-energy stress modes in their assumed stress fields are presented by the natural deformation modes of the elements. And the formula of the additional element deformation rigidity due to additional mode into the assumed stress field is derived.Based on, it is concluded in theory that the zero-energy stress mode cannot suppress the zero-energy deformation modes but increase the extra rigidity to the nonzero-energy deformation modes of the element instead. So they should not be employed to assume the stress field. In addition, the parasitic stress modes will produce the spurious parasitic energy and result the element behaving over rigidity. Thus, they should not be used into the assumed stress field even though they can suppress the zero-energy deformation modes of the element. The numerical examples show the performance of the elements including the zero-energy stress modes or the parasitic stress modes.
Hybrid open public space of landscape elements and built structure
Directory of Open Access Journals (Sweden)
Gordana Bence
2008-01-01
Full Text Available The trend today in the cities in Europe and elsewhere is in combining landscape elements, built structure and different uses into a complex urban structure. Physical and program interweaving of landscape elements and built structure enables the consumers daily practice of leisure programs – relaxation, recreation and experiencing other cultural, educational and social events in the public green space. On the basis of determinate social changes and new approaches in urban planning practice, analyses of architectural and urban case studies from the point of view of integrating the landscape elements into the urban structure, the article defines the phenomenon of hybrid open public space and proposes methodical guidelines for the planning.
Institute of Scientific and Technical Information of China (English)
谢小平; 周天孝
2003-01-01
The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads to enhancement of accuracy at coarse meshes, and that the combination parameter plays an important role in the enhancement. As an improvement of conforming bilinear Q4-plane element, the combined hybrid method adopted the most convenient quadrilateral displacements-stress mode, i. e.,the mode of compatible isoparametric bilinear displacements and pure constant stresses. By adjusting the combined parameter, the optimized version of the combined hybrid element was obtained and numerical tests indicated that this parameter-adjusted version behaves much better than Q4-element and is of high accuracy at coarse meshes. Due to elimination of stress parameters at the elemental level, this combined hybrid version is of the same computational cost as that of Q4 -element.
Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications
Directory of Open Access Journals (Sweden)
Changyong Cao
2015-01-01
Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.
APPLICATION OF PENALTY FUNCTION METHOD IN ISOPARAMETRIC HYBRID FINITE ELEMENT ANALYSIS
Institute of Scientific and Technical Information of China (English)
CHEN Dao-zheng; JIAO Zhao-ping
2005-01-01
By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametric hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented.The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.
Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers
Cornogolub, Alexandru; Cottinet, Pierre-Jean; Petit, Lionel
2016-09-01
Interest in energy harvesting applications has increased a lot during recent years. This is especially true for systems using electroactive materials like dielectric polymers or piezoelectric materials. Unfortunately, these materials despite multiple advantages, present some important drawbacks. For example, many dielectric polymers demonstrated high energy densities; they are cheap, easy to process and can be easily integrated in many different structures. But at the same time, dielectric polymer generators require an external energy supply which could greatly compromise their autonomy. Piezoelectric systems, on the other hand, are completely autonomous and can be easily miniaturized. However, most common piezoelectric materials present a high rigidity and are brittle by nature and therefore their integration could be difficult. This paper investigates the possibility of using hybrid systems combining piezoelectric elements and dielectric polymers for mechanical energy harvesting applications and it is focused mainly on the problem of electrical energy transfer. Our objective is to show that such systems can be interesting and that it is possible to benefit from the advantages of both materials. For this, different configurations were considered and the problem of their optimization was addressed. The experimental work enabled us to prove the concept and identify the main practical limitations.
Roles of metal/activated carbon hybridization on elemental mercury adsorption.
Bae, Kyong-Min; Kim, Byung-Joo; Rhee, Kyong Yop; Park, Soo-Jin
2014-08-01
In this study, the elemental mercury removal behavior of metal (copper or nickel)/activated carbon hybrid materials were investigated. The pore structures and total pore volumes of the hybrid materials were analyzed using the N2/77 K adsorption isotherms. The microstructure and surface morphologies of the hybrid materials were characterized by X-ray diffraction and scanning electron microscopy, respectively. In the experimental results, the elemental mercury adsorption capacities of all copper/activated carbon hybrid materials were higher than that of the as-received material despite the decrease in specific surface areas and total pore volumes after the metal loading. All the samples containing the metal particles showed excellent elemental mercury adsorption. The Ni/ACs exhibited superior elemental mercury adsorption to those of Cu/ACs. This suggests that Ni/ACs have better elemental mercury adsorption due to the higher activity of nickel.
The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element
Deyong, Mark R.; Findley, Randall L.; Fields, Chris
1992-01-01
A hybrid analog-digital neural processing element with the time-dependent behavior of biological neurons has been developed. The hybrid processing element is designed for VLSI implementation and offers the best attributes of both analog and digital computation. Custom VLSI layout reduces the layout area of the processing element, which in turn increases the expected network density. The hybrid processing element operates at the nanosecond time scale, which enables it to produce real-time solutions to complex spatiotemporal problems found in high-speed signal processing applications. VLSI prototype chips have been designed, fabricated, and tested with encouraging results. Systems utilizing the time-dependent behavior of the hybrid processing element have been simulated and are currently in the fabrication process. Future applications are also discussed.
The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element
Deyong, Mark R.; Findley, Randall L.; Fields, Chris
1992-01-01
A hybrid analog-digital neural processing element with the time-dependent behavior of biological neurons has been developed. The hybrid processing element is designed for VLSI implementation and offers the best attributes of both analog and digital computation. Custom VLSI layout reduces the layout area of the processing element, which in turn increases the expected network density. The hybrid processing element operates at the nanosecond time scale, which enables it to produce real-time solutions to complex spatiotemporal problems found in high-speed signal processing applications. VLSI prototype chips have been designed, fabricated, and tested with encouraging results. Systems utilizing the time-dependent behavior of the hybrid processing element have been simulated and are currently in the fabrication process. Future applications are also discussed.
Hybrid finite-element/boundary-element method to calculate Oersted fields
Energy Technology Data Exchange (ETDEWEB)
Hertel, Riccardo, E-mail: hertel@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg (France); Kákay, Attila [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, D-52428 Jülich (Germany)
2014-11-15
The article presents a general-purpose hybrid finite-element/boundary-element method (FEM/BEM) to calculate magnetostatic fields generated by stationary electric currents. The efficiency of this code lies in its ability to simulate Oersted fields in complex geometries with non-uniform current density distributions. As a precursor to the calculation of the Oersted field, an FEM algorithm is employed to calculate the electric current density distribution. The accuracy of the code is confirmed by comparison with analytic results. Two examples show how this method provides important numerical data that can be directly plugged into micromagnetic simulations: The current density distribution in a thin magnetic strip with a notch, and the Oersted field in a three-dimensional contact geometry; similar to the type commonly used in spin-torque driven nano-oscillators. It is argued that a precise calculation of both, the Oersted field and the current density distribution, is essential for a reliable simulation of current-driven micromagnetic processes. - Highlights: • We present a numerical method to calculate Oersted fields for arbitrary geometries. • Description of a FEM algorithm to calculate current density distributions. • It is argued that these methods are valuable for micromagnetic STT-simulations. • Several examples are shown, highlighting the methods’ importance and accuracy.
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
The present paper describes the development of a new hybrid computational approach for applicability for nonlinear/linear thermal structural analysis. The proposed transfinite element approach is a hybrid scheme as it combines the modeling versatility of contemporary finite elements in conjunction with transform methods and the classical Bubnov-Galerkin schemes. Applicability of the proposed formulations for nonlinear analysis is also developed. Several test cases are presented to include nonlinear/linear unified thermal-stress and thermal-stress wave propagations. Comparative results validate the fundamental capablities of the proposed hybrid transfinite element methodology.
Numerical simulation of evolutionary erodible bedforms using the particle finite element method
Bravo, Rafael; Becker, Pablo; Ortiz, Pablo
2016-07-01
This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.
Progress on hybrid finite element methods for scattering by bodies of revolution
Collins, Jeffery D.; Volakis, John L.
1992-01-01
Progress on the development and implementation of hybrid finite element methods for scattering by bodies of revolution are described. It was found that earlier finite element-boundary integral formulations suffered from convergence difficulties when applied to large and thin bodies of revolution. An alternative implementation is described where the finite element method is terminated with an absorbing termination boundary. In addition, an alternative finite element-boundary integral implementation is discussed for improving the convergence of the original code.
THE STRESS SUBSPACE OF HYBRID STRESS ELEMENT AND THE DIAGONALIZATION METHOD FOR FLEXIBILITY MATRIX H
Institute of Scientific and Technical Information of China (English)
张灿辉; 冯伟; 黄黔
2002-01-01
The following is proved: 1 ) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular fiexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt 's method. Because of the resulting diagonal fiexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency is improved greatly. The numerical examples show that the method is effective.
Three-dimensional finite element simulation of intermingled-fiber hybrid composite behavior
Mital, Subodh K.; Chamis, Christos C.
1992-01-01
Three-dimensional finite element methods and the intraply hybrid micromechanics equations are used to predict composite properties for a unidirectional graphite-epoxy primary composite with S-glass fibers used as hybridizing fibers. The micromechanics equations are embedded in a computer code ICAN (Integrated Composites Analyzer). The three-dimensional finite element model consists of three-by-three unit cell array, with a total fiber volume ratio of 0.54. There is a good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite element methods and micromechanics equations can be used to obtain the properties of intermingled hybrid composites needed for analysis/design of hybrid composite structures.
Hybrid Semiloof elements for plates and shells based upon a modified Hu-Washizu principle
Pian, T. H. H.; Sumihara, K.
1984-01-01
Hybrid SemiLoof elements for plates and shells are developed based upon modified Hu-Washizu principle. In the new version of the assumed stress hybrid formulation the equilibrium equations are satisfied through the introduction of internal displacement parameters as Lagrange multipliers. The inversion of the resulting H-matrices is simplified particularly when the stresses are expressed in terms of natural coordinates. A 24-DOF triangular element and a 32-DOF quadrilateral element based on shallow shell theory are derived and evaluated.
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.
Multiple orbital angular momentum generated by dielectric hybrid phase element
Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping
2017-09-01
Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.
Elements loss analysis based on spectral diagnosis in laser-arc hybrid welding of aluminum alloy
Chen, Yong; Chen, Hui; Zhu, Minhao; Yang, Tao; Shen, Lin
2017-07-01
Aluminum alloy has been widely used in automobiles, high-speed trains, aerospace and many other fields. The loss of elements during welding process causes welding defects and affects the microstructure and properties of the joints. This paper discusses the correlation between welding process, spectral intensity and loss of elements in laser-arc hybrid welding of Al alloys. The results show that laser power and arc current have a significant impact on the spectral intensity and loss of elements. Compared with the base metal, the contents of alloying elements in the weld area are lower. The burning losses of alloy elements increase with the welding heat input.
Mixed and mixed-hybrid elements for the diffusion equation
Energy Technology Data Exchange (ETDEWEB)
Coulomb, F.; Fedon-Magnaud, C.
1988-11-01
Among the classical methods used for solving the neutron diffusion equation, the Lagrange finite element method can be efficiently implemented to provide a fast numerical treatment. Mixed elements are used because they allow simultaneous approximations for the flux and its gradient of the same order. Although the linear systems produced are not positive definite, a solution ca be achieved after eliminating some of the unknowns. Numerical results include core calculations of two types of reactors.
ANALYSIS OF AUGMENTED THREE-FIELD MACRO-HYBRID MIXED FINITE ELEMENT SCHEMES
Institute of Scientific and Technical Information of China (English)
Gonzalo Alduncin
2009-01-01
On the basis of composition duality principles, augmented three-field macro-hybrid mixed variational problems and finite element schemes are analyzed. The compati-bility condition adopted here, for compositional dualization, is the coupling operator surjec-tivity, property that expresses in a general operator sense the Ladysenskaja-Babuska-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug-mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.
Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites
Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine
2005-01-01
Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element
Monolithic formulation of electromechanical systems within the context of hybrid finite elements
Agrawal, Manish; Jog, C. S.
2017-03-01
In electromechanical devices, a strong coupling exists between the electromagnetic and displacement field. Due to this strong interaction, a need arises to develop a robust, fully coupled scheme for modeling electromechanical phenomena. With this goal in view, we present a monolithic numerical scheme for modeling fully coupled electromechanical systems. It is shown in the literature that for structural problems, hybrid elements that are based on a two-field variational formulation are less susceptible to locking and provide a robust numerical strategy especially for shell-type structures. Hence, we extend our monolithic formulation to the hybrid finite element framework. Our monolithic formulation is based on a total Lagrangian framework, where the eddy current and structural equations are solved on the reference configuration. Consistent linearization is performed to ensure a quadratic rate of convergence. The efficacy of the presented algorithm, and especially that of the hybrid formulation is demonstrated with the help of numerical examples.
Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method
DEFF Research Database (Denmark)
Goo, Seongyeol; Wang, Semyung; Kook, Junghwan
2017-01-01
This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...... is limited to low frequency applications due to considerable computational efforts. To this end, we propose a gradient-based topology optimization method that uses the hybrid FE-WBM whereby the entire domain of a problem is partitioned into design and non-design domains. In this respect, the FEM is used...... as a design domain of topology optimization, and the WBM is used as a non-design domain to increase computational efficiency. The adjoint variable method based on the hybrid FE-WBM is also proposed as a means of computing design sensitivities. Numerical examples are presented to demonstrate the effectiveness...
Investigation of a Hybrid Winding Concept for Toroidal Inductors using 3D Finite Element Modeling
DEFF Research Database (Denmark)
Schneider, Henrik; Andersen, Thomas; Mønster, Jakob Døllner;
2013-01-01
This paper investigates a hybrid winding concept for a toroidal inductor by simulating the winding resistance as a function of frequency. The problem of predicting the resistance of a non-uniform and complex winding shape is solved using 3D Finite Element Modeling. A prototype is built and tested...
Energy Technology Data Exchange (ETDEWEB)
Kerdraon, D.; Billebaud, A.; Brissot, R.; David, S.; Giorni, A.; Heuer, D.; Loiseaux, J.M.; Meplan, O
2000-11-01
This document deals with the quantification of the minimum thermal power level for a demonstrator and the definition of the physical criteria which define the representative character of a demonstrator towards a power reactor. Solutions allowing to keep an acceptable flow in an industrial core, have also been studied. The document is divided in three parts: the representativeness elements, the considered solutions and the characterization of the neutrons flows at the interfaces and the dose rates at the outer surface of the vessel. (A.L.B.)
Atluri, S. N.; Nakagaki, M.; Kathiresan, K.
1980-01-01
In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.
Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry
DEFF Research Database (Denmark)
Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik
2004-01-01
n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....
Wang, S. S.
1985-01-01
A three-dimensional hybrid-stress finite element analysis of composite laminates containing cutouts and cracks is presented. Fully three-dimensional, hexahedral isoparametric elements of the hybrid-stress model are formulated on the basis of the Hellinger-Reissner variational principle. Traction-free edges, cutouts, and crack surfaces are modeled by imposition of exact traction boundary conditions along element surfaces. Special boundary and surface elements are constructed by introducing proper constraints on assumed stress functions. The Lagrangian multiplier technique is used to enforce ply-interface continuity conditions in hybrid bimaterial composite elements for modeling the interface region in a composite laminate. Two examples are given to illustrate the capability of the present method of approach: (1) the well-known delamination problem in an angle-ply laminate, and (2) the important problem of a composite laminate containing a circular hole. Results are presented in detail for each case. Implications of interlaminar and intralaminar crack initiation, growth and fracture in composites containing cracks and cutouts are discussed.
Hybrid graded element model for transient heat conduction in functionally graded materials
Institute of Scientific and Technical Information of China (English)
Lei-Lei Cao; Qing-Hua Qin; Ning Zhao
2012-01-01
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs).First,a Laplace transform approach is used to handle the time variable.Then,a fundamental solution in Laplace space for FGMs is constructed.Next,a hybrid graded element is formulated based on the obtained fundamental solution and a frame field.As a result,the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field.Further,Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain.Finally,the performance of the proposed method is assessed by several benchmark examples.The results demonstrate well the efficiency and accuracy of the proposed method.
Yu, Guozhu; Carstensen, Carsten
2011-01-01
Assumed stress hybrid methods are known to improve the performance of standard displacement-based finite elements and are widely used in computational mechanics. The methods are based on the Hellinger-Reissner variational principle for the displacement and stress variables. This work analyzes two existing 4-node hybrid stress quadrilateral elements due to Pian and Sumihara [Int. J. Numer. Meth. Engng, 1984] and due to Xie and Zhou [Int. J. Numer. Meth. Engng, 2004], which behave robustly in numerical benchmark tests. For the finite elements, the isoparametric bilinear interpolation is used for the displacement approximation, while different piecewise-independent 5-parameter modes are employed for the stress approximation. We show that the two schemes are free from Poisson-locking, in the sense that the error bound in the a priori estimate is independent of the relevant Lame constant $\\lambda$. We also establish the equivalence of the methods to two assumed enhanced strain schemes. Finally, we derive reliable ...
Identification of misexpressed genetic elements in hybrids between Drosophila-related species
Lopez-Maestre, Hélène; Carnelossi, Elias A. G.; Lacroix, Vincent; Burlet, Nelly; Mugat, Bruno; Chambeyron, Séverine; Carareto, Claudia M. A.; Vieira, Cristina
2017-01-01
Crosses between close species can lead to genomic disorders, often considered to be the cause of hybrid incompatibility, one of the initial steps in the speciation process. How these incompatibilities are established and what are their causes remain unclear. To understand the initiation of hybrid incompatibility, we performed reciprocal crosses between two species of Drosophila (D. mojavensis and D. arizonae) that diverged less than 1 Mya. We performed a genome-wide transcriptomic analysis on ovaries from parental lines and on hybrids from reciprocal crosses. Using an innovative procedure of co-assembling transcriptomes, we show that parental lines differ in the expression of their genes and transposable elements. Reciprocal hybrids presented specific gene categories and few transposable element families misexpressed relative to the parental lines. Because TEs are mainly silenced by piwi-interacting RNAs (piRNAs), we hypothesize that in hybrids the deregulation of specific TE families is due to the absence of such small RNAs. Small RNA sequencing confirmed our hypothesis and we therefore propose that TEs can indeed be major players of genome differentiation and be implicated in the first steps of genomic incompatibilities through small RNA regulation. PMID:28091568
Field Test of a Hybrid Finite-Difference and Analytic Element Regional Model.
Abrams, D B; Haitjema, H M; Feinstein, D T; Hunt, R J
2016-01-01
Regional finite-difference models often have cell sizes that are too large to sufficiently model well-stream interactions. Here, a steady-state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell-by-cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real-world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined "benchmark" MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost-effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite-difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady-state conditions.
A quadrilateral membrane hybrid stress element with drilling degrees of freedom
Institute of Scientific and Technical Information of China (English)
An-Ping Wang
2012-01-01
A new kind of quadrilateral assumed stress hybrid membrane element with drilling degrees of freedom and a traction-free inclined side has been developed based on an extended Hellinger-Reissner principle which is established by expanding the essential terms of the assumed stress field as polynomials in the natural coordinates of the element.The homogeneous equilibrium equations are imposed in a variational sense through the internal displacements which are also expanded in the natural coordinates,while the tractionfree conditions along the inclined side are satisfied exactly.The use of such special element in the finite element solution is shown to be highly accurate when only a very coarse element mesh is used for plates with V-shaped rounded notches or inclined sides.
Duan, M.
2004-12-01
In this paper, a geometrically nonlinear hybrid/mixed curved quadrilateral shell element (HMSHEL4N) with four nodes is developed based on the modified Hellinger/Reissner variational principles. The performance of element is investigated and tested using some benchmark problems. A number of numerical examples of plate and shell nonlinear deflection problems are included. The results are compared with theoretical solutions and other numerical results. It is shown that HMSHEL4N does not possess spurious zero energy modes and any locking phenomenon, and is convergent and insensitive to the distorted mesh. A good agreement of the results with theoretical solutions, and better performance compared with displacement finite element method, are observed. It is seen that an efficient shell element based on stress and displacement field assumptions in solution and time is obtained.
Tamma, Kumar K.; Railkar, Sudhir B.
1989-01-01
Accurate solutions have been obtained for a class of non-Fourier models in dynamic thermoelasticity which are relevant to the understanding of thermally-induced stress wave disturbances. The method employs tailored hybrid formulations based on the transfinite element approach. The results show that significant thermal stresses may arise due to non-Fourier effects, especially when the speeds of propagation of the thermal and stress waves are equal.
Finite element analysis of hybrid energy harvesting of piezoelectric and electromagnetic
Muhammad Yazid Muhammad Ammar Faris; Jamil Norlida; Muhmed Razali Nik Nurul Husna; Yusoff Ahmad Razlan
2017-01-01
Harvesting energy from ambient vibrations is a highly required method because of the wide range of available sources that produce vibration energy application from industrial machinery to human motion application. In this paper, the implementation of harvesting energy from two technologies to form a hybrid energy harvester system was analyzed. These two technologies involve the piezoelectric harvesting energy and the electromagnetic harvesting energy. A finite element model was developed usin...
A hybrid-stress solid-shell element for non-linear analysis of piezoelectric structures
Institute of Scientific and Technical Information of China (English)
SZE; K; Y
2009-01-01
This paper presents eight-node solid-shell elements for geometric non-linear analyze of piezoelectric structures. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger-Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid ele- ment, a hybrid-stress solid-shell element is formulated. The presented finite shell element is able to model arbitrary curved shell structures. Non-linear numerical examples demonstrate the ability of the proposed model to analyze nonlinear piezoelectric devices.
sp3-hybridized framework structure of group-14 elements discovered by genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Manh Cuong [Ames Laboratory; Zhao, Xin [Ames Laboratory; Wang, Cai-Zhuang [Ames Laboratory; Ho, Kai-Ming [Ames Laboratory
2014-05-01
Group-14 elements, including C, Si, Ge, and Sn, can form various stable and metastable structures. Finding new metastable structures of group-14 elements with desirable physical properties for new technological applications has attracted a lot of interest. Using a genetic algorithm, we discovered a new low-energy metastable distorted sp3-hybridized framework structure of the group-14 elements. It has P42/mnm symmetry with 12 atoms per unit cell. The void volume of this structure is as large as 139.7Å3 for Si P42/mnm, and it can be used for gas or metal-atom encapsulation. Band-structure calculations show that P42/mnm structures of Si and Ge are semiconducting with energy band gaps close to the optimal values for optoelectronic or photovoltaic applications. With metal-atom encapsulation, the P42/mnm structure would also be a candidate for rattling-mediated superconducting or used as thermoelectric materials.
Two Scales, Hybrid Model for Soils, Involving Artificial Neural Network and Finite Element Procedure
Directory of Open Access Journals (Sweden)
Krasiński Marcin
2015-02-01
Full Text Available A hybrid ANN-FE solution is presented as a result of two level analysis of soils: a level of a laboratory sample and a level of engineering geotechnical problem. Engineering properties of soils (sands are represented directly in the form of ANN (this is in contrast with our former paper where ANN approximated constitutive relationships. Initially the ANN is trained with Duncan formula (Duncan and Chang [2], then it is re-trained (calibrated with some available experimental data, specific for the soil considered. The obtained approximation of the constitutive parameters is used directly in finite element method at the level of a single element at the scale of the laboratory sample to check the correct representation of the laboratory test. Then, the finite element that was successfully tested at the level of laboratory sample is used at the macro level to solve engineering problems involving the soil for which it was calibrated.
A class of hybrid finite element methods for electromagnetics: A review
Volakis, J. L.; Chatterjee, A.; Gong, J.
1993-01-01
Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.
Walston, W. H., Jr.
1986-01-01
The comparative computational efficiencies of the finite element (FEM), boundary element (BEM), and hybrid boundary element-finite element (HVFEM) analysis techniques are evaluated for representative bounded domain interior and unbounded domain exterior problems in elastostatics. Computational efficiency is carefully defined in this study as the computer time required to attain a specified level of solution accuracy. The study found the FEM superior to the BEM for the interior problem, while the reverse was true for the exterior problem. The hybrid analysis technique was found to be comparable or superior to both the FEM and BEM for both the interior and exterior problems.
Directory of Open Access Journals (Sweden)
Jingjing Yu
2013-01-01
Full Text Available Quantitative reconstruction of bioluminescent sources from boundary measurements is a challenging ill-posed inverse problem owing to the high degree of absorption and scattering of light through tissue. We present a hybrid multilevel reconstruction scheme by combining the ability of sparse regularization with the advantage of adaptive finite element method. In view of the characteristics of different discretization levels, two different inversion algorithms are employed on the initial coarse mesh and the succeeding ones to strike a balance between stability and efficiency. Numerical experiment results with a digital mouse model demonstrate that the proposed scheme can accurately localize and quantify source distribution while maintaining reconstruction stability and computational economy. The effectiveness of this hybrid reconstruction scheme is further confirmed with in vivo experiments.
Hybrid Finite Element Analysis of Free Edge Effect in Symmetric Composite Laminates
1983-06-01
ANALYSIS OF FREE EDGE EFFECT IN L AUTHOR(S 61102F S.W. Lee237B J.J. Rhiu S.C. Won,, I ~ 7. PENOAMnG ORGANIZATION NAME(S) AND ADORES4 S) L. PERFORMING...ANALYSIS OF FREE EDGE EFFECT IN SYMMETRIC COMPOSITE LAMINATES S. W. Lee I 3. Phi S. C. Wong Department of Aerospace Engineering University of Maryland...collocation method. In this report, we present an efficient hybrid finite element method for analysis of interlaminar stress or free edge effect in
An hybrid finite volume finite element method for variable density incompressible flows
Calgaro, Caterina; Creusé, Emmanuel; Goudon, Thierry
2008-04-01
This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated.
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.
2016-01-01
This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.
Directory of Open Access Journals (Sweden)
E.V.C Sekhara Rao
2012-01-01
Full Text Available This paper discusses about permanent magnet hybrid stepper motor magnetic circuit using finite element model for different geometric designs like uniform air-gap, non uniform air-gap, for different air-gap lengths, different tooth pitches and extra teeth on stator using PDE toolbox of Matlab at different current densities. Implementing these results in equivalent circuit model (permeance model, motor performance is analyzed for an existing motor for steady state conditions. These results suggest modifications for better performance of the PMH stepper motor like reduction of cogging torque and improvement in steady state torque with minimum THD.
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.
Finite-Element Analysis of Jute- and Coir-Fiber-Reinforced Hybrid Composite Multipanel Plates
Nirbhay, M.; Misra, R. K.; Dixit, A.
2015-09-01
Natural-fiber-reinforced polymer composite materials are rapidly gaining interest worldwide both in terms of research and industrial applications. The present work includes the characterization and modeling of jute- and coir-fiber-reinforced hybrid composite materials. The mechanical behavior of a two-panel plate and a sixpanel box structure is analyzed under various loading regimes by using the finite-element software ABAQUS®. Exhaustive parametric studies are also performed to obtain a clear insight into the relationships between various parameters and deflections of the panels and stress distributions in them. Deflections of both the structures are compared and found to be in good agreement with published results. To determine the mechanical behavior of natural-fiber-reinforced composite panels, a finite-element analysis is performed.
Special hybrid stress element for stress analyses around circular cutouts in laminated composites
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A 3-dimensional hybrid stress element with a traction-free cylindrical surface based on amodified complementary energy principle has been derived for efficient and accurate analysis of stressconcentration around circular cutouts in thin to thick laminated composites. New expressions of sixstress components are developed by using three stress-functions in cylindrical co-ordinates, so that thehomogeneous equilibrium equations, the interlayer surface transverse-stresses and the traction-freeboundary condition on the cylindrical surface are satisfied exactly, while the interelement traction conti-nuity has been relaxed via the Lagrange multiplier method. Transverse-shear deformation effects areincorporated in each layer with displacement continuity enforced along interlayer surface. Selected ex-amples are used to demonstrate the efficiency and accuracy of the present special element.
Abushaikha, Ahmad S.; Voskov, Denis V.; Tchelepi, Hamdi A.
2017-10-01
We present a new fully-implicit, mixed-hybrid, finite-element (MHFE) discretization scheme for general-purpose compositional reservoir simulation. The locally conservative scheme solves the coupled momentum and mass balance equations simultaneously, and the fluid system is modeled using a cubic equation-of-state. We introduce a new conservative flux approach for the mass balance equations for this fully-implicit approach. We discuss the nonlinear solution procedure for the proposed approach, and we present extensive numerical tests to demonstrate the convergence and accuracy of the MHFE method using tetrahedral elements. We also compare the method to other advanced discretization schemes for unstructured meshes and tensor permeability. Finally, we illustrate the applicability and robustness of the method for highly heterogeneous reservoirs with unstructured grids.
Implementation of Hybrid V-Cycle Multilevel Methods for Mixed Finite Element Systems with Penalty
Lai, Chen-Yao G.
1996-01-01
The goal of this paper is the implementation of hybrid V-cycle hierarchical multilevel methods for the indefinite discrete systems which arise when a mixed finite element approximation is used to solve elliptic boundary value problems. By introducing a penalty parameter, the perturbed indefinite system can be reduced to a symmetric positive definite system containing the small penalty parameter for the velocity unknown alone. We stabilize the hierarchical spatial decomposition approach proposed by Cai, Goldstein, and Pasciak for the reduced system. We demonstrate that the relative condition number of the preconditioner is bounded uniformly with respect to the penalty parameter, the number of levels and possible jumps of the coefficients as long as they occur only across the edges of the coarsest elements.
SOFT POWER AND THE HYBRID WAR AS ELEMENTS OF STRATEGY OF RUSSIA IN THE GEOPOLITICAL CONFLICTS
Directory of Open Access Journals (Sweden)
Aleksandr Nikolaevich Xaribin
2016-02-01
Full Text Available The article is focused on the characteristics of the concepts “soft power” and “hybrid war” which are popular terms in modern political studies. The author inspected the historic features of these concepts, the evolution of the state military strategies, starting with Clausewitz’ war strategy up to the current situation, where the military and information factors are equally important. Russian confrontation in the information wars of our time and the experience of using the elements of the hybrid war strategy have been thoroughly studied. The author provides practical recommendations for the improvement of Russia’s image, as well as for strengthening its positions in the international political system. Overall, the author concludes that Russia is now losing in the information war, however, there are prerequisites to reverse this negative trend, while using the positive experience of Russia’s “soft power” and the information wars. In addition, the author suggests using the tactics of “hybrid war” for defending Russia’s interests in the future.
Ying, Jinyong; Xie, Dexuan
2015-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
Buddhachat, Kittisak; Brown, Janine L; Thitaram, Chatchote; Klinhom, Sarisa; Nganvongpanit, Korakot
2017-03-01
As laws tighten to limit commercial ivory trading and protect threatened species like whales and elephants, increased sales of fake ivory products have become widespread. This study describes a method, handheld X-ray fluorescence (XRF) as a noninvasive technique for elemental analysis, to differentiate quickly between ivory (Asian and African elephant, mammoth) from non-ivory (bones, teeth, antler, horn, wood, synthetic resin, rock) materials. An equation consisting of 20 elements and light elements from a stepwise discriminant analysis was used to classify samples, followed by Bayesian binary regression to determine the probability of a sample being 'ivory', with complementary log log analysis to identify the best fit model for this purpose. This Bayesian hybrid classification model was 93% accurate with 92% precision in discriminating ivory from non-ivory materials. The method was then validated by scanning an additional ivory and non-ivory samples, correctly identifying bone as not ivory with >95% accuracy, except elephant bone, which was 72%. It was less accurate for wood and rock (25-85%); however, a preliminary screening to determine if samples are not Ca-dominant could eliminate inorganic materials. In conclusion, elemental analyses by XRF can be used to identify several forms of fake ivory samples, which could have forensic application.
Directory of Open Access Journals (Sweden)
Zainorizuan Mohd Jaini
2013-12-01
Full Text Available Innovative technologies have resulted in more effective ceramic composite as high rate loading-resistance and protective layer. The ceramic composite layer consists of ceramic frontal plate that bonded by softer-strong reinforced polymer network, consequently gains the heterogeneous condition. These materials serve specific purposes of defeating high rate loading and maintaining the structural integrity of the layer. Further due to the lack of a constituent material and tedious problem in heterogonous material modelling, a numerical homogenization is employed to analyse the isotropic material properties of ceramic composite layer in homogenous manner. The objective of this study is to derive a constitutive law of the ceramic composite using the multi-scale analysis. Two-dimensional symmetric macrostructure of the ceramic composite was numerically modelled using the hybrid finite-discrete element method to investigate the effective material properties and strength profile. The macrostructure was modelled as brittle material with nonlinear material properties. The finite element method is incorporated with a Rankine-Rotating Crack approach and discrete element to model the fracture onset. The prescribed uniaxial and biaxial loadings were imposed along the free boundaries to create different deformations. Due to crack initiation on the macrostructure, the averaged stresses were calculated to plot the stress-strain curves and the effective yield stress surface. From the multi-scale analysis, the rate-dependency of Mohr-Coulomb constitutive law was derived for the ceramic composite layer.
Energy Technology Data Exchange (ETDEWEB)
T.F. Eibert; J.L. Volakis; Y.E. Erdemli
2002-03-03
Hybrid finite element (FE)--boundary integral (BI) analysis of infinite periodic arrays is extended to include planar multilayered Green's functions. In this manner, a portion of the volumetric dielectric region can be modeled via the finite element method whereas uniform multilayered regions can be modeled using a multilayered Green's function. As such, thick uniform substrates can be modeled without loss of efficiency and accuracy. The multilayered Green's function is analytically computed in the spectral domain and the resulting BI matrix-vector products are evaluated via the fast spectral domain algorithm (FSDA). As a result, the computational cost of the matrix-vector products is kept at O(N). Furthermore, the number of Floquet modes in the expansion are kept very few by placing the BI surfaces within the computational unit cell. Examples of frequency selective surface (FSS) arrays are analyzed with this method to demonstrate the accuracy and capability of the approach. One example involves complicated multilayered substrates above and below an inhomogeneous filter element and the other is an optical ring-slot array on a substrate several hundred wavelengths in thickness. Comparisons with measurements are included.
Institute of Scientific and Technical Information of China (English)
Xiao-ping Xie
2004-01-01
By following the geometric point of view in mechanics, a novel expression of the combined hybrid method for plate bending problems is introduced to clarify its intrinsic mechanism of enhancing coarse-mesh accuracy of conforming or nonconforming plate elements.By adjusting the combination parameter α∈ (0, 1) and adopting appropriate bending moments modes, reduction of energy error for the discretized displacement model leads to enhanced numerical accuracy. As an application, improvement of Adini's rectangle is discussed. Numerical experiments show that the combined hybrid counterpart of Adini's element is capable of attaining high accuracy at coarse meshes.
Membrane-less hybrid flow battery based on low-cost elements
Leung, P. K.; Martin, T.; Shah, A. A.; Mohamed, M. R.; Anderson, M. A.; Palma, J.
2017-02-01
The capital cost of conventional redox flow batteries is relatively high (>USD 200/kWh) due to the use of expensive active materials and ion-exchange membranes. This paper presents a membrane-less hybrid organic-inorganic flow battery based on the low-cost elements zinc (92.7% with the use of carbon felt electrodes. In the presence of a fully oxidized active species close to its solubility limit, dissolution of the deposited anode is relatively slow (<2.37 g h-1 cm-2) with an equivalent corrosion current density of <1.9 mA cm-2. In a parallel plate flow configuration, the resulting battery was charge-discharge cycled at 30 mA cm-2 with average coulombic and energy efficiencies of c.a. 71.8 and c.a. 42.0% over 20 cycles, respectively.
Institute of Scientific and Technical Information of China (English)
Dao-qi Yang; Jennifer Zhao
2003-01-01
An iterative algorithm is proposed and analyzed based on a hybridized mixed finite element method for numerically solving two-phase generalized Stefan interface problems withstrongly discontinuous solutions, conormal derivatives, and coefficients. This algorithmiteratively solves small problems for each single phase with good accuracy and exchangeinformation at the interface to advance the iteration until convergence, following the ideaof Schwarz Alternating Methods. Error estimates are derived to show that this algorithmalways converges provided that relaxation parameters are suitably chosen. Numeric experiments with matching and non-matching grids at the interface from different phases areperformed to show the accuracy of the method for capturing discontinuities in the solutionsand coefficients. In contrast to standard numerical methods, the accuracy of our methoddoes not seem to deteriorate as the coefficient discontinuity increases.
Hybrid two-dimensional electronic systems and other applications of sp-2 bonded light elements
Kessler, Brian Maxwell
The field-effect is a cornerstone of modern technology lying at the heart of transistors in consumer electronics. Experimentally, it allows one to continuously vary the carrier concentration in a material while studying its properties. The recent isolation of graphene, the first truly two-dimensional crystal, allows application of the field effect to a much wider range of physical situations. In the first part of the thesis, we investigate hybrid materials formed by coupling metals to the two-dimensional electron gas (2DEG) in graphene. We couple superconducting materials to the graphene sheet by cluster deposition. This material displays a superconducting phase whose properties are tuned by the carrier density via the field effect. The transition temperature is well-described by Berezinskii-Kosterlitz-Thouless vortex unbinding. The ground state properties show interesting effects due to the distribution of cluster spacings. Observations related to other hybrid electronic systems including ferromagnets and normal metals are presented. The second part of this thesis involves energy applications of light element materials. The mechanisms affecting coating of carbon nanotubes using atomic layer deposition is developed and applied to photovoltaic systems. The gas adsorption properties of activated boron nitride are investigated and the relative influence of surface area and hydrogen binding affinity is elaborated. The third part of this thesis explores electromechanical properties of suspended graphene membranes. We investigate buckling and strain in exfoliated graphene membranes as well as their deformation under an applied gate potential.
Finite element analysis of hybrid energy harvesting of piezoelectric and electromagnetic
Directory of Open Access Journals (Sweden)
Muhammad Yazid Muhammad Ammar Faris
2017-01-01
Full Text Available Harvesting energy from ambient vibrations is a highly required method because of the wide range of available sources that produce vibration energy application from industrial machinery to human motion application. In this paper, the implementation of harvesting energy from two technologies to form a hybrid energy harvester system was analyzed. These two technologies involve the piezoelectric harvesting energy and the electromagnetic harvesting energy. A finite element model was developed using the Ansys software with the harmonic analysis solver to analyze and examine hybrid harvesting energy system. Both power output generated from the magnet and the piezoelectric is then combined to form one unit of energy. Further, it was found that the result shows the system generate the maximum power output of 14.85 μW from 100 Hz, 4.905 m/s2, and 0.6 cm3 for resonance frequency, acceleration, and the volume respectively from the optimal energy harvester design. Normalized Power Density (NPD result of 10.29 kgs/m3 comparable with other literature also can be used in energy harvesting system for vibration application.
Karlovitz, L. A.; Atluri, S. N.; Xue, W.-M.
1985-01-01
The extensions of Reissner's two-field (stress and displacement) principle to the cases wherein the displacement field is discontinuous and/or the stress field results in unreciprocated tractions, at a finite number of surfaces ('interelement boundaries') in a domain (as, for instance, when the domain is discretized into finite elements), is considered. The conditions for the existence, uniqueness, and stability of mixed-hybrid finite element solutions based on such discontinuous fields, are summarized. The reduction of these global conditions to local ('element') level, and the attendant conditions on the ranks of element matrices, are discussed. Two examples of stable, invariant, least-order elements - a four-node square planar element and an eight-node cubic element - are discussed in detail.
Simmons, Daniel; Cools, Kristof; Sewell, Phillip
2016-11-01
Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.
Xue, W.-M.; Atluri, S. N.
1985-01-01
In this paper, all possible forms of mixed-hybrid finite element methods that are based on multi-field variational principles are examined as to the conditions for existence, stability, and uniqueness of their solutions. The reasons as to why certain 'simplified hybrid-mixed methods' in general, and the so-called 'simplified hybrid-displacement method' in particular (based on the so-called simplified variational principles), become unstable, are discussed. A comprehensive discussion of the 'discrete' BB-conditions, and the rank conditions, of the matrices arising in mixed-hybrid methods, is given. Some recent studies aimed at the assurance of such rank conditions, and the related problem of the avoidance of spurious kinematic modes, are presented.
Graf, W.; Chang, T. Y.; Saleeb, A. F.
1986-01-01
Three-dimensional thick shell elements with 8, 16, and 18 nodes are formulated by using the hybrid/mixed method. In bending applications, these elements are free from locking effect and give improved stress predictions. Finite element equations are derived from the Hellinger-Reissner variational principle in which both the displacement and stress fields are approximated by independent interpolation functions. For the assumption of stress parameters, three guidelines are followed: (1) suppression of kinematic deformation modes, (2) invariant element property, and (3) the constraint index exhibited by the element, when applied to constrained-media problems, must be greater than or equal to one. Numerical results are presented to show the element's behavior characteristics regarding sensitivity to locking, distortion effect (patch tests), mesh convergence and the accuracy of stress evaluation.
Crozatier, M; Vaury, C; Busseau, I; Pelisson, A; Bucheton, A
1988-10-11
I-R hybrid dysgenesis in D. melanogaster is controlled by transposable elements known as I factors which terminate at their 3' ends by an A-rich sequence. Inducer strains contain active I factors. Both reactive and inducer stocks possess defective I elements. We have cloned various I elements from both categories of strains. The I elements having recently transposed in inducer strains have a structure closely related to that of active I factors. However we have isolated one such I element that is truncated at its 5' end. The I elements common to reactive and inducer strains are affected by various rearrangements and many point mutations. They do not appear to be simple derivatives of complete I factors.
Energy Technology Data Exchange (ETDEWEB)
Dimmig-Osburg, Andrea; Werner, Frank; Hildebrand, Joerg; Gypser, Alexander; Wittor, Bjoern; Wolf, Martina
2011-07-01
The use of daylight is an important issue in the architecture. Previously, the special emphasis was placed on design aspects and the visual comfort. The simultaneous achievement of thermal comfort in buildings often is a conflict of interests. Glass-plastic composite panels can minimize the energy consumption of a building while increasing the comfort. These glass-plastic sandwich elements form an important basic module for the strategic development of sustainable building envelopes. This basic module is based on the decoupling of energy consumption and indoor comfort. In the contribution under consideration, practically applicable elements are developed. These elements should have the necessary capacity for wall elements with wind loads or roof elements with wind loads or snow loads. These elements also should possess thermal insulating properties which make effective use in large-area applications.
Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck
2014-05-01
Modeling complex vibroacoustic systems including poroelastic materials using finite element based methods can be unfeasible for practical applications. For this reason, analytical approaches such as the transfer matrix method are often preferred to obtain a quick estimation of the vibroacoustic parameters. However, the strong assumptions inherent within the transfer matrix method lead to a lack of accuracy in the description of the geometry of the system. As a result, the transfer matrix method is inherently limited to the high frequency range. Nowadays, hybrid substructuring procedures have become quite popular. Indeed, different modeling techniques are typically sought to describe complex vibroacoustic systems over the widest possible frequency range. As a result, the flexibility and accuracy of the finite element method and the efficiency of the transfer matrix method could be coupled in a hybrid technique to obtain a reduction of the computational burden. In this work, a hybrid methodology is proposed. The performances of the method in predicting the vibroacoutic indicators of flat structures with attached homogeneous acoustic treatments are assessed. The results prove that, under certain conditions, the hybrid model allows for a reduction of the computational effort while preserving enough accuracy with respect to the full finite element solution.
Performance of hybrid cement composite elements under drop-weight impact load
Directory of Open Access Journals (Sweden)
Nguyen, V. D.
2014-05-01
Full Text Available The performance, under drop-weight impact load, of hybrid cement composite (HCC elements, consisting of a top layer of plain concrete (PC and a bottom layer of fibre reinforced concrete (FRC, in comparison with full-depth FRC and PC was studied. Apart from improving the tensile capacity of PC and saving fibre steel reinforcements of FRC, the results showed that HCC can effectively control the deformations and enhance the impact performance of the structural members as its outcomes were similar to that of a full-depth FRC. The analytical studies using Hughes empirical formulae (HEF and yield line theory (YLT adopted to investigate the practical use of HCC showed that they are applicable for design such HCC elements against impacts.Se estudió el comportamiento, frente a impacto de torre de caída, de elementos híbridos base cemento (HCC, formados por una capa superior de hormigón en masa (PC y una capa inferior de hormigón reforzado con fibras (FRC en comparación con elementos análogos íntegramente fabricados con FRC y PC. Además de proporcionar una mejora en la resistencia frente a flexo-tracción de los PC y un ahorro en refuerzo usando fibras de acero en el caso de los FRC, los resultados mostraron que el HCC puede controlar eficazmente las deformaciones y mejorar el rendimiento frente a impacto de los elementos estructurales ya que sus resultados fueron análogos a la de los FRC. Los estudios analíticos, utilizando HEF e YLT, adoptados para investigar el uso práctico de los HCC mostraron que los mismos son aplicables para el diseño de estos elementos frente a impacto.
Xia, Yidong; Podgorney, Robert; Huang, Hai
2017-03-01
FALCON (Fracturing And Liquid CONvection) is a hybrid continuous/discontinuous Galerkin finite element geothermal reservoir simulation code based on the MOOSE (Multiphysics Object-Oriented Simulation Environment) framework being developed and used for multiphysics applications. In the present work, a suite of verification and validation (V&V) test problems for FALCON was defined to meet the design requirements, and solved to the interests of enhanced geothermal system modeling and simulation. The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of FALCON solution methods. The test problems vary in complexity from a single mechanical or thermal process, to coupled thermo-hydro-mechanical processes in geological porous medium. Numerical results obtained by FALCON agreed well with either the available analytical solutions or experimental data, indicating the verified and validated implementation of these capabilities in FALCON. Whenever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the FALCON code.
Richardson, T B; Kaspers, J; Porter, C D
2004-05-01
Transcriptional targeting is an important aspect of developing gene therapy vectors in order to restrict transgene expression to selected target cells. One approach, when using retroviral vectors, is to replace viral transcriptional control elements within the long terminal repeat (LTR) with sequences imparting the desired specificity. We have developed such hybrid LTR retroviruses, incorporating sequences from each of the human promoters for flt-1, ICAM-2 and KDR, as part of our antivascular cancer gene therapy strategy targeting tumour endothelial cells. The chosen fragments were used to replace the enhancer or combined enhancer and proximal promoter regions of the viral LTR. All showed activity in primary human breast microvascular endothelial cells, with viruses incorporating ICAM-2 sequences exhibiting the greatest specificity versus nonendothelial cells in vitro and a marked alteration of specificity towards endothelial cells in a subcutaneous xenograft model in vivo. Moreover, our study documents the effect of enhancer and/or proximal promoter deletion on LTR activity and reports that differential dependence in different cell lines can give the false impression of specificity if experiments are not adequately controlled. This finding also has implications for other retroviral vector designs seeking to provide transcriptional specificity and for their safety with respect to prevention of gene activation at sites of proviral integration.
Gonzalez-Mancera, Andres; Gonzalez Cardenas, Diego
2014-11-01
Flow in the microcirculation is highly dependent on the mechanical properties of the cells suspended in the plasma. Red blood cells have to deform in order to pass through the smaller sections in the microcirculation. Certain deceases change the mechanical properties of red blood cells affecting its ability to deform and the rheological behaviour of blood. We developed a hybrid algorithm based on the Lattice-Boltzmann and Finite Element methods to simulate blood flow in small capillaries. Plasma was modeled as a Newtonian fluid and the red blood cells' membrane as a hyperelastic solid. The fluid-structure interaction was handled using the immersed boundary method. We simulated the flow of plasma with suspended red blood cells through cylindrical capillaries and measured the pressure drop as a function of the membrane's rigidity. We also simulated the flow through capillaries with a restriction and identify critical properties for which the suspended particles are unable to flow. The algorithm output was verified by reproducing certain common features of flow int he microcirculation such as the Fahraeus-Lindqvist effect.
An investigation on hybrid interface using on-line monitoring experiment and finite element analyses
Truong, H.T.X.; Martinez, M.J.; Ochoa, O.O.; Lagoudas, D.C.
2015-01-01
In this work, the hybrid interface between metal and thermosetting polymer matrix composite was studied via experimental and numerical investigations. Hybrid laminates, whose constituents are aluminum foil, carbon fabric and epoxy matrix, were manufactured using the vacuum assisted resin transfer mo
Directory of Open Access Journals (Sweden)
Hui Wang
2013-01-01
Full Text Available The boundary-type hybrid finite element formulation coupling the Kirchhoff transformation is proposed for the two-dimensional nonlinear heat conduction problems in solids with or without circular holes, and the thermal conductivity of material is assumed to be in terms of temperature change. The Kirchhoff transformation is firstly used to convert the nonlinear partial differential governing equation into a linear one by introducing the Kirchhoff variable, and then the new linear system is solved by the present hybrid finite element model, in which the proper fundamental solutions associated with some field points are used to approximate the element interior fields and the conventional shape functions are employed to approximate the element frame fields. The weak integral functional is developed to link these two fields and establish the stiffness equation with sparse and symmetric coefficient matrix. Finally, the algorithm is verified on several examples involving various expressions of thermal conductivity and existence of circular hole, and numerical results show good accuracy and stability.
Directory of Open Access Journals (Sweden)
José Miguel Vargas-Félix
2012-11-01
Full Text Available The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.
Ignatenko, Olesia M; Zakharenko, Lyudmila P; Dorogova, Natalia V; Fedorova, Svetlana A
2015-12-01
Intraspecific hybrid dysgenesis (HD) appears after some strains of D. melanogaster are crossed. The predominant idea is that the movement of transposable P elements causes HD. It is believed that P elements appeared in the D. melanogaster genome in the middle of the last century by horizontal transfer, simultaneously with the appearance of HD determinants. A subsequent simultaneous expansion of HD determinants and P elements occurred. We analyzed the current distribution of HD determinants in natural populations of D. melanogaster and found no evidence of their further spread. However, full-sized P elements were identified in the genomes of all analyzed natural D. melanogaster strains independent of their cytotypes. Thus, the expansion of P elements does not correlate with the expansion of HD determinants. We found that the ovaries of dysgenic females did not contain germ cells despite the equal number of primordial germ cells in early stages in dysgenic and non-dysgenic embryos. We propose that HD does not result from DNA damage caused by P element transposition, but it would be the disruption in the regulation of dysgenic ovarian formation that causes the dysgenic phenotypes.
Bougherara, H; Zdero, R; Mahboob, Z; Dubov, A; Shah, S; Schemitsch, E H
2010-10-01
This study proposes a novel hybrid total knee replacement (TKR) design to improve stress transfer to bone in the distal femur and, thereby, reduce stress shielding and consequent bone loss. Three-dimensional finite element (FE) models were developed for a standard and a hybrid TKR and validated experimentally. The Duracon knee system (Stryker Canada) was the standard TKR used for the FE models and for the experimental tests. The FE hybrid device was identical to the standard TKR, except that it had an interposing layer of carbon fibre-reinforced polyamide 12 lining the back of the metallic femoral component. A series of experimental surface strain measurements were then taken to validate the FE model of the standard TKR at 3000 N of axial compression and at 0 degreeof knee flexion. Comparison of surface strain values from FE analysis with experiments demonstrated good agreement, yielding a high Pearson correlation coefficient of R(2)= 0.94. Under a 3000N axial load and knee flexion angles simulating full stance (0O degree, heel strike (200 degrees, and toe off (600 degrees during normal walking gait, the FE model showed considerable changes in maximum Von Mises stress in the region most susceptible to stress shielding (i.e. the anterior region, just behind the flange of the femoral implant). Specifically, going from a standard to a hybrid TKR caused an increase in maximum stress of 87.4 per cent (O0 degree from 0.15 to 0.28 MPa), 68.3 per cent (200 degrees from 1.02 to 1.71 MPa), and 12.6 per cent (600 degrees from 2.96 to 3.33 MPa). This can potentially decrease stress shielding and subsequent bone loss and knee implant loosening. This is the first report to propose and biomechanically to assess a novel hybrid TKR design that uses a layer of carbon fibrereinforced polyamide 12 to reduce stress shielding.
Khan, Faisal Ali Anwarali; Phillips, Caleb D; Baker, Robert J
2014-01-01
Phylogenetic comparisons of the different mammalian genetic transmission elements (mtDNA, X-, Y-, and autosomal DNA) is a powerful approach for understanding the process of speciation in nature. Through such comparisons the unique inheritance pathways of each genetic element and gender-biased processes can link genomic structure to the evolutionary process, especially among lineages which have recently diversified, in which genetic isolation may be incomplete. Bulldog bats of the genus Noctilio are an exemplar lineage, being a young clade, widely distributed, and exhibiting unique feeding ecologies. In addition, currently recognized species are paraphyletic with respect to the mtDNA gene tree and contain morphologically identifiable clades that exhibit mtDNA divergences as great as among many species. To test taxonomic hypotheses and understand the contribution of hybridization to the extant distribution of genetic diversity in Noctilio, we used phylogenetic, coalescent stochastic modeling, and divergence time estimates using sequence data from cytochrome-b, cytochrome c oxidase-I, zinc finger Y, and zinc finger X, as well as evolutionary reconstructions based on amplified fragment length polymorphisms (AFLPs) data. No evidence of ongoing hybridization between the two currently recognized species was identified. However, signatures of an ancient mtDNA capture were recovered in which an mtDNA lineage of one species was captured early in the noctilionid radiation. Among subspecific mtDNA clades, which were generally coincident with morphology and statistically definable as species, signatures of ongoing hybridization were observed in sex chromosome sequences and AFLP. Divergence dating of genetic elements corroborates the diversification of extant Noctilio beginning about 3 Ma, with ongoing hybridization between mitochondrial lineages separated by 2.5 myr. The timeframe of species' divergence within Noctilio supports the hypothesis that shifts in the dietary
Directory of Open Access Journals (Sweden)
Ghulam Qadir Shar
2012-06-01
Full Text Available Maize and Millet Research Institute (MMRI situated in Yousuf wala, District Sahiwal, Punjab, Pakistan was selected to grow nine different hybrids/cultivars of millet for study to comprehend the variable concentration of macro, micro and trace and toxic elements in their grains. Wet digestion method was used for the preparation of samples and flame atomic absorption spectrophotometer for analysis of eleven major and minor elements. High values of macro-elements i.e. sodium and potassium was found in ICMP-451 and magnesium in ICMP-53506. The high value of essential micro-elements i.e.zinc (50mg/kg, manganese (8mg/kg, and copper (8mg/kg was calculated in ICMP-53506, Bullo-94-1, and ICMP-83720 respectively. In case of trace and toxic micro-elements, high concentration of nickel, cobalt, chromium and cadmium was found in O.B.V, Bullo-7704, ICMP-83401, and ICMP-83720 in the edible part of millet plants (grains cultivars respectively.
Moortgat, Joachim
2016-01-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide ...
Pfaller, Sebastian; Possart, Gunnar; Steinmann, Paul; Rahimi, Mohammad; Müller-Plathe, Florian; Böhm, Michael C.
2016-05-01
A recently developed hybrid method is employed to study the mechanical behavior of silica-polystyrene nanocomposites (NCs) under uniaxial elongation. The hybrid method couples a particle domain to a continuum domain. The region of physical interest, i.e., the interphase around a nanoparticle (NP), is treated at molecular resolution, while the surrounding elastic continuum is handled with a finite-element approach. In the present paper we analyze the polymer behavior in the neighborhood of one or two nanoparticle(s) at molecular resolution. The coarse-grained hybrid method allows us to simulate a large polymer matrix region surrounding the nanoparticles. We consider NCs with dilute concentration of NPs embedded in an atactic polystyrene matrix formed by 300 chains with 200 monomer beads. The overall orientation of polymer segments relative to the deformation direction is determined in the neighborhood of the nanoparticle to investigate the polymer response to this perturbation. Calculations of strainlike quantities give insight into the deformation behavior of a system with two NPs and show that the applied strain and the nanoparticle distance have significant influence on the deformation behavior. Finally, we investigate to what extent a continuum-based description may account for the specific effects occurring in the interphase between the polymer matrix and the NPs.
Directory of Open Access Journals (Sweden)
Guiqiang Li
2016-01-01
Full Text Available Fresnel solar concentrator is one of the most common solar concentrators in solar applications. For high Fresnel concentrating PV or PV/T systems, the second optical element (SOE is the key component for the high optical efficiency at a wider deflection angle, which is important for overcoming unavoidable errors from the tacking system, the Fresnel lens processing and installment technology, and so forth. In this paper, a new hybrid SOE was designed to match the Fresnel solar concentrator with the concentration ratio of 1090x. The ray-tracing technology was employed to indicate the optical properties. The simulation outcome showed that the Fresnel solar concentrator with the new hybrid SOE has a wider deflection angle scope with the high optical efficiency. Furthermore, the flux distribution with different deviation angles was also analyzed. In addition, the experiment of the Fresnel solar concentrator with the hybrid SOE under outdoor condition was carried out. The verifications from the electrical and thermal outputs were all made to analyze the optical efficiency comprehensively. The optical efficiency resulting from the experiment is found to be consistent with that from the simulation.
Ying, Jinyong
2016-01-01
The size-modified Poisson-Boltzmann equation (SMPBE) is one important variant of the popular dielectric model, the Poisson-Boltzmann equation (PBE), to reflect ionic size effects in the prediction of electrostatics for a biomolecule in an ionic solvent. In this paper, a new SMPBE hybrid solver is developed using a solution decomposition, the Schwartz's overlapped domain decomposition, finite element, and finite difference. It is then programmed as a software package in C, Fortran, and Python based on the state-of-the-art finite element library DOLFIN from the FEniCS project. This software package is well validated on a Born ball model with analytical solution and a dipole model with a known physical properties. Numerical results on six proteins with different net charges demonstrate its high performance. Finally, this new SMPBE hybrid solver is shown to be numerically stable and convergent in the calculation of electrostatic solvation free energy for 216 biomolecules and binding free energy for a DNA-drug com...
Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck
2015-02-01
Practical vibroacoustic systems involve passive acoustic treatments consisting of highly dissipative media such as poroelastic materials. The numerical modeling of such systems at low to mid frequencies typically relies on substructuring methodologies based on finite element models. Namely, the master subsystems (i.e., structural and acoustic domains) are described by a finite set of uncoupled modes, whereas condensation procedures are typically preferred for the acoustic treatments. However, although accurate, such methodology is computationally expensive when real life applications are considered. A potential reduction of the computational burden could be obtained by approximating the effect of the acoustic treatment on the master subsystems without introducing physical degrees of freedom. To do that, the treatment has to be assumed homogeneous, flat, and of infinite lateral extent. Under these hypotheses, simple analytical tools like the transfer matrix method can be employed. In this paper, a hybrid finite element-transfer matrix methodology is proposed. The impact of the limiting assumptions inherent within the analytical framework are assessed for the case of plate-cavity systems involving flat and homogeneous acoustic treatments. The results prove that the hybrid model can capture the qualitative behavior of the vibroacoustic system while reducing the computational effort.
Institute of Scientific and Technical Information of China (English)
LI Ning; XIE Li-li; ZHAI Chang-hai
2007-01-01
The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The construction process of PML boundary based on elastodynamic partial differential equation (PDE) system is developed.Combining with velocity-stress hybrid finite element formulation, the applicability of PML boundary is investigated and the numerical reflection of PML boundary is estimated. The reflectivity of PML and multi-transmitting formula (MTF) boundary is then compared based on body wave and surface wave simulations. The results show that although PML boundary yields some reflection, its absorption performance is superior to MTF boundary in the numerical simulations of near-fault wave propagation, especially in corner and large angle grazing incidence situations. The PML boundary does not arise any unstable phenomenon and the stability of PML boundary is better than MTF boundary in hybrid finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML boundary is only a little lower than MTF boundary.
Hu, Po; Huang, Cheng Zhi; Li, Yuan Fang; Ling, Jian; Liu, Yu Ling; Fei, Liang Run; Xie, Jian Ping
2008-03-01
In this contribution, we design a visual sensor for DNA hybridization with DNA probe-modified magnetic particles (MPs) and multiwalled carbon nanotubes (MWNTs) without involving a visual recognition element such as fluorescent/chemiluminescent reagents. It was found that DNA probe-modified MWNTs, which could be dispersed in aqueous medium and have strong light scattering signals under the excitation of a light beam in the UV-vis region, could connect with DNA probe-modified MPs together in the presence of perfectly complementary target DNA and form a sandwich structure. In a magnetic field, the formed MP-MWNT species can easily be removed from the solution, resulting in a decrease of light scattering signals. Thus, a magnetic particle-based sandwich sensor could be developed to detect DNA hybridization by measuring the light scattering signals with DNA-modified MWNTs as recognition elements. Experiments showed that the DNA-modified MPs sensor could be reused at least 17 times and was stable for more than 6 months.
Institute of Scientific and Technical Information of China (English)
Wei Gao; Ru-Xun Liu; Hong Li
2012-01-01
This paper proposes a hybrid vertex-centered finite volume/finite element method for sol ution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.
Bagheri, Hamid
2006-01-01
There is an important potential for a development of a building system, if the present AACblock plants are completed with high performance concrete and pre-stressing technique. This can be done as a continuation of a present AAC production or in a site factory. Hybrid cooperation between AAC and concrete is not a new technology. Traditionally, AAC is covered with rendering. The wetted material is first sprayed with cement slurry after which comes lime/cement-based rendering which strengthens ...
Yin, Shengwen; Yu, Dejie; Yin, Hui; Lü, Hui; Xia, Baizhan
2017-09-01
Considering the epistemic uncertainties within the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model when it is used for the response analysis of built-up systems in the mid-frequency range, the hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis (ETFE/SEA) model is established by introducing the evidence theory. Based on the hybrid ETFE/SEA model and the sub-interval perturbation technique, the hybrid Sub-interval Perturbation and Evidence Theory-based Finite Element/Statistical Energy Analysis (SIP-ETFE/SEA) approach is proposed. In the hybrid ETFE/SEA model, the uncertainty in the SEA subsystem is modeled by a non-parametric ensemble, while the uncertainty in the FE subsystem is described by the focal element and basic probability assignment (BPA), and dealt with evidence theory. Within the hybrid SIP-ETFE/SEA approach, the mid-frequency response of interest, such as the ensemble average of the energy response and the cross-spectrum response, is calculated analytically by using the conventional hybrid FE/SEA method. Inspired by the probability theory, the intervals of the mean value, variance and cumulative distribution are used to describe the distribution characteristics of mid-frequency responses of built-up systems with epistemic uncertainties. In order to alleviate the computational burdens for the extreme value analysis, the sub-interval perturbation technique based on the first-order Taylor series expansion is used in ETFE/SEA model to acquire the lower and upper bounds of the mid-frequency responses over each focal element. Three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method.
Moortgat, Joachim; Firoozabadi, Abbas
2016-06-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.
Thermoelectrics as elements of hybrid-electric vehicle thermal energy systems
Headings, Leon; Washington, Gregory; Jaworski, Christopher M.
2008-03-01
Despite vast technological improvements, the traditional internal combustion powered vehicle still achieves only 25- 30% efficiency, with the remainder lost primarily as heat. While the load leveling offered by hybrid-electric vehicle technology helps to improve this overall efficiency, part of the efficiency gains are achieved by making new systems such as regenerative braking viable. In a similar fashion, thermoelectric (TE) energy recovery has long been considered for traditional vehicles with mixed results, but little has been done to consider thermoelectrics in the framework of the unique energy systems of hybrid vehicles. Systems that may not have been viable or even possible with traditional vehicles may offer improvements to system efficiency as well as emissions, vehicle durability, passenger comfort, and cost. This research describes a simulation developed for evaluating and optimizing thermoelectric energy recovery systems and results for four different system configurations. Two novel system configurations are presented which offer the potential for additional benefits such as emissions reduction that will soon be quantified. In addition, a test setup is presented which was constructed for the testing and validation of various thermoelectric recovery systems. Actual test performance was near the expected theoretical performance and supported the conclusions reached from the computer simulations.
Institute of Scientific and Technical Information of China (English)
ZHANGXiao-ping; FANGYan-ming; DINGYu-long
2003-01-01
The cutting seedlings of Liriodendron chinense x tulipifera were treated with the different concentrations of auxin (treatmenh: IBA of 50 g·kg-1 + NAA of 300 g·kg-1; treatment2- IBA of 100 g·kg-1 + NAA of 300 g·kg-1). The biomass and the nutrient element contents for different organs (root, stem, leaf) of cutting seedling of Liriodendron chinense x tulipifera were measured by the dry method, Kjeldahl method and Atomic Absorption Spectroscopy method. The result showed that the biomass of root, stem, and leaf of the cutting seedling treated with auxin was all remarkably increased. The contents of element C in root, stem and leaf had no significant difference between the control and auxin treatments, while the contents of N, P, K and Ca in stem were much lower than that in leaf and root. Variance analysis showed that for the same organ with different concentration treatment of auxin, the four nutrient elements (N, P, K, and Ca) had no significant difference in contents, while there existed significant or very significant difference in contents of the four nutrient elements in different organs with the same concentration auxin treatment. The N, P, K and Ca contents were very low in cutting seedlings; as a result, additional fertilizer should be applied to the seedlings when they were planted in the field.
Lakshmi, Dhana; Bossi, Alessandra; Whitcombe, Michael J; Chianella, Iva; Fowler, Steven A; Subrahmanyam, Sreenath; Piletska, Elena V; Piletsky, Sergey A
2009-05-01
One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 microM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (< or = 3%) on the detection of either analyte. Non-imprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics.
A Novel Hybrid-Flux Magnetic Gear and Its Performance Analysis Using the 3-D Finite Element Method
Directory of Open Access Journals (Sweden)
Yiduan Chen
2015-04-01
Full Text Available This paper presents a novel hybrid-flux magnetic gear, which integrates a transverse-flux magnetic gear and an axial-flux magnetic gear into a single unit. Compared to its conventional counterparts, the proposed magnetic gear transmits a relatively high torque density. When compared to the transverse-flux magnetic gear, this new structure employs an extra iron segment between the low-speed rotor and high-speed rotor to modulate the magnetic field and contribute to the transmission of additional torque. A three-dimensional (3-D finite element method (FEM is used for the analysis of the magnetic field. In the paper a variables-decoupling method based on the sensitivity analysis of the design parameters is also presented to accelerate the optimization process of the proposed machine.
Directory of Open Access Journals (Sweden)
Wan-You Li
2014-01-01
Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.
Multiscale Modeling of the Impact of Textile Fabrics Based on Hybrid Element Analysis
2010-05-19
Leighton RB, Sands M. The Feynman lectures on physics , definitive edition, vol. 1. Addison-Wesley Publishing Company; 2006. ISBN 0- 8053-9046-4. [21...model with distance away from the impact zone based on the multiscale nature of the fabric architecture and the physics of the impact event. Solid...nature of the fabric architecture and the physics of the impact event. Solid elements are used to discretize the yarns around the impact region
Hybrid of Natural Element Method (NEM with Genetic Algorithm (GA to find critical slip surface
Directory of Open Access Journals (Sweden)
Shahriar Shahrokhabadi
2014-06-01
Full Text Available One of the most important issues in geotechnical engineering is the slope stability analysis for determination of the factor of safety and the probable slip surface. Finite Element Method (FEM is well suited for numerical study of advanced geotechnical problems. However, mesh requirements of FEM creates some difficulties for solution processing in certain problems. Recently, motivated by these limitations, several new Meshfree methods such as Natural Element Method (NEM have been used to analyze engineering problems. This paper presents advantages of using NEM in 2D slope stability analysis and Genetic Algorithm (GA optimization to determine the probable slip surface and the related factor of safety. The stress field is produced under plane strain condition using natural element formulation to simulate material behavior analysis utilized in conjunction with a conventional limit equilibrium method. In order to justify the preciseness and convergence of the proposed method, two kinds of examples, homogenous and non-homogenous, are conducted and results are compared with FEM and conventional limit equilibrium methods. The results show the robustness of the NEM in slope stability analysis.
Quiza, Ramón; Davim, J Paulo
2012-01-01
Artificial intelligence (AI) techniques and the finite element method (FEM) are both powerful computing tools, which are extensively used for modeling and optimizing manufacturing processes. The combination of these tools has resulted in a new flexible and robust approach as several recent studies have shown. This book aims to review the work already done in this field as well as to expose the new possibilities and foreseen trends. The book is expected to be useful for postgraduate students and researchers, working in the area of modeling and optimization of manufacturing processes.
Amir, Sahar Z.
2017-06-09
A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.
Directory of Open Access Journals (Sweden)
Mehmet Emin Taşdelen
2016-01-01
Full Text Available Braided sleeve composite shafts are produced and their torsional behavior is investigated. The braided sleeves are slid over an Al tube to create very strong and rigid tubular form shafts and they are in the form of 2/2 twill biaxial fiber fabric that has been woven into a continuous sleeve. Carbon and glass fibers braided sleeves are used for the fabrication of the composite shafts. VARTM (vacuum assisted resin transfer molding and Vacuum Bagging are the two different types of manufacturing methods used in the study. Torsional behaviors of the shafts are investigated experimentally in terms of fabrication methods and various composite materials parameters such as fiber types, layer thickness, and ply angles. Comparing the two methods in terms of the torque forces and strain angles, the shafts producing entirely carbon fiber show the highest torque capacities; however, considering the cost and performance criteria, the hybrid shaft made up of carbon and glass fibers is the optimum solution for average demanded properties. Additionally, FE (finite element model of the shafts was created and analyzed by using ANSYS workbench environment. Results of finite element analysis are compared with the values of twisting angle and torque obtained by experimental tests.
Energy Technology Data Exchange (ETDEWEB)
Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W.
1999-07-01
The Environmental Protection Agency (EPA) initiated an information collection request (ICR) on January 1, 1999 for coal-fired electric utility steam generating units (>25 MW) to document mercury levels in their fuels and emissions. The issuance of an ICR generally precedes the implementation of regulatory action by the EPA. The EPA has designated the Modified Ontario Hydro Method for stack gas sampling to measure total, elemental and oxidized mercury. This recommendation is based on extensive work by the University of North Dakota Energy and Environmental Research Center (UNDEERC) in evaluating a series of methodologies for determining mercury speciation. EPA has also designed the Method 29 sampling train for the sampling and measurement of the other elements identified as HAP's, i.e. As, Be, Cd, Co, Mn, Ni, Pb, Sb, Se, and Hg. Extensive testing has shown that EPA Method 29 may not speciate mercury correctly; however, it may still be used to measure total mercury. Currently there are no emission restrictions on these elements from power plants, however studies are being conducted as to their health risk and environmental impact. The objective of the study is to evaluate a hybrid train consisting of components of both the Modified Ontario Hydro Method and Method 29 sampling trains. Both sampling procedures are very labor intensive and require time to develop sampling expertise. The various sample trains are being tested in a 20 million Btu/hr demonstration boiler and a 2 million Btu/hr research boiler using a variety of fuels and combustion conditions.
A hybrid mortar virtual element method for discrete fracture network simulations
Benedetto, Matías Fernando; Berrone, Stefano; Borio, Andrea; Pieraccini, Sandra; Scialò, Stefano
2016-02-01
The most challenging issue in performing underground flow simulations in Discrete Fracture Networks (DFN) is to effectively tackle the geometrical difficulties of the problem. In this work we put forward a new application of the Virtual Element Method combined with the Mortar method for domain decomposition: we exploit the flexibility of the VEM in handling polygonal meshes in order to easily construct meshes conforming to the traces on each fracture, and we resort to the mortar approach in order to "weakly" impose continuity of the solution on intersecting fractures. The resulting method replaces the need for matching grids between fractures, so that the meshing process can be performed independently for each fracture. Numerical results show optimal convergence and robustness in handling very complex geometries.
Isolation of transcription factors binding auxin response elements using a yeast one-hybrid system
Institute of Scientific and Technical Information of China (English)
齐眉; 黄美娟; 陈凡
2002-01-01
Plant hormones play an important role during higher plant embryogenesis. Auxin is central to the development of vascular tissues, formation of lateral and adventitious roots, control of apical dominance, and tropic responses. Auxin response element (AuxRE), present in the promoters of many auxin-induced genes, can confer auxin responsiveness. Using carrot somatic embryo under specific developmental phase, a cDNA expression library was constructed. Several plasmids were recombined containing the tetramer of AuxRE as a bait. After screening by a yeast one-hy- brid system, one positive clone was confirmed and characterized. Electrophoretic mobility shift assay showed that AxRF1 protein expressed in yeast cell could bind AuxRE in vitro. It suggests that AxRF1 participates in regulation of the expression of auxin responsive gene during carrot somatic embryogenesis.
TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket
Energy Technology Data Exchange (ETDEWEB)
DeMange, P; Marian, J; Caro, M; Caro, A
2010-02-18
A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.
A Hybrid FPGA/Tilera Compute Element for Autonomous Hazard Detection and Navigation
Villalpando, Carlos Y.; Werner, Robert A.; Carson, John M., III; Khanoyan, Garen; Stern, Ryan A.; Trawny, Nikolas
2013-01-01
To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.
A hybrid FPGA/Tilera compute element for autonomous hazard detection and navigation
Villalpando, C. Y.; Werner, R. A.; Carson, J. M.; Khanoyan, G.; Stern, R. A.; Trawny, N.
To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.
Lisjak, Andrea; Tatone, Bryan S. A.; Mahabadi, Omid K.; Grasselli, Giovanni; Marschall, Paul; Lanyon, George W.; Vaissière, Rémi de la; Shao, Hua; Leung, Helen; Nussbaum, Christophe
2016-05-01
The analysis and prediction of the rock mass disturbance around underground excavations are critical components of the performance and safety assessment of deep geological repositories for nuclear waste. In the short term, an excavation damaged zone (EDZ) tends to develop due to the redistribution of stresses around the underground openings. The EDZ is associated with an increase in hydraulic conductivity of several orders of magnitude. In argillaceous rocks, sealing mechanisms ultimately lead to a partial reduction in the effective hydraulic conductivity of the EDZ with time. The goal of this study is to strengthen the understanding of the phenomena involved in the EDZ formation and sealing in Opalinus Clay, an indurated claystone currently being assessed as a host rock for a geological repository in Switzerland. To achieve this goal, hybrid finite-discrete element method (FDEM) simulations are performed. With its explicit consideration of fracturing processes, FDEM modeling is applied to the HG-A experiment, an in situ test carried out at the Mont Terri underground rock laboratory to investigate the hydro-mechanical response of a backfilled and sealed microtunnel. A quantitative simulation of the EDZ formation process around the microtunnel is first carried out, and the numerical results are compared with field observations. Then, the re-compression of the EDZ under the effect of a purely mechanical loading, capturing the increase of swelling pressure from the backfill onto the rock, is considered. The simulation results highlight distinctive rock failure kinematics due to the bedded structure of the rock mass. Also, fracture termination is simulated at the intersection with a pre-existing discontinuity, representing a fault plane oblique to the bedding orientation. Simulation of the EDZ re-compression indicates an overall reduction of the total fracture area as a function of the applied pressure, with locations of ineffective sealing associated with self
Directory of Open Access Journals (Sweden)
Teixeira da Silva Jaime A.
2014-09-01
Full Text Available Only few studies in the plant tissue culture literature have examined the impact of lanthanoids, or rare earth elements, on in vitro plant organogenesis. In this study, using a model plant, hybrid Cymbidium Twilight Moon ‘Day Light’, the impact of six lanthanoids (lanthanum (III nitrate hexahydrate (La(NO33 · 6H2O, cerium (III nitrate hexahydrate (Ce(NO33 · 6H2O, neodymium (III nitrate hexahydrate (Nd(NO33 · 6H2O, praseodymium (III nitrate hexahydrate (Pr(NO33 · 6H2O, samarium (III nitrate hexahydrate (Sm(NO33 · 6H2O, gadolinium (III nitrate hexahydrate (Gd(NO33 · 6H2O on new protocorm-like body (neo-PLB formation on Teixeira Cymbidium (TC medium was examined. 0 (control, 1, 2, 4 and 8 mg·dm-3 of each lanthanoid was tested. All lanthanoids could produce more neo-PLBs and neo-PLB fresh weight than TC medium lacking plant growth regulators (PGRs, suggesting some PGR-like ability of lanthanoids, although PLB-related traits (percentage of half-PLBs forming neo-PLBs; number of neo-PLBs formed per half-PLB; fresh weight of half-PLB + neo-PLBs was always significantly lower than TC medium containing PGRs. Except for Gd, all other lanthanoids had no negative impact on the number of new leaves from neo-PLB-derived shoots, but all lanthanoids showed a significantly lower plant height, shoot fresh weight and shoot dry weight and, in most cases, SPAD (chlorophyll content value. In addition, using the same concentration of the six lanthanoids, the ability to fortify root formation of neo-PLB-derived plantlets was also assessed. Except for Sm, all other lanthanoids significantly increased the number of roots, root fresh and dry weight.
Energy Technology Data Exchange (ETDEWEB)
Kim, S. H.; Lee, J. I.; Rhee, K. Y. [Kyung Hee University, Yongin (Korea, Republic of); Choi, C. R. [ELSOLTEC Inc., Yongin (Korea, Republic of)
2015-05-15
Basalt fiber is widely used in various industries and several studies have been carried out to understand the mechanical behavior of basalt fiber reinforced composites. However, few studies have been made to specifically investigate the mechanical properties of basalt/carbon hybrid composites. In this study, the effect of stacking sequence on the flexural properties of carbon/basalt/epoxy hybrid composites was investigated in order to verify the reliability of this composite model. Two types of carbon/basalt/epoxy hybrid composites with a sandwich form were fabricated: basalt skin-carbon core (BSCC) composites and carbon skin-basalt core (CSBC) composites. After fabrication flexural tests and finite element method (FEM) were conducted. FEM results of flexural analysis are compared with experimental results. A FEA analysis model has been successfully developed in order to predict flexural behavior of basalt/carbon/epoxy hybrid composites. The simulation using the FEA model produces a similar flexural strength to that obtained from the experiment. Therefore, the developed FEA model in general will be highly useful for the prediction of stacking sequence of basalt/carbon/ epoxy hybrid composites for several industrial applications.
Blum, Hubert E.; Stowring, Linda; Figus, Annalena; Montgomery, Carolyn K.; Haase, Ashley T.; Vyas, Girish N.
1983-11-01
A radiolabeled probe specific for hepatitis B virus (HBV) nucleotide sequences was hybridized in situ to liver tissue from three patients with chronic hepatitis B. The HBV genome was detected not only in infected hepatocytes but also in bile duct epithelial cells, endothelial cells, and smooth muscle cells. These findings extend the known host cell range for HBV, suggest new mechanisms of viral dissemination, and illustrate the usefulness of in situ hybridization in the study of pathogenesis of HBV infection.
Directory of Open Access Journals (Sweden)
C. Mahesh
2013-01-01
Full Text Available Finite element method is effectively used to homogenize the thermal conductivity of FRP composites consisting of hybrid materials and fibre-matrix debonds at some of the fibres. The homogenized result at microlevel is used to determine the property of the layer using macromechanics principles; thereby, it is possible to minimize the computational efforts required to solve the problem as in state through only micromechanics approach. The working of the proposed procedure is verified for three different problems: (i hybrid composite having two different fibres in alternate layers, (ii fibre-matrix interface debond in alternate layers, and (iii fibre-matrix interface debond at one fibre in a group of four fibres in one unit cell. It is observed that the results are in good agreement with those obtained through pure micro-mechanics approach.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Anchao, E-mail: anchaozhang@126.com [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Zhang, Lixiang; Lu, Hao; Chen, Guoyan; Liu, Zhichao [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Xiang, Jun; Sun, Lushi [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 (China)
2016-08-15
Graphical abstract: Schematic illustration for the charge transfer in the Ag/AgBr(0.7)-Ag{sub 2}CO{sub 3} system. - Highlights: • A novel technique on Hg{sup 0} removal using visible-light-driven Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids was proposed. • Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids were synthesized by a simple modified co-precipitation method. • Hg{sup 0} was mainly removed by the photogenerated holes (h{sup +}). • The possible reaction mechanism for superior Hg{sup 0} removal was proposed. - Abstract: A novel technique for photocatalytic removal of elemental mercury (Hg{sup 0}) using visible-light-driven Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids was proposed. The ternary Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids were synthesized by a simple modified co-precipitation method and characterized by N{sub 2} adsorption-desorption, scanning electron microscope (SEM), X-ray diffraction (XRD), UV–vis diffused reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) techniques. The effects of AgBr content, fluorescent lamp (FSL) irradiation, solution temperature, SO{sub 2} and NO on Hg{sup 0} removal were investigated in detail. Furthermore, a possible reaction mechanism for higher Hg{sup 0} removal was proposed, and the simultaneous removal of Hg{sup 0}, SO{sub 2} and NO was studied. The results showed that a high efficiency of Hg{sup 0} removal was obtained by using Ag/AgBr-Ag{sub 2}CO{sub 3} hybrids under fluorescent lamp irradiation. The AgBr content, FSL irradiation, solution temperature, and SO{sub 2} all exhibited significant effects on Hg{sup 0} removal, while NO had slight effect on Hg{sup 0} removal. The addition of Ca(OH){sub 2} demonstrated a little impact on Hg{sup 0} removal and could significantly improve the SO{sub 2}-resistance performance of Ag/AgBr(0.7)-Ag{sub 2}CO{sub 3} hybrid. The characterization results exhibited that hydroxyl radical (·OH), superoxide radical (·O{sub 2}{sup −}), hole (h{sup +}), and Br
Energy Technology Data Exchange (ETDEWEB)
Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)
2014-10-27
Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.
Pandare, Aditya K.; Luo, Hong
2016-10-01
A hybrid reconstructed discontinuous Galerkin and continuous Galerkin method based on an incremental pressure projection formulation, termed rDG (PnPm) + CG (Pn) in this paper, is developed for solving the unsteady incompressible Navier-Stokes equations on unstructured grids. In this method, a reconstructed discontinuous Galerkin method (rDG (PnPm)) is used to discretize the velocity and a standard continuous Galerkin method (CG (Pn)) is used to approximate the pressure. The rDG (PnPm) + CG (Pn) method is designed to increase the accuracy of the hybrid DG (Pn) + CG (Pn) method and yet still satisfy Ladyženskaja-Babuška-Brezzi (LBB) condition, thus avoiding the pressure checkerboard instability. An upwind method is used to discretize the nonlinear convective fluxes in the momentum equations in order to suppress spurious oscillations in the velocity field. A number of incompressible flow problems for a variety of flow conditions are computed to numerically assess the spatial order of convergence of the rDG (PnPm) + CG (Pn) method. The numerical experiments indicate that both rDG (P0P1) + CG (P1) and rDG (P1P2) + CG (P1) methods can attain the designed 2nd order and 3rd order accuracy in space for the velocity respectively. Moreover, the 3rd order rDG (P1P2) + CG (P1) method significantly outperforms its 2nd order rDG (P0P1) + CG (P1) and rDG (P1P1) + CG (P1) counterparts: being able to not only increase the accuracy of the velocity by one order but also improve the accuracy of the pressure.
Gui, Y. L.; Zhao, Z. Y.; Zhou, H. Y.; Wu, W.
2016-10-01
In this paper, a cohesive fracture model is applied to model P-wave propagation through fractured rock mass using hybrid continuum-discrete element method, i.e. Universal Distinct Element Code (UDEC). First, a cohesive fracture model together with the background of UDEC is presented. The cohesive fracture model considers progressive failure of rock fracture rather than an abrupt damage through simultaneously taking into account the elastic, plastic and damage mechanisms as well as a modified failure function. Then, a series of laboratory tests from the literature on P-wave propagation through rock mass containing single fracture and two parallel fractures are introduced and the numerical models used to simulate these laboratory tests are described. After that, all the laboratory tests are simulated and presented. The results show that the proposed model, particularly the cohesive fracture model, can capture very well the wave propagation characteristics in rock mass with non-welded and welded fractures with and without filling materials. In the meantime, in order to identify the significance of fracture on wave propagation, filling materials with different particle sizes and the fracture thickness are discussed. Both factors are found to be crucial for wave attenuation. The simulations also show that the frequency of transmission wave is lowered after propagating through fractures. In addition, the developed numerical scheme is applied to two-dimensional wave propagation in the rock mass.
Energy Technology Data Exchange (ETDEWEB)
Xu Sanzhong; Lin Xiangjin [The First Affiliated Hospital, College of Medicine of Zhejiang University, Hangzhou 310003 (China); Yang Xianyan; Chen Xiaoyi; Gao Changyou; Gou Zhongru [Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou 310029 (China); Zhang Lei; Yang Guojing, E-mail: zhrgou@zju.edu.cn [Rui' an People' s Hospital and the 3rd Hospital Affiliated to Wenzhou Medical College, Rui' an 325200 (China)
2011-06-15
Research in the field of orthopedic implantology is currently focused on developing methodologies to potentiate osseointegration and to expedite the reestablishment of full functionality. We have developed a simple biomimetic approach for preparing trace elements-codoped calcium phosphate (teCaP) coatings on a titanium substrate. The reaction proceeded via low-thermal incubation in trace elements (TEs)-added simulated body fluid (teSBF) at 90 and 120 deg. C. The x-ray photoelectron spectroscopy, x-ray diffraction and energy-dispersive x-ray analyses demonstrated that the teCaP coating was the composite of hydroxyapatite and whitlockite, simultaneously doped with magnesium, strontium, zinc and silicon. The addition of polyaspartic acid and TEs into SBF significantly densified the coating. The incubation temperature is another important factor controlling the coating precipitation rate and bonding strength. An incubation temperature of 120 deg. C could accelerate the coating precipitation and improve the interface bonding strength. The in vitro cell culture investigation indicated that the teCaP coating supported the adhesion and spreading of ovariectomized rat mesenchymal stem cells (rMSCs) and particularly, promoted rMSCs proliferation compared to the CaP coating prepared in SBF. Collectively, from such a biomimetic route there potentially arises a general procedure to prepare a wide range of bioactive teCaP coatings of different composition for osteoporotic osteogenic cells activation response.
有限元混合网格的压缩%Compression of finite element hybrid mesh
Institute of Scientific and Technical Information of China (English)
曾建江; 陈文亮; 翟建军
2005-01-01
A method for encoding and compressing finite element models is proposed.The model may be various non-simple topological structures and contain any combinations of beams,triangular elements and quadrilateral elements.First the model is subdivided into simple meshes that are orientable and manifold.Based on the Edgebreaker algorithm,13 labelled pairs are introduced for quadrilateral meshes and five other labelled pairs are introduced for triangles.Then the connectivity information of mixed triangle/quadrilateral meshes is coded in a direct manner.Two other bits are used to record the wireframe information.For the pure wireframe model,Taubin s method is extended to compress it.The compression algorithm is implemented and evaluated.Experiments with several models show that the method achieves excellent compression ratios.%提出了一个对有限元模型进行编码压缩的方法.该模型的拓扑结构可以是任意型式,允许包含四边形单元、三角形单元和梁(杆)单元.有限元模型首先分解成一系列的可定向的流形模型.基于Edgebreaker算法,针对四边形网格遍历的情况引入13对标记,同时对混合网格中的三角形用5对标记来表示.这样,混合网格的连接信息可以采用一种直接的方式进行编码.然后再使用2比特位记录模型中的线框信息.对于完全线框模型,采用扩展后的Taubin方法进行压缩.该压缩算法已经实现并进行了测试.多个复杂模型的压缩实验表明该方法具有很好的压缩效率.
Vachiratienchai, Chatchai; Siripunvaraporn, Weerachai
2013-02-01
For efficient inversion code, the forward modeling routine, the sensitivity calculation, and the inversion algorithm must be efficient. Here, the hybrid finite difference-finite element algorithm, which is fast and accurate even when the slope of the topography is greater than 45°, is used as the forward modeling routine to calculate the responses. The sensitivity calculation is adapted from the most efficient adjoint Green's function technique. Both of these algorithms are then driven with the data space Occam's inversion. This combination of modules makes it possible to obtain an efficient inversion code based on MATLAB for two-dimensional direct current (DC) resistivity data. To demonstrate its efficiency, numerical experiments with our code and with commercial software are performed on synthetic data and real field data collected in the western part of Thailand where limestone and cavities dominate the region. In general, our code takes substantially longer than the commercial code to run but converges to a solution with a lower misfit. The result shows that the efficiency of our code makes it practical for real field surveys.
复合材料层合板的杂交有限元方法%Hybrid finite element method for laminated composite plate
Institute of Scientific and Technical Information of China (English)
卿光辉; 贾瑞升
2013-01-01
结合复合材料修正后的H-R混合变分原理,直接借助应力-应变关系,推导了新的应力模式,建立了复合材料层合板的杂交等参有限元列式.利用Mathematica语言编程进行数值实例分析,其计算结果与相关文献的精确解以及Abaqus软件建模分析结果对比,实例证明该方法所得到的各个静力学量更接近精确解,并且可用较少的网格划分得到较精确的解.%In this paper based on modified H-R mixed variational principle for composite materials, with the stress -strain relations directly, derivation of a new mode of stress, the hybrid and isoparametric finite element formulation for the laminated composite plate was established. Then the Mathematica was applied for the programming and calculating of a numerical example. Compared with the modeling analysis result using Abaqus software and the exact solution provided in relevant literatures concerning some mechanical quantities, the result obtained in this way is proved to be closer to their exact solutions and satisfactory precision can be obtained with less mesh.
Currie, L A; Kessler,J.D.
2005-01-01
International audience; The primary objective of the research reported here has been the development of an hybrid reference material (RM) to serve as a test of accuracy for elemental carbon (EC) isotopic (14C) speciation measurements. Such measurements are critically important for the quantitative apportionment of fossil and biomass sources of ''soot'' (EC), the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement qual...
Hybrid electroluminescent devices
Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl
2010-08-03
A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.
Directory of Open Access Journals (Sweden)
L. A. Currie
2005-05-01
Full Text Available The primary objective of the research reported here has been the development of an hybrid reference material (RM to serve as a test of accuracy for elemental carbon (EC isotopic (14C speciation measurements. Such measurements are critically important for the quantitative apportionment of fossil and biomass sources of ''soot'' (EC, the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust, showed a range of results, but since the ''truth'' was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC of measurement validity (Currie et al., 2002. Components of the new Hybrid RM (DiesApple, however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically. NIST SRM 2975 (Forklift Diesel Soot has little or no 14C, and its major compositional component is EC. SRM 1515 (Apple Leaves has the 14C content of biomass-C, and it has little or no EC. Thus, the hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C from SRM 1515 in the EC isolate of the hybrid RM, together with testing for conservation of its dominant soot fraction through the isolation procedure.
Energy Technology Data Exchange (ETDEWEB)
Conocar, O
1999-07-01
Hybrid organic/inorganic silica compounds with extractive properties have been developed under an enhanced decontamination program for radioactive aqueous nitric acid waste in nuclear facilities. The materials were obtained by the sol-gel process through hydrolysis and poly-condensation of complexing organo-tri-alkoxy-silanes with the corresponding tetra-alkoxy-silane. Hybrid silica compounds were initially synthesized and characterized from mono- and bis-silyl precursors with malonamide or ethylenediamine patterns. Solids with different specific areas and pore diameters were obtained depending on the nature of the precursor, its functionality and its concentration in the tetra-alkoxy-silane. These compounds were then considered and assessed for use in plutonium and americium extraction. Excellent results-partitioning coefficients and capacities have been obtained with malonamide hybrid silica. The comparison with silica compounds impregnated or grafted with the same type of organic group is significant in this respect. Much of the improved performance obtained with hybrid silica may be attributed to the large quantity of complexing groups that can be incorporated in these materials. The effect of the solid texture on the extraction performance was also studied. Although the capacity increased with the specific area, little effect was observed on the distribution coefficients -notably for americium- indicating that the most favorable complexation sites are found on the outer surface. Macroporous malonamide hybrid silica compounds were synthesized to study the effects of the pore diameter, but the results have been inconclusive to date because of the unexpected molecular composition of the materials. (author)
An explicit Lagrangian finite element method for free-surface weakly compressible flows
Cremonesi, Massimiliano; Meduri, Simone; Perego, Umberto; Frangi, Attilio
2017-07-01
In the present work, an explicit finite element approach to the solution of the Lagrangian formulation of the Navier-Stokes equations for weakly compressible fluids or fluid-like materials is investigated. The introduction of a small amount of compressibility is shown to allow for the formulation of a fast and robust explicit solver based on a particle finite element method. Newtonian and Non-Newtonian Bingham laws are considered. A barotropic equation of state completes the model relating pressure and density fields. The approach has been validated through comparison with experimental tests and numerical simulations of free surface fluid problems involving water and water-soil mixtures.
Analysis and application of B-spline wavelet on interval hybrid stress element%区间B样条小波杂交应力元分析及其应用
Institute of Scientific and Technical Information of China (English)
刘艳红; 商中新
2013-01-01
Wavelet function is introduced into hybrid stress element. The scaling functions of BSWI are used to construct the rectangular and cubic wavelet element as interpolation function. The results obtained in this paper are compared with those by Abaqus. The numerical examples illustrate that the wavelet-based element method has higher accuracy and higher accuracy, while it's less sensitive to the density of elements.%将小波函数引入到杂交应力元中,以其尺度函数作为插值函数,构造了二维四节点和三维八节点的B样条小波杂交应力元.将数值算例结果与理论解和Abaqus软件计算结果相对比,本文所构造的新型单元具有计算精度高、对单元划分密度不敏感、收敛速度快的优点.
Institute of Scientific and Technical Information of China (English)
张迅; 张健强; 李小珍
2015-01-01
在平截面的假定条件下，通过建立梁—板混合单元有限元模型，采用车—线—桥耦合振动分析得到桥梁高频振动响应，再采用声学边界元法分析桥梁结构噪声。以32 m混凝土简支箱梁为例，讨论了不同的梁—板混合模型对计算精度和效率的影响，并与现场试验结果进行对比。由此验证了：在梁—板混合有限元模型中，跨中板单元区域的长度取5倍以上梁高时，桥梁高频振动和结构噪声仿真值均能取得良好的精度，计算效率可提高70%左右。桥梁振动和结构噪声的峰值频率范围为40 Hz～80 Hz，在梁侧传播时具有一定的指向性。采用梁—板混合单元模型计算得到30 m范围内的结构噪声与全板单元模型计算结果基本一致，但在30 m范围外，前者的计算值要比后者小2 dB(Lin)左右。因而，梁—板混合单元模型可有助于提高桥梁车致振动和噪声分析的效率。%Computational efficiency is a bottleneck in calculating train-induced high-frequency bridge vibration and as-sociated structure-borne noise. In this paper, based on the plane cross-section assumption, the beam-plate hybrid elements were introduced and the train-track-bridge coupling finite element model was built for analyzing the high-frequency vibra-tion response of the bridge. Then, the acoustical boundary element method was used to compute the structure-borne noise. Taking a 32 m simply-supported box-girder as an example, the computational efficiency and accuracy were investigated through different beam-plate combination models. A field test was also carried out for verification. Results show that if the length of the plate-element region exceeds five times of the height of the girder, the computational efficiency can be raised by 70%without loss of accuracy in comparison with the conventional finite element analysis with plate elements. The domi-nant frequency of bridge vibration and the
Goltsev, A N; Babenko, N N; Gaevskaya, A; Chelombitko, O V; Bondarovich, N A; Dubrava, T G; Ostankov, M V; Klochkov, V K; Kavok, N S; Malyukin, Yu V
2015-01-01
Tumor development is the consequence of expanding the population of low differentiated cells with unlimited self-maintenance potential, i.e. cancer stem cells (CSCs). Application of new forms of nanocomposites capable of binding to CSCs and inducing the tumor destruction is perspective direction for treating this pathology. There have been developed the methods of obtaining hybrid nanocomplexes containing rare-earth orthovanadates GdYVO4:Eu³⁺, cholesterol and luminescent dye Dil. By immune fluorescence method using monoclonal antibodies to CD44, CD24, CD117 and Sca-1 markers there has been established the change in the ratio of tumor progenitors of various differentiation levels in a general pool of Ehrlich carcinoma (EC) after treatment with hybrid nanocomplexes. Essential reduction in the concentration of the most tumorogenic CD44high cells with simultaneous rise in the number of CD117⁺-cells resulted in an increased index of CD44high/CD117⁺ ratio. It has been demonstrated that application of hybrid nanocomplexes suppressed the tumor growth almost by 80%. The value of cooperative interactions of the cells with different phenotype signs in tumor sites has been proved. The index of CD44high/CD117⁺ ratio can be used as one of diagnostic and prognostic parameters of development and inactivation rate of tumor process when using different types of anti-tumor therapy.
Terrana, Sebastien; Vilotte, Jean-Pierre; Guillot, Laurent; Mariotti, Christian
2015-04-01
Today seismological observation systems combine broadband seismic receivers, hydrophones and micro-barometers antenna that provide complementary observations of source-radiated waves in heterogeneous and complex geophysical media. Exploiting these observations requires accurate and multi-physics - elastic, hydro-acoustic, infrasonic - wave simulation methods. A popular approach is the Spectral Element Method (SEM) (Chaljub et al, 2006) which is high-order accurate (low dispersion error), very flexible to parallelization and computationally attractive due to efficient sum factorization technique and diagonal mass matrix. However SEMs suffer from lack of flexibility in handling complex geometry and multi-physics wave propagation. High-order Discontinuous Galerkin Methods (DGMs), i.e. Dumbser et al (2006), Etienne et al. (2010), Wilcox et al (2010), are recent alternatives that can handle complex geometry, space-and-time adaptativity, and allow efficient multi-physics wave coupling at interfaces. However, DGMs are more memory demanding and less computationally attractive than SEMs, especially when explicit time stepping is used. We propose a new class of higher-order Hybridized Discontinuous Galerkin Spectral Elements (HDGSEM) methods for spatial discretization of wave equations, following the unifying framework for hybridization of Cockburn et al (2009) and Nguyen et al (2011), which allows for a single implementation of conforming and non-conforming SEMs. When used with energy conserving explicit time integration schemes, HDGSEM is flexible to handle complex geometry, computationally attractive and has significantly less degrees of freedom than classical DGMs, i.e., the only coupled unknowns are the single-valued numerical traces of the velocity field on the element's faces. The formulation can be extended to model fractional energy loss at interfaces between elastic, acoustic and hydro-acoustic media. Accuracy and performance of the HDGSEM are illustrated and
Hybrid electric vehicles TOPTEC
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-06-21
This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.
Hybrid silicon evanescent devices
Directory of Open Access Journals (Sweden)
Alexander W. Fang
2007-07-01
Full Text Available Si photonics as an integration platform has recently been a focus of optoelectronics research because of the promise of low-cost manufacturing based on the ubiquitous electronics fabrication infrastructure. The key challenge for Si photonic systems is the realization of compact, electrically driven optical gain elements. We review our recent developments in hybrid Si evanescent devices. We have demonstrated electrically pumped lasers, amplifiers, and photodetectors that can provide a low-cost, scalable solution for hybrid integration on a Si platform by using a novel hybrid waveguide architecture, consisting of III-V quantum wells bonded to Si waveguides.
Sébastien, T.; Vilotte, J. P.; Guillot, L.; Mariotti, C.
2014-12-01
Today seismological observation systems combine broadband seismic receivers, hydrophones and micro-barometers antenna that provide complementary observations of source-radiated waves in heterogeneous and complex geophysical media. Exploiting these observations requires accurate and multi-physics - elastic, hydro-acoustic, infrasonic - wave simulation methods. A popular approach is the Spectral Element Method (SEM) (Chaljub et al, 2006) which is high-order accurate (low dispersion error), very flexible to parallelization and computationally attractive due to efficient sum factorization technique and diagonal mass matrix. However SEMs suffer from lack of flexibility in handling complex geometry and multi-physics wave propagation. High-order Discontinuous Galerkin Methods (DGMs), i.e. Dumbser et al (2006), Etienne et al. (2010), Wilcox et al (2010), are recent alternatives that can handle complex geometry, space-and-time adaptativity, and allow efficient multi-physics wave coupling at interfaces. However, DGMs are more memory demanding and less computationally attractive than SEMs, especially when explicit time stepping is used. We propose a new class of higher-order Hybridized Discontinuous Galerkin Spectral Elements (HDGSEM) methods for spatial discretization of wave equations, following the unifying framework for hybridization of Cockburn et al (2009) and Nguyen et al (2011), which allows for a single implementation of conforming and non-conforming SEMs. When used with energy conserving explicit time integration schemes, HDGSEM is flexible to handle complex geometry, computationally attractive and has significantly less degrees of freedom than classical DGMs, i.e., the only coupled unknowns are the single-valued numerical traces of the velocity field on the element's faces. The formulation can be extended to model fractional energy loss at interfaces between elastic, acoustic and hydro-acoustic media. Accuracy and performance of the HDGSEM are illustrated and
Energy Technology Data Exchange (ETDEWEB)
Candusso, D.; Rulliere, E.; Yonnet, J.P. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, 38 - Saint Martin d' Heres (France); Baurens, P. [CEA/Grenoble, Dept. d' Etudes des Materiaux, DEM, 38 (France)
2000-07-01
Studies carried out by the LEG ('Laboratoire Electrotechnique de Grenoble') on the modelling of the different elements of the traction chains of batteries electric powered vehicles (motors, electric converters..) and on the coupling batteries - super-capacitors by a converter allowing to manage the energy exchanges between these different storage elements are basic works for the future studies of fuel cells vehicles. In this article is shown that the electric size range of each components of the traction chain is strongly conditioned by those of its neighbours and that a global simulation of the chain is a precious tool of decision assistance. The interest to combine the energy source is presented too. (O.M.)
Page, P R
2003-01-01
We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.
Terrana, S.; Vilotte, J. P.; Guillot, L.
2015-12-01
New seismological monitoring networks combine broadband seismic receivers, hydrophones and micro-barometers antenna, providing complementary observation of source-radiated waves. Exploiting these observations requires accurate and multi-media - elastic, hydro-acoustic, infrasound - wave simulation methods, in order to improve our physical understanding of energy exchanges at material interfaces.We present here a new development of a high-order Hybridized Discontinuous Galerkin (HDG) method, for the simulation of coupled seismic and acoustic wave propagation, within a unified framework ([1],[2]) allowing for continuous and discontinuous Spectral Element Methods (SEM) to be used in the same simulation, with conforming and non-conforming meshes. The HDG-SEM approximation leads to differential - algebraic equations, which can be solved implicitly using energy-preserving time-schemes.The proposed HDG-SEM is computationally attractive, when compared with classical Discontinuous Galerkin methods, involving only the approximation of the single-valued traces of the velocity field along the element interfaces as globally coupled unknowns. The formulation is based on a variational approximation of the physical fluxes, which are shown to be the explicit solution of an exact Riemann problem at each element boundaries. This leads to a highly parallel and efficient unstructured and high-order accurate method, which can be space-and-time adaptive.A numerical study of the accuracy and convergence of the HDG-SEM is performed through a number of case studies involving elastic-acoustic (infrasound) coupling with geometries of increasing complexity. Finally, the performance of the method is illustrated through realistic case studies involving ground wave propagation associated to topography effects.In conclusion, we outline some on-going extensions of the method.References:[1] Cockburn, B., Gopalakrishnan, J., Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed and
Energy Technology Data Exchange (ETDEWEB)
Weagant, Scott; Dulai, Gurjit; Li, Lu; Karanassios, Vassili, E-mail: vkaranassios@uwaterloo.ca
2015-04-01
A rapidly-prototyped, battery-operated, atmospheric-pressure, self-igniting Ar-H{sub 2} microplasma was interfaced to a portable fiber-optic spectrometer. The microplasma-spectrometer combination was used to document the spectral lines emitted when μL of dilute solutions of single element standards of Ag, Ba, Ca, Eu, Pd, Rb and Sr were first dried and then vaporized into the microplasma. A small-size, electrothermal vaporization system was used for microsample introduction. Identification of the prominent spectral lines for these elements is reported. It was found that the most prominent spectral line for Ba, Ca and Sr was different than that emitted from an inductively coupled plasma (ICP). In general, prominent spectral lines with low excitation energy were dominating, thus resulting in spectra simpler than those emitted from an ICP. Detection limits were between 45 and 180 pg (expressed in absolute amounts). When expressed in relative concentration units, they ranged between 15 and 60 μg/L (obtained using 3 μL diluted standards). Calibration curves were linear (on the average) for 1.5 orders-of-magnitude. Average precision was 15%. Analytical capability and utility was demonstrated using the determination of Ca and Mg in (medicinal) thermal spring water. - Highlights: • Microplasma emission spectra for Ag, Ba, Ca, Eu, Pd, Rb and Sr are reported. • Absolute amount detection limits ranged between 45 pg and 180 pg. • Relative unit detection limits ranged between 15 and 60 μg/L (using 3 μL). • The effect of vaporization temperature on analyte signals is reported. • Ca and Mg concentrations in (medicinal) thermal spring water were determined.
一种基于H-R变分的杂交广义元方法%A Hybrid Generalized Element Method Based on H-R Variational Principle
Institute of Scientific and Technical Information of China (English)
杨森森; 马永其; 冯伟
2013-01-01
Combining Hellinger-Reissner variational principle and the way of constructing displacement interpolation function of generalized finite element method to construct stress field and displacement field independently, through the suitable stress field could get a more precise stress value of node conveniently, and in the same time to increase the order of displacement function without increasing the number of element's nodes, in this way a more accurate result was got. This method combines the above two methods of flexibility of constructing the stress field and displacement field, meanwhile, using less memory and equations on the same condition compared with some other methods, and the results also show that of efficiency and higher presicion.%基于Hellinger-Reissner变分原理,通过构造合适的应力场函数使其能更方便和更准确地得到节点上的应力值,同时结合广义有限元构造广义位移插值的方法,在不提高单元节点数目的前提下提高位移场函数的阶次,从而提高其求解精度.这种方法能同时灵活地构造应力场和位移场,在同等精度条件下能占用较少内存和求解更少的方程数目,计算结果也显示了这种方法的有效性和很高的计算精度.
Finite Element Analysis on Rear Mounting Bracket of Hybrid Engine%混联式发动机后悬置支架有限元分析
Institute of Scientific and Technical Information of China (English)
刘善锷; 陈诗库; 张彦斌; 刘汨
2015-01-01
The engine rear mounting bracket is an important bearing member of powertrain,its strength must meet all requirements of all extreme conditions. The authors model and simulate the engine rear suspension bracket with the finite element analysis by use of Solidworks and Simulation softwares, as well as optimize the bracket structure. The results show that the optimize support can effectively reduce the stress of the key position,improve the safety performance of the engine mounting system.%发动机后悬置支架是动力总成的重要承载部件，其强度必须满足各种极限工况要求。本文利用Solidworks软件对发动机后悬置支架进行建模，利用Simulation软件进行有限元分析与结构优化。结果表明，优化后的支架有效地降低了关键部位的应力，提高了发动机悬置系统的安全性能。
Weagant, Scott; Chen, Vivian; Karanassios, Vassili
2011-11-01
A battery-operated, atmospheric pressure, self-igniting, planar geometry Ar-H(2) microplasma for elemental analysis of liquid microsamples is described. The inexpensive microplasma device (MPD) fabricated for this work was a hybrid plastic-quartz structure that was formed on chips with an area (roughly) equal to that of a small-sized postage stamp (MPD footprint, 12.5-mm width by 38-mm length). Plastic substrates were chosen due to their low cost, for rapid prototyping purposes, and for a speedy microplasma device evaluation. To enhance portability, the microplasma was operated from an 18-V rechargeable battery. To facilitate portability even further, it was demonstrated that the battery can be recharged by a portable solar panel. The battery-supplied dc voltage was converted to a high-voltage ac. The ~750-μm (diameter) and 12-mm (long) Ar-H(2) (3% H(2)) microplasma was formed by applying the high-voltage ac between two needle electrodes. Spectral interference from the electrode materials or from the plastic substrate was not observed. Operating conditions were found to be key to igniting and sustaining a microplasma that was simply "warm" to the touch (thus alleviating the need for cooling or other thermal management) and that had a stable background emission. A small-sized (900 μL internal volume) electrothermal vaporization system (40-W max power) was used for microsample introduction. Microplasma background emission in the spectral region between 200 and 850 nm obtained using a portable fiber-optic spectrometer is reported and the effect of the operating conditions is described. Analyte emission from microliter volumes of dilute single-element standard solutions of Cd, Cu, K, Li, Mg, Mn, Na, Pb, and Zn is documented. The majority of spectral lines observed for the elements tested were from neutral atoms. The relative lack of emission from ion lines simplified the spectra, thus facilitating the use of a portable spectrometer. Despite the relative spectral
Energy Technology Data Exchange (ETDEWEB)
West, J.G.W. [Electrical Machines (United Kingdom)
1997-07-01
The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)
Kim, Manuela Leticia; Tudino, Mabel Beatríz
2010-08-15
Several studies involving the physicochemical interaction of three silica based hybrid mesoporous materials with metal ions of the group IB have been performed in order to employ them for preconcentration purposes in the determination of traces of Cu(II), Ag(I) and Au(III). The three solids were obtained from mesoporous silica functionalized with 3-aminopropyl (APS), 3-mercaptopropyl (MPS) and N-[2-aminoethyl]-3-aminopropyl (NN) groups, respectively. Adsorption capacities for Au, Cu and Ag were calculated using Langmuir's isotherm model and then, the optimal values for the retention of each element onto each one of the solids were found. Physicochemical data obtained under thermodynamic equilibrium and under kinetic conditions - imposed by flow through experiments - allowed the design of simple analytical methodologies where the solids were employed as fillings of microcolumns held in continuous systems coupled on-line to an atomic absorption spectrometry. In order to control the interaction between the filling and the analyte at short times (flow through conditions) and thus, its effect on the analytical signal and the presence of interferences, the initial adsorption velocities were calculated using the pseudo second order model. All these experiments allowed the comparison of the solids in terms of their analytical behaviour at the moment of facing the determination of the three elements. Under optimized conditions mainly given by the features of the filling, the analytical methodologies developed in this work showed excellent performances with limits of detection of 0.14, 0.02 and 0.025 microg L(-1) and RSD % values of 3.4, 2.7 and 3.1 for Au, Cu and Ag, respectively. A full discussion of the main findings on the interaction metal ions/fillings will be provided. The analytical results for the determination of the three metals will be also presented.
Hybridization and the Origin of Contagious Asexuality in Daphnia pulex
Xu, Sen; Spitze, Ken; Ackerman, Matthew S.; Ye, Zhiqiang; Bright, Lydia; Keith, Nathan; Jackson, Craig E.; Shaw, Joseph R.; Lynch, Michael
2015-01-01
Hybridization plays a potentially important role in the origin of obligate parthenogenesis (OP) in many organisms. However, it remains controversial whether hybridization directly triggers the transition from sexual reproduction to obligate asexuality or a hybrid genetic background enables asexual species to persist. Furthermore, we know little about the specific genetic elements from the divergent, yet still hybridizing lineages responsible for this transition and how these elements are furt...
Hybrid piezoelectric energy harvesting transducer system
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)
2008-01-01
A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.
Energy Technology Data Exchange (ETDEWEB)
Cartier, J
2006-04-15
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Second order tensor finite element
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
2013-01-01
The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.
Hybrid Compounding in New Zealand English
Degani, Marta; Onysko, Alexander
2010-01-01
This study investigates hybrid compound formation of Maori and English terms in present day New Zealand English (NZE). On the background of Maori and English language contact, the phenomenon of hybrid compounding emerges as a process that, on the one hand, symbolizes the vitality of the Maori element in NZE and, on the other hand, marks the…
Cetorelli, Nicola
2014-01-01
I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...
CSIR Research Space (South Africa)
Jacob John, Maya
2009-04-01
Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...
Institute of Scientific and Technical Information of China (English)
徐明; 苏明周; 王丽; 李旭东
2012-01-01
The finite element analyses on hysteretic behavior of steel coupling beam-column connections with steel boundary elements welded in hybrid coupled shear wall system were performed by using the FEM software ABAQUS for numerical simulation,so as to obtain the seismic performance of hybrid coupled shear wall system under low cyclic loading.The results of the finite element analyses agree quite well with experimental results.Meanwhile,the finite element analysis results and experimental results all indicate that the hysteretic curve of connections in hybrid coupled wall is full,and the ductility factor and ultimate bearing capacity are high,which shows that this kind of connection has high seismic performance,and is suitable for using in the high-rise buildings in high-intensity earthquake areas.%通过利用ABAQUS有限元软件对型钢边缘构件-钢连梁焊接型混合连肢墙（HCW）节点滞回性能进行有限元分析,研究混合连肢墙在低周循环荷载作用下的抗震性能,并将有限元计算结果与试验结果进行了对比,吻合情况较好。同时,试验研究与有限元分析结果均表明：节点滞回曲线饱满,且延性系数及极限承载力较高,表明节点具有良好的抗震性能。
DEFF Research Database (Denmark)
Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen
2016-01-01
Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors...... to human exposure. The occurrence of each element in food classes from different regions is presented. Some of the current toxicological risk assessments on toxic elements, the human health effect of each toxic element, and their contents in the food legislations are presented. An overview of analytical...... techniques and challenges for determination of toxic elements in food is also given....
A HYBRID DYNAMIC PROGRAM SLICING
Institute of Scientific and Technical Information of China (English)
Yi Tong; Wu Fangjun
2005-01-01
This letter proposes a hybrid method for computing dynamic program slicing. The key element is to construct a Coverage-Testing-based Dynamic Dependence Graph (CTDDG),which makes use of both dynamic and static information to get execution status. The approach overcomes the limitations of previous dynamic slicing methods, which have to redo slicing if slice criterion changes.
Fabrication of Hybrid Petroelectric Vehicle
Directory of Open Access Journals (Sweden)
G. Adinarayana
2014-10-01
Full Text Available In automobile sector, the need for alternative fuel as a replacement of conventional fossil fuel, due to its depletion and amount of emission has given way for new technologies like Fuel cells vehicles, Electric vehicles. Still a lot of advancement has to take place in these technologies for commercialization. The gap between the current fossil fuel technology and zero emission vehicles can be bridged by hybrid technology. Hybrid vehicles are those which can run on two or more powering sources/fuels. Feasibility of this technology is been proved in four wheelers and automobile giants like Toyota, Honda, and Hyundai have launched successful vehicles like Toyota prius, Honda insight etc. This technology maximizes the advantages of the two fuels and minimizes the disadvantages of the same. The best preferred hybrid pair is electric and fossil fuel. This increases the mileage of the vehicle twice the existing and also reduces the emission to half. At present, we like to explore the hybrid technology in the two wheeler sector and its feasibility on road. This paper deals with an attempt to make a hybrid with electric start and petrol run. Further a design of basic hybrid elements like motor, battery, and engine. As on today, hybrid products are one of the best solutions for all pollution hazards at a fairly nominal price. An investment within the means of a common man that guarantees a better environment to live in.
Energy Technology Data Exchange (ETDEWEB)
Nakamura, K.; Iidzima, K.
1983-03-30
An anode of a light metal is used in the element, along with an electrolyte which consists of an ether solvent and an ionogenic additive in the form of a salt of dithiocarbamic acid. The element has good discharge characteristics.
Hybrid Laminates for Application in North Conditions
Antipov, V. V.; Oreshko, E. I.; Erasov, V. S.; Serebrennikova, N. Yu.
2016-11-01
A hybrid aluminum-lithium alloy/SIAL laminate as a possible material for application in structures operated in North conditions is considered. The finite-element method is used for a buckling stability analysis of hybrid panels, bars, and plates. A technique allowing one to compare the buckling stability of multilayered hybrid plates is offered. Compression tests were run on a hybrid laminate wing panel as a prototype of the top panel of TU-204SM airplane made from a high-strength B95T2 aluminum alloy. It turned out that the lighter composite panel had a higher load-carrying capacity than the aluminum one. Results of investigation into the properties the hybrid aluminum-lithium alloy/SIAL laminate and an analysis of scientific-technical data on this subject showed that this composite material could be used in the elements of airframes, including those operated in north conditions.
Freno, Antonino
2011-01-01
This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an
Karioja, Pentti; Mäkinen, Jukka-Tapani; Keränen, Kimmo; Aikio, Janne; Alajoki, Teemu; Jaakola, Tuomo; Koponen, Matti; Keränen, Antti; Heikkinen, Mikko; Tuomikoski, Markus; Suhonen, Riikka; Hakalahti, Leena; Kopola, Pälvi; Hast, Jukka; Liedert, Ralf; Hiltunen, Jussi; Masuda, Noriyuki; Kemppainen, Antti; Rönkä, Kari; Korhonen, Raimo
2012-04-01
This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called Printed Hybrid Systems (PHS). Several demonstrator structures have been made, which show the potential of polymer packaging technology. One demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally suited for medical applications as the sensitive electronic components are well protected inside the plastic and the structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.
Hybrid microelectronic technology
Moran, P.
Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.
Directory of Open Access Journals (Sweden)
L. A. Currie
2005-01-01
Full Text Available The primary objective of the research reported here has been the development of a hybrid reference material (RM to serve as a test of accuracy for elemental carbon (EC isotopic (14C speciation measurements. Such measurements are vital for the quantitative apportionment of fossil and biomass sources of 'soot' (EC, the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust, showed a range of results, but since the 'truth' was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC of measurement validity (Currie et al., 2002. Components of the new Hybrid RM (DiesApple, however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically. NIST SRM 2975 (Forklift Diesel Soot has little or no 14C, and its major compositional component is EC; SRM 1515 (Apple Leaves has the 14C content of biomass-C, and it has little or no EC. Thus, the Hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C (char from SRM 1515 in the EC isolate of the Hybrid RM, as well as a test for conservation of its dominant soot fraction throughout the isolation procedure. The secondary objective was to employ the Hybrid RM for the comparative evaluation of the thermal optical kinetic (TOK and thermal optical transmission (TOT methods for the isolation of EC for micro-molar carbon accelerator mass spectrometry (AMS. As part of this process, the relatively new TOK method was subjected to a critical evaluation and significant development. Key findings of our study are: (1 both methods exhibited biomass-C 'leakage'; for TOT, the EC fraction isolated for AMS contained about 8% of the original biomass-C; for TOK, the refractory carbon (RC isolated contained about 3% of the original biomass-C.; (2 the initial isothermal oxidation stage
Expanding discourse repertoires with hybridity
Kelly, Gregory J.
2012-09-01
In "Hybrid discourse practice and science learning" Kamberelis and Wehunt present a theoretically rich argument about the potential of hybrid discourses for science learning. These discourses draw from different forms of "talk, social practice, and material practices" to create interactions that are "intertextually complex" and "interactionally dynamic." The hybrid discourse practices are described as involving the dynamic interplay of at least three key elements: "the lamination of multiple cultural frames, the shifting relations between people and their discourse, and the shifting power relations between and among people." Each of these elements requires a respective unit of analysis and are often mutually reinforcing. The authors present a theoretically cogent argument for the study of hybrid discourse practices and identify the potential such discourses may have for science education. This theoretical development leads to an analysis of spoken and written discourse around a set of educational events concerning the investigation of owl pellets by two fifth grade students, their classmates, and teacher. Two discourse segments are presented and analyzed by the authors in detail. The first is a discourse analysis of the dissection of the owl pellet by two students, Kyle and Max. The second analysis examines the science report of these same two students. In this article, I pose a number of questions about the study with the hope that by doing so I expand the conversation around the insightful analysis presented.
Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)
2016-01-01
A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.
DEFF Research Database (Denmark)
has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...... masters», i.e. by producing skills for the labour market and enabling individuals to progress more or less directly to higher education. The specific focus of this book is placed on conditions, structures and processes which help to combine VET with qualifications leading into higher education...
Enhanced performance hybrid-arq
Fareed, Muhammad Mehboob
2016-06-16
Apparatuses, computer readable media, and methods are provided for enhancing hybrid automatic repeat request (ARQ) performance. In an example method, a communication device transmits a first element of a vector, where the vector is selected using the information bits to be transmitted as an index in a code book. In some embodiments, this code book is constructed using Linear Constellation Precoding (LCP). If a NACK is received, the communication device transmits a second element of the vector. The process of transmitting elements of the vector continues until an ACK is received or the maximum number of transmission attempts is reached. If an ACK is received, the communication device transmits a first element of another vector of the code book that encodes a second set of information bits. This procedure may continue until all information bits have been transmitted successfully.
Hybrid systems, optimal control and hybrid vehicles theory, methods and applications
Böhme, Thomas J
2017-01-01
This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...
Metal-dielectric hybrid surfaces as integrated optoelectronic interfaces
Energy Technology Data Exchange (ETDEWEB)
Narasimhan, Vijay K.; Hymel, Thomas M.; Lai, Ruby A.; Cui, Yi
2017-01-03
An optoelectronic device has a hybrid metal-dielectric optoelectronic interface including an array of nanoscale dielectric resonant elements (e.g., nanopillars), and a metal film disposed between the dielectric resonant elements and below a top surface of the resonant elements such that the dielectric resonant elements protrude through the metal film. The device may also include an anti-reflection coating. The device may further include a metal film layer on each of the dielectric resonant elements.
DEFF Research Database (Denmark)
Braüner, Torben
2011-01-01
Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....
Continuity Controlled Hybrid Automata
Bergstra, J. A.; Middelburg, C.A.
2004-01-01
We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of hybrid automata as timed transition systems. We also relate the synchronized product operator on hybrid automata to the parallel composition operator of the process algebra. It turns out that the f...
Tani, Laurits
2015-01-01
To control Peltier elements, temperature controller was used. I used TEC-1091 that was manufactured my Meerstetter Engineering. To gain control with the temperature controller, software had to be intalled on a controlling PC. There were different modes to control the Peltier: Tempererature controller to control temperature, Static current/voltage to control voltage and current and LIVE ON/OFF to auto-tune the controller respectively to the system. Also, since near the collision pipe there is much radiation, radiation-proof Peltier elements have to be used. To gain the best results, I had to find the most efficient Peltier elements and try to get their cold side to -40 degrees Celsius.
Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R
2011-08-11
Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation.
An edge element approach for dynamic micromagnetic modeling
Bottauscio, O.; Chiampi, M.; Manzin, A.
2008-04-01
This paper proposes a three-dimensional dynamic micromagnetic model, based on the Galerkin weak formulation, reconstructing magnetization by finite element edge vector shape functions. The demagnetizing filed is computed using a hybrid finite element boundary element method. The procedure is compared to analytical formulas and simulations performed with the NIST/OOMMF code, focusing on damping and precessional switching in magnetic thin films.
Directory of Open Access Journals (Sweden)
A. Esposito
2016-07-01
Full Text Available We propose a new interpretation of the neutral and charged X,Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules but rather a manifestation of the interplay between the two. While meson molecules need a negative or zero binding energy, its counterpart for h-tetraquarks is required to be positive. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs0π± channel by the D0 Collaboration and the negative result presented subsequently by the LHCb Collaboration are understood in this scheme, together with a considerable portion of available data on X,Z particles. Considerations on a state with the same quantum numbers as the X(5568 are also made.
Esposito, A.; Polosa, A.D.
2016-01-01
We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.
Herald, Christine
2001-01-01
Describes a research assignment for 8th grade students on the elements of the periodic table. Students use web-based resources and a chemistry handbook to gather information, construct concept maps, and present the findings to the full class using the mode of their choice: a humorous story, a slideshow or gameboard, a brochure, a song, or skit.…
Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites
2016-03-09
AFRL-AFOSR-VA-TR-2016-0154 Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Gregory Odegard MICHIGAN TECHNOLOGICAL UNIVERSITY Final Report...SUBTITLE Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0030 5c. PROGRAM ELEMENT NUMBER...DISTRIBUTION A: Distribution approved for public release. Final Report Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Grant FA9550-13-1-0030 PI
High Temperature Power Converters for Military Hybrid Electric Vehicles
2011-08-09
M) MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN HIGH TEMPERATURE POWER CONVERTERS FOR MILITARY HYBRID ELECTRIC VEHICLES ABSTRACT...SUBTITLE High Temperature Power Converters for Military Hybrid Electric Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...public release High Temperature Power Converters for Military Hybrid Electric Vehicles Page 2 of 8 I. INTRODUCTION Today, wide bandgap devices
Parks, Joshua W.
Optofluidics, born of the desire to create a system containing microfluidic environments with integrated optical elements, has seen dramatic increases in popularity over the last 10 years. In particular, the application of this technology towards chip based molecular sensors has undergone significant development. The most sensitive of these biosensors interface liquid- and solid-core antiresonant reflecting optical waveguides (ARROWs). These sensor chips are created using conventional silicon microfabrication. As such, ARROW technology has previously been unable to utilize state-of-the-art microfluidic developments because the technology used--soft polydimethyl siloxane (PDMS) micromolded chips--is unamenable to the silicon microfabrication workflows implemented in the creation of ARROW detection chips. The original goal of this thesis was to employ hybrid integration, or the connection of independently designed and fabricated optofluidic and microfluidic chips, to create enhanced biosensors with the capability of processing and detecting biological samples on a single hybrid system. After successful demonstration of this paradigm, this work expanded into a new direction--direct integration of sensing and detection technologies on a new platform with dynamic, multi-dimensional photonic re-configurability. This thesis reports a number of firsts, including: • 1,000 fold optical transmission enhancement of ARROW optofluidic detection chips through thermal annealing, • Detection of single nucleic acids on a silicon-based ARROW chip, • Hybrid optofluidic integration of ARROW detection chips and passive PDMS microfluidic chips, • Hybrid optofluidic integration of ARROW detection chips and actively controllable PDMS microfluidic chips with integrated microvalves, • On-chip concentration and detection of clinical Ebola nucleic acids, • Multimode interference (MMI) waveguide based wavelength division multiplexing for detection of single influenza virions,
Continuity Controlled Hybrid Automata
Bergstra, J.A.; Middelburg, C.A.
2004-01-01
We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of
Continuity controlled Hybrid Automata
Bergstra, J.A.; Middelburg, C.A.
2008-01-01
We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of
Widely tunable Vernier ring laser on hybrid silicon.
Hulme, J C; Doylend, J K; Bowers, J E
2013-08-26
A hybrid silicon tunable Vernier ring laser is designed and fabricated by integration of two intra-cavity ring resonators, hybrid III-V-on-silicon gain elements, and resistive heaters for thermal tuning. Thermal tuning of more than 40 nm is demonstrated with side mode suppression ratio greater than 35 dB and linewidth of 338 kHz.
Singh, Harmohan N.
2012-06-05
A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.
Atom-Light Hybrid Interferometer.
Chen, Bing; Qiu, Cheng; Chen, Shuying; Guo, Jinxian; Chen, L Q; Ou, Z Y; Zhang, Weiping
2015-07-24
A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons.
Hybrid metric-Palatini gravity
Capozziello, Salvatore; Koivisto, Tomi S; Lobo, Francisco S N; Olmo, Gonzalo J
2015-01-01
Recently, the phenomenology of f(R) gravity has been scrutinized motivated by the possibility to account for the self-accelerated cosmic expansion without invoking dark energy sources. Besides, this kind of modified gravity is capable of addressing the dynamics of several self-gravitating systems alternatively to the presence of dark matter. It has been established that both metric and Palatini versions of these theories have interesting features but also manifest severe and different downsides. A hybrid combination of theories, containing elements from both these two formalisms, turns out to be also very successful accounting for the observed phenomenology and is able to avoid some drawbacks of the original approaches. This article reviews the formulation of this hybrid metric-Palatini approach and its main achievements in passing the local tests and in applications to astrophysical and cosmological scenarios, where it provides a unified approach to the problems of dark energy and dark matter.
A new interface element for connecting independently modeled substructures
Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.
1993-01-01
A new interface element based on the hybrid variational formulation is presented and demonstrated. The element provides a means of connecting independently modeled substructures whose nodes along the common boundary need not be coincident. The interface element extends previous work to include connecting an arbitrary number of substructures, the use of closed and generally curved interfaces, and the use of multiple, possibly nested, interfaces. Several applications of the element are presented and aspects of the implementation are discussed.
混合式直线力电机的参数计算及有限元分析∗%Parameter Calculation and Finite Element Analysis of Hybrid Linear Force Motor
Institute of Scientific and Technical Information of China (English)
武瑞兵
2015-01-01
Using magnetic circuit analytical method and finite element method electromagnetic motor design parameters and calculate the static characteristic analysis, and the effects of nonlinear magnetic materials on the output of the electromagnetic force;On this basis, the prototype will be manufactured the test results prove that the static force curve of theoretical analysis.%利用磁路解析法和有限元法，对所设计电机进行了电磁参数计算和静特性分析，并研究了导磁材料非线性对输出电磁力的影响。在此基础上，对所制造的样机进行了静态力曲线的测试。试验结果证明了理论分析的正确性。
High performance hybrid magnetic structure for biotechnology applications
Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA
2009-02-03
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.
Directory of Open Access Journals (Sweden)
Herbert Ernst Wiegand
2011-10-01
hierarchical structures are element-heterogeneous whilst the structurecarrying set of all hierarchical pure structures are element-homogeneous. In the structural diagrams of hierarchical hybrid article structures, the nodes for those text segments that establish the hybrid status of the structures are connected with the nodes for the text constituents either by means of arrows for the text-architectonic upward/downward relations, so that the structural graphs are architectonically enriched, or by means of specially marked edges that connect the nodes for the non-functional text segments and those for the internally-expanded functional item additions with the nodes for the text constituents. To each type of hierarchical pure article structure belong various types of hybrid article structures. The same applies to hierarchical pure item structures. Only a selection from the typology of hybrid article and item structures are discussed as well as a small selection of hybrid textual units that display determining features of two text segment classes (cf. the keywords.
Keywords: ELEMENT-HETEROGENEOUS STRUCTURE-CARRYING SET, FUNCTIONAL ITEM ADDITION, FUNCTIONAL-POSITIONAL SEGMENTATION, HIERARCHICAL ARCHITECTONICALLY ENRICHED ARTICLE MICROSTRUCTURE, HIERARCHICAL HYBRID ARTICLE MICROSTRUCTURE, HIERARCHICAL HYBRID DEEP DOUBLE GLOSS-CONDITIONED ITEM STRUCTURE, HIERARCHICAL HYBRID EXHAUSTIVE ITEMS STRUCTURE, HIERARCHICAL HYBRID GLOSS-CONDITIONED ITEM STRUCTURE, HIERARCHICAL HYBRID ITEMS CONSTITUENT STRUCTURE WITH GLOSS-CONDITIONED PARTIAL STRUCTURE, HIERARCHICAL HYBRID ITEMS STRUCTURE, HIERARCHICAL HYBRID MINIMISED GLOSSCONDITIONED ITEM STRUCTURE, HIERARCHICAL HYBRID SHALLOW DOUBLE GLOSSCONDITIONED ITEM STRUCTURE, HIERARCHICAL HYBRIDARTICLE CONSTITUENT STRUCTURE, HIERARCHICAL HYBRIDTEXT CONSTITUENT STRUCTURE, HIERARCHICAL PURE TEXT CONSTITUENT STRUCTURE, HYBRID CROSS-REFERENCE MARKER, ITEM RELATION, NON-FUNCTIONAL-POSITIONAL SEGMENTATION, ORDERING RELATION, SEGMENTATIVE ISOLATION
Hybrid winding concept for toroids
DEFF Research Database (Denmark)
Schneider, Henrik; Andersen, Thomas; Knott, Arnold
2013-01-01
and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...... implementation is simulated using finite element modeling and the DC and AC resistance of the inductors are verified with experimental measurements on prototypes. It is found that commercial available layer thickness of printed circuit boards is a bottleneck for high power applications. Furthermore, the winding...
From hybrid swarms to swarms of hybrids
The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...
The Hybrid Museum: Hybrid Economies of Meaning
DEFF Research Database (Denmark)
Vestergaard, Vitus
2013-01-01
this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both....... Such a museum is referred to as a hybrid museum....
EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.
Hybrid Management in Hospitals
DEFF Research Database (Denmark)
Byrkjeflot, Haldor; Jespersen, Peter Kragh
2010-01-01
Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer......Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer...
Institute of Scientific and Technical Information of China (English)
S. Asaoka
2005-01-01
@@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].
Mesoscale hybrid calibration artifact
Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.
2010-09-07
A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.
Pinfield, Stephen; Eaton, Jonathan; Edwards, Catherine; Russell, Rosemary; Wissenburg, Astrid; Wynne, Peter
1998-01-01
Outlines five projects currently funded by the United Kingdom's Electronic Libraries Program (eLib): HyLiFe (Hybrid Library of the Future), MALIBU (MAnaging the hybrid Library for the Benefit of Users), HeadLine (Hybrid Electronic Access and Delivery in the Library Networked Environment), ATHENS (authentication scheme), and BUILDER (Birmingham…
Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...
Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.
1993-01-01
A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.
Intraply Hybrid Composite Design
Chamis, C. C.; Sinclair, J. H.
1986-01-01
Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.
Hybrid quantum information processing
Energy Technology Data Exchange (ETDEWEB)
Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)
2014-12-04
I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.
Energy Technology Data Exchange (ETDEWEB)
Smith, J.R.
1993-10-15
The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.
GPU-accelerated discontinuous Galerkin methods on hybrid meshes
Chan, Jesse; Wang, Zheng; Modave, Axel; Remacle, Jean-Francois; Warburton, T.
2016-08-01
We present a time-explicit discontinuous Galerkin (DG) solver for the time-domain acoustic wave equation on hybrid meshes containing vertex-mapped hexahedral, wedge, pyramidal and tetrahedral elements. Discretely energy-stable formulations are presented for both Gauss-Legendre and Gauss-Legendre-Lobatto (Spectral Element) nodal bases for the hexahedron. Stable timestep restrictions for hybrid meshes are derived by bounding the spectral radius of the DG operator using order-dependent constants in trace and Markov inequalities. Computational efficiency is achieved under a combination of element-specific kernels (including new quadrature-free operators for the pyramid), multi-rate timestepping, and acceleration using Graphics Processing Units.
Hybrid nanoantennas for directional emission enhancement
Energy Technology Data Exchange (ETDEWEB)
Rusak, Evgenia; Staude, Isabelle, E-mail: isabelle.staude@anu.edu.au; Decker, Manuel; Sautter, Jürgen; Miroshnichenko, Andrey E.; Powell, David A.; Neshev, Dragomir N.; Kivshar, Yuri S. [Nonlinear Physics Centre and Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia)
2014-12-01
Plasmonic and dielectric nanoparticles offer complementary strengths regarding their use as optical antenna elements. While plasmonic nanoparticles are well-known to provide strong decay rate enhancement for localized emitters, all-dielectric nanoparticles can enable high directivity combined with low losses. Here, we suggest a hybrid metal-dielectric nanoantenna consisting of a gold nanorod and a silicon nanodisk, which combines all these advantages. Our numerical analysis reveals a giant enhancement of directional emission together with simultaneously high radiation efficiency (exceeding 70%). The suggested hybrid nanoantenna has a subwavelength footprint, and all parameters and materials are chosen to be compatible with fabrication by two-step electron-beam lithography.
Vibration Isolation for Parallel Hydraulic Hybrid Vehicles
Directory of Open Access Journals (Sweden)
The M. Nguyen
2008-01-01
Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.
Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H
2016-08-01
Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.
Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun
2016-01-01
Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...
He, Song
2017-04-01
Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is
Digital Repository Service at National Institute of Oceanography (India)
Abuin, M.; Clabby, C.; Martinez, P.; Goswami, U.; Flavin, F.; Wilkins, N.P.; Houghton, J.A.; Powell, R.; Sanchez, L.
. Southern blot analysis revealed the repetitive element to be unique to Atlantic salmon and brown trout species. In situ hybridization analysis showed this element to be localized at the main nucleolar organizer region bearing chromosomes of Atlantic salmon...
Geographic polymorphism of P element in populations of Drosophila sturtevanti
Directory of Open Access Journals (Sweden)
Luciane M. de Almeida
2003-01-01
Full Text Available The aim of this report was to detect full-sized P element sequences in eight strains of Drosophila sturtevanti populations from distant geographic regions and to assess the structural geographic variation among P element sequences. PCR analysis confirmed the presence of a putative complete P element in all strains. Southern blot analysis indicated bands shared by all strains, and bands restricted to geographically related strains. Parsimony analysis corroborated the hybridization pattern that reflected the geographic relationships.
O'Neill, R J; O'Neill, M J; Graves, J A
1998-05-07
Genetic models predict that genomic rearrangement in hybrids can facilitate reproductive isolation and the formation of new species by preventing gene flow between the parent species and hybrid (sunflowers are an example). The mechanism underlying hybridization-induced chromosome remodelling is as yet unknown, although mobile element activity has been shown to be involved in DNA rearrangement in some dysgenic Drosophila hybrids. It has been proposed that DNA methylation evolved as a means of repressing the movement of mobile elements (the host defence model). If such a protective mechanism were to fail, mobile elements could be activated, and could cause major and rapid genome alterations. Here we demonstrate the occurrence of genome-wide undermethylation, retroviral element amplification and chromosome remodelling in an interspecific mammalian hybrid (Macropus eugenii x Wallabia bicolor). Atypically extended centromeres of Macropus eugenii derived autosomes in the hybrid were composed primarily of an unmethylated, amplified retroviral element not detectable in either parent species. These results, taken with the observation of deficient methylation and de novo chromosome change in other mammalian hybrids, indicate that the failure of DNA methylation and subsequent mobile-element activity in hybrids could facilitate rapid karyotypic evolution.
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria;
2014-01-01
Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....
BSA Hybrid Synthesized Polymer
Institute of Scientific and Technical Information of China (English)
Zong Bin LIU; Xiao Pei DENG; Chang Sheng ZHAO
2006-01-01
Bovine serum albumin (BSA), a naturally occurring biopolymer, was regarded as a polymeric material to graft to an acrylic acid (AA)-N-vinyl pyrrolidone (NVP) copolymer to form a biomacromolecular hybrid polymer. The hybrid polymer can be blended with polyethersulfone (PES) to increase the hydrophilicity of the PES membrane, which suggested that the hybrid polymer might have a wide application in the modification of biomaterials.
DEFF Research Database (Denmark)
Ronkko, Mauno; Ravn, Anders P.
1997-01-01
a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....
Directory of Open Access Journals (Sweden)
V. Dvadnenko
2016-06-01
Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.
Nanoscale Organic Hybrid Electrolytes
Nugent, Jennifer L.
2010-08-20
Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid radiator cooling system
France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.
2016-03-15
A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.
Hybrid Unifying Variable Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the
Large Unifying Hybrid Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.
National Research Council Canada - National Science Library
Sankaran Venugopal; K K Rajesh; V Ramanujachari
2011-01-01
With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems...
National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...
From hybrid swarms to swarms of hybrids
Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber
2015-01-01
Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.
Sizing of a hybrid locomotive based on accumulators and ultracapacitors
Jaafar, Amine; Sareni, Bruno; Roboam, Xavier; Thiounn-Guermeur, Marina
2010-01-01
In this paper, hybridization of a BB460000 locomotive is proposed integrating a reduced power diesel generator, batteries and ultracapacitors as storage elements. The power mission of the BB460000 locomotive is studied in order to analyze its ability to be hybridized and to identify the most critical mission. An energy management strategy based on a frequency sharing is proposed. It allows strongly decreasing the nominal power of the diesel generator. Then, through a power flow sizing model, ...
Designing CNC Knit for Hybrid Membrane And Bending Active Structures
DEFF Research Database (Denmark)
Tamke, Martin; Holden Deleuran, Anders; Gengnagel, Christoph
2015-01-01
Recent advances in computation allow for the integration of design and simulation of highly interrelated systems, such as hybrids of structural membranes and bending active elements. The engaged complexities of forces and logistics can be mediated through the development of materials with project...... means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work...
Hybridization promotes speciation in Coenonympha butterflies.
Capblancq, Thibaut; Després, Laurence; Rioux, Delphine; Mavárez, Jesús
2015-12-01
Hybridization has become a central element in theories of animal evolution during the last decade. New methods in population genomics and statistical model testing now allow the disentangling of the complexity that hybridization brings into key evolutionary processes such as local adaptation, colonization of new environments, species diversification and extinction. We evaluated the consequences of hybridization in a complex of three alpine butterflies in the genus Coenonympha, by combining morphological, genetic and ecological analyses. A series of approximate Bayesian computation procedures based on a large SNP data set strongly suggest that the Darwin's Heath (Coenonympha darwiniana) originated through hybridization between the Pearly Heath (Coenonympha arcania) and the Alpine Heath (Coenonympha gardetta) with different parental contributions. As a result of hybridization, the Darwin's Heath presents an intermediate morphology between the parental species, while its climatic niche seems more similar to the Alpine Heath. Our results also reveal a substantial genetic and morphologic differentiation between the two geographically disjoint Darwin's Heath lineages leading us to propose the splitting of this taxon into two different species.
A Theoretical Analysis of Why Hybrid Ensembles Work
Directory of Open Access Journals (Sweden)
Kuo-Wei Hsu
2017-01-01
Full Text Available Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.
Hybrid Photonic Integration on a Polymer Platform
Directory of Open Access Journals (Sweden)
Ziyang Zhang
2015-09-01
Full Text Available To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard, which provides flexible optical input/ouptut interfaces (I/Os that allow robust coupling of indium phosphide (InP-based active components, passive insertion of thin-film-based optical elements, and on-chip attachment of optical fibers. This work reviews the recent progress of our polyboard platform. On the fundamental level, multi-core waveguides and polymer/silicon nitride heterogeneous waveguides have been fabricated, broadening device design possibilities and enabling 3D photonic integration. Furthermore, 40-channel optical line terminals and compact, bi-directional optical network units have been developed as highly functional, low-cost devices for the wavelength division multiplexed passive optical network. On a larger scale, thermo-optic elements, thin-film elements and an InP gain chip have been integrated on the polyboard to realize a colorless, dual-polarization optical 90° hybrid as the frontend of a coherent receiver. For high-end applications, a wavelength tunable 100Gbaud transmitter module has been demonstrated, manifesting the joint contribution from the polyboard technology, high speed polymer electro-optic modulator, InP driver electronics and ceramic electronic interconnects.
Hybrid Element Method for Mid-Frequency Vibroacoustic Analysis Project
National Aeronautics and Space Administration — In many situations, aerospace structures are subjected to a wide frequency spectrum of mechanical and/or acoustic excitations and therefore, there is a need for the...
Hybrid Finite Element Analysis for Rotorcraft Interior Noise Simulations Project
National Aeronautics and Space Administration — One of the main attributes contributing to the competitiveness of rotorcraft, is the continuously increasing expectations for passenger comfort which is directly...
Energy Technology Data Exchange (ETDEWEB)
Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)
2014-05-15
Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)
Hybrid intelligent engineering systems
Jain, L C; Adelaide, Australia University of
1997-01-01
This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.
DEFF Research Database (Denmark)
Jamison, Andrew; Christensen, Steen Hyldgaard; Botin, Lars
contexts, or sites, for mixing scientific knowledge and technical skills from different fields and social domains into new combinations, thus fostering what the authors term a “hybrid imagination”. Such a hybrid imagination is especially important today, as a way to counter the competitive and commercial...
Collins, P.J.
2005-01-01
In this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is given a na
DEFF Research Database (Denmark)
Olderog, Ernst-Rüdiger; Ravn, Anders Peter
2007-01-01
An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....
Temperature field simulation of laser-TIG hybrid welding
Institute of Scientific and Technical Information of China (English)
陈彦宾; 李俐群; 方俊飞; 封小松; 吴林
2003-01-01
The three-dimensional transient temperature distribution of laser-TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid welding was studied and the coupling effect of the laser and arc in the hybrid process was fully considered. The temperature fields and weld cross-sections of the typical welding parameters are obtained using present model. The calculation results show that the model can indicate the relationship of energy match between laser and arc to joints cross-sections objectively, and the simulation results are well agreed with the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Moir, R.W.
1980-09-09
The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.
Hybrid propulsion technology program
1990-01-01
Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.
A method for generating subtractive cDNA libraries retaining clones containing repetitive elements.
1997-01-01
Here we describe a two-stepped photobiotin-based procedure to enrich a target (canine retinal) cDNA library for tissue specific clones without removing those containing repetitive ( SINE ) elements, despite the presence of these elements in the driver population. In a first hybridization excess SINE elements were hybridized to a driver (canine cerebellar) cDNA. In a second hybridization target cDNA was added to this reaction. The resulting cDNA library was enriched for retinal specific clones...
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Energy Technology Data Exchange (ETDEWEB)
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
Evolution of a transposon in Daphnia hybrid genomes
Directory of Open Access Journals (Sweden)
Vergilino Roland
2013-02-01
Full Text Available Abstract Background Transposable elements play a major role in genome evolution. Their capacity to move and/or multiply in the genome of their host may have profound impacts on phenotypes, and may have dramatic consequences on genome structure. Hybrid and polyploid clones have arisen multiple times in the Daphnia pulex complex and are thought to reproduce by obligate parthenogenesis. Our study examines the evolution of a DNA transposable element named Pokey in the D. pulex complex. Results Portions of Pokey elements inserted in the 28S rRNA genes from various Daphnia hybrids (diploids and polyploids were sequenced and compared to sequences from a previous study to understand the evolutionary history of the elements. Pokey sequences show a complex phylogenetic pattern. We found evidence of recombination events in numerous Pokey alleles from diploid and polyploid hybrids and also from non-hybrid diploids. The recombination rate in Pokey elements is comparable to recombination rates previously estimated for 28S rRNA genes in the congener, Daphnia obtusa. Some recombinant Pokey alleles were encountered in Daphnia isolates from multiple locations and habitats. Conclusions Phylogenetic and recombination analyses showed that recombination is a major force that shapes Pokey evolution. Based on Pokey phylogenies, reticulation has played and still plays an important role in shaping the diversity of the D. pulex complex. Horizontal transfer of Pokey seems to be rare and hybrids often possess Pokey elements derived from recombination among alleles encountered in the putative parental species. The insertion of Pokey in hotspots of recombination may have important impacts on the diversity and fitness of this transposable element.
Hybrid systems with constraints
Daafouz, Jamal; Sigalotti, Mario
2013-01-01
Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to
Bazeia, D; Losano, L
2016-01-01
This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)
2017-02-15
This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)
Chaotic mixer improves microarray hybridization.
McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R
2004-02-15
Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.
Computational simulation of intermingled-fiber hybrid composite behavior
Mital, Subodh K.; Chamis, Christos C.
1992-01-01
Three-dimensional finite-element analysis and a micromechanics based computer code ICAN (Integrated Composite Analyzer) are used to predict the composite properties and microstresses of a unidirectional graphite/epoxy primary composite with varying percentages of S-glass fibers used as hydridizing fibers at a total fiber volume of 0.54. The three-dimensional finite-element model used in the analyses consists of a group of nine fibers, all unidirectional, in a three-by-three unit cell array. There is generally good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite-element methods and the micromechanics equations embedded in the ICAN computer code can be used to obtain the properties of intermingled fiber hybrid composites needed for the analysis/design of hybrid composite structures. However, the finite-element model should be big enough to be able to simulate the conditions assumed in the micromechanics equations.
Rembaum, A.
1980-01-01
Techniques have been successfully tested for bonding polymeric spheres, typically 0.1 micron in diameter, to spheres with diameter up to 100 microns. Hybrids are being developed as improved packing material for ion-exchange columns, filters, and separators.
Hybrid adsorptive membrane reactor
Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)
2011-01-01
A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.
D'Ambrosio, C
2003-01-01
Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...
National Research Council Canada - National Science Library
Fahmi, Amir; Pietsch, Torsten; Mendoza, Cesar; Cheval, Nicolas
2009-01-01
.... This paper describes our group's achievements towards the development of multifunctional nanostructures via self-assembly of hybrid systems based on the block copolymer PS-b-P4VP and inorganic nanoparticles (NPs...
Directory of Open Access Journals (Sweden)
Sankaran Venugopal
2011-04-01
Full Text Available With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nontoxic, and not hazardous to store and transport. Solid fuel grains are not highly susceptible to cracks, imperfections, and environmental temperature and are therefore safer to manufacture, store, transport, and use for launch. The status of development based on the experience of the last few decades indicating the maturity of the hybrid rocket technology is given in brief.Defence Science Journal, 2011, 61(3, pp.193-200, DOI:http://dx.doi.org/10.14429/dsj.61.518
Nitrous Paraffin Hybrid Project
National Aeronautics and Space Administration — The Nitrous Oxide Paraffin Hybrid engine (N2OP) is a proposed technology designed to provide small launch vehicles with high specific impulse, indefinitely storable...
Hybrid adsorptive membrane reactor
Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.
2011-03-01
A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.
Causal-Comparative Study Analyzing Student Success in Hybrid Anatomy and Physiology Courses
Levy, Jacqueline Anita
2013-01-01
In the biological sciences, higher student success levels are achieved in traditionally formatted, face-to-face coursework than in hybrid courses. The methodologies used to combine hybrid and in-person elements to the course need to be applied to the biological sciences to emulate the success seen in the traditional courses since the number of…
Klotz, Dorothy E.; Wright, Thomas A.
2017-01-01
This article highlights a best practice approach that showcases the highly successful deployment of a hybrid course delivery structure for an Operations core course in an Executive MBA Program. A key design element of the approach was the modular design of both the course itself and the learning materials. While other hybrid deployments may stress…
Klotz, Dorothy E.; Wright, Thomas A.
2017-01-01
This article highlights a best practice approach that showcases the highly successful deployment of a hybrid course delivery structure for an Operations core course in an Executive MBA Program. A key design element of the approach was the modular design of both the course itself and the learning materials. While other hybrid deployments may stress…
Institute of Scientific and Technical Information of China (English)
刘建平
2015-01-01
John Maxwell Coetzee's masterpiece-Disgrace is the representative work about post colonialism.The novel describes a series of disgraceful events happened between the white and the black in the post apartheid South Africa.The famous literature theory-hybridity of Homi K.Bhabha is the very key theory to analyze the work.In post apartheid South Africa,hybridity is the only way for the white and the black to coexist.
Page, P R
2000-01-01
We discuss whether a low-lying hybrid baryon should be defined as a three quark - gluon bound state or as three quarks moving on an excited adiabatic potential. We show that the latter definition becomes exact, not only for very heavy quarks, but also for specific dynamics. We review the literature on the signatures of hybrid baryons, with specific reference to strong hadronic decays, electromagnetic couplings, diffractive production and production in psi decay.
DEFF Research Database (Denmark)
Chung, Il-Sug; Mørk, Jesper
2010-01-01
A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....
Requirements for Hybrid Cosimulation
2014-08-16
hybrid cosimulation version of the Functional Mockup Interface (FMI) standard. A cosimulation standard de nes interfaces that enable diverse simulation...cosimulation standards, and specifically provides guidance for development of a hybrid cosimulation version of the Functional Mockup Interface (FMI) standard...V. Peetz, and S. Wolf. The functional mockup interface for tool independent exchange of simulation models. In Proc. of the 8-th International
Sizing and Energy Management of a Hybrid Locomotive Based on Flywheel and Accumulators
Jaafar, Amine; Akli, Cossi Rockys; Sareni, Bruno; Roboam, Xavier; Jeunesse, Alain
2009-01-01
The French National Railways Company (SNCF) is interested in the design of a hybrid locomotive based on various storage devices (accumulator, flywheel, and ultracapacitor) and fed by a diesel generator. This paper particularly deals with the integration of a flywheel device as a storage element with a reduced-power diesel generator and accumulators on the hybrid locomotive. First, a power flow model of energy-storage elements (flywheel and accumulator) is developed to achieve the design of...
Biomolecule/nanomaterial hybrid systems for nanobiotechnology.
Tel-Vered, Ran; Yehezkeli, Omer; Willner, Itamar
2012-01-01
The integration of biomolecules with metallic or semiconductor nanoparticles or carbon nanotubes yields new hybrid nanostructures of unique features that combine the properties of the biomolecules and of the nano-elements. These unique features of the hybrid biomolecule/nanoparticle systems provide the basis for the rapid development of the area of nanobiotechnology. Recent advances in the implementation of hybrid materials consisting of biomolecules and metallic nanoparticles or semiconductor quantum dots will be discussed. The following topics will be exemplified: (i) The electrical wiring of redox enzymes with electrodes by means of metallic nanoparticles or carbon nanotubes, and the application of the modified electrodes as amperometric biosensors or for the construction of biofuel cells. (ii) The biocatalytic growth of metallic nanoparticles as a means to construct optical or electrical sensors. (iii) The functionalization of semiconductor quantum dots with biomolecules and the application of the hybrid nanostructures for developing different optical sensors, including intracellular sensor systems. (iv) The use of biomolecule-metallic nanoparticle nanostructures as templates for growing metallic nanowires, and the construction of fuel-driven nano-transporters.
Hybridization and the Origin of Contagious Asexuality in Daphnia pulex
Xu, Sen; Spitze, Ken; Ackerman, Matthew S.; Ye, Zhiqiang; Bright, Lydia; Keith, Nathan; Jackson, Craig E.; Shaw, Joseph R.; Lynch, Michael
2015-01-01
Hybridization plays a potentially important role in the origin of obligate parthenogenesis (OP) in many organisms. However, it remains controversial whether hybridization directly triggers the transition from sexual reproduction to obligate asexuality or a hybrid genetic background enables asexual species to persist. Furthermore, we know little about the specific genetic elements from the divergent, yet still hybridizing lineages responsible for this transition and how these elements are further spread to create other OP lineages. In this study, we address these questions in Daphnia pulex, where cyclically parthenogenetic (CP) and OP lineages coexist. Ancestry estimates and whole-genome association mapping using 32 OP isolates suggest that a complex hybridization history between the parental species D. pulex and D. pulicaria is responsible for the introgression of a set of 647 D. pulicaria single nucleotide polymorphism alleles that show perfect association with OP. Crossing experiments using males of OP lineages and females of CP lineages strongly support a polygenic basis for OP. Single-sperm analyses show that although normal meiotic recombination occurs in the production of haploid sperm by males of OP lineages, a significant proportion of such sperm are polyploid, suggesting that the spread of asexual elements through these males (i.e., contagious asexuality) is much less efficient than previously envisioned. Although the current Daphnia genome annotation does not provide mechanistic insight into the nature of the asexuality-associated alleles, these alleles should be considered as candidates for future investigations on the genetic underpinnings of OP. PMID:26351296
Institute of Scientific and Technical Information of China (English)
Yao-zhi LUO; Chao YANG
2014-01-01
研究目的：建立一种适用于理想膜结构可进行高精度褶皱形变模拟的稳定可靠的数值分析技术及方法。 创新要点：根据薄壳理论，在向量式混合质点单元方法（VFPEM）薄膜计算理论的基础上，引入弯曲内力分析模型并与其进行组合，发展了一种能够描述膜材面外变形的新型非线性薄壳计算理论，同时给出了将其应用于褶皱形变模拟的关键求解技术。 研究方法：1.针对薄壳计算模型中的弯曲内力，利用移动基础架构和逆向刚体运动的概念扣除刚体转动，在只含有节点独立转动自由度的单元变形坐标系下根据虚功原理和平衡条件进行计算；2.借助于薄壳非线性屈曲模拟方法，引入合理的初始扰动作为诱发理想平面膜材中形成褶皱的有效机制；3.采用拟动力显式数值积分技术求解质点运动方程，通过追踪质点平衡位置来获得稳态的褶皱构形。 重要结论：采用本文模型和方法可以模拟薄膜结构在面内荷载作用下褶皱的分布模式、具体构形信息及应力状态，计算过程不存在收敛性困难，结果准确。%The wrinkling phenomenon is a commonly-known problem in many fields of engineering applications. Using a general structural analysis framework of the vector-form hybrid particle-element method (VHPEM), this paper presents a newly developed shell-based numerical model for the geometrically nonlinear wrinkling analysis of thin membranes. VHPEM is rooted in vector mechanics and physical perspective. It discretizes the analyzed domain into a group of finite particles linked by canonical elements, and the motions of the free particles are governed by Newton’s second law while the constrained ones follow the pre-scribed paths. An adaptive convected material frame is adopted for a general kinematical description. Internal forces related to the non-zero bending rigidity of a membrane can be
Directory of Open Access Journals (Sweden)
Bin Sun
2015-01-01
Full Text Available The pattern synthesis and activated element selection for conformal array is investigated based on hybrid particle swarm optimization-gravitational search algorithm (PSOGSA in this paper. With the introduction of PSOGSA algorithm which is a novel hybrid optimization technique, the element excitations are optimized to obtain the desired pattern for conformal array in the case of considering uncoupled and coupled element pattern. Numerical simulation and full-wave electromagnetic calculation verify the advantage and efficiency of our method. Then, a novel strategy of activated element selection based on PSOGSA algorithm is proposed for saving the energy consumption in conformal array.
Hybrid Optimization in the Design of Reciprocal Structures
DEFF Research Database (Denmark)
Parigi, Dario; Kirkegaard, Poul Henning; Sassone, Mario
2012-01-01
The paper presents a method to generate the geometry of reciprocal structures by means of a hybrid optimization procedure. The geometry of reciprocal structures where elements are sitting on the top or in the bottom of each other is extremely difficult to predict because of the non...... is then applied to a recent example of free-form reciprocal structure....
DIAGNOSTICS CONCEPTION OF ELECTRICAL DRIVE OF A HYBRID VEHICLE
Directory of Open Access Journals (Sweden)
Y. Borodenko
2012-01-01
Full Text Available Conceptual approach to creat the diagnostic system of the power elements of the electric drive of the hybrid vehicle has been considered. Approbation of the imitation model of electric drive with brushless DC electric motor as a diagnostic object has been carried out.
Bundled Hybrid Offset Riser Global Strength Analysis
Institute of Scientific and Technical Information of China (English)
William C.Webster; Zhuang Kang; Wenzhou Liang; Youwei Kang; Liping Sun
2011-01-01
Bundled hybrid offset riser(BHOR)global strength analysis,which is more complex than single line offset riser global strength analysis,was carried out in this paper.At first,the equivalent theory is used to deal with BHOR,and then its global strength in manifold cases was analyzed,along with the use of a three-dimensional nonlinear time domain finite element program.So the max bending stress,max circumferential stress,and max axial stress in the BHOR bundle main section(BMS)were obtained,and the values of these three stresses in each riser were obtained through the "stress distribution method".Finally,the Max Von Mises stress in each riser was given and a check was made whether or not they met the demand.This paper provides a reference for strength analysis of the bundled hybrid offset riser and some other bundled pipelines.
Hybrid Optimization for Wind Turbine Thick Airfoils
Energy Technology Data Exchange (ETDEWEB)
Grasso, F. [ECN Wind Energy, Petten (Netherlands)
2012-06-15
One important element in aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture and reduce cost of energy. This work is focused on the design of thick airfoils for wind turbines by using numerical optimization. A hybrid scheme is proposed in which genetic and gradient based algorithms are combined together to improve the accuracy and the reliability of the design. Firstly, the requirements and the constraints for this class of airfoils are described; then, the hybrid approach is presented. The final part of this work is dedicated to illustrate a numerical example regarding the design of a new thick airfoil. The results are discussed and compared to existing airfoils.
Hybrid Lithium Niobate and Silicon Photonic Waveguides
Weigel, Peter O; DeRose, Christopher; Pomerene, Andrew T; Starbuck, Andrew L; Lentine, Anthony L; Stenger, Vincent; Mookherjea, Shayan
2015-01-01
We describe a hybrid lithium niobate (LN) / silicon (Si) optical waveguiding platform at near infrared wavelengths. Various optical circuit elements, such as waveguides, bends, and couplers are demonstrated in two hybrid cross sections, A and B, with different LN confinement factors (32% and 90%, respectively) of the fundamental quasi TE mode. Such a large LN confinement factor is achieved with adiabatic tapers that preserve the symmetry of the fundamental quasi TE mode and prevent mode rotation. We find the average propagation loss in cross section B to be 4.3 dB/cm with a standard deviation of 2.1 dB/cm, comparable with a 3 um SiO2 clad (in place of LN) Si waveguide whose average propagation loss was 3.1 dB/cm with a standard deviation of 2.1 dB/cm.
A hybrid Eulerian-Lagrangian flow solver
Palha, Artur; Ferreira, Carlos Simao; van Bussel, Gerard
2015-01-01
Currently, Eulerian flow solvers are very efficient in accurately resolving flow structures near solid boundaries. On the other hand, they tend to be diffusive and to dampen high-intensity vortical structures after a short distance away from solid boundaries. The use of high order methods and fine grids, although alleviating this problem, gives rise to large systems of equations that are expensive to solve. Lagrangian solvers, as the regularized vortex particle method, have shown to eliminate (in practice) the diffusion in the wake. As a drawback, the modelling of solid boundaries is less accurate, more complex and costly than with Eulerian solvers (due to the isotropy of its computational elements). Given the drawbacks and advantages of both Eulerian and Lagrangian solvers the combination of both methods, giving rise to a hybrid solver, is advantageous. The main idea behind the hybrid solver presented is the following. In a region close to solid boundaries the flow is solved with an Eulerian solver, where th...
Survivability design for a hybrid underwater vehicle
Energy Technology Data Exchange (ETDEWEB)
Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)
2015-03-10
A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.
Data Element Registry Services
U.S. Environmental Protection Agency — Data Element Registry Services (DERS) is a resource for information about value lists (aka code sets / pick lists), data dictionaries, data elements, and EPA data...
Schamp, Homer W., Jr.
1989-01-01
Describes the historic development of the periodic table from the four-element theory to the Lavoisier's table. Presents a table listing the old and new names of chemicals and the Lavoisier's table of elements. Lists two references. (YP)
On Element SDD Approximability
Avron, Haim; Toledo, Sivan
2009-01-01
This short communication shows that in some cases scalar elliptic finite element matrices cannot be approximated well by an SDD matrix. We also give a theoretical analysis of a simple heuristic method for approximating an element by an SDD matrix.
Directory of Open Access Journals (Sweden)
Dana BĂDULESCU
2014-09-01
Full Text Available Hybridization is a fundamental characteristic of postmodernism, included by Ihab Hassan in his “catena” of features. This paper looks into the hybrids of postmodernism, which are the result of migration, displacement and uprooting, the re-visitation of myths, folklore and legends, or projections of their author’s imagination. The hybrids used as examples here are drawn from several novels written by Salman Rushdie, especially The Satanic Verses, two short stories, one by Márquez and the other by Donald Barthelme, Borges’s Book of Imaginary Beings, Cărtărescu’s Encyclopaedia of Dragons and Michelle Cliff’s No Telephone to Heaven. Diverse as they may be, these hybrids emphasize a defining characteristic of postmodernism, which is its pluralism. I conclude that the hybrids of postmodernism are aesthetically or politically subversive. Besides, what makes them difficult to grasp is their unfixed and protean nature. They ask for high leaps of the imagination, a total suspension of disbelief and a complete surrender to the powerful seduction of imagination on the reader’s part.
Thomas, Nicholas C.
2009-01-01
This paper provides nine short chemically based puzzles or problems extensible for use with students from middle school to college. Some of these will strengthen students' recognition of individual elements and element names. Others require students to focus on the salient properties of given chemical elements.
Research on Hybrid Vehicle Drivetrain
Xie, Zhongzhi
Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.
Directory of Open Access Journals (Sweden)
Lu-Chuan Ceng
2014-01-01
Full Text Available We present a hybrid iterative algorithm for finding a common element of the set of solutions of a finite family of generalized mixed equilibrium problems, the set of solutions of a finite family of variational inequalities for inverse strong monotone mappings, the set of fixed points of an infinite family of nonexpansive mappings, and the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed hybrid iterative algorithm has strong convergence under some mild conditions imposed on algorithm parameters. Here, our hybrid algorithm is based on Korpelevič’s extragradient method, hybrid steepest-descent method, and viscosity approximation method.
Directory of Open Access Journals (Sweden)
Wassim M. Haddad
2001-01-01
Full Text Available In this paper we develop a unified dynamical systems framework for a general class of systems possessing left-continuous flows; that is, left-continuous dynamical systems. These systems are shown to generalize virtually all existing notions of dynamical systems and include hybrid, impulsive, and switching dynamical systems as special cases. Furthermore, we generalize dissipativity, passivity, and nonexpansivity theory to left-continuous dynamical systems. Specifically, the classical concepts of system storage functions and supply rates are extended to left-continuous dynamical systems providing a generalized hybrid system energy interpretation in terms of stored energy, dissipated energy over the continuous-time dynamics, and dissipated energy over the resetting events. Finally, the generalized dissipativity notions are used to develop general stability criteria for feedback interconnections of left-continuous dynamical systems. These results generalize the positivity and small gain theorems to the case of left-continuous, hybrid, and impulsive dynamical systems.
DEFF Research Database (Denmark)
Rönnkö, M.; Ravn, Anders Peter; Sere, K.
2003-01-01
In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time-derivatives in modell......In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...... to the differential action, thus, allowing stepwise development of hybrid systems Udgivelsesdato: JAN 1...
Conditional Hybrid Nonclassicality
Agudelo, E.; Sperling, J.; Costanzo, L. S.; Bellini, M.; Zavatta, A.; Vogel, W.
2017-09-01
We derive and implement a general method to characterize the nonclassicality in compound discrete- and continuous-variable systems. For this purpose, we introduce the operational notion of conditional hybrid nonclassicality which relates to the ability to produce a nonclassical continuous-variable state by projecting onto a general superposition of discrete-variable subsystem. We discuss the importance of this form of quantumness in connection with interfaces for quantum communication. To verify the conditional hybrid nonclassicality, a matrix version of a nonclassicality quasiprobability is derived and its sampling approach is formulated. We experimentally generate an entangled, hybrid Schrödinger cat state, using a coherent photon-addition process acting on two temporal modes, and we directly sample its nonclassicality quasiprobability matrix. The introduced conditional quantum effects are certified with high statistical significance.
Energy Technology Data Exchange (ETDEWEB)
Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)
1995-12-31
Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.
Photoproduction of Hybrid Mesons
Barnes, T
1998-01-01
In this contribution I discuss prospects for photoproducing hybrid mesons at CEBAF, based on recent model results and experimental indications of possible hybrids. One excellent opportunity appears to be a search for the I=1, JPC=2+-, neutral "(b2)o" hybrid in (a2 pi)o through diffractive photoproduction. Other notable possibilities accessible through pi+ or pio exchange photoproduction are I=1, JPC=1-+, charged "pi1+" in f1 pi+, (b1 pi)+ and (rho pi)+; piJ(1770)+ in f2 pi+ and (b1 pi)+; pi(1800)+ in f0 pi+, f2 pi+, omega rho+ and (rho pi)+; a1 in f1 pi+ and f2 pi+; and omega in (rho pi)o, omega eta and (K1 K)o.
Mobile antibiotic resistance encoding elements promote their own diversity.
Directory of Open Access Journals (Sweden)
Geneviève Garriss
2009-12-01
Full Text Available Integrating conjugative elements (ICEs are a class of bacterial mobile genetic elements that disseminate via conjugation and then integrate into the host cell genome. The SXT/R391 family of ICEs consists of more than 30 different elements that all share the same integration site in the host chromosome but often encode distinct properties. These elements contribute to the spread of antibiotic resistance genes in several gram-negative bacteria including Vibrio cholerae, the agent of cholera. Here, using comparative analyses of the genomes of several SXT/R391 ICEs, we found evidence that the genomes of these elements have been shaped by inter-ICE recombination. We developed a high throughput semi-quantitative method to explore the genetic determinants involved in hybrid ICE formation. Recombinant ICE formation proved to be relatively frequent, and to depend on host (recA and ICE (s065 and s066 loci, which can independently and potentially cooperatively mediate hybrid ICE formation. s065 and s066, which are found in all SXT/R391 ICEs, are orthologues of the bacteriophage lambda Red recombination genes bet and exo, and the s065/s066 recombination system is the first Red-like recombination pathway to be described in a conjugative element. Neither ICE excision nor conjugative transfer proved to be essential for generation of hybrid ICEs. Instead conjugation facilitates the segregation of hybrids and could provide a means to select for functional recombinant ICEs containing novel combinations of genes conferring resistance to antibiotics. Thus, ICEs promote their own diversity and can yield novel mobile elements capable of disseminating new combinations of antibiotic resistance genes.
Directory of Open Access Journals (Sweden)
Camilo Méndez
2014-12-01
Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.
Musikalske elementer i musikaler
Jensen, Linnea Reitan
2014-01-01
Denne masteroppgaven undersøker hvordan musikalske elementer kan bli brukt i musikaler for å påvirke den dramaturgiske helheten. Gjennom både musikalsk og dramaturgisk analyse viser jeg hvordan elementer i musikk kan ha innvirkning på forestillingens dramaturgi. In this master thesis I am aiming to examine the musical elements used in the songs in musicals. Music is an important element in the musical, and therefore I want to look at how some musical elements can contribute to the musical'...
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
The evaluation and applicability of hybrid transfinite element formulations are described for transient nonlinear thermal models with particular reference to account for radiation effects. The formulations are developed from basic concepts and evaluated for both one- and two-dimensional thermal models. The methodology presented is a hybrid approach as it combines finite elements, classical Galerkin schemes, and transform methods. Basic features of the hybrid formulations and the associated solution scheme used are first described. Therein, numerical test models are presented to evaluate the applicability for predicting the nonlinear transient response in one- and two-dimensional thermal models influenced due to radiation effects.
Yang, C. S. Walter; DesRoches, Reginald
2014-03-01
This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.
Hyndman, D E
2013-01-01
Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl
Li, Fei-Ye; Luo, Xi; Dai, Xi; Yu, Yue; Zhang, Fan; Chen, Gang
2016-09-01
We construct a tight-binding model realizing one pair of Weyl nodes and three distinct Weyl semimetals. In the type-I (type-II) Weyl semimetal, both nodes belong to type-I (type-II) Weyl nodes. In addition, there exists a third type, previously undiscovered and dubbed "hybrid Weyl semimetal", in which one Weyl node is of type I while the other is of type II. For the hybrid Weyl semimetal, we further demonstrate the bulk Fermi surfaces and the topologically protected surface states, analyze the unique Landau-level structure and quantum oscillation, and discuss the conditions for possible material realization.
Energy Technology Data Exchange (ETDEWEB)
Gautschi, H.
2008-07-01
This presentation made at the Swiss 2008 research conference on traffic by Hannes Gautschi, director of service and training at the Toyota company in Switzerland, takes a look at Toyota's hybrid drive vehicles. The construction of the vehicles and their combined combustion engines and electric generators and drives is presented and the combined operation of these components is described. Braking and energy recovery are discussed. Figures on the performance, fuel consumption and CO{sub 2} output of the hybrid vehicles are compared with those of conventional vehicles.
Energy Technology Data Exchange (ETDEWEB)
Gautschi, H.
2008-07-01
This presentation made at the Swiss 2008 research conference on traffic by Hannes Gautschi, director of service and training at the Toyota company in Switzerland, takes a look at Toyota's hybrid drive vehicles. The construction of the vehicles and their combined combustion engines and electric generators and drives is presented and the combined operation of these components is described. Braking and energy recovery are discussed. Figures on the performance, fuel consumption and CO{sub 2} output of the hybrid vehicles are compared with those of conventional vehicles.
THERMALLY CLEAVABLE HYBRID MATERIALS
Directory of Open Access Journals (Sweden)
Constantin Gaina
2011-12-01
Full Text Available Thermally cleavable hybrid materials were prepared by the Diels-Alder cycloaddition reaction of poly(vinyl furfural to N phenylmaleimido-N’-(triethoxysilylpropylurea followed by the sol-gel condensation reaction of trietoxysilyl groups with water and acetic acid. Thermal and dynamic mechanical analysis, dielectric and FTIR spectroscopy were used to characterize the structure and properties of the composites. The size of the inorganic silica particles in the hybrid material varied dependent on the silica content. The DSC study of the prepared materials revealed that the cleavage process of the formed cycloadducts takes place at temperatures varying between 143-165°C and is an endothermic process.
Directory of Open Access Journals (Sweden)
Gert Pfurtscheller
2010-04-01
Full Text Available Nowadays, everybody knows what a hybrid car is. A hybrid car normally has 2 engines, its main purpose being to enhance energy efficiency and reduce CO2 output. Similarly, a typical hybrid brain-computer interface (BCI is also composed of 2 BCIs or at least one BCI and another system. Such a hybrid BCI, like any BCI, must fulfil the following four criteria: (i the device must rely on signals recorded directly from the brain; (ii there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii real time processing; and (iv the user must obtain feedback. This paper introduces some hybrid BCIs which have already been published or are currently in development or validation, and some concepts for future work. The BCIs described classify 2 EEG patterns: One is the event-related (desynchronisation (ERD, ERS of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP. The hybrid BCI can either have more than one input whereby the inputs are typically processed simultaneously or operate 2 systems sequentially, whereby the first system can act as a “brain switch”. In the case of self-paced operation of a SSVEP-based hand orthosis control with an motor imagery-based switch it was possible to reduce the rate of false positives during resting periods by about 50% compared to the SSVEP BCI alone. It is shown that such a brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS. Another interesting approach is a hybrid BCI with simultaneous operations of ERD- and SSVEP-based BCIs. Here it is important to prove the existing promising offline simulation results with online experiments. Hybrid BCIs can also use one brain signal and another input. Such an additional input can be a physiological signal like the heart rate but also a signal from an external device like, an eye gaze control system.
Development history of the Hybrid Test Vehicle
Trummel, M. C.; Burke, A. F.
1983-01-01
Phase I of a joint Department of Energy/Jet Propulsion Laboratory Program undertook the development of the Hybrid Test Vehicle (HTV), which has subsequently progressed through design, fabrication, and testing and evaluation phases. Attention is presently given to the design and test experience gained during the HTV development program, and a discussion is presented of the design features and performance capabilities of the various 'mule' vehicles, devoted to the separate development of engine microprocessor control, vehicle structure, and mechanical components, whose elements were incorporated into the final HTV design. Computer projections of the HTV's performance are given.
A Mathematical Approach to Hybridization
Matthews, P. S. C.; Thompson, J. J.
1975-01-01
Presents an approach to hybridization which exploits the similarities between the algebra of wave functions and vectors. This method will account satisfactorily for the number of orbitals formed when applied to hybrids involving the s and p orbitals. (GS)
Hybrid Ventilation Air Flow Process
DEFF Research Database (Denmark)
Heiselberg, Per Kvols
The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...
(Hybrid) Baryons Symmetries and Masses
Page, P R
1999-01-01
We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and construct the flavour, spin and J^P of hybrid baryons from the symmetries of the system. The lowest mass hybrid baryon is estimated at approximately 2 GeV.
Dean, David L.
1995-01-01
McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.
Institute of Scientific and Technical Information of China (English)
TANZhijun
1994-01-01
FAO, in collaboration with FEDEARROZ in Colombia and EMBRAPA / CNPAF in Brail, organized a workshop on the Establishment of a Coorperative Research Network on Hybrid Rice in Latin America and the Caribbean held from Mar 16 to 18, 1994 at EMBRAPA/CNPAF in Brazil. Dr MAO Changxiang,
Teelt van hybride wintertarwerassen
Timmer, R.D.; Paauw, J.G.M.
2003-01-01
Om de mogelijkheden van de teelt van hybride wintertarwerassen onder Nederlandse omstandigheden in beeld te brengen zijn er van 2000-2002 proeven uitgevoerd op het PPO-proefbedrijf te Lelystad. In deze proeven zijn een 4-tal hybriderassen (Hybnos, Hyno-braba, Hyno-esta, Mercury) vergeleken met een s
Lanzani, Guglielmo; Petrozza, Annamaria; Caironi, Mario
2017-01-01
From displays to solar cells, the field of organic optoelectronics has come a long way over the past 50 years, but the realization of an electrically pumped organic laser remains elusive. The answer may lie with hybrid organic-inorganic materials called perovskites.
DEFF Research Database (Denmark)
Lucas, Christoph; Raub, Dominik; Maurer, Ueli
2010-01-01
Most protocols for distributed, fault-tolerant computation, or multi-party computation (MPC), provide security guarantees in an all-or-nothing fashion. In contrast, a hybrid-secure protocol provides different security guarantees depending on the set of corrupted parties and the computational powe...
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin
2012-01-01
In this paper we explore the logic of now, yesterday, today and tomorrow by combining the semantic approach to indexicality pioneered by Hans Kamp [9] and refined by David Kaplan [10] with hybrid tense logic. We first introduce a special now nominal (our @now corresponds to Kamp’s original now...
Nuclear hybrid energy infrastructure
Energy Technology Data Exchange (ETDEWEB)
Agarwal, Vivek; Tawfik, Magdy S.
2015-02-01
The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.
Koetse, M.; Smits, E.; Rubingh, E.; Teunissen, P.; Kusters, R.; Abbel, R.; Brand, J. van den
2016-01-01
Although many electronic functionalities can be realized by printed or organic electronics, short-term marketable products often require robust, reproducible, and nondisturbing technologies. In this chapter we show how hybrid electronics, a combination of printed circuitry, thin-film electronics,
Some interval-valued intuitionistic uncertain linguistic hybrid Shapley operators
Institute of Scientific and Technical Information of China (English)
Fanyong Meng; Chunqiao Tan; Qiang Zhang
2014-01-01
Two interval-valued intuitionistic uncertain linguistic hybrid operators cal ed the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley averaging (I-IIULHSA) operator and the induced interval-valued intuitionistic uncertain linguistic hy-brid Shapley geometric (I-IIULHSG) operator are defined. These operators not only reflect the importance of elements and their ordered positions, but also consider the correlations among ele-ments and their ordered positions. Since the fuzzy measures are defined on the power set, it makes the problem exponential y com-plex. In order to simplify the complexity of solving a fuzzy measure, we further define the induced interval-valued intuitionistic uncer-tain linguistic hybrid λ-Shapley averaging (I-IIULHλSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley geometric (I-IIULHλSG) operator. Moreover, an approach for multi-attribute group decision making under the interval-valued intuitionistic uncertain linguistic environment is de-veloped. Final y, a numerical example is provided to verify the developed procedure and demonstrate its practicality and feasibil-ity.
Hybrid keyword search auctions
Goel, Ashish
2009-01-01
Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1. We show that risk-seeking advertisers will choose only a per-impression bid whereas risk-averse advertisers will choose only a per-click bid, and argue that both kind of advertisers arise naturally. Hence, the ability to bid in a hybrid fashion is important to account for the risk characteristics of the advertisers. 2. For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, we show that having the extra information from the advertisers in the form of a per-impression bid can result in significantly higher revenue. 3. An advertiser who believes that its click-probability is much higher than the auctioneer\\'s estimate can use per-impression bids to correct the auctioneer\\'s prior without incurring any extra cost. 4. The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies to deal with the uncertainty in the click-probability using the same basic auction. The per-click and per-impression bidding schemes can only be used to implement two extreme cases of these strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction. The
Skelcher, Chris; Smith, Steven Rathgeb
2015-06-01
We propose a novel approach to theorizing hybridity in public and nonprofit organizations. The concept of hybridity is widely used to describe organizational responses to changes in governance, but the literature seldom explains how hybrids arise or what forms they take. Transaction cost and organizational design literatures offer some solutions, but lack a theory of agency. We use the institutional logics approach to theorize hybrids as entities that face a plurality of normative frames. Logics provide symbolic and material elements that structure organizational legitimacy and actor identities. Contradictions between institutional logics offer space for them to be elaborated and creatively reconstructed by situated agents. We propose five types of organizational hybridity - segmented, segregated, assimilated, blended, and blocked. Each type is theoretically derived from empirically observed variations in organizational responses to institutional plurality. We develop propositions to show how our approach to hybridity adds value to academic and policy-maker audiences.
Kartsan, I. N.; Tyapkin, V. N.; Dmitriev, D. D.; Goncharov, A. E.; Zelenkov, P. V.; Kovalev, I. V.
2016-11-01
This paper considers the simulation of adaptive nulling mechanism patterns in hybrid reflector antenna systems with a 19-element feed element, in which the radiation pattern is formed as a cluster. Incidents of broadband and narrowband interference are studied in the article.
Ants exhibit asymmetric hybridization in a mosaic hybrid zone.
Purcell, Jessica; Zahnd, Sacha; Athanasiades, Anouk; Türler, Rebecca; Chapuisat, Michel; Brelsford, Alan
2016-10-01
Research on hybridization between species provides unparalleled insights into the pre- and postzygotic isolating mechanisms that drive speciation. In social organisms, colony-level incompatibilities may provide additional reproductive barriers not present in solitary species, and hybrid zones offer an opportunity to identify these barriers. Here, we use genotyping-by-sequencing to sequence hundreds of markers in a hybrid zone between two socially polymorphic ant species, Formica selysi and Formica cinerea. We characterize the zone, determine the frequency of hybrid workers, infer whether hybrid queens or males are produced and investigate whether hybridization is influenced by colony social organization. We also compare cuticular hydrocarbon profiles and aggression levels between the two species. The hybrid zone exhibits a mosaic structure. The asymmetric distribution of hybrids skewed towards F. cinerea suggests a pattern of unidirectional nuclear gene flow from F. selysi into F. cinerea. The occurrence of backcrossed individuals indicates that hybrid queens and/or males are fertile, and the presence of the F. cinerea mitochondrial haplotype in 97% of hybrids shows that successful F1 hybrids will generally have F. cinerea mothers and F. selysi fathers. We found no evidence that social organization contributes to speciation, because hybrids occur in both single-queen and multiple-queen colonies. Strongly differentiated cuticular hydrocarbon profiles and heightened interspecific aggression further reveal that species recognition cues are both present and perceived. The discovery of fertile hybrids and asymmetrical gene flow is unusual in ants, and this hybrid zone will therefore provide an ideal system with which to investigate speciation in social insects.
Bathe, Klaus-Jürgen
2015-01-01
Finite element procedures are now an important and frequently indispensable part of engineering analyses and scientific investigations. This book focuses on finite element procedures that are very useful and are widely employed. Formulations for the linear and nonlinear analyses of solids and structures, fluids, and multiphysics problems are presented, appropriate finite elements are discussed, and solution techniques for the governing finite element equations are given. The book presents general, reliable, and effective procedures that are fundamental and can be expected to be in use for a long time. The given procedures form also the foundations of recent developments in the field.
Institute of Scientific and Technical Information of China (English)
Xing-hui GAO; Hai-yun ZHOU
2012-01-01
In this paper,we consider hybrid algorithms for finding common elements of the set of common fixed points of two families quasi-φ-non-expansive mappings and the set of solutions of an equilibrium problem.We establish strong convergence theorems of common elements in uniformly smooth and strictly convex Banach spaces with the property (K).
MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE
Institute of Scientific and Technical Information of China (English)
Chen Yanbin; Li Liqun; Feng Xiaosong; Fang Junfei
2004-01-01
The welding mechanism of laser-TIG hybrid welding process is analyzed. With the variation of arc current, the welding process is divided into two patterns: deep-penetration welding and heat conductive welding. The heat flow model of hybrid welding is presented. As to deep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. The heat source of heat conductive welding is composed of two Gaussian distribute surface heat sources. With this heat source model, a temperature field is calculated. The finite element code MARC is employed for this purpose. The calculation results show a good agreement with the experimental data.
Enterprise Projects Set Risk Element Transmission Chaotic Genetic Model
Directory of Open Access Journals (Sweden)
Cunbin Li
2012-08-01
Full Text Available In order to research projects set risk transfer process and improve risk management efficiency in projects management, combining chaos theory and genetic algorithm, put forward enterprise projects set risk element transmission chaos genetic model. Using logistic chaos mapping and chebyshev chaos mapping mixture, constructed a hybrid chaotic mapping system. The steps of adopting hybrid chaos mapping for genetic operation include projects set initialization, calculation of fitness, selection, crossover and mutation operators, fitness adjustment and condition judgment. The results showed that the model can simulate enterprise projects set risk transmission process very well and it also provides the basis for the enterprise managers to make decisions.
Retrofits Convert Gas Vehicles into Hybrids
2012-01-01
Successful space missions can rarely be attributed to a single thing. Rather, they are the result of a system of systems: integrated elements functioning effectively in their individual roles and together with related components, then those systems interacting with and supporting other systems to form a collaborative whole - from the spacecraft itself to the engineering and research teams that design and build it. An example is found in spacecraft power systems. Unlike a gas-powered car or a battery-powered laptop, most spacecraft are powered by multiple energy sources - such as photovoltaic panels, fuel cells, and batteries - working in tandem to ensure the spacecraft functions throughout the course of a mission. As with any system, the appropriate combination of elements and the method of their management are key to high performance and efficiency. One initiative at Glenn Research Center, the Hybrid Power Management (HPM) program, focused on joining new and mature technologies for optimal power systems applications in space and on Earth, with the goal not only to develop ultra-efficient space power systems, but to advance HPM to address global energy issues. The HPM program emerged from Glenn s long history of electric vehicle research dating back to the 1970s, including the NASA Hybrid Electric Transit Bus (HETB) project in the 1990s, which was the largest vehicle to use supercapacitor energy storage.
OPTIMIZED GATEWAY DISCOVERY IN HYBRID MANETS
Directory of Open Access Journals (Sweden)
A.Triviño
2009-10-01
Full Text Available Mobile users are expected to demand access to the Internet anywhere and anytime. In a MANET context,a device which is about to connect to external hosts needs the route to the element which communicatesthe MANET with the Internet. This element is the Internet Gateway. To inform about its presence as wellas about some configuration parameters, the Gateway sends MRA messages. In a similar way to ad hocrouting protocols, the Gateway can generate the messages on demand (reactively, periodically(proactively or combining both previous strategies in a hybrid gateway discovery. Specifically, in thehybrid gateway discovery, the Gateway periodically sends the MRA messages in a restricted area. Thenodes that are outside this area demand the Gateway information reactively. This gateway discoveryrequires the setting of the number of hops that define the proactive area, also called the TTL value.Network performance can be improved when the Gateway uses information such as the position of thesources to adjust the TTL value. In this paper, we transfer the decision about the dimensions of theproactive zone to the mobile nodes so more network conditions are taken into account. Simulation resultsshow that the proposed gateway discovery outperforms other hybrid gateway discovery schemes.
Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles
Directory of Open Access Journals (Sweden)
Jia-Shiun Chen
2015-05-01
Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the
Lifescience Database Archive (English)
Full Text Available -300ELEMENT S000122 11-May-2006 (last modified) kehi Present upstream of the promot...er from the B-hordein gene of barley and the alpha-gliadin, gamma-gliadin, and low molecular weight glutenin... genes of wheat; See S000001 -300CORE; See S000002 -300MOTIF; -300 element; hordein; gliadin; glutenin; seed; wheat (Triticum aestivum) TGHAAARK ...
Energy Technology Data Exchange (ETDEWEB)
Kimura, T.; Ota, A.
1983-08-11
The agglomerate for the element is made from activated charcoal powder, an electrically conducting additive and a neutral electrolyte. The activated charcoal makes up 30 to 50 percent of the weight of the agglomerate. It is a mixture of hydrophobized and unhydrophobized powder in a ratio of 85 to 70 to 15 to 30. The element has high discharge characteristics.
Energy Technology Data Exchange (ETDEWEB)
Nakai, M.; Koboyasi, S.; Oisi, K.; Okadzaki, R.; Ota, A.
1983-07-29
An anode made of an alkaline or an alkaline earth metal and an electrolyte based on an organic solvent are used in the element. A mixture of Mn203 and Mn304 in a 9 to 1 to 3 to 7 ratio serves as the cathode. The element has a stable discharge curve at a nominal voltage of 1.5 volts.
DEFF Research Database (Denmark)
Kragh, Helge
2009-01-01
Apart from hydrogen, helium is the most abundant chemical element in the universe, and yet it was only discovered on the Earth in 1895. Its early history is unique because it encompasses astronomy as well as chemistry, two sciences which the spectroscope brought into contact during the second half...... of the nineteenth century. In the modest form of a yellow spectral line known as D3, 'helium' was sometimes supposed to exist in the Sun's atmosphere, an idea which is traditionally ascribed to J. Norman Lockyer. Did Lockyer discover helium as a solar element? How was the suggestion received by chemists, physicists...... elements might be different. The complex story of how helium became established as both a solar and terrestrial element involves precise observations as well as airy speculations. It is a story that is unique among the discovery histories of the chemical elements....
Alonso-Redondo, Elena; Huesmann, Hannah; El Boudouti, El-Houssaine; Tremel, Wolfgang; Djafari-Rouhani, Bahram; Butt, Hans-Juergen; Fytas, George
2015-06-17
We studied experimentally and theoretically the direction-dependent elastic and electromagnetic wave propagation in a supported film of hybrid PMMA (poly[methyl-methacrylate])-TiO2 superlattice (SL). In the direction normal to the layers, this one-dimensional periodic structure opens propagation band gaps for both hypersonic (GHz) phonons and near-UV photons. The high mismatch of elastic and optical impedance results in a large dual phoxonic band gap. The presence of defects inherent to the spin-coating fabrication technique is sensitively manifested in the band gap region. Utilizing Brillouin light scattering, phonon propagation along the layers was observed to be distinctly different from propagation normal to them and can, under certain conditions (SL thickness and substrate elasticity), reveal the nanomechanical properties of the constituent layers. Besides the first realization of unidirectional phoxonic behavior, hybrid (soft-hard) periodic materials are a promising simple platform for opto-acoustic interactions and applications such as filters and Bragg mirrors.
CERN. Geneva
2011-01-01
Programming languages always seem to do some things well but not others: Python punts when it comes to user interfaces, Java’s artificial complexity prevents rapid development and produces tangles, and it will be awhile before we see benefits from C++ concurrency work. The cognitive load of languages and their blind spots increases the cost of experimentation, impeding your ability to fail fast and iterate. If you use a single language to solve your problem, you are binding yourself to the worldview limitations and the mistakes made by the creator of that language. Consider increasing your wiggle room by crossing language boundaries, complementing a language that is powerful in one area with a different language powerful in another. Language hybridization can speed development to quickly discover your real problems, giving you more time to fix them. After making a case for hybridizing your thinking in general, I will present a number of simple examples; first showing the benefits of using other languages...
Hybrid Reality Lab Capabilities - Video 2
Delgado, Francisco J.; Noyes, Matthew
2016-01-01
objects that have the same shape, size, location to their physical object counterpart in virtual reality environment can be a game changer when it comes to training, planning, engineering analysis, science, entertainment, etc. Our Project is developing such capabilities for various types of environments. The video outlined with this abstract is a representation of an ISS Hybrid Reality experience. In the video you can see various Hybrid Reality elements that provide immersion beyond just standard Virtual Reality or Augmented Reality.
Franchising As Hybrid Organization: Russian Skill
Directory of Open Access Journals (Sweden)
Gyuzel F. Yusupova
2016-12-01
Full Text Available Russia has favorable conditions for development of hybrid cooperation (franchising on the different markets. On the one hand, as well as for the majority of countries with transition economies many Russian markets has been undersaturated. On the other hand, as for the developed countries, Russia has highly skilled human resources and the developed structure of consumption. In these conditions a model of coordination of the relations of franchising has been more and more popular. The benefit of this form can be explained from the side of institutional approach. The matter is that in real practice to determine the borders of firm is not simple. Key decisions of firm sometimes can be performed not in one center that can complicate distribution of control and responsibility and the determination of its borders. On the other hand, the determination of key decisions in the market, distribution of its assets and responsibility within one firm can strongly increase agency expenses. Therefore the hybrid form of coordination of the relations (to which the franchising belongs can lower these expenses, but in case of strict accomplishment of terms of the contract. The hybrid forms of coordination includes the combination of characteristics of the market and hierarchy. Transactions are controlled via the price mechanism for coordination. For control and management of united actions, the maintenance of a certain symmetry in relations are necessary the hierarchical elements. The different conditions of franchise are the reasons of risks for both parties. And for decrease in risk of opportunism the special tools are developed for disciplining of the franchisee. The described examples of the Russian franchises through comparison of contract terms showed how hybrid agreements solve the cooperation problems connected with specificity of resources, transactional expenses and the competition.
Page, P R
1996-01-01
New experimental information on the non--exotic J^{PC} = 0^{-+} isovector seen at 1.8 GeV by VES yields convincing evidence of its excited gluonic (hybrid) nature when a critical study of alternative quarkonium assignments is made in the context of ^3 P_0 decay by flux--tube breaking. Production of this gluonic excitation via meson exchange is promising, although its two photon production vanishes.
Military Hybrid Vehicle Survey
2011-08-03
Furthermore, a standard duty cycle that is accepted for measuring fuel economy does not exist nor does a focus towards a particular technology. This...expanded into mild hybrid with the addition of a clutch connecting the generator to the transmission and additional energy storage [16-17...speed control and one for engine/generator torque [35]. Urban, Highway, Composite 33%, 27.9%, 49% General vehicle simulation [30]. Urban 19.0
Koshy, Thomas; Gao, Zhenguang
2012-01-01
We develop a recurrence satisfied by the Fibonacci and Pell families. We then use it to find explicit formulae and generating functions for the hybrids "F[subscript n]P[subscript n]", "L[subscript n]P[subscript n]", "F[subscript n]Q[subscript n]" and "L[subscript n]Q[subscript n]", where "F[subscript n]", "L[subscript n]", "P[subscript n]" and…
Hybrid undulator numerical optimization
Energy Technology Data Exchange (ETDEWEB)
Hairetdinov, A.H. [Kurchatov Institute, Moscow (Russian Federation); Zukov, A.A. [Solid State Physics Institute, Chernogolovka (Russian Federation)
1995-12-31
3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.
Hybrid fundamental-solution-based FEM for piezoelectric materials
Cao, Changyong; Qin, Qing-Hua; Yu, Aibing
2012-10-01
In this paper, a new type of hybrid finite element method (FEM), hybrid fundamental-solution-based FEM (HFS-FEM), is developed for analyzing plane piezoelectric problems by employing fundamental solutions (Green's functions) as internal interpolation functions. A modified variational functional used in the proposed model is first constructed, and then the assumed intra-element displacement fields satisfying a priori the governing equations of the problem are constructed by using a linear combination of fundamental solutions at a number of source points located outside the element domain. To ensure continuity of fields over inter-element boundaries, conventional shape functions are employed to construct the independent element frame displacement fields defined over the element boundary. The proposed methodology is assessed by several examples with different boundary conditions and is also used to investigate the phenomenon of stress concentration in infinite piezoelectric medium containing a hole under remote loading. The numerical results show that the proposed algorithm has good performance in numerical accuracy and mesh distortion insensitivity compared with analytical solutions and those from ABAQUS. In addition, some new insights on the stress concentration have been clarified and presented in the paper.
Asymmetric Hybrid Nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Chumanov, George [Clemson Univ., SC (United States)
2015-11-05
Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.
Hybrid Keyword Search Auctions
Goel, Ashish
2008-01-01
Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1) It takes into account the risk characteristics of the advertisers. 2) For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, the hybrid auction can result in significantly higher revenue. 3) An advertiser who believes that its click-probability is much higher than the auctioneer's es...
Hybrid2 - The hybrid power system simulation model
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)
1996-12-31
There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.
Efficient Realization of the Mixed Finite Element Discretization for nonlinear Problems
Knabner, Peter; Summ, Gerhard
2016-01-01
We consider implementational aspects of the mixed finite element method for a special class of nonlinear problems. We establish the equivalence of the hybridized formulation of the mixed finite element method to a nonconforming finite element method with augmented Crouzeix-Raviart ansatz space. We discuss the reduction of unknowns by static condensation and propose Newton's method for the solution of local and global systems. Finally, we show, how such a nonlinear problem arises from the mixe...
DEFF Research Database (Denmark)
Heiselberg, Per; Nielsen, Peter V.
Air distribution in ventilated rooms is a flow process that can be divided into different elements such as supply air jets, exhaust flows, thermal plumes, boundary layer flows, infiltration and gravity currents. These flow elements are isolated volumes where the air movement is controlled...... by a restricted number of parameters, and the air movement is fairly independent of the general flow in the enclosure. In many practical situations, the most convenient· method is to design the air distribution system using flow element theory....
Energy Technology Data Exchange (ETDEWEB)
Hofmann, S. [GSI, Darmstadt (Germany)
1996-12-31
The new elements 110, 111, and 112 were synthesized and unambiguously identified in experiments at SHIP. Due to strong shell effects the dominant decay mode is not fission, but emission of alpha particles. Theoretical investigations predict that maximum shell effects should exist in nuclei near proton number 114 and neutron number 184. Measurements give hope that isotopes of element 114 close to the island of spherical Superheavy Elements could be produced by fusion reactions using {sup 118}Pb as target. systematic studies of the reaction cross-sections indicate that transfer of nucleons is the important process to initiate the fusion.
Finite element mesh generation
Lo, Daniel SH
2014-01-01
Highlights the Progression of Meshing Technologies and Their ApplicationsFinite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques
Buckling analysis of a ring stiffened hybrid composite cylinder
Potluri, Rakesh; Eswara Kumar, A.; Navuri, Karteek; Nagaraju, M.; Mojeswara Rao, Duduku
2016-09-01
This study aims to understand the response of the ring stiffened cylinders made up of hybrid composites subjected to buckling loads by using the concepts of Design of Experiments (DOE) and optimization by using Finite Element Method (FEM) simulation software Ansys workbench V15. Carbon epoxy and E-glass epoxy composites were used in the hybrid composite. This hybrid composite was analyzed by using different layup angles. Central composite design (CCD) was used to perform design of experiments (D.O.E) and kriging method was used to generate a response surface. The response surface optimization (RSO) was performed by using the method of the multi-objective genetic algorithm (MOGA). After optimization, the best candidate was chosen and applied to the ring stiffened cylinder and eigenvalue buckling analysis was performed to understand the buckling behavior. Best laminate candidates with high buckling strength have been identified. A generalized procedure of the laminate optimization and analysis have been shown.
A Multisection Broadband Impedance Transforming Branch-Line Hybrid
Kumar, S; Danshin, T
1995-01-01
Measurements and design equations for a two section impedance transforming hybrid suitable for MMIC applications and a new method of synthesis for multisection branch-line hybrids are reported. The synthesis method allows the response to be specified either of Butterworth or Chebyshev type. Both symmetric (with equal input and output impedances) and non-symmetric (impedance transforming) designs are feasible. Starting from a given number of sections, type of response, and impedance transformation ratio and for a specified midband coupling, power division ratio, isolation or directivity ripple bandwidth, the set of constants needed for the evaluation of the reflection coefficient response is first calculated. The latter is used to define a driving point impedance of the circuit, synthesize it and obtain the branch line immittances with the use of the concept of double length unit elements (DLUE). The experimental results obtained with microstrip hybrids constructed to test the validity of the brute force optim...
A hybrid formulation of a component mode synthesis method
Farhat, Charbel; Geradin, Michel
1992-01-01
Component mode synthesis is a substructuring technique frequently employed in structural dynamics. In this method, a given structure is subdivided into components or substructures, each of which is analyzed independently for natural frequencies and for mode shapes. The substructure mode shapes are then assembled to give displacement shapes or load patterns of the original structure. An analytical justification of the basic concept is presented using spectral decompositions, and a variant substructuring approach where intersubstructure continuity is enforced in a weak form is derived. This leads to a hybrid formulation of the basic method which is particularly suitable for assembling heterogeneous substructures and analyzing nonconforming and incompatible finite element substructure models. For problems where both the basic and hybrid methods are applicable, the hybrid variant can be computationally more advantageous.
DEFF Research Database (Denmark)
Braüner, Torben
2011-01-01
Hybrid logic is an extension of modal logic which allows us to refer explicitly to points of the model in the syntax of formulas. It is easy to justify interest in hybrid logic on applied grounds, with the usefulness of the additional expressive power. For example, when reasoning about time one...... often wants to build up a series of assertions about what happens at a particular instant, and standard modal formalisms do not allow this. What is less obvious is that the route hybrid logic takes to overcome this problem often actually improves the behaviour of the underlying modal formalism....... For example, it becomes far simpler to formulate proof-systems for hybrid logic, and completeness results can be proved of a generality that is simply not available in modal logic. That is, hybridization is a systematic way of remedying a number of known deficiencies of modal logic. First-order hybrid logic...
Divergent picornavirus IRES elements
DEFF Research Database (Denmark)
Belsham, Graham
2009-01-01
Internal ribosome entry site (IRES) elements were first identified about 20 years ago within the 5' untranslated region of picornavirus RNAs. They direct a cap-independent mechanism of translation initiation on the viral RNA. Within the picornavirus family it is now known that there are four...... classes of IRES element which vary in size (450-270nt), they also have different, complex, secondary structures and distinct requirements for cellular proteins to allow them to function. This review describes the features of each class of picornavirus IRES element but focuses on the characteristics...... of the most recently described group, initially identified within the porcine teschovirus-1 RNA, which has strong similarities to the IRES elements from within the genomes of hepatitis C virus and the pestiviruses which are members of the flavivirus family. The selection of the initiation codon...
Hybridization in geese: a review
Ottenburghs, Jente; Van Hooft, Pim; van Wieren, Sipke E.; Ydenberg, Ronald C; Herbert H. T. Prins
2016-01-01
The high incidence of hybridization in waterfowl (ducks, geese and swans) makes this bird group an excellent study system to answer questions related to the evolution and maintenance of species boundaries. However, knowledge on waterfowl hybridization is biased towards ducks, with a large knowledge gap in geese. In this review, we assemble the available information on hybrid geese by focusing on three main themes: (1) incidence and frequency, (2) behavioural mechanisms leading to hybridizatio...
New functionalities in abundant element oxides: ubiquitous element strategy.
Hosono, Hideo; Hayashi, Katsuro; Kamiya, Toshio; Atou, Toshiyuki; Susaki, Tomofumi
2011-06-01
While most ceramics are composed of ubiquitous elements (the ten most abundant elements within the Earth's crust), many advanced materials are based on rare elements. A 'rare-element crisis' is approaching owing to the imbalance between the limited supply of rare elements and the increasing demand. Therefore, we propose a 'ubiquitous element strategy' for materials research, which aims to apply abundant elements in a variety of innovative applications. Creation of innovative oxide materials and devices based on conventional ceramics is one specific challenge. This review describes the concept of ubiquitous element strategy and gives some highlights of our recent research on the synthesis of electronic, thermionic and structural materials using ubiquitous elements.
Hybridization and the Origin of Contagious Asexuality in Daphnia pulex.
Xu, Sen; Spitze, Ken; Ackerman, Matthew S; Ye, Zhiqiang; Bright, Lydia; Keith, Nathan; Jackson, Craig E; Shaw, Joseph R; Lynch, Michael
2015-12-01
Hybridization plays a potentially important role in the origin of obligate parthenogenesis (OP) in many organisms. However, it remains controversial whether hybridization directly triggers the transition from sexual reproduction to obligate asexuality or a hybrid genetic background enables asexual species to persist. Furthermore, we know little about the specific genetic elements from the divergent, yet still hybridizing lineages responsible for this transition and how these elements are further spread to create other OP lineages. In this study, we address these questions in Daphnia pulex, where cyclically parthenogenetic (CP) and OP lineages coexist. Ancestry estimates and whole-genome association mapping using 32 OP isolates suggest that a complex hybridization history between the parental species D. pulex and D. pulicaria is responsible for the introgression of a set of 647 D. pulicaria single nucleotide polymorphism alleles that show perfect association with OP. Crossing experiments using males of OP lineages and females of CP lineages strongly support a polygenic basis for OP. Single-sperm analyses show that although normal meiotic recombination occurs in the production of haploid sperm by males of OP lineages, a significant proportion of such sperm are polyploid, suggesting that the spread of asexual elements through these males (i.e., contagious asexuality) is much less efficient than previously envisioned. Although the current Daphnia genome annotation does not provide mechanistic insight into the nature of the asexuality-associated alleles, these alleles should be considered as candidates for future investigations on the genetic underpinnings of OP. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DEFF Research Database (Denmark)
Ditlev, Jesper; Rudbeck, Claus Christian
1997-01-01
The aim of the project has been to develop an element system for warm deck roofs which, from a thermal and economical point of view, can deal with the future demands for heat loss coefficients for low slope roofs.......The aim of the project has been to develop an element system for warm deck roofs which, from a thermal and economical point of view, can deal with the future demands for heat loss coefficients for low slope roofs....
Novel porcine repetitive elements
Directory of Open Access Journals (Sweden)
Nonneman Dan J
2006-12-01
Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.
DEFF Research Database (Denmark)
Ditlev, Jesper; Rudbeck, Claus Christian
1997-01-01
The aim of the project has been to develop an element system for warm deck roofs which, from a thermal and economical point of view, can deal with the future demands for heat loss coefficients for low slope roofs.......The aim of the project has been to develop an element system for warm deck roofs which, from a thermal and economical point of view, can deal with the future demands for heat loss coefficients for low slope roofs....
Structural elements design manual
Draycott, Trevor
2012-01-01
Gives clear explanations of the logical design sequence for structural elements. The Structural Engineer says: `The book explains, in simple terms, and with many examples, Code of Practice methods for sizing structural sections in timber, concrete,masonry and steel. It is the combination into one book of section sizing methods in each of these materials that makes this text so useful....Students will find this an essential support text to the Codes of Practice in their study of element sizing'.
Energy Technology Data Exchange (ETDEWEB)
Vatanabe, U.; Aoki, K.; Ito, K.; Ogava, K.; Okadzaki, R.
1983-07-29
An anode made of a light metal is used in the element, along with an anhydrous liquid electrolyte and a cathode made of CuC12(CFn)x or another material. The current tap of the anode is made from aluminum, gold, silver or another metal of the platinum group and the current tap may be coated with this metal. The thickness of the coating is 0.1 to 1 micrometer. The element has a long storage life.
Graybill, George
2007-01-01
Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.
Arakaki, Atsushi; Shimizu, Katsuhiko; Oda, Mayumi; Sakamoto, Takeshi; Nishimura, Tatsuya; Kato, Takashi
2015-01-28
Organisms produce various organic/inorganic hybrid materials, which are called biominerals. They form through the self-organization of organic molecules and inorganic elements under ambient conditions. Biominerals often have highly organized and hierarchical structures from nanometer to macroscopic length scales, resulting in their remarkable physical and chemical properties that cannot be obtained by simple accumulation of their organic and inorganic constituents. These observations motivate us to create novel functional materials exhibiting properties superior to conventional materials--both synthetic and natural. Herein, we introduce recent progress in understanding biomineralization processes at the molecular level and the development of organic/inorganic hybrid materials by these processes. We specifically outline fundamental molecular studies on silica, iron oxide, and calcium carbonate biomineralization and describe material synthesis based on these mechanisms. These approaches allow us to design a variety of advanced hybrid materials with desired morphologies, sizes, compositions, and structures through environmentally friendly synthetic routes using functions of organic molecules.
Hybrid solar lighting distribution systems and components
Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.
2011-07-05
A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.
Hybrid solar lighting systems and components
Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.
2007-06-12
A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.
The governance of hybrid organisations
DEFF Research Database (Denmark)
Spear, Roger; Cornforth, Chris
2010-01-01
The focus of this chapter is on the governance of third sector organizations (TSOs) and the challenges that are raised by hybridity. In particular it will focus on the question how does hybridity affect governance structures and processes and the challenges that governing bodies face?......The focus of this chapter is on the governance of third sector organizations (TSOs) and the challenges that are raised by hybridity. In particular it will focus on the question how does hybridity affect governance structures and processes and the challenges that governing bodies face?...
Filler, Guido; Felder, Sarah
2014-08-01
In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.
The application of large scale hybrids to NLS and future personnel launch vehicles
McKinney, Bevin C.
1992-07-01
Two new space transportation concepts are being investigated in the United States. One, the National Launch System (NLS), is designed to launch unmanned payloads. Another, the Personnel Launch System (PLS), is a small spacecraft designed exclusively for personnel transport. Consideration is being given to launching the PLS using an element of the NLS booster. Because of the demanding requirements for crew safety and safe return after abort, the PLS may be better served by a launcher optimized for crew safety, leaving the NLS to be optimized for its unmanned cargo carrying role. The unique safety characteristics of hybrid propulsion could be invaluable in this manned launch role. This paper reviews the characteristics of hybrid propulsion as they apply to the PLS mission, and describes the features of an example hybrid PLS launcher. The paper suggests that booster elements of this hybrid PLS launcher could be used to augment NLS core performance for missions that require heavier payloads.
Hybrid Optimization in the Design of Reciprocal Structures
DEFF Research Database (Denmark)
Parigi, Dario; Kirkegaard, Poul Henning; Sassone, Mario
2012-01-01
that explore the global domain of solutions as genetic algorithms (GAs). The benchmark tests show that when the control on the topology is required the best result is obtained by a hybrid approach that combines the global search of the GA with the local search of a GB algorithm. The optimization method......The paper presents a method to generate the geometry of reciprocal structures by means of a hybrid optimization procedure. The geometry of reciprocal structures where elements are sitting on the top or in the bottom of each other is extremely difficult to predict because of the non....... In this paper it is shown that the geometrically compatible position of the elements could be determined by local search algorithm gradient-based (GB). However the control on which bar sit on the top or in the bottom at each connection can be regarded as a topological problem and require the use of algorithms...
GaAs Medipix2 hybrid pixel detector
Kostamo, P; Vähänen, S; Tlustos, L; Fröjdh, C; Campbell, M; Zhilyaev, Y; Lipsanen, H
2008-01-01
A GaAs Medipix2 hybrid pixel detector based on high purity epitaxial GaAs material was successfully fabricated. The mesa type GaAs sensor with 256×256 pixels and total area of 1.4×1.4 cm2 was made of a 140-μm-thick epitaxial p–i–n structure utilizing reactive ion etching. A final thickness of approximately 110 μm for the all-epitaxial sensor element is achieved by back-thinning procedure. The sensor element is bump bonded to a Medipix2 read-out ASIC. The detector is capable of room temperature spectroscopic operation and it demonstrates the potential of GaAs for high resolution X-ray imaging systems operating at room temperature. This work describes the manufacturing process and electrical properties of the GaAs Medipix2 hybrid detector.
Cryogenic Hybrid Magnetic Bearing
Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.
1994-01-01
Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.
Chen, D. Y.
1985-10-01
The voltage rating of a bipolar transistor may be greatly extended while at the same time reducing its switching time by operating it in conjunction with FETs in a hybrid circuit. One FET is used to drive the bipolar transistor while the other FET is connected in series with the transistor and an inductive load. Both FETs are turned on or off by a single drive signal of load power, the second FET upon ceasing conductions, rendering one power electrode of the bipolar transistor open. Means are provided to dissipate currents which flow after the bipolar transistor is rendered nonconducting.
Reflections on Intellectual Hybridity
Directory of Open Access Journals (Sweden)
Kimala Price
2012-05-01
Full Text Available Drawing from the growing literature on interdisciplinarity and my own experiences as an intellectual hybrid, I discuss the personal and institutional challenges inherent in crossing disciplinary boundaries in the academy. I argue that boundary crossing is a natural occurrence and that the issue of (interdisciplinarity is a matter of degree and of determining who gets to define the boundaries. Defining boundaries is not merely an intellectual enterprise, but also a political act that delineates what is, or is not, legitimate scholarship. This issue is especially salient to women's and gender studies during times of economic distress and educational budget cuts.
Hybrid Keyword Search Auctions
Goel, Ashish; Munagala, Kamesh
2008-01-01
Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the ...
Hybrid vehicle potential assessment. Volume 7. Hybrid vehicle review
Energy Technology Data Exchange (ETDEWEB)
Leschly, K.O.
1979-09-30
Review of hybrid vehicles (HVs) built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes on-road hybrid passenger cars, trucks, vans, and buses.
Hybrid vehicle potential assessment. Volume 7: Hybrid vehicle review
Leschly, K. O.
1979-01-01
Review of hybrid vehicles built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes onroad hybrid passenger cars, trucks, vans, and buses.
The Hybrid Advantage: Graduate Student Perspectives of Hybrid Education Courses
Hall, Sarah; Villareal, Donna
2015-01-01
Hybrid courses combine online and face-to-face learning environments. To organize and teach hybrid courses, instructors must understand the uses of multiple online learning tools and face-toface classroom activities to promote and monitor the progress of students. The purpose of this phenomenological study was to explore the perspectives of…
Trust and Contracting in Agri-Food Hybrid Structures
Martino, Gaetano
2007-01-01
The paper aims at examining the hypothesis that the influence of trust on contract can be thought of as a dynamic factor of organizational choices in supply chains. The relationship between contract and trust is delineated on the basis of institutional environment, contractual incompleteness, safeguards and restrictive provisions. The interaction between individual and system elements in the formation of trust and its influence in hybrid contracting is considered. According to a New Instituti...
Active diagnosis of hybrid systems - A model predictive approach
2009-01-01
A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeate...
Hybrid silicon plasmonic organic directional coupler-based modulator
Abdelatty, M. Y.; Zaki, A. O.; Swillam, M. A.
2017-01-01
An optical directional coupler (ODC)-based hybrid plasmonic waveguide is designed and demonstrated with a power splitting mechanism that can be tuned by applying an external electric field. The tuning mechanism takes the advantage of electro-optic properties of the embedded polymer layer. The ODC operates under 1550 nm telecommunication wavelength. A finite element method with a perfect matching layer, absorbing boundary condition, is taken up to simulate and analyze the ODC.
Operations Optimization of Hybrid Energy Systems under Variable Markets
Energy Technology Data Exchange (ETDEWEB)
Chen, Jun; Garcia, Humberto E.
2016-07-01
Hybrid energy systems (HES) have been proposed to be an important element to enable increasing penetration of clean energy. This paper investigates the operations flexibility of HES, and develops a methodology for operations optimization to maximize its economic value based on predicted renewable generation and market information. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value, and is illustrated by numerical results.
Stability estimates for hybrid coupled domain decomposition methods
Steinbach, Olaf
2003-01-01
Domain decomposition methods are a well established tool for an efficient numerical solution of partial differential equations, in particular for the coupling of different model equations and of different discretization methods. Based on the approximate solution of local boundary value problems either by finite or boundary element methods, the global problem is reduced to an operator equation on the skeleton of the domain decomposition. Different variational formulations then lead to hybrid domain decomposition methods.
Calibrated and Interactive Modelling of Form-Active Hybrid Structures
DEFF Research Database (Denmark)
Quinn, Gregory; Holden Deleuran, Anders; Piker, Daniel
2016-01-01
Form-active hybrid structures (FAHS) couple two or more different structural elements of low self weight and low or negligible bending flexural stiffness (such as slender beams, cables and membranes) into one structural assembly of high global stiffness. They offer high load-bearing capacity...... materially-informed sketching. Making use of a projection-based dynamic relaxation solver for structural analysis, explorative design has proven to be highly effective....
Analysis of hybrid viscous damper by real time hybrid simulations
DEFF Research Database (Denmark)
Brodersen, Mark Laier; Ou, Ge; Høgsberg, Jan Becker
2016-01-01
Results from real time hybrid simulations are compared to full numerical simulations for a hybrid viscous damper, composed of a viscous dashpot in series with an active actuator and a load cell. By controlling the actuator displacement via filtered integral force feedback the damping performance...... of the hybrid viscous damper is improved, while for pure integral force feedback the damper stroke is instead increased. In the real time hybrid simulations viscous damping is emulated by a bang-bang controlled Magneto-Rheological (MR) damper. The controller activates high-frequency modes and generates drift...... in the actuator displacement, and only a fraction of the measured damper force can therefore be used as input to the investigated integral force feedback in the real time hybrid simulations....
A hybrid reconfigurable solar and wind energy system
Gadkari, Sagar A.
We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.
Arabidopsis hybrid speciation processes.
Schmickl, Roswitha; Koch, Marcus A
2011-08-23
The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation.
Suppression subtractive hybridization.
Ghorbel, Mohamed T; Murphy, David
2011-01-01
Comparing two RNA populations that differ from the effects of a single independent variable, such as a drug treatment or a specific genetic defect, can establish differences in the abundance of specific transcripts that vary in a population dependent manner. There are different methods for identifying differentially expressed genes. These methods include microarray, Serial Analysis of Gene Expression (SAGE), and quantitative Reverse-Transcriptase Polymerase Chain Reaction (qRT-PCR). Herein, the protocol describes an easy and cost-effective alternative that does not require prior knowledge of the transcriptomes under examination. It is specifically relevant when low levels of RNA starting material are available. This protocol describes the use of Switching Mechanism At RNA Termini Polymerase Chain Reaction (SMART-PCR) to amplify cDNA from small amounts of RNA. The amplified cDNA populations under comparison are then subjected to Suppression Subtractive Hybridization (SSH-PCR). SSH-PCR is a technique that couples subtractive hybridization with suppression PCR to selectively amplify fragments of differentially expressed genes. The resulting products are cDNA populations enriched for significantly overrepresented transcripts in either of the two input RNAs. These cDNA populations can then be cloned to generate subtracted cDNA library. Microarrays made with clones from the subtracted forward and reverse cDNA libraries are then screened for differentially expressed genes using targets generated from tester and driver total RNAs.
Directory of Open Access Journals (Sweden)
Mohamed Elkawkagy
2013-11-01
Full Text Available Although planning techniques achieved a significant progress during recent years, solving many planning problem still difficult even for modern planners. In this paper, we will adopt landmark concept to hybrid planning setting - a method that combines reasoning about procedural knowledge and causalities. Land-marks are a well-known concept in the realm of classical planning. Recently, they have been adapted to hierarchical approaches. Such landmarks can be extracted in a pre-processing step from a declarative hierarchical planning domain and problem description. It was shown how this technique allows for a considerable reduction of the search space by eliminating futile plan development options before the actual planning. Therefore, we will present a new approach to in¬tegrate landmark pre-processing technique in the context of hierarchical planning with landmark technique in the classical planning. This integration allows to incorporate the ability of using extracted landmark tasks from hierarchical domain knowledge in the form of HTN and using landmark literals from classical planning. To this end, we will construct a transformation technique to transform the hybrid planning domain into a classical domain model. The method¬ologies in this paper have been implemented successfully, and we will present some experimental results that give evidence for the consid-erable performance increase gained through planning system.
Calabro, M.
2011-10-01
Aside of research works, this historical survey shows propulsion units used by students for small satellites and for gas generation, or those for the Space Ship One, even if LOx/HTPB was studied and tested in large motors for its potential very low cost; however, this combination highlights a series of technical problems without any performance advantage over the existing LOx/Kerosene family and never been operational for ETO applications. The particularity of hybrid propulsion is to use the state-of-the-art of both liquids and solids; the only show stopper is the propellant itself. The past work focused on LOx/HTPB (selected for its low cost) appears to be a dead-end (combustion problems and global low performances resulting from a high level of residuals). The solution that appears through the past experience is the addition of hydrides to a binder (HTPB or other) or to a binder and a homogeneous fuel or a mixture of both, with or without others additives; within these solutions some will not present any manufacturing problem and some may have a low cost. Nevertheless, the studies of the following phases have to demonstrate the compatibility of the potential regression rate range with a high-performance global design of a hybrid Motor and the manufacturing at a reasonable cost of a hydride giving a high level of performances.
Hybrid Turbine Electric Vehicle
Viterna, Larry A.
1997-01-01
Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.
Arora, Vivek; Baras, John S.; Dillon, Douglas; Falk, Aaron; Suphasindhu, Narin
1995-01-01
Access to the Internet is either too slow (dial-up SLIP) or too expensive (switched 56 kbps, frame relay) for the home user or small enterprise. The Center for Satellite and Hybrid Communication Networks and Hughes Network Systems have collaborated using systems integration principles to develop a prototype of a low-cost hybrid (dial-up and satellite) newtork terminal which can deliver data from the Internet to the user at rates up to 160 kbps. An asymmetric TCP/IP connection is used breaking the network link into two physical channels: a terrestrial dial-up for carrying data from the terminal into the Internet and a receive-only satellite link carrying IP packets from the Internet to the user. With a goal of supporting bandwidth hungry Internet applications such as Mosaic, Gopher, and FTP, this system has been designed to support any Intel 80386/486 PC, any commercial TCP/IP package, any unmodified host on the Internet, and any of the routers, etc., within the Internet. The design exploits the following three observations: 1) satellites are able to offer high bandwidth connections to a large geographical area, 2) a receive-only VSAT is cheap to manufacture and easier to install than one which can also transmit, and 3) most computer users, especially those in a home environment, will want to consume much more information than they generate. IP encapsulation, or tunneling, issued to manipulate the TCP/IP protocols to route packets asymmetrically.
Unified Hybrid Network Theoretical Model Trilogy
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The first of the unified hybrid network theoretical model trilogy (UHNTF) is the harmonious unification hybrid preferential model (HUHPM), seen in the inner loop of Fig. 1, the unified hybrid ratio is defined.
On the development of an intrinsic hybrid composite
Kießling, R.; Ihlemann, J.; Riemer, M.; Drossel, W.-G.; Scharf, I.; Lampke, T.; Sharafiev, S.; Pouya, M.; F-X Wagner, M.
2016-03-01
Hybrid parts, which combine low weight with high strength, are moving into the focus of the automotive industry, due to their high potential for usage in the field of crash-relevant structures. In this contribution, the development of an intrinsic hybrid composite is presented, with a focus on the manufacturing process, complex simulations of the material behaviour and material testing. The hybrid composite is made up of a continuous fibre- reinforced plastic (FRP), in which a metallic insert is integrated. The mechanical behaviour of the individual components is characterised. For material modelling, an approach is pointed out that enables modelling at large strains by directly connected rheological elements. The connection between the FRP and the metallic insert is realised by a combination of form fit and adhesive bonds. On the one hand, adhesive bonds are generated within a sol gel process. On the other hand, local form elements of the metallic insert are pressed into the FRP. We show how these form elements are generated during the macroscopic forming process. In addition, the applied sol gel process is explained. Finally, we consider design concepts for a specimen type for high strain testing of the resulting interfaces.
Nonlinear/linear unified thermal stress formulations - Transfinite element approach
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
A new unified computational approach for applicability to nonlinear/linear thermal-structural problems is presented. Basic concepts of the approach including applicability to nonlinear and linear thermal structural mechanics are first described via general formulations. Therein, the approach is demonstrated for thermal stress and thermal-structural dynamic applications. The proposed transfinite element approach focuses on providing a viable hybrid computational methodology by combining the modeling versatility of contemporary finite element schemes in conjunction with transform techniques and the classical Bubnov-Galerkin schemes. Comparative samples of numerical test cases highlight the capabilities of the proposed concepts.
Parallel Solver for H(div) Problems Using Hybridization and AMG
Energy Technology Data Exchange (ETDEWEB)
Lee, Chak S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-01-15
In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examined through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.
Hybrid Textures of Neutrino Mass Matrix under the Lamppost of Latest Neutrino and Cosmology Data
Kalita, Rupam
2015-01-01
We study all possible neutrino mass matrices with one zero element and two equal non-zero elements, known as hybrid texture neutrino mass matrices. In the diagonal charged lepton basis, we consider thirty nine such possible cases which are consistent with the latest neutrino data. Using the two constraints on neutrino mass matrix elements imposed by hybrid textures, we numerically evaluate the neutrino parameters like the lightest neutrino mass $m_{\\text{lightest}}$, one Dirac CP phase $\\delta$ and two Majorana CP phases $\\alpha, \\beta$ by using the global fit $3\\sigma$ values of three mixing angles and two mass squared differences. We then constrain this parameter space by using the cosmological upper bound on the sum of absolute neutrino masses given by Planck experiment. We also calculate the effective neutrino mass matrix for this region of parameter space which may have relevance in future neutrinoless double beta decay experiments. We finally discriminate between these hybrid texture mass matrices from ...
Kim, Changsoo; Robertson, Jon S; Paterson, Andrew H
2011-09-01
Sugarcane (Saccharum spp.) breeders in the early 20th century made remarkable progress in increasing yield and disease resistance by crossing Saccharum spontaneum L., a wild relative, to Saccharum officinarum L., a traditional cultivar. Modern sugarcane cultivars have approximately 71%-83% of their chromosomes originating from S. officinarum, approximately 10%-21% from S. spontaneum, and approximately 2%-13% recombinant or translocated chromosomes. In the present work, C(0)t-based cloning and sequencing (CBCS) was implemented to further explore highly repetitive DNA and to seek species-specific repeated DNA in both S. officinarum and S. spontaneum. For putatively species-specific sequences, overlappping oligonucleotide probes (overgos) were designed and hybridized to BAC filters from the interspecific hybrid sugarcane cultivar 'R570' to try to deduce parental origins of BAC clones. We inferred that 12 967 BACs putatively originated from S. officinarum and 5117 BACs from S. spontaneum. Another 1103 BACs were hybridized by both species-specific overgos, too many to account for by conventional recombination, thus suggesting ectopic recombination and (or) translocation of DNA elements. Constructing a low C(0)t library is useful to collect highly repeated DNA sequences and to search for potentially species-specific molecular markers, especially among recently diverged species. Even in the absence of repeat families that are species-specific in their entirety, the identification of localized variations within consensus sequences, coupled with the site specificity of short synthetic overgos, permits researchers to monitor species-specific or species-enriched variants.
Chaotic Dynamics in Hybrid Systems
P.J. Collins (Pieter)
2008-01-01
htmlabstractIn this paper we give an overview of some aspects of chaotic dynamics in hybrid systems, which comprise different types of behaviour. Hybrid systems may exhibit discontinuous dependence on initial conditions leading to new dynamical phenomena. We indicate how methods from topological
Chaotic dynamics in hybrid systems
P.J. Collins (Pieter)
2008-01-01
htmlabstractIn this paper we give an overview of some aspects of chaotic dynamics in hybrid systems, which comprise different types of behaviour. Hybrid systems may exhibit discontinuous dependence on initial conditions leading to new dynamical phenomena. We indicate how methods from topological
The governance of hybrid organisations
DEFF Research Database (Denmark)
Spear, Roger; Cornforth, Chris
2010-01-01
The focus of this chapter is on the governance of third sector organizations (TSOs) and the challenges that are raised by hybridity. In particular it will focus on the question how does hybridity affect governance structures and processes and the challenges that governing bodies face?...
Expanding Discourse Repertoires with Hybridity
Kelly, Gregory J.
2012-01-01
In "Hybrid discourse practice and science learning" Kamberelis and Wehunt present a theoretically rich argument about the potential of hybrid discourses for science learning. These discourses draw from different forms of "talk, social practice, and material practices" to create interactions that are "intertextually complex" and "interactionally…
Design Principles for Hybrid Ventilation
DEFF Research Database (Denmark)
Heiselberg, Per
For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....
Hybridity in Embedded Computing Systems
Institute of Scientific and Technical Information of China (English)
虞慧群; 孙永强
1996-01-01
An embedded system is a system that computer is used as a component in a larger device.In this paper,we study hybridity in embedded systems and present an interval based temporal logic to express and reason about hybrid properties of such kind of systems.
Electric/Hybrid Vehicle Simulation
Slusser, R. A.; Chapman, C. P.; Brennand, J. P.
1985-01-01
ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.
Hybrid Charmonium from Lattice QCD
Luo, X Q
2006-01-01
We review our recent results on the JPC = 0¡¡ exotic hybrid charmonium mass and JPC = 0¡+, 1¡¡ and 1++ nonexotic hybrid charmonium spectrum from anisotropic improved lattice QCD and discuss the relevance to the recent discovery of the Y(4260) state and future experimental search for other states.
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
The Tower: Modelling, Analysis and Construction of Bending Active Tensile Membrane Hybrid Structures
DEFF Research Database (Denmark)
Holden Deleuran, Anders; Schmeck, Michel; Charles Quinn, Gregory
2015-01-01
as combining two or more structural concepts and materials together to create a stronger whole. The paper presents the methods used and developed for design, simulation, evaluation and production, as well as the challenges and obstacles to overcome to build a complex hybrid tower structure in an outside......The project is the result of an interdisciplinary research collaboration between CITA, KET and Fibrenamics exploring the design of integrated hybrid structures employing bending active elements and tensile membranes with bespoke material properties and detailing. Hybrid structures are defined here...
Directory of Open Access Journals (Sweden)
Dr Hireni Mankodi
2014-12-01
Full Text Available Among the various methods commingling process is comparatively better alternative to produce hybrid yarns. The required properties of hybrid yarns can be obtained by controlling main processing parameters such as air pressure, overfeed and take-up speed along with proper selection of nozzle (jet design. The commingling machine has been fabricated to study the commingling parameters. The nozzle is the most important element of the commingling machine. The design specification of commingling jet along with the processing parameters decides the final characteristics of yarn. In the present study two different types of jets have been selected to investigate commingling characteristics of glass/polypropylene hybrid yarn.
Energy Technology Data Exchange (ETDEWEB)
Burley, H.H. [ed.
1956-08-01
It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.
Creativity Management Key Elements
Directory of Open Access Journals (Sweden)
Rosa María Fuchs Ángeles
2015-09-01
Full Text Available Organizations are constantly looking towards innovation. In order to reach it they must foment creativity. This paper analyzes a series of elements considered in the organizational creativity management and proposes a model with the indispensable factors that organizations should consider to reach it. These elements are: culture and organizational environment, strategy, structure, communication, relation with customers, human resources (recruiting, training, job design, compensation, promotion, and performance evaluation, long term orientation and the organizational life cycle. Having the analysis of those elements as a basis, the indispensable pillars on management creativity are identified. The proposed model is based on 5 pillars: the alignment between strategic, culture and organizational structure, called by the authors 'Holy Trinity'; intern publicity; customer’s voice; recognition and a look towards future. Finally, the case of an innovative Peruvian enterprise is presented from the model’s perspective and the study conclusions.
Elemental analysis in biotechnology.
Hann, Stephan; Dernovics, Mihaly; Koellensperger, Gunda
2015-02-01
This article focuses on analytical strategies integrating atomic spectroscopy in biotechnology. The rationale behind developing such methods is inherently linked to unique features of the key technique in elemental analysis, which is inductively coupled plasma mass spectrometry: (1) the high sensitivity and selectivity of state of the art instrumentation, (2) the possibility of accurate absolute quantification even in complex matrices, (3) the capability of combining elemental detectors with chromatographic separation methods and the versatility of the latter approach, (4) the complementarity of inorganic and organic mass spectrometry, (5) the multi-element capability and finally (6) the capability of isotopic analysis. The article highlights the most recent bio-analytical developments exploiting these methodological advantages and shows the potential in biotechnological applications.
Advanced finite element technologies
Wriggers, Peter
2016-01-01
The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.
Energy Technology Data Exchange (ETDEWEB)
Arita, T.; Murakami, K.; Okha, K.
1983-04-28
A cathode with a dual layer active mass is installed in the disk shaped alkaline silver and zinc element. The first layer, which is turned towards the anode, contains 85 parts Ag2O, 5 parts electrolytic MnO2 and 10 parts graphite. The second layer, which contacts the bottom of the element, contains 35 parts Ag2O, 60 parts electrolytic MnO2 and 5 parts graphite. The electrical capacity of the first and second layers is 60 and 40, respectively. The first layer may be discharged with a high current density and the second layer with less current density. The element has high characteristics with comparatively low cost.
DEFF Research Database (Denmark)
Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...
Detecting hybridization using ancient DNA.
Schaefer, Nathan K; Shapiro, Beth; Green, Richard E
2016-06-01
It is well established that related species hybridize and that this can have varied but significant effects on speciation and environmental adaptation. It should therefore come as no surprise that hybridization is not limited to species that are alive today. In the last several decades, advances in technologies for recovering and sequencing DNA from fossil remains have enabled the assembly of high-coverage genome sequences for a growing diversity of organisms, including many that are extinct. Thanks to the development of new statistical approaches for detecting and quantifying admixture from genomic data, genomes from extinct populations have proven useful both in revealing previously unknown hybridization events and informing the study of hybridization between living organisms. Here, we review some of the key recent statistical innovations for detecting ancient hybridization using genomewide sequence data and discuss how these innovations have revised our understanding of human evolutionary history.
Schmalzel, John L.; Morris, Jon; Turowski, Mark; Figueroa, Fernando; Oostdyk, Rebecca
2008-01-01
There are a number of architecture models for implementing Integrated Systems Health Management (ISHM) capabilities. For example, approaches based on the OSA-CBM and OSA-EAI models, or specific architectures developed in response to local needs. NASA s John C. Stennis Space Center (SSC) has developed one such version of an extensible architecture in support of rocket engine testing that integrates a palette of functions in order to achieve an ISHM capability. Among the functional capabilities that are supported by the framework are: prognostic models, anomaly detection, a data base of supporting health information, root cause analysis, intelligent elements, and integrated awareness. This paper focuses on the role that intelligent elements can play in ISHM architectures. We define an intelligent element as a smart element with sufficient computing capacity to support anomaly detection or other algorithms in support of ISHM functions. A smart element has the capabilities of supporting networked implementations of IEEE 1451.x smart sensor and actuator protocols. The ISHM group at SSC has been actively developing intelligent elements in conjunction with several partners at other Centers, universities, and companies as part of our ISHM approach for better supporting rocket engine testing. We have developed several implementations. Among the key features for these intelligent sensors is support for IEEE 1451.1 and incorporation of a suite of algorithms for determination of sensor health. Regardless of the potential advantages that can be achieved using intelligent sensors, existing large-scale systems are still based on conventional sensors and data acquisition systems. In order to bring the benefits of intelligent sensors to these environments, we have also developed virtual implementations of intelligent sensors.
DEFF Research Database (Denmark)
Hansen, Hans
(Alte Länder). This is the 9th and last edition of the publication,covering income levels and rules for social security and personal taxation for 1999. Basis for the projections to 1999 income levels is the 1998 data (in some cases 1999 data)for OECD's Taxing Wages as reported by national experts.......Elements of Social Security is a comparative study of important elements of the social security systems in Denmark (DK), Sweden (S), Finland (FIN), Austria (A), Germany (D), the Netherlands (NL), Great Britain (GB) and Canada (CAN). It should be emphasized that Germany is the former West Germany...
Sutton, George P
2011-01-01
The definitive text on rocket propulsion-now revised to reflect advancements in the field For sixty years, Sutton's Rocket Propulsion Elements has been regarded as the single most authoritative sourcebook on rocket propulsion technology. As with the previous edition, coauthored with Oscar Biblarz, the Eighth Edition of Rocket Propulsion Elements offers a thorough introduction to basic principles of rocket propulsion for guided missiles, space flight, or satellite flight. It describes the physical mechanisms and designs for various types of rockets' and provides an unders
2010-01-01
Finite element analysis is an engineering method for the numerical analysis of complex structures. This book provides a bird's eye view on this very broad matter through 27 original and innovative research studies exhibiting various investigation directions. Through its chapters the reader will have access to works related to Biomedical Engineering, Materials Engineering, Process Analysis and Civil Engineering. The text is addressed not only to researchers, but also to professional engineers, engineering lecturers and students seeking to gain a better understanding of where Finite Element Analysis stands today.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
DEFF Research Database (Denmark)
Hansen, Hans
Elements of Social Security is a comparative study of important elements of the social security systems in Denmark (DK), Sweden (S), Finland (FIN), Austria (A), Germany (D), the Netherlands (NL), Great Britain (GB) and Canada (CAN). It should be emphasized that Germany is the former West Germany...... (Alte Länder). This is the 9th and last edition of the publication,covering income levels and rules for social security and personal taxation for 1999. Basis for the projections to 1999 income levels is the 1998 data (in some cases 1999 data)for OECD's Taxing Wages as reported by national experts....
Amir-Moez, A R; Sneddon, I N
1962-01-01
Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a
Annihilators of nilpotent elements
Directory of Open Access Journals (Sweden)
Abraham A. Klein
2005-01-01
Full Text Available Let x be a nilpotent element of an infinite ring R (not necessarily with 1. We prove that A(x—the two-sided annihilator of x—has a large intersection with any infinite ideal I of R in the sense that card(A(x∩I=cardI. In particular, cardA(x=cardR; and this is applied to prove that if N is the set of nilpotent elements of R and R≠N, then card(R\\N≥cardN.
Archaeal extrachromosomal genetic elements
DEFF Research Database (Denmark)
Wang, Haina; Peng, Nan; Shah, Shiraz Ali
2015-01-01
SUMMARY: Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spind......SUMMARY: Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes...
Energy Technology Data Exchange (ETDEWEB)
Obi, F.
1983-09-29
A current tap pressed into the anode is installed in the central part of the top of the element. There is an internal top made of plastic under the top. There is a projection in the center of the top with an opening, through which the current tap is passed. The edge of the plastic top serves as an insulation lining between the metallic top and the body, which serves as the current tap for the cathode. A separator is placed between the anode and the cathode. Electrolyte leaks are prevented in the slotted disk elements.
Institute of Scientific and Technical Information of China (English)
胥国祥; 武传松; 秦国梁; 王旭友
2012-01-01
从宏观传热学出发,综合考虑焊缝横断面形状特点及接头形式对焊接热流的影响,建立了适用的T型接头激光+GMAW复合热源焊的组合式热源模型.利用双椭球体热源模型描述电弧热流和熔滴热焓,采用热流峰值指数递增-锥体热源模型表征激光热输入,并通过坐标系转换的方法旋转热源模型,以考虑焊枪倾斜对焊接热流分布的影响,推导出适用于T型接头复合焊的热源模型表达公式,从而简化了T型接头焊接数值模拟中的模型加载过程.将所建立的模型用于不同焊接条件下铝合金T型接头激光+GMAW单侧双面焊接焊缝形状和尺寸的模拟计算,计算结果与实验结果吻合较好,从而证明了模型的准确性和适用性；利用该模型计算了铝合金T型接头复合焊近缝区不同位置的热循环曲线,分析了铝合金T型接头复合焊热循环特征,为其组织和性能的预测奠定了基础.%T-welded structures of aluminum alloy are increasingly used in automotive, railway vehicles, aerospace and bridges. However, compared with the simple joint, the T-joint of aluminum alloy is more difficultly welded due to its complex temperature distribution and fluid flow mode in the weld pool. Whether using laser welding or the conventional arc welding process, aluminum alloy T-wleded joint is more prone to welding defects such as crack, pore, undercutting, joint softening, and so on. As a promising joining technology, laser+gas metal arc welding (laser+GMAW) hybrid welding not only combines the advantages of laser welding with those of GMAW, but also overcomes their shortcomings, thus having great potential to achieve high efficiency and high quality welding of aluminum alloy T-joint. So far, however, there is a lack of fundamental investigations involving mathematical modelling and understanding of the hybrid welding process of aluminum alloy T-joint. As key factors determining the weld quality, thermal field has
Dwyer, Heather E; Jasieniuk, Marie; Okada, Miki; Shapiro, Arthur M
2015-01-01
Gene flow and hybridization among species dramatically affect our understanding of the species as a biological unit, species relationships, and species adaptations. In North American Colias eurytheme and Colias eriphyle, there has been historical debate over the extent of hybridization occurring and the identity of phenotypically intermediate individuals as genetic hybrids. This study assesses the population structure of these two species to measure the extent of hybridization and the genetic identity of phenotypic intermediates as hybrids. Amplified fragment length polymorphism (AFLP) marker analysis was performed on 378 specimens collected from northern California and Nevada. Population structure was inferred using a Bayesian/Markov chain Monte Carlo method, which probabilistically assigns individuals to genetic clusters. Three genetic clusters provided the best fit for the data. C. eurytheme individuals were primarily assigned to two closely related clusters, and C. eriphyle individuals were mostly assigned to a third, more distantly related cluster. There appeared to be significant hybridization between the two species. Individuals of intermediate phenotype (putative hybrids) were found to be genetically indistinguishable from C. eriphyle, indicating that previous work based on the assumption that these intermediate forms are hybrids may warrant reconsideration. PMID:26306172
Hybrid quantum circuit with implanted erbium ions
Energy Technology Data Exchange (ETDEWEB)
Probst, S.; Rotzinger, H.; Tkalčec, A. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Kukharchyk, N.; Wieck, A. D. [Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Wünsch, S.; Siegel, M. [Institut für Mikro- und Nanoelektronische Systeme, Karlsruhe Institute of Technology, D-76189 Karlsruhe (Germany); Ustinov, A. V. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Laboratory of Superconducting Metamaterials, National University of Science and Technology “MISIS,” Moscow 119049 (Russian Federation); Bushev, P. A. [Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken (Germany)
2014-10-20
We report on hybrid circuit quantum electrodynamics experiments with focused ion beam implanted Er{sup 3+} ions in Y{sub 2}SiO{sub 5} coupled to an array of superconducting lumped element microwave resonators. The Y{sub 2}SiO{sub 5} crystal is divided into several areas with distinct erbium doping concentrations, each coupled to a separate resonator. The coupling strength is varied from 5 MHz to 18.7 MHz, while the linewidth ranges between 50 MHz and 130 MHz. We confirm the paramagnetic properties of the implanted spin ensemble by evaluating the temperature dependence of the coupling. The efficiency of the implantation process is analyzed and the results are compared to a bulk doped Er:Y{sub 2}SiO{sub 5} sample. We demonstrate the integration of these engineered erbium spin ensembles with superconducting circuits.
Plasmonic Antennas Hybridized with Dielectric Waveguides
Arango, Felipe Bernal; Koenderink, A Femius
2013-01-01
For the purpose of using plasmonics in an integrated scheme where single emitters can be probed efficiently, we experimentally and theoretically study the scattering properties of single nano-rod gold antennas as well as antenna arrays placed on one-dimensional dielectric silicon nitride waveguides. Using real space and Fourier microscopy correlated with waveguide transmission measurements, we quantify the spectral properties, absolute strength and directivity of scattering. The scattering processes can be well understood in the framework of the physics of dipolar objects placed on a planar layered environment with a waveguiding layer. We use the single plasmonic structures on top of the waveguide as dipolar building blocks for new types of antennas where the waveguide enhances the coupling between antenna elements. We report on waveguide hybridized Yagi-Uda antennas which show directionality in out-coupling of guided modes as well as directionality for in-coupling into the waveguide of localized excitations ...
Hybrid distortion function for JPEG steganography
Wang, Zichi; Zhang, Xinpeng; Yin, Zhaoxia
2016-09-01
A hybrid distortion function for JPEG steganography exploiting block fluctuation and quantization steps is proposed. To resist multidomain steganalysis, both spatial domain and discrete cosine transformation (DCT) domain are involved in the proposed distortion function. In spatial domain, a distortion value is allotted for each 8×8 block according to block fluctuation. In DCT domain, quantization steps are employed to allot distortion values for DCT coefficients in a block. The two elements, block distortion and quantization steps, are combined together to measure the embedding risk. By employing the syndrome trellis coding to embed secret data, the embedding changes are constrained in complex regions, where modifications are hard to be detected. When compared to current state-of-the-art steganographic methods for JPEG images, the proposed method presents less detectable artifacts.
Modelling of Natural and Hybrid Ventilation
DEFF Research Database (Denmark)
Heiselberg, Per
be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement...... as well as influence the air content (dust, pollution etc.). Architects and engineers need to acquire qualitative and quantitative information about the interactions between building characteristics and natural ventilation in order to design buildings and systems consistent with a passive low......-energy approach. These lecture notes focus on modelling of natural and hybrid ventilation driven by thermal buoyancy, wind and/or mechanical driving forces for a single zone with one, two or several openings....
Ross, Graham G.; Germán, Gabriel; Vázquez, J. Alberto
2016-05-01
We construct two simple effective field theory versions of Hybrid Natural Inflation (HNI) that illustrate the range of its phenomenological implications. The resulting inflationary sector potential, V = Δ4(1 + acos( ϕ/f)), arises naturally, with the inflaton field a pseudo-Nambu-Goldstone boson. The end of inflation is triggered by a waterfall field and the conditions for this to happen are determined. Also of interest is the fact that the slow-roll parameter ɛ (and hence the tensor r) is a non-monotonic function of the field with a maximum where observables take universal values that determines the maximum possible tensor to scalar ratio r. In one of the models the inflationary scale can be as low as the electroweak scale. We explore in detail the associated HNI phenomenology, taking account of the constraints from Black Hole production, and perform a detailed fit to the Planck 2015 temperature and polarisation data.
Auditing Hybrid IT Environments
Directory of Open Access Journals (Sweden)
Georgiana Mateescu
2014-01-01
Full Text Available This paper presents a personal approach of auditing the hybrid IT environments consisting in both on premise and on demand services and systems. The analysis is performed from both safety and profitability perspectives and it aims to offer to strategy, technical and business teams a representation of the value added by the cloud programme within the company’s portfolio. Starting from the importance of the IT Governance in the actual business environments, we presented in the first section the main principles that drive the technology strategy in order to maximize the value added by IT assets in the business products. Section two summarizes the frameworks leveraged by our approach in order to implement the safety and profitability computation algorithms described in the third section. The paper concludes with benefits of our personal frameworks and presents the future developments.
Hybrid Noncoherent Network Coding
Skachek, Vitaly; Nedic, Angelia
2011-01-01
We describe a novel extension of subspace codes for noncoherent networks, suitable for use when the network is viewed as a communication system that introduces both dimension and symbol errors. We show that when symbol erasures occur in a significantly large number of different basis vectors transmitted through the network and when the min-cut of the networks is much smaller then the length of the transmitted codewords, the new family of codes outperforms their subspace code counterparts. For the proposed coding scheme, termed hybrid network coding, we derive two upper bounds on the size of the codes. These bounds represent a variation of the Singleton and of the sphere-packing bound. We show that a simple concatenated scheme that represents a combination of subspace codes and Reed-Solomon codes is asymptotically optimal with respect to the Singleton bound. Finally, we describe two efficient decoding algorithms for concatenated subspace codes that in certain cases have smaller complexity than subspace decoder...
Nanoporous hybrid electrolytes
Schaefer, Jennifer L.
2011-01-01
Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.
Energy Technology Data Exchange (ETDEWEB)
Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.
2015-07-28
A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.
Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.
2015-07-28
A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.
Hybrid Batch Bayesian Optimization
Azimi, Javad; Fern, Xiaoli
2012-01-01
Bayesian Optimization aims at optimizing an unknown non-convex/concave function that is costly to evaluate. We are interested in application scenarios where concurrent function evaluations are possible. Under such a setting, BO could choose to either sequentially evaluate the function, one input at a time and wait for the output of the function before making the next selection, or evaluate the function at a batch of multiple inputs at once. These two different settings are commonly referred to as the sequential and batch settings of Bayesian Optimization. In general, the sequential setting leads to better optimization performance as each function evaluation is selected with more information, whereas the batch setting has an advantage in terms of the total experimental time (the number of iterations). In this work, our goal is to combine the strength of both settings. Specifically, we systematically analyze Bayesian optimization using Gaussian process as the posterior estimator and provide a hybrid algorithm t...
Photochromic mesoporous hybrid coatings
Raboin, L.; Matheron, M.; Gacoin, T.; Boilot, J.-P.
2008-09-01
Spirooxazine (SO) photochromic molecules were trapped in sol-gel matrices. In order to increase the colourability and improve mechanical properties of sol-gel photochromic films, we present an original strategy in which SO photochromic molecules were dispersed in mesoporous organized films using the impregnation technique. Well-ordered organosilicate mesoporous coatings with the 3D-hexagonal symmetry were prepared by the sol-gel technique. These robust mesoporous films, which contain high amounts of hydrophobic methyl groups at the pore surface, offer optimized environments for photochromic dyes dispersed by impregnation technique. After impregnation by a spirooxazine solution, the photochromic response is only slightly slower when compared with mesostructured or soft sol-gel matrices, showing that mesoporous organized hybrid matrix are good host for photochromic dyes. Moreover, the molecular loading in films is easily adjustable in a large range using multi-impregnation procedure and increasing the film thickness leading to coatings for optical switching devices.
Tu, Jianping Gene; Shih, Wei
2010-01-01
A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.
From hybrid-media system to hybrid-media politicians
DEFF Research Database (Denmark)
Eberholst, Mads Kæmsgaard; Ørsten, Mark; Burkal, Rasmus
2017-01-01
An increasingly complex hybrid system of social- and traditional-news media surrounds Nordic election campaigns as politically experienced incumbents favour traditional news media, and younger, lesser-known candidates’ social media. Despite little evidence for hybrid-media politicians, politicians......’ media use is changing rapidly; 15%–16% of Danish candidates used Twitter in 2011 but 68% in 2015. In this large-sample content analysis, party leaders have high traditional-news-media and low Twitter presence, and younger candidates visa-versa, but some politicians have high presence in both. Hybrid...
Laicer, Castro; Rasimick, Brian; Green, Zachary
2012-01-01
Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of
1965-01-01
Two of the beam transport elements for the slow ejection system. On the left, a quadrupole 1.2 m long with a 5 cm aperture, capable of producing a gradient of 5000 gauss. On the right, a 1 m bending magnet with a 4 cm gap; its field is 20 000 gauss.
Keller, Rodney D.
1987-01-01
Recommends using movie clips to stimulate students' interest in reading a novel as well as to teach elements of fiction such as plot, character, setting, symbol, irony, and theme. Describes each clip and provides study questions. Includes a listing of movies made from books. (NH)
DEFF Research Database (Denmark)
Hansen, Hans
Elements of Social Security contains an overview of important benefit schemes in Denmark, Sweden, Finland, Germany, the Netherlands, Great Britain and Canada. The schemes are categorized according to common sets of criteria and compared. Stylized cases illustrate the impact on disposable income...
Rao, KJ; Varma, KBR; Raju, AR
1988-01-01
An overview of a few structually important light element ceramics is presented. Included in the overview are silicon nitide, sialon, aluminium nitride, boron carbide and silicon carbide. Methods of preparation, characterization and industrial applications of these ceramics are summarized. Mechanical properties, industrial production techniques and principal uses of these ceramics are emphasized.
Schotting, R.J.
2009-01-01
Water is the key to life. No living creature can survive without water. Too much water or polluted water are serious threats to mankind. Managing this intangible element is complex, not only in wet deltaic regions but also in the (semi-)arid regions of the world. Combined efforts of the hydro(geo)lo
CEDS Addresses: Rubric Elements
US Department of Education, 2015
2015-01-01
Common Education Data Standards (CEDS) Version 4 introduced a common data vocabulary for defining rubrics in a data system. The CEDS elements support digital representations of both holistic and analytic rubrics. This document shares examples of holistic and analytic project rubrics, available CEDS Connections, and a logical model showing the…
Directory of Open Access Journals (Sweden)
Sergey P. Fedotov
2016-11-01
Full Text Available Article "Elements of Life" offers a hypothesis about the relationship of the phenomenon of traditional Chinese medicine with the physical laws. It shows the principle of forming a sequence of daily activity of the acupuncture meridians as a consequence of the Doppler effect in the process of flowing around the planet Earth by cosmic wind (by Ether. In accordance with this specification the daily structure of meridians had been built. It is suggested that the essence of the Chinese Qi (Chi are vibrations of a certain range in the medium. Consequently, it became possible to set the interrelation of frequencies of the visible spectrum with certain meridians. It is shown that the topological relationship of ancient (barrier points of the Five Elements (Wu-Shu points are associated with the wave lengths of the so-called Qi. It is shown also that the essence of the Wu-Xing law is based on daily circulation patterns of meridians. The examples of the surrounding world, including pulses processes in the human body, are confirming the above mentioned theses. A correlation diagram between the main elements by Dr. Samohotsky A.S. (dissertation "The experience of the definition of medical laws", 1946 and the Five Elements of traditional Chinese philosophy is established. The above represented hypotheses are yet introduced in practice in form of pulse spectral analysis system.
DEFF Research Database (Denmark)
Hansen, Hans
Elements of Social Security contains an overview of important benefit schemes in Denmark, Sweden, Finland, Germany, Great Britain, the Netherlands and Canada. The schemes are categorized according to common sets of criteria and compared. Stylized cases illustrate the impact on disposable income...
DEFF Research Database (Denmark)
Hansen, Hans
Elements of Social Security contains an overview of important benefit schemes in Denmark, Sweden, Finland, Austria, Germany, the Netherlands, Great Britain and Canada. The schemes are categorized according to common sets of criteria and compared. Stylized cases illustrate the impact on disposable...
Franco Mariscal, Antonio Joaquin
2008-01-01
This educative material uses the symbols of 45 elements to spell the names of 32 types of laboratory equipment usually found in chemical labs. This teaching material has been divided into three puzzles according to the type of the laboratory equipment: (i) glassware as reaction vessels or containers; (ii) glassware for measuring, addition or…
Lifescience Database Archive (English)
Full Text Available -300ELEMENT Kreis M, Williamson MS, Forde J, Schmitz D, Clark J, Buxton B, Pywell J..., Marris C, Henderson J, Harris N, Shewry PR, Forde BG, Miflin BJ Differential gene expression in the developing barley endosperm. Philos Trans R Soc Lond B314:355-365 (1986) ...
Weiser, Martin
2016-01-01
All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.
Wankel engine for hybrid powertrain
Energy Technology Data Exchange (ETDEWEB)
Butti, A. [Univ. of Florence (Italy); Site, V.D.
1995-12-31
The Wankel engine is suited to be used to drive hybrid propulsion systems. The main disadvantage of hybrid propulsion systems is the complexity that causes a high weight and large dimensions. For these reason hybrid systems are more suitable for large size vehicle (buses, vans) rather than for small passenger cars. A considerable reduction of hybrid systems weight and dimensions can be obtained using a Wankel rotary engine instead of a conventional engine. The Wankel engine is light, compact, simple, and produces low noise and low vibrations. Therefore a Wankel engine powered hybrid system is suited to be used on small cars. In this paper a 1,000 kg parallel hybrid car with continuously variable transmission and a 6,000 kg series hybrid minibus both equipped with Wankel engines are considered. The Wankel engine works at steady state to minimize fuel consumption and exhaust emissions. The simulation of the behavior of these two vehicles during a ECE + EUDC test cycle is presented in order to evaluate the performances of the systems.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Directory of Open Access Journals (Sweden)
Jennifer Ferguson
Full Text Available In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.
Ferguson, Jennifer; Gomes, Suzanne; Civetta, Alberto
2013-01-01
In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.
Lin, Xue-Bao; Du, Shuang-Lan; Long, Jia-Wei; Chen, Li; Wang, Yu-Zhong
2016-01-13
An organophosphorous hybrid (BM@Al-PPi) with unique core-shell structure was prepared through hybridization reaction between boehmite (BM) as the inorganic substrate and phenylphosphinic acid (PPiA) as the organic modifier. Fourier transform infrared spectra (FTIR), solid state (31)P and (27)Al magic angle spinning nuclear magnetic resonance, X-ray diffraction, and element analysis were used to investigate the chemical structure of the hybrids, where the microrod-like core was confirmed as Al-PPi aggregates generated from the reaction between BM and PPiA, and those irregular nanoparticles in the shell belonged to residual BM. Compared with the traditional dissolution-precipitation process, a novel analogous suspension reaction mode was proposed to explain the hybridization process and the resulting product. Scanning electronic microscopy further proved the core-shell structure of the hybrids. BM exhibited much higher initial decomposition temperature than that of Al-PPi; therefore, the hybrid showed better thermal stability than Al-PPi, and it met the processing temperature of semi-aromatic polyamide (HTN, for instance) as an additive-type flame retardant. Limiting oxygen index and cone calorimetric analysis suggested the excellent flame-retardant performance and smoke suppressing activity by adding the resulting hybrid into HTN.
Hybrid Vehicle Program. Final report
Energy Technology Data Exchange (ETDEWEB)
None
1984-06-01
This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.
Pseudovector mesons, hybrids and glueballs
Burakovsky, L; Burakovsky, Leonid; Page, Philip R.
2000-01-01
We consider glueball- (hybrid) meson mixing for the low-lying four pseudovector states. The h_1'(1380) decays dominantly to K*K with some presence in rho pi and omega eta. The newly observed h_1(1600) has a D- to S-wave width ratio to omega eta which does not enable differentiation between a conventional and hybrid meson interpretation. We predict the decay pattern of the isopartner conventional or hybrid meson b_1(1650). A notably narrow s sbar partner h_1'(1810) is predicted.
Completeness in Hybrid Type Theory
DEFF Research Database (Denmark)
Areces, Carlos; Blackburn, Patrick Rowan; Huertas, Antonia;
2014-01-01
We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types...... the way we interpret @i in propositional and first-order hybrid logic. This means: interpret @iαa , where αa is an expression of any type a , as an expression of type a that rigidly returns the value that αa receives at the i-world. The axiomatization and completeness proofs are generalizations of those...
Hybrid codes: Methods and applications
Energy Technology Data Exchange (ETDEWEB)
Winske, D. (Los Alamos National Lab., NM (USA)); Omidi, N. (California Univ., San Diego, La Jolla, CA (USA))
1991-01-01
In this chapter we discuss hybrid'' algorithms used in the study of low frequency electromagnetic phenomena, where one or more ion species are treated kinetically via standard PIC methods used in particle codes and the electrons are treated as a single charge neutralizing massless fluid. Other types of hybrid models are possible, as discussed in Winske and Quest, but hybrid codes with particle ions and massless fluid electrons have become the most common for simulating space plasma physics phenomena in the last decade, as we discuss in this paper.
DEFF Research Database (Denmark)
the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...
Energy Technology Data Exchange (ETDEWEB)
Feng, Xiaobing [Univ. of Tennessee, Knoxville, TN (United States)
1996-12-31
A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.
Hybrid calcium phosphate coatings for implants
Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.
2016-08-01
Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.
HYBRIDIZATION AND CHAMELEONIC JOURNALISM
Directory of Open Access Journals (Sweden)
Adriana Schryver Kurtz
2016-12-01
Full Text Available O texto aborda a crescente hibridização entre o Jornalismo e demais formatos midiáticos como resultado natural de um processo que já está na própria raiz da comunicação enquanto atividade histórica. A lógica interna e as potencialidades estéticas e discursivas do fenômeno são analisadas a partir das convergências entre jornalismo e cinema. Para tanto, utiliza o falso documentário Zelig (1983, texto fílmico de Woody Allen, híbrido por natureza, postulado como um microcosmo rico em pistas e sugestões para refletir sobre a fusão entre conteúdos informativos e não informativos. PALAVRAS-CHAVE: Hibridização; Jornalismo; Cinema; Zelig. ABSTRACT The text discusses the growing hybridization between journalism and other media formats as a natural result of a process that is already in the very root of communication while historical activity. The internal logic and the aesthetic and discursive potential of the phenomenon are analyzed through the convergences between journalism and cinema. Therefore, uses the mockumentary Zelig (1983, filmic text of Woody Allen, hybrid by nature, postulated as a microcosm rich in clues and suggestions to reflect about the merger between informative and uninformative content. KEYWORDS: Hybridization; Journalism; Cinema; Zelig. RESUMEN El texto aborda la creciente hibridación entre el periodismo y otros formatos de medios como um resultado natural de un proceso que ya está en la raíz misma de la comunicación mientras actividad histórica. Se analizan la lógica interna y el potencial estético y discursivo del fenómeno a través de las convergencias entre el periodismo y el cine. Para ello, utiliza el falso documental Zelig (1983, texto fílmico de Woody Allen, híbrido en su naturaleza, postulado como un microcosmos rico en pistas y sugerencias para reflexionar sobre la fusión entre contenidos informativos y no informativos. PALABRAS CLAVE: Hibridaci
Meystre, Pierre
2007-01-01
Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to rese...
Advanced Hybrid Computer Systems. Software Technology.
This software technology final report evaluates advances made in Advanced Hybrid Computer System software technology . The report describes what...automatic patching software is available as well as which analog/hybrid programming languages would be most feasible for the Advanced Hybrid Computer...compiler software . The problem of how software would interface with the hybrid system is also presented.
Gasperini, Maurizio
2011-03-01
Preface; Acknowledgements; Notation, units and conventions; 1. A short review of standard and inflationary cosmology; 2. The basic string cosmology equations; 3. Conformal invariance and string effective action; 4. Duality symmetries and cosmological solutions; 5. Inflationary kinematics; 6. The string phase; 7. The cosmic background of relic gravitational waves; 8. Scalar perturbations and the anisotropy of the CMB radiation; 9. Dilaton phenomenology; 10. Elements of brane cosmology; Index.
Bates, David Robert
1962-01-01
Quantum Theory: A Treatise in Three Volumes, I: Elements focuses on the principles, methodologies, and approaches involved in quantum theory, including quantum mechanics, linear combinations, collisions, and transitions. The selection first elaborates on the fundamental principles of quantum mechanics, exactly soluble bound state problems, and continuum. Discussions focus on delta function normalization, spherically symmetric potentials, rectangular potential wells, harmonic oscillators, spherically symmetrical potentials, Coulomb potential, axiomatic basis, consequences of first three postula
Meadowcroft, Ronald Ross; Bain, Alastair Stewart
1977-01-01
A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.
Energy Technology Data Exchange (ETDEWEB)
Obi, F.; Takada, K.
1983-09-22
A sealing lining made of a mixture of polyethylene or polypropylene with an additive which prevents destruction of the lining is used in the element. The content of the additive in the mixture is 10 to 30 percent by mass. The additive basically consists of polyethylene. Carboxyl groups are introduced into the polymer as an anion and sodium, potassium and molybdenum are introduced as the cation.
New Aperture Partitioning Element
Griffin, S.; Calef, B.; Williams, S.
Postprocessing in an optical system can be aided by adding an optical element to partition the pupil into a number of segments. When imaging through the atmosphere, the recorded data are blurred by temperature-induced variations in the index of refraction along the line of sight. Using speckle imaging techniques developed in the astronomy community, this blurring can be corrected to some degree. The effectiveness of these techniques is diminished by redundant baselines in the pupil. Partitioning the pupil reduces the degree of baseline redundancy, and therefore improves the quality of images that can be obtained from the system. It is possible to implement the described approach on an optical system with a segmented primary mirror, but not very practical. This is because most optical systems do not have segmented primary mirrors, and those that do have relatively low bandwidth positioning of segments due to their large mass and inertia. It is much more practical to position an active aperture partitioning element at an aft optics pupil of the optical system. This paper describes the design, implementation and testing of a new aperture partitioning element that is completely reflective and reconfigurable. The device uses four independent, annular segments that can be positioned with a high degree of accuracy without impacting optical wavefront of each segment. This mirror has been produced and is currently deployed and working on the 3.6 m telescope.
Helium the disappearing element
Sears, Wheeler M
2015-01-01
The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...
How common is homoploid hybrid speciation?
Schumer, Molly; Rosenthal, Gil G; Andolfatto, Peter
2014-06-01
Hybridization has long been considered a process that prevents divergence between species. In contrast to this historical view, an increasing number of empirical studies claim to show evidence for hybrid speciation without a ploidy change. However, the importance of hybridization as a route to speciation is poorly understood, and many claims have been made with insufficient evidence that hybridization played a role in the speciation process. We propose criteria to determine the strength of evidence for homoploid hybrid speciation. Based on an evaluation of the literature using this framework, we conclude that although hybridization appears to be common, evidence for an important role of hybridization in homoploid speciation is more circumscribed.
Real and Hybrid Atomic Orbitals.
Cook, D. B.; Fowler, P. W.
1981-01-01
Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)
Hybrid-Vehicle Transmission System
Lupo, G.; Dotti, G.
1985-01-01
Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.
Hybrid Fuel Cell Technology Overview
Energy Technology Data Exchange (ETDEWEB)
None available
2001-05-31
For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.
Hybrid models for complex fluids
Tronci, Cesare
2010-01-01
This paper formulates a new approach to complex fluid dynamics, which accounts for microscopic statistical effects in the micromotion. While the ordinary fluid variables (mass density and momentum) undergo usual dynamics, the order parameter field is replaced by a statistical distribution on the order parameter space. This distribution depends also on the point in physical space and its dynamics retains the usual fluid transport features while containing the statistical information on the order parameter space. This approach is based on a hybrid moment closure for Yang-Mills Vlasov plasmas, which replaces the usual cold-plasma assumption. After presenting the basic properties of the hybrid closure, such as momentum map features, singular solutions and Casimir invariants, the effect of Yang-Mills fields is considered and a direct application to ferromagnetic fluids is presented. Hybrid models are also formulated for complex fluids with symmetry breaking. For the special case of liquid crystals, a hybrid formul...