WorldWideScience

Sample records for hybrid parallel robot

  1. Continuous path control of a 5-DOF parallel-serial hybrid robot

    International Nuclear Information System (INIS)

    Uchiyama, Takuma; Terada, Hidetsugu; Mitsuya, Hironori

    2010-01-01

    Using the 5-degree of freedom parallel-serial hybrid robot, to realize the de-burring, new forward and inverse kinematic calculation methods based on the 'off-line teaching' method are proposed. This hybrid robot consists of a parallel stage section and a serial stage section. Considering this point, each section is calculated individually. And the continuous path control algorithm of this hybrid robot is proposed. To verify the usefulness, a prototype robot is tested which is controlled based on the proposed methods. This verification includes a positioning test and a pose test. The positioning test evaluates the continuous path of the tool center point. The pose test evaluates the pose on the tool center point. As the result, it is confirmed that this hybrid robot moves correctly using the proposed methods

  2. Mechatronic Design of a New Humanoid Robot with Hybrid Parallel Actuation

    Directory of Open Access Journals (Sweden)

    Vítor Santos

    2012-10-01

    Full Text Available Humanoid robotics is unquestionably a challenging and long-term field of research. Of the numerous and most urgent challenges to tackle, autonomous and efficient locomotion may possibly be the most underdeveloped at present in the research community. Therefore, to pursue studies in relation to autonomy with efficient locomotion, the authors have been developing a new teen-sized humanoid platform with hybrid characteristics. The hybrid nature is clear in the mixed actuation based on common electrical motors and passive actuators attached in parallel to the motors. This paper presents the mechatronic design of the humanoid platform, focusing mainly on the mechanical structure, the design and simulation of the hybrid joints, and the different subsystems implemented. Trying to keep the appropriate human proportions and main degrees of freedom, the developed platform utilizes a distributed control architecture and a rich set of sensing capabilities, both ripe for future development and research.

  3. Accuracy analysis of hybrid parallel robot for the assembling of ITER

    International Nuclear Information System (INIS)

    Wang Yongbo; Pessi, Pekka; Wu Huapeng; Handroos, Heikki

    2009-01-01

    This paper presents a novel mobile parallel robot, which is able to carry welding and machining processes from inside the international thermonuclear experimental reactor (ITER) vacuum vessel (VV). The kinematics design of the robot has been optimized for ITER access. To improve the accuracy of the parallel robot, the errors caused by the stiffness and manufacture process have to be compensated or limited to a minimum value. In this paper kinematics errors and stiffness modeling are given. The simulation results are presented.

  4. Accuracy analysis of hybrid parallel robot for the assembling of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongbo [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); The State Key Laboratory of Mechanical Transmission, Chongqing University (China); Pessi, Pekka [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Wu Huapeng [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)], E-mail: huapeng@lut.fi; Handroos, Heikki [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2009-06-15

    This paper presents a novel mobile parallel robot, which is able to carry welding and machining processes from inside the international thermonuclear experimental reactor (ITER) vacuum vessel (VV). The kinematics design of the robot has been optimized for ITER access. To improve the accuracy of the parallel robot, the errors caused by the stiffness and manufacture process have to be compensated or limited to a minimum value. In this paper kinematics errors and stiffness modeling are given. The simulation results are presented.

  5. An Approach to Evaluate Stability for Cable-Based Parallel Camera Robots with Hybrid Tension-Stiffness Properties

    Directory of Open Access Journals (Sweden)

    Huiling Wei

    2015-12-01

    Full Text Available This paper focuses on studying the effect of cable tensions and stiffness on the stability of cable-based parallel camera robots. For this purpose, the tension factor and the stiffness factor are defined, and the expression of stability is deduced. A new approach is proposed to calculate the hybrid-stability index with the minimum cable tension and the minimum singular value. Firstly, the kinematic model of a cable-based parallel camera robot is established. Based on the model, the tensions are solved and a tension factor is defined. In order to obtain the tension factor, an optimization of the cable tensions is carried out. Then, an expression of the system's stiffness is deduced and a stiffness factor is defined. Furthermore, an approach to evaluate the stability of the cable-based camera robots with hybrid tension-stiffness properties is presented. Finally, a typical three-degree-of-freedom cable-based parallel camera robot with four cables is studied as a numerical example. The simulation results show that the approach is both reasonable and effective.

  6. Design of a Simple and Modular 2-DOF Ankle Physiotherapy Device Relying on a Hybrid Serial-Parallel Robotic Architecture

    Directory of Open Access Journals (Sweden)

    Christos E. Syrseloudis

    2011-01-01

    Full Text Available The aim of this work is to propose a new 2-DOF robotic platform with hybrid parallel-serial structure and to undertake its parametric design so that it can follow the whole range of ankle related foot movements. This robot can serve as a human ankle rehabilitation device. The existing ankle rehabilitation devices present typically one or more of the following shortcomings: redundancy, large size, or high cost, hence the need for a device that could offer simplicity, modularity, and low cost of construction and maintenance. In addition, our targeted device must be safe during operation, disallow undesirable movements of the foot, while adaptable to any human foot. Our detailed study of foot kinematics has led us to a new hybrid architecture, which strikes a balance among all aforementioned goals. It consists of a passive serial kinematics chain with two adjustable screws so that the axes of the chain match the two main ankle-axes of typical feet. An active parallel chain, which consists of two prismatic actuators, provides the movement of the platform. Thus, the platform can follow the foot movements, thanks to the passive chain, and also possesses the advantages of parallel robots, including rigidity, high stiffness and force capabilities. The lack of redundancy yields a simpler device with lower size and cost. The paper describes the kinematics modelling of the platform and analyses the force and velocity transmission. The parametric design of the platform is carried out; our simulations confirm the platform's suitability for ankle rehabilitation.

  7. Workspace Analysis for Parallel Robot

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2013-05-01

    Full Text Available As a completely new-type of robot, the parallel robot possesses a lot of advantages that the serial robot does not, such as high rigidity, great load-carrying capacity, small error, high precision, small self-weight/load ratio, good dynamic behavior and easy control, hence its range is extended in using domain. In order to find workspace of parallel mechanism, the numerical boundary-searching algorithm based on the reverse solution of kinematics and limitation of link length has been introduced. This paper analyses position workspace, orientation workspace of parallel robot of the six degrees of freedom. The result shows: It is a main means to increase and decrease its workspace to change the length of branch of parallel mechanism; The radius of the movement platform has no effect on the size of workspace, but will change position of workspace.

  8. Structural synthesis of parallel robots

    CERN Document Server

    Gogu, Grigore

    This book represents the fifth part of a larger work dedicated to the structural synthesis of parallel robots. The originality of this work resides in the fact that it combines new formulae for mobility, connectivity, redundancy and overconstraints with evolutionary morphology in a unified structural synthesis approach that yields interesting and innovative solutions for parallel robotic manipulators.  This is the first book on robotics that presents solutions for coupled, decoupled, uncoupled, fully-isotropic and maximally regular robotic manipulators with Schönflies motions systematically generated by using the structural synthesis approach proposed in Part 1.  Overconstrained non-redundant/overactuated/redundantly actuated solutions with simple/complex limbs are proposed. Many solutions are presented here for the first time in the literature. The author had to make a difficult and challenging choice between protecting these solutions through patents and releasing them directly into the public domain. T...

  9. Static stiffness modeling of a novel hybrid redundant robot machine

    International Nuclear Information System (INIS)

    Li Ming; Wu Huapeng; Handroos, Heikki

    2011-01-01

    This paper presents a modeling method to study the stiffness of a hybrid serial-parallel robot IWR (Intersector Welding Robot) for the assembly of ITER vacuum vessel. The stiffness matrix of the basic element in the robot is evaluated using matrix structural analysis (MSA); the stiffness of the parallel mechanism is investigated by taking account of the deformations of both hydraulic limbs and joints; the stiffness of the whole integrated robot is evaluated by employing the virtual joint method and the principle of virtual work. The obtained stiffness model of the hybrid robot is analytical and the deformation results of the robot workspace under certain external load are presented.

  10. A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

    Directory of Open Access Journals (Sweden)

    Hadi Kalani

    2016-04-01

    Full Text Available Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required iterations in order to reach the desired accuracy level. Materials and Methods To overcome the direct kinematic problem, an artificial neural network and third-order Newton-Raphson algorithm were combined to provide an improved hybrid method. In this method, approximate solution was presented for the direct kinematic problem by the neural network. This solution could be considered as the initial guess for the third-order Newton-Raphson algorithm to provide an answer with the desired level of accuracy. Results The results showed that the proposed combination could help find a approximate solution and reduce the execution time for the direct kinematic problem, The results showed that muscular actuations showed periodic behaviors, and the maximum length variation of temporalis muscle was larger than that of masseter and pterygoid muscles. By reducing the processing time for solving the direct kinematic problem, more time could be devoted to control calculations.. In this method, for relatively high levels of accuracy, the number of iterations and computational time decreased by 90% and 34%, respectively, compared to the conventional Newton method. Conclusion The present analysis could allow researchers to characterize and study the mastication process by specifying different chewing patterns (e.g., muscle displacements.

  11. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin

    2017-01-01

    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  12. Parallel Robot for Lower Limb Rehabilitation Exercises

    Directory of Open Access Journals (Sweden)

    Alireza Rastegarpanah

    2016-01-01

    Full Text Available The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators’ forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators’ forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg’s model placed on the robot. The results demonstrate the robot’s capability to perform a full range of various rehabilitation exercises.

  13. Kinematics and Application of a Hybrid Industrial Robot – Delta-RST

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2014-04-01

    Full Text Available Serial robots and parallel robots have their own pros and cons. While hybrid robots consisting of both of them are possible and expected to retain their merits and minimize the disadvantages. The Delta-RST presented here is such a hybrid robot built up by integrating a 3-DoFs traditional Delta parallel structure and a 3-DoFs RST robotic wrist. In this paper, we focus on its kinematics analysis and its applications in industry. Firstly, the robotic system of the Delta-RST will be described briefly. Then the complete and systemic kinematics of this kind of robot will be presented in detail, followed by simulations and applications to demonstrate the correctness of the analysis, as well as the effectiveness of the developed robotic system. The closed-form kinematic analysis results are universal for similar hybrid robots constructing with the Delta parallel mechanism and serial chains.

  14. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  15. A parallel robot to assist vitreoretinal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Taiga; Sugita, Naohiko; Mitsuishi, Mamoru [University of Tokyo, School of Engineering, Tokyo (Japan); Ueta, Takashi; Tamaki, Yasuhiro [University of Tokyo, Graduate School of Medicine, Tokyo (Japan)

    2009-11-15

    This paper describes the development and evaluation of a parallel prototype robot for vitreoretinal surgery where physiological hand tremor limits performance. The manipulator was specifically designed to meet requirements such as size, precision, and sterilization; this has six-degree-of-freedom parallel architecture and provides positioning accuracy with micrometer resolution within the eye. The manipulator is controlled by an operator with a ''master manipulator'' consisting of multiple joints. Results of the in vitro experiments revealed that when compared to the manual procedure, a higher stability and accuracy of tool positioning could be achieved using the prototype robot. This microsurgical system that we have developed has superior operability as compared to traditional manual procedure and has sufficient potential to be used clinically for vitreoretinal surgery. (orig.)

  16. Development of the pneumatic service robot with a hybrid type

    International Nuclear Information System (INIS)

    Choi, Cheol U; Choi, Hyeun Seok; Han, Chang Soo

    2001-01-01

    In this paper, the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantage of good compliance, high payload-to-weight and payload-to-volume ratios, high speed and force capabilities. Using pneumatic actuators which have low stiffness, the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory, the pneumatic service robot is evaluated and verified

  17. Kinematics analysis and simulation of a new underactuated parallel robot

    Directory of Open Access Journals (Sweden)

    Wenxu YAN

    2017-04-01

    Full Text Available The number of degrees of freedom is equal to the number of the traditional robot driving motors, which causes defects such as low efficiency. To overcome that problem, based on the traditional parallel robot, a new underactuated parallel robot is presented. The structure characteristics and working principles of the underactuated parallel robot are analyzed. The forward and inverse solutions are derived by way of space analytic geometry and vector algebra. The kinematics model is established, and MATLAB is implied to verify the accuracy of forward and inverse solutions and identify the optimal work space. The simulation results show that the robot can realize the function of robot switch with three or four degrees of freedom when the number of driving motors is three, improving the efficiency of robot grasping, with the characteristics of large working space, high speed operation, high positioning accuracy, low manufacturing cost and so on, and it will have a wide range of industrial applications.

  18. Parallel Hybrid Vehicle Optimal Storage System

    Science.gov (United States)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  19. Dynamics of parallel robots from rigid bodies to flexible elements

    CERN Document Server

    Briot, Sébastien

    2015-01-01

    This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...

  20. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Al-saedi, Mazin I.; Wu, Huapeng; Handroos, Heikki

    2014-01-01

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  1. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  2. Development of Industrial High-Speed Transfer Parallel Robot

    International Nuclear Information System (INIS)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun

    2013-01-01

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced

  3. Kinematics and Dynamics of an Asymmetrical Parallel Robotic Wrist

    DEFF Research Database (Denmark)

    Wu, Guanglei

    2014-01-01

    This paper introduces an asymmetrical parallel robotic wrist, which can generate a decoupled unlimited-torsion motion and achieve high positioning accuracy. The kinematics, dexterity, and singularities of the manipulator are investigated to visualize the performance contours of the manipulator...

  4. Parallel kinematics robot with five legs

    NARCIS (Netherlands)

    Lambert, P.

    2011-01-01

    Robot with multiple degrees of freedom comprising five legs (2) linked at a first of their ends to a base ( 3), and at a second of their ends opposite to the first ends to a mobile platform (4), which platform carries at least one tool (5, 6, 121, 12 "), and wherein the robot further comprises an

  5. 2nd International Conference on Cable-Driven Parallel Robots

    CERN Document Server

    Bruckmann, Tobias

    2015-01-01

    This volume presents the outcome of the second forum to cable-driven parallel robots, bringing the cable robot community together. It shows the new ideas of the active researchers developing cable-driven robots. The book presents the state of the art, including both summarizing contributions as well as latest research and future options. The book cover all topics which are essential for cable-driven robots: Classification Kinematics, Workspace and Singularity Analysis Statics and Dynamics Cable Modeling Control and Calibration Design Methodology Hardware Development Experimental Evaluation Prototypes, Application Reports and new Application concepts

  6. Accuracy improvement of a hybrid robot for ITER application using POE modeling method

    International Nuclear Information System (INIS)

    Wang, Yongbo; Wu, Huapeng; Handroos, Heikki

    2013-01-01

    Highlights: ► The product of exponential (POE) formula for error modeling of hybrid robot. ► Differential Evolution (DE) algorithm for parameter identification. ► Simulation results are given to verify the effectiveness of the method. -- Abstract: This paper focuses on the kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial–parallel hybrid robot to improve its accuracy. The robot was designed to perform the assembling and repairing tasks of the vacuum vessel (VV) of the international thermonuclear experimental reactor (ITER). By employing the product of exponentials (POEs) formula, we extended the POE-based calibration method from serial robot to redundant serial–parallel hybrid robot. The proposed method combines the forward and inverse kinematics together to formulate a hybrid calibration method for serial–parallel hybrid robot. Because of the high nonlinear characteristics of the error model and too many error parameters need to be identified, the traditional iterative linear least-square algorithms cannot be used to identify the parameter errors. This paper employs a global optimization algorithm, Differential Evolution (DE), to identify parameter errors by solving the inverse kinematics of the hybrid robot. Furthermore, after the parameter errors were identified, the DE algorithm was adopted to numerically solve the forward kinematics of the hybrid robot to demonstrate the accuracy improvement of the end-effector. Numerical simulations were carried out by generating random parameter errors at the allowed tolerance limit and generating a number of configuration poses in the robot workspace. Simulation of the real experimental conditions shows that the accuracy of the end-effector can be improved to the same precision level of the given external measurement device

  7. Accuracy improvement of a hybrid robot for ITER application using POE modeling method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongbo, E-mail: yongbo.wang@hotmail.com [Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland)

    2013-10-15

    Highlights: ► The product of exponential (POE) formula for error modeling of hybrid robot. ► Differential Evolution (DE) algorithm for parameter identification. ► Simulation results are given to verify the effectiveness of the method. -- Abstract: This paper focuses on the kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial–parallel hybrid robot to improve its accuracy. The robot was designed to perform the assembling and repairing tasks of the vacuum vessel (VV) of the international thermonuclear experimental reactor (ITER). By employing the product of exponentials (POEs) formula, we extended the POE-based calibration method from serial robot to redundant serial–parallel hybrid robot. The proposed method combines the forward and inverse kinematics together to formulate a hybrid calibration method for serial–parallel hybrid robot. Because of the high nonlinear characteristics of the error model and too many error parameters need to be identified, the traditional iterative linear least-square algorithms cannot be used to identify the parameter errors. This paper employs a global optimization algorithm, Differential Evolution (DE), to identify parameter errors by solving the inverse kinematics of the hybrid robot. Furthermore, after the parameter errors were identified, the DE algorithm was adopted to numerically solve the forward kinematics of the hybrid robot to demonstrate the accuracy improvement of the end-effector. Numerical simulations were carried out by generating random parameter errors at the allowed tolerance limit and generating a number of configuration poses in the robot workspace. Simulation of the real experimental conditions shows that the accuracy of the end-effector can be improved to the same precision level of the given external measurement device.

  8. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  9. Massive hybrid parallelism for fully implicit multiphysics

    International Nuclear Information System (INIS)

    Gaston, D. R.; Permann, C. J.; Andrs, D.; Peterson, J. W.

    2013-01-01

    As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided. (authors)

  10. Massive hybrid parallelism for fully implicit multiphysics

    Energy Technology Data Exchange (ETDEWEB)

    Gaston, D. R.; Permann, C. J.; Andrs, D.; Peterson, J. W. [Idaho National Laboratory, 2525 N. Fremont Ave., Idaho Falls, ID 83415 (United States)

    2013-07-01

    As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided. (authors)

  11. MASSIVE HYBRID PARALLELISM FOR FULLY IMPLICIT MULTIPHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Cody J. Permann; David Andrs; John W. Peterson; Derek R. Gaston

    2013-05-01

    As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided.

  12. Kinematics and Workspace of a 4-DOF Hybrid Palletizing Robot

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2014-06-01

    Full Text Available We presented the kinematical analysis of a 4-DOF hybrid palletizing robot. The palletizing robot structure was proposed and the arm model of the robot was presented. The kinematical analysis of the end robotic manipulator was given. As a result, the position, velocity, and acceleration curves as well as the maximum workspace were demonstrated by simulation in Matlab. This study would be useful for the kinematical characteristics of the 4-DOF palletizing robot in space.

  13. Dynamic balancing of mechanisms and synthesizing of parallel robots

    CERN Document Server

    Wei, Bin

    2016-01-01

    This book covers the state-of-the-art technologies in dynamic balancing of mechanisms with minimum increase of mass and inertia. The synthesis of parallel robots based on the Decomposition and Integration concept is also covered in detail. The latest advances are described, including different balancing principles, design of reactionless mechanisms with minimum increase of mass and inertia, and synthesizing parallel robots. This is an ideal book for mechanical engineering students and researchers who are interested in the dynamic balancing of mechanisms and synthesizing of parallel robots. This book also: ·       Broadens reader understanding of the synthesis of parallel robots based on the Decomposition and Integration concept ·       Reinforces basic principles with detailed coverage of different balancing principles, including input torque balancing mechanisms ·       Reviews exhaustively the key recent research into the design of reactionless mechanisms with minimum increase of mass a...

  14. Markov Chain Monte Carlo (MCMC) methods for parameter estimation of a novel hybrid redundant robot

    International Nuclear Information System (INIS)

    Wang Yongbo; Wu Huapeng; Handroos, Heikki

    2011-01-01

    This paper presents a statistical method for the calibration of a redundantly actuated hybrid serial-parallel robot IWR (Intersector Welding Robot). The robot under study will be used to carry out welding, machining, and remote handing for the assembly of vacuum vessel of International Thermonuclear Experimental Reactor (ITER). The robot has ten degrees of freedom (DOF), among which six DOF are contributed by the parallel mechanism and the rest are from the serial mechanism. In this paper, a kinematic error model which involves 54 unknown geometrical error parameters is developed for the proposed robot. Based on this error model, the mean values of the unknown parameters are statistically analyzed and estimated by means of Markov Chain Monte Carlo (MCMC) approach. The computer simulation is conducted by introducing random geometric errors and measurement poses which represent the corresponding real physical behaviors. The simulation results of the marginal posterior distributions of the estimated model parameters indicate that our method is reliable and robust.

  15. Automation, parallelism, and robotics for proteomics.

    Science.gov (United States)

    Alterovitz, Gil; Liu, Jonathan; Chow, Jijun; Ramoni, Marco F

    2006-07-01

    The speed of the human genome project (Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921) was made possible, in part, by developments in automation of sequencing technologies. Before these technologies, sequencing was a laborious, expensive, and personnel-intensive task. Similarly, automation and robotics are changing the field of proteomics today. Proteomics is defined as the effort to understand and characterize proteins in the categories of structure, function and interaction (Englbrecht, C. C., Facius, A., Comb. Chem. High Throughput Screen. 2005, 8, 705-715). As such, this field nicely lends itself to automation technologies since these methods often require large economies of scale in order to achieve cost and time-saving benefits. This article describes some of the technologies and methods being applied in proteomics in order to facilitate automation within the field as well as in linking proteomics-based information with other related research areas.

  16. Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Pessi, Pekka; Kilkki, Juha; Jones, Lawrence

    2005-01-01

    This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel (VV), consisting of a five degree-of-freedom parallel mechanism, mounted on a carriage driven by two electric motors on a rack. The kinematic design of the robot has been optimised for ITER access and a hydraulically actuated pre-prototype built. A hybrid controller is designed for the robot, including position, speed and pressure feedback loops to achieve high accuracy and high dynamic performances. Finally, the experimental tests are given and discussed

  17. Design and Implementation of a New DELTA Parallel Robot in Robotics Competitions

    Directory of Open Access Journals (Sweden)

    Jonqlan Lin

    2015-10-01

    Full Text Available This investigation concerns the design and implementation of the DELTA parallel robot, covering the entire mechatronic process, involving kinematics, control design and optimizing methods. To accelerate the construction of the robot, 3D printing is used to fabricate end-effector parts. The parts are modular, low-cost, reconfigurable and can be assembled in less time than is required for conventionally fabricated parts. The controller, including the control algorithm and human-machine interface (HMI, is coded using the Borland C++ Builder 6 Personal software environment. The integration of the motion controller with image recognition into an opto-mechatronics system is presented. The robot system has been entered into robotic competitions in Taiwan. The experimental results reveal that the proposed DELTA robot completed the tasks in those competitions successfully.

  18. A Hybrid Parallel Preconditioning Algorithm For CFD

    Science.gov (United States)

    Barth,Timothy J.; Tang, Wei-Pai; Kwak, Dochan (Technical Monitor)

    1995-01-01

    A new hybrid preconditioning algorithm will be presented which combines the favorable attributes of incomplete lower-upper (ILU) factorization with the favorable attributes of the approximate inverse method recently advocated by numerous researchers. The quality of the preconditioner is adjustable and can be increased at the cost of additional computation while at the same time the storage required is roughly constant and approximately equal to the storage required for the original matrix. In addition, the preconditioning algorithm suggests an efficient and natural parallel implementation with reduced communication. Sample calculations will be presented for the numerical solution of multi-dimensional advection-diffusion equations. The matrix solver has also been embedded into a Newton algorithm for solving the nonlinear Euler and Navier-Stokes equations governing compressible flow. The full paper will show numerous examples in CFD to demonstrate the efficiency and robustness of the method.

  19. State-space Generalized Predicitve Control for redundant parallel robots

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav; Böhm, Josef; Valášek, M.

    2003-01-01

    Roč. 31, č. 3 (2003), s. 413-432 ISSN 1539-7734 R&D Projects: GA ČR GA101/03/0620 Grant - others:CTU(CZ) 0204512 Institutional research plan: CEZ:AV0Z1075907 Keywords : parallel robot construction * generalized predictive control * drive redundancy Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/historie/belda-0411126.pdf

  20. Fast robot kinematics modeling by using a parallel simulator (PSIM)

    International Nuclear Information System (INIS)

    El-Gazzar, H.M.; Ayad, N.M.A.

    2002-01-01

    High-speed computers are strongly needed not only for solving scientific and engineering problems, but also for numerous industrial applications. Such applications include computer-aided design, oil exploration, weather predication, space applications and safety of nuclear reactors. The rapid development in VLSI technology makes it possible to implement time consuming algorithms in real-time situations. Parallel processing approaches can now be used to reduce the processing-time for models of very high mathematical structure such as the kinematics molding of robot manipulator. This system is used to construct and evaluate the performance and cost effectiveness of several proposed methods to solve the Jacobian algorithm. Parallelism is introduced to the algorithms by using different task-allocations and dividing the whole job into sub tasks. Detailed analysis is performed and results are obtained for the case of six DOF (degree of freedom) robot arms (Stanford Arm). Execution times comparisons between Von Neumann (uni processor) and parallel processor architectures by using parallel simulator package (PSIM) are presented. The gained results are much in favour for the parallel techniques by at least fifty-percent improvements. Of course, further studies are needed to achieve the convenient and optimum number of processors has to be done

  1. Fast robot kinematics modeling by using a parallel simulator (PSIM)

    Energy Technology Data Exchange (ETDEWEB)

    El-Gazzar, H M; Ayad, N M.A. [Atomic Energy Authority, Reactor Dept., Computer and Control Lab., P.O. Box no 13759 (Egypt)

    2002-09-15

    High-speed computers are strongly needed not only for solving scientific and engineering problems, but also for numerous industrial applications. Such applications include computer-aided design, oil exploration, weather predication, space applications and safety of nuclear reactors. The rapid development in VLSI technology makes it possible to implement time consuming algorithms in real-time situations. Parallel processing approaches can now be used to reduce the processing-time for models of very high mathematical structure such as the kinematics molding of robot manipulator. This system is used to construct and evaluate the performance and cost effectiveness of several proposed methods to solve the Jacobian algorithm. Parallelism is introduced to the algorithms by using different task-allocations and dividing the whole job into sub tasks. Detailed analysis is performed and results are obtained for the case of six DOF (degree of freedom) robot arms (Stanford Arm). Execution times comparisons between Von Neumann (uni processor) and parallel processor architectures by using parallel simulator package (PSIM) are presented. The gained results are much in favour for the parallel techniques by at least fifty-percent improvements. Of course, further studies are needed to achieve the convenient and optimum number of processors has to be done.

  2. A mobile robot with parallel kinematics constructed under requirements for assembling and machining of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Pessi, P.; Huapeng Wu; Handroos, H.; Jones, L.

    2006-01-01

    ITER sectors require more stringent tolerances ± 5 mm than normally expected for the size of structure involved. The walls of ITER sectors are made of 60 mm thick stainless steel and are joined together by high efficiency structural and leak tight welds. In addition to the initial vacuum vessel assembly, sectors may have to be replaced for repair. Since commercially available machines are too heavy for the required machining operations and the lifting of a possible e-beam gun column system, and conventional robots lack the stiffness and accuracy in such machining condition, a new flexible, lightweight and mobile robotic machine is being considered. For the assembly of the ITER vacuum vessel sector, precise positioning of welding end-effectors, at some distance in a confined space from the available supports, will be required, which is not possible using conventional machines or robots. This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel, consisting of a ten-degree-of-freedom parallel robot mounted on a carriage driven by electric motor/gearbox on a track. The robot consists of a Stewart platform based parallel mechanism. Water hydraulic cylinders are used as actuators to reach six degrees of freedom for parallel construction. Two linear and two rotational motions are used for enlargement the workspace of the manipulator. The robot carries both welding gun such as a TIG, hybrid laser or e-beam welding gun to weld the inner and outer walls of the ITER vacuum vessel sectors and machining tools to cut and milling the walls with necessary accuracy, it can also carry other tools and material to a required position inside the vacuum vessel . For assembling an on line six degrees of freedom seam finding algorithm has been developed, which enables the robot to find welding seam automatically in a very complex environment. In the machining multi flexible machining processes carried out automatically by

  3. Robust Visual Control of Parallel Robots under Uncertain Camera Orientation

    Directory of Open Access Journals (Sweden)

    Miguel A. Trujano

    2012-10-01

    Full Text Available This work presents a stability analysis and experimental assessment of a visual control algorithm applied to a redundant planar parallel robot under uncertainty in relation to camera orientation. The key feature of the analysis is a strict Lyapunov function that allows the conclusion of asymptotic stability without invoking the Barbashin-Krassovsky-LaSalle invariance theorem. The controller does not rely on velocity measurements and has a structure similar to a classic Proportional Derivative control algorithm. Experiments in a laboratory prototype show that uncertainty in camera orientation does not significantly degrade closed-loop performance.

  4. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...

  5. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    2003-01-01

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...

  6. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    2003-01-01

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory trackin...

  7. Fusion reactor handling operations with cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Izard, Jean-Baptiste, E-mail: jeanbaptiste.izard@tecnalia.com; Michelin, Micael; Baradat, Cédric

    2015-10-15

    Highlights: • CDPR allow 6DOF positioning of loads using cable as links without payload swag. • Conceptual design of a CDPR for carrying and positioning tokamak sectors is given. • A CDPR for threading stellarator coils (6D trajectory following) is provided. • Both designs are capable of fullfilling the required precision without tooling. - Abstract: Cable-driven parallel robots (CDPR) are in their concept cranes with inclined cables which allow control of all the degrees of freedom of its payload, and therefore stability of all the degrees of freedom, including rotations. The workspace of a CDPR is only limited by the length of the cables, and the payload capacity related to the mass of the whole robot is very important. Besides, the control being based on kinematic models, the behavior of a CDPR is really that of a robot capable of automated trajectories or remote handling. The present paper gives a presentation of two use case studies based on some of the assembly phases and remote handling actions as designed for the recent fusion machines. Based on the use cases already in place in fusion reactor baselines, the opportunity of using CDPR for assembly of structural elements and coils is discussed. Finally, prospects for remote handling equipment from the reactor in hot cells are envisioned based on current CDPR research.

  8. Kinematics/statics analysis of a novel serial-parallel robotic arm with hand

    International Nuclear Information System (INIS)

    Lu, Yi; Dai, Zhuohong; Ye, Nijia; Wang, Peng

    2015-01-01

    A robotic arm with fingered hand generally has multi-functions to complete various complicated operations. A novel serial-parallel robotic arm with a hand is proposed and its kinematics and statics are studied systematically. A 3D prototype of the serial-parallel robotic arm with a hand is constructed and analyzed by simulation. The serial-parallel robotic arm with a hand is composed of an upper 3RPS parallel manipulator, a lower 3SPR parallel manipulator and a hand with three finger mechanisms. Its kinematics formulae for solving the displacement, velocity, acceleration of are derived. Its statics formula for solving the active/constrained forces is derived. Its reachable workspace and orientation workspace are constructed and analyzed. Finally, an analytic example is given for solving the kinematics and statics of the serial-parallel robotic arm with a hand and the analytic solutions are verified by a simulation mechanism.

  9. Kinematics/statics analysis of a novel serial-parallel robotic arm with hand

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi; Dai, Zhuohong; Ye, Nijia; Wang, Peng [Yanshan University, Hebei (China)

    2015-10-15

    A robotic arm with fingered hand generally has multi-functions to complete various complicated operations. A novel serial-parallel robotic arm with a hand is proposed and its kinematics and statics are studied systematically. A 3D prototype of the serial-parallel robotic arm with a hand is constructed and analyzed by simulation. The serial-parallel robotic arm with a hand is composed of an upper 3RPS parallel manipulator, a lower 3SPR parallel manipulator and a hand with three finger mechanisms. Its kinematics formulae for solving the displacement, velocity, acceleration of are derived. Its statics formula for solving the active/constrained forces is derived. Its reachable workspace and orientation workspace are constructed and analyzed. Finally, an analytic example is given for solving the kinematics and statics of the serial-parallel robotic arm with a hand and the analytic solutions are verified by a simulation mechanism.

  10. Analysis of jacobian and singularity of planar parallel robots using screw theory

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Hyun; Lee, Jeh Won; Lee, Hyuk Jin [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2012-11-15

    The Jacobian and singularity analysis of parallel robots is necessary to analyze robot motion. The derivations of the Jacobian matrix and singularity configuration are complicated and have no geometrical earning in the velocity form of the Jacobian matrix. In this study, the screw theory is used to derive the Jacobian of parallel robots. The statics form of the Jacobian has a geometrical meaning. In addition, singularity analysis can be performed by using the geometrical values. Furthermore, this study shows that the screw theory is applicable to redundantly actuated robots as well as non redundant robots.

  11. Reverse-hybrid robotic mesorectal excision for rectal cancer.

    Science.gov (United States)

    Park, In Ja; You, Y Nancy; Schlette, Erika; Nguyen, Sa; Skibber, John M; Rodriguez-Bigas, Miguel A; Chang, George J

    2012-02-01

    The robotic system offers potential technical advantages over laparoscopy for total mesorectal excision with radical lymphadenectomy for rectal cancer. However, the requirement for fixed docking limits its utility when the working volume is large or patient repositioning is required. The purpose of this study was to evaluate short-term outcomes associated with a novel setup to perform total mesorectal excision and radical lymphadenectomy for rectal cancer by the use of a "reverse" hybrid robotic-laparoscopic approach. This is a prospective consecutive cohort observational study of patients who underwent robotic rectal cancer resection from January 2009 to March 2011. During the study period, a technique of reverse-hybrid robotic-laparoscopic rectal resection with radical lymphadenectomy was developed. This technique involves reversal of the operative sequence with lymphovascular and rectal dissection to precede proximal colonic mobilization. This technique evolved from a conventional-hybrid resection with laparoscopic vascular control, colonic mobilization, and robotic pelvic dissection. Perioperative and short-term oncologic outcomes were analyzed. Thirty patients underwent reverse-hybrid resection. Median tumor location was 5 cm (interquartile range 3-9) from the anal verge. Median BMI was 27.6 (interquartile range 25.0-32.1 kg/m). Twenty (66.7%) received neoadjuvant chemoradiation. There were no conversions. Median blood loss was 100 mL (interquartile range 75-200). Total operation time was a median 369 (interquartile range 306-410) minutes. Median docking time was 6 (interquartile range 5-8) minutes, and console time was 98 (interquartile range 88-140) minutes. Resection was R0 in all patients; no patients had an incomplete mesorectal resection. Six patients (20%) underwent extended lymph node dissection or en bloc resection. Reverse-hybrid robotic surgery for rectal cancer maximizes the therapeutic applicability of the robotic and conventional laparoscopic

  12. Practical indoor mobile robot navigation using hybrid maps

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Fan, Zhun; Xiao, Jizhong

    2011-01-01

    This paper presents a practical navigation scheme for indoor mobile robots using hybrid maps. The method makes use of metric maps for local navigation and a topological map for global path planning. Metric maps are generated as 2D occupancy grids by a range sensor to represent local information...... about partial areas. The global topological map is used to indicate the connectivity of the 'places-of-interests' in the environment and the interconnectivity of the local maps. Visual tags on the ceiling to be detected by the robot provide valuable information and contribute to reliable localization...... robot and evaluated in a hospital environment....

  13. A hybrid parallel framework for the cellular Potts model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV

    2009-01-01

    The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).

  14. Optical assembly of bio-hybrid micro-robots.

    Science.gov (United States)

    Barroso, Álvaro; Landwerth, Shirin; Woerdemann, Mike; Alpmann, Christina; Buscher, Tim; Becker, Maike; Studer, Armido; Denz, Cornelia

    2015-04-01

    The combination of micro synthetic structures with bacterial flagella motors represents an actual trend for the construction of self-propelled micro-robots. The development of methods for fabrication of these bacteria-based robots is a first crucial step towards the realization of functional miniature and autonomous moving robots. We present a novel scheme based on optical trapping to fabricate living micro-robots. By using holographic optical tweezers that allow three-dimensional manipulation in real time, we are able to arrange the building blocks that constitute the micro-robot in a defined way. We demonstrate exemplarily that our method enables the controlled assembly of living micro-robots consisting of a rod-shaped prokaryotic bacterium and a single elongated zeolite L crystal, which are used as model of the biological and abiotic components, respectively. We present different proof-of-principle approaches for the site-selective attachment of the bacteria on the particle surface. The propulsion of the optically assembled micro-robot demonstrates the potential of the proposed method as a powerful strategy for the fabrication of bio-hybrid micro-robots.

  15. Robotic digital subtraction angiography systems within the hybrid operating room.

    Science.gov (United States)

    Murayama, Yuichi; Irie, Koreaki; Saguchi, Takayuki; Ishibashi, Toshihiro; Ebara, Masaki; Nagashima, Hiroyasu; Isoshima, Akira; Arakawa, Hideki; Takao, Hiroyuki; Ohashi, Hiroki; Joki, Tatsuhiro; Kato, Masataka; Tani, Satoshi; Ikeuchi, Satoshi; Abe, Toshiaki

    2011-05-01

    Fully equipped high-end digital subtraction angiography (DSA) within the operating room (OR) environment has emerged as a new trend in the fields of neurosurgery and vascular surgery. To describe initial clinical experience with a robotic DSA system in the hybrid OR. A newly designed robotic DSA system (Artis zeego; Siemens AG, Forchheim, Germany) was installed in the hybrid OR. The system consists of a multiaxis robotic C arm and surgical OR table. In addition to conventional neuroendovascular procedures, the system was used as an intraoperative imaging tool for various neurosurgical procedures such as aneurysm clipping and spine instrumentation. Five hundred one neurosurgical procedures were successfully conducted in the hybrid OR with the robotic DSA. During surgical procedures such as aneurysm clipping and arteriovenous fistula treatment, intraoperative 2-/3-dimensional angiography and C-arm-based computed tomographic images (DynaCT) were easily performed without moving the OR table. Newly developed virtual navigation software (syngo iGuide; Siemens AG) can be used in frameless navigation and in access to deep-seated intracranial lesions or needle placement. This newly developed robotic DSA system provides safe and precise treatment in the fields of endovascular treatment and neurosurgery.

  16. A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Pessi, Pekka; Wu, Huapeng; Handroos, Heikki; Jones, Lawrence

    2007-01-01

    The present paper introduces a mobile parallel robot developed for International Thermonuclear Experimental Reactor (ITER). The task of the robot is to carry out welding and machining processes inside the ITER vacuum vessel. The kinematic design of the robot has been optimized for the ITER access. The kinematic analysis is given in the paper. A virtual prototype of the parallel robot is built. A dynamic behavior of the whole robot is studied by the multi-body system simulation (MBS)

  17. A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Pessi, Pekka [Lappeenranta University of Technology, Lappeenranta (Finland)], E-mail: pessi@lut.fi; Wu, Huapeng; Handroos, Heikki [Lappeenranta University of Technology, Lappeenranta (Finland); Jones, Lawrence [EFDA Close Support Unit, Boltzmannstrasse 2, Garching D-85748 (Germany)

    2007-10-15

    The present paper introduces a mobile parallel robot developed for International Thermonuclear Experimental Reactor (ITER). The task of the robot is to carry out welding and machining processes inside the ITER vacuum vessel. The kinematic design of the robot has been optimized for the ITER access. The kinematic analysis is given in the paper. A virtual prototype of the parallel robot is built. A dynamic behavior of the whole robot is studied by the multi-body system simulation (MBS)

  18. Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism

    Science.gov (United States)

    Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian

    2013-09-01

    It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.

  19. Energy and fuel efficient parallel mild hybrids for urban roads

    International Nuclear Information System (INIS)

    Babu, Ajay; Ashok, S.

    2016-01-01

    Highlights: • Energy and fuel savings depend on battery charge variations and the vehicle speed parameters. • Indian urban conditions provide lot of scope for energy and fuel savings in mild hybrids. • Energy saving strategy has lower payback periods than the fuel saving one in mild hybrids. • Sensitivity to parameter variations is the least for energy saving strategy in a mild hybrid. - Abstract: Fuel economy improvements and battery energy savings can promote the adoption of parallel mild hybrids for urban driving conditions. The aim of this study is to establish these benefits through two operating modes: an energy saving mode and a fuel saving mode. The performances of a typical parallel mild hybrid using these modes were analysed over urban driving cycles, in the US, Europe, and India, with a particular focus on the Indian urban conditions. The energy pack available from the proposed energy-saving operating mode, in addition to the energy already available from the conventional mode, was observed to be the highest for the representative urban driving cycle of the US. The extra energy pack available was found to be approximately 21.9 times that available from the conventional mode. By employing the proposed fuel saving operating mode, the fuel economy improvement achievable in New York City was observed to be approximately 22.69% of the fuel economy with the conventional strategy. The energy saving strategy was found to possess the lowest payback periods and highest immunity to variations in various cost parameters.

  20. Multi-objective Design Optimization of a Parallel Schönflies-motion Robot

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Hjørnet, Preben

    2016-01-01

    . The dynamic performance is concerned mainly the capability of force transmission in the parallel kinematic chain, for which transmission indices are defined. The Pareto-front is obtained to investigate the influence of the design variables to the robot performance. Dynamic characteristics for three Pareto......This paper introduces a parallel Schoenflies-motion robot with rectangular workspace, which is suitable for pick-and-place operations. A multi-objective optimization problem is formulated to optimize the robot's geometric parameters with consideration of kinematic and dynamic performances...

  1. Biologically Inspired Modular Neural Control for a Leg-Wheel Hybrid Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Wörgötter, Florentin; Laksanacharoen, Pudit

    2014-01-01

    In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal...... processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions...... or they can serve as useful modules for other module-based neural control applications....

  2. Evaluation of the power consumption of a high-speed parallel robot

    Science.gov (United States)

    Han, Gang; Xie, Fugui; Liu, Xin-Jun

    2018-06-01

    An inverse dynamic model of a high-speed parallel robot is established based on the virtual work principle. With this dynamic model, a new evaluation method is proposed to measure the power consumption of the robot during pick-and-place tasks. The power vector is extended in this method and used to represent the collinear velocity and acceleration of the moving platform. Afterward, several dynamic performance indices, which are homogenous and possess obvious physical meanings, are proposed. These indices can evaluate the power input and output transmissibility of the robot in a workspace. The distributions of the power input and output transmissibility of the high-speed parallel robot are derived with these indices and clearly illustrated in atlases. Furtherly, a low-power-consumption workspace is selected for the robot.

  3. A hybrid algorithm for parallel molecular dynamics simulations

    Science.gov (United States)

    Mangiardi, Chris M.; Meyer, R.

    2017-10-01

    This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.

  4. Continuum Reconfigurable Parallel Robots for Surgery: Shape Sensing and State Estimation with Uncertainty.

    Science.gov (United States)

    Anderson, Patrick L; Mahoney, Arthur W; Webster, Robert J

    2017-07-01

    This paper examines shape sensing for a new class of surgical robot that consists of parallel flexible structures that can be reconfigured inside the human body. Known as CRISP robots, these devices provide access to the human body through needle-sized entry points, yet can be configured into truss-like structures capable of dexterous movement and large force application. They can also be reconfigured as needed during a surgical procedure. Since CRISP robots are elastic, they will deform when subjected to external forces or other perturbations. In this paper, we explore how to combine sensor information with mechanics-based models for CRISP robots to estimate their shapes under applied loads. The end result is a shape sensing framework for CRISP robots that will enable future research on control under applied loads, autonomous motion, force sensing, and other robot behaviors.

  5. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    Science.gov (United States)

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Omnidirectional Wheel-Legged Hybrid Mobile Robot

    Directory of Open Access Journals (Sweden)

    István Vilikó

    2015-06-01

    Full Text Available The purpose of developing hybrid locomotion systems is to merge the advantages and to eliminate the disadvantages of different type of locomotion. The proposed solution combines wheeled and legged locomotion methods. This paper presents the mechatronic design approach and the development stages of the prototype.

  7. A Multi-Sensorial Hybrid Control for Robotic Manipulation in Human-Robot Workspaces

    Directory of Open Access Journals (Sweden)

    Juan A. Corrales

    2011-10-01

    Full Text Available Autonomous manipulation in semi-structured environments where human operators can interact is an increasingly common task in robotic applications. This paper describes an intelligent multi-sensorial approach that solves this issue by providing a multi-robotic platform with a high degree of autonomy and the capability to perform complex tasks. The proposed sensorial system is composed of a hybrid visual servo control to efficiently guide the robot towards the object to be manipulated, an inertial motion capture system and an indoor localization system to avoid possible collisions between human operators and robots working in the same workspace, and a tactile sensor algorithm to correctly manipulate the object. The proposed controller employs the whole multi-sensorial system and combines the measurements of each one of the used sensors during two different phases considered in the robot task: a first phase where the robot approaches the object to be grasped, and a second phase of manipulation of the object. In both phases, the unexpected presence of humans is taken into account. This paper also presents the successful results obtained in several experimental setups which verify the validity of the proposed approach.

  8. Integrating Soft Robotics with the Robot Operating System: A Hybrid Pick and Place Arm

    Directory of Open Access Journals (Sweden)

    Ross M. McKenzie

    2017-08-01

    Full Text Available Soft robotic systems present a variety of new opportunities for solving complex problems. The use of soft robotic grippers, for example, can simplify the complexity in tasks such as the grasping of irregular and delicate objects. Adoption of soft robotics by the informatics community and industry, however, has been slow and this is, in-part, due to the amount of hardware and software that must be developed from scratch for each use of soft system components. In this paper, we detail the design, fabrication, and validation of an open-source framework that we designed to lower the barrier to entry for integrating soft robotic subsystems. This framework is built on the robot operating system (ROS, and we use it to demonstrate a modular, soft–hard hybrid system, which is capable of completing pick and place tasks. By lowering this barrier to entry through our open sourced hardware and software, we hope that system designers and Informatics researchers will find it easy to integrate soft components into their existing ROS-enabled robotic systems.

  9. Hybrid parallel computing architecture for multiview phase shifting

    Science.gov (United States)

    Zhong, Kai; Li, Zhongwei; Zhou, Xiaohui; Shi, Yusheng; Wang, Congjun

    2014-11-01

    The multiview phase-shifting method shows its powerful capability in achieving high resolution three-dimensional (3-D) shape measurement. Unfortunately, this ability results in very high computation costs and 3-D computations have to be processed offline. To realize real-time 3-D shape measurement, a hybrid parallel computing architecture is proposed for multiview phase shifting. In this architecture, the central processing unit can co-operate with the graphic processing unit (GPU) to achieve hybrid parallel computing. The high computation cost procedures, including lens distortion rectification, phase computation, correspondence, and 3-D reconstruction, are implemented in GPU, and a three-layer kernel function model is designed to simultaneously realize coarse-grained and fine-grained paralleling computing. Experimental results verify that the developed system can perform 50 fps (frame per second) real-time 3-D measurement with 260 K 3-D points per frame. A speedup of up to 180 times is obtained for the performance of the proposed technique using a NVIDIA GT560Ti graphics card rather than a sequential C in a 3.4 GHZ Inter Core i7 3770.

  10. Direct kinematics solution architectures for industrial robot manipulators: Bit-serial versus parallel

    Science.gov (United States)

    Lee, J.; Kim, K.

    1991-01-01

    A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.

  11. Direct kinematics solution architectures for industrial robot manipulators: Bit-serial versus parallel

    Science.gov (United States)

    Lee, J.; Kim, K.

    A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.

  12. A Review of Parallel Processing Approaches to Robot Kinematics and Jacobian

    OpenAIRE

    Henrich, Dominik; Karl, Joachim; Wörn, Heinz

    1997-01-01

    Due to continuously increasing demands in the area of advanced robot control, it became necessary to speed up the computation. One way to reduce the computation time is to distribute the computation onto several processing units. In this survey we present different approaches to parallel computation of robot kinematics and Jacobian. Thereby, we discuss both the forward and the reverse problem. We introduce a classification scheme and class...

  13. Development of a novel soft parallel robot equipped with polymeric artificial muscles

    International Nuclear Information System (INIS)

    Moghadam, Amir Ali Amiri; Kouzani, Abbas; Kaynak, Akif; Torabi, Keivan; Shahinpoor, Mohsen

    2015-01-01

    This paper presents the design, analysis and fabrication of a novel low-cost soft parallel robot for biomedical applications, including bio-micromanipulation devices. The robot consists of two active flexible polymer actuator-based links, which are connected to two rigid links by means of flexible joints. A mathematical model is established between the input voltage to the polymer actuators and the robot’s end effector position. The robot has two degrees-of-freedom, making it suitable for handling planar micromanipulation tasks. Moreover, a number of robots can be configured to operate in a cooperative manner for increasing micromanipulation dexterity. Finally, the experimental results demonstrate two main motion modes of the robot. (paper)

  14. Design and Nonlinear Control of a 2-DOF Flexible Parallel Humanoid Arm Joint Robot

    Directory of Open Access Journals (Sweden)

    Leijie Jiang

    2017-01-01

    Full Text Available The paper focuses on the design and nonlinear control of the humanoid wrist/shoulder joint based on the cable-driven parallel mechanism which can realize roll and pitch movement. In view of the existence of the flexible parts in the mechanism, it is necessary to solve the vibration control of the flexible wrist/shoulder joint. In this paper, a cable-driven parallel robot platform is developed for the experiment study of the humanoid wrist/shoulder joint. And the dynamic model of the mechanism is formulated by using the coupling theory of the flexible body’s large global motion and small flexible deformation. Based on derived dynamics, antivibration control of the joint robot is studied with a nonlinear control method. Finally, simulations and experiments were performed to validate the feasibility of the developed parallel robot prototype and the proposed control scheme.

  15. Design of parallel intersector weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Kovanen, Janne; Rouvinen, Asko; Hannukainen, Petri; Saira, Tanja; Jones, Lawrence

    2003-01-01

    This paper presents a new parallel robot Penta-WH, which has five degrees of freedom driven by hydraulic cylinders. The manipulator has a large, singularity-free workspace and high stiffness and it acts as a transport device for welding, machining and inspection end-effectors inside the ITER vacuum vessel. The presented kinematic structure of a parallel robot is particularly suitable for the ITER environment. Analysis of the machining process for ITER, such as the machining methods and forces are given, and the kinematic analyses, such as workspace and force capacity are discussed

  16. A Hybrid Robotic Control System Using Neuroblastoma Cultures

    Science.gov (United States)

    Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.

    The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.

  17. Parallel adaptation of general three-dimensional hybrid meshes

    International Nuclear Information System (INIS)

    Kavouklis, Christos; Kallinderis, Yannis

    2010-01-01

    A new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid grids has been developed. The meshes considered in this work are composed of four kinds of elements; tetrahedra, prisms, hexahedra and pyramids, which poses a challenge to parallel mesh adaptation. Additional complexity imposed by the presence of multiple types of elements affects especially data migration, updates of local data structures and interpartition data structures. Efficient partition of hybrid meshes has been accomplished by transforming them to suitable graphs and using serial graph partitioning algorithms. Communication among processors is based on the faces of the interpartition boundary and the termination detection algorithm of Dijkstra is employed to ensure proper flagging of edges for refinement. An inexpensive dynamic load balancing strategy is introduced to redistribute work load among processors after adaptation. In particular, only the initial coarse mesh, with proper weighting, is balanced which yields savings in computation time and relatively simple implementation of mesh quality preservation rules, while facilitating coarsening of refined elements. Special algorithms are employed for (i) data migration and dynamic updates of the local data structures, (ii) determination of the resulting interpartition boundary and (iii) identification of the communication pattern of processors. Several representative applications are included to evaluate the method.

  18. Flora Robotica – Mixed Societies of Symbiotic Robot-Plant Bio-Hybrids

    DEFF Research Database (Denmark)

    Hamann, Heiko; Wahby, Mostafa; Schmickl, Thomas

    2015-01-01

    robotica. Our objective is to develop and to investigate closely linked symbiotic relationships between robots and natural plants and to explore the potentials of a plant-robot society able to produce architectural artifacts and living spaces. These robot-plant bio-hybrids create synergies that allow...

  19. On the Minimum Cable Tensions for the Cable-Based Parallel Robots

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2014-01-01

    Full Text Available This paper investigates the minimum cable tension distributions in the workspace for cable-based parallel robots to find out more information on the stability. First, the kinematic model of a cable-based parallel robot is derived based on the wrench matrix. Then, a noniterative polynomial-based optimization algorithm with the proper optimal objective function is presented based on the convex optimization theory, in which the minimum cable tension at any pose is determined. Additionally, three performance indices are proposed to show the distributions of the minimum cable tensions in a specified region of the workspace. An important thing is that the three performance indices can be used to evaluate the stability of the cable-based parallel robots. Furthermore, a new workspace, the Specified Minimum Cable Tension Workspace (SMCTW, is introduced, within which all the minimum tensions exceed a specified value, therefore meeting the specified stability requirement. Finally, a camera robot parallel driven by four cables for aerial panoramic photographing is selected to illustrate the distributions of the minimum cable tensions in the workspace and the relationship between the three performance indices and the stability.

  20. A 6-DOF parallel bone-grinding robot for cervical disc replacement surgery.

    Science.gov (United States)

    Tian, Heqiang; Wang, Chenchen; Dang, Xiaoqing; Sun, Lining

    2017-12-01

    Artificial cervical disc replacement surgery has become an effective and main treatment method for cervical disease, which has become a more common and serious problem for people with sedentary work. To improve cervical disc replacement surgery significantly, a 6-DOF parallel bone-grinding robot is developed for cervical bone-grinding by image navigation and surgical plan. The bone-grinding robot including mechanical design and low level control is designed. The bone-grinding robot navigation is realized by optical positioning with spatial registration coordinate system defined. And a parametric robot bone-grinding plan and high level control have been developed for plane grinding for cervical top endplate and tail endplate grinding by a cylindrical grinding drill and spherical grinding for two articular surfaces of bones by a ball grinding drill. Finally, the surgical flow for a robot-assisted cervical disc replacement surgery procedure is present. The final experiments results verified the key technologies and performance of the robot-assisted surgery system concept excellently, which points out a promising clinical application with higher operability. Finally, study innovations, study limitations, and future works of this present study are discussed, and conclusions of this paper are also summarized further. This bone-grinding robot is still in the initial stage, and there are many problems to be solved from a clinical point of view. Moreover, the technique is promising and can give a good support for surgeons in future clinical work.

  1. Optimization Design by Genetic Algorithm Controller for Trajectory Control of a 3-RRR Parallel Robot

    Directory of Open Access Journals (Sweden)

    Lianchao Sheng

    2018-01-01

    Full Text Available In order to improve the control precision and robustness of the existing proportion integration differentiation (PID controller of a 3-Revolute–Revolute–Revolute (3-RRR parallel robot, a variable PID parameter controller optimized by a genetic algorithm controller is proposed in this paper. Firstly, the inverse kinematics model of the 3-RRR parallel robot was established according to the vector method, and the motor conversion matrix was deduced. Then, the error square integral was chosen as the fitness function, and the genetic algorithm controller was designed. Finally, the control precision of the new controller was verified through the simulation model of the 3-RRR planar parallel robot—built in SimMechanics—and the robustness of the new controller was verified by adding interference. The results show that compared with the traditional PID controller, the new controller designed in this paper has better control precision and robustness, which provides the basis for practical application.

  2. Stochastic Optimal Control of Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Feiyan Qin

    2017-02-01

    Full Text Available Energy management strategies (EMSs in hybrid electric vehicles (HEVs are highly related to the fuel economy and emission performances. However, EMS constitutes a challenging problem due to the complex structure of a HEV and the unknown or partially known driving cycles. To meet this problem, this paper adopts a stochastic dynamic programming (SDP method for the EMS of a specially designed vehicle, a pre-transmission single-shaft torque-coupling parallel HEV. In this parallel HEV, the auto clutch output is connected to the transmission input through an electric motor, which benefits an efficient motor assist operation. In this EMS, demanded torque of driver is modeled as a one-state Markov process to represent the uncertainty of future driving situations. The obtained EMS has been evaluated with ADVISOR2002 over two standard government drive cycles and a self-defined one, and compared with a dynamic programming (DP one and a rule-based one. Simulation results have shown the real-time performance of the proposed approach, and potential vehicle performance improvement relative to the rule-based one.

  3. Trajectory control of an articulated robot with a parallel drive arm based on splines under tension

    Science.gov (United States)

    Yi, Seung-Jong

    Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and

  4. Software and Hardware control of a hybrid robot for switching between leg-type and wheel-type modes

    OpenAIRE

    Botelho, Wagner Tanaka; Okada, Tokuji; Mahmoud, Abeer; Shimizu, Toshimi

    2011-01-01

    One of the objectives of the paper is to describe the hybrid robot PEOPLER-II (Perpendicularly Oriented Planetary Legged Robot) with regard to switching between leg-type and wheel-type. Our robot has an easier design and control system than other hybrid robots. The software and hardware control in the process of performing five robot tasks are considered. These are the walking, rolling, switching, turning and spinning. In the switching task, we show the control method based on minimization of...

  5. Design and Control System of a Modular Parallel Robot for Medical Applications

    Directory of Open Access Journals (Sweden)

    Florin Covaciu

    2015-06-01

    Full Text Available Brachytherapy (BT, a cancer treatment method, is a type of internal radiation therapy which implies that radiation doses (seeds are placed inside the tumor, aiming to destroy only the cancerous cells, without affecting the surrounding healthy tissue. For a successful brachytherapy procedure, the accurate radiation seeds placement is an important issue, which is why a robotic system has been built for this task. The paper presents the design of a parallel robotic system for brachytherapy procedures and the control system architecture and its implementation.

  6. Dynamic modelling of a 3-CPU parallel robot via screw theory

    Directory of Open Access Journals (Sweden)

    L. Carbonari

    2013-04-01

    Full Text Available The article describes the dynamic modelling of I.Ca.Ro., a novel Cartesian parallel robot recently designed and prototyped by the robotics research group of the Polytechnic University of Marche. By means of screw theory and virtual work principle, a computationally efficient model has been built, with the final aim of realising advanced model based controllers. Then a dynamic analysis has been performed in order to point out possible model simplifications that could lead to a more efficient run time implementation.

  7. Optimal Orientation Planning and Control Deviation Estimation on FAST Cable-Driven Parallel Robot

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available The paper is devoted theoretically to the optimal orientation planning and control deviation estimation of FAST cable-driven parallel robot. Regarding the robot characteristics, the solutions are obtained from two constrained optimizations, both of which are based on the equilibrium of the cabin and the attention on force allocation among 6 cable tensions. A kind of control algorithm is proposed based on the position and force feedbacks. The analysis proves that the orientation control depends on force feedback and the optimal tension solution corresponding to the planned orientation. Finally, the estimation of orientation deviation is given under the limit range of tension errors.

  8. Study on MPI/OpenMP hybrid parallelism for Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Liang Jingang; Xu Qi; Wang Kan; Liu Shiwen

    2013-01-01

    Parallel programming with mixed mode of messages-passing and shared-memory has several advantages when used in Monte Carlo neutron transport code, such as fitting hardware of distributed-shared clusters, economizing memory demand of Monte Carlo transport, improving parallel performance, and so on. MPI/OpenMP hybrid parallelism was implemented based on a one dimension Monte Carlo neutron transport code. Some critical factors affecting the parallel performance were analyzed and solutions were proposed for several problems such as contention access, lock contention and false sharing. After optimization the code was tested finally. It is shown that the hybrid parallel code can reach good performance just as pure MPI parallel program, while it saves a lot of memory usage at the same time. Therefore hybrid parallel is efficient for achieving large-scale parallel of Monte Carlo neutron transport. (authors)

  9. Particularities of fully-parallel manipulators in 6-DOFs robots design: a review of critical aspects

    Directory of Open Access Journals (Sweden)

    Milica Lucian

    2017-01-01

    Full Text Available A whole range of industrial applications requires the presence of parallel mechanisms with six degrees of freedom (6-DOF which have been developed in the last fifteen years, and one of the reasons why they still are a current topic is that present-day computers are capable of performing real-time motion laws of great complexity associated with these types of parallel mechanisms. The present work underlines particularities of parallel manipulators and their importance in the design of 6-DOF robots. The paper reveals the progress made in the last twenty years in the development of 6-DOF parallel manipulators, which increasingly find a wide scope of applications in different industrial areas such as robotics, manufacture and assisted medicine. It also emphasizes the need to determine singular configurations and the effect of cinematic redundancy which can increase the working space of the manipulators by adding active joints in one or more branches of the manipulator. Throughout the work, there were outlined three types of singularities encountered in the modelling of different types of parallel manipulators, and three types of redundancy. Furthermore, an analysis was made of the dimension of the workspace for a series of parallel manipulators, highlighting a number of factors that influence its size.

  10. Hybrid Locomotion Evaluation for a Novel Amphibious Spherical Robot

    Directory of Open Access Journals (Sweden)

    Huiming Xing

    2018-01-01

    Full Text Available We describe the novel, multiply gaited, vectored water-jet, hybrid locomotion-capable, amphibious spherical robot III (termed ASR-III featuring a wheel-legged, water-jet composite driving system incorporating a lifting and supporting wheel mechanism (LSWM and mechanical legs with a water-jet thruster. The LSWM allows the ASR-III to support the body and slide flexibly on smooth (flat terrain. The composite driving system facilitates two on-land locomotion modes (sliding and walking and underwater locomotion mode with vectored thrusters, improving adaptability to the amphibious environment. Sliding locomotion improves the stability and maneuverability of ASR-III on smooth flat terrain, whereas walking locomotion allows ASR-III to conquer rough terrain. We used both forward and reverse kinematic models to evaluate the walking and sliding gait efficiency. The robot can also realize underwater locomotion with four vectored water-jet thrusters, and is capable of forward motion, heading angle control and depth control. We evaluated LSWM efficiency and the sliding velocities associated with varying extensions of the LSWM. To explore gait stability and mobility, we performed on-land experiments on smooth flat terrain to define the optimal stride length and frequency. We also evaluated the efficacy of waypoint tracking when the sliding gait was employed, using a closed-loop proportional-integral-derivative (PID control mechanism. Moreover, experiments of forward locomotion, heading angle control and depth control were conducted to verify the underwater performance of ASR-III. Comparison of the previous robot and ASR-III demonstrated the ASR-III had better amphibious motion performance.

  11. New Intelligent Transmission Concept for Hybrid Mobile Robot Speed Control

    Directory of Open Access Journals (Sweden)

    Nazim Mir-Nasiri

    2008-11-01

    Full Text Available This paper presents a new concept of a mobile robot speed control by using two degree of freedom gear transmission. The developed intelligent speed controller utilizes a gear box which comprises of epicyclic gear train with two inputs, one coupled with the engine shaft and another with the shaft of a variable speed dc motor. The net output speed is a combination of the two input speeds and is governed by the transmission ratio of the planetary gear train. This new approach eliminates the use of a torque converter which is otherwise an indispensable part of all available automatic transmissions, thereby reducing the power loss that occurs in the box during the fluid coupling. By gradually varying the speed of the dc motor a stepless transmission has been achieved. The other advantages of the developed controller are pulling over and reversing the vehicle, implemented by intelligent mixing of the dc motor and engine speeds. This approach eliminates traditional braking system in entire vehicle design. The use of two power sources, IC engine and battery driven DC motor, utilizes the modern idea of hybrid vehicles. The new mobile robot speed controller is capable of driving the vehicle even in extreme case of IC engine failure, for example, due to gas depletion..

  12. New Intelligent Transmission Concept for Hybrid Mobile Robot Speed Control

    Directory of Open Access Journals (Sweden)

    Nazim Mir-Nasiri

    2005-09-01

    Full Text Available This paper presents a new concept of a mobile robot speed control by using two degree of freedom gear transmission. The developed intelligent speed controller utilizes a gear box which comprises of epicyclic gear train with two inputs, one coupled with the engine shaft and another with the shaft of a variable speed dc motor. The net output speed is a combination of the two input speeds and is governed by the transmission ratio of the planetary gear train. This new approach eliminates the use of a torque converter which is otherwise an indispensable part of all available automatic transmissions, thereby reducing the power loss that occurs in the box during the fluid coupling. By gradually varying the speed of the dc motor a stepless transmission has been achieved. The other advantages of the developed controller are pulling over and reversing the vehicle, implemented by intelligent mixing of the dc motor and engine speeds. This approach eliminates traditional braking system in entire vehicle design. The use of two power sources, IC engine and battery driven DC motor, utilizes the modern idea of hybrid vehicles. The new mobile robot speed controller is capable of driving the vehicle even in extreme case of IC engine failure, for example, due to gas depletion.

  13. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system.

    Science.gov (United States)

    Monfaredi, Reza; Wilson, Emmanuel; Azizi Koutenaei, Bamshad; Labrecque, Brendan; Leroy, Kristen; Goldie, James; Louis, Eric; Swerdlow, Daniel; Cleary, Kevin

    2015-02-01

    Ultrasound imaging is frequently used in medicine. The quality of ultrasound images is often dependent on the skill of the sonographer. Several researchers have proposed robotic systems to aid in ultrasound image acquisition. In this paper we first provide a short overview of robot-assisted ultrasound imaging (US). We categorize robot-assisted US imaging systems into three approaches: autonomous US imaging, teleoperated US imaging, and human-robot cooperation. For each approach several systems are introduced and briefly discussed. We then describe a compact six degree of freedom parallel mechanism telerobotic system for ultrasound imaging developed by our research team. The long-term goal of this work is to enable remote ultrasound scanning through teleoperation. This parallel mechanism allows for both translation and rotation of an ultrasound probe mounted on the top plate along with force control. Our experimental results confirmed good mechanical system performance with a positioning error of < 1 mm. Phantom experiments by a radiologist showed promising results with good image quality.

  14. Study on the Workspace of a 6-DOF Parallel Topology Robot Related to Binary Link Lengths

    Directory of Open Access Journals (Sweden)

    Calin-Octavian Miclosina

    2016-12-01

    Full Text Available The paper presents a study on the workspace of a parallel topology robot with the structure FP3+6•SPS+MP3. The variable parameters are the binary link lengths, from both upper and lower levels, and the driving kinematical joint strokes. The workspace boundary is determined by SolidWorks software simulations. For different binary link lengths, workspace volume is determined and sections through the workspace are presented.

  15. Comparative Analysis of Torque and Acceleration of Pre- and Post-Transmission Parallel Hybrid Drivetrains

    Directory of Open Access Journals (Sweden)

    Zulkifli Saiful A.

    2016-01-01

    Full Text Available Parallel hybrid electric vehicles (HEV can be classified according to the location of the electric motor with respect to the transmission unit for the internal combustion engine (ICE: they can be pre-transmission or posttransmission parallel hybrid. A split-axle parallel HEV – in which the ICE and electric motor provide propulsion power to different axles – is a sub-type of the post-transmission hybrid, since addition of torque and power from the two power sources occurs after the vehicle’s transmission. The term ‘through-the-road’ (TTR hybrid is also used for the split-parallel HEV, since power coupling between the ICE and electric motor is not through some mechanical device but through the vehicle itself, its wheels and the road on which it moves. The present work presents torquespeed relationship of the split-parallel hybrid and analyses simulation results of torque profiles and acceleration performance of pre-transmission and post-transmission hybrid configurations, using three different sizes of electric motor. Different operating regions of the pre-trans and post-trans motors are observed, leading to different speed and torque profiles. Although ICE average efficiency in the post-trans hybrid is slightly lower than in the pre-trans hybrid, the post-trans hybrid vehicle has better fuel economy and acceleration performance than the pre-trans hybrid vehicle.

  16. Adaptive Controller for 6-DOF Parallel Robot Using T-S Fuzzy Inference

    Directory of Open Access Journals (Sweden)

    Xue Jian

    2013-02-01

    Full Text Available 6-DOF parallel robot always appears in the form of Stewart platform. It has been widely used in industry for the benefits such as strong structural stiffness, high movement accuracy and so on. Space docking technology makes higher requirements of motion accuracy and dynamic performance to the control method on 6-DOF parallel robot. In this paper, a hydraulic 6-DOF parallel robot was used to simulate the docking process. Based on this point, this paper gave a thorough study on the design of an adaptive controller to eliminate the asymmetric of controlled plant and uncertain load force interference. Takagi-Sugeno (T-S fuzzy inference model was used to build the fuzzy adaptive controller. With T-S model, the controller directly imposes adaptive control signal on the plant to make sure that the output of plant could track the reference model output. The controller has simple structure and is easy to implement. Experiment results show that the controller can eliminate asymmetric and achieve good dynamic performance, and has good robustness to load interference.

  17. Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms

    Directory of Open Access Journals (Sweden)

    Віталій Геннадійович Михалько

    2016-07-01

    Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem

  18. Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine

    Science.gov (United States)

    Lee, C. S. G.; Lin, C. T.

    1989-01-01

    The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.

  19. Parametric Optimal Design of a Parallel Schönflies-Motion Robot under Pick-And-Place Trajectory Constraints

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Hjørnet, Preben

    2015-01-01

    This paper deals with the parametric optimum design of a parallel Schoenflies-motion robot, named "Ragnar", designed for fast and flexible pick-and-place applications. The robot architecture admits a rectangular workspace, which can utilize the shop-floor space efficiently. In this work......, the parametric models of the transmission quality, elasto-statics and dynamics are established. By taking into consideration of design requirements and pick-and-place trajectory, a comprehensive multi-objective optimization problem is formulated to optimize both kinematic and dynamic performances. The Pareto......-front is obtained, which provides optimal solutions to the robot design. Robot prototyping work based on the optimal results is described....

  20. Design, fabrication and characterization of a micro-fluxgate intended for parallel robot application

    Science.gov (United States)

    Kirchhoff, M. R.; Bogdanski, G.; Büttgenbach, S.

    2009-05-01

    This paper presents a micro-magnetometer based on the fluxgate principle. Fluxgates detect the magnitude and direction of DC and low-frequency AC magnetic fields. The detectable flux density typically ranges from several 10 nT to about 1 mT. The introduced fluxgate sensor is fabricated using MEMS-technologies, basically UV depth lithography and electroplating for manufacturing high aspect ratio structures. It consists of helical copper coils around a soft magnetic nickel-iron (NiFe) core. The core is designed in so-called racetrack geometry, whereby the directional sensitivity of the sensor is considerably higher compared to common ring-core fluxgates. The electrical operation is based on analyzing the 2nd harmonic of the AC output signal. Configuration, manufacturing and selected characteristics of the fluxgate magnetometer are discussed in this work. The fluxgate builds the basis of an innovative angular sensor system for a parallel robot with HEXA-structure. Integrated into the passive joints of the parallel robot, the fluxgates are combined with permanent magnets rotating on the joint shafts. The magnet transmits the angular information via its magnetic orientation. In this way, the angles between the kinematic elements are measured, which allows self-calibration of the robot and the fast analytical solution of direct kinematics for an advanced workspace monitoring.

  1. HYBRID COMMUNICATION NETWORK OF MOBILE ROBOT AND QUAD-COPTER

    Directory of Open Access Journals (Sweden)

    Moustafa M. Kurdi

    2017-01-01

    Full Text Available This paper introduces the design and development of QMRS (Quadcopter Mobile Robotic System. QMRS is a real-time obstacle avoidance capability in Belarus-132N mobile robot with the cooperation of quadcopter Phantom-4. The function of QMRS consists of GPS used by Mobile Robot and image vision and image processing system from both robot and quad-copter and by using effective searching algorithm embedded inside the robot. Having the capacity to navigate accurately is one of the major abilities of a mobile robot to effectively execute a variety of jobs including manipulation, docking, and transportation. To achieve the desired navigation accuracy, mobile robots are typically equipped with on-board sensors to observe persistent features in the environment, to estimate their pose from these observations, and to adjust their motion accordingly. Quadcopter takes off from Mobile Robot, surveys the terrain and transmits the processed Image terrestrial robot. The main objective of research paper is to focus on the full coordination between robot and quadcopter by designing an efficient wireless communication using WIFI. In addition, it identify the method involving the use of vision and image processing system from both robot and quadcopter; analyzing path in real-time and avoiding obstacles based-on the computational algorithm embedded inside the robot. QMRS increases the efficiency and reliability of the whole system especially in robot navigation, image processing and obstacle avoidance due to the help and connection among the different parts of the system.

  2. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    Science.gov (United States)

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Towards an ankle neuroprosthesis for hybrid robotics: Concepts and current sources for functional electrical stimulation.

    Science.gov (United States)

    Casco, S; Fuster, I; Galeano, R; Moreno, J C; Pons, J L; Brunetti, F

    2017-07-01

    Hybrid rehabilitation robotics combine neuro-prosthetic devices (close-loop functional electrical stimulation systems) and traditional robotic structures and actuators to explore better therapies and promote a more efficient motor function recovery or compensation. Although hybrid robotics and ankle neuroprostheses (NPs) have been widely developed over the last years, there are just few studies on the use of NPs to electrically control both ankle flexion and extension to promote ankle recovery and improved gait patterns in paretic limbs. The aim of this work is to develop an ankle NP specifically designed to work in the field of hybrid robotics. This article presents early steps towards this goal and makes a brief review about motor NPs and Functional Electrical Stimulation (FES) principles and most common devices used to aid the ankle functioning during the gait cycle. It also shows a current sources analysis done in this framework, in order to choose the best one for this intended application.

  4. Motion control of planar parallel robot using the fuzzy descriptor system approach.

    Science.gov (United States)

    Vermeiren, Laurent; Dequidt, Antoine; Afroun, Mohamed; Guerra, Thierry-Marie

    2012-09-01

    This work presents the control of a two-degree of freedom parallel robot manipulator. A quasi-LPV approach, through the so-called TS fuzzy model and LMI constraints problems is used. Moreover, in this context a way to derive interesting control laws is to keep the descriptor form of the mechanical system. Therefore, new LMI problems have to be defined that helps to reduce the conservatism of the usual results. Some relaxations are also proposed to leave the pure quadratic stability/stabilization framework. A comparison study between the classical control strategies from robotics and the control design using TS fuzzy descriptor models is carried out to show the interest of the proposed approach. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Structure Assembly by a Heterogeneous Team of Robots Using State Estimation, Generalized Joints, and Mobile Parallel Manipulators

    Science.gov (United States)

    Komendera, Erik E.; Adhikari, Shaurav; Glassner, Samantha; Kishen, Ashwin; Quartaro, Amy

    2017-01-01

    Autonomous robotic assembly by mobile field robots has seen significant advances in recent decades, yet practicality remains elusive. Identified challenges include better use of state estimation to and reasoning with uncertainty, spreading out tasks to specialized robots, and implementing representative joining methods. This paper proposes replacing 1) self-correcting mechanical linkages with generalized joints for improved applicability, 2) assembly serial manipulators with parallel manipulators for higher precision and stability, and 3) all-in-one robots with a heterogeneous team of specialized robots for agent simplicity. This paper then describes a general assembly algorithm utilizing state estimation. Finally, these concepts are tested in the context of solar array assembly, requiring a team of robots to assemble, bond, and deploy a set of solar panel mockups to a backbone truss to an accuracy not built into the parts. This paper presents the results of these tests.

  6. Grasp planning for a reconfigurable parallel robot with an underactuated arm structure

    Directory of Open Access Journals (Sweden)

    M. Riedel

    2010-12-01

    Full Text Available In this paper, a novel approach of grasp planning is applied to find out the appropriate grasp points for a reconfigurable parallel robot called PARAGRIP (Parallel Gripping. This new handling system is able to manipulate objects in the six-dimensional Cartesian space by several robotic arms using only six actuated joints. After grasping, the contact elements at the end of the underactuated arm mechanisms are connected to the object which forms a closed loop mechanism similar to the architecture of parallel manipulators. As the mounting and grasp points of the arms can easily be changed, the manipulator can be reconfigured to match the user's preferences and needs. This paper raises the question, how and where these grasp points are to be placed on the object to perform well for a certain manipulation task.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  7. Screw Theory Based Singularity Analysis of Lower-Mobility Parallel Robots considering the Motion/Force Transmissibility and Constrainability

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2015-01-01

    Full Text Available Singularity is an inherent characteristic of parallel robots and is also a typical mathematical problem in engineering application. In general, to identify singularity configuration, the singular solution in mathematics should be derived. This work introduces an alternative approach to the singularity identification of lower-mobility parallel robots considering the motion/force transmissibility and constrainability. The theory of screws is used as the mathematic tool to define the transmission and constraint indices of parallel robots. The singularity is hereby classified into four types concerning both input and output members of a parallel robot, that is, input transmission singularity, output transmission singularity, input constraint singularity, and output constraint singularity. Furthermore, we take several typical parallel robots as examples to illustrate the process of singularity analysis. Particularly, the input and output constraint singularities which are firstly proposed in this work are depicted in detail. The results demonstrate that the method can not only identify all possible singular configurations, but also explain their physical meanings. Therefore, the proposed approach is proved to be comprehensible and effective in solving singularity problems in parallel mechanisms.

  8. Path Planning and Navigation for Mobile Robots in a Hybrid Sensor Network without Prior Location Information

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-03-01

    Full Text Available In a hybrid wireless sensor network with mobile and static nodes, which have no prior geographical knowledge, successful navigation for mobile robots is one of the main challenges. In this paper, we propose two novel navigation algorithms for outdoor environments, which permit robots to travel from one static node to another along a planned path in the sensor field, namely the RAC and the IMAP algorithms. Using this, the robot can navigate without the help of a map, GPS or extra sensor modules, only using the received signal strength indication (RSSI and odometry. Therefore, our algorithms have the advantage of being cost-effective. In addition, a path planning algorithm to schedule mobile robots' travelling paths is presented, which focuses on shorter distances and robust paths for robots by considering the RSSI-Distance characteristics. The simulations and experiments conducted with an autonomous mobile robot show the effectiveness of the proposed algorithms in an outdoor environment.

  9. Functional efficiency comparison between split- and parallel-hybrid using advanced energy flow analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, Philipp; Lin, Mengyan [Romax Technology, Nottingham (United Kingdom)

    2009-07-01

    The following paper presents a comparative efficiency analysis of the Toyota Prius versus the Honda Insight using advanced Energy Flow Analysis methods. The sample study shows that even very different hybrid concepts like a split- and a parallel-hybrid can be compared in a high level of detail and demonstrates the benefit showing exemplary results. (orig.)

  10. Position Analysis of a Hybrid Serial-Parallel Manipulator in Immersion Lithography

    Directory of Open Access Journals (Sweden)

    Jie-jie Shao

    2015-01-01

    Full Text Available This paper proposes a novel hybrid serial-parallel mechanism with 6 degrees of freedom. The new mechanism combines two different parallel modules in a serial form. 3-P̲(PH parallel module is architecture of 3 degrees of freedom based on higher joints and specializes in describing two planes’ relative pose. 3-P̲SP parallel module is typical architecture which has been widely investigated in recent researches. In this paper, the direct-inverse position problems of the 3-P̲SP parallel module in the couple mixed-type mode are analyzed in detail, and the solutions are obtained in an analytical form. Furthermore, the solutions for the direct and inverse position problems of the novel hybrid serial-parallel mechanism are also derived and obtained in the analytical form. The proposed hybrid serial-parallel mechanism is applied to regulate the immersion hood’s pose in an immersion lithography system. Through measuring and regulating the pose of the immersion hood with respect to the wafer surface simultaneously, the immersion hood can track the wafer surface’s pose in real-time and the gap status is stabilized. This is another exploration to hybrid serial-parallel mechanism’s application.

  11. Human Robot Interaction for Hybrid Collision Avoidance System for Indoor Mobile Robots

    Directory of Open Access Journals (Sweden)

    Mazen Ghandour

    2017-06-01

    Full Text Available In this paper, a novel approach for collision avoidance for indoor mobile robots based on human-robot interaction is realized. The main contribution of this work is a new technique for collision avoidance by engaging the human and the robot in generating new collision-free paths. In mobile robotics, collision avoidance is critical for the success of the robots in implementing their tasks, especially when the robots navigate in crowded and dynamic environments, which include humans. Traditional collision avoidance methods deal with the human as a dynamic obstacle, without taking into consideration that the human will also try to avoid the robot, and this causes the people and the robot to get confused, especially in crowded social places such as restaurants, hospitals, and laboratories. To avoid such scenarios, a reactive-supervised collision avoidance system for mobile robots based on human-robot interaction is implemented. In this method, both the robot and the human will collaborate in generating the collision avoidance via interaction. The person will notify the robot about the avoidance direction via interaction, and the robot will search for the optimal collision-free path on the selected direction. In case that no people interacted with the robot, it will select the navigation path autonomously and select the path that is closest to the goal location. The humans will interact with the robot using gesture recognition and Kinect sensor. To build the gesture recognition system, two models were used to classify these gestures, the first model is Back-Propagation Neural Network (BPNN, and the second model is Support Vector Machine (SVM. Furthermore, a novel collision avoidance system for avoiding the obstacles is implemented and integrated with the HRI system. The system is tested on H20 robot from DrRobot Company (Canada and a set of experiments were implemented to report the performance of the system in interacting with the human and avoiding

  12. Configuration Synthesis of Novel Series-Parallel Hybrid Transmission Systems with Eight-Bar Mechanisms

    Directory of Open Access Journals (Sweden)

    Ngoc-Tan Hoang

    2017-07-01

    Full Text Available This paper presents a design approach for the configuration synthesis of series-parallel hybrid transmissions with eight-bar mechanisms. The final design consists of 54 mechanisms with eight members and twelve joints including a simple planetary gear train (PGT and a double planet PGT. Then, by using the techniques of power and clutch arrangements, new series-parallel hybrid transmissions are synthesized. The power arrangement process generates 97 clutchless hybrid systems. The clutch arrangement process generates 100 corresponding series-parallel transmissions. To demonstrate the feasibility of the synthesized configurations, a new hybrid transmission is selected as an example to analyze the working principle with operation modes and power flow paths.

  13. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations

    Science.gov (United States)

    Meng, Qizhi; Xie, Fugui; Liu, Xin-Jun

    2018-06-01

    This paper deals with the conceptual design, kinematic analysis and workspace identification of a novel four degrees-of-freedom (DOFs) high-speed spatial parallel robot for pick-and-place operations. The proposed spatial parallel robot consists of a base, four arms and a 1½ mobile platform. The mobile platform is a major innovation that avoids output singularity and offers the advantages of both single and double platforms. To investigate the characteristics of the robot's DOFs, a line graph method based on Grassmann line geometry is adopted in mobility analysis. In addition, the inverse kinematics is derived, and the constraint conditions to identify the correct solution are also provided. On the basis of the proposed concept, the workspace of the robot is identified using a set of presupposed parameters by taking input and output transmission index as the performance evaluation criteria.

  14. Experimental Study of Active Vibration Control of Planar 3-RRR Flexible Parallel Robots Mechanism

    Directory of Open Access Journals (Sweden)

    Qinghua Zhang

    2016-01-01

    Full Text Available An active vibration control experiment of planar 3-RRR flexible parallel robots is implemented in this paper. Considering the direct and inverse piezoelectric effect of PZT material, a general motion equation is established. A strain rate feedback controller is designed based on the established general motion equation. Four control schemes are designed in this experiment: three passive flexible links are controlled at the same time, only passive flexible link 1 is controlled, only passive flexible link 2 is controlled, and only passive flexible link 3 is controlled. The experimental results show that only one flexible link controlled scheme  suppresses elastic vibration and cannot suppress the elastic vibration of the other flexible links, whereas when three passive flexible links are controlled at the same time, they are able to effectively suppress the elastic vibration of all of the flexible links. In general, the experiment verifies that a strain rate feedback controller is able to effectively suppress the elastic vibration of the flexible links of plane 3-RRR flexible parallel robots.

  15. A 3-DOF parallel robot with spherical motion for the rehabilitation and evaluation of balance performance.

    Science.gov (United States)

    Patanè, Fabrizio; Cappa, Paolo

    2011-04-01

    In this paper a novel electrically actuated parallel robot with three degrees-of-freedom (3 DOF) for dynamic postural studies is presented. The design has been described, the solution to the inverse kinematics has been found, and a numerical solution for the direct kinematics has been proposed. The workspace of the implemented robot is characterized by an angular range of motion of about ±10° for roll and pitch when yaw is in the range ±15°. The robot was constructed and the orientation accuracy was tested by means of an optoelectronic system and by imposing a sinusoidal input, with a frequency of 1 Hz and amplitude of 10°, along the three axes, in sequence. The collected data indicated a phase delay of 1° and an amplitude error of 0.5%-1.5%; similar values were observed for cross-axis sensitivity errors. We also conducted a clinical application on a group of normal subjects, who were standing in equilibrium on the robot base with eyes open (EO) and eyes closed (EC), which was rotated with a tri-axial sinusoidal trajectory with a frequency of 0.5 Hz and amplitude 5° for roll and pitch and 10° for the yaw. The postural configuration of the subjects was recorded with an optoelectronic system. However, due to the mainly technical nature of this paper, only initial validation outcomes are reported here. The clinical application showed that only the tilt and displacement on the sagittal pane of head, trunk, and pelvis in the trials conducted with eyes closed were affected by drift and that the reduction of the yaw rotation and of the mediolateral translation was not a controlled parameter, as happened, instead, for the other anatomical directions.

  16. Development and Testing of a Mobile Robot with Hybrid Legged-Wheeled Locomotion

    Directory of Open Access Journals (Sweden)

    Petre Barbu

    2017-06-01

    Full Text Available In this paper the authors present the development and testing process of a mobile robot with hybrid legged-wheeled locomotion, that can be used for exploring dangerous environments. The robot has a high adaptability to rough terrain by being able to modify its ride height, to overpass step or ditch type obstacles and most of all, being able to operate while overturned or to revert itself into the normal operating position.

  17. PENERAPAN KENDALI HYBRID LOGIKA FUZZY- PID UNTUKMENINGKATKAN PERFORMANAVIGASI ROBOT BERODA WALL FOLLOWER

    OpenAIRE

    Utis Sutisna; Wahyu Diputra Siregar; Siswanto Nurhadiyono

    2017-01-01

    Dalam penelitian ini dirancang sistem kendali hybrid logika fuzzy-PID untuk mengendalikan navigasi pada robot wall follower. Sistem logika fuzzy dirancang untuk mengatur nilai-nilai parameter kendali PID berdasarkan dua masukan, yaitu error dan perubahan error.Nilai error didapat dari selisih antara set point jarak yang ditetapkan dengan nilai pembacaan sensor jarak, sedangkan nilai perubahan error didapat dari selisih antara error sekarang dengan error sebelumnya saat robot bernavigasi. Kelu...

  18. Application of Matrix Pencil Algorithm to Mobile Robot Localization Using Hybrid DOA/TOA Estimation

    Directory of Open Access Journals (Sweden)

    Lan Anh Trinh

    2012-12-01

    Full Text Available Localization plays an important role in robotics for the tasks of monitoring, tracking and controlling a robot. Much effort has been made to address robot localization problems in recent years. However, despite many proposed solutions and thorough consideration, in terms of developing a low-cost and fast processing method for multiple-source signals, the robot localization problem is still a challenge. In this paper, we propose a solution for robot localization with regards to these concerns. In order to locate the position of a robot, both the coordinate and the orientation of a robot are necessary. We develop a localization method using the Matrix Pencil (MP algorithm for hybrid detection of direction of arrival (DOA and time of arrival (TOA. TOA of the signal is estimated for computing the distance between the mobile robot and a base station (BS. Based on the distance and the estimated DOA, we can estimate the mobile robot's position. The characteristics of the algorithm are examined through analysing simulated experiments and the results demonstrate the advantages of our method over previous works in dealing with the above challenges. The method is constructed based on the low-cost infrastructure of radio frequency devices; the DOA/TOA estimation is performed with just single value decomposition for fast processing. Finally, the MP algorithm combined with tracking using a Kalman filter allows our proposed method to locate the positions of multiple source signals.

  19. Design Analysis and Dynamic Modeling of a High-Speed 3T1R Pick-and-Place Parallel Robot

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Hjørnet, Preben

    2015-01-01

    This paper introduces a four degree-of-freedom parallel robot producing three translation and one rotation (Schönflies motion). This robot can generate a rectangular workspace that is close to the applicable work envelope and suitable for pick-and-place operations. The kinematics of the robot...... is studied to analyze the workspace and the isocontours of the local dexterity over the representative regular workspace are visualized. The simplified dynamics is modeled and compared with Adams model to show its effectiveness....

  20. Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications.

    Science.gov (United States)

    Patino, T; Mestre, R; Sánchez, S

    2016-10-07

    Soft robotics is an emerging discipline that employs soft flexible materials such as fluids, gels and elastomers in order to enhance the use of robotics in healthcare applications. Compared to their rigid counterparts, soft robotic systems have flexible and rheological properties that are closely related to biological systems, thus allowing the development of adaptive and flexible interactions with complex dynamic environments. With new technologies arising in bioengineering, the integration of living cells into soft robotic systems offers the possibility of accomplishing multiple complex functions such as sensing and actuating upon external stimuli. These emerging bio-hybrid systems are showing promising outcomes and opening up new avenues in the field of soft robotics for applications in healthcare and other fields.

  1. Hybrid parallel execution model for logic-based specification languages

    CERN Document Server

    Tsai, Jeffrey J P

    2001-01-01

    Parallel processing is a very important technique for improving the performance of various software development and maintenance activities. The purpose of this book is to introduce important techniques for parallel executation of high-level specifications of software systems. These techniques are very useful for the construction, analysis, and transformation of reliable large-scale and complex software systems. Contents: Current Approaches; Overview of the New Approach; FRORL Requirements Specification Language and Its Decomposition; Rewriting and Data Dependency, Control Flow Analysis of a Lo

  2. COMPARISON OF PARALLEL AND SERIES HYBRID POWERTRAINS FOR TRANSIT BUS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL; Jones, Perry T [ORNL; LaClair, Tim J [ORNL; Parks, II, James E [ORNL

    2016-01-01

    The fuel economy and emissions of both conventional and hybrid buses equipped with emissions aftertreatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicate that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar CO and HC tailpipe emissions but were also predicted to have reduced NOx tailpipe emissions compared to the conventional bus in higher speed cycles. For the New York bus cycle (NYBC), which has the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus, while the parallel hybrid bus had significantly lower tailpipe emissions. All three bus powertrains were found to require periodic active DPF regeneration to maintain PM control. Plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed due to the relatively large battery capacity that is typical of the series hybrid configuration.

  3. Automation of column-based radiochemical separations. A comparison of fluidic, robotic, and hybrid architectures

    Energy Technology Data Exchange (ETDEWEB)

    Grate, J.W.; O' Hara, M.J.; Farawila, A.F.; Ozanich, R.M.; Owsley, S.L. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2011-07-01

    Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on using disposable components so that no sample contacts any surface that any other sample has contacted, and setting up samples and columns in parallel for subsequent automated processing. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions one of four rows of six vials below the columns. The samples are delivered to each column via a manual 3-port disposable valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is a simpler more efficient approach for performing anion exchange procedures for the recovery and purification of plutonium from samples. The automation architectures described can also be adapted to column-based extraction chromatography separations. (orig.)

  4. Robotic Transnasal Endoscopic Skull Base Surgery: Systematic Review of the Literature and Report of a Novel Prototype for a Hybrid System (Brescia Endoscope Assistant Robotic Holder).

    Science.gov (United States)

    Bolzoni Villaret, Andrea; Doglietto, Francesco; Carobbio, Andrea; Schreiber, Alberto; Panni, Camilla; Piantoni, Enrico; Guida, Giovanni; Fontanella, Marco Maria; Nicolai, Piero; Cassinis, Riccardo

    2017-09-01

    Although robotics has already been applied to several surgical fields, available systems are not designed for endoscopic skull base surgery (ESBS). New conception prototypes have been recently described for ESBS. The aim of this study was to provide a systematic literature review of robotics for ESBS and describe a novel prototype developed at the University of Brescia. PubMed and Scopus databases were searched using a combination of terms, including Robotics OR Robot and Surgery OR Otolaryngology OR Skull Base OR Holder. The retrieved papers were analyzed, recording the following features: interface, tools under robotic control, force feedback, safety systems, setup time, and operative time. A novel hybrid robotic system has been developed and tested in a preclinical setting at the University of Brescia, using an industrial manipulator and readily available off-the-shelf components. A total of 11 robotic prototypes for ESBS were identified. Almost all prototypes present a difficult emergency management as one of the main limits. The Brescia Endoscope Assistant Robotic holder has proven the feasibility of an intuitive robotic movement, using the surgeon's head position: a 6 degree of freedom sensor was used and 2 light sources were added to glasses that were therefore recognized by a commercially available sensor. Robotic system prototypes designed for ESBS and reported in the literature still present significant technical limitations. Hybrid robot assistance has a huge potential and might soon be feasible in ESBS. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. An Inexpensive Method for Kinematic Calibration of a Parallel Robot by Using One Hand-Held Camera as Main Sensor

    Directory of Open Access Journals (Sweden)

    Ricardo Carelli

    2013-08-01

    Full Text Available This paper presents a novel method for the calibration of a parallel robot, which allows a more accurate configuration instead of a configuration based on nominal parameters. It is used, as the main sensor with one camera installed in the robot hand that determines the relative position of the robot with respect to a spherical object fixed in the working area of the robot. The positions of the end effector are related to the incremental positions of resolvers of the robot motors. A kinematic model of the robot is used to find a new group of parameters, which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and thereby improve spatial measurements. Finally, several working tests, static and tracking tests are executed in order to verify how the robotic system behaviour improves by using calibrated parameters against nominal parameters. In order to emphasize that, this proposed new method uses neither external nor expensive sensor. That is why new robots are useful in teaching and research activities.

  6. Implementing a Commercial-Strength Parallel Hybrid Movie Recommendation Engine

    DEFF Research Database (Denmark)

    Amolochitis, Emmanouil; Christou, Ioannis T.; Tan, Zheng-Hua

    2014-01-01

    AMORE is a hybrid recommendation system that provides movie recommendations for a major triple-play services provider in Greece. Combined with our own implementations of several user-, item-, and content-based recommendation algorithms, AMORE significantly outperforms other state......-of-the-art implementations both in solution quality and response time. AMORE currently serves daily recommendation requests for all active subscribers of the provider's video-on-demand services and has contributed to an increase of rental profits and customer retention....

  7. A hybrid method for the parallel computation of Green's functions

    DEFF Research Database (Denmark)

    Petersen, Dan Erik; Li, Song; Stokbro, Kurt

    2009-01-01

    of the large number of times this calculation needs to be performed, this is computationally very expensive even on supercomputers. The classical approach is based on recurrence formulas which cannot be efficiently parallelized. This practically prevents the solution of large problems with hundreds...... of thousands of atoms. We propose new recurrences for a general class of sparse matrices to calculate Green's and lesser Green's function matrices which extend formulas derived by Takahashi and others. We show that these recurrences may lead to a dramatically reduced computational cost because they only...... require computing a small number of entries of the inverse matrix. Then. we propose a parallelization strategy for block tridiagonal matrices which involves a combination of Schur complement calculations and cyclic reduction. It achieves good scalability even on problems of modest size....

  8. A hybrid search algorithm for swarm robots searching in an unknown environment.

    Science.gov (United States)

    Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao

    2014-01-01

    This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.

  9. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.

    Science.gov (United States)

    del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-03-04

    Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical

  10. Unilateral robotic hybrid mini-maze: a novel experimental approach.

    Science.gov (United States)

    Moslemi, Mohammad; Rawashdeh, Badi; Meyer, Mark; Nguyen, Duy; Poston, Robert; Gharagozloo, Farid

    2016-03-01

    A complete Cox maze IV procedure is difficult to accomplish using current endoscopic and minimally invasive techniques. These techniques are hampered by inability to adequately dissect the posterior structures of the heart and place all necessary lesions. We present a novel approach, using robotic technology, that achieves placement of all the lesions of the complete maze procedure. In three cadaveric human models, the technical feasibility of using robotic instruments through the right chest to dissect the posterior structures of the heart and place all Cox maze lesions was performed. The entire posterior aspect of the heart was dissected in the cadaveric model facilitating successful placement of all Cox maze IV lesions with robotic assistance through minimally invasive incisions. The robotic Cox maze IV procedure through the novel right thoracic approach is feasible. This obviates the need for sternotomy and avoids the associated morbidity of the conventional Cox-maze procedure. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Optimal control applied to the control strategy of a parallel hybrid vehicle; Commande optimale appliquee a la strategie de commande d'un vehicule hybride parallele

    Energy Technology Data Exchange (ETDEWEB)

    Delprat, S.; Guerra, T.M. [Universite de Valenciennes et du Hainaut-Cambresis, LAMIH UMR CNRS 8530, 59 - Valenciennes (France); Rimaux, J. [PSA Peugeot Citroen, DRIA/SARA/EEES, 78 - Velizy Villacoublay (France); Paganelli, G. [Center for Automotive Research, Ohio (United States)

    2002-07-01

    Control strategies are algorithms that calculate the power repartition between the engine and the motor of an hybrid vehicle in order to minimize the fuel consumption and/or emissions. Some algorithms are devoted to real time application whereas others are designed for global optimization in stimulation. The last ones provide solutions which can be used to evaluate the performances of a given hybrid vehicle or a given real time control strategy. The control strategy problem is firstly written into the form of an optimization under constraints problem. A solution based on optimal control is proposed. Results are given for the European Normalized Cycle and a parallel single shaft hybrid vehicle built at the LAMIH (France). (authors)

  12. Dynamic Behavior Sequencing in a Hybrid Robot Architecture

    Science.gov (United States)

    2008-03-01

    robots to represent and execute procedures, scripts , and plans in dynamic environ- ments [24]. Ingrand et al. describe the PRS as the link between the...based language in a similar style to Java that follows a model-based programming approach. A model-based programming approach refers to embedded...refers to the angular orientation of the robot from its initial heading. Therefore, the θ parameter value of zero (0) indicates that the desired

  13. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    Science.gov (United States)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  14. Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Farzin Piltan

    2013-06-01

    Full Text Available Sliding mode controller (SMC is a significant nonlinear controller under condition of partly uncertain dynamic parameters of system. This controller is used to control of highly nonlinear systems especially for robot manipulators, because this controller is a robust and stable. Conversely, pure sliding mode controller is used in many applications; it has two important drawbacks namely; chattering phenomenon, and nonlinear equivalent dynamic formulation in uncertain dynamic parameter. The nonlinear equivalent dynamic formulation problem and chattering phenomenon in uncertain system can be solved by using artificial intelligence theorem. However fuzzy logic controller is used to control complicated nonlinear dynamic systems, but it cannot guarantee stability and robustness.  In this research parallel fuzzy logic theory is used to compensate the system dynamic uncertainty.

  15. Dynamic Analysis of Planar 3-RRR Flexible Parallel Robots with Dynamic Stiffening

    Directory of Open Access Journals (Sweden)

    Qinghua Zhang

    2014-01-01

    Full Text Available In consideration of the second-order coupling quantity of the axial displacement caused by the transverse displacement of flexible beam, the first-order approximation coupling model of planar 3-RRR flexible parallel robots is presented, in which the rigid body motion constraints, elastic deformation motion constraints, and dynamic constraints of the moving platform are considered. Based on the different speed of the moving platform, numerical simulation results using the conventional zero-order approximation coupling model and the proposed firstorder approximation coupling model show that the effect of “dynamic stiffening” term on dynamic characteristics of the system is insignificant and can be neglected, and the zero-order approximation coupling model is enough precisely for catching essentially dynamic characteristics of the system. Then, the commercial software ANSYS 13.0 is used to confirm the validity of the zero-order approximation coupling model.

  16. Virtual Sensor for Kinematic Estimation of Flexible Links in Parallel Robots.

    Science.gov (United States)

    Bengoa, Pablo; Zubizarreta, Asier; Cabanes, Itziar; Mancisidor, Aitziber; Pinto, Charles; Mata, Sara

    2017-08-23

    The control of flexible link parallel manipulators is still an open area of research, endpoint trajectory tracking being one of the main challenges in this type of robot. The flexibility and deformations of the limbs make the estimation of the Tool Centre Point (TCP) position a challenging one. Authors have proposed different approaches to estimate this deformation and deduce the location of the TCP. However, most of these approaches require expensive measurement systems or the use of high computational cost integration methods. This work presents a novel approach based on a virtual sensor which can not only precisely estimate the deformation of the flexible links in control applications (less than 2% error), but also its derivatives (less than 6% error in velocity and 13% error in acceleration) according to simulation results. The validity of the proposed Virtual Sensor is tested in a Delta Robot, where the position of the TCP is estimated based on the Virtual Sensor measurements with less than a 0.03% of error in comparison with the flexible approach developed in ADAMS Multibody Software.

  17. A new parallel-type hybrid electric-vehicle

    International Nuclear Information System (INIS)

    David Huang, K.; Tzeng, S.-C.

    2004-01-01

    This new system promises an internal-combustion engine that always maintains optimal operating conditions. The system comprises two parts: (1) an internal-combustion power-distribution device and (2) an integrated design involving the engine and electronic motor. The internal-combustion power-distribution device provides an engine capable of constantly operating in an optimal fashion, minimizing emissions and maximizing thermal-efficiency. The electric motor can generate extra power. Notably, the integrated torque design comprises three helical gears. This design can release the power of the engine or electric motor separately, or can integrate these two different powers into a hybridized power system

  18. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system.

    Science.gov (United States)

    Schuler, Patrick J; Hoffmann, Thomas K; Veit, Johannes A; Rotter, Nicole; Friedrich, Daniel T; Greve, Jens; Scheithauer, Marc O

    2017-06-01

    Total laryngectomy is a standard procedure in head-and-neck surgery for the treatment of cancer patients. Recent clinical experiences have indicated a clinical benefit for patients undergoing transoral robot-assisted total laryngectomy (TORS-TL) with commercially available systems. Here, a new hybrid procedure for total laryngectomy is presented. TORS-TL was performed in human cadavers (n = 3) using a transoral-transcervical hybrid procedure. The transoral approach was performed with a robotic flexible robot-assisted surgical system (Flex®) and compatible flexible instruments. Transoral access and visualization of anatomical landmarks were studied in detail. Total laryngectomy is feasible with a combined transoral-transcervical approach using the flexible robot-assisted surgical system. Transoral visualization of all anatomical structures is sufficient. The flexible design of the robot is advantageous for transoral surgery of the laryngeal structures. Transoral robot assisted surgery has the potential to reduce morbidity, hospital time and fistula rates in a selected group of patients. Initial clinical studies and further development of supplemental tools are in progress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. A hybrid method for the parallel computation of Green's functions

    International Nuclear Information System (INIS)

    Petersen, Dan Erik; Li Song; Stokbro, Kurt; Sorensen, Hans Henrik B.; Hansen, Per Christian; Skelboe, Stig; Darve, Eric

    2009-01-01

    Quantum transport models for nanodevices using the non-equilibrium Green's function method require the repeated calculation of the block tridiagonal part of the Green's and lesser Green's function matrices. This problem is related to the calculation of the inverse of a sparse matrix. Because of the large number of times this calculation needs to be performed, this is computationally very expensive even on supercomputers. The classical approach is based on recurrence formulas which cannot be efficiently parallelized. This practically prevents the solution of large problems with hundreds of thousands of atoms. We propose new recurrences for a general class of sparse matrices to calculate Green's and lesser Green's function matrices which extend formulas derived by Takahashi and others. We show that these recurrences may lead to a dramatically reduced computational cost because they only require computing a small number of entries of the inverse matrix. Then, we propose a parallelization strategy for block tridiagonal matrices which involves a combination of Schur complement calculations and cyclic reduction. It achieves good scalability even on problems of modest size.

  20. Design and Analysis of Planetary Gear and Track Hybrid Mobile Robot

    Directory of Open Access Journals (Sweden)

    LEI Ning

    2014-10-01

    Full Text Available In order to improve the ability of obstacle negotiation and stability of mobile robot under unstructured environment, a new type of planetary gear and track hybrid mobile robot has been designed. This robot can surmount lower obstacles by its gravity and inertia of epicyclic gear train, otherwise, higher obstacles can be negotiated by the track arms. The two-part body connected by universal coupling can adjust to different terrain. Also, key parts of the robot were analyzed by ANSYS. According to the analysis results, an optimization design has been put forward .The analysis results can be concluded that the total deformation of the track arm can be reduced from 289 mm to 41.9 mm and the stiffness was improved.

  1. A Hybrid FPGA/Coarse Parallel Processing Architecture for Multi-modal Visual Feature Descriptors

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Alonso, Javier Díaz

    2008-01-01

    This paper describes the hybrid architecture developed for speeding up the processing of so-called multi-modal visual primitives which are sparse image descriptors extracted along contours. In the system, the first stages of visual processing are implemented on FPGAs due to their highly parallel...

  2. Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Khan, Sajid; Göbel, Ole

    2010-01-01

    This review gives an overview of the progress made in recent years in the development of low-cost parallel patterning techniques for ceramic materials, silica, and organic–inorganic silsesquioxane-based hybrids from wet-chemical solutions and suspensions on the micrometer and nanometer-scale. The

  3. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Directory of Open Access Journals (Sweden)

    René Felix Reinhart

    2017-02-01

    Full Text Available Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  4. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-02-08

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  5. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-01-01

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697

  6. Trajectory generation to suppress oscillations in under-constrained cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Wook; Bak, Jeong Hyeon; Yoon, Jong Hyun; Park, Jong Hyeon [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of); Park, Jong Oh [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)

    2016-12-15

    Cable-driven parallel robots (CDPRs) have many advantages over conventional link-based robot manipulators in terms of acceleration due to their low inertia. This paper concerns about under-constrained CDPRs, which have a less number of cables than six, often used favorably due to their simpler structures. Since a smaller number of cables than 6 are employed, however, their payloads have extra degrees of motion freedom and exhibit swaying motions or oscillation. In this paper, a scheme to suppress unwanted oscillatory motions of the payload of a 4-cable-driven CDPR based on a Zero-vibration (ZV) input-shaping scheme is proposed. In this method, a motion in the 3-dimensional space is projected onto the independent motions on two vertical planes perpendicular to each other. On each of the vertical plane, the natural frequency of the CDPR is computed based on a 2-cable-driven planar CDPR model. The precise dynamic model of a planar CDPR is obtained in order to find the natural frequency, which depends on the payload position. The advantage of the proposed scheme is that it is possible to generate an oscillation-free trajectory based on a ZV input-shaping scheme despite the complexity in the dynamics of the CDPR and the difficulty in computing the natural frequencies of the CDPR, which is required in any ZV input-shaping scheme. To verify the effectiveness of the proposed method, a series of computer simulations and experiments were conducted for 3- dimensional motions with a 4-cable-driven CDPR. Their results showed that the motions of the CDPR with the proposed method exhibited a significant reduction in oscillations of the payload. However, when the payload moves near the edges of its workspace, the improvement in oscillation reduction diminished as expected due to the errors in model projection.

  7. Hand-assisted hybrid laparoscopic-robotic total proctocolectomy with ileal pouch--anal anastomosis.

    Science.gov (United States)

    Morelli, Luca; Guadagni, Simone; Mariniello, Maria Donatella; Furbetta, Niccolò; Pisano, Roberta; D'Isidoro, Cristiano; Caprili, Giovanni; Marciano, Emanuele; Di Candio, Giulio; Boggi, Ugo; Mosca, Franco

    2015-08-01

    Few studies have reported minimally invasive total proctocolectomy with ileal pouch-anal anastomosis (IPAA) for ulcerative colitis (UC) and familial adenomatous polyposis (FAP). We herein report a novel hand-assisted hybrid laparoscopic-robotic technique for patients with FAP and UC. Between February 2010 and March 2014, six patients underwent hand-assisted hybrid laparoscopic-robotic total proctocolectomy with IPAA. The abdominal colectomy was performed laparoscopically with hand assistance through a transverse suprapubic incision, also used to fashion the ileal pouch. The proctectomy was carried out with the da Vinci Surgical System. The IPAA was hand-sewn through a trans-anal approach. The procedure was complemented by a temporary diverting loop ileostomy. The mean hand-assisted laparoscopic surgery (HALS) time was 154.6 (±12.8) min whereas the mean robotic time was 93.6 (±8.1) min. In all cases, a nerve-sparing proctectomy was performed, and no conversion to traditional laparotomy was required. The mean postoperative hospital stay was 13.2 (±7.4) days. No anastomotic leakage was observed. To date, no autonomic neurological disorders have been observed with a mean of 5.8 (±1.3) bowel movements per day. The hand-assisted hybrid laparoscopic-robotic approach to total proctocolectomy with IPAA has not been previously described. Our report shows the feasibility of this hybrid approach, which surpasses most of the limitations of pure laparoscopic and robotic techniques. Further experience is necessary to refine the technique and fully assess its potential advantages.

  8. Parallel deposition, sorting, and reordering methods in the Hybrid Ordered Plasma Simulation (HOPS) code

    International Nuclear Information System (INIS)

    Anderson, D.V.; Shumaker, D.E.

    1993-01-01

    From a computational standpoint, particle simulation calculations for plasmas have not adapted well to the transitions from scalar to vector processing nor from serial to parallel environments. They have suffered from inordinate and excessive accessing of computer memory and have been hobbled by relatively inefficient gather-scatter constructs resulting from the use of indirect indexing. Lastly, the many-to-one mapping characteristic of the deposition phase has made it difficult to perform this in parallel. The authors' code sorts and reorders the particles in a spatial order. This allows them to greatly reduce the memory references, to run in directly indexed vector mode, and to employ domain decomposition to achieve parallelization. In this hybrid simulation the electrons are modeled as a fluid and the field equations solved are obtained from the electron momentum equation together with the pre-Maxwell equations (displacement current neglected). Either zero or finite electron mass can be used in the electron model. The resulting field equations are solved with an iteratively explicit procedure which is thus trivial to parallelize. Likewise, the field interpolations and the particle pushing is simple to parallelize. The deposition, sorting, and reordering phases are less simple and it is for these that the authors present detailed algorithms. They have now successfully tested the parallel version of HOPS in serial mode and it is now being readied for parallel execution on the Cray C-90. They will then port HOPS to a massively parallel computer, in the next year

  9. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  10. Hybrid Propulsion Technology for Robotic Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — C3 Propulsion's Hybrid Propulsion Technology will be applied to a NASA selected Sample Return Mission. Phase I will demonstrate Proof-of-Principle and Phase II will...

  11. Parallel algorithm for dominant points correspondences in robot binocular stereo vision

    Science.gov (United States)

    Al-Tammami, A.; Singh, B.

    1993-01-01

    This paper presents an algorithm to find the correspondences of points representing dominant feature in robot stereo vision. The algorithm consists of two main steps: dominant point extraction and dominant point matching. In the feature extraction phase, the algorithm utilizes the widely used Moravec Interest Operator and two other operators: the Prewitt Operator and a new operator called Gradient Angle Variance Operator. The Interest Operator in the Moravec algorithm was used to exclude featureless areas and simple edges which are oriented in the vertical, horizontal, and two diagonals. It was incorrectly detecting points on edges which are not on the four main directions (vertical, horizontal, and two diagonals). The new algorithm uses the Prewitt operator to exclude featureless areas, so that the Interest Operator is applied only on the edges to exclude simple edges and to leave interesting points. This modification speeds-up the extraction process by approximately 5 times. The Gradient Angle Variance (GAV), an operator which calculates the variance of the gradient angle in a window around the point under concern, is then applied on the interesting points to exclude the redundant ones and leave the actual dominant ones. The matching phase is performed after the extraction of the dominant points in both stereo images. The matching starts with dominant points in the left image and does a local search, looking for corresponding dominant points in the right image. The search is geometrically constrained the epipolar line of the parallel-axes stereo geometry and the maximum disparity of the application environment. If one dominant point in the right image lies in the search areas, then it is the corresponding point of the reference dominant point in the left image. A parameter provided by the GAV is thresholded and used as a rough similarity measure to select the corresponding dominant point if there is more than one point the search area. The correlation is used as

  12. Finding Optimal Independent Grasp Regions of Parallel Manipulators with Additional Applications for Limbed Robot Mobility

    Data.gov (United States)

    National Aeronautics and Space Administration — For the problem of robotic manipulation, wherein a robotic manipulator interacts with objects or its environment using an end-effector (gripper), there have been...

  13. Intelligent Hybrid Control Strategy for Trajectory Tracking of Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Yi Zuo

    2008-01-01

    Full Text Available We address the problem of robust tracking control using a PD-plus-feedforward controller and an intelligent adaptive robust compensator for a rigid robotic manipulator with uncertain dynamics and external disturbances. A key feature of this scheme is that soft computer methods are used to learn the upper bound of system uncertainties and adjust the width of the boundary layer base. In this way, the prior knowledge of the upper bound of the system uncertainties does need not to be required. Moreover, chattering can be effectively eliminated, and asymptotic error convergence can be guaranteed. Numerical simulations and experiments of two-DOF rigid robots are presented to show effectiveness of the proposed scheme.

  14. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    Energy Technology Data Exchange (ETDEWEB)

    Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Department of Computer Science (United States); Department of Mathematics (United States)

    2016-10-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  15. Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-11-01

    Full Text Available The control strategy is a major unit in hybrid electric vehicles (HEVs. In order to provide suitable control parameters for reducing fuel consumptions and engine emissions while maintaining vehicle performance requirements, the genetic algorithm (GA with small population size is applied to search for feasible control parameters in parallel HEVs. The electric assist control strategy (EACS is used as the fundamental control strategy of parallel HEVs. The dynamic performance requirements stipulated in the Partnership for a New Generation of Vehicles (PNGV is considered to maintain the vehicle performance. The known ADvanced VehIcle SimulatOR (ADVISOR is used to simulate a specific parallel HEV with urban dynamometer driving schedule (UDDS. Five population sets with size 5, 10, 15, 20, and 25 are used in the GA. The experimental results show that the GA with population size of 25 is the best for selecting feasible control parameters in parallel HEVs.

  16. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    International Nuclear Information System (INIS)

    Detrixhe, Miles; Gibou, Frédéric

    2016-01-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  17. Design and Programming for Cable-Driven Parallel Robots in the German Pavilion at the EXPO 2015

    Directory of Open Access Journals (Sweden)

    Philipp Tempel

    2015-08-01

    Full Text Available In the German Pavilion at the EXPO 2015, two large cable-driven parallel robots are flying over the heads of the visitors representing two bees flying over Germany and displaying everyday life in Germany. Each robot consists of a mobile platform and eight cables suspended by winches and follows a desired trajectory, which needs to be computed in advance taking technical limitations, safety considerations and visual aspects into account. In this paper, a path planning software is presented, which includes the design process from developing a robot design and workspace estimation via planning complex trajectories considering technical limitations through to exporting a complete show. For a test trajectory, simulation results are given, which display the relevant trajectories and cable force distributions.

  18. Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities.

    Science.gov (United States)

    Cruz Bournazou, M N; Barz, T; Nickel, D B; Lopez Cárdenas, D C; Glauche, F; Knepper, A; Neubauer, P

    2017-03-01

    We present an integrated framework for the online optimal experimental re-design applied to parallel nonlinear dynamic processes that aims to precisely estimate the parameter set of macro kinetic growth models with minimal experimental effort. This provides a systematic solution for rapid validation of a specific model to new strains, mutants, or products. In biosciences, this is especially important as model identification is a long and laborious process which is continuing to limit the use of mathematical modeling in this field. The strength of this approach is demonstrated by fitting a macro-kinetic differential equation model for Escherichia coli fed-batch processes after 6 h of cultivation. The system includes two fully-automated liquid handling robots; one containing eight mini-bioreactors and another used for automated at-line analyses, which allows for the immediate use of the available data in the modeling environment. As a result, the experiment can be continually re-designed while the cultivations are running using the information generated by periodical parameter estimations. The advantages of an online re-computation of the optimal experiment are proven by a 50-fold lower average coefficient of variation on the parameter estimates compared to the sequential method (4.83% instead of 235.86%). The success obtained in such a complex system is a further step towards a more efficient computer aided bioprocess development. Biotechnol. Bioeng. 2017;114: 610-619. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. A new macro-micro dual drive parallel robot for chromosome dissection

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jin; Gao, Feng; Zhao, Xianchao; Yue, Yi; Liu, Renqiang [Shanghai Jiao Tong University, Shanghai (China)

    2012-01-15

    This paper presents a parallel-structure system dually driven by six servo motors and six piezoelectric actuators. Due to the combination of macro and micro manipulators which are both of orthogonal structures, the proposed system possesses a concise structure as well as actuation isolation and output motion decoupling properties. By using a glass needle mounted on a six-dimensional force sensor in endpoint operating, this system can be applied to chromosome dissection that to make the whole process more efficient and automatic. The glass needle tip has a stroke of 106 mm in three linear motions and 18.7-arc-degrees in three angle motion directions, with servo motors adopted. It also has the resolution of 20 nanometers with the adoption of piezoelectric actuators. The kinematics, isotropy, decoupling and design considerations of the proposed robot are discussed. Workspace and resolution of both macro and micro manipulators are measured separately. The experiments are also conducted to show its capability in dissecting chromosomes.

  20. Characteristics of manipulator for industrial robot with three rotational pairs having parallel axes

    Science.gov (United States)

    Poteyev, M. I.

    1986-01-01

    The dynamics of a manipulator with three rotatinal kinematic pairs having parallel axes are analyzed, for application in an industrial robot. The system of Lagrange equations of the second kind, describing the motion of such a mechanism in terms of kinetic energy in generalized coordinates, is reduced to equations of motion in terms of Newton's laws. These are useful not only for either determining the moments of force couples which will produce a prescribed motion or, conversely determining the motion which given force couples will produce but also for solving optimization problems under constraints in both cases and for estimating dynamic errors. As a specific example, a manipulator with all three axes of vertical rotation is considered. The performance of this manipulator, namely the parameters of its motion as functions of time, is compared with that of a manipulator having one rotational and two translational kinematic pairs. Computer aided simulation of their motion on the basis of ideal models, with all three links represented by identical homogeneous bars, has yielded velocity time diagrams which indicate that the manipulator with three rotational pairs is 4.5 times faster.

  1. Flatness based feedforward control of a parallel hybrid drivetrain; Flachheitsbasierter Vorsteuerungsentwurf fuer den Antriebsstrang eines Parallelhybriden

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Rainer; Hesseler, Frank; Abel, Dirk [RWTH Aachen Univ. (Germany). Inst. fuer Regelungstechnik

    2010-10-15

    The advantages of Hybrid Electrical Vehicles (HEV) are fuel consumption reduction and minimization of exhaust emissions. Moreover, the drivability of a HEV is very important for the consumer acceptance. The gear shifts and the start of the internal combustion engine are very important for the drivability of a HEV. Because this two tasks are automated, oscillations in the vehicle would be uncomfortable for the driver. In the paper at hand, feedforward controllers for the drivetrain control of a parallel hybrid with an automated manual transmission and a dry clutch are presented. (orig.)

  2. Hierarchical Control of Parallel AC-DC Converter Interfaces for Hybrid Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai

    2014-01-01

    In this paper, a hierarchical control system for parallel power electronics interfaces between ac bus and dc bus in a hybrid microgrid is presented. Both standalone and grid-connected operation modes in the dc side of the microgrid are analyzed. Concretely, a three-level hierarchical control system...... equal or proportional dc load current sharing. The common secondary control level is designed to eliminate the dc bus voltage deviation produced by the droop control, with dc bus voltage in the hybrid microgrid boosted to an acceptable range. After guaranteeing the performance of the dc side standalone...

  3. Comparison Of Hybrid Sorting Algorithms Implemented On Different Parallel Hardware Platforms

    Directory of Open Access Journals (Sweden)

    Dominik Zurek

    2013-01-01

    Full Text Available Sorting is a common problem in computer science. There are lot of well-known sorting algorithms created for sequential execution on a single processor. Recently, hardware platforms enable to create wide parallel algorithms. We have standard processors consist of multiple cores and hardware accelerators like GPU. The graphic cards with their parallel architecture give new possibility to speed up many algorithms. In this paper we describe results of implementation of a few different sorting algorithms on GPU cards and multicore processors. Then hybrid algorithm will be presented which consists of parts executed on both platforms, standard CPU and GPU.

  4. Empirical evaluation of a practical indoor mobile robot navigation method using hybrid maps

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Fan, Zhun; Xiao, Jizhong

    2010-01-01

    This video presents a practical navigation scheme for indoor mobile robots using hybrid maps. The method makes use of metric maps for local navigation and a topological map for global path planning. Metric maps are generated as occupancy grids by a laser range finder to represent local information...... about partial areas. The global topological map is used to indicate the connectivity of the ‘places-of-interests’ in the environment and the interconnectivity of the local maps. Visual tags on the ceiling to be detected by the robot provide valuable information and contribute to reliable localization...... that the method is implemented successfully on physical robot in a hospital environment, which provides a practical solution for indoor navigation....

  5. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    Directory of Open Access Journals (Sweden)

    Chien-Lun Hou

    2011-02-01

    Full Text Available In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  6. Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2011-06-01

    Full Text Available This paper presents an effective hybrid control approach for building stable wireless sensor networks between heterogeneous unmanned vehicles using long‐ endurance aerial robotic vehicles. For optimal deployment of the aerial vehicles in communication networks, a gradient climbing based self‐estimating control algorithm is utilized to locate the aerial platforms to maintain maximum communication throughputs between distributed multiple nodes. The autonomous aerial robots, which function as communication relay nodes, extract and harvest thermal energy from the atmospheric environment to improve their flight endurance within specified communication coverage areas. The rapidly‐deployable sensor networks with the high‐endurance aerial vehicles can be used for various application areas including environment monitoring, surveillance, tracking, and decision‐making support. Flight test and simulation studies are conducted to evaluate the effectiveness of the proposed hybrid control technique for robust communication networks.

  7. Locomotion training of legged robots using hybrid machine learning techniques

    Science.gov (United States)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.

    1995-01-01

    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible

  8. Online Assessment of Human-Robot Interaction for Hybrid Control of Walking

    Directory of Open Access Journals (Sweden)

    Ana de-los-Reyes

    2011-12-01

    Full Text Available Restoration of walking ability of Spinal Cord Injury subjects can be achieved by different approaches, as the use of robotic exoskeletons or electrical stimulation of the user’s muscles. The combined (hybrid approach has the potential to provide a solution to the drawback of each approach. Specific challenges must be addressed with specific sensory systems and control strategies. In this paper we present a system and a procedure to estimate muscle fatigue from online physical interaction assessment to provide hybrid control of walking, regarding the performances of the muscles under stimulation.

  9. Literature Review on the Hybrid Flow Shop Scheduling Problem with Unrelated Parallel Machines

    Directory of Open Access Journals (Sweden)

    Eliana Marcela Peña Tibaduiza

    2017-01-01

    Full Text Available Context: The flow shop hybrid problem with unrelated parallel machines has been less studied in the academia compared to the flow shop hybrid with identical processors. For this reason, there are few reports about the kind of application of this problem in industries. Method: A literature review of the state of the art on flow-shop scheduling problem was conducted by collecting and analyzing academic papers on several scientific databases. For this aim, a search query was constructed using keywords defining the problem and checking the inclusion of unrelated parallel machines in such definition; as a result, 50 papers were finally selected for this study. Results: A classification of the problem according to the characteristics of the production system was performed, also solution methods, constraints and objective functions commonly used are presented. Conclusions: An increasing trend is observed in studies of flow shop with multiple stages, but few are based on industry case-studies.

  10. Hybrid Control of a Two-Wheeled Automatic-Balancing Robot with Backlash Feature

    DEFF Research Database (Denmark)

    Løhndorf, Petar Durdevic; Yang, Zhenyu

    2013-01-01

    This paper investigates the application of hybrid control for an automatic balancing robot system subject to backlash effect. The developed controller is a type of sliding mode controller, refereed to as a switching controller, with respect to different situations i.e., whether the backlash is pr...... and comparisons with other solutions show the proposed solution can lead to a very satisfactory anti-backlash performance, with an easy and cost-effective implementation....

  11. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    OpenAIRE

    Lixun Zhang; Yupeng Zou; Lan Wang; Xinping Pei

    2012-01-01

    A novel Astronaut Rehabilitative Training Robot (ART) based on a cable‐driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut’s active movements. Based on the dynamics modelling of the cable‐driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC) is presented...

  12. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    OpenAIRE

    Fu, Zhumu; Gao, Aiyun; Wang, Xiaohong; Song, Xiaona

    2014-01-01

    This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV) by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE) with the state of charge (SOC) of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified I...

  13. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics.

    Science.gov (United States)

    Stanton, M M; Trichet-Paredes, C; Sánchez, S

    2015-04-07

    This article will focus on recent reports that have applied three-dimensional (3D) printing for designing millimeter to micrometer architecture for robotic motility. The utilization of 3D printing has rapidly grown in applications for medical prosthetics and scaffolds for organs and tissue, but more recently has been implemented for designing mobile robotics. With an increase in the demand for devices to perform in fragile and confined biological environments, it is crucial to develop new miniaturized, biocompatible 3D systems. Fabrication of materials at different scales with different properties makes 3D printing an ideal system for creating frameworks for small-scale robotics. 3D printing has been applied for the design of externally powered, artificial microswimmers and studying their locomotive capabilities in different fluids. Printed materials have also been incorporated with motile cells for bio-hybrid robots capable of functioning by cell contraction and swimming. These 3D devices offer new methods of robotic motility for biomedical applications requiring miniature structures. Traditional 3D printing methods, where a structure is fabricated in an additive process from a digital design, and non-traditional 3D printing methods, such as lithography and molding, will be discussed.

  14. Software design of the hybrid robot machine for ITER vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    Li, Ming; Wu, Huapeng; Handroos, Heikki; Yang, Guangyou

    2013-01-01

    A specific software design is elaborated in this paper for the hybrid robot machine used for the ITER vacuum vessel (VV) assembly and maintenance. In order to provide the multi-machining-function as well as the complicated, flexible and customizable GUI designing satisfying the non-standardized VV assembly process in one hand, and in another hand guarantee the stringent machining precision in the real-time motion control of robot machine, a client–server-control software architecture is proposed, which separates the user interaction, data communication and robot control implementation into different software layers. Correspondingly, three particular application protocols upon the TCP/IP are designed to transmit the data, command and status between the client and the server so as to deal with the abundant data streaming in the software. In order not to be affected by the graphic user interface (GUI) modification process in the future experiment in VV assembly working field, the real-time control system is realized as a stand-alone module in the architecture to guarantee the controlling performance of the robot machine. After completing the software development, a milling operation is tested on the robot machine, and the result demonstrates that both the specific GUI operability and the real-time motion control performance could be guaranteed adequately in the software design

  15. Software design of the hybrid robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming, E-mail: Ming.Li@lut.fi [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Yang, Guangyou [School of Mechanical Engineering, Hubei University of Technology, Wuhan (China)

    2013-10-15

    A specific software design is elaborated in this paper for the hybrid robot machine used for the ITER vacuum vessel (VV) assembly and maintenance. In order to provide the multi-machining-function as well as the complicated, flexible and customizable GUI designing satisfying the non-standardized VV assembly process in one hand, and in another hand guarantee the stringent machining precision in the real-time motion control of robot machine, a client–server-control software architecture is proposed, which separates the user interaction, data communication and robot control implementation into different software layers. Correspondingly, three particular application protocols upon the TCP/IP are designed to transmit the data, command and status between the client and the server so as to deal with the abundant data streaming in the software. In order not to be affected by the graphic user interface (GUI) modification process in the future experiment in VV assembly working field, the real-time control system is realized as a stand-alone module in the architecture to guarantee the controlling performance of the robot machine. After completing the software development, a milling operation is tested on the robot machine, and the result demonstrates that both the specific GUI operability and the real-time motion control performance could be guaranteed adequately in the software design.

  16. Parallel Solver for H(div) Problems Using Hybridization and AMG

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chak S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-15

    In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examined through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.

  17. Dynamic Modeling and Fuzzy Self-Tuning Disturbance Decoupling Control for a 3-DOF Serial-Parallel Hybrid Humanoid Arm

    Directory of Open Access Journals (Sweden)

    Yueling Wang

    2013-01-01

    Full Text Available A unique fuzzy self-tuning disturbance decoupling controller (FSDDC is designed for a serial-parallel hybrid humanoid arm (HHA to implement the throwing trajectory-tracking mission. Firstly, the dynamic model of the HHA is established and the input signal of the throwing process is obtained by studying the throwing process of human's arm. Secondly, the FSDDC, incorporating the disturbance decoupling controller (DDC and the fuzzy logic controller (FLC, is designed to ensure trajectory tracking of the HHA in the presence of uncertainties and disturbances. With the FSDDC method, the HHA system can be decoupled by actively estimating and rejecting the effects of both the internal plant dynamics and external disturbances. The self-tuning parameters are adapted online to improve the performance of the FSDDC; thus, it does not require detailed system parameters of the presented FSDDC. Finally, the controller introduced is compared with a PD controller which is commonly used for the robot manipulators control in industry. The effectiveness of the designed FSDDC is illustrated by simulations.

  18. Parallel genetic algorithms with migration for the hybrid flow shop scheduling problem

    Directory of Open Access Journals (Sweden)

    K. Belkadi

    2006-01-01

    Full Text Available This paper addresses scheduling problems in hybrid flow shop-like systems with a migration parallel genetic algorithm (PGA_MIG. This parallel genetic algorithm model allows genetic diversity by the application of selection and reproduction mechanisms nearer to nature. The space structure of the population is modified by dividing it into disjoined subpopulations. From time to time, individuals are exchanged between the different subpopulations (migration. Influence of parameters and dedicated strategies are studied. These parameters are the number of independent subpopulations, the interconnection topology between subpopulations, the choice/replacement strategy of the migrant individuals, and the migration frequency. A comparison between the sequential and parallel version of genetic algorithm (GA is provided. This comparison relates to the quality of the solution and the execution time of the two versions. The efficiency of the parallel model highly depends on the parameters and especially on the migration frequency. In the same way this parallel model gives a significant improvement of computational time if it is implemented on a parallel architecture which offers an acceptable number of processors (as many processors as subpopulations.

  19. Representation and shape estimation of Odin, a parallel under-actuated modular robot

    DEFF Research Database (Denmark)

    Lyder, Andreas; Petersen, Henrik Gordon; Støy, Kasper

    2009-01-01

    To understand the capabilities and behavior of a robot it is important to have knowledge about its physical structure and how its actuators control its shape. In this paper we analyze the kinematics and develop a general representation of a configuration of the heterogeneous modular robot Odin....... The basics of estimating the shape of the Odin robot is presented, which leads the way for further research on the Odin robot and similar robots. We present an example of how to represent and estimate the shape of a tetrahedron configuration with various types of modules. We conclude that this representation...... can be used to find the physical constraints of the Odin robot and estimate the shape of a configuration....

  20. Optimal energy management for a series-parallel hybrid electric bus

    International Nuclear Information System (INIS)

    Xiong Weiwei; Zhang Yong; Yin Chengliang

    2009-01-01

    This paper aims to present a new type of series-parallel hybrid electric bus and its energy management strategy. This hybrid bus is a post-transmission coupled system employing a novel transmission as the series-parallel configuration switcher. In this paper, the vehicle architecture, transmission scheme and numerical models are presented. The energy management system governs the mode switching between the series mode and the parallel mode as well as the instantaneous power distribution. In this work, two separated controllers using fuzzy logic called Mode Decision and Parallel-driving Energy Management are employed to fulfill these two tasks. The energy management strategy and the applications of fuzzy logic are described. The strategy is validated by a forward-facing simulation program based on the software Matlab/Simulink. The results show that the energy management strategy is effective to control the engine operating in a high-efficiency region as well as to sustain the battery charge state while satisfy the drive ability. The energy consumption is theoretically reduced by 30.3% to that of the conventional bus under transit bus driving cycle. In addition, works need future study are also presented.

  1. Representation and shape estimation of Odin, a parallel under-actuated modular robot

    DEFF Research Database (Denmark)

    Lyder, Andreas; Petersen, Henrik Gordon; Støy, Kasper

    2009-01-01

    To understand the capabilities and behavior of a robot it is important to have knowledge about its physical structure and how its actuators control its shape. In this paper we analyze the kinematics and develop a general representation of a configuration of the heterogeneous modular robot Odin...... can be used to find the physical constraints of the Odin robot and estimate the shape of a configuration....

  2. Voith hybrid systems - parallel hybrid for rail vehicles; Voith Hybridsysteme - Parallelhybrid fuer Schienenfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Groezinger, Thomas; Berger, Juergen; Discher, Andreas; Bartosch, Stephan [Voith Turbo GmbH und Co. KG (Germany)

    2010-03-15

    The article presents a variety of ways help to save fuel, reduce noise and minimize harmful emissions for rail vehicles. These ECO components can be used separately or in combination with drive systems for various types of hybrid concepts. For example, via a hydrostatic or electric hybrid system can recuperate and store braking energy and utilize it for powering the vehicle or driving auxiliary systems. Another system converts lost heat from the drive motor into mechanical or electrical energy. With EcoConsult, Voith Turbo also offers a ''toolbox'' comprising software, hardware and consultancy which allows identifying the exact operating conditions and a reliable calculation of the life cycle cost (LCC) for a variety of vehicle categories and operating profiles. (orig.)

  3. HyPro: A Multi-DoF Hybrid-Powered Transradial Robotic Prosthesis

    Directory of Open Access Journals (Sweden)

    C. L. Semasinghe

    2018-01-01

    Full Text Available This paper proposes a multi-DoF hybrid-powered transradial robotic prosthesis, named HyPro. The HyPro consists of two prosthetic units: hand and wrist that can achieve five grasping patterns such as power grasp, tip grasp, lateral grasp, hook grasp, and index point. It is an underactuated device with 15 degrees of freedom. A hybrid powering concept is proposed and implemented on hand unit of HyPro where the key focus is on restoration of grasp functions of biological hand. A novel underactuated mechanism is introduced to achieve the required hand preshaping for a given grasping pattern using electric power in the pregrasp stage and body power is used in grasp stage to execute the final grasping action with the selected fingers. Unlike existing hybrid prostheses where each of the joints is separately controlled by either electric or body power, the proposed prosthesis is capable of delivering grasping power in combination. The wrist unit of HyPro is designed and developed to achieve flexion-extension and supination-pronation using electric power. Experiments were carried out to evaluate the functionality and performance of the proposed hybrid-powered robotic prosthesis. The results verified the potential of HyPro to perform intended grasping patterns effectively and efficiently.

  4. Power-balancing instantaneous optimization energy management for a novel series-parallel hybrid electric bus

    Science.gov (United States)

    Sun, Dongye; Lin, Xinyou; Qin, Datong; Deng, Tao

    2012-11-01

    Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly.

  5. Position Based Visual Servoing control of a Wheelchair Mounter Robotic Arm using Parallel Tracking and Mapping of task objects

    Directory of Open Access Journals (Sweden)

    Alessandro Palla

    2017-05-01

    Full Text Available In the last few years power wheelchairs have been becoming the only device able to provide autonomy and independence to people with motor skill impairments. In particular, many power wheelchairs feature robotic arms for gesture emulation, like the interaction with objects. However, complex robotic arms often require a joystic to be controlled; this feature make the arm hard to be controlled by impaired users. Paradoxically, if the user were able to proficiently control such devices, he would not need them. For that reason, this paper presents a highly autonomous robotic arm, designed in order to minimize the effort necessary for the control of the arm. In order to do that, the arm feature an easy to use human - machine interface and is controlled by Computer Vison algorithm, implementing a Position Based Visual Servoing (PBVS control. It was realized by extracting features by the camera and fusing them with the distance from the target, obtained by a proximity sensor. The Parallel Tracking and Mapping (PTAM algorithm was used to find the 3D position of the task object in the camera reference system. The visual servoing algorithm was implemented in an embedded platform, in real time. Each part of the control loop was developed in Robotic Operative System (ROS Environment, which allows to implement the previous algorithms as different nodes. Theoretical analysis, simulations and in system measurements proved the effectiveness of the proposed solution.

  6. A Parallel Energy-Sharing Control Strategy for Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Nik Rumzi Nik Idris

    2011-08-01

    Full Text Available This paper presents a parallel energy-sharing control strategy for the application of fuel cell hybrid vehicles (FCHVs. The hybrid source discussed consists of a fuel cells (FCs generator and energy storage units (ESUs which composed by the battery and ultracapacitor (UC modules. A direct current (DC bus is used to interface between the energy sources and the electric vehicles (EV propulsion system (loads. Energy sources are connected to the DC bus using of power electronics converters. A total of six control loops are designed in the supervisory system in order to regulate the DC bus voltage, control of current flow and to monitor the state of charge (SOC of each energy storage device at the same time. Proportional plus integral (PI controllers are employed to regulate the output from each control loop referring to their reference signals. The proposed energy control system is simulated in MATLAB/Simulink environment. Results indicated that the proposed parallel energy-sharing control system is capable to provide a practical hybrid vehicle in respond to the vehicle traction response and avoids the FC and battery from overstressed at the same time.

  7. Parallel Multivariate Spatio-Temporal Clustering of Large Ecological Datasets on Hybrid Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Sreepathi, Sarat [ORNL; Kumar, Jitendra [ORNL; Mills, Richard T. [Argonne National Laboratory; Hoffman, Forrest M. [ORNL; Sripathi, Vamsi [Intel Corporation; Hargrove, William Walter [United States Department of Agriculture (USDA), United States Forest Service (USFS)

    2017-09-01

    A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like the Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.

  8. Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio; Venditti, Mattia

    2014-01-01

    Highlights: • Layout design, energetic and cost analysis of complex parallel hybrid vehicles. • Development of global and real-time optimizers for control strategy identification. • Rule-based control strategies to minimize fuel consumption and NO x . • Energy share across each working mode for battery and thermal engine. - Abstract: The present paper is focused on the design, optimization and analysis of a complex parallel hybrid electric vehicle, equipped with two electric machines on both the front and rear axles, and on the evaluation of its potential to reduce fuel consumption and NO x emissions over several driving missions. The vehicle has been compared with two conventional parallel hybrid vehicles, equipped with a single electric machine on the front axle or on the rear axle, as well as with a conventional vehicle. All the vehicles have been equipped with compression ignition engines. The optimal layout of each vehicle was identified on the basis of the minimization of the overall powertrain costs during the whole vehicle life. These costs include the initial investment due to the production of the components as well as the operating costs related to fuel consumption and to battery depletion. Identification of the optimal powertrain control strategy, in terms of the management of the power flows of the engine and electric machines, and of gear selection, is necessary in order to be able to fully exploit the potential of the hybrid architecture. To this end, two global optimizers, one of a deterministic nature and another of a stochastic type, and two real-time optimizers have been developed, applied and compared. A new mathematical technique has been developed and applied to the vehicle simulation model in order to decrease the computational time of the optimizers. First, the vehicle model equations were written in order to allow a coarse time grid to be used, then, the control variables (i.e., power flow and gear number) were discretized, and the

  9. A Hybrid Parallel Execution Model for Logic Based Requirement Specifications (Invited Paper

    Directory of Open Access Journals (Sweden)

    Jeffrey J. P. Tsai

    1999-05-01

    Full Text Available It is well known that undiscovered errors in a requirements specification is extremely expensive to be fixed when discovered in the software maintenance phase. Errors in the requirement phase can be reduced through the validation and verification of the requirements specification. Many logic-based requirements specification languages have been developed to achieve these goals. However, the execution and reasoning of a logic-based requirements specification can be very slow. An effective way to improve their performance is to execute and reason the logic-based requirements specification in parallel. In this paper, we present a hybrid model to facilitate the parallel execution of a logic-based requirements specification language. A logic-based specification is first applied by a data dependency analysis technique which can find all the mode combinations that exist within a specification clause. This mode information is used to support a novel hybrid parallel execution model, which combines both top-down and bottom-up evaluation strategies. This new execution model can find the failure in the deepest node of the search tree at the early stage of the evaluation, thus this new execution model can reduce the total number of nodes searched in the tree, the total processes needed to be generated, and the total communication channels needed in the search process. A simulator has been implemented to analyze the execution behavior of the new model. Experiments show significant improvement based on several criteria.

  10. Design, Dynamics, and Workspace of a Hybrid-Driven-Based Cable Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Bin Zi

    2013-01-01

    Full Text Available The design, dynamics, and workspace of a hybrid-driven-based cable parallel manipulator (HDCPM are presented. The HDCPM is able to perform high efficiency, heavy load, and high-performance motion due to the advantages of both the cable parallel manipulator and the hybrid-driven planar five-bar mechanism. The design is performed according to theories of mechanism structure synthesis for cable parallel manipulators. The dynamic formulation of the HDCPM is established on the basis of Newton-Euler method. The workspace of the manipulator is analyzed additionally. As an example, a completely restrained HDCPM with 3 degrees of freedom is studied in simulation in order to verify the validity of the proposed design, workspace, and dynamic analysis. The simulation results, compared with the theoretical analysis, and the case study previously performed show that the manipulator design is reasonable and the mathematical models are correct, which provides the theoretical basis for future physical prototype and control system design.

  11. A Hybrid Quantum Evolutionary Algorithm with Improved Decoding Scheme for a Robotic Flow Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Weidong Lei

    2017-01-01

    Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.

  12. Benefits of a parallel hybrid electric architecture on medium commercial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Boot, Marco Aimo; Consano, Ludovico [Iveco S.p.A, Turin (Italy)

    2009-07-01

    Hybrid electric technology is becoming an increasingly interesting solution for medium and heavy trucks involved in urban and suburban missions. The increasing demand for gas and oil, consequent price rises and environmental concerns are driving a market that is in need of alternative solutions. For these reasons, the growth in the global hybrid market significantly exceeded all the hybrid sales forecasts. The parallel hybrid electric vehicle (PHEV) employs an additional power source (electric motogenerator) in combination with the conventional diesel engine. This architecture exploits the benefits of both power sources in order to reduce the fuel consumption, increase the overall power, and above all, decrease CO2 emissions. Moreover, the emissions reduction target is lead by EU Regulations and local initiatives for traffic limitations, but the real drivers for the growth in the market are demonstrable fuel economy improvements and productivity costs optimization (global efficiency). This paper presents the results achieved by Iveco in the development and testing of parallel hybrid systems applied to medium range commercial vehicles, with the intent to evaluate the functionality, driveability performance and leading the best reduction in terms of fuel consumption and emissions in different real-world missions. The system architecture foresees one electric motor/generator and a single clutch unit. An external electrical power source for the battery recharging it is not necessary. The chosen configuration allows to implement the following functional modes: Stop and Start with Electric Launch, Hybrid Mode, Regenerative Braking Mode, Inertial Start and Creeping Mode. The software contained in the supervisor control unit has been tuned to the customer specific missions, taking in account on road data acquisition in order to demonstrate the reliability, driveability and the overall efficiency of the hybrid system. The field tests carried out in collaboration with

  13. Design of Optimal Hybrid Position/Force Controller for a Robot Manipulator Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Vikas Panwar

    2007-01-01

    Full Text Available The application of quadratic optimization and sliding-mode approach is considered for hybrid position and force control of a robot manipulator. The dynamic model of the manipulator is transformed into a state-space model to contain two sets of state variables, where one describes the constrained motion and the other describes the unconstrained motion. The optimal feedback control law is derived solving matrix differential Riccati equation, which is obtained using Hamilton Jacobi Bellman optimization. The optimal feedback control law is shown to be globally exponentially stable using Lyapunov function approach. The dynamic model uncertainties are compensated with a feedforward neural network. The neural network requires no preliminary offline training and is trained with online weight tuning algorithms that guarantee small errors and bounded control signals. The application of the derived control law is demonstrated through simulation with a 4-DOF robot manipulator to track an elliptical planar constrained surface while applying the desired force on the surface.

  14. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    Science.gov (United States)

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  15. Power Management of Hybrid Power Systems with Li-Fe Batteries and Supercapacitors for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Guohui Wang

    2014-05-01

    Full Text Available This paper presents an energy management strategy of a Li-Fe battery and supercapacitor hybrid power system to provide both high power density and energy density for mobile robots with fluctuating workloads. A two-phase power-optimization approach is proposed to exploit the high power density of supercapacitors and the high energy density of Li-Fe batteries. With our strategy, large peak power can be provided for a short time period whenever needed, while low power can be provided for very long time. A set of experiments have been conducted. The experimental results show that our strategy can effectively improve the performance of mobile robots and extend the lifetime of batteries.

  16. Trajectory generation algorithm for smooth movement of a hybrid-type robot Rocker-Pillar

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Min; Choi, Dong Kyu; Kim, Jong Won [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Hwa Soo [Dept. of Mechanical System Engineering, Kyonggi University, Suwon (Korea, Republic of)

    2016-11-15

    While traveling on rough terrain, smooth movement of a mobile robot plays an important role in carrying out the given tasks successfully. This paper describes the trajectory generation algorithm for smooth movement of hybrid-type mobile robot Rocker-Pillar by adjusting the angular velocity of its caterpillar as well as each wheel velocity in such a manner to minimize a proper index for smoothness. To this end, a new Smoothness index (SI) is first suggested to evaluate the smoothness of movement of Rocker-Pillar. Then, the trajectory generation algorithm is proposed to reduce the undesired oscillations of its Center of mass (CoM). The experiment are performed to examine the movement of Rocker-Pillar climbing up the step whose height is twice larger than its wheel radius. It is verified that the resulting SI is improved by more than 40 % so that the movement of Rocker-Pillar becomes much smoother by the proposed trajectory algorithm.

  17. Parameters Design for a Parallel Hybrid Electric Bus Using Regenerative Brake Model

    Directory of Open Access Journals (Sweden)

    Zilin Ma

    2014-01-01

    Full Text Available A design methodology which uses the regenerative brake model is introduced to determine the major system parameters of a parallel electric hybrid bus drive train. Hybrid system parameters mainly include the power rating of internal combustion engine (ICE, gear ratios of transmission, power rating, and maximal torque of motor, power, and capacity of battery. The regenerative model is built in the vehicle model to estimate the regenerative energy in the real road conditions. The design target is to ensure that the vehicle meets the specified vehicle performance, such as speed and acceleration, and at the same time, operates the ICE within an expected speed range. Several pairs of parameters are selected from the result analysis, and the fuel saving result in the road test shows that a 25% reduction is achieved in fuel consumption.

  18. Hybrid task priority-based motion control of a redundant free-floating space robot

    Directory of Open Access Journals (Sweden)

    Cheng ZHOU

    2017-12-01

    Full Text Available This paper presents a novel hybrid task priority-based motion planning algorithm of a space robot. The satellite attitude control task is defined as the primary task, while the least-squares-based non-strict task priority solution of the end-effector plus the multi-constraint task is viewed as the secondary task. Furthermore, a null-space task compensation strategy in the joint space is proposed to derive the combination of non-strict and strict task-priority motion planning, and this novel combination is termed hybrid task priority control. Thus, the secondary task is implemented in the primary task’s null-space. Besides, the transition of the state of multiple constraints between activeness and inactiveness will only influence the end-effector task without any effect on the primary task. A set of numerical experiments made in a real-time simulation system under Linux/RTAI shows the validity and feasibility of the proposed methodology. Keywords: Base attitude control, Hybrid task-priority, Motion planning, Multiple constraints, Redundant space robot

  19. Parallel Computing Characteristics of CUPID code under MPI and Hybrid environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ryong; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeon, Byoung Jin; Choi, Hyoung Gwon [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of)

    2014-05-15

    In this paper, a characteristic of parallel algorithm is presented for solving an elliptic type equation of CUPID via domain decomposition method using the MPI and the parallel performance is estimated in terms of a scalability which shows the speedup ratio. In addition, the time-consuming pattern of major subroutines is studied. Two different grid systems are taken into account: 40,000 meshes for coarse system and 320,000 meshes for fine system. Since the matrix of the CUPID code differs according to whether the flow is single-phase or two-phase, the effect of matrix shape is evaluated. Finally, the effect of the preconditioner for matrix solver is also investigated. Finally, the hybrid (OpenMP+MPI) parallel algorithm is introduced and discussed in detail for solving pressure solver. Component-scale thermal-hydraulics code, CUPID has been developed for two-phase flow analysis, which adopts a three-dimensional, transient, three-field model, and parallelized to fulfill a recent demand for long-transient and highly resolved multi-phase flow behavior. In this study, the parallel performance of the CUPID code was investigated in terms of scalability. The CUPID code was parallelized with domain decomposition method. The MPI library was adopted to communicate the information at the neighboring domain. For managing the sparse matrix effectively, the CSR storage format is used. To take into account the characteristics of the pressure matrix which turns to be asymmetric for two-phase flow, both single-phase and two-phase calculations were run. In addition, the effect of the matrix size and preconditioning was also investigated. The fine mesh calculation shows better scalability than the coarse mesh because the number of coarse mesh does not need to decompose the computational domain excessively. The fine mesh can be present good scalability when dividing geometry with considering the ratio between computation and communication time. For a given mesh, single-phase flow

  20. 3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Leblanc, F. [LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris (France); Hess, S. [ONERA, Toulouse (France); Mancini, M. [LUTH, Observatoire Paris-Meudon (France)

    2016-03-15

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.

  1. Hybrid islanding detection method by using grid impedance estimation in parallel-inverters-based microgrid

    DEFF Research Database (Denmark)

    Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem

    2014-01-01

    This paper presents a hybrid islanding detection algorithm integrated on the distributed generation unit more close to the point of common coupling of a Microgrid based on parallel inverters where one of them is responsible to control the system. The method is based on resonance excitation under...... parameters, both resistive and inductive parts, from the injected resonance frequency determination. Finally, the inverter will disconnect the microgrid from the faulty grid and reconnect the parallel inverter system to the controllable distributed system in order to ensure high power quality. This paper...... shows that grid impedance variation detection estimation can be an efficient method for islanding detection in microgrid systems. Theoretical analysis and simulation results are presented to validate the proposed method....

  2. A Case Study of a Hybrid Parallel 3D Surface Rendering Graphics Architecture

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik; Madsen, Jan; Pedersen, Steen

    1997-01-01

    This paper presents a case study in the design strategy used inbuilding a graphics computer, for drawing very complex 3Dgeometric surfaces. The goal is to build a PC based computer systemcapable of handling surfaces built from about 2 million triangles, andto be able to render a perspective view...... of these on a computer displayat interactive frame rates, i.e. processing around 50 milliontriangles per second. The paper presents a hardware/softwarearchitecture called HPGA (Hybrid Parallel Graphics Architecture) whichis likely to be able to carry out this task. The case study focuses ontechniques to increase...

  3. 3-D Hybrid Simulation of Quasi-Parallel Bow Shock and Its Effects on the Magnetosphere

    International Nuclear Information System (INIS)

    Lin, Y.; Wang, X.Y.

    2005-01-01

    A three-dimensional (3-D) global-scale hybrid simulation is carried out for the structure of the quasi-parallel bow shock, in particular the foreshock waves and pressure pulses. The wave evolution and interaction with the dayside magnetosphere are discussed. It is shown that diamagnetic cavities are generated in the turbulent foreshock due to the ion beam plasma interaction, and these compressional pulses lead to strong surface perturbations at the magnetopause and Alfven waves/field line resonance in the magnetosphere

  4. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  5. Comparative Simulation Study of Production Scheduling in the Hybrid and the Parallel Flow

    Directory of Open Access Journals (Sweden)

    Varela Maria L.R.

    2017-06-01

    Full Text Available Scheduling is one of the most important decisions in production control. An approach is proposed for supporting users to solve scheduling problems, by choosing the combination of physical manufacturing system configuration and the material handling system settings. The approach considers two alternative manufacturing scheduling configurations in a two stage product oriented manufacturing system, exploring the hybrid flow shop (HFS and the parallel flow shop (PFS environments. For illustrating the application of the proposed approach an industrial case from the automotive components industry is studied. The main aim of this research to compare results of study of production scheduling in the hybrid and the parallel flow, taking into account the makespan minimization criterion. Thus the HFS and the PFS performance is compared and analyzed, mainly in terms of the makespan, as the transportation times vary. The study shows that the performance HFS is clearly better when the work stations’ processing times are unbalanced, either in nature or as a consequence of the addition of transport times just to one of the work station processing time but loses advantage, becoming worse than the performance of the PFS configuration when the work stations’ processing times are balanced, either in nature or as a consequence of the addition of transport times added on the work stations’ processing times. This means that physical layout configurations along with the way transport time are including the work stations’ processing times should be carefully taken into consideration due to its influence on the performance reached by both HFS and PFS configurations.

  6. Hybrid parallel strategy for the simulation of fast transient accidental situations at reactor scale

    International Nuclear Information System (INIS)

    Faucher, V.; Galon, P.; Beccantini, A.; Crouzet, F.; Debaud, F.; Gautier, T.

    2015-01-01

    Highlights: • Reference accidental situations for current and future reactors are considered. • They require the modeling of complex fluid–structure systems at full reactor scale. • EPX software computes the non-linear transient solution with explicit time stepping. • Focus on the parallel hybrid solver specific to the proposed coupled equations. - Abstract: This contribution is dedicated to the latest methodological developments implemented in the fast transient dynamics software EUROPLEXUS (EPX) to simulate the mechanical response of fully coupled fluid–structure systems to accidental situations to be considered at reactor scale, among which the Loss of Coolant Accident, the Core Disruptive Accident and the Hydrogen Explosion. Time integration is explicit and the search for reference solutions within the safety framework prevents any simplification and approximations in the coupled algorithm: for instance, all kinematic constraints are dealt with using Lagrange Multipliers, yielding a complex flow chart when non-permanent constraints such as unilateral contact or immersed fluid–structure boundaries are considered. The parallel acceleration of the solution process is then achieved through a hybrid approach, based on a weighted domain decomposition for distributed memory computing and the use of the KAAPI library for self-balanced shared memory processing inside subdomains

  7. Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems.

    Science.gov (United States)

    Barreiros, Willian; Teodoro, George; Kurc, Tahsin; Kong, Jun; Melo, Alba C M A; Saltz, Joel

    2017-09-01

    We investigate efficient sensitivity analysis (SA) of algorithms that segment and classify image features in a large dataset of high-resolution images. Algorithm SA is the process of evaluating variations of methods and parameter values to quantify differences in the output. A SA can be very compute demanding because it requires re-processing the input dataset several times with different parameters to assess variations in output. In this work, we introduce strategies to efficiently speed up SA via runtime optimizations targeting distributed hybrid systems and reuse of computations from runs with different parameters. We evaluate our approach using a cancer image analysis workflow on a hybrid cluster with 256 nodes, each with an Intel Phi and a dual socket CPU. The SA attained a parallel efficiency of over 90% on 256 nodes. The cooperative execution using the CPUs and the Phi available in each node with smart task assignment strategies resulted in an additional speedup of about 2×. Finally, multi-level computation reuse lead to an additional speedup of up to 2.46× on the parallel version. The level of performance attained with the proposed optimizations will allow the use of SA in large-scale studies.

  8. Hybrid and Parallel Domain-Decomposition Methods Development to Enable Monte Carlo for Reactor Analyses

    International Nuclear Information System (INIS)

    Wagner, John C.; Mosher, Scott W.; Evans, Thomas M.; Peplow, Douglas E.; Turner, John A.

    2010-01-01

    This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform real commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the gold standard for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method, which

  9. Hybrid and parallel domain-decomposition methods development to enable Monte Carlo for reactor analyses

    International Nuclear Information System (INIS)

    Wagner, J.C.; Mosher, S.W.; Evans, T.M.; Peplow, D.E.; Turner, J.A.

    2010-01-01

    This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform 'real' commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the 'gold standard' for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method

  10. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying

    2016-08-01

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.

  11. Optimal Design and Tuning of PID-Type Interval Type-2 Fuzzy Logic Controllers for Delta Parallel Robots

    Directory of Open Access Journals (Sweden)

    Xingguo Lu

    2016-05-01

    Full Text Available In this work, we propose a new method for the optimal design and tuning of a Proportional-Integral-Derivative type (PID-type interval type-2 fuzzy logic controller (IT2 FLC for Delta parallel robot trajectory tracking control. The presented methodology starts with an optimal design problem of IT2 FLC. A group of IT2 FLCs are obtained by blurring the membership functions using a variable called blurring degree. By comparing the performance of the controllers, the optimal structure of IT2 FLC is obtained. Then, a multi-objective optimization problem is formulated to tune the scaling factors of the PID-type IT2 FLC. The Non-dominated Sorting Genetic Algorithm (NSGA-II is adopted to solve the constrained nonlinear multi-objective optimization problem. Simulation results of the optimized controller are presented and discussed regarding application in the Delta parallel robot. The proposed method provides an effective way to design and tune the PID-type IT2 FLC with a desired control performance.

  12. MIP Models and Hybrid Algorithms for Simultaneous Job Splitting and Scheduling on Unrelated Parallel Machines

    Science.gov (United States)

    Ozmutlu, H. Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  13. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    Science.gov (United States)

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.

  14. Adaptive Hybrid Visual Servo Regulation of Mobile Robots Based on Fast Homography Decomposition

    Directory of Open Access Journals (Sweden)

    Chunfu Wu

    2015-01-01

    Full Text Available For the monocular camera-based mobile robot system, an adaptive hybrid visual servo regulation algorithm which is based on a fast homography decomposition method is proposed to drive the mobile robot to its desired position and orientation, even when object’s imaging depth and camera’s position extrinsic parameters are unknown. Firstly, the homography’s particular properties caused by mobile robot’s 2-DOF motion are taken into account to induce a fast homography decomposition method. Secondly, the homography matrix and the extracted orientation error, incorporated with the desired view’s single feature point, are utilized to form an error vector and its open-loop error function. Finally, Lyapunov-based techniques are exploited to construct an adaptive regulation control law, followed by the experimental verification. The experimental results show that the proposed fast homography decomposition method is not only simple and efficient, but also highly precise. Meanwhile, the designed control law can well enable mobile robot position and orientation regulation despite the lack of depth information and camera’s position extrinsic parameters.

  15. Hybrid shared/distributed parallelism for 3D characteristics transport solvers

    International Nuclear Information System (INIS)

    Dahmani, M.; Roy, R.

    2005-01-01

    In this paper, we will present a new hybrid parallel model for solving large-scale 3-dimensional neutron transport problems used in nuclear reactor simulations. Large heterogeneous reactor problems, like the ones that occurs when simulating Candu cores, have remained computationally intensive and impractical for routine applications on single-node or even vector computers. Based on the characteristics method, this new model is designed to solve the transport equation after distributing the calculation load on a network of shared memory multi-processors. The tracks are either generated on the fly at each characteristics sweep or stored in sequential files. The load balancing is taken into account by estimating the calculation load of tracks and by distributing batches of uniform load on each node of the network. Moreover, the communication overhead can be predicted after benchmarking the latency and bandwidth using appropriate network test suite. These models are useful for predicting the performance of the parallel applications and to analyze the scalability of the parallel systems. (authors)

  16. Some Considerations Regarding Plane to Plane Parallelism Error Effects in Robotic Systems

    Directory of Open Access Journals (Sweden)

    Stelian Alaci

    2015-06-01

    Full Text Available The paper shows that by imposing the parallelism constraint between the measured plane and the reference plane, the position of the current plane is not univocal specified and is impossible to specify the way to attain the parallelism errors imposed by accuracy constrains. The parameters involved in the calculus of plane to plane parallelism error can be used to set univocal the relative position between the two planes.

  17. Design and Analysis of a Collision Detector for Hybrid Robotic Machine Tools

    Directory of Open Access Journals (Sweden)

    Dan ZHANG

    2015-10-01

    Full Text Available Capacitive sensing depends on the physical parameter changing either the spacing between the two plates or the dielectric constant. Based on this idea, a capacitive based collision detection sensor is proposed and designed in this paper for the purpose of detecting any collision between the end effector and peripheral equipment (e.g., fixture for the three degrees of freedom hybrid robotic machine tools when it is in operation. One side of the finger-like capacitor is attached to the moving platform of the hybrid robotic manipulator and the other side of the finger-like capacitor is attached to the tool. When the tool accidently hits the peripheral equipment, the vibration will make the distance of the capacitor change and therefore trigger the machine to stop. The new design is illustrated and modelled. The capacitance, sensitivity and frequency response of the detector are analyzed in detail, and finally, the fabrication process is presented. The proposed collision detector can also be applied to other machine tools.

  18. Tailor-made rehabilitation approach using multiple types of hybrid assistive limb robots for acute stroke patients: A pilot study.

    Science.gov (United States)

    Fukuda, Hiroyuki; Morishita, Takashi; Ogata, Toshiyasu; Saita, Kazuya; Hyakutake, Koichi; Watanabe, Junko; Shiota, Etsuji; Inoue, Tooru

    2016-01-01

    This article investigated the feasibility of a tailor-made neurorehabilitation approach using multiple types of hybrid assistive limb (HAL) robots for acute stroke patients. We investigated the clinical outcomes of patients who underwent rehabilitation using the HAL robots. The Brunnstrom stage, Barthel index (BI), and functional independence measure (FIM) were evaluated at baseline and when patients were transferred to a rehabilitation facility. Scores were compared between the multiple-robot rehabilitation and single-robot rehabilitation groups. Nine hemiplegic acute stroke patients (five men and four women; mean age 59.4 ± 12.5 years; four hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using multiple types of HAL robots for 19.4 ± 12.5 days, and 14 patients (six men and eight women; mean age 63.2 ± 13.9 years; nine hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using a single type of HAL robot for 14.9 ± 8.9 days. The multiple-robot rehabilitation group showed significantly better outcomes in the Brunnstrom stage of the upper extremity, BI, and FIM scores. To the best of the authors' knowledge, this is the first pilot study demonstrating the feasibility of rehabilitation using multiple exoskeleton robots. The tailor-made rehabilitation approach may be useful for the treatment of acute stroke.

  19. A hybrid parallel architecture for electrostatic interactions in the simulation of dissipative particle dynamics

    Science.gov (United States)

    Yang, Sheng-Chun; Lu, Zhong-Yuan; Qian, Hu-Jun; Wang, Yong-Lei; Han, Jie-Ping

    2017-11-01

    In this work, we upgraded the electrostatic interaction method of CU-ENUF (Yang, et al., 2016) which first applied CUNFFT (nonequispaced Fourier transforms based on CUDA) to the reciprocal-space electrostatic computation and made the computation of electrostatic interaction done thoroughly in GPU. The upgraded edition of CU-ENUF runs concurrently in a hybrid parallel way that enables the computation parallelizing on multiple computer nodes firstly, then further on the installed GPU in each computer. By this parallel strategy, the size of simulation system will be never restricted to the throughput of a single CPU or GPU. The most critical technical problem is how to parallelize a CUNFFT in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Furthermore, the upgraded method is capable of computing electrostatic interactions for both the atomistic molecular dynamics (MD) and the dissipative particle dynamics (DPD). Finally, the benchmarks conducted for validation and performance indicate that the upgraded method is able to not only present a good precision when setting suitable parameters, but also give an efficient way to compute electrostatic interactions for huge simulation systems. Program Files doi:http://dx.doi.org/10.17632/zncf24fhpv.1 Licensing provisions: GNU General Public License 3 (GPL) Programming language: C, C++, and CUDA C Supplementary material: The program is designed for effective electrostatic interactions of large-scale simulation systems, which runs on particular computers equipped with NVIDIA GPUs. It has been tested on (a) single computer node with Intel(R) Core(TM) i7-3770@ 3.40 GHz (CPU) and GTX 980 Ti (GPU), and (b) MPI parallel computer nodes with the same configurations. Nature of problem: For molecular dynamics simulation, the electrostatic interaction is the most time-consuming computation because of its long-range feature and slow convergence in simulation space

  20. Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Lorino, P; Altwegg, J M

    1985-05-01

    This article, which is aimed at the general reader, examines latest developments in, and the role of, modern robotics. The 7 main sections are sub-divided into 27 papers presented by 30 authors. The sections are as follows: 1) The role of robotics, 2) Robotics in the business world and what it can offer, 3) Study and development, 4) Utilisation, 5) Wages, 6) Conditions for success, and 7) Technological dynamics.

  1. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    Science.gov (United States)

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  2. KINEMATICS ANALYSIS OF A PARALLEL ROBOT WITH A PASSIVE SEGMENT ANÁLISIS DE LA CINEMÁTICA DE UN ROBOT PARALELO CON UN SEGMENTO PASIVO

    Directory of Open Access Journals (Sweden)

    Abdelhakim Cherfia

    2007-08-01

    Full Text Available This paper presents a geometrical model of a constrained robot of three degrees of freedom (d.o.f added to a PPP passive central segment. This structure provides a pure translation motion. We will also determine the relations between generalized and articular velocities by using the inverse Jacobian matrix. Further, we determine the reciprocal relations between cartesian and angular velocities of the end-effector via articular velocities by simple derivation of the direct geometrical model expressions. A determination of the workspace based on the geometrical model analysis is derived followed by a numerical calculation of all the atteignables points enabling a graphical visualisation of such a workspace. Moreover, the analysis of the Jacobian matrix has permitted to ensure that there are no singularities of type 1 and 2 in such a structure. A prototype of a parallel robot has been built up in our laboratory in order to validate the proposed models.Este trabajo presenta el modelo geométrico de un robot paralelo con tres grados de libertad (d.o.f agregados a un segmento central pasivo del PPP. Esta estructura proporciona un movimiento de translación pura. También determinaremos las relaciones entre las velocidades generalizadas y articulares usando la matriz Jacobiana inversa. Además, determinamos las relaciones recíprocas entre las velocidades cartesianas y angulares del end-effector vía velocidades articulares por la derivación simple de las expresiones del modelo geométrico directo. Una determinación del espacio de trabajo basado en el análisis del modelo geométrico es derivado seguido por un cálculo numérico de todos los puntos que deben alcanzarse permitiendo una visualización gráfica de tal espacio de trabajo. Por otra parte, el análisis de los coeficientes de la matriz Jacobiana permite asegurar que no haya singularidades del tipo 1 y 2 en tal estructura. Se ha realizado un prototipo de robot paralelo en nuestro laboratorio

  3. Feedback error learning controller for functional electrical stimulation assistance in a hybrid robotic system for reaching rehabilitation

    Directory of Open Access Journals (Sweden)

    Francisco Resquín

    2016-07-01

    Full Text Available Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model.

  4. Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle

    Science.gov (United States)

    Xiangyang, Xu; Siqi, Zhao; Peng, Dong

    2017-12-01

    A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.

  5. A Hybrid Genetic Algorithm to Minimize Total Tardiness for Unrelated Parallel Machine Scheduling with Precedence Constraints

    Directory of Open Access Journals (Sweden)

    Chunfeng Liu

    2013-01-01

    Full Text Available The paper presents a novel hybrid genetic algorithm (HGA for a deterministic scheduling problem where multiple jobs with arbitrary precedence constraints are processed on multiple unrelated parallel machines. The objective is to minimize total tardiness, since delays of the jobs may lead to punishment cost or cancellation of orders by the clients in many situations. A priority rule-based heuristic algorithm, which schedules a prior job on a prior machine according to the priority rule at each iteration, is suggested and embedded to the HGA for initial feasible schedules that can be improved in further stages. Computational experiments are conducted to show that the proposed HGA performs well with respect to accuracy and efficiency of solution for small-sized problems and gets better results than the conventional genetic algorithm within the same runtime for large-sized problems.

  6. Hybrid parallel strategy for the simulation of fast transient accidental situations at reactor scale

    International Nuclear Information System (INIS)

    Faucher, V.; Galon, P.; Beccantini, A.; Crouzet, F.; Debaud, F.; Gautier, T.

    2013-01-01

    This contribution is dedicated to the latest methodological developments implemented in the fast transient dynamics software EUROPLEXUS (EPX) to simulate the mechanical response of fully coupled fluid-structure systems to accidental situations to be considered at reactor scale, among which the Loss of Coolant Accident, the Core Disruptive Accident and the Hydrogen Explosion. Time integration is explicit and the search for reference solutions within the safety framework prevents any simplification and approximations in the coupled algorithm: for instance, all kinematic constraints are dealt with using Lagrange Multipliers, yielding a complex flow chart when non-permanent constraints such as unilateral contact or immersed fluid-structure boundaries are considered. The parallel acceleration of the solution process is then achieved through a hybrid approach, based on a weighted domain decomposition for distributed memory computing and the use of the KAAPI library for self-balanced shared memory processing inside sub-domains. (authors)

  7. Hybrid Taguchi DNA Swarm Intelligence for Optimal Inverse Kinematics Redundancy Resolution of Six-DOF Humanoid Robot Arms

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Huang

    2014-01-01

    Full Text Available This paper presents a hybrid Taguchi deoxyribonucleic acid (DNA swarm intelligence for solving the inverse kinematics redundancy problem of six degree-of-freedom (DOF humanoid robot arms. The inverse kinematics problem of the multi-DOF humanoid robot arm is redundant and has no general closed-form solutions or analytical solutions. The optimal joint configurations are obtained by minimizing the predefined performance index in DNA algorithm for real-world humanoid robotics application. The Taguchi method is employed to determine the DNA parameters to search for the joint solutions of the six-DOF robot arms more efficiently. This approach circumvents the disadvantage of time-consuming tuning procedure in conventional DNA computing. Simulation results are conducted to illustrate the effectiveness and merit of the proposed methods. This Taguchi-based DNA (TDNA solver outperforms the conventional solvers, such as geometric solver, Jacobian-based solver, genetic algorithm (GA solver and ant, colony optimization (ACO solver.

  8. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    Directory of Open Access Journals (Sweden)

    Lixun Zhang

    2012-08-01

    Full Text Available A novel Astronaut Rehabilitative Training Robot (ART based on a cable-driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut's active movements. Based on the dynamics modelling of the cable-driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC is presented. A planning method for the cable tension is proposed so that the dynamic load produced by the ART can realistically simulate the gravity and inertial force of the barbell in a gravity environment. Finally, MATLAB simulation results of the man-machine cooperation system are provided in order to verify the effectiveness of the proposed control strategy. The simulation results show that the hybrid control method based on the structure invariance principle can inhibit the surplus force and that ICMAC can improve the dynamic performance of the passive force servo system. Furthermore, the hybrid force controller based on ICMAC can ensure the stability of the system.

  9. Enhancing Application Performance Using Mini-Apps: Comparison of Hybrid Parallel Programming Paradigms

    Science.gov (United States)

    Lawson, Gary; Sosonkina, Masha; Baurle, Robert; Hammond, Dana

    2017-01-01

    In many fields, real-world applications for High Performance Computing have already been developed. For these applications to stay up-to-date, new parallel strategies must be explored to yield the best performance; however, restructuring or modifying a real-world application may be daunting depending on the size of the code. In this case, a mini-app may be employed to quickly explore such options without modifying the entire code. In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23 was measured for MPI+SMPI, but only 11 was measured for MPI+OpenMP.

  10. Induced superconductivity in Nb/InAs-hybrid structures in parallel and perpendicular magnetic fields

    International Nuclear Information System (INIS)

    Rohlfing, Franziska

    2007-07-01

    The thesis in hand investigates experimentally Josephson contacts based on Nb/InAs-hybrid structures. The experiments discussed here were done on samples of different width of the Josephson contacts (between 500 nm and 2000 nm). They were realized by means of different methods of the semiconductor technology. The length of the Josephson contacts was about 600 nm and, as superconducting material, niobium was used. Both critical current and characteristics in the resistive regime (excess-current and multiple Andreev reflection) are studied as a function of temperature and external magnetic fields. Measurements in perpendicular and parallel magnetic fields with respect to the plain of the two-dimensional electron gas, are presented. The Andreev reflection amplitude determining the supercurrent is calculated by means of the Greens functions of the two-dimensional electron gas beneath the superconductors which is modified by the proximity effect. From the fit to the data with this model, the transparency of the boundary between the superconductor and the two-dimensional electron gas can be estimated to be about 0.1. The transparency of the point contacts in the two-dimensional electrons gas can be determined independently from the Josephson junction width dependence of the normal resistance (T=10 K). This transparency amounts to about 0.8 in the examined samples. The measurements of the critical current in a magnetic field perpendicular to the two-dimensional electron gas show a Fraunhofer pattern. In order to study the transition from perpendicular orientation into parallel orientation, measurements of the critical current as a function of the magnetic field were done for different angles. In the resistive regime, the excess current measurements in the magnetic field show a very interesting behaviour: In parallel magnetic fields, the excess current becomes zero at about 2.5 T. In perpendicular magnetic field however, the excess current is strongly suppressed below 30 m

  11. Knowledge-inducing Global Path Planning for Robots in Environment with Hybrid Terrain

    Directory of Open Access Journals (Sweden)

    Yi-nan Guo

    2010-09-01

    Full Text Available In complex environment with hybrid terrain, different regions may have different terrain. Path planning for robots in such environment is an open NP-complete problem, which lacks effective methods. The paper develops a novel global path planning method based on common sense and evolution knowledge by adopting dual evolution structure in culture algorithms. Common sense describes terrain information and feasibility of environment, which is used to evaluate and select the paths. Evolution knowledge describes the angle relationship between the path and the obstacles, or the common segments of paths, which is used to judge and repair infeasible individuals. Taken two types of environments with different obstacles and terrain as examples, simulation results indicate that the algorithm can effectively solve path planning problem in complex environment and decrease the computation complexity for judgment and repair of infeasible individuals. It also can improve the convergence speed and have better computation stability.

  12. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Choo, Hao Yu; Sato, Hirotaka

    2016-03-01

    We have constructed an insect-computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g., gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e., applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. © 2016 The Author(s).

  13. Hybrid MPI/OpenMP parallelization of the explicit Volterra integral equation solver for multi-core computer architectures

    KAUST Repository

    Al Jarro, Ahmed; Bagci, Hakan

    2011-01-01

    A hybrid MPI/OpenMP scheme for efficiently parallelizing the explicit marching-on-in-time (MOT)-based solution of the time-domain volume (Volterra) integral equation (TD-VIE) is presented. The proposed scheme equally distributes tested field values

  14. Design of Underwater Robot Lines Based on a Hybrid Automatic Optimization Strategy

    Institute of Scientific and Technical Information of China (English)

    Wenjing Lyu; Weilin Luo

    2014-01-01

    In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal;the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body’s minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.

  15. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study

    Directory of Open Access Journals (Sweden)

    Antonio J del-Ama

    2014-05-01

    Full Text Available Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially-driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with incomplete Spinal Cord Injury (SCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 minutes and 10 meters walking tests after the intervention, and further improvements were observed one week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance.

  16. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study.

    Science.gov (United States)

    Del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-01-01

    Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance.

  17. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton

    Directory of Open Access Journals (Sweden)

    Dingguo Zhang

    2017-12-01

    Full Text Available Functional electrical stimulation (FES and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton. Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  18. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.

    Science.gov (United States)

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  19. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    Directory of Open Access Journals (Sweden)

    Zhumu Fu

    2014-01-01

    Full Text Available This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE with the state of charge (SOC of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified ICE speed as inputs, and regarding the output torque demanded on the ICE as an output, a fuzzy logic controller (FLC with relevant fuzzy rules has been developed to determine the optimal torque distribution among the ICE, the ISG, and the electric motor/generator (EMG effectively. The simulation results reveal that, compared with the conventional torque control strategy which uses rule-based controller (RBC in different driving cycles, the proposed FLC improves the fuel economy of the ISG-PHEV, increases the efficiency of the ICE, and maintains batteries SOC within its operation range more availably.

  20. System design and energetic characterization of a four-wheel-driven series–parallel hybrid electric powertrain for heavy-duty applications

    International Nuclear Information System (INIS)

    Wang, Enhua; Guo, Di; Yang, Fuyuan

    2015-01-01

    Highlights: • A novel four-wheel-driven series–parallel hybrid powertrain is proposed. • A system model and a rule-based control strategy are designed. • Energetic performance is compared to a rear-wheel-driven hybrid powertrain. • Less torsional oscillation and more robust regenerative braking are achieved. - Abstract: Powertrain topology design is vital for system performance of a hybrid electric vehicle. In this paper, a novel four-wheel-driven series–parallel hybrid electric powertrain is proposed. A motor is connected to the differential of the rear axle. An auxiliary power unit is linked to the differential of the front axle via a clutch. First, a mathematical model was established to evaluate the fuel-saving potential. A rule-based energy management algorithm was subsequently designed, and its working parameters were optimized. The hybrid powertrain system was applied to a transit bus, and the system characteristics were analyzed. Compared to an existing coaxial power-split hybrid powertrain, the fuel economy of the four-wheel-driven series–parallel hybrid powertrain can be at the same level under normal road conditions. However, the proposed four-wheel-driven series–parallel hybrid powertrain can recover braking energy more efficiently under road conditions with a low adhesive coefficient and can alleviate the torsional oscillation occurring at the existing coaxial power-split hybrid powertrain. Therefore, the four-wheel-driven series–parallel hybrid powertrain is a good solution for transit buses toward more robust performance.

  1. A self-calibrating robot based upon a virtual machine model of parallel kinematics

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Eiríksson, Eyþór Rúnar; Hansen, Hans Nørgaard

    2016-01-01

    A delta-type parallel kinematics system for Additive Manufacturing has been created, which through a probing system can recognise its geometrical deviations from nominal and compensate for these in the driving inverse kinematic model of the machine. Novelty is that this model is derived from...... a virtual machine of the kinematics system, built on principles from geometrical metrology. Relevant mathematically non-trivial deviations to the ideal machine are identified and decomposed into elemental deviations. From these deviations, a routine is added to a physical machine tool, which allows...

  2. Robotics

    Indian Academy of Sciences (India)

    netic induction to detect an object. The development of ... end effector, inclination of object, magnetic and electric fields, etc. The sensors described ... In the case of a robot, the various actuators and motors have to be modelled. The major ...

  3. Hybrid MPI/OpenMP parallelization of the explicit Volterra integral equation solver for multi-core computer architectures

    KAUST Repository

    Al Jarro, Ahmed

    2011-08-01

    A hybrid MPI/OpenMP scheme for efficiently parallelizing the explicit marching-on-in-time (MOT)-based solution of the time-domain volume (Volterra) integral equation (TD-VIE) is presented. The proposed scheme equally distributes tested field values and operations pertinent to the computation of tested fields among the nodes using the MPI standard; while the source field values are stored in all nodes. Within each node, OpenMP standard is used to further accelerate the computation of the tested fields. Numerical results demonstrate that the proposed parallelization scheme scales well for problems involving three million or more spatial discretization elements. © 2011 IEEE.

  4. Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial

    Directory of Open Access Journals (Sweden)

    John Michael Frullo

    2017-06-01

    Full Text Available BackgroundRobotic rehabilitation of the upper limb following neurological injury has been supported through several large clinical studies for individuals with chronic stroke. The application of robotic rehabilitation to the treatment of other neurological injuries is less developed, despite indications that strategies successful for restoration of motor capability following stroke may benefit individuals with incomplete spinal cord injury (SCI as well. Although recent studies suggest that robot-aided rehabilitation might be beneficial after incomplete SCI, it is still unclear what type of robot-aided intervention contributes to motor recovery.MethodsWe developed a novel assist-as-needed (AAN robotic controller to adjust challenge and robotic assistance continuously during rehabilitation therapy delivered via an upper extremity exoskeleton, the MAHI Exo-II, to train independent elbow and wrist joint movements. We further enrolled seventeen patients with incomplete spinal cord injury (AIS C and D levels in a parallel-group balanced controlled trial to test the efficacy of the AAN controller, compared to a subject-triggered (ST controller that does not adjust assistance or challenge levels continuously during therapy. The conducted study is a stage two, development-of-concept pilot study.ResultsWe validated the AAN controller in its capability of modulating assistance and challenge during therapy via analysis of longitudinal robotic metrics. For the selected primary outcome measure, the pre–post difference in ARAT score, no statistically significant change was measured in either group of subjects. Ancillary analysis of secondary outcome measures obtained via robotic testing indicates gradual improvement in movement quality during the therapy program in both groups, with the AAN controller affording greater increases in movement quality over the ST controller.ConclusionThe present study demonstrates feasibility of subject-adaptive robotic therapy

  5. Hybrid System Design for the Coordination of Multi-Modal Aerial Robots

    DEFF Research Database (Denmark)

    Koo, T. John; Quottrup, Michael Melholt; Clifton, C. A.

    2006-01-01

    In this paper we provide a framework for the coordination of a network of heterogeneous aerial robots by using temporal logic to formulate mission speci¯cations for the network of robots. The full dynamics of the aerial robots are considered, and multiple controllers that can cope with various......¯ed. These robots are coordinated by communicating through a single occupancy table. By using the model checker Uppaal, a discrete plan that satis¯es a given temporal logic formula, speci¯ed in CTL, is generated for the robot to execute. Finally, the discrete plan for each robot is re¯ned into a discrete control...... constraints are designed to ensure that desired reachability properties can be preserved by properly switching among the controllers. A timed automaton is then constructed for preserving the temporal properties of a given robot. For di®erent types of robots, unique temporal properties can be speci...

  6. Robotic platform for parallelized cultivation and monitoring of microbial growth parameters in microwell plates.

    Science.gov (United States)

    Knepper, Andreas; Heiser, Michael; Glauche, Florian; Neubauer, Peter

    2014-12-01

    The enormous variation possibilities of bioprocesses challenge process development to fix a commercial process with respect to costs and time. Although some cultivation systems and some devices for unit operations combine the latest technology on miniaturization, parallelization, and sensing, the degree of automation in upstream and downstream bioprocess development is still limited to single steps. We aim to face this challenge by an interdisciplinary approach to significantly shorten development times and costs. As a first step, we scaled down analytical assays to the microliter scale and created automated procedures for starting the cultivation and monitoring the optical density (OD), pH, concentrations of glucose and acetate in the culture medium, and product formation in fed-batch cultures in the 96-well format. Then, the separate measurements of pH, OD, and concentrations of acetate and glucose were combined to one method. This method enables automated process monitoring at dedicated intervals (e.g., also during the night). By this approach, we managed to increase the information content of cultivations in 96-microwell plates, thus turning them into a suitable tool for high-throughput bioprocess development. Here, we present the flowcharts as well as cultivation data of our automation approach. © 2014 Society for Laboratory Automation and Screening.

  7. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    Science.gov (United States)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid

  8. Solution of finite element problems using hybrid parallelization with MPI and OpenMP Solution of finite element problems using hybrid parallelization with MPI and OpenMP

    Directory of Open Access Journals (Sweden)

    José Miguel Vargas-Félix

    2012-11-01

    Full Text Available The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.

  9. Real-Time Performance of Hybrid Mobile Robot Control Utilizing USB Protocol

    Directory of Open Access Journals (Sweden)

    Jacek Augustyn

    2015-02-01

    Full Text Available This article discusses the problem of usability of the USB 2.0 protocol in the area of real-time control of a mobile robot. Optimization methods of data transfer handling were proposed. The impact of the optimization results on the entire system's performance was examined in practice. As a test-bed, a hybrid system composed of two devices communicating by direct USB connection was implemented. The first of the mentioned devices was a 32-bit SoC micro-system serving as a direct control unit, and the second one was an off-the-shelf PDA providing supervisory control and logging. Due to this design, the system meets regimes of the real-time constraints and maintains continuity of a data stream at a large bandwidth. The real-time performances of subsystems and the entire system were experimentally examined depending on various operating conditions. Thanks to the performed experiments, the dependency of real-time limits on operational parameters has been determined.

  10. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    Directory of Open Access Journals (Sweden)

    Xianfeng Yuan

    2015-01-01

    presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel support vector machine (SVM and Dempster-Shafer (D-S fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  11. Study of emissions and fuel economy for parallel hybrid versus conventional vehicles on real world and standard driving cycles

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Samari

    2017-12-01

    Full Text Available Parallel hybrid electric vehicles (PHEVs increasing rapidly in the automobile markets. However, the benefits out of using this kind of vehicles are still concerned a lot of costumers. This work investigated the expected benefits (such as decreasing emissions and increasing fuel economy from using the parallel HEV in comparison to the conventional vehicle model of the real-world and standard driving cycles. The software Autonomie used in this study to simulate the parallel HEV and conventional models on these driving cycles.The results show that the fuel economy (FE can be improved significantly up to 68% on real-world driving cycle, which is represented mostly city activities. However, the FE improvement was limited (10% on the highway driving cycle, and this is expected since the using of brake system was infrequent. Moreover, the emissions from parallel HEV decreased about 40% on the real-world driving cycle, and decreased 11% on the highway driving cycle. Finally, the engine efficiency, improved about 12% on the real-world driving cycle, and about 7% on highway driving cycle. Keywords: Emissions, Hybrid electric vehicles, Fuel economy, Real-world driving cycle

  12. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Directory of Open Access Journals (Sweden)

    Hong Zeng

    2017-10-01

    Full Text Available Brain-machine interface (BMI can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback over the open-loop system (with visual inspection only have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes.

  13. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Science.gov (United States)

    Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng

    2017-01-01

    Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123

  14. Emulating a robotic manipulator arm with an hybrid motion-control system

    International Nuclear Information System (INIS)

    Aragón-González, G; León-Galicia, A; Noriega-Hernández, M; Salazar-Hueta, A

    2015-01-01

    A motion control system with four and 1/2 degrees of freedom, designed to move small objects within a 0.25 m3 space, parallel to a horizontal table, with high speed and performance similar to a robotic manipulator arm was built. The machine employs several actuators and control devices. Its main characteristic is to incorporate a servomotor, steeper motors, electromechanical and fluid power actuators and diverse control resources. A group of actuators arranged on a spherical coordinates system is attached to the servomotor platform. A linear pneumatic actuator with an angular grip provides the radial extension and load clamping capacity. Seven inductive proximity sensors and one encoder provide feedback, for operating the actuators under closed loop conditions. Communication between the sensors and control devices is organized by a PLC. A touch screen allows governing the system remotely, easily and interactively, without knowing the specific programming language of each control component. The graphic environment on the touch screen guides the user to design and store control programs, establishing coordinated automatic routines for moving objects in space, simulation and implementation of industrial positioning or machining processes

  15. Design and implementation of a novel modal space active force control concept for spatial multi-DOF parallel robotic manipulators actuated by electrical actuators.

    Science.gov (United States)

    Yang, Chifu; Zhao, Jinsong; Li, Liyi; Agrawal, Sunil K

    2018-01-01

    Robotic spine brace based on parallel-actuated robotic system is a new device for treatment and sensing of scoliosis, however, the strong dynamic coupling and anisotropy problem of parallel manipulators result in accuracy loss of rehabilitation force control, including big error in direction and value of force. A novel active force control strategy named modal space force control is proposed to solve these problems. Considering the electrical driven system and contact environment, the mathematical model of spatial parallel manipulator is built. The strong dynamic coupling problem in force field is described via experiments as well as the anisotropy problem of work space of parallel manipulators. The effects of dynamic coupling on control design and performances are discussed, and the influences of anisotropy on accuracy are also addressed. With mass/inertia matrix and stiffness matrix of parallel manipulators, a modal matrix can be calculated by using eigenvalue decomposition. Making use of the orthogonality of modal matrix with mass matrix of parallel manipulators, the strong coupled dynamic equations expressed in work space or joint space of parallel manipulator may be transformed into decoupled equations formulated in modal space. According to this property, each force control channel is independent of others in the modal space, thus we proposed modal space force control concept which means the force controller is designed in modal space. A modal space active force control is designed and implemented with only a simple PID controller employed as exampled control method to show the differences, uniqueness, and benefits of modal space force control. Simulation and experimental results show that the proposed modal space force control concept can effectively overcome the effects of the strong dynamic coupling and anisotropy problem in the physical space, and modal space force control is thus a very useful control framework, which is better than the current joint

  16. HexaMob—A Hybrid Modular Robotic Design for Implementing Biomimetic Structures

    Directory of Open Access Journals (Sweden)

    Sasanka Sankhar Reddy CH.

    2017-10-01

    Full Text Available Modular robots are capable of forming primitive shapes such as lattice and chain structures with the additional flexibility of distributed sensing. The biomimetic structures developed using such modular units provides ease of replacement and reconfiguration in co-ordinated structures, transportation etc. in real life scenarios. Though the research in the employment of modular robotic units in formation of biological organisms is in the nascent stage, modular robotic units are already capable of forming such sophisticated structures. The modular robotic designs proposed so far in modular robotics research vary significantly in external structures, sensor-actuator mechanisms interfaces for docking and undocking, techniques for providing mobility, coordinated structures, locomotions etc. and each robotic design attempted to address various challenges faced in the domain of modular robotics by employing different strategies. This paper presents a novel modular wheeled robotic design - HexaMob facilitating four degrees of freedom (2 degrees for mobility and 2 degrees for structural reconfiguration on a single module with minimal usage of sensor-actuator assemblies. The crucial features of modular robotics such as back-driving restriction, docking, and navigation are addressed in the process of HexaMob design. The proposed docking mechanism is enabled using vision sensor, enhancing the capabilities in docking as well as navigation in co-ordinated structures such as humanoid robots.

  17. Contribution to the optimal design of an hybrid parallel power-train: choice of a battery model; Contribution a la conception optimale d'une motorisation hybride parallele. Choix d'un modele d'accumulateur

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, E.

    2004-09-15

    This work deals with the dynamical and energetic modeling of a 42 V NiMH battery, the model of which is taking into account into a control law for an hybrid electrical vehicle. Using an inventory of the electrochemical phenomena, an equivalent electrical scheme has been established. In this model, diffusion phenomena were represented using non integer derivatives. This tool leads to a very good approximation of diffusion phenomena, nevertheless such a pure mathematical approach did not allow to represent energetic losses inside the battery. Consequently, a second model, made of a series of electric circuits has been proposed to represent energetic transfers. This second model has been used in the determination of a control law which warrants an autonomous management of electrical energy embedded in a parallel hybrid electrical vehicle, and to prevent deep discharge of the battery. (author)

  18. A robot sets a table: a case for hybrid reasoning with different types of knowledge

    Science.gov (United States)

    Mansouri, Masoumeh; Pecora, Federico

    2016-09-01

    An important contribution of AI to Robotics is the model-centred approach, whereby competent robot behaviour stems from automated reasoning in models of the world which can be changed to suit different environments, physical capabilities and tasks. However models need to capture diverse (and often application-dependent) aspects of the robot's environment and capabilities. They must also have good computational properties, as robots need to reason while they act in response to perceived context. In this article, we investigate the use of a meta-CSP-based technique to interleave reasoning in diverse knowledge types. We reify the approach through a robotic waiter case study, for which a particular selection of spatial, temporal, resource and action KR formalisms is made. Using this case study, we discuss general principles pertaining to the selection of appropriate KR formalisms and jointly reasoning about them. The resulting integration is evaluated both formally and experimentally on real and simulated robotic platforms.

  19. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  20. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    Wu, Huapeng; Wang, Yongbo; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki

    2014-01-01

    Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance

  1. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huapeng; Wang, Yongbo, E-mail: yongbo.wang@lut.fi; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki

    2014-10-15

    Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance.

  2. An efficient heuristic versus a robust hybrid meta-heuristic for general framework of serial-parallel redundancy problem

    International Nuclear Information System (INIS)

    Sadjadi, Seyed Jafar; Soltani, R.

    2009-01-01

    We present a heuristic approach to solve a general framework of serial-parallel redundancy problem where the reliability of the system is maximized subject to some general linear constraints. The complexity of the redundancy problem is generally considered to be NP-Hard and the optimal solution is not normally available. Therefore, to evaluate the performance of the proposed method, a hybrid genetic algorithm is also implemented whose parameters are calibrated via Taguchi's robust design method. Then, various test problems are solved and the computational results indicate that the proposed heuristic approach could provide us some promising reliabilities, which are fairly close to optimal solutions in a reasonable amount of time.

  3. A Low-Cost Open Source 3D-Printable Dexterous Anthropomorphic Robotic Hand with a Parallel Spherical Joint Wrist for Sign Languages Reproduction

    Directory of Open Access Journals (Sweden)

    Andrea Bulgarelli

    2016-06-01

    Full Text Available We present a novel open-source 3D-printable dexterous anthropomorphic robotic hand specifically designed to reproduce Sign Languages’ hand poses for deaf and deaf-blind users. We improved the InMoov hand, enhancing dexterity by adding abduction/adduction degrees of freedom of three fingers (thumb, index and middle fingers and a three-degrees-of-freedom parallel spherical joint wrist. A systematic kinematic analysis is provided. The proposed robotic hand is validated in the framework of the PARLOMA project. PARLOMA aims at developing a telecommunication system for deaf-blind people, enabling remote transmission of signs from tactile Sign Languages. Both hardware and software are provided online to promote further improvements from the community.

  4. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles.

    Science.gov (United States)

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2017-10-01

    The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. FEV's new parallel hybrid transmission with single dry clutch and electric torque support

    Energy Technology Data Exchange (ETDEWEB)

    Hellenbroich, Gereon [VKA, RWTH Aachen (Germany); Rosenburg, Volker [FEV Motorentechnik GmbH, Aachen (Germany)

    2009-07-01

    FEV is currently developing a new 7-speed hybrid transmission for transverse installation. The transmission with a design torque of 320 Nm is based on AMT (automated manual transmission) technology and uses a single electric motor. The innovative gear set layout combines the advantages of modern AMTs such as best efficiency, low costs and few components with full hybrid capabilities and electric torque support during all gear shifts. Furthermore, the gear set layout allows for very short-shift-times due to the favorable distribution of inertias. Other features include an A/C compressor being electrically driven by the electric motor of the transmission during start/stop phases. (orig.)

  6. A novel detection platform for parallel monitoring of DNA hybridization with high sensitivity and specificity

    DEFF Research Database (Denmark)

    Yi, Sun; Perch-Nielsen, Ivan R.; Wang, Zhenyu

    We developed a high-sensitive platform to monior multiple hybridization events in real time. By creating a microoptical array in a polymeric chip, the system combine the excellent discriminative power of supercritical angle fluorescence (SAF) microscopy with high-throughput capabilities of microa......We developed a high-sensitive platform to monior multiple hybridization events in real time. By creating a microoptical array in a polymeric chip, the system combine the excellent discriminative power of supercritical angle fluorescence (SAF) microscopy with high-throughput capabilities...

  7. Parallelization of a Quantum-Classic Hybrid Model For Nanoscale Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Oscar Salas

    2011-07-01

    Full Text Available The expensive reengineering of the sequential software and the difficult parallel programming are two of the many technical and economic obstacles to the wide use of HPC. We investigate the chance to improve in a rapid way the performance of a numerical serial code for the simulation of the transport of a charged carriers in a Double-Gate MOSFET. We introduce the Drift-Diffusion-Schrödinger-Poisson (DDSP model and we study a rapid parallelization strategy of the numerical procedure on shared memory architectures.

  8. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.

    Science.gov (United States)

    Rong, Wei; Li, Waiming; Pang, Mankit; Hu, Junyan; Wei, Xijun; Yang, Bibo; Wai, Honwah; Zheng, Xiaoxiang; Hu, Xiaoling

    2017-04-26

    It is a challenge to reduce the muscular discoordination in the paretic upper limb after stroke in the traditional rehabilitation programs. In this study, a neuromuscular electrical stimulation (NMES) and robot hybrid system was developed for multi-joint coordinated upper limb physical training. The system could assist the elbow, wrist and fingers to conduct arm reaching out, hand opening/grasping and arm withdrawing by tracking an indicative moving cursor on the screen of a computer, with the support from the joint motors and electrical stimulations on target muscles, under the voluntary intention control by electromyography (EMG). Subjects with chronic stroke (n = 11) were recruited for the investigation on the assistive capability of the NMES-robot and the evaluation of the rehabilitation effectiveness through a 20-session device assisted upper limb training. In the evaluation, the movement accuracy measured by the root mean squared error (RMSE) during the tracking was significantly improved with the support from both the robot and NMES, in comparison with those without the assistance from the system (P joint and inter-joint muscular co-contractions measured by EMG were significantly released when the NMES was applied to the agonist muscles in the different phases of the limb motion (P < 0.05). After the physical training, significant improvements (P < 0.05) were captured by the clinical scores, i.e., Modified Ashworth Score (MAS, the elbow and the wrist), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT). The EMG-driven NMES-robotic system could improve the muscular coordination at the elbow, wrist and fingers. ClinicalTrials.gov. NCT02117089 ; date of registration: April 10, 2014.

  9. A Hybrid Method of Analyzing Patents for Sustainable Technology Management in Humanoid Robot Industry

    OpenAIRE

    Jongchan Kim; Joonhyuck Lee; Gabjo Kim; Sangsung Park; Dongsik Jang

    2016-01-01

    A humanoid, which refers to a robot that resembles a human body, imitates a human’s intelligence, behavior, sense, and interaction in order to provide various types of services to human beings. Humanoids have been studied and developed constantly in order to improve their performance. Humanoids were previously developed for simple repetitive or hard work that required significant human power. However, intelligent service robots have been developed actively these days to provide necessary info...

  10. Hybrid parallelization of the XTOR-2F code for the simulation of two-fluid MHD instabilities in tokamaks

    Science.gov (United States)

    Marx, Alain; Lütjens, Hinrich

    2017-03-01

    A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.

  11. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.

    Science.gov (United States)

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F

    2018-03-01

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.

  12. Implementation of hybrid parallel kanban-CONWIP system: A case study

    Directory of Open Access Journals (Sweden)

    Joshua Prakash

    2014-12-01

    Full Text Available The most common form of production control strategy in lean management is the pull system. One emerging form of pull system uses kanban and CONWIP systems to handle products with different demand patterns. Case studies have protractedly depicted the actual implementation of pull systems; however, the use of hybrid systems is rare. This paper examines the procedures involved in implementing a hybrid system in a low variety/low volume shop floor. This paper presents discussions on shop floor constraints in the proposed system and how the simplicity of a pull system is able to reduce work-in-process inventory by 23%. Guidelines for the replication of the system for similar production environments are also provided. The case study proves that pull systems can be successfully implemented in production environments that do not conform to the typical prerequisites of the kanban system.

  13. The Power Quality Compensation Strategy for Power Distribution System Based on Hybrid Parallel Active Power Filters

    Directory of Open Access Journals (Sweden)

    Rachid DEHINI

    2010-12-01

    Full Text Available In this paper, the main aim is to confront the performance of shunt active power filter (SAPF and the shunt hybrid active power filter (SHAPF to achieve flexibility and reliability of the filter devices. Both of the two devices used the classical proportional-integral controller for pulse generation to trigger the inventers MOSFET’s. In the adopted hybrid active filter there is a passive power filter with high power rating to filter the low order harmonies and one active filter with low power rating to filter the other high order harmonies. In order to investigate the effectiveness of (SHAPF, the studies have been accomplished using simulation with the MATLAB-SIMULINK. The results show That (SHAPF is more effective than (SAPF, and has lower cost.

  14. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network.

    Science.gov (United States)

    Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S

    2005-01-01

    A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission.

  15. Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2013-04-01

    Full Text Available This paper compares two optimal energy management methods for parallel hybrid electric vehicles using an Automatic Manual Transmission (AMT. A control-oriented model of the powertrain and vehicle dynamics is built first. The energy management is formulated as a typical optimal control problem to trade off the fuel consumption and gear shifting frequency under admissible constraints. The Dynamic Programming (DP and Pontryagin’s Minimum Principle (PMP are applied to obtain the optimal solutions. Tuning with the appropriate co-states, the PMP solution is found to be very close to that from DP. The solution for the gear shifting in PMP has an algebraic expression associated with the vehicular velocity and can be implemented more efficiently in the control algorithm. The computation time of PMP is significantly less than DP.

  16. Research on Gear Shifting Process without Disengaging Clutch for a Parallel Hybrid Electric Vehicle Equipped with AMT

    Directory of Open Access Journals (Sweden)

    Hui-Long Yu

    2014-01-01

    Full Text Available Dynamic models of a single-shaft parallel hybrid electric vehicle (HEV equipped with automated mechanical transmission (AMT were described in different working stages during a gear shifting process without disengaging clutch. Parameters affecting the gear shifting time, components life, and gear shifting jerk in different transient states during a gear shifting process were deeply analyzed. The mathematical models considering the detailed synchronizer working process which can explain the gear shifting failure, long time gear shifting, and frequent synchronizer failure phenomenon in HEV were derived. Dynamic coordinated control strategy of the engine, motor, and actuators in different transient states considering the detailed working stages of synchronizer in a gear shifting process of a HEV is for the first time innovatively proposed according to the state of art references. Bench test and real road test results show that the proposed control strategy can improve the gear shifting quality in all its evaluation indexes significantly.

  17. Implementation of a cell-wise block-Gauss-Seidel iterative method for SN transport on a hybrid parallel computer architecture

    International Nuclear Information System (INIS)

    Rosa, Massimiliano; Warsa, James S.; Perks, Michael

    2011-01-01

    We have implemented a cell-wise, block-Gauss-Seidel (bGS) iterative algorithm, for the solution of the S_n transport equations on the Roadrunner hybrid, parallel computer architecture. A compute node of this massively parallel machine comprises AMD Opteron cores that are linked to a Cell Broadband Engine™ (Cell/B.E.)"1. LAPACK routines have been ported to the Cell/B.E. in order to make use of its parallel Synergistic Processing Elements (SPEs). The bGS algorithm is based on the LU factorization and solution of a linear system that couples the fluxes for all S_n angles and energy groups on a mesh cell. For every cell of a mesh that has been parallel decomposed on the higher-level Opteron processors, a linear system is transferred to the Cell/B.E. and the parallel LAPACK routines are used to compute a solution, which is then transferred back to the Opteron, where the rest of the computations for the S_n transport problem take place. Compared to standard parallel machines, a hundred-fold speedup of the bGS was observed on the hybrid Roadrunner architecture. Numerical experiments with strong and weak parallel scaling demonstrate the bGS method is viable and compares favorably to full parallel sweeps (FPS) on two-dimensional, unstructured meshes when it is applied to optically thick, multi-material problems. As expected, however, it is not as efficient as FPS in optically thin problems. (author)

  18. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    Science.gov (United States)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2017-02-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  19. A new hybrid machine design for a 6 DOF industrial robot arm

    CSIR Research Space (South Africa)

    Shaik, AA

    2012-05-01

    Full Text Available of units sold since 1960 amounted to more than 2 230 000, and the IFR (International Federation of Robotics) estimates the total number of operational industrial robots worldwide to be between 1 021 000 and 1 300 000 units at the end of 2009. [Exec sum... productivity to be competitive on the global market and the competition for market share in rising consumer markets. [IFR 1] The main drivers for the strong recovery in 2010 were automotive manufacturers and the electronics industry. In addition...

  20. Design, simulation, and prototype production of a through the road parallel hybrid electric motorcycle

    International Nuclear Information System (INIS)

    Asaei, Behzad; Habibidoost, Mahdi

    2013-01-01

    Highlights: • Design, simulation, and manufacturing of a hybrid electric motorcycle are explained. • The electric machine is mounted in the front wheel hub of an ordinary motorcycle. • Two different energy control strategy are implemented. • The simulation results show that the motorcycle performance is improved. • The acceleration is improved and the fuel consumption and pollutions are decreased. - Abstract: In this paper, design, simulation, and conversion of a normal motorcycle to a Hybrid Electric Motorcycle (HEM) is described. At first, a simple model designed and simulated using ADVISOR2002. Then, the controller schematic and its optimized control strategy are described. A 125 cc ICE motorcycle is selected and converted into a HEM. A brushless DC (BLDC) motor assembled in the front wheel and a normal internal combustion engine in the rear wheel propel the motorcycle. The nominal powers are 6.6 kW and 500 W for the ICE and BLDC respectively. The original motorcycle has a Continuous Variable Transmission (CVT) that is the best choice for a HEM power transmission because it can operate in the automatic handling mode and has high efficiency. Moreover, by using the CVT, the ICE can be started while motorcycle is running. Finally, three operating modes of HEM, two implemented energy control strategies, and HEM engine control system by servomotors, and LCD display are explained

  1. Decreasing Data Analytics Time: Hybrid Architecture MapReduce-Massive Parallel Processing for a Smart Grid

    Directory of Open Access Journals (Sweden)

    Abdeslam Mehenni

    2017-03-01

    Full Text Available As our populations grow in a world of limited resources enterprise seek ways to lighten our load on the planet. The idea of modifying consumer behavior appears as a foundation for smart grids. Enterprise demonstrates the value available from deep analysis of electricity consummation histories, consumers’ messages, and outage alerts, etc. Enterprise mines massive structured and unstructured data. In a nutshell, smart grids result in a flood of data that needs to be analyzed, for better adjust to demand and give customers more ability to delve into their power consumption. Simply put, smart grids will increasingly have a flexible data warehouse attached to them. The key driver for the adoption of data management strategies is clearly the need to handle and analyze the large amounts of information utilities are now faced with. New approaches to data integration are nauseating moment; Hadoop is in fact now being used by the utility to help manage the huge growth in data whilst maintaining coherence of the Data Warehouse. In this paper we define a new Meter Data Management System Architecture repository that differ with three leaders MDMS, where we use MapReduce programming model for ETL and Parallel DBMS in Query statements(Massive Parallel Processing MPP.

  2. Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    Science.gov (United States)

    Xing, F.; Masson, R.; Lopez, S.

    2017-09-01

    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.

  3. Robotics combined with electrical stimulation : hybrid support of arm and hand for functional training after stroke

    NARCIS (Netherlands)

    Westerveld, Ard

    2014-01-01

    Reach, grasp and release is part of many functional movements. Graying of society leads to more stroke victims and fewer health care professionals. Technology might be a solution to support certain rehabilitation therapies in future health care. Robotic systems have been developed for support of arm

  4. Robotics combined with electrical stimulation: hybrid support of arm and hand for functional training after stroke

    NARCIS (Netherlands)

    Westerveld, Ard

    2014-01-01

    Reach, grasp and release is part of many functional movements. Graying of society leads to more stroke victims and fewer health care professionals. Technology might be a solution to support certain rehabilitation therapies in future health care. Robotic systems have been developed for support of arm

  5. A hybrid, massively parallel implementation of a genetic algorithm for optimization of the impact performance of a metal/polymer composite plate

    KAUST Repository

    Narayanan, Kiran; Mora Cordova, Angel; Allsopp, Nicholas; El Sayed, Tamer S.

    2012-01-01

    A hybrid parallelization method composed of a coarse-grained genetic algorithm (GA) and fine-grained objective function evaluations is implemented on a heterogeneous computational resource consisting of 16 IBM Blue Gene/P racks, a single x86 cluster

  6. Experiences Using Hybrid MPI/OpenMP in the Real World: Parallelization of a 3D CFD Solver for Multi-Core Node Clusters

    Directory of Open Access Journals (Sweden)

    Gabriele Jost

    2010-01-01

    Full Text Available Today most systems in high-performance computing (HPC feature a hierarchical hardware design: shared-memory nodes with several multi-core CPUs are connected via a network infrastructure. When parallelizing an application for these architectures it seems natural to employ a hierarchical programming model such as combining MPI and OpenMP. Nevertheless, there is the general lore that pure MPI outperforms the hybrid MPI/OpenMP approach. In this paper, we describe the hybrid MPI/OpenMP parallelization of IR3D (Incompressible Realistic 3-D code, a full-scale real-world application, which simulates the environmental effects on the evolution of vortices trailing behind control surfaces of underwater vehicles. We discuss performance, scalability and limitations of the pure MPI version of the code on a variety of hardware platforms and show how the hybrid approach can help to overcome certain limitations.

  7. Inverse Kinematics of a Humanoid Robot with Non-Spherical Hip: A Hybrid Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Rafael Cisneros Limón

    2013-04-01

    Full Text Available This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, and then uses it as the initial condition of a numerical refining procedure based on the Levenberg-Marquardt algorithm. In this way, few iterations are needed for any specified attitude, making it possible to implement the algorithm for real-time applications. As a way to show the algorithm's implementation, one case of study is considered throughout the paper, represented by the SILO2 humanoid robot.

  8. A Hybrid Method of Analyzing Patents for Sustainable Technology Management in Humanoid Robot Industry

    Directory of Open Access Journals (Sweden)

    Jongchan Kim

    2016-05-01

    Full Text Available A humanoid, which refers to a robot that resembles a human body, imitates a human’s intelligence, behavior, sense, and interaction in order to provide various types of services to human beings. Humanoids have been studied and developed constantly in order to improve their performance. Humanoids were previously developed for simple repetitive or hard work that required significant human power. However, intelligent service robots have been developed actively these days to provide necessary information and enjoyment; these include robots manufactured for home, entertainment, and personal use. It has become generally known that artificial intelligence humanoid technology will significantly benefit civilization. On the other hand, Successful Research and Development (R & D on humanoids is possible only if they are developed in a proper direction in accordance with changes in markets and society. Therefore, it is necessary to analyze changes in technology markets and society for developing sustainable Management of Technology (MOT strategies. In this study, patent data related to humanoids are analyzed by various data mining techniques, including topic modeling, cross-impact analysis, association rule mining, and social network analysis, to suggest sustainable strategies and methodologies for MOT.

  9. A novel 3D-printed hybrid simulation model for robotic-assisted kidney transplantation (RAKT).

    Science.gov (United States)

    Uwechue, Raphael; Gogalniceanu, Petrut; Kessaris, Nicos; Byrne, Nick; Chandak, Pankaj; Olsburgh, Jonathon; Ahmed, Kamran; Mamode, Nizam; Loukopoulos, Ioannis

    2018-01-27

    Robotic-assisted kidney transplantation (RAKT) offers key benefits for patients that have been demonstrated in several studies. A barrier to the wider uptake of RAKT is surgical skill acquisition. This is exacerbated by the challenges of modern surgery with reduced surgical training time, patient safety concerns and financial pressures. Simulation is a well-established method of developing surgical skill in a safe and controlled environment away from the patient. We have developed a 3D printed simulation model for the key step of the kidney transplant operation which is the vascular anastomosis. The model is anatomically accurate, based on the CT scans of patients and it incorporates deceased donor vascular tissue. Crucially, it was developed to be used in the robotic operating theatre with the operating robot to enhance its fidelity. It is portable and relatively inexpensive when compared with other forms of simulation such as virtual reality or animal lab training. It thus has the potential of being more accessible as a training tool for the safe acquisition of RAKT specific skills. We demonstrate this model here.

  10. Performance characteristics of hybrid MPI/OpenMP implementations of NAS parallel benchmarks SP and BT on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2011-01-01

    The NAS Parallel Benchmarks (NPB) are well-known applications with the fixed algorithms for evaluating parallel systems and tools. Multicore supercomputers provide a natural programming paradigm for hybrid programs, whereby OpenMP can be used with the data sharing with the multicores that comprise a node and MPI can be used with the communication between nodes. In this paper, we use SP and BT benchmarks of MPI NPB 3.3 as a basis for a comparative approach to implement hybrid MPI/OpenMP versions of SP and BT. In particular, we can compare the performance of the hybrid SP and BT with the MPI counterparts on large-scale multicore supercomputers. Our performance results indicate that the hybrid SP outperforms the MPI SP by up to 20.76%, and the hybrid BT outperforms the MPI BT by up to 8.58% on up to 10,000 cores on BlueGene/P at Argonne National Laboratory and Jaguar (Cray XT4/5) at Oak Ridge National Laboratory. We also use performance tools and MPI trace libraries available on these supercomputers to further investigate the performance characteristics of the hybrid SP and BT.

  11. Performance Characteristics of Hybrid MPI/OpenMP Implementations of NAS Parallel Benchmarks SP and BT on Large-Scale Multicore Clusters

    KAUST Repository

    Wu, X.; Taylor, V.

    2011-01-01

    The NAS Parallel Benchmarks (NPB) are well-known applications with fixed algorithms for evaluating parallel systems and tools. Multicore clusters provide a natural programming paradigm for hybrid programs, whereby OpenMP can be used with the data sharing with the multicores that comprise a node, and MPI can be used with the communication between nodes. In this paper, we use Scalar Pentadiagonal (SP) and Block Tridiagonal (BT) benchmarks of MPI NPB 3.3 as a basis for a comparative approach to implement hybrid MPI/OpenMP versions of SP and BT. In particular, we can compare the performance of the hybrid SP and BT with the MPI counterparts on large-scale multicore clusters, Intrepid (BlueGene/P) at Argonne National Laboratory and Jaguar (Cray XT4/5) at Oak Ridge National Laboratory. Our performance results indicate that the hybrid SP outperforms the MPI SP by up to 20.76 %, and the hybrid BT outperforms the MPI BT by up to 8.58 % on up to 10 000 cores on Intrepid and Jaguar. We also use performance tools and MPI trace libraries available on these clusters to further investigate the performance characteristics of the hybrid SP and BT. © 2011 The Author. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

  12. Performance characteristics of hybrid MPI/OpenMP implementations of NAS parallel benchmarks SP and BT on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-03-29

    The NAS Parallel Benchmarks (NPB) are well-known applications with the fixed algorithms for evaluating parallel systems and tools. Multicore supercomputers provide a natural programming paradigm for hybrid programs, whereby OpenMP can be used with the data sharing with the multicores that comprise a node and MPI can be used with the communication between nodes. In this paper, we use SP and BT benchmarks of MPI NPB 3.3 as a basis for a comparative approach to implement hybrid MPI/OpenMP versions of SP and BT. In particular, we can compare the performance of the hybrid SP and BT with the MPI counterparts on large-scale multicore supercomputers. Our performance results indicate that the hybrid SP outperforms the MPI SP by up to 20.76%, and the hybrid BT outperforms the MPI BT by up to 8.58% on up to 10,000 cores on BlueGene/P at Argonne National Laboratory and Jaguar (Cray XT4/5) at Oak Ridge National Laboratory. We also use performance tools and MPI trace libraries available on these supercomputers to further investigate the performance characteristics of the hybrid SP and BT.

  13. Performance Characteristics of Hybrid MPI/OpenMP Implementations of NAS Parallel Benchmarks SP and BT on Large-Scale Multicore Clusters

    KAUST Repository

    Wu, X.

    2011-07-18

    The NAS Parallel Benchmarks (NPB) are well-known applications with fixed algorithms for evaluating parallel systems and tools. Multicore clusters provide a natural programming paradigm for hybrid programs, whereby OpenMP can be used with the data sharing with the multicores that comprise a node, and MPI can be used with the communication between nodes. In this paper, we use Scalar Pentadiagonal (SP) and Block Tridiagonal (BT) benchmarks of MPI NPB 3.3 as a basis for a comparative approach to implement hybrid MPI/OpenMP versions of SP and BT. In particular, we can compare the performance of the hybrid SP and BT with the MPI counterparts on large-scale multicore clusters, Intrepid (BlueGene/P) at Argonne National Laboratory and Jaguar (Cray XT4/5) at Oak Ridge National Laboratory. Our performance results indicate that the hybrid SP outperforms the MPI SP by up to 20.76 %, and the hybrid BT outperforms the MPI BT by up to 8.58 % on up to 10 000 cores on Intrepid and Jaguar. We also use performance tools and MPI trace libraries available on these clusters to further investigate the performance characteristics of the hybrid SP and BT. © 2011 The Author. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

  14. Map-Based Power-Split Strategy Design with Predictive Performance Optimization for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jixiang Fan

    2015-09-01

    Full Text Available In this paper, a map-based optimal energy management strategy is proposed to improve the consumption economy of a plug-in parallel hybrid electric vehicle. In the design of the maps, which provide both the torque split between engine and motor and the gear shift, not only the current vehicle speed and power demand, but also the optimality based on the predicted trajectory of vehicle dynamics are considered. To seek the optimality, the equivalent consumption, which trades off the fuel and electricity usages, is chosen as the cost function. Moreover, in order to decrease the model errors in the process of optimization conducted in the discrete time domain, the variational integrator is employed to calculate the evolution of the vehicle dynamics. To evaluate the proposed energy management strategy, the simulation results performed on a professional GT-Suit simulator are demonstrated and the comparison to a real-time optimization method is also given to show the advantage of the proposed off-line optimization approach.

  15. GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms.

    Science.gov (United States)

    Kobayashi, Chigusa; Jung, Jaewoon; Matsunaga, Yasuhiro; Mori, Takaharu; Ando, Tadashi; Tamura, Koichi; Kamiya, Motoshi; Sugita, Yuji

    2017-09-30

    GENeralized-Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all-atom and coarse-grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time-step integration, and hybrid (CPU + GPU) computing. The string method and replica-exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free-energy pathway and obtaining free-energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Design and Validation of Real-Time Optimal Control with ECMS to Minimize Energy Consumption for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiyun Gao

    2017-01-01

    Full Text Available A real-time optimal control of parallel hybrid electric vehicles (PHEVs with the equivalent consumption minimization strategy (ECMS is presented in this paper, whose purpose is to achieve the total equivalent fuel consumption minimization and to maintain the battery state of charge (SOC within its operation range at all times simultaneously. Vehicle and assembly models of PHEVs are established, which provide the foundation for the following calculations. The ECMS is described in detail, in which an instantaneous cost function including the fuel energy and the electrical energy is proposed, whose emphasis is the computation of the equivalent factor. The real-time optimal control strategy is designed through regarding the minimum of the total equivalent fuel consumption as the control objective and the torque split factor as the control variable. The validation of the control strategy proposed is demonstrated both in the MATLAB/Simulink/Advisor environment and under actual transportation conditions by comparing the fuel economy, the charge sustainability, and parts performance with other three control strategies under different driving cycles including standard, actual, and real-time road conditions. Through numerical simulations and real vehicle tests, the accuracy of the approach used for the evaluation of the equivalent factor is confirmed, and the potential of the proposed control strategy in terms of fuel economy and keeping the deviations of SOC at a low level is illustrated.

  17. A scalable hybrid multi-robot SLAM method for highly detailed maps

    NARCIS (Netherlands)

    Pfingsthorn, M.; Slamet, B.; Visser, A.

    2008-01-01

    Recent successful SLAM methods employ hybrid map representations combining the strengths of topological maps and occupancy grids. Such representations often facilitate multi-agent mapping. In this paper, a successful SLAM method is presented, which is inspired by the manifold data structure by

  18. Hybrid laparoscopic and robotic ultrasound-guided radiofrequency ablation-assisted clampless partial nephrectomy.

    Science.gov (United States)

    Nadler, Robert B; Perry, Kent T; Smith, Norm D

    2009-07-01

    To describe a clampless approach made possible by creating an avascular plane of tissue with radiofrequency ablation. Laparoscopic partial nephrectomy is slowly gaining acceptance as a method to treat small (generator. Typically, we used a power setting of 50 W but have found settings as low as 25 W necessary to provide hemostasis for larger vessels. The tumor was then sharply excised with a negative margin using robotic scissors and electrocautery to facilitate tissue cutting. Retrograde injection of methylthioninium chloride and saline through an externalized ureteral catheter allowed for precise sutured closure of the collecting system. FloSeal and BioGlue were then applied, making surgical bolsters or parenchymal sutures unnecessary. Intraoperative histologic evaluation of the surgical margin and repeat resection of the tumor bed was possible because the renal hilum was not clamped, and no warm ischemia was used. This technique, which combines the improving technologies of robotic surgery, intraoperative laparoscopic ultrasonography, and radiofrequency ablation, might make more surgeons comfortable with the intricacies of laparoscopic suturing and eliminate prolonged warm ischemia times. Overall, this method should result in more patients being able to undergo minimally invasive laparoscopic partial nephrectomy.

  19. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking*

    Science.gov (United States)

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059

  20. Experimental and Numerical Study on the Semi-Closed Loop Control of a Planar Parallel Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Yong-Lin Kuo

    2014-01-01

    Full Text Available This paper implements the model predictive control to fulfill the position control of a 3-DOF 3-RRR planar parallel manipulator. The research work covers experimental and numerical studies. First, an experimental hardware-in-the-loop system to control the manipulator is constructed. The manipulator is driven by three DC motors, and each motor has an encoder to measure the rotating angles of the motors. The entire system is designed as a semiclosed-loop control system. The controller receives the encoder signals as inputs to produce signals driving the motors. Secondly, the motor parameters are obtained by system identification, and the controllers are designed based on these parameters. Finally, the numerical simulations are performed by incorporating the manipulator kinematics and the motor dynamics; the results are compared with those from the experiments. Both results show that they are in good agreement at steady state. There are two main contributions in this paper. One is the application of the model predictive control to the planar parallel manipulator, and the other one is to overcome the effects of the uncertainties of the DC motors and the performance of the position control due to the dynamic behavior of the manipulator.

  1. A hybrid, massively parallel implementation of a genetic algorithm for optimization of the impact performance of a metal/polymer composite plate

    KAUST Repository

    Narayanan, Kiran

    2012-07-17

    A hybrid parallelization method composed of a coarse-grained genetic algorithm (GA) and fine-grained objective function evaluations is implemented on a heterogeneous computational resource consisting of 16 IBM Blue Gene/P racks, a single x86 cluster node and a high-performance file system. The GA iterator is coupled with a finite-element (FE) analysis code developed in house to facilitate computational steering in order to calculate the optimal impact velocities of a projectile colliding with a polyurea/structural steel composite plate. The FE code is capable of capturing adiabatic shear bands and strain localization, which are typically observed in high-velocity impact applications, and it includes several constitutive models of plasticity, viscoelasticity and viscoplasticity for metals and soft materials, which allow simulation of ductile fracture by void growth. A strong scaling study of the FE code was conducted to determine the optimum number of processes run in parallel. The relative efficiency of the hybrid, multi-level parallelization method is studied in order to determine the parameters for the parallelization. Optimal impact velocities of the projectile calculated using the proposed approach, are reported. © The Author(s) 2012.

  2. Distributed Robotics Education

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distribu......Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept...... to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity...

  3. Novel Robot Solutions for Carrying out Field Joint Welding and Machining in the Assembly of the Vacuum Vessel of ITER

    International Nuclear Information System (INIS)

    Pessi, P.

    2009-01-01

    It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were

  4. Novel Robot Solutions for Carrying out Field Joint Welding and Machining in the Assembly of the Vacuum Vessel of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pessi, P.

    2009-07-01

    It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were

  5. Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb (HAL) for cerebral palsy.

    Science.gov (United States)

    Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki

    2018-02-01

    [Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients.

  6. Hybrid MPI-OpenMP Parallelism in the ONETEP Linear-Scaling Electronic Structure Code: Application to the Delamination of Cellulose Nanofibrils.

    Science.gov (United States)

    Wilkinson, Karl A; Hine, Nicholas D M; Skylaris, Chris-Kriton

    2014-11-11

    We present a hybrid MPI-OpenMP implementation of Linear-Scaling Density Functional Theory within the ONETEP code. We illustrate its performance on a range of high performance computing (HPC) platforms comprising shared-memory nodes with fast interconnect. Our work has focused on applying OpenMP parallelism to the routines which dominate the computational load, attempting where possible to parallelize different loops from those already parallelized within MPI. This includes 3D FFT box operations, sparse matrix algebra operations, calculation of integrals, and Ewald summation. While the underlying numerical methods are unchanged, these developments represent significant changes to the algorithms used within ONETEP to distribute the workload across CPU cores. The new hybrid code exhibits much-improved strong scaling relative to the MPI-only code and permits calculations with a much higher ratio of cores to atoms. These developments result in a significantly shorter time to solution than was possible using MPI alone and facilitate the application of the ONETEP code to systems larger than previously feasible. We illustrate this with benchmark calculations from an amyloid fibril trimer containing 41,907 atoms. We use the code to study the mechanism of delamination of cellulose nanofibrils when undergoing sonification, a process which is controlled by a large number of interactions that collectively determine the structural properties of the fibrils. Many energy evaluations were needed for these simulations, and as these systems comprise up to 21,276 atoms this would not have been feasible without the developments described here.

  7. Imaging-guided thoracoscopic resection of a ground-glass opacity lesion in a hybrid operating room equipped with a robotic C-arm CT system.

    Science.gov (United States)

    Hsieh, Chen-Ping; Hsieh, Ming-Ju; Fang, Hsin-Yueh; Chao, Yin-Kai

    2017-05-01

    The intraoperative identification of small pulmonary nodules through video-assisted thoracoscopic surgery remains challenging. Although preoperative CT-guided nodule localization is commonly used to detect tumors during video-assisted thoracoscopic surgery (VATS), this approach carries inherent risks. We report the case of a patient with stage I lung cancer presenting as an area of ground-glass opacity (GGO) in the right upper pulmonary lobe. He successfully underwent a single-stage, CT-guided localization and removal of the pulmonary nodule within a hybrid operating room (OR) equipped with a robotic C-arm.

  8. "I Want My Robot to Look for Food": Comparing Kindergartner's Programming Comprehension Using Tangible, Graphic, and Hybrid User Interfaces

    Science.gov (United States)

    Strawhacker, Amanda; Bers, Marina U.

    2015-01-01

    In recent years, educational robotics has become an increasingly popular research area. However, limited studies have focused on differentiated learning outcomes based on type of programming interface. This study aims to explore how successfully young children master foundational programming concepts based on the robotics user interface (tangible,…

  9. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  10. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery.

    Science.gov (United States)

    KleinJan, Gijs H; van den Berg, Nynke S; de Jong, Jeroen; Wit, Esther M; Thygessen, Helene; Vegt, Erik; van der Poel, Henk G; van Leeuwen, Fijs W B

    2016-07-01

    Radical prostatectomy and complementary extended pelvic lymph node dissection (ePLND) of sentinel lymph nodes (SNs) and non-sentinel lymph nodes (LNs) at risk of containing metastases are increasingly being performed using high-tech robot-assisted approaches. Although this technological evolution has clear advantages, the physical nature of robotic systems limits the integrated use of routine radioguided surgery technologies. Hence, engineering effort in robotics are focused on the integration of fluorescence guidance technologies. Using the hybrid SN tracer indocyanine green-(99m)Tc-nanocolloid (radioactive and fluorescent), for the first time in combination with a robot-integrated laparoscope, we investigated whether the robot-assisted approach affects the accuracy of fluorescence detection of SNs identified preoperatively using nuclear medicine. The study included 55 patients (Briganti nomogram-based risk >5 % on LN metastases) scheduled for robot-assisted radical prostatectomy, SN biopsy and ePLND. Following indocyanine green-(99m)Tc-nanocolloid injection, preoperative nuclear imaging (lymphoscintigraphy and SPECT/CT) was used to locate the SN(s). The fluorescence laparoscope was used intraoperatively to identify the SN(s) with standard fluorescence settings (in 50 patients) and with customized settings (in 5 patients). The number and location of the SNs, the radioactive, fluorescence (both in vivo and ex vivo) and tumour status of the resected SNs/LNs, and postoperative complications were recorded and analysed. Combined, preoperative lymphoscintigraphy and SPECT/CT imaging identified 212 SNs (median 4 per patient). Intraoperative fluorescence imaging using standard fluorescence settings visualized 80.4 % (148/184 SNs; 50 patients; ex vivo 97.8 %). This increased to 85.7 % (12/14 SNs; 5 patients; ex vivo 100 %) with customized fluorescence settings. SPECT/CT images provided guidance towards the residual SNs. Ex vivo all removed SNs were radioactive. SNs

  11. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery

    Energy Technology Data Exchange (ETDEWEB)

    KleinJan, Gijs H. [Leiden University Medical Hospital, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Berg, Nynke S. van den [Leiden University Medical Hospital, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Jong, Jeroen de [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Pathology, Amsterdam (Netherlands); Wit, Esther M.; Poel, Henk G. van der [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Thygessen, Helene [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Biostatistics, Amsterdam (Netherlands); Vegt, Erik [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Leeuwen, Fijs W.B. van [Leiden University Medical Hospital, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands)

    2016-07-15

    Radical prostatectomy and complementary extended pelvic lymph node dissection (ePLND) of sentinel lymph nodes (SNs) and non-sentinel lymph nodes (LNs) at risk of containing metastases are increasingly being performed using high-tech robot-assisted approaches. Although this technological evolution has clear advantages, the physical nature of robotic systems limits the integrated use of routine radioguided surgery technologies. Hence, engineering effort in robotics are focused on the integration of fluorescence guidance technologies. Using the hybrid SN tracer indocyanine green-{sup 99m}Tc-nanocolloid (radioactive and fluorescent), for the first time in combination with a robot-integrated laparoscope, we investigated whether the robot-assisted approach affects the accuracy of fluorescence detection of SNs identified preoperatively using nuclear medicine. The study included 55 patients (Briganti nomogram-based risk >5 % on LN metastases) scheduled for robot-assisted radical prostatectomy, SN biopsy and ePLND. Following indocyanine green-{sup 99m}Tc-nanocolloid injection, preoperative nuclear imaging (lymphoscintigraphy and SPECT/CT) was used to locate the SN(s). The fluorescence laparoscope was used intraoperatively to identify the SN(s) with standard fluorescence settings (in 50 patients) and with customized settings (in 5 patients). The number and location of the SNs, the radioactive, fluorescence (both in vivo and ex vivo) and tumour status of the resected SNs/LNs, and postoperative complications were recorded and analysed. Combined, preoperative lymphoscintigraphy and SPECT/CT imaging identified 212 SNs (median 4 per patient). Intraoperative fluorescence imaging using standard fluorescence settings visualized 80.4 % (148/184 SNs; 50 patients; ex vivo 97.8 %). This increased to 85.7 % (12/14 SNs; 5 patients; ex vivo 100 %) with customized fluorescence settings. SPECT/CT images provided guidance towards the residual SNs. Ex vivo all removed SNs were radioactive. SNs

  12. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery

    International Nuclear Information System (INIS)

    KleinJan, Gijs H.; Berg, Nynke S. van den; Jong, Jeroen de; Wit, Esther M.; Poel, Henk G. van der; Thygessen, Helene; Vegt, Erik; Leeuwen, Fijs W.B. van

    2016-01-01

    Radical prostatectomy and complementary extended pelvic lymph node dissection (ePLND) of sentinel lymph nodes (SNs) and non-sentinel lymph nodes (LNs) at risk of containing metastases are increasingly being performed using high-tech robot-assisted approaches. Although this technological evolution has clear advantages, the physical nature of robotic systems limits the integrated use of routine radioguided surgery technologies. Hence, engineering effort in robotics are focused on the integration of fluorescence guidance technologies. Using the hybrid SN tracer indocyanine green- 99m Tc-nanocolloid (radioactive and fluorescent), for the first time in combination with a robot-integrated laparoscope, we investigated whether the robot-assisted approach affects the accuracy of fluorescence detection of SNs identified preoperatively using nuclear medicine. The study included 55 patients (Briganti nomogram-based risk >5 % on LN metastases) scheduled for robot-assisted radical prostatectomy, SN biopsy and ePLND. Following indocyanine green- 99m Tc-nanocolloid injection, preoperative nuclear imaging (lymphoscintigraphy and SPECT/CT) was used to locate the SN(s). The fluorescence laparoscope was used intraoperatively to identify the SN(s) with standard fluorescence settings (in 50 patients) and with customized settings (in 5 patients). The number and location of the SNs, the radioactive, fluorescence (both in vivo and ex vivo) and tumour status of the resected SNs/LNs, and postoperative complications were recorded and analysed. Combined, preoperative lymphoscintigraphy and SPECT/CT imaging identified 212 SNs (median 4 per patient). Intraoperative fluorescence imaging using standard fluorescence settings visualized 80.4 % (148/184 SNs; 50 patients; ex vivo 97.8 %). This increased to 85.7 % (12/14 SNs; 5 patients; ex vivo 100 %) with customized fluorescence settings. SPECT/CT images provided guidance towards the residual SNs. Ex vivo all removed SNs were radioactive. SNs were

  13. 'Filigree Robotics'

    DEFF Research Database (Denmark)

    2016-01-01

    -scale 3D printed ceramics accompanied by prints, videos and ceramic probes, which introduce the material and design processes of the project.'Filigree Robotics' experiments with a combination of the traditional ceramic technique of ‘Overforming’ with 3d Laserscan and Robotic extrusion technique...... application of reflectivity after an initial 3d print. The consideration and integration of this material practice into a digital workflow took place in an interdisciplinary collaboration of Ceramicist Flemming Tvede Hansen from KADK Superformlab and architectural researchers from CITA (Martin Tamke, Henrik...... to the creation of the form and invites for experimentation. In Filigree Robotics we combine the crafting of the mold with a parallel running generative algorithm, which is fed by a constant laserscan of the 3d surface. This algorithm, analyses the topology of the mold, identifies high and low points and uses...

  14. Design-Oriented Enhanced Robotics Curriculum

    Science.gov (United States)

    Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.

    2013-01-01

    This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…

  15. Measurements of the parallel wavenumber of lower hybrid waves in the scrape-off layer of a high-density tokamak

    International Nuclear Information System (INIS)

    Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Wukitch, S.; Shinya, T.; Takase, Y.

    2016-01-01

    In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k || increases for the fixed launched k || , and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k || are observed in the spectrally broadened wave components, as compared to the measured k || at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k || resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.

  16. Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)

    Science.gov (United States)

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...

  17. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  18. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations.

    Science.gov (United States)

    Jung, Jaewoon; Mori, Takaharu; Kobayashi, Chigusa; Matsunaga, Yasuhiro; Yoda, Takao; Feig, Michael; Sugita, Yuji

    2015-07-01

    GENESIS (Generalized-Ensemble Simulation System) is a new software package for molecular dynamics (MD) simulations of macromolecules. It has two MD simulators, called ATDYN and SPDYN. ATDYN is parallelized based on an atomic decomposition algorithm for the simulations of all-atom force-field models as well as coarse-grained Go-like models. SPDYN is highly parallelized based on a domain decomposition scheme, allowing large-scale MD simulations on supercomputers. Hybrid schemes combining OpenMP and MPI are used in both simulators to target modern multicore computer architectures. Key advantages of GENESIS are (1) the highly parallel performance of SPDYN for very large biological systems consisting of more than one million atoms and (2) the availability of various REMD algorithms (T-REMD, REUS, multi-dimensional REMD for both all-atom and Go-like models under the NVT, NPT, NPAT, and NPγT ensembles). The former is achieved by a combination of the midpoint cell method and the efficient three-dimensional Fast Fourier Transform algorithm, where the domain decomposition space is shared in real-space and reciprocal-space calculations. Other features in SPDYN, such as avoiding concurrent memory access, reducing communication times, and usage of parallel input/output files, also contribute to the performance. We show the REMD simulation results of a mixed (POPC/DMPC) lipid bilayer as a real application using GENESIS. GENESIS is released as free software under the GPLv2 licence and can be easily modified for the development of new algorithms and molecular models. WIREs Comput Mol Sci 2015, 5:310-323. doi: 10.1002/wcms.1220.

  19. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  20. Comparisons of Energy Management Methods for a Parallel Plug-In Hybrid Electric Vehicle between the Convex Optimization and Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Renxin Xiao

    2018-01-01

    Full Text Available This paper proposes a comparison study of energy management methods for a parallel plug-in hybrid electric vehicle (PHEV. Based on detailed analysis of the vehicle driveline, quadratic convex functions are presented to describe the nonlinear relationship between engine fuel-rate and battery charging power at different vehicle speed and driveline power demand. The engine-on power threshold is estimated by the simulated annealing (SA algorithm, and the battery power command is achieved by convex optimization with target of improving fuel economy, compared with the dynamic programming (DP based method and the charging depleting–charging sustaining (CD/CS method. In addition, the proposed control methods are discussed at different initial battery state of charge (SOC values to extend the application. Simulation results validate that the proposed strategy based on convex optimization can save the fuel consumption and reduce the computation burden obviously.

  1. Dependence of synergy current driven by lower hybrid wave and electron cyclotron wave on the frequency and parallel refractive index of electron cyclotron wave for Tokamaks

    International Nuclear Information System (INIS)

    Huang, J.; Chen, S. Y.; Tang, C. J.

    2014-01-01

    The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency ω and parallel refractive index N // of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainly caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space

  2. A Chip-Capillary Hybrid Device for Automated Transfer of Sample Pre-Separated by Capillary Isoelectric Focusing to Parallel Capillary Gel Electrophoresis for Two-Dimensional Protein Separation

    Science.gov (United States)

    Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong

    2012-01-01

    In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584

  3. Energy efficiency for the multiport power converters architectures of series and parallel hybrid power source type used in plug-in/V2G fuel cell vehicles

    International Nuclear Information System (INIS)

    Bizon, Nicu

    2013-01-01

    Highlights: ► It is analyzed the series and parallel Hybrid Power Source (HPS) topology for plug-in Fuel Cell Vehicle (PFCV). ► An energy efficiency analysis of the Multiport Power Converter (MPC) of both HPSs is performed. ► The MPC energy efficiency features were shown by analytical computing in all PFCV regimes. -- Abstract: In this paper it is presented a mathematical analysis of the energy efficiency for the Multiport Power Converter (MPC) used in series and parallel Hybrid Power Source (HPS) architectures type on the plug-in Fuel Cell Vehicles (PFCVs). The aim of the analysis is to provide general conclusions for a wide range of PFCV operating regimes that are chosen for efficient use of the MPC architecture on each particular drive cycle. In relation with FC system of PFCV, the Energy Storage System (ESS) can operate in following regimes: (1) Charge-Sustaining (CS), (2) Charge-Depleting (CD), and (3) Charge-Increasing (CI). Considering the imposed window for the ESS State-Of-Charge (SOC), the MPC can be connected to renewable plug-in Charging Stations (PCSs) to exchange power with Electric Power (EP) system, when it is necessary for both. The Energy Management Unit (EMU) that communicates with the EP system will establish the moments to match the PFCV power demand with supply availability of the EP grid, stabilizing it. The MPC energy efficiency of the PFCVs is studied when the ESS is charged (discharged) from (to) the home/PCS/EP system. The comparative results were shown for both PFCV architectures through the analytical calculation performed and the appropriate Matlab/Simulink® simulations presented.

  4. Hybrid environmental robot: a tool for monitoring gas on flooded area; Robo ambiental hibrido: utilizacao como ferramenta para monitoramento de gases em areas alagadas

    Energy Technology Data Exchange (ETDEWEB)

    Goes, Emerson de; Cerqueira, Romulo Curty; Reis, Ney Robinson S. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The impoundment of rivers for power generation leads to flooding of vast areas of land vegetation. Most submerged plants, die and enter into decomposition, releasing CO2 (carbon dioxide), CH4 (methane gas) into the air for many years. Scientists from around the world seek to clarify the processes to which these gases are submitted and their contributions to the process of global warming. Estimates suggest that the re-use of methane that passes through the turbines of these power plants could increase their energy potential by 75% and reduce their emissions of these gases by 65%, reducing their impact on global warming and resulting in carbon credits. To check the feasibility of using new processes and technologies to generate energy that recycles this biogas, operations for monitoring these biogases become routine tasks. The frequency is such that the exposure of humans to the risks of gas combustion, inherent to scenarios where these operations take place, becomes unacceptable. This motivates the use of robots in this activity. This paper presents the multi-mission platform Hybrid Environmental Robot, named 'Chico Mendes', as a tool for tracking gas emission and specially designed for flooded forest areas.

  5. A Real-Time Early Cognitive Vision System based on a Hybrid coarse and fine grained Parallel Architecture

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With

    . The current top model GPUs from NVIDIA possess up to 240 homogeneous cores. In the past, GPUs have beenhard to program, forcing the programmer to map the algorithm to the graphics processing pipeline and think in terms of vertex and fragment shaders, imposing a limiting factor in the implementation of non......-graphics applications. This, however, has changed with the introduction of the Compute Unified Device Architecture (CUDA) framework from NVIDIA. The EV and ECV stages have different parallel properties. The regular, pixel-based processing of EV fit the GPU architecture very well, and parts of ECV, on the other hand...

  6. Induced superconductivity in Nb/InAs-hybrid structures in parallel and perpendicular magnetic fields; Induzierte Supraleitung in Nb/InAs-Hybridstrukturen in parallelen und senkrechten Magnetfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, Franziska

    2007-07-15

    The thesis in hand investigates experimentally Josephson contacts based on Nb/InAs-hybrid structures. The experiments discussed here were done on samples of different width of the Josephson contacts (between 500 nm and 2000 nm). They were realized by means of different methods of the semiconductor technology. The length of the Josephson contacts was about 600 nm and, as superconducting material, niobium was used. Both critical current and characteristics in the resistive regime (excess-current and multiple Andreev reflection) are studied as a function of temperature and external magnetic fields. Measurements in perpendicular and parallel magnetic fields with respect to the plain of the two-dimensional electron gas, are presented. The Andreev reflection amplitude determining the supercurrent is calculated by means of the Greens functions of the two-dimensional electron gas beneath the superconductors which is modified by the proximity effect. From the fit to the data with this model, the transparency of the boundary between the superconductor and the two-dimensional electron gas can be estimated to be about 0.1. The transparency of the point contacts in the two-dimensional electrons gas can be determined independently from the Josephson junction width dependence of the normal resistance (T=10 K). This transparency amounts to about 0.8 in the examined samples. The measurements of the critical current in a magnetic field perpendicular to the two-dimensional electron gas show a Fraunhofer pattern. In order to study the transition from perpendicular orientation into parallel orientation, measurements of the critical current as a function of the magnetic field were done for different angles. In the resistive regime, the excess current measurements in the magnetic field show a very interesting behaviour: In parallel magnetic fields, the excess current becomes zero at about 2.5 T. In perpendicular magnetic field however, the excess current is strongly suppressed below 30 m

  7. Domain decomposition method using a hybrid parallelism and a low-order acceleration for solving the Sn transport equation on unstructured geometry

    International Nuclear Information System (INIS)

    Odry, Nans

    2016-01-01

    Deterministic calculation schemes are devised to numerically solve the neutron transport equation in nuclear reactors. Dealing with core-sized problems is very challenging for computers, so much that the dedicated core calculations have no choice but to allow simplifying assumptions (assembly- then core scale steps..). The PhD work aims at overcoming some of these approximations: thanks to important changes in computer architecture and capacities (HPC), nowadays one can solve 3D core-sized problems, using both high mesh refinement and the transport operator. It is an essential step forward in order to perform, in the future, reference calculations using deterministic schemes. This work focuses on a spatial domain decomposition method (DDM). Using massive parallelism, DDM allows much more ambitious computations in terms of both memory requirements and calculation time. Developments were performed inside the Sn core solver Minaret, from the new CEA neutronics platform APOLLO3. Only fast reactors (hexagonal periodicity) are considered, even if all kinds of geometries can be dealt with, using Minaret. The work has been divided in four steps: 1) The spatial domain decomposition with no overlap is inserted into the standard algorithmic structure of Minaret. The fundamental idea involves splitting a core-sized problem into smaller, independent, spatial sub-problems. angular flux is exchanged between adjacent sub-domains. In doing so, all combined sub-problems converge to the global solution at the outcome of an iterative process. Various strategies were explored regarding both data management and algorithm design. Results (k eff and flux) are systematically compared to the reference in a numerical verification step. 2) Introducing more parallelism is an unprecedented opportunity to heighten performances of deterministic schemes. Domain decomposition is particularly suited to this. A two-layer hybrid parallelism strategy, suited to HPC, is chosen. It benefits from the

  8. Parallel feedback active noise control of MRI acoustic noise with signal decomposition using hybrid RLS-NLMS adaptive algorithms.

    Science.gov (United States)

    Ganguly, Anshuman; Krishna Vemuri, Sri Hari; Panahi, Issa

    2014-01-01

    This paper presents a cost-effective adaptive feedback Active Noise Control (FANC) method for controlling functional Magnetic Resonance Imaging (fMRI) acoustic noise by decomposing it into dominant periodic components and residual random components. Periodicity of fMRI acoustic noise is exploited by using linear prediction (LP) filtering to achieve signal decomposition. A hybrid combination of adaptive filters-Recursive Least Squares (RLS) and Normalized Least Mean Squares (NLMS) are then used to effectively control each component separately. Performance of the proposed FANC system is analyzed and Noise attenuation levels (NAL) up to 32.27 dB obtained by simulation are presented which confirm the effectiveness of the proposed FANC method.

  9. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    Science.gov (United States)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  10. Robot-Assisted Hybrid Esophagectomy Is Associated with a Shorter Length of Stay Compared to Conventional Transthoracic Esophagectomy

    DEFF Research Database (Denmark)

    Rolff, Hans C; Ambrus, Rikard B; Belmouhand, Mohammed

    2017-01-01

    Aim: To compare the peri- and postoperative data between a hybrid minimally invasive esophagectomy (HMIE) and the conventional Ivor Lewis esophagectomy. Methods: Retrospective comparison of perioperative characteristics, postoperative complications, and survival between HMIE and Ivor Lewis esopha...

  11. Shifting Control Algorithm for a Single-Axle Parallel Plug-In Hybrid Electric Bus Equipped with EMT

    Directory of Open Access Journals (Sweden)

    Yunyun Yang

    2014-01-01

    Full Text Available Combining the characteristics of motor with fast response speed, an electric-drive automated mechanical transmission (EMT is proposed as a novel type of transmission in this paper. Replacing the friction synchronization shifting of automated manual transmission (AMT in HEVs, the EMT can achieve active synchronization of speed shifting. The dynamic model of a single-axle parallel PHEV equipped with the EMT is built up, and the dynamic properties of the gearshift process are also described. In addition, the control algorithm is developed to improve the shifting quality of the PHEV equipped with the EMT in all its evaluation indexes. The key techniques of changing the driving force gradient in preshifting and shifting compensation phases as well as of predicting the meshing speed in the gear meshing phase are also proposed. Results of simulation, bench test, and real road test demonstrate that the proposed control algorithm can reduce the gearshift jerk and the power interruption time noticeably.

  12. Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery

    Science.gov (United States)

    Bandari, Naghmeh M.; Ahmadi, Roozbeh; Hooshiar, Amir; Dargahi, Javad; Packirisamy, Muthukumaran

    2017-07-01

    To compensate for the lack of touch during minimally invasive and robotic surgeries, tactile sensors are integrated with surgical instruments. Surgical tools with tactile sensors have been used mainly for distinguishing among different tissues and detecting malignant tissues or tumors. Studies have revealed that malignant tissue is most likely stiffer than normal. This would lead to the formation of a sharp discontinuity in tissue mechanical properties. A hybrid piezoresistive-optical-fiber sensor is proposed. This sensor is investigated for its capabilities in tissue distinction and detection of a sharp discontinuity. The dynamic interaction of the sensor and tissue is studied using finite element method. The tissue is modeled as a two-term Mooney-Rivlin hyperelastic material. For experimental verification, the sensor was microfabricated and tested under the same conditions as of the simulations. The simulation and experimental results are in a fair agreement. The sensor exhibits an acceptable linearity, repeatability, and sensitivity in characterizing the stiffness of different tissue phantoms. Also, it is capable of locating the position of a sharp discontinuity in the tissue. Due to the simplicity of its sensing principle, the proposed hybrid sensor could also be used for industrial applications.

  13. The Development of a Hybrid-Type Radiation Detector with SiC for a Reactor Robot

    International Nuclear Information System (INIS)

    Lee, Nam Ho; Cho, Jai Wan; Kim, Seung Ho

    2005-01-01

    For a robot working in a harsh environment such as a nuclear reactor environment or a space environment, requirements of on-board radiation detectors are not the same as those for environments around human. SiC devices with the wide band-gap are less dependent on temperature than Si counterparts and the can be the better candidate for the high radiation environment. With this background, radiation performance of a commercial SiC detector in a Co-60 gamma-ray environment has been evaluated. In addition to the SiC detector, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) detector has been incorporated as a backup. With this MOSFET sensor the dosimeter can keep its radiation exposure history even with loss of power. It is not only a redundant feature but also a diverse feature. The dosimetry module can be attached to mobile robot for high radiation environment was developed. This module has both SiC diode and pMOSFET mentioned above. The monitoring program which receives the radiation information from them and gives out the alarm signal when the difference of the two values from them is over the preset level was constructed. Because both the SiC pulse-type detector and the MOSFET dosimeter are small and light weight, they can be easily accommodated on a small printcircuit board for a tight space on a robot arm or for a small spacecraft

  14. Parallel computation

    International Nuclear Information System (INIS)

    Jejcic, A.; Maillard, J.; Maurel, G.; Silva, J.; Wolff-Bacha, F.

    1997-01-01

    The work in the field of parallel processing has developed as research activities using several numerical Monte Carlo simulations related to basic or applied current problems of nuclear and particle physics. For the applications utilizing the GEANT code development or improvement works were done on parts simulating low energy physical phenomena like radiation, transport and interaction. The problem of actinide burning by means of accelerators was approached using a simulation with the GEANT code. A program of neutron tracking in the range of low energies up to the thermal region has been developed. It is coupled to the GEANT code and permits in a single pass the simulation of a hybrid reactor core receiving a proton burst. Other works in this field refers to simulations for nuclear medicine applications like, for instance, development of biological probes, evaluation and characterization of the gamma cameras (collimators, crystal thickness) as well as the method for dosimetric calculations. Particularly, these calculations are suited for a geometrical parallelization approach especially adapted to parallel machines of the TN310 type. Other works mentioned in the same field refer to simulation of the electron channelling in crystals and simulation of the beam-beam interaction effect in colliders. The GEANT code was also used to simulate the operation of germanium detectors designed for natural and artificial radioactivity monitoring of environment

  15. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  16. Mechanical design of a free-wheel clutch for the thermal engine of a parallel hybrid vehicle with thermal and electrical power-train; Conception mecanique d'un accouplement a roue libre pour le moteur thermique d'un vehicule hybride parallele thermique et electrique

    Energy Technology Data Exchange (ETDEWEB)

    Santin, J.J.

    2001-07-01

    This thesis deals with the design of a free-wheel clutch. This unit is intended to replace the automated dry single-plate clutch of a parallel hybrid car with thermal and electric power-train. Furthermore, the car is a single shaft zero emission vehicle fitted with a controlled gearbox. Chapter one focuses on the type of hybrid vehicle studied. It shows the need to isolate the engine from the rest of the drive train, depending on the driving conditions. Chapter two presents and compares the two alternatives: automated clutch and free-wheel. In order to develop the free-wheel option, the torsional vibrations in the automotive drive line had to be closely studied. It required the design of a specific modular tool, as presented in chapter three, with the help of MATLAB SIMULINK. Lastly, chapter four shows how this tool was used during the design stage and specifies the way to build it. The free-wheel is then to be fitted to a prototype hybrid vehicle, constructed by both the LAMIH and PSA. (author)

  17. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  18. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree-Fock exchange

    International Nuclear Information System (INIS)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas; Becker, Ute

    2009-01-01

    In this paper, the possibility is explored to speed up Hartree-Fock and hybrid density functional calculations by forming the Coulomb and exchange parts of the Fock matrix by different approximations. For the Coulomb part the previously introduced Split-RI-J variant (F. Neese, J. Comput. Chem. 24 (2003) 1740) of the well-known 'density fitting' approximation is used. The exchange part is formed by semi-numerical integration techniques that are closely related to Friesner's pioneering pseudo-spectral approach. Our potentially linear scaling realization of this algorithm is called the 'chain-of-spheres exchange' (COSX). A combination of semi-numerical integration and density fitting is also proposed. Both Split-RI-J and COSX scale very well with the highest angular momentum in the basis sets. It is shown that for extended basis sets speed-ups of up to two orders of magnitude compared to traditional implementations can be obtained in this way. Total energies are reproduced with an average error of <0.3 kcal/mol as determined from extended test calculations with various basis sets on a set of 26 molecules with 20-200 atoms and up to 2000 basis functions. Reaction energies agree to within 0.2 kcal/mol (Hartree-Fock) or 0.05 kcal/mol (hybrid DFT) with the canonical values. The COSX algorithm parallelizes with a speedup of 8.6 observed for 10 processes. Minimum energy geometries differ by less than 0.3 pm in the bond distances and 0.5 deg. in the bond angels from their canonical values. These developments enable highly efficient and accurate self-consistent field calculations including nonlocal Hartree-Fock exchange for large molecules. In combination with the RI-MP2 method and large basis sets, second-order many body perturbation energies can be obtained for medium sized molecules with unprecedented efficiency. The algorithms are implemented into the ORCA electronic structure system

  19. Geometrical (Degree 0 Modelling of a FP3+3×RTR+MP3 Type Parallel Topology Robotic Guiding Device, Using the „Pair of Frames” (PF Concept

    Directory of Open Access Journals (Sweden)

    Calin Miclosina

    2005-01-01

    Full Text Available The geometrical (degree 0 model of a parallel topology robotic guiding device represents the position-orientation matrix of the mobile platform (MP versus the fixed one (FP; this model refers to generalized displacements. The kinematical scheme of a FP3+3×RTR+MP3 type mechanism is presented, as well as the manner of choice of the attached pair of frames (PF to the links. In the case of direct geometrical modelling, for certain displacements of the actuated translational joints, the position-orientation matrix of the mobile platform versus the fixed one is determined. For inverse geometrical modelling, the position-orientation matrix of MP versus FP is known and the displacements of the actuated translational joints are determined.

  20. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  1. Robot engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  2. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    Science.gov (United States)

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  3. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array−Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2017-06-01

    Full Text Available With the development of satellite load technology and very large scale integrated (VLSI circuit technology, onboard real-time synthetic aperture radar (SAR imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT, which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array−application-specific integrated circuit (FPGA-ASIC hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  4. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  5. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  6. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  7. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  8. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  9. Parallel manipulators with two end-effectors : Getting a grip on Jacobian-based stiffness analysis

    NARCIS (Netherlands)

    Hoevenaars, A.G.L.

    2016-01-01

    Robots that are developed for applications which require a high stiffness-over-inertia ratio, such as pick-and-place robots, machining robots, or haptic devices, are often based on parallel manipulators. Parallel manipulators connect an end-effector to an inertial base using multiple serial

  10. Intelligent robotic tracker

    Science.gov (United States)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  11. The universal robot

    Science.gov (United States)

    Moravec, Hans

    1993-12-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  12. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  13. Healthcare Robotics

    OpenAIRE

    Riek, Laurel D.

    2017-01-01

    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key sta...

  14. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  15. Parallel rendering

    Science.gov (United States)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  16. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy’s performance on different robot configurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  17. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy?s performance on different robot con?gurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  18. Parallel computations

    CERN Document Server

    1982-01-01

    Parallel Computations focuses on parallel computation, with emphasis on algorithms used in a variety of numerical and physical applications and for many different types of parallel computers. Topics covered range from vectorization of fast Fourier transforms (FFTs) and of the incomplete Cholesky conjugate gradient (ICCG) algorithm on the Cray-1 to calculation of table lookups and piecewise functions. Single tridiagonal linear systems and vectorized computation of reactive flow are also discussed.Comprised of 13 chapters, this volume begins by classifying parallel computers and describing techn

  19. Framework to Implement Collaborative Robots in Manual Assembly: A Lean Automation Approach

    DEFF Research Database (Denmark)

    Malik, Ali Ahmad; Bilberg, Arne

    The recent proliferation of smart manufacturing technologies has emerged the concept of hybrid automation for assembly systems utilizing the best of humans and robots in a combination. Based on the ability to work alongside human-workers the next generation of industrial robots (or robotics 2...... of virtual simulations is discussed for validation and optimization of human-robot work environment....

  20. ParaHaplo 3.0: A program package for imputation and a haplotype-based whole-genome association study using hybrid parallel computing

    Directory of Open Access Journals (Sweden)

    Kamatani Naoyuki

    2011-05-01

    Full Text Available Abstract Background Use of missing genotype imputations and haplotype reconstructions are valuable in genome-wide association studies (GWASs. By modeling the patterns of linkage disequilibrium in a reference panel, genotypes not directly measured in the study samples can be imputed and used for GWASs. Since millions of single nucleotide polymorphisms need to be imputed in a GWAS, faster methods for genotype imputation and haplotype reconstruction are required. Results We developed a program package for parallel computation of genotype imputation and haplotype reconstruction. Our program package, ParaHaplo 3.0, is intended for use in workstation clusters using the Intel Message Passing Interface. We compared the performance of ParaHaplo 3.0 on the Japanese in Tokyo, Japan and Han Chinese in Beijing, and Chinese in the HapMap dataset. A parallel version of ParaHaplo 3.0 can conduct genotype imputation 20 times faster than a non-parallel version of ParaHaplo. Conclusions ParaHaplo 3.0 is an invaluable tool for conducting haplotype-based GWASs. The need for faster genotype imputation and haplotype reconstruction using parallel computing will become increasingly important as the data sizes of such projects continue to increase. ParaHaplo executable binaries and program sources are available at http://en.sourceforge.jp/projects/parallelgwas/releases/.

  1. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  2. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  3. Robotics education

    International Nuclear Information System (INIS)

    Benton, O.

    1984-01-01

    Robotics education courses are rapidly spreading throughout the nation's colleges and universities. Engineering schools are offering robotics courses as part of their mechanical or manufacturing engineering degree program. Two year colleges are developing an Associate Degree in robotics. In addition to regular courses, colleges are offering seminars in robotics and related fields. These seminars draw excellent participation at costs running up to $200 per day for each participant. The last one drew 275 people from Texas to Virginia. Seminars are also offered by trade associations, private consulting firms, and robot vendors. IBM, for example, has the Robotic Assembly Institute in Boca Raton and charges about $1,000 per week for course. This is basically for owners of IBM robots. Education (and training) can be as short as one day or as long as two years. Here is the educational pattern that is developing now

  4. A Modular Approach for a Family of Ground Mobile Robots

    Directory of Open Access Journals (Sweden)

    Giuseppe Quaglia

    2013-07-01

    Full Text Available This paper deals with Epi.q, a family of mobile robots whose main characteristic is a wheel-legged hybrid locomotion. These multi-purpose robots can be successfully exploited for security and surveillance tasks. The document presents state of the art security robotics, the Epi.q mechanical architecture, the concept behind the robot driving unit, three prototypes and the design of a new one.

  5. Biological Immune System Applications on Mobile Robot for Disabled People

    Directory of Open Access Journals (Sweden)

    Songmin Jia

    2014-01-01

    Full Text Available To improve the service quality of service robots for the disabled, immune system is applied on robot for its advantages such as diversity, dynamic, parallel management, self-organization, and self-adaptation. According to the immune system theory, local environment condition sensed by robot is considered an antigen while robot is regarded as B-cell and possible node as antibody, respectively. Antibody-antigen affinity is employed to choose the optimal possible node to ensure the service robot can pass through the optimal path. The paper details the immune system applications on service robot and gives experimental results.

  6. Parallel kinematics type, kinematics, and optimal design

    CERN Document Server

    Liu, Xin-Jun

    2014-01-01

    Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others.   This book is intended for researchers, scientists, engineers and postgraduates or above with interes...

  7. Parallel algorithms

    CERN Document Server

    Casanova, Henri; Robert, Yves

    2008-01-01

    ""…The authors of the present book, who have extensive credentials in both research and instruction in the area of parallelism, present a sound, principled treatment of parallel algorithms. … This book is very well written and extremely well designed from an instructional point of view. … The authors have created an instructive and fascinating text. The book will serve researchers as well as instructors who need a solid, readable text for a course on parallelism in computing. Indeed, for anyone who wants an understandable text from which to acquire a current, rigorous, and broad vi

  8. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically

  9. A hybrid damping method for LLCL-filter based grid-tied inverter with a digital filter and an RC parallel passive damper

    DEFF Research Database (Denmark)

    Wu, Weimin; Lin, Zhe; Sun, Yunjie

    2013-01-01

    Grid-tied inverters have been widely used to inject the renewable energies into the distributed power generation systems. However, a large variation of the grid impedance challenges the stability of the high-order power filter based grid-tied inverter. Many passive and active damping methods have...... been proposed to overcome this issue. Recently, a composite passive damping method for a high-order power filter based grid-tied inverter with an RC parallel damper and an RL series damper was presented to eliminate this problem, but at the cost of more material and power losses. In this paper...

  10. Global Optimal Energy Management Strategy Research for a Plug-In Series-Parallel Hybrid Electric Bus by Using Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2013-01-01

    Full Text Available Energy management strategy influences the power performance and fuel economy of plug-in hybrid electric vehicles greatly. To explore the fuel-saving potential of a plug-in hybrid electric bus (PHEB, this paper searched the global optimal energy management strategy using dynamic programming (DP algorithm. Firstly, the simplified backward model of the PHEB was built which is necessary for DP algorithm. Then the torque and speed of engine and the torque of motor were selected as the control variables, and the battery state of charge (SOC was selected as the state variables. The DP solution procedure was listed, and the way was presented to find all possible control variables at every state of each stage in detail. Finally, the appropriate SOC increment is determined after quantizing the state variables, and then the optimal control of long driving distance of a specific driving cycle is replaced with the optimal control of one driving cycle, which reduces the computational time significantly and keeps the precision at the same time. The simulation results show that the fuel economy of the PEHB with the optimal energy management strategy is improved by 53.7% compared with that of the conventional bus, which can be a benchmark for the assessment of other control strategies.

  11. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    Science.gov (United States)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  12. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-resolution multi-code implementation of unsteady Navier-Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemes

    Science.gov (United States)

    Li, Gaohua; Fu, Xiang; Wang, Fuxin

    2017-10-01

    The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.

  14. Motion and operation planning of robotic systems background and practical approaches

    CERN Document Server

    Gomez-Barvo, Fernando

    2015-01-01

    This book addresses the broad multi-disciplinary topic of robotics, and presents the basic techniques for motion and operation planning in robotics systems. Gathering contributions from experts in diverse and wide ranging fields, it offers an overview of the most recent and cutting-edge practical applications of these methodologies. It covers both theoretical and practical approaches, and elucidates the transition from theory to implementation. An extensive analysis is provided, including humanoids, manipulators, aerial robots and ground mobile robots. ‘Motion and Operation Planning of Robotic Systems’ addresses the following topics: *The theoretical background of robotics. *Application of motion planning techniques to manipulators, such as serial and parallel manipulators. *Mobile robots planning, including robotic applications related to aerial robots, large scale robots and traditional wheeled robots. *Motion planning for humanoid robots. An invaluable reference text for graduate students and researche...

  15. Robotics 101

    Science.gov (United States)

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  16. Vitruvian Robot

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2017-01-01

    future. A real version of Ava would not last long in a human world because she is basically a solipsist, who does not really care about humans. She cannot co-create the line humans walk along. The robots created as ‘perfect women’ (sex robots) today are very far from the ideal image of Ava...

  17. Parallel Sparse Matrix - Vector Product

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd

    This technical report contains a case study of a sparse matrix-vector product routine, implemented for parallel execution on a compute cluster with both pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data types were developed and the report shows how these class can be used...

  18. Robot Teachers

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Ess, Charles Melvin; Bhroin, Niamh Ni

    The world's first robot teacher, Saya, was introduced to a classroom in Japan in 2009. Saya, had the appearance of a young female teacher. She could express six basic emotions, take the register and shout orders like 'be quiet' (The Guardian, 2009). Since 2009, humanoid robot technologies have...... developed. It is now suggested that robot teachers may become regular features in educational settings, and may even 'take over' from human teachers in ten to fifteen years (cf. Amundsen, 2017 online; Gohd, 2017 online). Designed to look and act like a particular kind of human; robot teachers mediate human...... existence and roles, while also aiming to support education through sophisticated, automated, human-like interaction. Our paper explores the design and existential implications of ARTIE, a robot teacher at Oxford Brookes University (2017, online). Drawing on an initial empirical exploration we propose...

  19. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  20. Social Robots

    DEFF Research Database (Denmark)

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us as indiv......Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...

  1. Robotic seeding

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  2. Micro intelligence robot

    International Nuclear Information System (INIS)

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  3. An Intelligent Robot Programing

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  4. An Intelligent Robot Programing

    International Nuclear Information System (INIS)

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  5. Parallel hierarchical global illumination

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  6. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  7. The hybrid assisted limb (HAL) for Care Support, a motion assisting robot providing exoskeletal lumbar support, can potentially reduce lumbar load in repetitive snow-shoveling movements.

    Science.gov (United States)

    Miura, Kousei; Kadone, Hideki; Koda, Masao; Abe, Tetsuya; Endo, Hirooki; Murakami, Hideki; Doita, Minoru; Kumagai, Hiroshi; Nagashima, Katsuya; Fujii, Kengo; Noguchi, Hiroshi; Funayama, Toru; Kawamoto, Hiroaki; Sankai, Yoshiyuki; Yamazaki, Masashi

    2018-03-01

    An excessive lumbar load with snow-shoveling is a serious problem in snowfall areas. Various exoskeletal robots have been developed to reduce lumbar load in lifting work. However, few studies have reported the attempt of snow-shoveling work using exoskeletal robots. The purpose of the present study was to test the hypothesis that the HAL for Care Support robot would reduce lumbar load in repetitive snow-shoveling movements. Nine healthy male volunteers performed repetitive snow-shoveling movements outdoors in a snowfall area for as long as possible until they were fatigued. The snow-shoveling trial was performed under two conditions: with and without HAL for Care Support. Outcome measures were defined as the lumbar load assessed by the VAS of lumbar fatigue after the snow-shoveling trial and the snow-shoveling performance, including the number of scoops, and snow shoveling time and distance. The mean of VAS of lumbar fatigue, the number of scoops, and snow-shoveling time and distance without HAL for Care Support were 75.4 mm, 50.3, 145 s, and 9.6 m, while with HAL for Care Support were 39.8 mm, 144, 366 s, and 35.4 m. The reduction of lumbar fatigue and improvement of snow-shoveling performance using HAL for Care Support were statistically significant. There was no adverse event during snow-shoveling with HAL for Care Support. In conclusion, the HAL for Care Support can reduce lumbar load in repetitive snow-shoveling movements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart.

    Science.gov (United States)

    Angstadt, Andrea Y; Motsinger-Reif, Alison; Thomas, Rachael; Kisseberth, William C; Guillermo Couto, C; Duval, Dawn L; Nielsen, Dahlia M; Modiano, Jaime F; Breen, Matthew

    2011-11-01

    Osteosarcoma (OS) is the most commonly diagnosed malignant bone tumor in humans and dogs, characterized in both species by extremely complex karyotypes exhibiting high frequencies of genomic imbalance. Evaluation of genomic signatures in human OS using array comparative genomic hybridization (aCGH) has assisted in uncovering genetic mechanisms that result in disease phenotype. Previous low-resolution (10-20 Mb) aCGH analysis of canine OS identified a wide range of recurrent DNA copy number aberrations, indicating extensive genomic instability. In this study, we profiled 123 canine OS tumors by 1 Mb-resolution aCGH to generate a dataset for direct comparison with current data for human OS, concluding that several high frequency aberrations in canine and human OS are orthologous. To ensure complete coverage of gene annotation, we identified the human refseq genes that map to these orthologous aberrant dog regions and found several candidate genes warranting evaluation for OS involvement. Specifically, subsequenct FISH and qRT-PCR analysis of RUNX2, TUSC3, and PTEN indicated that expression levels correlated with genomic copy number status, showcasing RUNX2 as an OS associated gene and TUSC3 as a possible tumor suppressor candidate. Together these data demonstrate the ability of genomic comparative oncology to identify genetic abberations which may be important for OS progression. Large scale screening of genomic imbalance in canine OS further validates the use of the dog as a suitable model for human cancers, supporting the idea that dysregulation discovered in canine cancers will provide an avenue for complementary study in human counterparts. Copyright © 2011 Wiley-Liss, Inc.

  9. A hybrid genetic linkage map of two ecologically and morphologically divergent Midas cichlid fishes (Amphilophus spp.) obtained by massively parallel DNA sequencing (ddRADSeq).

    Science.gov (United States)

    Recknagel, Hans; Elmer, Kathryn R; Meyer, Axel

    2013-01-01

    Cichlid fishes are an excellent model system for studying speciation and the formation of adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Most research has focused on African rift lake fishes, although Neotropical cichlid species display much variability as well. Almost one dozen species of the Midas cichlid species complex (Amphilophus spp.) have been described so far and have formed repeated adaptive radiations in several Nicaraguan crater lakes. Here we apply double-digest restriction-site associated DNA sequencing to obtain a high-density linkage map of an interspecific cross between the benthic Amphilophus astorquii and the limnetic Amphilophus zaliosus, which are sympatric species endemic to Crater Lake Apoyo, Nicaragua. A total of 755 RAD markers were genotyped in 343 F(2) hybrids. The map resolved 25 linkage groups and spans a total distance of 1427 cM with an average marker spacing distance of 1.95 cM, almost matching the total number of chromosomes (n = 24) in these species. Regions of segregation distortion were identified in five linkage groups. Based on the pedigree of parents to F(2) offspring, we calculated a genome-wide mutation rate of 6.6 × 10(-8) mutations per nucleotide per generation. This genetic map will facilitate the mapping of ecomorphologically relevant adaptive traits in the repeated phenotypes that evolved within the Midas cichlid lineage and, as the first linkage map of a Neotropical cichlid, facilitate comparative genomic analyses between African cichlids, Neotropical cichlids and other teleost fishes.

  10. Human-robot interaction strategies for walker-assisted locomotion

    CERN Document Server

    Cifuentes, Carlos A

    2016-01-01

    This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed. .

  11. Parallel Processing and Applied Mathematics. 10th International Conference, PPAM 2013. Revised Selected Papers

    DEFF Research Database (Denmark)

    The following topics are dealt with: parallel scientific computing; numerical algorithms; parallel nonnumerical algorithms; cloud computing; evolutionary computing; metaheuristics; applied mathematics; GPU computing; multicore systems; hybrid architectures; hierarchical parallelism; HPC systems......; power monitoring; energy monitoring; and distributed computing....

  12. Latest Advances in Robot Kinematics

    CERN Document Server

    Husty, Manfred

    2012-01-01

    This book is  of interest to researchers inquiring about modern topics and methods in the kinematics, control and design of robotic manipulators. It considers the full range of robotic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. In addition to recognized areas, this book also presents recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, and the analysis, modeling and simulation of human body motions, as well as the mobility analysis of protein molecules and the development of machines which incorporate man.

  13. A concept of distributed architecture for maintenance robot systems

    International Nuclear Information System (INIS)

    Asama, Hajime

    1990-01-01

    Aiming at development of a robot system for maintenance tasks in nuclear power plants, a concept of distributed architecture for autonomous robot systems is discussed. At first, based on investigation of maintenance tasks, requirements for maintenance robots are introduced, and structures to realize multi-functions are discussed. Then, as a new design strategy of maintenance robot system, an autonomous and decentralized robot systems is proposed, which is composed of multiple robots, computers, and equipments, and concept of ACTRESS (ACTor-based Robots and Equipments Synthetic System) including communication framework between robotic components is designed. Finally, as a model of ACTRESS, a experimental system is developed, which deals with object-pushing tasks by two micromice and an environment modeler with communicating with each other. Both of parallel independent motion and cooperative motion based on communication is reconciled, and the efficiency of the distributed architecture is verified. (author)

  14. Space Robotics Challenge

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Robotics Challenge seeks to infuse robot autonomy from the best and brightest research groups in the robotics community into NASA robots for future...

  15. Robotic arm

    International Nuclear Information System (INIS)

    Kwech, H.

    1989-01-01

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs

  16. Robotic surgery

    Science.gov (United States)

    ... with this type of surgery give it some advantages over standard endoscopic techniques. The surgeon can make ... Elsevier Saunders; 2015:chap 87. Muller CL, Fried GM. Emerging technology in surgery: Informatics, electronics, robotics. In: ...

  17. Robotic parathyroidectomy.

    Science.gov (United States)

    Okoh, Alexis Kofi; Sound, Sara; Berber, Eren

    2015-09-01

    Robotic parathyroidectomy has recently been described. Although the procedure eliminates the neck scar, it is technically more demanding than the conventional approaches. This report is a review of the patients' selection criteria, technique, and outcomes. © 2015 Wiley Periodicals, Inc.

  18. Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Light Robotics - Structure-Mediated Nanobiophotonics covers the latest means of sculpting of both light and matter for achieving bioprobing and manipulation at the smallest scales. The synergy between photonics, nanotechnology and biotechnology spans the rapidly growing field of nanobiophotonics...

  19. Robotic arm

    Science.gov (United States)

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  20. Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery

    Directory of Open Access Journals (Sweden)

    R. Beira

    2011-01-01

    Full Text Available The large volume and reduced dexterity of current surgical robotic systems are factors that restrict their effective performance. To improve the usefulness of surgical robots in minimally invasive surgery (MIS, a compact and accurate positioning mechanism, named Dionis, is proposed in this paper. This spatial hybrid mechanism based on a novel parallel kinematics is able to provide three rotations and one translation for single port procedures. The corresponding axes intersect at a remote center of rotation (RCM that is the MIS entry port. Another important feature of the proposed positioning manipulator is that it can be placed below the operating table plane, allowing a quick and direct access to the patient, without removing the robotic system. This, besides saving precious space in the operating room, may improve safety over existing solutions. The conceptual design of Dionis is presented in this paper. Solutions for the inverse and direct kinematics are developed, as well as the analytical workspace and singularity analysis. Due to its unique design and kinematics, the proposed mechanism is highly compact, stiff and its dexterity fullfils the workspace specifications for MIS procedures.

  1. Simulated Energy Usage for a Novel 6 DOF Articulated Robot

    International Nuclear Information System (INIS)

    Shaik, A A; Tlale, N; Bright, G

    2014-01-01

    The serial robot architecture is widespread in modern day manufacturing, and over the last few decades the technology has matured and settled to its current state. One drawback from the architecture however is the location of motors and gearboxes which are either at the joint it controls or close by. A novel hybrid 6 DOF robot was designed to move all the actuators to the robot base, and to control the desired axis through a set of connected links and gears, while maintaining the same workspace and dexterity. This would reduce the inertia of the movable part of the robot and some of the moment arms on the 3 axes required for translation of the 3 DOF spherical wrist. Doing so would decrease the energy requirements when compared to a 6 DOF serial robot. This paper focuses on the mathematical modelling and simulation of the novel hybrid machine design and compares it to an equivalent serial robot

  2. Recent advances in robotics

    International Nuclear Information System (INIS)

    Beni, G.; Hackwood, S.

    1984-01-01

    Featuring 10 contributions, this volume offers a state-of-the-art report on robotic science and technology. It covers robots in modern industry, robotic control to help the disabled, kinematics and dynamics, six-legged walking robots, a vector analysis of robot manipulators, tactile sensing in robots, and more

  3. Hybrid quadrupole-orbitrap mass spectrometry analysis with accurate-mass database and parallel reaction monitoring for high-throughput screening and quantification of multi-xenobiotics in honey.

    Science.gov (United States)

    Li, Yi; Zhang, Jinzhen; Jin, Yue; Wang, Lin; Zhao, Wen; Zhang, Wenwen; Zhai, Lifei; Zhang, Yaping; Zhang, Yongxin; Zhou, Jinhui

    2016-01-15

    This study reports a rapid, automated screening and quantification method for the determination of multi-xenobiotic residues in honey using ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap) with a user-built accurate-mass database plus parallel reaction monitoring (PRM). The database contains multi-xenobiotic information including formulas, adduct types, theoretical exact mass and retention time, characteristic fragment ions, ion ratios, and mass accuracies. A simple sample preparation method was developed to reduce xenobiotic loss in the honey samples. The screening method was validated based on retention time deviation, mass accuracy via full scan-data-dependent MS/MS (full scan-ddMS2), multi-isotope ratio, characteristic ion ratio, sensitivity, and positive/negative switching performance between the spiked sample and corresponding standard solution. The quantification method based on the PRM mode is a promising new quantitative tool which we validated in terms of selectivity, linearity, recovery (accuracy), repeatability (precision), decision limit (CCα), detection capability (CCβ), matrix effects, and carry-over. The optimized methods proposed in this study enable the automated screening and quantification of 157 compounds in less than 15 min in honey. The results of this study, as they represent a convenient protocol for large-scale screening and quantification, also provide a research approach for analysis of various contaminants in other matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Parallel R

    CERN Document Server

    McCallum, Ethan

    2011-01-01

    It's tough to argue with R as a high-quality, cross-platform, open source statistical software product-unless you're in the business of crunching Big Data. This concise book introduces you to several strategies for using R to analyze large datasets. You'll learn the basics of Snow, Multicore, Parallel, and some Hadoop-related tools, including how to find them, how to use them, when they work well, and when they don't. With these packages, you can overcome R's single-threaded nature by spreading work across multiple CPUs, or offloading work to multiple machines to address R's memory barrier.

  5. The Hybrid Ethical Reasoning Agent IMMANUEL

    DEFF Research Database (Denmark)

    Bentzen, Martin Mose; Linder, Felix

    We introduce a novel software library that supportsthe implementation of hybrid ethical reasoning agents (HERA).The objective is to make moral principles available to robotprogramming. At its current stage, HERA can assess the moralpermissibility of actions using the principle of double effect......, andit can make utilitarian judgments.We present the prototype robotIMMANUEL based on HERA. The robot will be used to conductresearch on joint moral reasoning in human-robot interaction....

  6. An Aerial Robot for Rice Farm Quality Inspection With Type-2 Fuzzy Neural Networks Tuned by Particle Swarm Optimization-Sliding Mode Control Hybrid Algorithm

    DEFF Research Database (Denmark)

    Camci, Efe; Kripalan, Devesh Raju; Ma, Linlu

    2017-01-01

    , an autonomous quality inspection over rice farms is proposed by employing quadcopters. Real-time control of these vehicles, however, is still challenging as they exhibit highly nonlinear behavior especially for agile maneuvers. What is more, these vehicles have to operate under uncertain working conditions...... particle swarm optimization-sliding mode control (PSO-SMC) theory-based hybrid algorithm is proposed for the training of T2-FNNs. In particular, continuous version of PSO is adopted for the identification of the antecedent part of T2-FNNs while SMCbased update rules are utilized for online learning...

  7. Safe human-robot cooperation in an industrial environment

    OpenAIRE

    Pedrocchi N.; Vicentini F.; Matteo M.; Tosatti L.M.

    2013-01-01

    The standard EN ISO10218 is fostering the implementation of hybrid production systems, i.e., production systems characterized by a close relationship among human operators and robots in cooperative tasks. Human‐robot hybrid systems could have a big economic benefit in small and medium sized production, even if this new paradigm introduces mandatory, challenging safety aspects. Among various requirements for collaborative workspaces, safety‐assurance involves two different application layers; ...

  8. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    Hand-coding locomotion controllers for modular robots is difficult due to their polymorphic nature. Instead, we propose to use a simple and distributed reinforcement learning strategy. ATRON modules with identical controllers can be assembled in any configuration. To optimize the robot’s locomotion...... speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy’s performance on different robot configurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  9. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  10. Rehabilitation robotics.

    Science.gov (United States)

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Medical robotics.

    Science.gov (United States)

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  12. Parallel Lines

    Directory of Open Access Journals (Sweden)

    James G. Worner

    2017-05-01

    Full Text Available James Worner is an Australian-based writer and scholar currently pursuing a PhD at the University of Technology Sydney. His research seeks to expose masculinities lost in the shadow of Australia’s Anzac hegemony while exploring new opportunities for contemporary historiography. He is the recipient of the Doctoral Scholarship in Historical Consciousness at the university’s Australian Centre of Public History and will be hosted by the University of Bologna during 2017 on a doctoral research writing scholarship.   ‘Parallel Lines’ is one of a collection of stories, The Shapes of Us, exploring liminal spaces of modern life: class, gender, sexuality, race, religion and education. It looks at lives, like lines, that do not meet but which travel in proximity, simultaneously attracted and repelled. James’ short stories have been published in various journals and anthologies.

  13. Generic robot architecture

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  14. Bio-robots automatic navigation with electrical reward stimulation.

    Science.gov (United States)

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  15. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  16. Intelligent robots for nuclear power plant inspection and surveillance

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo; Suzuki, Kazumi; Fujie, Hideo; Fujii, Masaaki; Asai, Takashi; Sugimoto, Hiroshi.

    1986-01-01

    Recently, the research and development of robotizing the patrol and works in nuclear power plants have been actively carried out since the TMI-2 accident in March, 1979. In this paper, among these robots, six examples of the movable robots, of which the working and movement were intellectualized by using information processing techniques and others, are reported, and their intellectualization is concretely discussed. In Japan, the development of the supporting system for nuclear power generation was carried out for five years from fiscal year 1980 as the project subsidized by the Ministry of International Trade and Industry, and during this period, the inspection robots for LWR plants were developed. The development of the robots for ultimate working as the large scale project of the Agency of Industrial Science and Technology aiming at further heightening the function is in progress as the eight-year project from fiscal year 1983. Monorail type automatic surveillance robots, system maintenance robots 'AMOOTY', variable crawler type intelligent movable robots, hybrid running type intelligent movable robots, monorail running type small checkup robots, and floor running type checkup and light work robots are reported. Sense information processing control and a robot language processor for expanding the function of autonomous control are outlined. (Kako, I.)

  17. Medical robotics

    CERN Document Server

    Troccaz, Jocelyne

    2013-01-01

    In this book, we present medical robotics, its evolution over the last 30 years in terms of architecture, design and control, and the main scientific and clinical contributions to the field. For more than two decades, robots have been part of hospitals and have progressively become a common tool for the clinician. Because this domain has now reached a certain level of maturity it seems important and useful to provide a state of the scientific, technological and clinical achievements and still open issues. This book describes the short history of the domain, its specificity and constraints, and

  18. Service Robots

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Nielsen, Jeppe Agger; Andersen, Kim Normann

    The position presented in this paper is that in order to understand how service robots shape, and are being shaped by, the physical and social contexts in which they are used, we need to consider both work/organizational analysis and interaction design. We illustrate this with qualitative data...... and personal experiences to generate discussion about how to link these two traditions. This paper presents selected results from a case study that investigated the implementation and use of robot vacuum cleaners in Danish eldercare. The study demonstrates interpretive flexibility with variation...

  19. Robot Choreography

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Heath, Damith

    2016-01-01

    We propose a robust framework for combining performance paradigms with human robot interaction (HRI) research. Following an analysis of several case studies that combine the performing arts with HRI experiments, we propose a methodology and “best practices” for implementing choreography and other...... performance paradigms in HRI experiments. Case studies include experiments conducted in laboratory settings, “in the wild”, and live performance settings. We consider the technical and artistic challenges of designing and staging robots alongside humans in these various settings, and discuss how to combine...

  20. Serendipitous Offline Learning in a Neuromorphic Robot

    Directory of Open Access Journals (Sweden)

    Terrence C Stewart

    2016-02-01

    Full Text Available We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviours. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviours. All sensor data is provided via a spike-based silicon retina camera (eDVS, and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker. Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where he robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behaviour.

  1. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  2. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

    KAUST Repository

    Neumann, Philipp

    2012-06-01

    We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.

  3. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  4. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  5. A Soft Parallel Kinematic Mechanism.

    Science.gov (United States)

    White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca

    2018-02-01

    In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.

  6. Robotic Surgery

    Science.gov (United States)

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  7. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  8. Optimization and design of a laser-cutting machine using delta robot

    OpenAIRE

    Moharana, B.; Gupta, Rakesh; Kushwaha, Bashishth Kumar

    2014-01-01

    Industrial high speed laser operations the use of delta parallel robots potentially offers many benefits due to their structural stiffness and limited moving masses. This paper deals with a particular Delta, developed for high speed laser cutting. Parallel delta robot has numerous advantages in comparison with serial robots Higher stiffness and connected with that a lower mass of links the possibility of transporting heavier loads, and higher accuracy. The main drawback is however a smaller w...

  9. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  10. Human-like Compliance for Dexterous Robot Hands

    Science.gov (United States)

    Jau, Bruno M.

    1995-01-01

    This paper describes the Active Electromechanical Compliance (AEC) system that was developed for the Jau-JPL anthropomorphic robot. The AEC system imitates the functionality of the human muscle's secondary function, which is to control the joint's stiffness: AEC is implemented through servo controlling the joint drive train's stiffness. The control strategy, controlling compliant joints in teleoperation, is described. It enables automatic hybrid position and force control through utilizing sensory feedback from joint and compliance sensors. This compliant control strategy is adaptable for autonomous robot control as well. Active compliance enables dual arm manipulations, human-like soft grasping by the robot hand, and opens the way to many new robotics applications.

  11. Micro Robotics Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Our research is focused on the challenges of engineering robotic systems down to sub-millimeter size scales. We work both on small mobile robots (robotic insects for...

  12. Robots of the Future

    Indian Academy of Sciences (India)

    two main types of robots: industrial robots, and autonomous robots. .... position); it also has a virtual CPU with two stacks and three registers that hold 32-bit strings. Each item ..... just like we can aggregate images, text, and information from.

  13. Presentation robot Advee

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Věchet, Stanislav; Hrbáček, J.; Ripel, T.; Ondroušek, V.; Hrbáček, R.; Schreiber, P.

    2012-01-01

    Roč. 18, 5/6 (2012), s. 307-322 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : mobile robot * human - robot interface * localization Subject RIV: JD - Computer Applications, Robot ics

  14. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  15. A Novel Reconfigurable Robot for Urban Search and Rescue

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2006-12-01

    Full Text Available This paper presents a novel mobile robot for urban search and rescue based on reconfiguration. The system consists of three identical modules; actually each module is an entire robotic system that can perform distributed activities. To achieve highly adaptive locomotion capabilities, the robot's serial and parallel mechanisms form an active joint, enabling it to change its shape in three dimensions. A docking mechanism enables adjacent modules to connect or disconnect flexibly and automatically. This mechanical structure and the control system are introduced in detail, followed by a description of the locomotion capabilities. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  16. A Novel Reconfigurable Robot for Urban Search and Rescue

    Directory of Open Access Journals (Sweden)

    Zhicheng Deng

    2008-11-01

    Full Text Available This paper presents a novel mobile robot for urban search and rescue based on reconfiguration. The system consists of three identical modules; actually each module is an entire robotic system that can perform distributed activities. To achieve highly adaptive locomotion capabilities, the robot's serial and parallel mechanisms form an active joint, enabling it to change its shape in three dimensions. A docking mechanism enables adjacent modules to connect or disconnect flexibly and automatically. This mechanical structure and the control system are introduced in detail, followed by a description of the locomotion capabilities. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  17. Cloud Robotics Model

    OpenAIRE

    Mester, Gyula

    2015-01-01

    Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen a...

  18. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  19. Robot Programming.

    Science.gov (United States)

    1982-12-01

    Paris, France, June, 1982, 519-530. Latoinbe, J. C. "Equipe Intelligence Artificielle et Robotique: Etat d’avancement des recherches," Laboratoire...8217AD-A127 233 ROBOT PROGRRMMING(U) MASSACHUSETTS INST OFGTECHi/ CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T LOZANO-PEREZ UNCLASSIFIED DC8 AI-9 N884...NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA I WORK UNIT NUMBERS ,. 545 Technology Square Cambridge

  20. Embodied Evolution in Collective Robotics: A Review

    Directory of Open Access Journals (Sweden)

    Nicolas Bredeche

    2018-02-01

    Full Text Available This article provides an overview of evolutionary robotics techniques applied to online distributed evolution for robot collectives, namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. This article also presents a comprehensive summary of research published in the field since its inception around the year 2000, providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots to embodied evolution as an online distributed learning method for designing collective behaviors in swarm-like collectives. This article concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.

  1. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  2. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    Hooman Samani; Elham Saadatian; Natalie Pang; Doros Polydorou; Owen Noel Newton Fernando; Ryohei Nakatsu; Jeffrey Tzu Kwan Valino Koh

    2013-01-01

    In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  3. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  4. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  5. A Novel Reconfiguration Strategy of a Delta-Type Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Albert Lester Balmaceda-Santamaría

    2016-02-01

    Full Text Available This work introduces a novel reconfiguration strategy for a Delta-type parallel robot. The robot at hand, whose patent is pending, is equipped with an intermediate mechanism that allows for modifying the operational Cartesian workspace. Furthermore, singularities of the robot may be ameliorated owing to the inherent kinematic redundancy introduced by four actuable kinematic joints. The velocity and acceleration analyses of the parallel manipulator are carried out by resorting to reciprocal-screw theory. Finally, the manipulability of the new robot is investigated based on the computation of the condition number associated with the active Jacobian matrix, a well-known procedure. The results obtained show improved performance of the robot introduced when compared with results generated for another Delta-type robot.

  6. A Model of Parallel Kinematics for Machine Calibration

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Bæk Nielsen, Morten; Kløve Christensen, Simon

    2016-01-01

    Parallel kinematics have been adopted by more than 25 manufacturers of high-end desktop 3D printers [Wohlers Report (2015), p.118] as well as by research projects such as the WASP project [WASP (2015)], a 12 meter tall linear delta robot for Additive Manufacture of large-scale components for cons......Parallel kinematics have been adopted by more than 25 manufacturers of high-end desktop 3D printers [Wohlers Report (2015), p.118] as well as by research projects such as the WASP project [WASP (2015)], a 12 meter tall linear delta robot for Additive Manufacture of large-scale components...

  7. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    Directory of Open Access Journals (Sweden)

    Florin Moldoveanu

    2010-11-01

    Full Text Available In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be constructed by combining these functional modules for a specific application. An embedded software with dynamic task uploading and multi-tasking abilities is developed in order to create better interface between robots and the command center and among the robots. The dynamic task uploading allows the robots change their behaviors in runtime. The flexibility of the robots is given by facts that the robots can work in multiagent system, as master-slave, or hybrid mode, can be equipped with different modules and possibly be used in other applications such as mobile sensor networks remote sensing, and plant monitoring.

  8. Educational Robotics as Mindtools

    Science.gov (United States)

    Mikropoulos, Tassos A.; Bellou, Ioanna

    2013-01-01

    Although there are many studies on the constructionist use of educational robotics, they have certain limitations. Some of them refer to robotics education, rather than educational robotics. Others follow a constructionist approach, but give emphasis only to design skills, creativity and collaboration. Some studies use robotics as an educational…

  9. ROILA : RObot Interaction LAnguage

    NARCIS (Netherlands)

    Mubin, O.

    2011-01-01

    The number of robots in our society is increasing rapidly. The number of service robots that interact with everyday people already outnumbers industrial robots. The easiest way to communicate with these service robots, such as Roomba or Nao, would be natural speech. However, the limitations

  10. Robotic Hand

    Science.gov (United States)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  11. Course on hybrid calculation

    International Nuclear Information System (INIS)

    Weill, J.; Tellier; Bonnemay; Craigne; Chareton; Di Falco

    1969-02-01

    After a definition of hybrid calculation (combination of analogue and digital calculation) with a distinction between series and parallel hybrid computing, and a description of a hybrid computer structure and of task sharing between computers, this course proposes a description of hybrid hardware used in Saclay and Cadarache computing centres, and of operations performed by these systems. The next part addresses issues related to programming languages and software. The fourth part describes how a problem is organised for its processing on these computers. Methods of hybrid analysis are then addressed: resolution of optimisation problems, of partial differential equations, and of integral equations by means of different methods (gradient, maximum principle, characteristics, functional approximation, time slicing, Monte Carlo, Neumann iteration, Fischer iteration)

  12. Hybrid-Actuated Finger Prosthesis with Tactile Sensing

    Directory of Open Access Journals (Sweden)

    Cheng Yee Low

    2013-10-01

    Full Text Available Finger prostheses are devices developed to emulate the functionality of natural human fingers. On top of their aesthetic appearance in terms of shape, size and colour, such biomimetic devices require a high level of dexterity. They must be capable of gripping an object, and even manipulating it in the hand. This paper presents a biomimetic robotic finger actuated by a hybrid mechanism and integrated with a tactile sensor. The hybrid actuation mechanism comprises a DC micromotor and a Shape Memory Alloy (SMA wire. A customized test rig has been developed to measure the force and stroke produced by the SMA wire. In parallel with the actuator development, experimental investigations have been conducted on Quantum Tunnelling Composite (QTC and Pressure Conductive Rubber (PCR towards the development of a tactile sensor for the finger. The viability of using these materials for tactile sensing has been determined. Such a hybrid actuation approach aided with tactile sensing capability enables a finger design as an integral part of a prosthetic hand for applications up to the transradial amputation level.

  13. Foraging behavior analysis of swarm robotics system

    Directory of Open Access Journals (Sweden)

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  14. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  15. An experimental program on advanced robotics

    International Nuclear Information System (INIS)

    Yuan, J.S.C.; Stovman, J.; MacDonald, R.; Norgate, G.

    1987-01-01

    Remote handling in hostile environments, including space, nuclear facilities, and mines, requires hybrid systems which permit close cooperation between state of the art teleoperation and advanced robotics. Teleoperation using hand controller commands and television feedback can be enhanced by providing force-feel feedback and simulation graphics enhancement of the display. By integrating robotics features such as computer vision and force/tactile feedback with advanced local control systems, the overall effectiveness of the system can be improved and the operator workload reduced. This has been demonstrated in the laboratory. Applications such as a grappling drifting satellite or transferring material at sea are envisaged

  16. Hexapod Robot

    Science.gov (United States)

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to

  17. Social robots in advanced dementia

    Directory of Open Access Journals (Sweden)

    Meritxell eValentí Soler

    2015-09-01

    Full Text Available Aims: Testing the effect of the experimental robot-based therapeutic sessions for patients with dementia in: a controlled study of parallel groups of nursing home patients comparing the effects of therapy sessions utilizing a humanoid robot (NAO, an animal-shaped robot (PARO, or a trained dog (DOG, with conventional therapy (CONTROL on symptoms of dementia; and an experience for patients who attend a day care center, comparing symptom prevalence and severity before and after sessions utilizing NAO and PARO. Methods: In the nursing home, patients were randomly assigned by blocks, based on dementia severity, to one of the 3 therapeutic groups to compare: CONTROL, PARO and NAO (phase 1 and CONTROL, PARO and DOG (phase 2. In the day care center, all patients received therapy with NAO (phase 1 and PARO (phase 2. Therapy sessions were held 2 days/week for 3 months. Evaluation at baseline and follow-up was carried out by blind raters using: the Global Deterioration Scale (GDS, the Severe Mini Mental State Examination (sMMSE, the Mini Mental State Examination (MMSE, the Neuropsychiatric Inventory (NPI, the Apathy Scale for Institutionalized Patients with Dementia Nursing Home version (APADEM-NH, the Apathy Inventory (AI and the Quality of Life Scale (QUALID. Statistical analysis included descriptive statistics and non parametric tests performed by a blinded investigator. Results: In the nursing home, 101 patients (phase 1 and 110 patients (phase 2 were included. There were no significant differences at baseline. The relevant changes at follow-up were: (phase 1 patients in the robot groups showed an improvement in apathy; patients in NAO group showed a decline in cognition as measured by the MMSE scores, but not the sMMSE; the robot groups showed no significant changes between them; (phase 2 QUALID scores increased in the PARO group. In the day care center, 20 patients (phase 1 and 17 patients (phase 2 were included. The main findings were: (phase 1 imp

  18. Parallel Task Processing on a Multicore Platform in a PC-based Control System for Parallel Kinematics

    Directory of Open Access Journals (Sweden)

    Harald Michalik

    2009-02-01

    Full Text Available Multicore platforms are such that have one physical processor chip with multiple cores interconnected via a chip level bus. Because they deliver a greater computing power through concurrency, offer greater system density multicore platforms provide best qualifications to address the performance bottleneck encountered in PC-based control systems for parallel kinematic robots with heavy CPU-load. Heavy load control tasks are generated by new control approaches that include features like singularity prediction, structure control algorithms, vision data integration and similar tasks. In this paper we introduce the parallel task scheduling extension of a communication architecture specially tailored for the development of PC-based control of parallel kinematics. The Sche-duling is specially designed for the processing on a multicore platform. It breaks down the serial task processing of the robot control cycle and extends it with parallel task processing paths in order to enhance the overall control performance.

  19. Numerical kinematic transformation calculations for a parallel link manipulator

    International Nuclear Information System (INIS)

    Killough, S.M.

    1993-01-01

    Parallel link manipulators are often considered for particular robotic applications because of the unique advantages they provide. Unfortunately, they have significant disadvantages with respect to calculating the kinematic transformations because of the high-order equations that must be solved. Presented is a manipulator design that exploits the mechanical advantages of parallel links yet also has a corresponding numerical kinematic solution that can be solved in real time on common microcomputers

  20. From robot to human grasping simulation

    CERN Document Server

    León, Beatriz; Sancho-Bru, Joaquin

    2013-01-01

    The human hand and its dexterity in grasping and manipulating objects are some of the hallmarks of the human species. For years, anatomic and biomechanical studies have deepened the understanding of the human hand’s functioning and, in parallel, the robotics community has been working on the design of robotic hands capable of manipulating objects with a performance similar to that of the human hand. However, although many researchers have partially studied various aspects, to date there has been no comprehensive characterization of the human hand’s function for grasping and manipulation of

  1. Parallel Programming with Intel Parallel Studio XE

    CERN Document Server

    Blair-Chappell , Stephen

    2012-01-01

    Optimize code for multi-core processors with Intel's Parallel Studio Parallel programming is rapidly becoming a "must-know" skill for developers. Yet, where to start? This teach-yourself tutorial is an ideal starting point for developers who already know Windows C and C++ and are eager to add parallelism to their code. With a focus on applying tools, techniques, and language extensions to implement parallelism, this essential resource teaches you how to write programs for multicore and leverage the power of multicore in your programs. Sharing hands-on case studies and real-world examples, the

  2. Safe Human-Robot Cooperation in an Industrial Environment

    Directory of Open Access Journals (Sweden)

    Nicola Pedrocchi

    2013-01-01

    Full Text Available The standard EN ISO10218 is fostering the implementation of hybrid production systems, i.e., production systems characterized by a close relationship among human operators and robots in cooperative tasks. Human-robot hybrid systems could have a big economic benefit in small and medium sized production, even if this new paradigm introduces mandatory, challenging safety aspects. Among various requirements for collaborative workspaces, safety-assurance involves two different application layers; the algorithms enabling safe space-sharing between humans and robots and the enabling technologies allowing acquisition data from sensor fusion and environmental data analysing. This paper addresses both the problems: a collision avoidance strategy allowing on-line re-planning of robot motion and a safe network of unsafe devices as a suggested infrastructure for functional safety achievement.

  3. 3rd IFToMM Symposium on Mechanism Design for Robotics

    CERN Document Server

    Ceccarelli, Marco

    2015-01-01

    This volume contains the Proceedings of the 3rd IFToMM Symposium on Mechanism Design for Robotics, held in Aalborg, Denmark, 2-4 June, 2015. The book contains papers on recent advances in the design of mechanisms and their robotic applications. It treats the following topics: mechanism design, mechanics of robots, parallel manipulators, actuators and their control, linkage and industrial manipulators, innovative mechanisms/robots and their applications, among others. The book can be used by researchers and engineers in the relevant areas of mechanisms, machines and robotics.

  4. Next generation light robotic

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael

    2017-01-01

    -assisted surgery imbibes surgeons with superhuman abilities and gives the expression “surgical precision” a whole new meaning. Still in its infancy, much remains to be done to improve human-robot collaboration both in realizing robots that can operate safely with humans and in training personnel that can work......Conventional robotics provides machines and robots that can replace and surpass human performance in repetitive, difficult, and even dangerous tasks at industrial assembly lines, hazardous environments, or even at remote planets. A new class of robotic systems no longer aims to replace humans...... with so-called automatons but, rather, to create robots that can work alongside human operators. These new robots are intended to collaborate with humans—extending their abilities—from assisting workers on the factory floor to rehabilitating patients in their homes. In medical robotics, robot...

  5. An Adaptive Robot Game

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Svenstrup, Mikael; Dalgaard, Lars

    2010-01-01

    The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal is to im......The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal...... is to improve the mental and physical state of the user by playing a physical game with the robot. Ideally, a robot game should be simple to learn but difficult to master, providing an appropriate degree of challenge for players with different skills. In order to achieve that, the robot should be able to adapt...

  6. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  7. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    The relationship between digital and analogue is often constructed as one of opposition. The perception that the world is permeated with underlying patterns of data, describing events and matter alike, suggests that information can be understood apart from the substance to which it is associated......, and that its encoded logic can be constructed and reconfigured as an isolated entity. This disembodiment of information from materiality implies that an event like a thunderstorm, or a material like a body, can be described equally by data, in other words it can be read or written. The following prototypes......, Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  8. An Intelligent Inference System for Robot Hand Optimal Grasp Preshaping

    Directory of Open Access Journals (Sweden)

    Cabbar Veysel Baysal

    2010-11-01

    Full Text Available This paper presents a novel Intelligent Inference System (IIS for the determination of an optimum preshape for multifingered robot hand grasping, given object under a manipulation task. The IIS is formed as hybrid agent architecture, by the synthesis of object properties, manipulation task characteristics, grasp space partitioning, lowlevel kinematical analysis, evaluation of contact wrench patterns via fuzzy approximate reasoning and ANN structure for incremental learning. The IIS is implemented in software with a robot hand simulation.

  9. Robotics Potential Fields

    Directory of Open Access Journals (Sweden)

    Jordi Lucero

    2009-01-01

    Full Text Available This problem was to calculate the path a robot would take to navigate an obstacle field and get to its goal. Three obstacles were given as negative potential fields which the robot avoided, and a goal was given a positive potential field that attracted the robot. The robot decided each step based on its distance, angle, and influence from every object. After each step, the robot recalculated and determined its next step until it reached its goal. The robot's calculations and steps were simulated with Microsoft Excel.

  10. Designing Emotionally Expressive Robots

    DEFF Research Database (Denmark)

    Tsiourti, Christiana; Weiss, Astrid; Wac, Katarzyna

    2017-01-01

    Socially assistive agents, be it virtual avatars or robots, need to engage in social interactions with humans and express their internal emotional states, goals, and desires. In this work, we conducted a comparative study to investigate how humans perceive emotional cues expressed by humanoid...... robots through five communication modalities (face, head, body, voice, locomotion) and examined whether the degree of a robot's human-like embodiment affects this perception. In an online survey, we asked people to identify emotions communicated by Pepper -a highly human-like robot and Hobbit – a robot...... for robots....

  11. Comparison of some parallelization strategies of thermalhydraulic codes on GPUs

    International Nuclear Information System (INIS)

    Jendoubi, T.; Bergeaud, V.; Geay, A.

    2013-01-01

    Modern supercomputers architecture is now often based on hybrid concepts combining parallelism to distributed memory, parallelism to shared memory and also to GPUs (Graphic Process Units). In this work, we propose a new approach to take advantage of these graphic cards in thermohydraulics algorithms. (authors)

  12. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    Science.gov (United States)

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  13. A Quadruped Micro-Robot Based on Piezoelectric Driving

    Directory of Open Access Journals (Sweden)

    Qi Su

    2018-03-01

    Full Text Available Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.

  14. Optimal Modality Selection for Cooperative Human-Robot Task Completion.

    Science.gov (United States)

    Jacob, Mithun George; Wachs, Juan P

    2016-12-01

    Human-robot cooperation in complex environments must be fast, accurate, and resilient. This requires efficient communication channels where robots need to assimilate information using a plethora of verbal and nonverbal modalities such as hand gestures, speech, and gaze. However, even though hybrid human-robot communication frameworks and multimodal communication have been studied, a systematic methodology for designing multimodal interfaces does not exist. This paper addresses the gap by proposing a novel methodology to generate multimodal lexicons which maximizes multiple performance metrics over a wide range of communication modalities (i.e., lexicons). The metrics are obtained through a mixture of simulation and real-world experiments. The methodology is tested in a surgical setting where a robot cooperates with a surgeon to complete a mock abdominal incision and closure task by delivering surgical instruments. Experimental results show that predicted optimal lexicons significantly outperform predicted suboptimal lexicons (p human-robot collision) and the differences in the lexicons are analyzed.

  15. The Joint International Conference of the XII International Conference on Mechanisms and Mechanical Transmissions (MTM) and the XXIII International Conference on Robotics (Robotics ’16)

    CERN Document Server

    Lovasz, Erwin-Christian; Hüsing, Mathias; Maniu, Inocentiu; Gruescu, Corina

    2017-01-01

    This volume presents the proceedings of the Joint International Conference of the XII International Conference on Mechanisms and Mechanical Transmissions (MTM) and the XXIII International Conference on Robotics (Robotics ’16), that was held in Aachen, Germany, October 26th-27th, 2016. It contains applications of mechanisms and transmissions in several modern technical fields such as mechatronics, biomechanics, machines, micromachines, robotics and apparatus. In connection with these fields, the work combines the theoretical results with experimental testing. The book presents reviewed papers developed by researchers specialized in mechanisms analysis and synthesis, dynamics of mechanisms and machines, mechanical transmissions, biomechanics, precision mechanics, mechatronics, micromechanisms and microactuators, computational and experimental methods, CAD in mechanism and machine design, mechanical design of robot architecture, parallel robots, mobile robots, micro and nano robots, sensors and actuators in ro...

  16. Robotic Stereotaxy in Cranial Neurosurgery: A Qualitative Systematic Review.

    Science.gov (United States)

    Fomenko, Anton; Serletis, Demitre

    2017-12-14

    Modern-day stereotactic techniques have evolved to tackle the neurosurgical challenge of accurately and reproducibly accessing specific brain targets. Neurosurgical advances have been made in synergy with sophisticated technological developments and engineering innovations such as automated robotic platforms. Robotic systems offer a unique combination of dexterity, durability, indefatigability, and precision. To perform a systematic review of robotic integration for cranial stereotactic guidance in neurosurgery. Specifically, we comprehensively analyze the strengths and weaknesses of a spectrum of robotic technologies, past and present, including details pertaining to each system's kinematic specifications and targeting accuracy profiles. Eligible articles on human clinical applications of cranial robotic-guided stereotactic systems between 1985 and 2017 were extracted from several electronic databases, with a focus on stereotactic biopsy procedures, stereoelectroencephalography, and deep brain stimulation electrode insertion. Cranial robotic stereotactic systems feature serial or parallel architectures with 4 to 7 degrees of freedom, and frame-based or frameless registration. Indications for robotic assistance are diversifying, and include stereotactic biopsy, deep brain stimulation and stereoelectroencephalography electrode placement, ventriculostomy, and ablation procedures. Complication rates are low, and mainly consist of hemorrhage. Newer systems benefit from increasing targeting accuracy, intraoperative imaging ability, improved safety profiles, and reduced operating times. We highlight emerging future directions pertaining to the integration of robotic technologies into future neurosurgical procedures. Notably, a trend toward miniaturization, cost-effectiveness, frameless registration, and increasing safety and accuracy characterize successful stereotactic robotic technologies. Copyright © 2017 by the Congress of Neurological Surgeons

  17. Robotics_MobileRobot Navigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Robots and rovers exploring planets need to autonomously navigate to specified locations. Advanced Scientific Concepts, Inc. (ASC) and the University of Minnesota...

  18. Robots Social Embodiment in Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  19. Practical parallel computing

    CERN Document Server

    Morse, H Stephen

    1994-01-01

    Practical Parallel Computing provides information pertinent to the fundamental aspects of high-performance parallel processing. This book discusses the development of parallel applications on a variety of equipment.Organized into three parts encompassing 12 chapters, this book begins with an overview of the technology trends that converge to favor massively parallel hardware over traditional mainframes and vector machines. This text then gives a tutorial introduction to parallel hardware architectures. Other chapters provide worked-out examples of programs using several parallel languages. Thi

  20. Parallel sorting algorithms

    CERN Document Server

    Akl, Selim G

    1985-01-01

    Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the

  1. Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars

    NARCIS (Netherlands)

    van Vliet, O.P.R.|info:eu-repo/dai/nl/288519361; Kruithof, T.; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2010-01-01

    We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be

  2. Decentralized neural control application to robotics

    CERN Document Server

    Garcia-Hernandez, Ramon; Sanchez, Edgar N; Alanis, Alma y; Ruz-Hernandez, Jose A

    2017-01-01

    This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural i...

  3. Problems in software development for nuclear robotics

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni

    1986-01-01

    Major technical problems in developing softwares for intelligent robots for future nuclear applications are explained briefly. In order that a robot can perform various kinds of complex works, it must be equipped with a high level of artificial intelligence which includes sensing functions such as visiual, auditory, tactile, proximity sensing, cognitive functions such as recognition of objects and understanding of working environment, decision-making functions such as work planning and control functions such as manipulator and locomotion controls. A large amount of various kinds of signals and informations must be processed with a high speed for an integrated control of these functions. It will be desirable that the computer program for controlling a robot which must run in a real-time will have a functionally hierarchical and distributed structure from the view point of software development. Parallel processing will be required from the view point of computation time. (author)

  4. Advances in Reconfigurable Mechanisms and Robots I

    CERN Document Server

    Zoppi, Matteo; Kong, Xianwen

    2012-01-01

    Advances in Reconfigurable Mechanisms and Robots I provides a selection of key papers presented in The Second ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2012) held on 9th -11th  July 2012 in Tianjin, China. This ongoing series of conferences will be covered in this ongoing collection of books.   A total of seventy-eight papers are divided into seven parts to cover the topology, kinematics and design of reconfigurable mechanisms with the reconfiguration theory, analysis and synthesis, and present the current research and development in the field of reconfigurable mechanisms including reconfigurable parallel mechanisms. In this aspect, the recent study and development of reconfigurable robots are further presented with the analysis and design and with their control and development. The bio-inspired mechanisms and subsequent reconfiguration are explored in the challenging fields of rehabilitation and minimally invasive surgery. Advances in Reconfigurable Mechanisms and ...

  5. Springer handbook of robotics

    CERN Document Server

    Khatib, Oussama

    2016-01-01

    The second edition of this handbook provides a state-of-the-art cover view on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition o...

  6. Project ROBOTICS 2008

    DEFF Research Database (Denmark)

    Conrad, Finn

    Mathematical modelling of Alto Robot, direct- and inverse kinematic transformation,simulation and path control applying MATLAB/SIMULINK.......Mathematical modelling of Alto Robot, direct- and inverse kinematic transformation,simulation and path control applying MATLAB/SIMULINK....

  7. Project Tasks in Robotics

    DEFF Research Database (Denmark)

    Sørensen, Torben; Hansen, Poul Erik

    1998-01-01

    Description of the compulsary project tasks to be carried out as a part of DTU course 72238 Robotics......Description of the compulsary project tasks to be carried out as a part of DTU course 72238 Robotics...

  8. CMS cavern inspection robot

    CERN Document Server

    Ibrahim, Ibrahim

    2017-01-01

    Robots which are immune to the CMS cavern environment, wirelessly controlled: -One actuated by smart materials (Ionic Polymer-Metal Composites and Macro Fiber Composites) -One regular brushed DC rover -One servo-driven rover -Stair-climbing robot

  9. RHOBOT: Radiation hardened robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  10. Micro robot bible

    International Nuclear Information System (INIS)

    Yoon, Jin Yeong

    2000-08-01

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  11. RHOBOT: Radiation hardened robotics

    International Nuclear Information System (INIS)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program

  12. Two Legged Walking Robot

    OpenAIRE

    Kraus, V.

    2015-01-01

    The aim of this work is to construct a two-legged wirelessly controlled walking robot. This paper describes the construction of the robot, its control electronics, and the solution of the wireless control. The article also includes a description of the application to control the robot. The control electronics of the walking robot are built using the development kit Arduino Mega, which is enhanced with WiFi module allowing the wireless control, a set of ultrasonic sensors for detecting obstacl...

  13. Micro robot bible

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin Yeong

    2000-08-15

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  14. Robots at Work

    OpenAIRE

    Graetz, Georg; Michaels, Guy

    2015-01-01

    Despite ubiquitous discussions of robots' potential impact, there is almost no systematic empirical evidence on their economic effects. In this paper we analyze for the first time the economic impact of industrial robots, using new data on a panel of industries in 17 countries from 1993-2007. We find that industrial robots increased both labor productivity and value added. Our panel identification is robust to numerous controls, and we find similar results instrumenting increased robot use wi...

  15. Robots in the Roses

    OpenAIRE

    2014-01-01

    2014-04 Robots in the Roses A CRUSER Sponsored Event. The 4th Annual Robots in the Roses provides a venue for Faculty & NPS Students to showcase unmanned systems research (current or completed) and recruit NPS Students to join in researching on your project. Posters, robots, vehicles, videos, and even just plain humans welcome! Families are welcome to attend Robots in the Roses as we'll have a STEM activity for children to participate in.

  16. Modular robot

    International Nuclear Information System (INIS)

    Ferrante, T.A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs

  17. Techniques applied in design optimization of parallel manipulators

    CSIR Research Space (South Africa)

    Modungwa, D

    2011-11-01

    Full Text Available the desired dexterous workspace " Robot.Comput.Integrated Manuf., vol. 23, pp. 38 - 46, 2007. [12] A.P. Murray, F. Pierrot, P. Dauchez and J.M. McCarthy, "A planar quaternion approach to the kinematic synthesis of a parallel manipulator " Robotica, vol... design of a three translational DoFs parallel manipulator " Robotica, vol. 24, pp. 239, 2005. [15] J. Angeles, "The robust design of parallel manipulators," in 1st Int. Colloquium, Collaborative Research Centre 562, 2002. [16] S. Bhattacharya, H...

  18. Robot 2015 : Second Iberian Robotics Conference : Advances in Robotics

    CERN Document Server

    Moreira, António; Lima, Pedro; Montano, Luis; Muñoz-Martinez, Victor

    2016-01-01

    This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other...

  19. Analysis of balance control methods based on inverted pendulum for legged robots

    OpenAIRE

    Denisov, A.; Iakovlev, R.; Mamaev, I.; Pavliuk, N.

    2017-01-01

    Methods of balance control for a legged robot, the model of which is presented as a two-section inverted pendulum, are considered. The following balance methods for humanoid robots are analysed: the parallel algorithm of the network operator method; the method of natural synergies; the method of fuzzy control, the spherical inverted pendulum mode, a dual length linear inverted pendulum method. The best of these methods will be used in the development of the Russian anthropomorphic robot Antares.

  20. Analysis of balance control methods based on inverted pendulum for legged robots

    Directory of Open Access Journals (Sweden)

    Denisov Alexander

    2017-01-01

    Full Text Available Methods of balance control for a legged robot, the model of which is presented as a two-section inverted pendulum, are considered. The following balance methods for humanoid robots are analysed: the parallel algorithm of the network operator method; the method of natural synergies; the method of fuzzy control, the spherical inverted pendulum mode, a dual length linear inverted pendulum method. The best of these methods will be used in the development of the Russian anthropomorphic robot Antares.