WorldWideScience

Sample records for hybrid organogel formed

  1. Organogels thermodynamics, structure, solvent role, and properties

    CERN Document Server

    Guenet, Jean-Michel

    2016-01-01

    This book provides a physics-oriented introduction to organogels with a comparison to polymer thermoreversible gels whenever relevant. The past decade has seen the development of a wide variety of newly-synthesized molecules that can spontaneously self-assemble or crystallize from their organic or aqueous solutions to produce fibrillar networks, namely organogels, with potential applications in organic electronics, light harvesting, bio-imaging, non-linear optics, and the like. This compact volume presents a detailed outlook of these novel molecular systems with special emphasis upon their thermodynamics, morphology, molecular structure, and rheology. The definition of these complex systems is also tackled, as well as the role of the solvent. The text features numerous temperature-phase diagrams for a variety of organogels as well as illustrations of their structures at the microscopic, mesoscopic and macroscopic level. A review of some potential applications is provided including hybrid functional materials ...

  2. Magnetorheological fluid based on thixotropic PTFE-oil organogel

    Science.gov (United States)

    Zhang, Hansong; Yan, Hua; Hu, Zhide; Yang, Jianjian; Niu, Fanghao

    2018-04-01

    Polytetrafluoroethylene (PTFE) micropowders were employed in this work to fabricate PTFE-oil organogel, then carbonyl iron particles were dispersed in this thixotropic organogel to prepare magnetorheological fluids without any other additives. By performing a comparative investigation of MRFs' performances, enhanced magnetorheological response, suspension stability and tribological performance were obtained contrast to pure silicon oil based MRFs. The experimental results revealed a changeable viscosity of organogel, considerable increases in thixotropy also can be observed with the increase of PTFE content. Sedimentation tests demonstrated a much better suspension stability of MRFs based on organogel, suggesting that the internal network microstructures formed by hydrogen bonds between PTFE microparticles and oil molecular chains are likely to impose the gaps among magnetic particles thus hinder the particle aggregation and sedimentation. Moreover, a critical PTFE volume fraction about 4.7 vol% was recognized in this study, lower content organogels tended to display enhanced yield stresses contrast to pure silicon oil based MRFs while high content organogels showed slightly lower ones. It may suggest a compromise between nonmagnetic particle adsorption and the reinforcement effect of network microstructures. The adsorption is likely to decrease the saturation magnetization of carbonyl iron particles and to hinder the formation of field-induced chains, however, the reinforcement effect tends to strengthen these magnetic chains. Besides, the tribological tests confirmed the lubricant effects of PTFE-oil organogel by acquiring rather sharp decreases in friction coefficients of organogel based MRFs especially in the presence of magnetic field.

  3. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation

    Science.gov (United States)

    Maity, Sibaprasad; Das, Priyadip; Reches, Meital

    2015-01-01

    Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508

  4. Assessment of Thermal and Textural Characteristics and Consumer Preferences of Lemon and Strawberry Flavored Fish Oil Organogels.

    Science.gov (United States)

    Yılmaz, Emin; Öǧütcü, Mustafa; Arifoglu, Nazan

    2015-01-01

    In this study, strawberry and lemon flavored fish oil organogels (FOO) were prepared with beeswax as the organogelator. The physical, thermal and textural characteristics as well as the consumer preferences of the flavored organogels were determined in comparison with fish oil and FOO containing no flavor. Furthermore, the stability of the organogels was evaluated during 90 day storage at 4°C. The results revealed that, structurally stable fish oil organogels as spreadable products might be formed and that flavoring of the gels enhances consumer preference. Thus, flavoring of fish oil organogels could be a challenge in increasing the consumption of fish oil.

  5. Topical delivery of aceclofenac from lecithin organogels: preformulation study.

    Science.gov (United States)

    Shaikh, I M; Jadhav, K R; Gide, P S; Kadam, V J; Pisal, S S

    2006-10-01

    The purpose of this research is to evaluate the suitability of lecithin organogels containing aceclofenac for topical application. The present article focuses on the preformulation part of the whole research work. Thin layer chromatography was carried out to determine lecithin's purity. The excipients for formulating lecithin organogel were screened. Lecithin organogels are thermo reversible in nature and hence gelation temperature study was carried out to determine the temperature where Sol-Gel and Gel-Sol transformation takes place. Partition coefficient of the drug was estimated. Drug solubility in plain oil and organogel containing reverse micelles was estimated. Effect of water added on the properties of lecithin organogels such as X-ray diffraction pattern, conductivity and viscosity were determined. Microscopy of the gel sample has been carried out at different magnifications. The pseudo ternary phase diagram has been constructed to determine the organogel existence region. The permeation study of aceclofenac from different concentrations of lecithin organogels [200 mM, 300 mM and 400 mM] has been determined using cellulose acetate membrane (0.45 micro) and excised rat skin. Lecithin organogel in ethyl oleate has desired stability and consistency. A single spot on the TLC plate confirms the purity of soy lecithin to be used in organogel formation. Aceclofenac solubility was found to be more in lecithin/oil reverse micellar system as compared to its solubility in oil. The X-ray diffraction pattern confirms the incorporation of water in micellar gel network. The physical properties of organogels are affected by water incorporated and concentration of gelator. The permeation of aceclofenac through artificial membrane and excised rat skin demonstrated the same trend and were in the following order 200 mM>300 mM>400 mM. The results showed that organogel exhibits useful pharmaceutical properties.

  6. Development of Organogel-Derived Capsaicin Nanoemulsion with Improved Bioaccessibility and Reduced Gastric Mucosa Irritation.

    Science.gov (United States)

    Lu, Muwen; Cao, Yong; Ho, Chi-Tang; Huang, Qingrong

    2016-06-15

    Capsaicin (CAP) is the major active component in chili peppers with health-promoting benefits. However, the low bioavailability and irritating quality of CAP greatly limit its applications in functional foods. The objective of this study was to develop a food-grade nanoemulsion to increase the dissolution and bioaccessibility of CAP and to alleviate its irritating effects. To achieve this goal, CAP was first dissolved in medium-chain triacylglycerol (MCT), followed by the addition of sucrose stearate S-370 as organogelator to develop CAP-loaded organogel. The oil-in-water (O/W) emulsion was formed using organogel as the oil phase and Tween 80 as the emulsifier. After ultrasonication treatment, droplet sizes of emulsion were decreased to 168 nm with enhanced dissolution rate and bioaccessibility. In vivo study further confirmed the reduced rat gastric mucosa irritation caused by CAP. The organogel-derived nanoemulsion was proved to be an effective delivery system for CAP-based functional food products.

  7. Two-component self-assembly with solvent leading to "wet" and microcrystalline organogel fibers.

    Science.gov (United States)

    Löfman, Miika; Lahtinen, Manu; Rissanen, Kari; Sievänen, Elina

    2015-01-15

    The microcrystalline fibers of N-(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide 1 provided a useful model system for studying the complex relationship between morphology, experimental parameters, solvent, and the phenomenon of organogelation. The presence of solvents in the solid forms of 1 along with crystallization behavior suggested solvate formation and polymorphic behavior. Forty solid state- and xerogel samples of 1 formed in organic solvents and in three categories of experimental conditions were analyzed with single crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), Raman microscopy, and attenuated total reflection Fourier-transform infrared spectroscopy (ATR FTIR). Two polymorphs and four isostructural aromatic solvates of 1 were found among some unknown forms in the samples. Single crystal X-ray structures of one polymorph and bromobenzene solvate were obtained, the latter from a xerogel. Multiple crystal forms could be present in a sample, and their contributions to gelation were estimated taking the experimental conditions into account. Gelator 1 could act as a variable component gelator, either alone or in combination with an aromatic solvent. The research brings new insight into the structures of microcrystalline organogel fibers, linking solvate/inclusion crystal formation with microcrystalline fibers of an organogelator for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Preparation of organogel with tea polyphenols complex for enhancing the antioxidation properties of edible oil.

    Science.gov (United States)

    Shi, Rong; Zhang, Qiuyue; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-08-20

    Food-grade organogels are semisolid systems with immobilized liquid edible oil in a three-dimensional network of self-assembled gelators, and they are supposed to have a broad range of potential applications in food industries. In this work, an edible organogel with tea polyphenols was developed, which possesses a highly effective antioxidative function. To enhance the dispersibility of the tea polyphenols in the oil phase, a solid lipid-surfactant-tea polyphenols complex (organogel complex) was first prepared according to a novel method. Then, a food-grade organogel was prepared by mixing this organogel complex with fresh peanut oil. Compared with adding free tea polyphenols, the organogel complex could be more homogeneously distributed in the prepared organogel system, especially under heating condition. Furthermore, the organogel loading of tea polyphenols performed a 2.5-fold higher antioxidation compared with other chemically synthesized antioxidants (butylated hydroxytoluene and propyl gallate) by evaluating the peroxide value of the fresh peanut oil based organogel in accelerated oxidation conditions.

  9. Novel polymeric nanocomposites and porous materials prepared using organogels

    International Nuclear Information System (INIS)

    Lai, Wei-Chi; Tseng, Shen-Chen

    2009-01-01

    We propose a new method for preparing polymeric nanocomposites and porous materials using self-assembled templates formed by 1,3:2,4-dibenzylidene sorbitol (DBS) organogels. DBS is capable of self-assembling into a 3D nanofibrillar network at relatively low concentrations in some organic solvents to produce organogels. In this study, we induced the formation of such physical cross-linked networks in styrene. Subsequently, we polymerized the styrene in the presence of chemical cross-linkers, divinyl benzene (DVB), with different amounts of DBS using thermal-initiated polymerization. The resulting materials were transparent, homogeneous polystyrene (PS) nanocomposites with both physical and chemical cross-links. The porous polymeric materials were obtained by solvent extraction of the DBS nanofibrils from the PS. Brunauer-Emmett-Teller (BET) measurements show that the amounts of DBS and DVB influenced the specific surface area after the removal of the DBS fibrils.

  10. Novel polymeric nanocomposites and porous materials prepared using organogels

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Wei-Chi; Tseng, Shen-Chen, E-mail: wclai@mail.tku.edu.t [Department of Chemical and Materials Engineering, Tamkang University, 151 Ying-chuan Road, Tamsui, Taipei 25137, Taiwan (China)

    2009-11-25

    We propose a new method for preparing polymeric nanocomposites and porous materials using self-assembled templates formed by 1,3:2,4-dibenzylidene sorbitol (DBS) organogels. DBS is capable of self-assembling into a 3D nanofibrillar network at relatively low concentrations in some organic solvents to produce organogels. In this study, we induced the formation of such physical cross-linked networks in styrene. Subsequently, we polymerized the styrene in the presence of chemical cross-linkers, divinyl benzene (DVB), with different amounts of DBS using thermal-initiated polymerization. The resulting materials were transparent, homogeneous polystyrene (PS) nanocomposites with both physical and chemical cross-links. The porous polymeric materials were obtained by solvent extraction of the DBS nanofibrils from the PS. Brunauer-Emmett-Teller (BET) measurements show that the amounts of DBS and DVB influenced the specific surface area after the removal of the DBS fibrils.

  11. Preparation and in vitro evaluation of a pluronic lecithin organogel containing ricinoleic acid for transdermal delivery.

    Science.gov (United States)

    Boddu, Sai Hs; Bonam, Sindhu Prabha; Wei, Yangjie; Alexander, Kenneth

    2014-01-01

    The present study deals with the preparation and in vitro evaluation of a Pluronic lecithin organogel gel containing ricinoleic acid for transdermal delivery. Blank Pluronic lecithin organogel gels were prepared using ricinoleic acid as the oil phase and characterized for pH, viscosity, gelation temperature, and microscopic structure. The optimized Pluronic lecithin organogel gel formulation was further evaluated using ketoprofen (10%) and dexamethasone (0.5%) as model drugs. The stability and in vitro permeability of ketoprofen and dexamethasone was evaluated and compared with the corresponding control formulation (Pluronic lecithin organogel gel made with isopropyl palmitate as the oil phase). The pH and viscosity of blank Pluronic lecithin organogel gel prepared with ricinoleic acid was comparable with the isopropyl palmitate Pluronic lecithin organogel gel. The thixotropic property of ricinoleic acid Pluronic lecithin organogel gel was found to be better than the control. Drug-loaded Pluronic lecithin organogel gels behaved in a similar manner and all formulations were found to be stable at 25 degrees C, 35 degrees C, and 40 degrees C for up to 35 days. The penetration profile of dexamethasone was similar from both the Pluronic lecithin organogel gels, while the permeability for ketoprofen from Pluronic lecithin organogel gel containing ricinoleic acid was found to be three times higher as compared to the control formulation.

  12. Physical properties of beeswax, sunflower wax, and candelilla wax mixtures and organogels

    Science.gov (United States)

    There is increased interest in natural waxes as alternatives to partially hydrogenated oils and saturated fats as oil structuring agents. Using relatively low concentrations (0.5-5%), natural waxes are able to form crystalline networks, or organogels, which bind liquid oil. Each natural wax is uniqu...

  13. An autonomic self-healing organogel with a photo-mediated modulus

    KAUST Repository

    Xiong, Yubing

    2016-11-15

    A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel. © 2016 The Royal Society of Chemistry.

  14. An autonomic self-healing organogel with a photo-mediated modulus

    KAUST Repository

    Xiong, Yubing; Chen, Zhijun; Wang, Hong; Ackermann, Lisa Maria; Klapper, Markus; Butt, Hans Jü rgen; Wu, Si

    2016-01-01

    A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel. © 2016 The Royal Society of Chemistry.

  15. Ex-Vivo percutaneous absorption of enrofloxacin: Comparison of LMOG organogel vs. pentravan cream.

    Science.gov (United States)

    Kirilov, Plamen; Tran, Van Hung; Ducrotté-Tassel, Alban; Salvi, Jean-Paul; Perrot, Sébastien; Haftek, Marek; Boulieu, Roselyne; Pirot, Fabrice

    2016-02-10

    The objective of this study was to investigate the percutaneous absorption of enrofloxacin from two base formulations, Pentravan cream and LMOG organogel. Ex-vivo experiments were carried out on pig ear skin. The percutaneous permeation through pig skin of two formulations containing 5 wt% of enrofloxacin was measured and compared using Franz diffusion cells. At appropriate intervals up to 120 h, diffusion samples were taken and analyzed using HPLC assays. Permeation profiles were established and the parameters Tlag and flux values were calculated. In this ex-vivo study, the flux values were 0.35 μgcm(-2)h(-1) for Pentravan and 1.22 μgcm(-2)h(-1) for LMOG organogel, corresponding respectively to 7.9 % and 29.3 % of enrofloxacin absorbed after 120 h by these formulations. The lag time (T lag) of Pentravan and organogel were 6.32 and 0.015 h respectively. The absorption time to reach the antibiotic concentration of enrofloxacin (2 μgmL(-1)) in the receptor was 60 h with Pentravan and 30 h with the organogel, suggesting more effective treatment by the latter. Enrofloxacin contained in organogel could be absorbed through pig ear skin 3.7 times greater than that in Pentravan (commercial formulation). This study demonstrates the perspective of organogel formulations as potential drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Development of span 80-tween 80 based fluid-filled organogels as a matrix for drug delivery

    Directory of Open Access Journals (Sweden)

    Charulata Bhattacharya

    2012-01-01

    Full Text Available Background: Organogels are defined as 3-dimensional networked structures which immobilize apolar solvents within them. These gelled formulations are gaining importance because of their ease of preparation and inherent stability with improved shelf life as compared to the ointments. Aim: Development of span 80-tween 80 mixture based organogels for the first time by fluid-filled fiber mechanism. Materials and Methods: Span 80 and tween 80 were used as surfactant and co-surfactant, respectively. The surfactant mixtures were dissolved in oil followed by the addition of water which led to the formation of organogels at specific compositions. The formulations were analyzed by microscopy, X-ray diffraction (XRD, time-dependent stability test and accelerated thermal stability test by thermocycling method. Ciprofloxacin, a fourth-generation fluoroquinolone, was incorporated within the organogels. The antimicrobial activity of the drug loaded organogels and in vitro drug release from the gels was also determined. Results and Conclusions: Microscopic results indicated that the gels contained clusters of water-filled spherical structures. XRD study indicated the amorphous nature of the organogels. The release of the drug was found to be diffusion controlled and showed marked antimicrobial property. In short, the prepared organogels were found to be stable enough to be used as pharmaceutical formulation.

  17. π-Conjugated polymer anisotropic organogel nanofibrous assemblies for thermoresponsive photonic switches.

    Science.gov (United States)

    Narasimha, Karnati; Jayakannan, Manickam

    2014-11-12

    The present work demonstrates one of the first examples of π-conjugated photonic switches (or photonic wave plates) based on the tailor-made π-conjugated polymer anisotropic organogel. New semicrystalline segmented π-conjugated polymers are designed with rigid aromatic oligophenylenevinylene π-core and flexible alkyl chain along the polymer backbone. These polymers are found to be self-assembled as semicrystalline or amorphous with respect to the number of carbon atoms in the alkyl units. These semicrystalline polymers produce organogels having nanofibrous morphology of 20 nm thickness with length up to 5 μm. The polymer organogel is aligned in a narrow glass capillary, and this anisotropic gel device is further demonstrated as photonic switches. The glass capillary device behaves as typical λ/4 photonic wave plates upon the illumination of the plane polarized light. The λ/4 photonic switching ability is found to be maximum at θ = 45° angle under the cross polarizers. The orthogonal arrangements of the gel capillaries produce dark and bright spots as on-and-off optical switches. Thermoreversibility of the polymer organogel (also its xerogel) was exploited to construct thermoresponsive photonic switches for the temperature window starting from 25 to 160 °C. The organic photonic switch concept can be adapted to large number of other π-conjugated materials for optical communication and storage.

  18. Polylactic acid organogel as versatile scaffolding technique

    NARCIS (Netherlands)

    Punet, Xavier; Levato, Riccardo; Bataille, Isabelle; Letourneur, Didier; Engel, Elisabeth; Mateos-Timoneda, Miguel A

    2017-01-01

    Tissue engineering requires scaffolding techniques based on non-toxic processes that permits the fabrication of constructs with tailored properties. Here, a two-step methodology based on the gelation and precipitation of the poly(lactic) acid/ethyl lactate organogel system is presented. With this

  19. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.

    Science.gov (United States)

    Jhawat, Vikas; Gupta, Sumeet; Saini, Vipin

    2016-11-01

    In the present study, pluronic lecithin based organogels (PLO gels) were formulated as topical carrier for controlled delivery of mefenamic acid. Ten organogel formulations were prepared by a method employing lecithin as lipophilic phase and pluronic F-127 as hydrophilic phase in varying concentrations to study various parameters using in vitro diffusion study and in vivo studies. All formulations were found to be off-white, homogenous, and reluctant to be washed easily and have pH value within the range of 5.56-5.80 which is nonirritant. Polymer concentration increased in formulations of F1 to F5 (lecithin) and F6 to F10 (pluronic) resulted in decrease of the gelation temperature, increase of viscosity and reduction of spreadability of gels having polymer tendency to form rigid 3D network. Organogels with higher viscosity were found to be more stable and retard the drug release from the gel. The formulations of F2 and F3 were selected for kinetic studies and stability studies, as they found to have all physical parameters within acceptable limits, highest percent drug content and exhibited highest drug release in eight hours. The order of drug release from various formulations was found to be F2 > F3 > F10 > F4 > F1 > F9 > F8 > F5 > F7 > F6. The optimized formulation F2 was found to follow zero order rate kinetics showing controlled release of the drug from the formulations. In vivo anti-inflammatory activity of optimized mefenamic acid organogel (F2) against a standard marketed preparation (Volini gel) was found satisfactory and significant.

  20. Evaluation of the stability of fluoxetine in pluronic lecithin organogel and the determination of an appropriate beyond-use date.

    Science.gov (United States)

    Peacock, Gina F; Sauvageot, Jurgita

    2014-01-01

    Fluoxetine is a commonly prescribed psychotropic medication for a variety of behavioral diagnoses in veterinary practice, and fluoxetine in Pluronic lecithin organogel has been used successfully in treating inappropriate urine spraying in felines. Historically, pharmacists have assigned a variety of beyond-use dates to extemporaneously compound drugs in Pluronic lecithin organogel. The objective of this study was to evaluate the stability of fluoxetine in Pluronic lecithin organogel over a period of six months and to determine an appropriate beyond-use date. A stability-indicating high-performance liquid chromatography method for fluoxetine in Pluronic lecithin organogel was validated in our laboratory. Fluoxetine-Pluronic lecithin organogel 50 mg/mL was prepared by a local compounding pharmacy and analyzed by high-performance liquid chromatograph at 0, 7, 14, 21, 28, 45, 60, 90, and 180 days. Physical stability was also assessed by visual observation. At each time point percent of initial concentration was calculated. The beyond-use date was determined as the time period that the samples maintained at least 90 percent of the initial concentration. At 180 days, the mean percent of initial concentration was 99 +/- 1.5 and, visually, the fluoxetine-Pluronic lecithin organogel retained the original color and consistency, without detectable separation of the different phases of Pluronic lecithin organogel. Since fluoxetine was physically stable and retained greater than 90 percent of initial concentration in Pluronic lecithin organogel for 180 days when stored at room temperature and protected from light, a beyond-use date of 180 days is appropriate.

  1. Synthesis of Calcium Phosphate Composite Organogels by Using Emulsion Method for Dentine Occlusion Materials

    Science.gov (United States)

    Nopteeranupharp, C.; Akkarachaneeyakorn, K.; Songsasaen, A.

    2018-03-01

    Dentinal hypersensitivity (DH) is one of the most human’s problems caused by the erosion of enamel. There are many methods and materials to solve this problem. Calcium phosphate is an excellent alternative for curing this symptom because of its osteoconductivity, and biocompatibility properties. The low-cost and low-toxicity calcium phosphate nanogel was fabricated by using emulsion method and characterized by using TEM, EDX, and DLS techniques. The results showed that P123 (poly (ethylene oxide)19-block-Poly (propylene oxide)69-block-poly (ethylene oxide)19) has played a major role as template and gel formation, SDS was used as a surfactant to form water-in-oil emulsion nanodroplets with circle-like shape. Moreover, the ability of synthesised organogel to occlude the exposed dentine tubules was tested on the model of human’s dentine slices. The results showed that calcium phosphate composite organogel can be efficiently occluded on dentine slice, characterized by SEM technique, after 1 day.

  2. Effects of Hydrogen-Donating or Metal-Chelating Antioxidants on the Oxidative Stability of Organogels Made of Beeswax and Grapeseed Oil Exposed to Light Irradiation.

    Science.gov (United States)

    Hong, Seungmi; Kim, Mi-Ja; Park, Sungkwon; Lee, Suyong; Lee, Jonggil; Lee, JaeHwan

    2018-04-01

    To enhance the oxidative stability of organogels made from grapeseed oil, the antioxidant effects of sesamol, α-tocopherol, β-carotene, ethylenediaminetetraacetic acid (EDTA), and citric acid were determined in beeswax-based organogels stored under light or in the dark conditions at 25 °C. Without the addition of antioxidants, the organogels rapidly oxidized under light irradiation but not during storage in the dark. Sesamol showed the highest antioxidant activity at concentrations of 10 to 40 ppm, whereas the other compounds exhibited no antioxidant activity at 10 ppm. α-Tocopherol and β-carotene improved the oxidative stability of organogels at concentrations above 40 and 100 ppm, respectively. The addition of sesamol yielded better oxidative stability than the addition of EDTA or a mixture of sesamol and citric acid. Sesamol can improve the oxidative stability of organogels, which could lead to economic benefits for the food industry. Recently, interest in organogels has increased due to their properties of maintaining a solid state at room temperature and composition of trans-free and highly unsaturated fatty acids. However, the addition of antioxidants is necessary due to the high degree of unsaturation in organogels. The results of this study showed that the addition of sesamol significantly enhanced the oxidative stability of organogels under light irradiation. Therefore, the use of sesamol-supplemented organogels could prolong the shelf-life of bakery or meat food products. © 2018 Institute of Food Technologists®.

  3. Potential application of lipid organogels for food industry.

    Science.gov (United States)

    Chaves, Kamila Ferreira; Barrera-Arellano, Daniel; Ribeiro, Ana Paula Badan

    2018-03-01

    Controversial issues regarding the role of trans fatty acids in food have led to progressive changes in the legislation of several countries to include more information for consumers. In response, the industries decided to gradually replace trans fat in various products with the development of fatty bases of equivalent functionality and economic viability to partially hydrogenated fats, causing, however, a substantial increase in the content of saturated fatty acids in foods. Today, the lipid science aims to define alternatives to a problem that is widely discussed by health organizations worldwide: limit the saturated fat content in food available to the population. In this context, organogels have been indicated as a viable alternative to obtain semi-solid fats with reduced content of saturated fatty acids and compatible properties for food application. The objective of this review was to present the studies that address the lipid organogels as an alternative for food application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A simple and colorimetric fluoride receptor and its fluoride-responsive organogel

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xudong, E-mail: 081022009@fudan.edu.cn [College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080 (China); Li Yajuan [College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080 (China); Yin Yaobing; Yu Decai [College of Science, Hebei University of Engineering, 199 South street of Guangming, Handan 056038 (China)

    2012-08-01

    In this paper, a new p-nitrophenylhydrozine-based anion receptor 1 containing cholesterol group had been designed and synthesized. It could selectively recognize fluoride among different anions tested with color changes from pale yellow to red for visual detection. Simultaneously, it could gel in cyclohexane, and the gel was also fluoride-responsive. When treated with TBAF (tetra-n-butylammonium fluoride), the gel could undergo gel-sol transition accompanied by color, morphology and surface changes. The binding mechanism had been investigated by UV-vis and {sup 1}HNMR (proton nuclear magnetic resonance spectra) titrations. From SEM (scanning electron microscope), SAXS (small-angle X-ray scattering), IR (Infrared Spectroscopy) and CA (contact angle) experiments, it was indicated that the addition of F{sup -} could destroy the molecule assembly of host 1 in the gel state, thus resulting in the gel-to-sol transition due to the binding site competition effect. To the best of our knowledge, this was the simplest fluoride-responsive organogel with high selectivity. Highlights: Black-Right-Pointing-Pointer A novel kind receptor for selective recognition of fluoride had been designed. Black-Right-Pointing-Pointer Its organogel was also fluoride-responsive. Black-Right-Pointing-Pointer This is the simplest fluoride-responsive organogel with high selectivity.

  5. Properties of organogels of high stearic soybean oil

    Science.gov (United States)

    Recently, the U.S. Food and Drug Administration (FDA) announced that food companies have to phase out the use of partially hydrogenated oils containing trans-fats by 2018. The use of high-stearic oils has been recognized as one of the ways to replace trans fats in food. Organogels also have drawn a ...

  6. Radiation induced in-situ cationic polymerization of polystyrene organogel for selective absorption of cholorophenols from petrochemical wastewater.

    Science.gov (United States)

    Ghobashy, Mohamed M; Younis, Sherif A; Elhady, Mohamed A; Serp, Philippe

    2018-03-15

    A new in-situ cationic polymerization was performed to synthesize a cross-linked (91%) polystyrene (PS) organogel through tetrachloroethylene radiolysis assisted by 60 Co gamma rays. Hoernschemeyer diagram and swelling capacity test show a better selectivity of PS organogel to chlorinated molecules compared to ester, hydrocarbons and alcohols organic molecules by 80-184 folds. Response surface modeling (RSM) of CPs (2,4,6-trichlorophenol) sorption from artificial wastewater confirm superiority of PS organogel to absorb 1746 μmol CPs/g (∼345 mg CPs/g) at broad pH (4-10) and temperature (25-45 °C). Based on ANOVA statistic, simulated CPs absorption model onto PS organogel was successfully developed, with accuracy of prediction of R 2 ≈ R Adj 2 of 0.991-0.995 and lower coefficient of variation of 2.73% with F model of 611.4 at p 99%) by non-covalent and/or dispersive interaction mechanisms with a well-term reusability and good stability up to 5 cycles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Development and evaluation of transdermal organogels containing nicorandil.

    Science.gov (United States)

    Madan, J R; Sagar, Banode; Chellappan, Dinesh K; Dua, Kamal

    2013-01-01

    The objective of the study was to formulate a transdermal product containing Nicorandil as a model drug, because it has been first drug of choice to treat angina and hypertension. A further objective was to reduce its side effects. The transdermal product was prepared using various synthetic and natural gelling agents such as Carbopol 934p, Carbopol 974p, HPMC K15M and HPMC K100M. Various penetration enhancers were incorporated to enhance the diffusion across the rat skin. A further objective was to formulate organogels and minimize the concentration of penetration enhancer to 50% of the concentration used in gels and yet to achieve the maximum drug release. The prepared formulations were evaluated for their physical appearance, viscosity, spreadability, drug content and freeze thaw cycle. Based on in vitro studies across rat skin and human cadaver skin it was concluded that Nicrorandil transdermal organogel formulation using HPMC K100M with 2% w/w Transcutol-P shows increase in cumulative diffusion of Nicorandil amongst all other formulations.

  8. Organogel polymers from 10-undecenoic acid and poly(vinyl acetate)

    Science.gov (United States)

    Organogels are used in a variety of high value applications including the removal of toxic solvents from aqueous environments and the time-controlled release of compounds. One of the most promising gelators is a polyvinyl polymer containing medium chain length carboxylic acids. The existing producti...

  9. Immobilization of styrene-substituted 1,3,4-oxadiazoles into thermoreversible luminescent organogels and their unexpected photocatalyzed rearrangement.

    Science.gov (United States)

    Dumur, Frédéric; Contal, Emmanuel; Wantz, Guillaume; Phan, Trang N T; Bertin, Denis; Gigmes, Didier

    2013-01-21

    A series of styrene-substituted 1,3,4-oxadiazoles has been designed and investigated as new low-molecular-weight organogelators. The photophysical properties of the resulting thermoreversible organogels have been characterized by UV/Vis absorption and luminescence spectroscopies. Surprisingly, the gelation ability of the oxadiazoles depended on the presence of the styrene moiety as gelation of the investigated oxadiazoles did not take place in its absence. Gel formation was accompanied by a modification of the fluorescence of the organogelators in the supramolecular state. UV irradiation of the gels caused a rearrangement of the immobilized 1,3,4-oxadiazoles bearing a styrene moiety by a tandem [4+2] and [3+2] cascade reaction. Structure modification and color change of the gels were also evident upon irradiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Binder-Free Graphene Organogels as Cost-Efficient Counter Electrodes for Dye-sensitized Solar Cells

    International Nuclear Information System (INIS)

    Pan, Dengyu; Feng, Chuanqi; Wang, Liang; Liu, Yuan; Chen, Zhiwen; Shi, Wenyan; Li, Zhen

    2016-01-01

    Graphene organogels (GOGs) filled with organic electrolytes may function as high-activity, low-cost electrodes for energy conversion and storage devices such as Li ion batteries, supercapacitors, and dye-sensitized solar cells (DSSCs), because of their ideal electron-transport and ion-diffusion pathways through an interconnected 3D porous framework self-assembled from highly conductive and high-specific-area graphene sheets. Here, graphene hydrogels prepared by a modified hydrothermal method are converted into organogels with a specific surface area up to ∼1298 m 2 g −1 by a simple solvent-exchange approach, and pressed onto titanium meshes to form GOG films as economical, wearable counter electrodes for DSSCs. Without optimizing TiO 2 photoanodes, GOG-based DSSCs show a markedly enhanced short-circuit current density (16.34 mA cm −2 ) and thus an impressive power conversion efficiency of 7.2%, higher than those using graphene aerogels (11.6 mA cm −2 , 5.9%) and commercial Pt films (10.2 mA cm −2 , 5.9%) as counter electrodes under otherwise identical conditions. The improved efficiency is ascribed to a substantial reduction in charge-transfer resistance and series resistance, which is correlated with the high conductivity and high specific area of GOGs.

  11. Charge-transfer interaction mediated organogels from 18β-glycyrrhetinic acid appended pyrene

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2013-12-01

    Full Text Available We describe herein the two-component charge-transfer (CT interaction induced organogel formation with 18β-glycyrrhetinic acid appended pyrene (GA-pyrene, 3 as the donor, and 2,4,7-trinitrofluorenone (TNF, 4 as the acceptor. The use of TNF (4 as a versatile electron acceptor in the formation of CT gels is demonstrated through the formation of gels in a variety of solvents. Thermal stability, stoichiometry, scanning electron microscopy (SEM, optical micrographs, and circular dichroism (CD are performed on these CT gels to investigate their thermal and assembly properties. UV–vis, fluorescence, mass spectrometric as well as variable-temperature 1H NMR experiments on these gels suggest that the CT interaction is one of the major driving forces for the formation of these organogels.

  12. Improved activity of lipase immobilized in microemulsion-based organogels for (R, S-ketoprofen ester resolution: Long-term stability and reusability

    Directory of Open Access Journals (Sweden)

    Wei-Wei Zhang

    2015-09-01

    Full Text Available Microemulsion-based organogels (MBGs were effectively employed for the immobilization of four commonly used lipases. During the asymmetric hydrolysis of ketoprofen vinyl ester at 30 °C for 24 h, lipase from Rhizomucor miehei and Mucor javanicus immobilized in microemulsion-based organogels (RML MBGs and MJL MBGs maintained good enantioselectivities (eep were 86.2% and 99.2%, respectively, and their activities increased 12.8-fold and 7.8-fold, respectively, compared with their free forms. They gave higher yields compared with other lipase MBGs and exhibited better enantioselectivity than commercial immobilized lipases. Immobilization considerably increased the tolerance to organic solvents and high temperature. Both MJL MBGs and RML MBGs showed excellent reusability during 30 cycles of repeated 24 h reactions at 30 °C (over 40 days. The system maintained yields of greater than 50%, while the ees values of RML MBGs and MJL MBGs remained nearly constant at 95% and 88%, respectively.

  13. Formulation and Evaluation of Organogels Containing Hyaluronan Microparticles for Topical Delivery of Caffeine.

    Science.gov (United States)

    Simsolo, Erol Eli; Eroğlu, İpek; Tanrıverdi, Sakine Tuncay; Özer, Özgen

    2018-04-01

    Cellulite is a dermal disorder including the extracellular matrix, the lymphatic and microcirculatory systems and the adipose tissue. Caffeine is used as the active moiety depending its preventive effect on localization of fat in the cellular structure. Hyaluronic acid (hyaluronan-HA) is a natural constituent of skin that generates formation and poliferation of new cells having a remarkable moisturizing ability. The aim of this study is to formulate HA microparticles loaded with caffeine via spray-drying method. Resulting microparticle formulations (33.97 ± 0.3 μm, span < 2, 88.56 ± 0.42% encapsulation efficiency) were distributed in lecithin organogels to maintain the proper viscosity for topical application. Following the characterization and cell culture studies, in vitro drug release and ex vivo permeation studies were performed. The accumulated amount of caffeine was twice higher than the aqueous solution for the microparticle-loaded organogels at 24 h (8262,673 μg/cm 2 versus 4676,691 μg/cm 2 ). It was related to the sustained behaviour of caffeine release from the microparticles. As a result, lecithin organogel containing HA-encapsulated microparticles could be considered as suitable candidate formulations for efficient topical drug delivery system of caffeine. In addition to that, synergistic effect of this combination appears as a promising approach for long-acting treatment of cellulite.

  14. Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production.

    Science.gov (United States)

    Templeman, James R; Rogers, Michael A; Cant, John P; McBride, Brian W; Osborne, Vern R

    2018-02-20

    The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate-based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48-h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves. A rice-bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48-h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low-viscosity oil-in-water emulsion. Average dry matter disappearance of gel-encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel. Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Characterization of Binary Organogels Based on Some Azobenzene Compounds and Alkyloxybenzoic Acids with Different Chain Lengths

    Directory of Open Access Journals (Sweden)

    Yongmei Hu

    2014-01-01

    Full Text Available In this work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and alkyloxybenzoic acids with different lengths of alkyl chains in various organic solvents were investigated and characterized. The corresponding gelation behaviors in 20 solvents were characterized and shown as new binary organic systems. It showed that the lengths of substituent alkyl chains in compounds have played an important role in the gelation formation of gelator mixtures in present tested organic solvents. Longer methylene chains in molecular skeletons in these gelators seem more suitable for the gelation of present solvents. Morphological characterization showed that these gelator molecules have the tendency to self-assemble into various aggregates from lamella, wrinkle, and belt to dot with change of solvents and gelator mixtures. Spectral characterization demonstrated different H-bond formation and hydrophobic force existing in gels, depending on different substituent chains in molecular skeletons. Meanwhile, these organogels can self-assemble to form monomolecular or multilayer nanostructures owing to the different lengths of due to alkyl substituent chains. Possible assembly modes for present xerogels were proposed. The present investigation is perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures.

  16. Promoting Spontaneous Second Harmonic Generation through Organogelation.

    Science.gov (United States)

    Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc

    2016-07-27

    An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment.

  17. Formes coopératives hybrids

    DEFF Research Database (Denmark)

    Spear, Roger

    2011-01-01

    la coopérative sociale. Il s’agit d’un modèle doublement « hybride », tant par son mode de gouvernance que par la diversité de ses pourvoyeurs de ressources. D’autres formes hybrides de coopératives se sont développées au cours de ces dernières années, en particulier dans le secteur des coopératives...

  18. Exploratory Topology Modelling of Form-Active Hybrid Structures

    DEFF Research Database (Denmark)

    Holden Deleuran, Anders; Pauly, Mark; Tamke, Martin

    2016-01-01

    The development of novel form-active hybrid structures (FAHS) is impeded by a lack of modelling tools that allow for exploratory topology modelling of shaped assemblies. We present a flexible and real-time computational design modelling pipeline developed for the exploratory modelling of FAHS...... that enables designers and engineers to iteratively construct and manipulate form-active hybrid assembly topology on the fly. The pipeline implements Kangaroo2's projection-based methods for modelling hybrid structures consisting of slender beams and cable networks. A selection of design modelling sketches...

  19. Effect of Solvent-Assisted Nanoscaled Organo-Gels on Morphology and Performance of Organic Solar Cells

    DEFF Research Database (Denmark)

    Zuo, Li-Jian; Hu, Xiao-Lian; Ye, Tao

    2012-01-01

    with that of the organo-gels in solution. Through this knowledge, we eventually achieve controlled morphology and optimized organic solar cells (OSCs) performance. Our results present a significant step forward for understanding the self-assembly behavior of conjugated polymers, control of their morphology...... and optimization of OSC performance....

  20. Crystal network for edible oil organogels: Possibilities and limitations of the fatty acid and fatty alcohol systems

    NARCIS (Netherlands)

    Schaink, H.M.; Malssen, van K.; Morgado-Alves, S.; Kalnin, D.J.E.; Linden, van der E.

    2007-01-01

    The textural and structural properties of organogels made by structuring liquid oil with mixtures of stearic acid (octadecanoic acid) and stearyl alcohol (octadecanol) have been studied. Optical, rheological and X-ray diffraction measurements have been used to investigate the influence of

  1. Novel odd/even effect of alkylene chain length on the photopolymerizability of organogelators.

    Science.gov (United States)

    Aoki, Ken'ichi; Kudo, Masabumi; Tamaoki, Nobuyuki

    2004-10-28

    [reaction: see text] Starting from diactylene diacarboxylic acids, we have synthesized a series of photopolymerizable organogelators that possess simple amide structures, different alkylene chain lengths, and either optically active or racemic 3,7-dimethyl-1-octylamine units. The alkylene chain length of these compounds exhibits a prominent odd/even effect with respect to the photopolymerization in the gel state and is accompanied by a stereostructural effect on the gelation ability.

  2. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer

    Science.gov (United States)

    Vallé, Karine; Belleville, Philippe; Pereira, Franck; Sanchez, Clément

    2006-02-01

    The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.

  3. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent.

    Science.gov (United States)

    Patel, Ashok R; Babaahmadi, Mehrnoosh; Lesaffer, Ans; Dewettinck, Koen

    2015-05-20

    The aim of this study was to use a detailed rheological characterization to gain new insights into the gelation behavior of natural waxes. To make a comprehensive case, six natural waxes (differing in the relative proportion of chemical components: hydrocarbons, fatty alcohols, fatty acids, and wax esters) were selected as organogelators to gel high-oleic sunflower oil. Flow and dynamic rheological properties of organogels prepared at critical gelling concentrations (Cg) of waxes were studied and compared using drag (stress ramp and steady flow) and oscillatory shear (stress and frequency sweeps) tests. Although, none of the organogels satisfied the rheological definition of a "strong gel" (G″/G' (ω) ≤ 0.1), on comparing the samples, the strongest gel (highest critical stress and dynamic, apparent, and static yield stresses) was obtained not with wax containing the highest proportion of wax esters alone (sunflower wax, SFW) but with wax containing wax esters along with a higher proportion of fatty alcohols (carnauba wax, CRW) although at a comparatively higher Cg (4%wt for latter compared to 0.5%wt for former). As expected, gel formation by waxes containing a high proportion of lower melting fatty acids (berry, BW, and fruit wax, FW) required a comparatively higher Cg (6 and 7%wt, respectively), and in addition, these gels showed the lowest values for plateau elastic modulus (G'LVR) and a prominent crossover point at higher frequency. The gelation temperatures (TG'=G″) for all the studied gels were lower than room temperature, except for SFW and CRW. The yielding-type behavior of gels was evident, with most gels showing strong shear sensitivity and a weak thixotropic recovery. The rheological behavior was combined with the results of thermal analysis and microstructure studies (optical, polarized, and cryo-scanning electron microscopy) to explain the gelation properties of these waxes.

  4. Formulation and clinical evaluation of silymarin pluronic-lecithin organogels for treatment of atopic dermatitis

    Directory of Open Access Journals (Sweden)

    Mady FM

    2016-03-01

    Full Text Available Fatma M Mady,1,2 Hanaa Essa,2 Tarek El-Ammawi,3 Hamdy Abdelkader,2 Amal K Hussein2 1Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Taibah University, Medina, Saudi Arabia; 2Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt; 3Department of Dermatology, STDs, and Andrology, Minia University Hospital, Minia, Egypt Abstract: Silymarin is a naturally occurring flavonoid drug; evidence from recent research has highlighted its use as a potential treatment for atopic dermatitis (AD. Both poor water solubility and drug permeability have hindered the percutaneous absorption of silymarin. Formulation of silymarin into pluronic-lecithin organogel (PLO basis for topical skin delivery is the main aim of this work. Six different PLO formulations were prepared containing various pluronic to lecithin ratios using two cosolvent systems of ethyl alcohol and dimethyl sulfoxide. Formulation 2 (20% pluronic and 3% lecithin was found to be the optimal base for topical delivery of silymarin as it showed optimum pH, viscosity, drug content, and satisfactory in vitro silymarin permeation. The silymarin PLO formulation significantly relieved inflammatory symptoms of AD such as redness, swelling, and inflammation. These findings warrant the ability for application of these novel silymarin PLO formulations as a novel treatment for AD. Keywords: silymarin, pluronic lecithin organogel, atopic dermatitis, skin penetration 

  5. Hybrids and glueballs: new forms of matter

    International Nuclear Information System (INIS)

    Close, F.

    1983-01-01

    Theories of the forces that bind together the atomic nucleus predict the existence of exotic forms of matter, dubbed ''glueballs'' and ''hybrids''. The underlying story illustrates progress in science through the agencies of analogy and paradox. (author)

  6. Supercapacitors based on self-assembled graphene organogel.

    Science.gov (United States)

    Sun, Yiqing; Wu, Qiong; Shi, Gaoquan

    2011-10-14

    Self-assembled graphene organogel (SGO) with 3-dimensional (3D) macrostructure was prepared by solvothermal reduction of a graphene oxide (GO) dispersion in propylene carbonate (PC). This SGO was used as an electrode material for fabricating supercapacitors with a PC electrolyte. The supercapacitor can be operated in a wide voltage range of 0-3 V and exhibits a high specific capacitance of 140 F g(-1) at a discharge current density of 1 A g(-1). Furthermore, it can still keep a specific capacitance of 90 F g(-1) at a high current density of 30 A g(-1). The maximum energy density of the SGO based supercapacitor was tested to be 43.5 Wh kg(-1), and this value is higher than those of the graphene based supercapacitors with aqueous or PC electrolytes reported previously. Furthermore, at a high discharge current density of 30 A g(-1), the energy and power densities of the supercapacitor were measured to be 15.4 Wh kg(-1) and 16,300 W kg(-1), respectively. These results indicate that the supercapacitor has a high specific capacitance and power density, and excellent rate capability.

  7. Small-Firm Networks: hybrid arrangement or organizational form?

    OpenAIRE

    Verschoore, Jorge Renato; Balestrin, Alsones; Perucia, Alexandre

    2014-01-01

    In the field of organizations, one relevant question is whether or not to consider networks as organizational forms. On the one hand, Williamson (1985) says that networks are hybrid arrangements. On the other, authors like Powell (1990) argue that networks constitute themselves as organizational forms. Given this dilemma, the present article proposes the analysis of organizational characteristics of small-firm networks (SFN). To reach such objective, twelve SFNs in distinct stages of developm...

  8. Craniomandibular form and body size variation of first generation mouse hybrids: A model for hominin hybridization.

    Science.gov (United States)

    Warren, Kerryn A; Ritzman, Terrence B; Humphreys, Robyn A; Percival, Christopher J; Hallgrímsson, Benedikt; Ackermann, Rebecca Rogers

    2018-03-01

    Hybridization occurs in a number of mammalian lineages, including among primate taxa. Analyses of ancient genomes have shown that hybridization between our lineage and other archaic hominins in Eurasia occurred numerous times in the past. However, we still have limited empirical data on what a hybrid skeleton looks like, or how to spot patterns of hybridization among fossils for which there are no genetic data. Here we use experimental mouse models to supplement previous studies of primates. We characterize size and shape variation in the cranium and mandible of three wild-derived inbred mouse strains and their first generation (F 1 ) hybrids. The three parent taxa in our analysis represent lineages that diverged over approximately the same period as the human/Neanderthal/Denisovan lineages and their hybrids are variably successful in the wild. Comparisons of body size, as quantified by long bone measurements, are also presented to determine whether the identified phenotypic effects of hybridization are localized to the cranium or represent overall body size changes. The results indicate that hybrid cranial and mandibular sizes, as well as limb length, exceed that of the parent taxa in all cases. All three F 1 hybrid crosses display similar patterns of size and form variation. These results are generally consistent with earlier studies on primates and other mammals, suggesting that the effects of hybridization may be similar across very different scenarios of hybridization, including different levels of hybrid fitness. This paper serves to supplement previous studies aimed at identifying F 1 hybrids in the fossil record and to introduce further research that will explore hybrid morphologies using mice as a proxy for better understanding hybridization in the hominin fossil record. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging

    Directory of Open Access Journals (Sweden)

    Sushil Raut

    2012-02-01

    Full Text Available Skin aging is an unavoidable aspect of human life. Premature skin aging can result from poor care, environmental pollutants, and ultraviolet radiation exposure. Wrinkles, lines, spots, uneven skin tone, and pigmentation are often indicators of skin aging. One cannot avoid aging but cosmetics and pharmaceutical approaches can minimize and delay the damage. Topical applications of biocompatible and biodegradable vehicles have been explored for delivering anti-aging compounds. Lecithin organogel (LO is an effective vehicle for topical delivery of many bioactive agents used in aging treatment. Lecithin is cell component isolated from soya beans or eggs and purified to show excellent gelation in non-polar solvents when combined with water. LO can form a heat-stable, resistant to microbial growth, visco-elastic, optically transparent, and non-birefringent micellar system. It serves as an organic medium to enhance dermal permeation of poorly permeable drugs by effectively partitioning into the skin. Its ability to dissolve in hydrophilic as well as in lipophilic drugs makes it a dynamic vehicle, which can be explored as a carrier for anti-aging agents.

  10. Hybrid plasmonic waveguides formed by metal coating of dielectric ridges

    DEFF Research Database (Denmark)

    Zenin, Volodymyr; Choudhury, Sajid; Saha, Soham

    2017-01-01

    Bound hybrid plasmon-polariton modes supported by waveguides, which are formed by gold coating of ridges etched into a silica substrate, are analyzed using numerical simulations and investigated experimentally using near-field microscopy at telecom wavelengths (1425-1625 nm). Drastic modification...

  11. Supramolecular Properties of Triazole-containing Two Armed Peptidomimetics: From Organogelators to Nucleotide-binding Tweezers

    Science.gov (United States)

    Chui, Tin Ki

    This thesis described the development of a new type of branched peptidomimetics using a class of previously reported triazole-containing peptidomimetics as the structural motif. The propensity of these new branched peptiomimetics in being an organogelator, forming supramolecular assemblies and recognizing anions and biomolecules was investigated. The quest began with the preparation of two different series of branched peptidomimetics, namely 69-K-aa3 (aa = V or L) and 70-B-aa3. The former series made use of the flexible L-lysine (K) as the branching unit while the latter series was composed of the relatively rigid 3,5-diminobenzoate (B). In each series, the peptidomimetic arms were composed of solely valine (V) or leucine (L). The effects of the identity of the amino acids and the branching units on the gelation and self-assembling properties of these branched bis(tripeptidomimetic)s were investigated. The 69-K-aa3 series was found to exhibit poor solubility in common organic solvents yet it was able to form strong and stable gels in aromatic solvents. The 70-B-aa3 series, on the other hand, was a poor organogelator despite its excellent solubility. Morphological studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the ability of the former to form a hyperbranched 3D network whereas the latter was only capable of forming isolated spherical lumps. Nevertheless, the latter displayed the ability in forming supramolecular polymers as shown from viscometric studies. Solution-to-gel transition temperature measurement of the gels formed by the 69-K-aa3 series and association constants determination by 1H NMR titration experiments for the supramolecular polymerization of the 70-B-aa3 series both suggested that peptidomimetic arms comprised of valine performed better than those made up of leucine in terms of association strength, and such a difference was attributed to the bulkier nature of the leucine side chain. In order to

  12. Kinetic studies of Chromobacterium viscosum lipase in AOT water in oil microemulsions and gelatin microemulsion-based organogels.

    Science.gov (United States)

    Jenta, T R; Batts, G; Rees, G D; Robinson, B H

    1997-06-05

    Kinetic studies have shown that octyl decanoate synthesis by Chromobacterium viscosum (CV) lipase in sodium bis-2-(ethylhexyl) sulfosuccinate (AOT) water in oil (w/o) microemulsions occurs via the nonsequential (ping-pong) bi bi mechanism. There was evidence of single substrate inhibition by decanoic acid at high concentrations. Initial rate data yielded estimates for acid and alcohol Michaelis constants of ca. 10(-1) mol dm(-3) and a maximum rate under saturation conditions of ca. 10(-3) mol dm(-3) s(-1) for a lipase concentration of 0.36 mg cm(-3). CV lipase immobilized in AOT microemulsion-based organogels (MBGs) was also found to catalyze the synthesis of octyl decanoate according to the ping-pong bi bi mechanism. Reaction rates were similar in the free and immobilized systems under comparable conditions. Initial rates at saturating (but noninhibiting) substrate concentrations were first order with respect to CV lipase concentration in both w/o microemulsions and the MBG/oil systems. Gradients yielded an apparent k(cat) = 4.4 x 10(-4) mol g(-1) s(-1) in the case of w/o microemulsions, and 6.1 x 10(-4) mol g(-1) s(-1) for CV lipase immobilized in the MBGs. A third system comprising w/o microemulsions containing substrates and gelatin at concentrations comparable to those employed in the MBG formulations, provided a useful link between the conventional liquid microemulsion medium and the solid organogels. The nongelation of these intermediate systems stems from the early inclusion of substrate during a modified preparative protocol. The presence of substrate appears to prevent the development of a percolated microstructure that is thought to be a prerequisite for MBG formation. FT-NMR was employed as a semicontinuous in situ assay procedure. The apparent activity expressed by CV lipase in compositionally equivalent liquid and solid phase gelatin-containing systems was similar. An apparent activation energy of 24 +/- 2 kJ mol(-1) was determined by (1)H-NMR for

  13. Why New Hybrid Organizations Are Formed: Historical Perspectives on Epistemic and Academic Drift

    Science.gov (United States)

    Kaiserfeld, Thomas

    2013-01-01

    By comparing three types of hybrid organizations--18th-century scientific academies, 19th-century institutions of higher vocational education, and 20th-century industrial research institutes--it is the purpose here to answer the question of why new hybrid organizations are continuously formed. Traditionally, and often implicitly, it is often…

  14. Why New Hybrid Organizations are Formed: Historical Perspectives on Epistemic and Academic Drift.

    Science.gov (United States)

    Kaiserfeld, Thomas

    2013-06-01

    By comparing three types of hybrid organizations-18th-century scientific academies, 19th-century institutions of higher vocational education, and 20th-century industrial research institutes-it is the purpose here to answer the question of why new hybrid organizations are continuously formed. Traditionally, and often implicitly, it is often assumed that emerging groups of potential knowledge users have their own organizational preferences and demands influencing the setup of new hybrid organizations. By applying the concepts epistemic and academic drift, it will be argued here, however, that internal organizational dynamics are just as important as changing historical conjunctures in the uses of science when understanding why new hybrid organizations are formed. Only seldom have older hybrid organizations sought to make themselves relevant to new categories of knowledge users as the original ones have been marginalized. Instead, they have tended to accede to ideals supported by traditional academic organizations with higher status in terms of knowledge management, primarily universities. Through this process, demand has been generated for the founding of new hybrid organizations rather than the transformation of existing ones. Although this study focuses on Swedish cases, it is argued that since Sweden strove consistently to implement existing international policy trends during the periods in question, the observations may be generalized to apply to other national and transnational contexts.

  15. DEVELOPMENT AND COMPREHENSIVE ASSESSMENT OF BULBOUS FORMS OF INTERSPECIFIC HYBRIDS OF ONION ALLIUM CEPA x A. FISTULOSUM

    Directory of Open Access Journals (Sweden)

    V. S. Romanov

    2016-01-01

    Full Text Available One of the way of increasing of genetic variability of onion (Allium cepa L. is the interspecific hybridization. Development of onion interspecific hybrids consists of the study of initial breeding forms, its heterogeneity, ways of crossing and pollination, overcoming of outbreeding problem, sterility and weak fertility of the hybrids of first and next generations, specifics of hybrid’s seeds development, identification and selection of recombinant forms with breeding valuable traits. The stages of development of the bulbous forms of interspecific hybrids of onion are presented in the article. The study was conducted in the “All-Russian Scientific Research Institute of vegetable breeding and seed production” of the Moscow region. The plants of inbreed progenies I1-5 from BC1-2F5 of bulb forms of interspecific hybrids A. cepa х A. Fistulosum as well as the parental forms were analyzed. The breeding and phytopathological assessment of recombinant forms of onion interspecific hybrids was done for qualitative and quantitative traits and for resistance to downy mildew. Using the individual selection for quality and quantity traits, it was found that the forms, whose traits were not undergo the inbreeding depression because of the higher homozygosity can be used for development of linear initial material for breeding for heterosis. The forms with the inbreeding depression have to be used for crossbreeding. Along with increasing of homozygosity, the new modified genotypes appear because of potential variability and genes recombination. It allows to make the purposive selection of recombinant forms for valuable traits. The selected onion forms from inbreed progenies of I1-5 from BC1-2F5 which have bulbs of flat and well-rounded-flat shape are characterized by high resistance to downy mildew and bulbs with good storage ability. The selection process of the recombinant forms from progenies of onion interspecific hybrids obtained based on repeated

  16. Organogel-emulsions with mixtures of β-sitosterol and γ-oryzanol: influence of water activity and type of oil phase on gelling capability.

    Science.gov (United States)

    Sawalha, Hassan; den Adel, Ruud; Venema, Paul; Bot, Arjen; Flöter, Eckhard; van der Linden, Erik

    2012-04-04

    In this study, water-in-oil emulsions were prepared from water containing different salt concentrations dispersed in an oil phase containing a mixture of β-sitosterol and γ-oryzanol. In pure oil, the β-sitosterol and γ-oryzanol molecules self-assemble into tubular microstructures to produce a firm organogel. However, in the emulsion, the water molecules bind to the β-sitosterol molecules, forming monohydrate crystals that hinder the formation of the tubules and resulting in a weaker emulsion-gel. Addition of salt to the water phase decreases the water activity, thereby suppressing the formation of sitosterol monohydrate crystals even after prolonged storage times (∼1 year). When the emulsions were prepared with less polar oils, the tubular microstructure was promoted, which significantly increased the firmness of the emulsion-gel. The main conclusion of this study is that the formation of oryzanol and sitosterol tubular microstructure in the emulsion can be promoted by reducing the water activity and/or by using oils of low polarity.

  17. Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles

    KAUST Repository

    Mora Cordova, Angel

    2018-01-30

    One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite\\'s conductivity based on these parameters.

  18. Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles

    KAUST Repository

    Mora Cordova, Angel; Han, Fei; Lubineau, Gilles

    2018-01-01

    One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite's conductivity based on these parameters.

  19. Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve

    Directory of Open Access Journals (Sweden)

    Piotrowski Jeff S

    2012-04-01

    Full Text Available Abstract Background Interspecific hybridization occurs in every eukaryotic kingdom. While hybrid progeny are frequently at a selective disadvantage, in some instances their increased genome size and complexity may result in greater stress resistance than their ancestors, which can be adaptively advantageous at the edges of their ancestors' ranges. While this phenomenon has been repeatedly documented in the field, the response of hybrid populations to long-term selection has not often been explored in the lab. To fill this knowledge gap we crossed the two most distantly related members of the Saccharomyces sensu stricto group, S. cerevisiae and S. uvarum, and established a mixed population of homoploid and aneuploid hybrids to study how different types of selection impact hybrid genome structure. Results As temperature was raised incrementally from 31°C to 46.5°C over 500 generations of continuous culture, selection favored loss of the S. uvarum genome, although the kinetics of genome loss differed among independent replicates. Temperature-selected isolates exhibited greater inherent and induced thermal tolerance than parental species and founding hybrids, and also exhibited ethanol resistance. In contrast, as exogenous ethanol was increased from 0% to 14% over 500 generations of continuous culture, selection favored euploid S. cerevisiae x S. uvarum hybrids. Ethanol-selected isolates were more ethanol tolerant than S. uvarum and one of the founding hybrids, but did not exhibit resistance to temperature stress. Relative to parental and founding hybrids, temperature-selected strains showed heritable differences in cell wall structure in the forms of increased resistance to zymolyase digestion and Micafungin, which targets cell wall biosynthesis. Conclusions This is the first study to show experimentally that the genomic fate of newly-formed interspecific hybrids depends on the type of selection they encounter during the course of evolution

  20. Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles

    Science.gov (United States)

    Mora, A.; Han, F.; Lubineau, G.

    2018-04-01

    One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in the remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite’s conductivity based on these parameters.

  1. Effect of partial replacement of pork meat with an olive oil organogel on the physicochemical and sensory quality of dry-ripened venison sausages.

    Science.gov (United States)

    Utrilla, M C; García Ruiz, A; Soriano, A

    2014-08-01

    A venison salchichon was made using varying proportions of olive oil to replace the traditional pork meat and to obtain a healthier product. Six types of salchichon were produced. The control type contained 75% lean venison and 25% pork meat; in the other types, 15%, 25%, 35%, 45% and 55% of the pork meat were replaced by olive oil introduced in the form of an organogel (olive oil emulsified with soy protein and water). All types were satisfactory in terms of physicochemical characteristics (pH, a(w), moisture loss) and instrumental colour throughout ripening, and displayed acceptable levels of lipolysis (acidity index) and lipid oxidation (TBARS). Higher proportions of olive oil prompted an increase in monounsaturated fatty acid content (mainly C18:1). All six types of salchichon were judged acceptable by consumers, the highest scores being given to those in which no more than 25% of the pork meat was replaced by olive oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Biofilm formed from organic-inorganic hybrid tri-ureasil PPO for transdermal drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Eduardo F.; Jesus, Natana Aparecida; Oliveira, Pollyana Francielli; Furtado, Ricardo A.; Tavares, Denise Crispim, E-mail: eduardo.molina@unifran.edu.br [Universidade de Franca (UNIFRAN), SP (Brazil)

    2016-07-01

    Full text: In this work we evaluated the viability of the tri-ureasil PPO hybrid as biofilm forming for release of active substances such as lignans. The samples were characterized by X-ray diffraction (XRD) and infrared (FTIR). The swelling degree and the influence of the catalyst on time of formation of a hybrid biofilm were evaluated. The cytotoxicity of the materials were evaluated using the XTT colorimetric assay where GM07492A strain was treated with different concentrations of the hybrid. The time of film formation depends on the quantity of the catalyst used in the synthesis. By varying the catalyst quantity during the synthesis, a good flexible film can be obtained, which is easy to be coated on the skin surface and in situ formed a very thin and comfortable film with an aesthetical appearance. Moreover, the hybrid films were colorless and transparent. The toxicity/viability of all samples has also been studied using normal human cells for future applications. The hybrid matrices did not significantly reduce cell viability, demonstrating that siloxane-polyether materials were biocompatible. All the materials presenting a amorphous structure (XRD) and the characteristic bands of vibrations (FTIR) of the polymer chain do not change after incorporation of lignans. (author)

  3. Biofilm formed from organic-inorganic hybrid tri-ureasil PPO for transdermal drug delivery system

    International Nuclear Information System (INIS)

    Molina, Eduardo F.; Jesus, Natana Aparecida; Oliveira, Pollyana Francielli; Furtado, Ricardo A.; Tavares, Denise Crispim

    2016-01-01

    Full text: In this work we evaluated the viability of the tri-ureasil PPO hybrid as biofilm forming for release of active substances such as lignans. The samples were characterized by X-ray diffraction (XRD) and infrared (FTIR). The swelling degree and the influence of the catalyst on time of formation of a hybrid biofilm were evaluated. The cytotoxicity of the materials were evaluated using the XTT colorimetric assay where GM07492A strain was treated with different concentrations of the hybrid. The time of film formation depends on the quantity of the catalyst used in the synthesis. By varying the catalyst quantity during the synthesis, a good flexible film can be obtained, which is easy to be coated on the skin surface and in situ formed a very thin and comfortable film with an aesthetical appearance. Moreover, the hybrid films were colorless and transparent. The toxicity/viability of all samples has also been studied using normal human cells for future applications. The hybrid matrices did not significantly reduce cell viability, demonstrating that siloxane-polyether materials were biocompatible. All the materials presenting a amorphous structure (XRD) and the characteristic bands of vibrations (FTIR) of the polymer chain do not change after incorporation of lignans. (author)

  4. Hexagonally Ordered Arrays of α-Helical Bundles Formed from Peptide-Dendron Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Deborah A. [Department; Rokhlenko, Yekaterina [Department; Marine, Jeannette E. [Department; David, Rachelle [Department; Sahoo, Dipankar [Department; Watson, Matthew D. [Department; Koga, Tadanori [Department; Department; Osuji, Chinedum O. [Department; Rudick, Jonathan G. [Department

    2017-10-24

    Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometry in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.

  5. A novel bioprinting method and system for forming hybrid tissue engineering constructs.

    Science.gov (United States)

    Shanjani, Y; Pan, C C; Elomaa, L; Yang, Y

    2015-12-18

    Three dimensional (3D) bioprinting is a promising approach to form tissue engineering constructs (TECs) via positioning biomaterials, growth factors, and cells with controlled spatial distribution due to its layer-by-layer manufacturing nature. Hybrid TECs composed of relatively rigid porous scaffolds for structural and mechanical integrity and soft hydrogels for cell- and growth factor-loading have a tremendous potential to tissue regeneration under mechanical loading. However, despite excessive progress in the field, the current 3D bioprinting techniques and systems fall short in integration of such soft and rigid multifunctional components. Here we present a novel 3D hybrid bioprinting technology (Hybprinter) and its capability enabling integration of soft and rigid components for TECs. Hybprinter employs digital light processing-based stereolithography (DLP-SLA) and molten material extrusion techniques for soft and rigid materials, respectively. In this study, poly-ethylene glycol diacrylate (PEGDA) and poly-(ε-caprolactone) (PCL) were used as a model material for soft hydrogel and rigid scaffold, respectively. It was shown that geometrical accuracy, swelling ratio and mechanical properties of the hydrogel component can be tailored by DLP-SLA module. We have demonstrated the printability of variety of complex hybrid construct designs using Hybprinter technology and characterized the mechanical properties and functionality of such constructs. The compressive mechanical stiffness of a hybrid construct (90% hydrogel) was significantly higher than hydrogel itself (∼6 MPa versus 100 kPa). In addition, viability of cells incorporated within the bioprinted hybrid constructs was determined approximately 90%. Furthermore, a functionality of a hybrid construct composed of porous scaffold with an embedded hydrogel conduit was characterized for vascularized tissue engineering applications. High material diffusion and high cell viability in about 2.5 mm distance

  6. Formulation and clinical evaluation of silymarin pluronic-lecithin organogels for treatment of atopic dermatitis

    Science.gov (United States)

    Mady, Fatma M; Essa, Hanaa; El-Ammawi, Tarek; Abdelkader, Hamdy; Hussein, Amal K

    2016-01-01

    Silymarin is a naturally occurring flavonoid drug; evidence from recent research has highlighted its use as a potential treatment for atopic dermatitis (AD). Both poor water solubility and drug permeability have hindered the percutaneous absorption of silymarin. Formulation of silymarin into pluronic-lecithin organogel (PLO) basis for topical skin delivery is the main aim of this work. Six different PLO formulations were prepared containing various pluronic to lecithin ratios using two cosolvent systems of ethyl alcohol and dimethyl sulfoxide. Formulation 2 (20% pluronic and 3% lecithin) was found to be the optimal base for topical delivery of silymarin as it showed optimum pH, viscosity, drug content, and satisfactory in vitro silymarin permeation. The silymarin PLO formulation significantly relieved inflammatory symptoms of AD such as redness, swelling, and inflammation. These findings warrant the ability for application of these novel silymarin PLO formulations as a novel treatment for AD. PMID:27022248

  7. Formulation and clinical evaluation of silymarin pluronic-lecithin organogels for treatment of atopic dermatitis.

    Science.gov (United States)

    Mady, Fatma M; Essa, Hanaa; El-Ammawi, Tarek; Abdelkader, Hamdy; Hussein, Amal K

    2016-01-01

    Silymarin is a naturally occurring flavonoid drug; evidence from recent research has highlighted its use as a potential treatment for atopic dermatitis (AD). Both poor water solubility and drug permeability have hindered the percutaneous absorption of silymarin. Formulation of silymarin into pluronic-lecithin organogel (PLO) basis for topical skin delivery is the main aim of this work. Six different PLO formulations were prepared containing various pluronic to lecithin ratios using two cosolvent systems of ethyl alcohol and dimethyl sulfoxide. Formulation 2 (20% pluronic and 3% lecithin) was found to be the optimal base for topical delivery of silymarin as it showed optimum pH, viscosity, drug content, and satisfactory in vitro silymarin permeation. The silymarin PLO formulation significantly relieved inflammatory symptoms of AD such as redness, swelling, and inflammation. These findings warrant the ability for application of these novel silymarin PLO formulations as a novel treatment for AD.

  8. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  9. Modulation of repetitive genes in the parent forms of heterozygous corn hybrids

    International Nuclear Information System (INIS)

    Gilyazetdinov, S.Ya.; Zimnitskii, A.N.; Yakhin, I.A.; Bikbaeva, E.S.

    1987-01-01

    The number of copies of the genes of high-molecular-weight rRNA, 5 S r RNA, and certain other families of repetitive sequences of DNA in the genome of different forms of corn is not coordinated but is stably inherited in the same strains. The authors present the results of their investigations into the repetition of the genes of tRNA, 5 S rRNA, histones, and the controlling element Ds of corn for the highly heterozygous hybrid Slava (VIR 44 x VIR 38), the medium-heterozygous hybrid Svetoch (VIR 40 x VIR 43), the low heterozygous hybrid Iskra (VIR 26 x VIR 27), and their parent strains. The relative content of these sequences was studied by the molecular hybridization of DNA immobilized on nitrocellulose filters with [ 125 I]tRNA labeled in vitro, 5 S rRNA, histone DNA of Drosophila, and the Ds-element of corn. The DNA preparations were isolated from the zones of the meristem (1.5-2mm), elongation (4-5mm), differentiation of the roots (3 cm), of 3-4 day seedlings, and from isolated embryos of 4 h and 24 h seedlings. The DNA of the embryos immobilized on the filters was preliminarily incubated with unlabeled high-molecular-weight rRNA in the experiments with tRNA and 5 S rRNA, while when histone DNA and the Ds element of corn were used in the hybridization reaction, it was preliminary incubated with plasmid DNA

  10. Calibrated and Interactive Modelling of Form-Active Hybrid Structures

    DEFF Research Database (Denmark)

    Quinn, Gregory; Holden Deleuran, Anders; Piker, Daniel

    2016-01-01

    Form-active hybrid structures (FAHS) couple two or more different structural elements of low self weight and low or negligible bending flexural stiffness (such as slender beams, cables and membranes) into one structural assembly of high global stiffness. They offer high load-bearing capacity...... software packages which introduce interruptions and data exchange issues in the modelling pipeline. The mechanical precision, stability and open software architecture of Kangaroo has facilitated the development of proof-of-concept modelling pipelines which tackle this challenge and enable powerful...... materially-informed sketching. Making use of a projection-based dynamic relaxation solver for structural analysis, explorative design has proven to be highly effective....

  11. Barrières pré-zygotiques chez les hybrides entre formes sauvages du niébé, Vigna unguilata (L. Walp.

    Directory of Open Access Journals (Sweden)

    Baudoin JP.

    2006-01-01

    Full Text Available Hybrids pre-zygotic barriers between wild forms of cowpea. The wild forms of cowpea, Vigna unguiculata, constitute an important gene pool insufficiently exploited for the improvement of the cultivated form. In order to promote the use of these wild forms in the genetic improvement programmes, we undertook to understand the various incompatibility reactions which appear in the crosses between wild forms. Efforts were concentrated to understand the incompatibility barriers in the hybridizations between subsp. baoulensis NI 933 and the other wild forms of V. unguiculata. Thanks to the use of the aniline blue fluorescence, we observed a high frequency of pre-zygotic barriers. They appear in three sites, i.e. the higher and lower third of the style, and within the ovary. However, these incompatibility barriers are not absolute. Indeed, in our hybridizations, more than 4% of the ovules were fertilized in the various studied combinations.

  12. Tunable volatile release from organogel-emulsions based on the self-assembly of β-sitosterol and γ-oryzanol.

    Science.gov (United States)

    Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan

    2017-04-15

    A current challenge in the area of food emulsion is the design of microstructure that provides controlled release of volatile compounds during storage and consumption. Here, a new strategy addressed this problem at the fundamental level by describing the design of organogel-based emulsion from the self-assembly of β-sitosterol and γ-oryzanol that are capable of tuning volatile release. The results showed that the release rate (v 0 ), maximum headspace concentrations (C max ) and partition coefficients (k a / e ) above structured emulsions were significantly lower than unstructured emulsions and controlled release doing undergo tunable though the self-assembled interface and core fine microstructure from internal phase under dynamic and static condition. This result provides an understanding of how emulsions can behave as delivery system to better design novel food products with enhanced sensorial and nutritional attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Tamoxifen-loaded lecithin organogel (LO) for topical application: Development, optimization and characterization.

    Science.gov (United States)

    Bhatia, Amit; Singh, Bhupinder; Raza, Kaisar; Wadhwa, Sheetu; Katare, Om Prakash

    2013-02-28

    Lecithin organogels (LOs) are semi-solid systems with immobilized organic liquid phase in 3-D network of self-assembled gelators. This paper attempts to study the various attributes of LOs, starting from selection of materials, optimization of influential components to LO specific characterization. After screening of various components (type of gelators, organic and aqueous phase) and construction of phase diagrams, a D-optimal mixture design was employed for the systematic optimization of the LO composition. The response surface plots were constructed for various response variables, viz. viscosity, gel strength, spreadability and consistency index. The optimized LO composition was searched employing overlay plots. Subsequent validation of the optimization study employing check-point formulations, located using grid search, indicated high degree of prognostic ability of the experimental design. The optimized formulation was characterized for morphology, drug content, rheology, spreadability, pH, phase transition temperatures, and physical and chemical stability. The outcomes of the study were interesting showing high dependence of LO attributes on the type and amount of phospholipid, Poloxamer™, auxillary gelators and organic solvent. The optimized LO was found to be quite stable, easily applicable and biocompatible. The findings of the study can be utilized for the development of LO systems of other drugs for the safer and effective topical delivery. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. A Simple Method for Forming Hybrid Core-Shell Nanoparticles Suspended in Water

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2008-01-01

    addition fragmentation chain transfer (RAFT polymerization as dispersant. Then, the resulting dispersion is engaged in a radical emulsion polymerization process whereby a hydrophobic organic monomer (styrene and butyl acrylate is polymerized to form the shell of the hybrid nanoparticle. This method is extremely versatile, allowing the preparation of a variety of nanocomposites with metal oxides (alumina, rutile, anatase, barium titanate, zirconia, copper oxide, metals (Mo, Zn, and even inorganic nitrides (Si3N4.

  15. PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity

    International Nuclear Information System (INIS)

    Tang, Bingtao; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-01-01

    The thermal conductivity of form-stable PEG/SiO 2 phase change material (PCM) was enhanced by in situ doping of Al 2 O 3 using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO 2 –Al 2 O 3 reached 124 J g −1 , and thermal conductivity improved by 12.8% for 3.3 wt% Al 2 O 3 in the PCM compared with PEG/SiO 2 . The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO 2 –Al 2 O 3 hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects

  16. Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material

    International Nuclear Information System (INIS)

    Cai, Yibing; Hu, Yuan; Song, Lei; Kong, Qinghong; Yang, Rui; Zhang, Yinping; Chen, Zuyao; Fan, Weicheng

    2007-01-01

    A kind of form stable phase change material (PCM) based on high density polyethylene (HDPE), paraffin, organophilic montmorillonite (OMT) and intumescent flame retardant (IFR) hybrids is prepared by using a twin screw extruder technique. This kind of form stable PCM is made of paraffin as a dispersed phase change material and HDPE as a supporting material. The structure of the montmorillonite (MMT) and OMT is characterized by X-ray diffraction (XRD) and high resolution electron microscopy (HREM). The analysis indicates that the MMT is a kind of lamellar structure, and the structure does not change after organic modification. However, the structure of the hybrid is evidenced by the XRD and scanning electronic microscope (SEM). Its thermal stability, latent heat and flame retardant properties are given by the Thermogravimetry analysis (TGA), differential scanning calorimeter (DSC) method and cone calorimeter, respectively. Synergy is observed between the OMT and IFR. The XRD result indicates that the paraffin intercalates into the silicate layers of the OMT, thus forming a typically intercalated hybrid. The SEM investigation and DSC result show that the additives of OMT and IFR have hardly any effect on the HDPE/paraffin three dimensional netted structure and the latent heat. In TGA curves, although the onset of weight loss of flame-retardant form stable PCMs occur at a lower temperature than that of form stable PCM, flame-retardant form stable PCMs produce a large amount of char residue at 700 o C. The synergy between OMT and IFR leads to the decrease of the heat release rate (HRR), contributing to improvement of the flammability performance

  17. Synthesis and Properties of Gelators Derived from Tetraphenylethylene and Gallic Acid with Aggregation-Induced Emission

    Science.gov (United States)

    Luo, Miao; Zhou, Xie; Chi, Zhenguo; Ma, Chunping; Zhang, Yi; Liu, Siwei; Xu, Jiarui

    2013-09-01

    Two novel organogelators (TEG and TAG) based on tetraphenylethylene and 3,4,5-tris(dodecyloxy) benzoic acid were synthesized through ester bond and amido bond linkages, respectively. Compounds TEG and TAG were able to induce gelation in ethanol. Aggregation-induced enhanced emission was observed in these organogelator molecules, with increased fluorescence intensity from the solutions to the gels. The completely thermoreversible gelation occurred due to the aggregation of the organogelators. In the process, a fibrous network was formed by a combination of intermolecular hydrogen bonding, π-π stacking and van der Waals interactions. These phenomena were observed in the xerogels by field-emission scanning electron microscopy and Fourier-transform infrared spectroscopy. The results of differential scanning calorimetry and polarized optical microscopy indicated that compound TAG exhibited stable liquid crystalline phases over a wide temperature range. The linking groups have severe influence on the properties of the organogelators, which was mainly attributed to the hydrogen bonding interaction in compound TAG.

  18. Biocatalytic Synthesis of Flavor Ester “Pentyl Valerate” Using Candida rugosa Lipase Immobilized in Microemulsion Based Organogels: Effect of Parameters and Reusability

    Directory of Open Access Journals (Sweden)

    Tripti Raghavendra

    2014-01-01

    Full Text Available Pentyl valerate was synthesized biocatalytically using Candida rugosa lipase (CRL immobilized in microemulsion based organogels (MBGs. The optimum conditions were found to be pH 7.0, temperature of 37°C, ratio of concentration of water to surfactant (Wo of 60, and the surfactant sodium bis-2-(ethylhexylsulfosuccinate (AOT for MBG preparation. Although kinetic studies revealed that the enzyme in free form had high affinity towards substrates (Km = 23.2 mM for pentanol and 76.92 mM for valeric acid whereas, after immobilization, the Km values increased considerably (74.07 mM for pentanol and 83.3 mM for valeric acid resulting in a slower reaction rate, the maximum conversion was much higher in case of immobilized enzyme (~99% as compared to free enzyme (~19%. Simultaneous effects of important parameters were studied using response surface methodology (RSM conjugated with Box-Behnken design (BBD with five variables (process parameters, namely, enzyme concentration, initial water content (Wo, solvent used for MBG preparation, substrate ratio and time, and response as the final product formation, that is, pentyl valerate (%. The MBGs were reused for 10 consecutive cycles for ester synthesis. Efficacy of AOT/isooctane as dehydrating agent for extracting excess water from MBGs was found to exert a positive effect on the esterification reaction.

  19. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    Science.gov (United States)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  20. Springback prediction in sheet metal forming process based on the hybrid SA

    International Nuclear Information System (INIS)

    Guo Yuqin; Jiang Hong; Wang Xiaochun; Li Fuzhu

    2005-01-01

    In terms of the intensive similarity between the sheet metal forming-springback process and that of the annealing of metals, it is suggested that the simulation of the sheet metal forming process is performed with the Nonlinear FEM and the springback prediction is implemented by solving the large-scale combinational optimum problem established on the base of the energy descending and balancing in deformed part. The BFGS-SA hybrid SA approach is proposed to solve this problem and improve the computing efficiency of the traditional SA and its capability of obtaining the global optimum solution. At the same time, the correlative annealing strategies for the SA algorithm are determined in here. By comparing the calculation results of sample part with those of experiment measurement at the specified sections, the rationality of the schedule of springback prediction used and the validity of the BFGS-SA algorithm proposed are verified

  1. Epoxy-Based Organogels for Thermally Reversible Light Scattering Films and Form-Stable Phase Change Materials.

    Science.gov (United States)

    Puig, Julieta; Dell' Erba, Ignacio E; Schroeder, Walter F; Hoppe, Cristina E; Williams, Roberto J J

    2017-03-29

    Alkyl chains of β-hydroxyesters synthesized by the capping of terminal epoxy groups of diglycidylether of bisphenol A (DGEBA) with palmitic (C16), stearic (C18), or behenic (C22) fatty acids self-assemble forming a crystalline phase. Above a particular concentration solutions of these esters in a variety of solvents led to supramolecular (physical) gels below the crystallization temperature of alkyl chains. A form-stable phase change material (FS-PCM) was obtained by blending the ester derived from behenic acid with eicosane. A blend containing 20 wt % ester was stable as a gel up to 53 °C and exhibited a heat storage capacity of 161 J/g, absorbed during the melting of eicosane at 37 °C. Thermally reversible light scattering (TRLS) films were obtained by visible-light photopolymerization of poly(ethylene glycol) dimethacrylate-ester blends (50 wt %) in the gel state at room temperature. The reaction was very fast and not inhibited by oxygen. TRLS films consisted of a cross-linked methacrylic network interpenetrated by the supramolecular network formed by the esters. Above the melting temperature of crystallites formed by alkyl chains, the film was transparent due to the matching between refractive indices of the methacrylic network and the amorphous ester. Below the crystallization temperature, the film was opaque because of light dispersion produced by the organic crystallites uniformly dispersed in the material. Of high significance for application was the fact that the contrast ratio did not depend on heating and cooling rates.

  2. PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change materials with enhanced thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bingtao, E-mail: tangbt@dlut.edu.cn; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-03-01

    The thermal conductivity of form-stable PEG/SiO{sub 2} phase change material (PCM) was enhanced by in situ doping of Al{sub 2}O{sub 3} using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO{sub 2}–Al{sub 2}O{sub 3} reached 124 J g{sup −1}, and thermal conductivity improved by 12.8% for 3.3 wt% Al{sub 2}O{sub 3} in the PCM compared with PEG/SiO{sub 2}. The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects.

  3. The Industrial Organisation of the Dance Industry in the Netherlands: a Transaction Cost Perspective on Hybrid Forms of Organisation

    OpenAIRE

    Frank A.G. den Butter; Jelle Joustra

    2014-01-01

    The organization of Electronic Dance Music (EDM) events has become a major export product in the Netherlands. In order to respond quickly to the new trends and needs, innovative forms of cooperation between producers are to be set up for the organization of exciting new events. A case study on how these EDM events are actually organised in the Netherlands shows that the best way to do it is through hybrid forms of organisation, which combine horizontal forms of organisation through the market...

  4. Pluronic lecithin organogel (PLO) of diltiazem hydrochloride: effect of solvents/penetration enhancers on ex vivo permeation.

    Science.gov (United States)

    Parhi, Rabinarayan; Suresh, Podilam; Pattnaik, Subasini

    2016-06-01

    In the present study, pluronic lecithin organogel (PLO) of diltiazem hydrochloride (DZH) was developed by taking different ratios of organic phase to aqueous phase (1:3, 1:4, and 1:5) with varying concentration of soya lecithin (20, 30, and 40 % w/w) in organic phase (isopropyl myristate, IPM) and pluronic (20, 25, and 30 % w/w) in aqueous phase, respectively, and characterized for in vitro parameters and ex vivo permeation study. The results of in vitro parameters were found to be within permissible limit and all the PLOs were physically stable at refrigeration and ambient temperature. The influence of phase ratio and different concentrations of soya lecithin on DZH release from the PLOs was found to be significant (p < 0.05), whereas the influences of different concentrations of pluronic were insignificant. The effect of different solvents/penetration enhancers viz. IPM, propylene glycol (PG), dimethyl sulphoxide (DMSO), and D-limonene, in combination and alone, on the permeation of DZH across the dorsal skin of rat was studied. Among all, formulation containing IPM (PLO6) exhibited highest flux of 147.317 μg/cm(2)/h. Furthermore, histopathology section of treated skin sample illustrated that lipid bilayer disruption was the mechanism for the DZH permeation. The above results indicated that PLO6 may serve as a promising alternative delivery system for DZH in the effective treatment of hypertension.

  5. Hybrid mimics and hybrid vigor in Arabidopsis

    Science.gov (United States)

    Wang, Li; Greaves, Ian K.; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S.; Peacock, W. James

    2015-01-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture. PMID:26283378

  6. Optimization and evaluation of pluronic lecithin organogels as a transdermal delivery vehicle for sinomenine.

    Science.gov (United States)

    Ba, Wenqiang; Li, Zhou; Wang, Lisheng; Wang, Ding; Liao, Weiguo; Fan, Wentao; Wu, Yinai; Liao, Fengyun; Yu, Jianye

    2016-08-01

    The purpose of the present study was to prepare and optimize sinomenine (SIN) pluronic lecithin organogels system (PLO), and to evaluate the permeability of the optimized PLO in vitro and in vivo. Box-Behnken design was used to optimize the PLO and the optimized formulation was pluronic F127 of 19.61%, lecithin of 3.60% and SIN of 1.27%. The formulation was evaluated its skin permeation and drug deposition both in vitro and in vivo compared with gel. Permeation and deposition studies of PLO were carried out with Franz diffusion cells in vitro and with microdialysis in vivo. In vitro studies, permeation rate (Jss) of SIN from PLO was 146.55 ± 2.93 μg/cm(2)/h, significantly higher than that of gel (120.39 μg/cm(2)/h) and the amount of SIN deposited in skin from the PLO was 10.08 ± 0.86 μg/cm(2), significantly larger than that from gel (6.01 ± 0.04 μg/cm(2)). In vivo skin microdialysis studies showed that the maximum concentration (Cmax) of SIN from PLO in "permeation study" and "drug-deposition study" were 150.27 ± 20.85 μg/ml and 67.95 μg/ml, respectively, both significantly higher than that of SIN from gel (29.66 and 6.73 μg/ml). The results recommend that PLO can be used as an advantageous transdermal delivery vehicle to enhance the permeation and skin deposition of SIN.

  7. Hard and transparent films formed by nanocellulose-TiO2 nanoparticle hybrids.

    Directory of Open Access Journals (Sweden)

    Christina Schütz

    Full Text Available The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young's modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces.

  8. Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids

    Science.gov (United States)

    Schütz, Christina; Sort, Jordi; Bacsik, Zoltán; Oliynyk, Vitaliy; Pellicer, Eva; Fall, Andreas; Wågberg, Lars; Berglund, Lars; Bergström, Lennart; Salazar-Alvarez, German

    2012-01-01

    The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young’s modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces. PMID:23049689

  9. Hybridization of crime fiction genre forms as a representation of contemporary cultural process

    Directory of Open Access Journals (Sweden)

    G. O. Krapivnyk

    2014-05-01

    Full Text Available The research is devoted to the consideration of hybridization of crime fiction forms in the contemporary cultural process. The work showed that, from the point of view of the culture development, sophistication of the classical crime fiction formula, hybridization of detective fiction with other fiction genres is a natural process of the strive to vary і diversify, combine genres, styles and means of text presentation (from a hard copy or audio book to video and computer games, which is related to the crisis of the Modernity project epoch, where fiction genres were quite self­sufficient, and the transition to the postmodern (or updated Modern, where the human consciousness is dominated by the processes of simultaneous specialization and combination of various industries, in other words, divergence and convergence. It may be claimed that a detective text as one of the most popular genres in the contemporary information culture, in particular, because it reveals secrets, clarifies vague things and assists in discovering the truth, transforms so that there is a process of detectivization of different text products of the cultural industry. At the same time the very detective formula as a component of various genres becomes a tool for playing and influencing the consciousness of a contemporary person.

  10. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    International Nuclear Information System (INIS)

    Wang Yige; Wang Li; Li Huanrong; Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-01-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex

  11. Hybrid quantum-classical master equations

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    We discuss hybrid master equations of composite systems, which are hybrids of classical and quantum subsystems. A fairly general form of hybrid master equations is suggested. Its consistency is derived from the consistency of Lindblad quantum master equations. We emphasize that quantum measurement is a natural example of exact hybrid systems. We derive a heuristic hybrid master equation of time-continuous position measurement (monitoring). (paper)

  12. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    Science.gov (United States)

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Molecular Characterization of Natural Hybrids Formed between Five Related Indigenous Clade 6 Phytophthora Species

    Science.gov (United States)

    Burgess, Treena I.

    2015-01-01

    Most Phytophthora hybrids characterized to date have emerged from nurseries and managed landscapes, most likely generated as a consequence of biological invasions associated with the movement of living plants and germplasm for ornamental, horticultural and agricultural purposes. Presented here is evidence for natural hybridization among a group of five closely related indigenous clade 6 Phytophthora species isolated from waterways and riparian ecosystems in Western Australia. Molecular characterization of hybrids consisted of cloning and sequencing two nuclear genes (ITS and ASF), sequencing of two further nuclear loci (BT and HSP) and of two mitochondrial loci (COI and NADH). Additionally, phenotypic traits including morphology of sporangia and optima and maxima temperatures for growth were also determined. In most cases the nuclear genes were biparentally and in all cases the mtDNA were uniparentally inherited, indicating hybrid formation through sexual crosses. Some isolates bear the molecular signature of three parents suggesting additional hybrid events, although it cannot be determined from the data if these were sequential or simultaneous. These species and their hybrids co-exist in riparian ecosystems and waterways where their ability for rapid asexual proliferation would enable them to rapidly colonize green plant litter. The apparent ease of hybridization could eventually lead to the merging of species through introgression. However, at this point in time, species integrity has been maintained and a more likely scenario is that the hybrids are not stable evolutionary lineages, but rather transient hybrid clones. PMID:26248187

  14. Differentiation between spore-forming and asporogenic bacteria using a PCR and southern hybridization based method

    Energy Technology Data Exchange (ETDEWEB)

    Brill, J.A.; Wiegel, J. [Univ. of Georgia, Athens, GA (United States)

    1997-12-31

    A set of molecular probes was devised to develop a method for screening for the presence of sequences homologous to three representative genes exclusively involved in endosporulation. Based on known gene sequences, degenerate PCR primers were designed against spo0A and ssp. Experimental conditions were devised under which homologs of both genes were consistently detected in endospore-forming bacteria, but not in asporogenic bacteria. The PCR amplification products and dpaA/B from Bacillus subtilis were used as hybridization probes for Southern blots. Identical conditions were used with the genomic DNA from endospore-forming and asporogenic bacteria. We therefore concluded that the probes specifically detect the targeted sporulation genes and we obtained no indication that genes homologous to ssp, spo0A and dpaA/B are present in asporogenic bacteria. Thus, this assay can potentially be used to detect spore-forming bacteria in various kinds of samples and to distinguish between bacteria containing sporulation genes and those who do not regardless of whether sporulation is observed or not. 43 refs., 3 figs., 1 tab.

  15. Conjoint Forming - Technologies for Simultaneous Forming and Joining

    International Nuclear Information System (INIS)

    Groche, P; Wohletz, S; Mann, A; Krech, M; Monnerjahn, V

    2016-01-01

    The market demand for new products optimized for e. g. lightweight applications or smart components leads to new challenges in production engineering. Hybrid structures represent one promising approach. They aim at higher product performance by using a suitable combination of different materials. The developments of hybrid structures stimulate the research on joining of dissimilar materials. Since they allow for joining dissimilar materials without external heating technologies based on joining by plastic deformation seem to be of special attractiveness. The paper at hand discusses the conjoint forming approach. This approach combines forming and joining in one process. Two or more workpieces are joined while at least one workpiece is plastically deformed. After presenting the fundamental joining mechanisms, the conjoint forming approach is discussed comprehensively. Examples of conjoint processes demonstrate the effectiveness and reveal the underlying phenomena. (paper)

  16. Hybrid platform. Economical hybrid drive for commercial vehicles; Hybrid Plattform. Wirtschaftlicher Hybridantrieb fuer Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, S.; Lamke, M.; Mohr, M.; Sedlacek, M.; Speck, F.D. [ZF Friedrichshafen AG, Friedrichshafen (Germany)

    2011-07-01

    Up to now, hybrid systems have been adapted to their specific requirements in the various applications for trucks, buses as well as mobile and building machines. From a technical point of view, this does indeed result in optimized hybrid drives for each single vehicle application, but due to small volumes, such single developments are critical from a business point of view. ZF Friedrichshafen AG is providing a solution to the technical and economical requirements of the cost-sensitive CV segment in the form of a modular CV parallel hybrid platform composed of a hybrid module system, an inverter, a battery system, and a hybrid software integrated into the overall vehicle. Thanks to the intelligent combination of assemblies and the use of as many identical parts as possible, platforms are realized which cover power ranges between 60 and 120 kW, voltage ranges between 350 and 650 V, and battery capacities between 2 and 4 kWh. The dimensions of the platform elements are such that integration into the diverse commercial vehicle applications is made easy. The hybrid software required for the vehicle-specific functions is also configurable for the mentioned CV applications. (orig.)

  17. A new Neotibicen cicada subspecies (Hemiptera: Cicadidae) from the southeastern USA forms hybrid zones with a widespread relative despite a divergent male calling song.

    Science.gov (United States)

    Marshall, David C; Hill, Kathy B R

    2017-05-31

    A morphologically cryptic subspecies of Neotibicen similaris (Smith and Grossbeck) is described from forests of the Apalachicola region of the southeastern United States. Although the new form exhibits a highly distinctive male calling song, it hybridizes extensively where it meets populations of the nominate subspecies in parapatry, by which it is nearly surrounded. This is the first reported example of hybridization between North American nonperiodical cicadas. Acoustic and morphological characters are added to the original description of the nominate subspecies, and illustrations of complex hybrid song phenotypes are presented. The biogeography of N. similaris is discussed in light of historical changes in forest composition on the southeastern Coastal Plain.

  18. Gamma induced chromosomal aberrations in meristem cells of cotton hybrids and their parental forms

    International Nuclear Information System (INIS)

    Kraevoj, S.Ya.; Akhmedova, M.M.; Amirkulov, D.

    1977-01-01

    The effect of gamma quanta on the first mitoses in the small roots of cotton hybrids and their parents results in different frequency of chromosome rearrangements in them. It has been proved that the frequency of chromosome aberrations is different in hybrids and different varieties of cotton. With increase in irradiation doses (from 10 to 30 kR) the frequency of chromosome aberrations goes up in all varieties and hybrids studies. The type of chromosome rearrangements in hybrids and their parents depends on the irradiation dose

  19. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.

    2010-01-01

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinhua, E-mail: caoxhchem@163.com; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-15

    Graphical abstract: - Highlights: • The different structures could be obtained in this self-assembly system. • A water-drop could freely roll on the xerogel film with the sliding angle of 15.0. • The superhydrophobic surface can be obtained via supramolecular self-assembly. - Abstract: A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV–vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  2. Design of magnetic akaganeite-cyanobacteria hybrid biofilms

    International Nuclear Information System (INIS)

    Dahoumane, Si Amar; Djediat, Chakib; Yepremian, Claude; Coute, Alain; Fievet, Fernand; Brayner, Roberta

    2010-01-01

    Common Anabaena cyanobacteria are shown to form intra-cellularly akaganeite β-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. High-resolution transmission electron microscopy showed that these nanorods present a complex arrangement of pores forming a spongelike structure. These hybrid akaganeite-cyanobacteria were used to form 'one-pot' hybrid biofilms. The hybrid biofilm presents higher coercivity (H c = 44.6 kA m -1 (560 Oe)) when compared to lyophilized akaganeite-cyanobacteria powder (H c = 0.8 kA m -1 (10 Oe)) due to the quasi-assembly of the cells on the glass substrate compared to the lyophilized randomly akaganeite-cyanobacteria powder.

  3. Spongy Gels by a Top-Down Approach from Polymer Fibrous Sponges.

    Science.gov (United States)

    Jiang, Shaohua; Duan, Gaigai; Kuhn, Ute; Mörl, Michaela; Altstädt, Volker; Yarin, Alexander L; Greiner, Andreas

    2017-03-13

    Ultralight cellular sponges offer a unique set of properties. We show here that solvent uptake by these sponges results in new gel-like materials, which we term spongy gels. The appearance of the spongy gels is very similar to classic organogels. Usually, organogels are formed by a bottom-up process. In contrast, the spongy gels are formed by a top-down approach that offers numerous advantages for the design of their properties, reproducibility, and stability. The sponges themselves represent the scaffold of a gel that could be filled with a solvent, and thereby form a mechanically stable gel-like material. The spongy gels are independent of a time-consuming or otherwise demanding in situ scaffold formation. As solvent evaporation from gels is a concern for various applications, we also studied solvent evaporation of wetting and non-wetting liquids dispersed in the sponge. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Triplex in-situ hybridization

    Science.gov (United States)

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  5. Preparation of nucleoside-pyridine hybrids and pyridine attached acylureas from an unexpected uracil ring-opening and pyridine ring-forming sequence

    Institute of Scientific and Technical Information of China (English)

    Xue Sen Fan; Xia Wang; Xin Ying Zhang; Dong Feng; Ying Ying Qu

    2009-01-01

    Novel pyrimidine nucleoside-3,5-dicyanopyridine hybrids (4) or pyridine attached acylureas (5) were selectively and efficiently prepared from the reaction of 2'-deoxyuridin-5-yl-methylene malonortitrile (1), malononitrile (2) and thiophenol (3) or from an unexpected uracil ring-opening and pyridine ring-forming sequence via the reaction of 1 and 3. It is the first time such a sequence has ever been reported.

  6. Process development and tooling design for intrinsic hybrid composites

    Science.gov (United States)

    Riemer, M.; Müller, R.; Drossel, W. G.; Landgrebe, D.

    2017-09-01

    Hybrid parts, which combine the advantages of different material classes, are moving into the focus of lightweight applications. This development is amplified by their high potential for usage in the field of crash relevant structures. By the current state of the art, hybrid parts are mainly made in separate, subsequent forming and joining processes. By using the concept of an intrinsic hybrid, the shaping of the part and the joining of the different materials are performed in a single process step for shortening the overall processing time and thereby the manufacturing costs. The investigated hybrid part is made from continuous fibre reinforced plastic (FRP), in which a metallic reinforcement structure is integrated. The connection between these layered components is realized by a combination of adhesive bonding and a geometrical form fit. The form fit elements are intrinsically generated during the forming process. This contribution regards the development of the forming process and the design of the forming tool for the single step production of a hybrid part. To this end a forming tool, which combines the thermo-forming and the metal forming process, is developed. The main challenge by designing the tool is the temperature management of the tool elements for the variothermal forming process. The process parameters are determined in basic tests and finite element (FE) simulation studies. On the basis of these investigations a control concept for the steering of the motion axes and the tool temperature is developed. Forming tests are carried out with the developed tool and the manufactured parts are analysed by computer assisted tomography (CT) scans.

  7. Electromagnetic Hadronic Form-Factors

    International Nuclear Information System (INIS)

    Edwards, Robert G.

    2005-01-01

    We present a calculation of the nucleon electromagnetic form-factors as well as the pion and rho to pion transition form-factors in a hybrid calculation with domain wall valence quarks and improved staggered (Asqtad) sea quarks

  8. Organized Communities as a Hybrid Form of Data Sharing: Experiences from the Global STEP Project

    Directory of Open Access Journals (Sweden)

    Isabell Stamm

    2018-01-01

    Full Text Available With this article, I explore a new way of how social scientists can share primary qualitative data with each other. More specifically, I examine organized research communities, which are small membership groups of scholars. This hybrid form of data sharing is positioned between informal sharing through collaboration and institutionalized sharing through accessing research archives. Using the global "Successful Transgenerational Entrepreneurship Practices" (STEP project as an example, I draw attention to the pragmatic practices of data sharing in such communities. Through ongoing negotiations, organized communities can, at least temporarily, put forward sharing policies and create a culture of data sharing that elevates the re-use of qualitative data while being mindful of the data's intersubjective and processual character.

  9. Hybrid metric-Palatini stars

    Science.gov (United States)

    Danilǎ, Bogdan; Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.

    2017-02-01

    We consider the internal structure and the physical properties of specific classes of neutron, quark and Bose-Einstein condensate stars in the recently proposed hybrid metric-Palatini gravity theory, which is a combination of the metric and Palatini f (R ) formalisms. It turns out that the theory is very successful in accounting for the observed phenomenology, since it unifies local constraints at the Solar System level and the late-time cosmic acceleration, even if the scalar field is very light. In this paper, we derive the equilibrium equations for a spherically symmetric configuration (mass continuity and Tolman-Oppenheimer-Volkoff) in the framework of the scalar-tensor representation of the hybrid metric-Palatini theory, and we investigate their solutions numerically for different equations of state of neutron and quark matter, by adopting for the scalar field potential a Higgs-type form. It turns out that the scalar-tensor definition of the potential can be represented as an Clairaut differential equation, and provides an explicit form for f (R ) given by f (R )˜R +Λeff, where Λeff is an effective cosmological constant. Furthermore, stellar models, described by the stiff fluid, radiation-like, bag model and the Bose-Einstein condensate equations of state are explicitly constructed in both general relativity and hybrid metric-Palatini gravity, thus allowing an in-depth comparison between the predictions of these two gravitational theories. As a general result it turns out that for all the considered equations of state, hybrid gravity stars are more massive than their general relativistic counterparts. Furthermore, two classes of stellar models corresponding to two particular choices of the functional form of the scalar field (constant value, and logarithmic form, respectively) are also investigated. Interestingly enough, in the case of a constant scalar field the equation of state of the matter takes the form of the bag model equation of state describing

  10. Toxicology of organic-inorganic hybrid molecules: bio-organometallics and its toxicology.

    Science.gov (United States)

    Fujie, Tomoya; Hara, Takato; Kaji, Toshiyuki

    2016-01-01

    Bio-organometallics is a research strategy of biology that uses organic-inorganic hybrid molecules. The molecules are expected to exhibit useful bioactivities based on the unique structure formed by interaction between the organic structure and intramolecular metal(s). However, studies on both biology and toxicology of organic-inorganic hybrid molecules have been incompletely performed. There can be two types of toxicological studies of bio-organometallics; one is evaluation of organic-inorganic hybrid molecules and the other is analysis of biological systems from the viewpoint of toxicology using organic-inorganic hybrid molecules. Our recent studies indicate that cytotoxicity of hybrid molecules containing a metal that is nontoxic in inorganic forms can be more toxic than that of hybrid molecules containing a metal that is toxic in inorganic forms when the structure of the ligand is the same. Additionally, it was revealed that organic-inorganic hybrid molecules are useful for analysis of biological systems important for understanding the toxicity of chemical compounds including heavy metals.

  11. The Curious Case of the "Refrigerator-TV": Similarity and Hybridization

    Science.gov (United States)

    Gibbert, Michael; Hampton, James A.; Estes, Zachary; Mazursky, David

    2012-01-01

    This article examines the role of similarity in the hybridization of concepts, focusing on hybrid products as an applied test case. Hybrid concepts found in natural language, such as "singer songwriter," typically combine similar concepts, whereas dissimilar concepts rarely form hybrids. The hybridization of dissimilar concepts in products such as…

  12. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies

    Science.gov (United States)

    Elnaggar, Yosra SR; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    2016-01-01

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose. PMID:27822033

  13. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies.

    Science.gov (United States)

    Elnaggar, Yosra Sr; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose.

  14. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding.

    Science.gov (United States)

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua

    2013-12-14

    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  15. Stable quasi-solid-state dye-sensitized solar cell using ionic gel electrolyte with low molecular mass organogelator

    International Nuclear Information System (INIS)

    Tao, Li; Huo, Zhipeng; Dai, Songyuan; Zhu, Jun; Zhang, Changneng; Pan, Xu; Huang, Yang; Yang, Shangfeng; Zhang, Bing; Yao, Jianxi

    2015-01-01

    Long-term stability is essential for the application and commercialization of dye-sensitized solar cells (DSCs). A quasi-solid-state DSC (QS-DSC) with excellent long-term stability is fabricated using ionic gel electrolyte (IGE) with N,N′-methylenebisdodecanamide as low molecular mass organogelator (LMOG). The gel to solution transition temperature (T gel ) of this IGE is 127 °C, well above the working temperature of the device, which contributes to the thermal properties of the IGE and the device. The electrochemical properties of the IGE and the kinetic processes of electron transport and recombination of the QS-DSC are investigated by means of electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). Due to the obstructed diffusion of redox species caused by the network of IGE, the electron recombination at the TiO 2 photoelectrode/electrolyte interface in the QS-DSC is accelerated. More importantly, compared with the ionic liquid electrolyte (ILE) based DSC, the QS-DSC based on the IGE exhibits excellent thermal and light-soaking stabilities during the accelerated aging tests for 1000 h. Especially, there is almost no degradation in the short-circuit current density (J sc ) in the IGE based QS-DSC, while the J sc of the ILE based DSC decreased to 85–94% of their initial values. - Highlights: • A novel IGE with high T gel is obtained by using a diamide derivative as LMOG. • The IGE based QS-DSC is very stable during the accelerated aging tests. • The influences of gelation on the electron kinetic processes are investigated

  16. Stable quasi-solid-state dye-sensitized solar cell using ionic gel electrolyte with low molecular mass organogelator

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Li [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huo, Zhipeng, E-mail: zhipenghuo@163.com [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Dai, Songyuan, E-mail: sydai@ncepu.edu.cn [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Beijing Key Lab of Novel Thin Film Solar Cells, North China Electric Power University, Beijing 102206 (China); Zhu, Jun; Zhang, Changneng; Pan, Xu; Huang, Yang [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Yang, Shangfeng [Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Zhang, Bing; Yao, Jianxi [Beijing Key Lab of Novel Thin Film Solar Cells, North China Electric Power University, Beijing 102206 (China)

    2015-02-15

    Long-term stability is essential for the application and commercialization of dye-sensitized solar cells (DSCs). A quasi-solid-state DSC (QS-DSC) with excellent long-term stability is fabricated using ionic gel electrolyte (IGE) with N,N′-methylenebisdodecanamide as low molecular mass organogelator (LMOG). The gel to solution transition temperature (T{sub gel}) of this IGE is 127 °C, well above the working temperature of the device, which contributes to the thermal properties of the IGE and the device. The electrochemical properties of the IGE and the kinetic processes of electron transport and recombination of the QS-DSC are investigated by means of electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). Due to the obstructed diffusion of redox species caused by the network of IGE, the electron recombination at the TiO{sub 2} photoelectrode/electrolyte interface in the QS-DSC is accelerated. More importantly, compared with the ionic liquid electrolyte (ILE) based DSC, the QS-DSC based on the IGE exhibits excellent thermal and light-soaking stabilities during the accelerated aging tests for 1000 h. Especially, there is almost no degradation in the short-circuit current density (J{sub sc}) in the IGE based QS-DSC, while the J{sub sc} of the ILE based DSC decreased to 85–94% of their initial values. - Highlights: • A novel IGE with high T{sub gel} is obtained by using a diamide derivative as LMOG. • The IGE based QS-DSC is very stable during the accelerated aging tests. • The influences of gelation on the electron kinetic processes are investigated.

  17. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  18. Evolution of hybrid defect networks

    International Nuclear Information System (INIS)

    Martins, C. J. A. P.

    2009-01-01

    We apply a recently developed analytic model for the evolution of monopole networks to the case of monopoles attached to one string, usually known as hybrid networks. We discuss scaling solutions for both local and global hybrid networks, and also find an interesting application for the case of vortons. Our quantitative results agree with previous estimates in indicating that the hybrid networks will usually annihilate soon after the string-forming phase transition. However, we also show that in some specific circumstances these networks can survive considerably more than a Hubble time.

  19. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    Science.gov (United States)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  20. Gelation-driven selection in dynamic covalent C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C/CN exchange.

    Science.gov (United States)

    Liang, Chunshuang; Kulchat, Sirinan; Jiang, Shimei; Lehn, Jean-Marie

    2017-10-01

    Knoevenagel barbiturate derivatives bearing long alkyl chains were proven to form organogels in suitable solvents based on supramolecular interactions. Their reaction with imines allows for component exchange through CC/CN recombination. The effect of various parameters (solvents, chain length, and temperature) on the CC/CN exchange reaction has been studied. Mixing Knoevenagel compound K and imine I-16 in a 1 : 1 ratio generated a constitutional dynamic library containing the four constituents K , I-16 , K'-16 , and I' . The reversible exchange reaction was monitored by 1 H-NMR, showing marked changes in the fractions of the four constituents on sol-gel interconversion as a function of temperature. The library composition changed from statistical distribution of the four constituents in the sol state to selective amplification of the gel forming K'-16 constituent together with that of its agonist I' . The process amounts to self-organization driven component selection in a constitutional dynamic organogel system undergoing gelation. This process displays up-regulation of the gel-forming constituent by component redistribution through reversible covalent connections.

  1. Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3

    Science.gov (United States)

    Wang, Ji; Zhang, Ao; Yan, Jun; Li, Dan; Chen, Yunlin

    2017-03-01

    The properties of defects in organic-inorganic hybrid perovskite are widely studied from the first-principles calculation. However, the defects of methylamine (methylamine = CH3NH2), which would be easily formed during the preparation of the organic-inorganic hybrid perovskite, are rarely investigated. Thermodynamic properties as well as defect states of methylamine embedded MAPbX3 (MA = methyl-ammonium = CH3NH3, X = Br, I) are studied based on first-principles calculations of density functional theory. It was found that there is a shallow defect level near the highest occupied molecular orbital, which induced by the interstitial methylamine defect in MAPbBr3, will lead to an increase of photoluminescence. The calculation results showed that interstitial defect states of methylamine may move deeper due to the interaction between methylamine molecules and methyl-ammonium cations. It was also showed that the interstitial methylamine defect is stable at room temperature, and the defect can be removed easily by annealing.

  2. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration

    Science.gov (United States)

    Dietrich, P.-I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C.

    2018-04-01

    Hybrid photonic integration combines complementary advantages of different material platforms, offering superior performance and flexibility compared with monolithic approaches. This applies in particular to multi-chip concepts, where components can be individually optimized and tested. The assembly of such systems, however, requires expensive high-precision alignment and adaptation of optical mode profiles. We show that these challenges can be overcome by in situ printing of facet-attached beam-shaping elements. Our approach allows precise adaptation of vastly dissimilar mode profiles and permits alignment tolerances compatible with cost-efficient passive assembly techniques. We demonstrate a selection of beam-shaping elements at chip and fibre facets, achieving coupling efficiencies of up to 88% between edge-emitting lasers and single-mode fibres. We also realize printed free-form mirrors that simultaneously adapt beam shape and propagation direction, and we explore multi-lens systems for beam expansion. The concept paves the way to automated assembly of photonic multi-chip systems with unprecedented performance and versatility.

  3. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Elnaggar YSR

    2016-10-01

    Full Text Available Yosra SR Elnaggar,1,2 Sara M Talaat,1 Mohammed Bahey-El-Din,3 Ossama Y Abdallah1 1Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 2Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, 3Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt Abstract: Terconazole (Tr is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose. Keywords: terconazole, liquid crystalline, organogel, skin targeting, skin mycosis

  4. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal

    2016-10-06

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  5. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal; Dursun, Ibrahim; Priante, Davide; Saidaminov, Makhsud I.; Ng, Tien Khee; Bakr, Osman; Ooi, Boon S.

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  6. Hybrid particles and associated methods

    Science.gov (United States)

    Fox, Robert V; Rodriguez, Rene; Pak, Joshua J; Sun, Chivin

    2015-02-10

    Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.

  7. High-strength bolt-forming of fine-grained aluminum alloy 6061 with a continuous hybrid process

    International Nuclear Information System (INIS)

    Kim, Ji Hun; Hwang, Sun Kwang; Im, Yong-Taek; Son, Il-Heon; Bae, Chul Min

    2012-01-01

    Highlights: ► Fine-grained AA6061-O was produced by a continuous hybrid process. ► It consists of rolling, ECAP, and drawing. ► High-strength bolt was manufactured with the fine-grained AA6061-O. ► The UTS and micro-hardness of the bolt was increased by 50%. ► The route C was better in making a uniform micro-hardness distribution in the bolt. - Abstract: It is well known that the development of a continuous manufacturing process to apply severe plastic deformation (SPD) is a major challenge for industrial usages to improve the mechanical properties of the material through grain refinement. In this study, fine-grained AA6061-O wire was manufactured by a two-pass hybrid process consisting of drawing, equal channel angular pressing and rolling in a continuous manner to investigate the effects of processing routes for two different routes, A and C, on the variation of ultimate tensile strength (UTS) and micro-hardness distribution. The UTS value (185 MPa) of the specimen processed by the two-pass hybrid process with route A was higher than that of 171 MPa obtained from the two-pass wire-drawing process and was equivalent to the level of 184 MPa processed by the three-pass wire-drawing process. The average micro-hardness value (Hv 58.0) obtained from the two-pass hybrid process through route C was the highest among all the cases. According to transmission electron microscopy, the original grain was subdivided and elongated owing to deformation during the processes. The specimen processed by the two-pass hybrid process through route C showed smaller deformation bands and had potentially higher angle grain boundaries compared to the specimen processed by the two-pass wire-drawing process. Finally, the high-strength bolt was manufactured using the fine-grained AA6061-O wire prepared by the continuous hybrid process to check its formability. A ductile fracture at the first thread right above the jaw was observed in the bolt tension test of the manufactured bolt

  8. Interploidal hybridization and mating patterns in the Sphagnum subsecundum complex.

    Science.gov (United States)

    Ricca, M; Szövényi, P; Temsch, E M; Johnson, M G; Shaw, A J

    2011-08-01

    Polyploidization is thought to result in instant sympatric speciation, but several cases of hybrid zones between one of the parental species and its polyploid derivative have been documented. Previous work showed that diploid Sphagnum lescurii is an allopolyploid derived from the haploids S. lescurii (maternal progenitor) and S. subsecundum (paternal progenitor). Here, we report the results from analyses of a population where allodiploid and haploid S. lescurii co-occur and produce sporophytes. We tested (i) whether haploids and diploids form hybrid triploid sporophytes; (ii) how hybrid and nonhybrid sporophytes compare in fitness; (iii) whether hybrid sporophytes form viable spores; (iv) the ploidy of any viable gametophyte offspring from hybrid sporophytes; (v) the relative viability of sporelings derived from hybrid and nonhybrid sporophytes; and (vi) if interploidal hybridization results in introgression between the allopolyploid and its haploid progenitor. We found that triploid hybrid sporophytes do occur and are larger than nonhybrid sporophytes, but exhibit very low germination percentages and produce sporelings that develop more slowly than those from nonhybrid sporophytes. All sporophytes attached to haploid gametophytes were triploid and were sired by diploid males, but all sporophytes attached to diploid gametophytes were tetraploid. This asymmetric pattern of interploidal hybridization is related to an absence of haploid male gametophytes in the population. Surprisingly, all sporelings from triploid sporophytes were triploid, yet were genetically variable, suggesting some form of aberrant meiosis that warrants further study. There was limited (but some) evidence of introgression between allodiploid and haploid S. lescurii. © 2011 Blackwell Publishing Ltd.

  9. Fatigue strength of a hybrid joint formed between a PA6-GF60 polymer matrix and a S420MC steel insert

    International Nuclear Information System (INIS)

    Miklavec, M.; Klemenc, J.; Kostanjevec, A.; Fajdiga, M.

    2013-01-01

    Highlights: • Presented is an innovative polymer-metal hybrid joint. • Durability curves and their scatter were calculated using the DASA procedure. • Specimens with the embossed steel insert outperformed in static and dynamic tests. - Abstract: A vehicle’s brake pedal is considered to be one of its most important safety components. In the past, vehicle weight-reduction initiatives resulted in a highly optimized design of steel brake pedal with an increased strength-to-weight ratio. However, any further reduction in the weight of the brake pedal is only possible by using combined, i.e., hybrid, materials. In this case the joint between the two different materials in the hybrid arrangement must be as strong as possible. Many methods for improving the joint between two highly dissimilar materials are known from the literature, but conventional joining techniques lack either the fatigue resistance, because of a poor notch-effect design (shape-based joints), or are unsuitable for low-cost serial production (material-based joints). This article presents an innovative approach to joining the reinforcing insert with a glass-fiber-reinforced polyamide 6 (PA6-GF) base structure, where the reinforcing insert is molded into the PA6-GF. The improved shape of the reinforcing insert contributes the required strength, while the PA6-GF base structure provides the final form of the specimen/product. The innovative shape of the metal insert not only provides the strength of the component; it also ensures the proper joint between the two dissimilar materials. For different types of reinforcing inserts static durability tests as well as fatigue-life tests of the insert-PA6-GF-matrix joints were performed. Our experimental research shows that the most promising shape-based hybrid joints reported in the literature are not the best solution when the hybrid joint’s fatigue life is the decisive criterion for a product’s durability

  10. Leadership, clinician managers and a thing called "hybridity".

    Science.gov (United States)

    Fulop, Liz

    2012-01-01

    In many countries leadership theories and leadership development programs in healthcare have been dominated by individualistic and heroic approaches that focus on developing the skills and competencies of health professionals. Alternative approaches have been proffered but mainly in the form of post-heroic and distributed forms of leadership. The notion of "hybridity" has emerged to challenge the assumptions of distributed leadership. The paper seeks to explore how the concept of hybridity can be used to re-theorize leadership in healthcare as it relates to clinician managers (or hybrid-professional managers). The theoretical developments are explored and empirical material is presented from research in Australian public hospitals to support the case for the existence of hybridized forms of leadership in healthcare. The paper discusses whether hybridity needs re-theorizing to adequately account for clinician leadership. It contributes to debates surrounding the role of clinician leadership in healthcare reform particularly in relation to those doctors who occupy management positions at the division or unit levels as distinct to CEOs. The study uses qualitative research, i.e. interactive interviews to present accounts of how healthcare professionals describe leadership. It undertakes both deductive and inductive theme analysis of the interview material. There is support for hybridized configurations of leadership in interview materials of healthcare professionals but other aspects were also noted that cannot be explained by this approach alone. The paper is the first to examine the concept of hybridity in the context of clinician leadership. Many approaches to leadership in healthcare fail to address the complexity of leadership within the ranks of clinician managers and thus are unable to deal adequately with the role of leadership in healthcare reform and change.

  11. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel

    2011-03-15

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona brush that stabilizes them against aggregation. When these hybrid particles are dispersed in poly-α-olefin (PAO) oligomers, they form homogeneous nanocomposite fluids at both low and high particle loadings. By varying the volume fraction of the SiO2 nanostructures in the PAO nanocomposites, we show that exceptionally stable hybrid lubricants can be created and that their mechanical properties can be tuned to span the spectrum from simple liquids to complex gels. We further show that these hybrid lubricants simultaneously exhibit lower interfacial friction coefficients, enhanced wear and mechanical properties, and superior thermal stability in comparison with either PAO or its nanocomposites created at low nanoparticle loadings. Profilometry and energy dispersive X-ray spectroscopic analysis of the wear track show that the enhanced wear characteristics in PAO-SiO2 composite lubricants originate from two sources: localization of the SiO2 particles into the wear track and extension of the elastohydrodynamic lubrication regime to Sommerfeld numbers more than an order of magnitude larger than for PAO. © 2011 American Chemical Society.

  12. Genetic incompatibility dampens hybrid fertility more than hybrid viability: yeast as a case study.

    Directory of Open Access Journals (Sweden)

    Meibo Xu

    Full Text Available Genetic incompatibility is believed to be the major cause of postzygotic reproductive isolation. Despite huge efforts seeking for speciation-related incompatibilities in the past several decades, a general understanding of how genetic incompatibility evolves in affecting hybrid fitness is not available, primarily due to the fact that the number of known incompatibilities is small. Instead of further mapping specific incompatible genes, in this paper we aimed to know the overall effects of incompatibility on fertility and viability, the two aspects of fitness, by examining 89 gametes produced by yeast S. cerevisiae-S. paradoxus F1 hybrids. Homozygous F2 hybrids formed by autodiploidization of F1 gametes were subject to tests for growth rate and sporulation efficiency. We observed much stronger defects in sporulation than in clonal growth for every single F2 hybrid strain, indicating that genetic incompatibility affects hybrid fertility more than hybrid viability in yeast. We related this finding in part to the fast-evolving nature of meiosis-related genes, and proposed that the generally low expression levels of these genes might be a cause of the observation.

  13. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis; Kelarakis, Antonios; Gong, Qianming; Da’ as, Eman H.; Giannelis, Emmanuel P.

    2011-01-01

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  14. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis

    2011-04-27

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  15. Hybrid-augmented intelligence:collaboration and cognition

    Institute of Scientific and Technical Information of China (English)

    Nan-ning ZHENG; Zi-yi LIU; Peng-ju REN; Yong-qiang MA; Shi-tao CHEN; Si-yu YU; Jian-ru XUE

    2017-01-01

    The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans. Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models:one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system. This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.

  16. Hybridization and the evolution of reef coral diversity.

    Science.gov (United States)

    Vollmer, Steven V; Palumbi, Stephen R

    2002-06-14

    Hundreds of coral species coexist sympatrically on reefs, reproducing in mass-spawning events where hybridization appears common. In the Caribbean, DNA sequence data from all three sympatric Acropora corals show that mass spawning does not erode species barriers. Species A. cervicornis and A. palmata are distinct at two nuclear loci or share ancestral alleles. Morphotypes historically given the name Acropora prolifera are entirely F(1) hybrids of these two species, showing morphologies that depend on which species provides the egg for hybridization. Although selection limits the evolutionary potential of hybrids, F(1) individuals can reproduce asexually and form long-lived, potentially immortal hybrids with unique morphologies.

  17. Hybrid nanostructures: synthesis, morphology and functional properties

    International Nuclear Information System (INIS)

    Povolotskaya, A V; Povolotskiy, A V; Manshina, A A

    2015-01-01

    Hybrid nanostructures representing combinations of different materials and possessing properties that are absent in separate components forming the hybrid are discussed. Particular attention is given to hybrid structures containing plasmonic and magnetic nanoparticles, methods of their synthesis and the relationship between the composition, structure and properties. The functional features of the hybrid nanomaterials of various morphology (with core–shell structures, with encapsulated metal nanoparticles and with metal nanoparticles on the surface) are considered. The unique properties of these hybrid materials are demonstrated, which are of interest for solving problems of catalysis and photocatalysis, detecting impurities in various media, in vivo visualization, bioanalysis, as well as for the design of optical labels and multifunctional diagnostic nanoplatforms. The bibliography includes 182 references

  18. Segregation distortion causes large-scale differences between male and female genomes in hybrid ants.

    Science.gov (United States)

    Kulmuni, Jonna; Seifert, Bernhard; Pamilo, Pekka

    2010-04-20

    Hybridization in isolated populations can lead either to hybrid breakdown and extinction or in some cases to speciation. The basis of hybrid breakdown lies in genetic incompatibilities between diverged genomes. In social Hymenoptera, the consequences of hybridization can differ from those in other animals because of haplodiploidy and sociality. Selection pressures differ between sexes because males are haploid and females are diploid. Furthermore, sociality and group living may allow survival of hybrid genotypes. We show that hybridization in Formica ants has resulted in a stable situation in which the males form two highly divergent gene pools whereas all the females are hybrids. This causes an exceptional situation with large-scale differences between male and female genomes. The genotype differences indicate strong transmission ratio distortion depending on offspring sex, whereby the mother transmits some alleles exclusively to her daughters and other alleles exclusively to her sons. The genetic differences between the sexes and the apparent lack of multilocus hybrid genotypes in males can be explained by recessive incompatibilities which cause the elimination of hybrid males because of their haploid genome. Alternatively, differentiation between sexes could be created by prezygotic segregation into male-forming and female-forming gametes in diploid females. Differentiation between sexes is stable and maintained throughout generations. The present study shows a unique outcome of hybridization and demonstrates that hybridization has the potential of generating evolutionary novelties in animals.

  19. Pluripotent hybrid cells contribute to extraembryonic as well as embryonic tissues.

    Science.gov (United States)

    Do, Jeong Tae; Choi, Hyun Woo; Choi, Youngsok; Schöler, Hans R

    2011-06-01

    The restricted gene expression of a differentiated cell can be reversed by forming hybrid with embryonic stem cells (ESCs). The resulting hybrid cells showed not only an ESC-specific marker expression but also a differentiation potential similar to the pluripotent fusion partner. Here, we evaluated whether the tetraploid fusion hybrid cells have a unique differentiation potential compared with diploid pluripotent cells. The first Oct4-GFP-positive cells were observed at day 2 following fusion between ESCs and neurosphere cells (OG2(+/-)/ROSA26(+/-)). Reprogramming efficiency was as high as 94.5% at passage 5 and 96.4% at passage 13. We have found that the tetraploid hybrid cells could form chimera with contribution to placenta after blastocyst injection. This result indicates that the tetraploid pluripotent fusion hybrid cells have wide range of differentiation potential. Therefore, we suggest that once the somatic cells are reprogrammed by fusion with ESCs, the tetraploid hybrid cells contributed to the extraembryonic as well as embryonic tissues.

  20. Hybridization of governance : The challenge of balancing policy impacts

    NARCIS (Netherlands)

    van der Heijden, J.J.

    2009-01-01

    This paper focuses on the impacts of hybrid forms of governance. Such hybrids are characterized by an arrangement of tasks and responsibilities, regarding regulatory governance, between public and private sector agencies. Empirically the paper is based on regulatory reforms in Australian and

  1. On the development of an intrinsic hybrid composite

    International Nuclear Information System (INIS)

    Kießling, R; Ihlemann, J; Riemer, M; Drossel, W-G; Scharf, I; Lampke, T; Sharafiev, S; Pouya, M; Wagner, M F-X

    2016-01-01

    Hybrid parts, which combine low weight with high strength, are moving into the focus of the automotive industry, due to their high potential for usage in the field of crash-relevant structures. In this contribution, the development of an intrinsic hybrid composite is presented, with a focus on the manufacturing process, complex simulations of the material behaviour and material testing. The hybrid composite is made up of a continuous fibre- reinforced plastic (FRP), in which a metallic insert is integrated. The mechanical behaviour of the individual components is characterised. For material modelling, an approach is pointed out that enables modelling at large strains by directly connected rheological elements. The connection between the FRP and the metallic insert is realised by a combination of form fit and adhesive bonds. On the one hand, adhesive bonds are generated within a sol gel process. On the other hand, local form elements of the metallic insert are pressed into the FRP. We show how these form elements are generated during the macroscopic forming process. In addition, the applied sol gel process is explained. Finally, we consider design concepts for a specimen type for high strain testing of the resulting interfaces. (paper)

  2. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  3. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  4. Hybrid carrageenans: isolation, chemical structure, and gel properties.

    Science.gov (United States)

    Hilliou, Loic

    2014-01-01

    Hybrid carrageenan is a special class of carrageenan with niche application in food industry. This polysaccharide is extracted from specific species of seaweeds belonging to the Gigartinales order. This chapter focuses on hybrid carrageenan showing the ability to form gels in water, which is known in the food industry as weak kappa or kappa-2 carrageenan. After introducing the general chemical structure defining hybrid carrageenan, the isolation of the polysaccharide will be discussed focusing on the interplay between seaweed species, extraction parameters, and the hybrid carrageenan chemistry. Then, the rheological experiments used to determine the small and large deformation behavior of gels will be detailed before reviewing the relationships between gel properties and hybrid carrageenan chemistry. © 2014 Elsevier Inc. All rights reserved.

  5. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel; Archer, Lynden A.

    2011-01-01

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona

  6. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.

    2011-01-01

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  7. Novel Thiol-Ene Hybrid Coating for Metal Protection

    Directory of Open Access Journals (Sweden)

    Mona Taghavikish

    2016-04-01

    Full Text Available A novel hybrid anticorrosion coating with dual network of inorganic (Si–O–Si and organic bonds (C–S–C was prepared on metal through an in situ sol-gel and thiol-ene click reaction. This novel interfacial thin film coating incorporates (3-mercaptopropyl trimethoxysilane (MPTS and 1,4-di(vinylimidazolium butane bisbromide based polymerizable ionic liquid (PIL to form a thiol-ene based photo-polymerized film, which on subsequent sol-gel reaction forms a thin hybrid interfacial layer on metal surface. On top of this PIL hybrid film, a self-assembled nanophase particle (SNAP coating was employed to prepare a multilayer thin film coating for better corrosion protection and barrier performance. The novel PIL hybrid film was characterised for structure and properties using Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The corrosion protection performance of the multilayer coating was examined using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. The results reveal that this novel double layer coating on metal offers excellent protection against corrosion and has remarkably improved the barrier effect of the coating.

  8. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  9. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  10. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  11. Characterizing haploinsufficiency of SHELL gene to improve fruit form prediction in introgressive hybrids of oil palm.

    Science.gov (United States)

    Teh, Chee-Keng; Muaz, Siti Dalila; Tangaya, Praveena; Fong, Po-Yee; Ong, Ai-Ling; Mayes, Sean; Chew, Fook-Tim; Kulaveerasingam, Harikrishna; Appleton, David

    2017-06-08

    The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.

  12. Genomic and transcriptomic alterations following intergeneric hybridization and polyploidization in the Chrysanthemum nankingense×Tanacetum vulgare hybrid and allopolyploid (Asteraceae).

    Science.gov (United States)

    Qi, Xiangyu; Wang, Haibin; Song, Aiping; Jiang, Jiafu; Chen, Sumei; Chen, Fadi

    2018-01-01

    Allopolyploid formation involves two major events: interspecific hybridization and polyploidization. A number of species in the Asteraceae family are polyploids because of frequent hybridization. The effects of hybridization on genomics and transcriptomics in Chrysanthemum nankingense×Tanacetum vulgare hybrids have been reported. In this study, we obtained allopolyploids by applying a colchicine treatment to a synthesized C. nankingense × T. vulgare hybrid. Sequence-related amplified polymorphism (SRAP), methylation-sensitive amplification polymorphism (MSAP), and high-throughput RNA sequencing (RNA-Seq) technologies were used to investigate the genomic, epigenetic, and transcriptomic alterations in both the hybrid and allopolyploids. The genomic alterations in the hybrid and allopolyploids mainly involved the loss of parental fragments and the gain of novel fragments. The DNA methylation level of the hybrid was reduced by hybridization but was restored somewhat after polyploidization. There were more significant differences in gene expression between the hybrid/allopolyploid and the paternal parent than between the hybrid/allopolyploid and the maternal parent. Most differentially expressed genes (DEGs) showed down-regulation in the hybrid/allopolyploid relative to the parents. Among the non-additive genes, transgressive patterns appeared to be dominant, especially repression patterns. Maternal expression dominance was observed specifically for down-regulated genes. Many methylase and methyltransferase genes showed differential expression between the hybrid and parents and between the allopolyploid and parents. Our data indicate that hybridization may be a major factor affecting genomic and transcriptomic changes in newly formed allopolyploids. The formation of allopolyploids may not simply be the sum of hybridization and polyploidization changes but also may be influenced by the interaction between these processes.

  13. HYBRID EDUCATION: THE ESTIMATION IN THE CATEGORIES OF INFORMATION-AXIOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    A. S. Kizilova

    2018-01-01

    Full Text Available Introduction: a hybrid assessment of reality is a new information-axiological level of communication between people. The term "hybrid (hybrid training" has been used as a result of the integration of digital and communication technologies in the form of online courses.Materials and methods: the main Russian forms of education are analyzed. The evaluation of the forms of education in the categories of the information-axiological approach is made on the basis of the following idea: everything is interchangeable, since everything has value. The mixing principles and models used in the process of hybrid formation are considered. Due to the fact that any mixed training requires planning, the analysis of the project and the target group, content analysis and financial analysis in this process is carried out.Results: specific educational methods are studied at the Bauman MSTU, subject to a hybrid assessment in the categories of the information-axiological approach. The analysis showed that the above explanation of the term "hybrid formation" is extremely narrow and one-sided. In particular, the search for information on volunteer education and the search for a socially-based education was conducted not only in the Bauman MSTU, but in Russia as a whole. However, the result was the portals of international student organizations with their own projects. Another example of a different interpretation of the "hybrid education" may be the assumption of quite axiologically new duties.Discussion and Conclusions: hybrid education is not limited to any temporal and territorial framework. It can manifest itself not only in the Internet-sphere, but also in the most diverse spheres of everyday life, with the interaction of various people and entire societies.

  14. Inorganic–organic hybrid framework solids

    Indian Academy of Sciences (India)

    Administrator

    indicates that hybrid structures can be formed with zeolite architecture. Keywords. ..... iron is present in the octahedral environment, except in II. This is probably .... along with the water molecules are located in the middle of this channel. Similar.

  15. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  16. Non-Steroidal Biphenyl Gelators: Correlation of Xerogel Structure with Solid-State Structure and Circular Dichroism Spectroscopy

    Directory of Open Access Journals (Sweden)

    H. Cristina Geiger

    2018-04-01

    Full Text Available Because the factors favoring the formation of well-formed single crystals are dissimilar to those conducive to gel formation, few examples of single-crystal structural characterizations of organogelators are found in the literature. A series of biphenyl methyl and ethyl diester derivatives of varying chain length were synthesized and their gelation abilities explored. X-ray diffraction of single crystals of one of the gelators reveals a columnar extended structure. Based on XRD results for xerogels obtained from the reported organogelators, the members of the series are isostructural and so also adopt a columnar superstructure. Scanning electron microscopy (SEM was used for the investigation of the morphology of the xerogels, which display either platelet-like morphologies or more typical entangled twisted ribbon-like aggregates. The gels exhibit chirality, which depends on the sol-gel transition history, as observed by induced circular dichroism (ICD spectroscopy.

  17. Cross-border Intra-group Hybrid Finance and International Taxation

    OpenAIRE

    Eberhartinger, Eva; Pummerer, Erich; Göritzer, Andreas

    2010-01-01

    In intra-group finance hybrid instruments allow for tailor-made form of finance. Hence hybrid finance is often used for international tax planning in multinational groups. Due to a lack of international tax harmonization or tax coordination qualification conflict can arise. A specific hybrid instrument is classified as debt in one country, and as equity in the other country. This may lead to double taxation. In the reverse case, double non-taxation can arise. Against this legal background one...

  18. Nafion–clay hybrids with a network structure

    KAUST Repository

    Burgaz, Engin; Lian, Huiqin; Alonso, Rafael Herrera; Estevez, Luis; Kelarakis, Antonios; Giannelis, Emmanuel P.

    2009-01-01

    Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.

  19. Sustainability assessment of a hybrid energy system

    International Nuclear Information System (INIS)

    Afgan, Nain H.; Carvalho, Maria G.

    2008-01-01

    A hybrid energy system in the form of the Object structure is the pattern for the structure of options in the evaluation of a hybrid system. The Object structure is defined as: Hybrid Energy System {[production (solar, wind, biomass, natural gas)] [utilization(electricity, heat, hydrogen)]}. In the evaluation of hybrid energy systems only several options are selected to demonstrate the sustainability assessment method application in the promotion of the specific quality of the hybrid energy system. In this analysis the following options are taken into a consideration: 1.Solar photo-voltaic power plant (PV PP), wind turbine power plant (WTPP) biomass thermal power plant (ThSTPP) for electricity, heat and hydrogen production. 2.Solar PV PP and wind power plant (WPP) for electricity and hydrogen production. 3.Biomass thermal steam turbine power plant (BThSTPP) and WPP for heat and hydrogen production. 4.Combined cycle gas turbine power plant for electricity and hydrogen production. 5.Cogeneration of electricity and water by the hybrid system. The sustainability assessment method is used for the evaluation of quality of the selected hybrid systems. In this evaluation the following indicators are used: economic indicator, environment indicator and social indicator

  20. Nafion–clay hybrids with a network structure

    KAUST Repository

    Burgaz, Engin

    2009-05-01

    Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.

  1. Hybridization dynamics between Colorado's native cutthroat trout and introduced rainbow trout.

    Science.gov (United States)

    Metcalf, Jessica L; Siegle, Matthew R; Martin, Andrew P

    2008-01-01

    Newly formed hybrid populations provide an opportunity to examine the initial consequences of secondary contact between species and identify genetic patterns that may be important early in the evolution of hybrid inviability. Widespread introductions of rainbow trout (Oncorhynchus mykiss) into watersheds with native cutthroat trout (Oncorhynchus clarkii) have resulted in hybridization. These introductions have contributed to the decline of native cutthroat trout populations. Here, we examine the pattern of hybridization between introduced rainbow trout and 2 populations of cutthroat trout native to Colorado. For this study, we utilized 7 diagnostic, codominant nuclear markers and a diagnostic mitochondrial marker to investigate hybridization in a population of greenback cutthroat trout (Oncorhynchus clarkii stomias) and a population of Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). We infer that cutthroat-rainbow trout hybrid swarms have formed in both populations. Although a mixture of hybrid genotypes was present, not all genotype combinations were detected at expected frequencies. We found evidence that mitochondrial DNA introgression in hybrids is asymmetric and more likely from rainbow trout than from cutthroat trout. A difference in spawning time of the 2 species or differences in the fitness between the reciprocal crosses may explain the asymmetry. Additionally, the presence of intraspecific cytonuclear associations found in both populations is concordant with current hypotheses regarding coevolution of mitochondrial and nuclear genomes.

  2. DSP Control of Line Hybrid Active Filter

    DEFF Research Database (Denmark)

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.

    2005-01-01

    Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter...... is studied for current harmonic compensation. The hybrid filter is formed by a single tuned Le filter and a small-rated power active filter, which are directly connected in series without any matching transformer. Thus the required rating of the active filter is much smaller than a conventional standalone...... active filter. Simulation and experimental results obtained in laboratory confirmed the validity and effectiveness of the control....

  3. A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Krupp, Carsten; Baltzer, Sidney; Gnörich, Bruno; Peters, Ralf; Stolten, Detlef

    2016-01-01

    Highlights: • A battery-fuel cell hybrid auxiliary power unit for heavy duty vehicles is reported. • Comparison of direct and indirect hybrids using representative load profiles. • Evaluation based on validated fuel cell system and battery models. • Indirect hybrid with constant fuel cell load yields 29.3% hybrid system efficiency. • Fuel cell should be pre-heated using waste heat from the diesel engine during drive. - Abstract: The idling operation of engines in heavy duty vehicles to cover electricity demand during layovers entails significant fuel consumption and corresponding emissions. Indeed, this mode of operation is highly inefficient and a noteworthy contributor to the transportation sector’s aggregate carbon dioxide emissions. Here, a potential solution to this wasteful practice is outlined in the form of a hybrid battery-fuel cell system for application as an auxiliary power unit for trucks. Drawing on experimentally-validated fuel cell and battery models, several possible hybrid concepts are evaluated and direct and indirect hybrid configurations analyzed using a representative load profile. The results indicate that a direct hybrid configuration is only applicable if the load demand profile does not deviate strongly from the assumed profile. Operation of an indirect hybrid with a constant fuel cell load yields the greatest hybrid system efficiency, at 29.3%, while battery size could be reduced by 87% if the fuel cell is operated at the highest dynamics. Maximum efficiency in truck applications can be achieved by pre-heating the system prior to operation using exhaust heat from the motor, which increased system efficiency from 25.3% to 28.1%, including start-up. These findings confirm that hybrid systems could offer enormous fuel savings and constitute a sizeable step on the path toward energy-efficient and environmentally-friendly heavy duty vehicles that does not necessitate a fuel switch.

  4. Hybrid structures formed by homo- and heteroleptic aliphatic dicarboxylates of lead with 2-D inorganic connectivity

    International Nuclear Information System (INIS)

    Thirumurugan, A.; Rao, C.N.R.

    2008-01-01

    Three-dimensional homoleptic (single type of ligand) lead dicarboxylates with hybrid structures involving Pb-O-Pb linkages of the compositions, Pb(C 5 H 6 O 4 ), I, and Pb(C 6 H 8 O 4 ), II and III, have been synthesized and characterized. Three-dimensional heteroleptic (mixed ligands) lead dicarboxylates of the formulae, Pb 2 (C 2 O 4 )(C 4 H 4 O 4 ), IV and Pb 2 (C 2 O 4 )(C 6 H 8 O 4 ), V, with hybrid structures involving Pb-O-Pb linkages have also been prepared and characterized along with a novel two-dimensional lead nitrate-oxalate of the composition, (OPb 2 ) 2 (C 2 O 4 )(NO 3 ) 2 , VI. In all these dicarboxylates, there is two-dimensional inorganic connectivity and the lead (II) cation has hemi- or holo-directed coordination geometry. Depending upon the torsional angle and the coordination mode of the dicarboxylate anions as well as the geometry of the lead (II) cations, these hybrid compounds exhibit two types of two-dimensional inorganic connectivities. - Graphical abstract: Three homoleptic and two heteroleptic three-dimensional lead aliphatic dicarboxylates along with a novel two-dimensional lead nitrate-oxalate with hybrid structures involving Pb-O-Pb linkages have been synthesized and charecterized. In all these dicarboxylates, there is two-dimensional inorganic connectivity. The lead (II) cation has hemi- or holo-directed coordination geometry

  5. An Experimental Evaluation of Mechanical Properties of Hybrid Reinforcements

    Science.gov (United States)

    Sai Kumar, A.; Ganesan, G.; Karthikeyan, K.

    2017-07-01

    This paper presents the mechanical properties of unidirectional hybrid reinforcements formed from continuous fibres impregnated with a fibre binding material which are used for reinforcing the concrete. Recently FRP (Fibre Reinforced Polymer) manufacturers and suppliers have been increased all over the world because of the superior performance of FRP products in the construction industry. Its non-corrosive nature has turned the attention of many researchers to make several studies on different type of FRP products. Through a vast research, several standards also have been formulated. In this regard a new combination of FRP materials is tried in this paper and its properties have been derived. Carbon fibre and glass fibres fuse in this study to form a new hybrid rebar. The design properties such as tensile strength, tensile modulus, and compressive strength have been studied as per ASTM standards and it has been identified that the Hybrid rebar show a superior performance in comparison with GFRP (Glass FRP) and Steel rebars. This extraordinary performance of hybrid composite material increases the extensive engineering applications such as transport industry, aeronautics, naval, automotive industries.

  6. Franchising As Hybrid Organization: Russian Skill

    Directory of Open Access Journals (Sweden)

    Gyuzel F. Yusupova

    2016-12-01

    Full Text Available Russia has favorable conditions for development of hybrid cooperation (franchising on the different markets. On the one hand, as well as for the majority of countries with transition economies many Russian markets has been undersaturated. On the other hand, as for the developed countries, Russia has highly skilled human resources and the developed structure of consumption. In these conditions a model of coordination of the relations of franchising has been more and more popular. The benefit of this form can be explained from the side of institutional approach. The matter is that in real practice to determine the borders of firm is not simple. Key decisions of firm sometimes can be performed not in one center that can complicate distribution of control and responsibility and the determination of its borders. On the other hand, the determination of key decisions in the market, distribution of its assets and responsibility within one firm can strongly increase agency expenses. Therefore the hybrid form of coordination of the relations (to which the franchising belongs can lower these expenses, but in case of strict accomplishment of terms of the contract. The hybrid forms of coordination includes the combination of characteristics of the market and hierarchy. Transactions are controlled via the price mechanism for coordination. For control and management of united actions, the maintenance of a certain symmetry in relations are necessary the hierarchical elements. The different conditions of franchise are the reasons of risks for both parties. And for decrease in risk of opportunism the special tools are developed for disciplining of the franchisee. The described examples of the Russian franchises through comparison of contract terms showed how hybrid agreements solve the cooperation problems connected with specificity of resources, transactional expenses and the competition.

  7. Hybrid fuel cells technologies for electrical microgrids

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Jose Ignacio; Zamora, Inmaculada; San Martin, Jose Javier; Aperribay, Victor; Eguia, Pablo [Department of Electrical Engineering, University of the Basque Country, Alda. de Urquijo, s/n, 48013 Bilbao (Spain)

    2010-09-15

    Hybrid systems are characterized by containing two or more electrical generation technologies, in order to optimize the global efficiency of the processes involved. These systems can present different operating modes. Besides, they take into account aspects that not only concern the electrical and thermal efficiencies, but also the reduction of pollutant emissions. There is a wide range of possible configurations to form hybrid systems, including hydrogen, renewable energies, gas cycles, vapour cycles or both. Nowadays, these technologies are mainly used for energy production in electrical microgrids. Some examples of these technologies are: hybridization processes of fuel cells with wind turbines and photovoltaic plants, cogeneration and trigeneration processes that can be configured with fuel cell technologies, etc. This paper reviews and analyses the main characteristics of electrical microgrids and the systems based on fuel cells for polygeneration and hybridization processes. (author)

  8. Biomimetic growth of gallic acid–ZnO hybrid assemblies and their applications

    International Nuclear Information System (INIS)

    Sarker, Nazmul H.; Barnaby, Stacey N.; Fath, Karl R.; Frayne, Stephen H.; Nakatsuka, Nako; Banerjee, Ipsita A.

    2012-01-01

    In this study, we probed the biomimetic formation of gallic acid (GA)–ZnO nanoparticle hybrids. It was found that the morphologies formed were dependent upon pH values, resulting in GA–ZnO hybrids of varying shapes such as micro or nanoplates or fibers. The formed supramolecular GA–ZnO hybrids were found to be luminescent as indicated by confocal microscopy and were utilized for the photocatalytic degradation of the organic dye methylene blue. We also explored the bactericidal effects of the hybrids on Staphylococcus aureus (S. aureus) as well as Escherichia Coli (E. Coli). Thus, we have developed a new class of shape-controlled nanohybrid assemblies via mild, green synthetic methods that may be utilized for photocatalytic degradation for environmental remediation as well as for antibacterial applications.

  9. Biomimetic growth of gallic acid-ZnO hybrid assemblies and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Nazmul H.; Barnaby, Stacey N. [Fordham University, Department of Chemistry (United States); Fath, Karl R. [City University of New York and Graduate Center, Department of Biology, Queens College (United States); Frayne, Stephen H.; Nakatsuka, Nako; Banerjee, Ipsita A., E-mail: banerjee@fordham.edu [Fordham University, Department of Chemistry (United States)

    2012-03-15

    In this study, we probed the biomimetic formation of gallic acid (GA)-ZnO nanoparticle hybrids. It was found that the morphologies formed were dependent upon pH values, resulting in GA-ZnO hybrids of varying shapes such as micro or nanoplates or fibers. The formed supramolecular GA-ZnO hybrids were found to be luminescent as indicated by confocal microscopy and were utilized for the photocatalytic degradation of the organic dye methylene blue. We also explored the bactericidal effects of the hybrids on Staphylococcus aureus (S. aureus) as well as Escherichia Coli (E. Coli). Thus, we have developed a new class of shape-controlled nanohybrid assemblies via mild, green synthetic methods that may be utilized for photocatalytic degradation for environmental remediation as well as for antibacterial applications.

  10. Biomimetic growth of gallic acid-ZnO hybrid assemblies and their applications

    Science.gov (United States)

    Sarker, Nazmul H.; Barnaby, Stacey N.; Fath, Karl R.; Frayne, Stephen H.; Nakatsuka, Nako; Banerjee, Ipsita A.

    2012-03-01

    In this study, we probed the biomimetic formation of gallic acid (GA)-ZnO nanoparticle hybrids. It was found that the morphologies formed were dependent upon pH values, resulting in GA-ZnO hybrids of varying shapes such as micro or nanoplates or fibers. The formed supramolecular GA-ZnO hybrids were found to be luminescent as indicated by confocal microscopy and were utilized for the photocatalytic degradation of the organic dye methylene blue. We also explored the bactericidal effects of the hybrids on Staphylococcus aureus ( S. aureus) as well as Escherichia Coli ( E. Coli). Thus, we have developed a new class of shape-controlled nanohybrid assemblies via mild, green synthetic methods that may be utilized for photocatalytic degradation for environmental remediation as well as for antibacterial applications.

  11. GENETIC DIVERSITY OF INTERSPECIFIC HYBRIDS OF THE GENUS ALLIUM L.

    Directory of Open Access Journals (Sweden)

    V. S. Romanov

    2018-01-01

    Full Text Available Selection based on interspecific hybridization of fundamentally new plant forms with a unique combination of genetic material allows expanding the scope of genotypic and phenotypic variability. In this work the comparative analysis of plants of interspecific hybrids of genus Allium L. from various inbred descendants of combinations of crossing of species A. cepa х A. vavilovii and A. cepa х A. fistulosum on selection traits is carried out.Forms were identified: by mass of the bulb more than 100 g; with contrasting coloration of dry cover scales bulbs; by the index of the shape of the bulb; on the resistance to peronosporosis of plants of the first year of vegetation and seed plants; by the number of arrows; height of the arrow; on seed production with a sufficiently high percentage of fertile plants. Plants of interspecific hybrids of onions formed bulbs weighing from 20 to 120 g, with white, golden-yellow, dark golden-yellow, brownish and dark purple color of dry covering scales of a bulb. Plants of interspecific hybrids of onions were flat and round-flat shape of the bulb with the frequency of symptoms ranging from 6.9 to 93.3% and from 11.7 to 93.3%. In a phytopathological evaluation of interspecific hybrids of onions the first year of vegetation identified plants with resistance to downy mildew is from 0 to 4.0 points. Was studied the frequency of occurrence of plants in the progenies weight, colour, bulb type, number, height of the seedstalk, seed productivity and resistance to downy mildew. The increase of genetic diversity in onion plants obtained on the basis of interspecific hybridization, backcrossing and inbreeding is shown.

  12. Some results of applied interspecific hybridization in sunflower breeding

    International Nuclear Information System (INIS)

    Tsvetkova, F.

    1976-01-01

    Investigations on the interspecific hybridization in sunflower, aimed at developing a diversified initial selection material, were carried out Wild species of the diploid, tetraploid and hexaploid groups, varieties, hybrids, and selfed-lines of cultivated sunflower were used for crossings. To overcome incrossability between the species and sterility in the hybrids the method of f;cilitating of crossability by mutual gra'fting and gamma-rays treatment of seeds and pollen were applied. Results showed that: 1. By the method of interspecific hybridization forms might be produced resistant to more important diseases. 2. Interspecific hybridization in combination with other methods of selection might produce varieties and hybrids with a complex of valuable qualities. 3. Crossings between wild species and cultivated sunflower gave progenies with gene rale sterility. 4. The species H.tuberosus, H.scaberimus, H.arωphylus and H.lenticularis possess genes of full fertility restoration. (author)

  13. (D,T) Driven thorium hybrid blankets

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Khan, S.; Sahin, S.

    1983-01-01

    Recently, a project has started, with the aim to establish the neutronic performance and the basic design of an experimental fusionfission (hybrid) reactor facility, called AYMAN, in cylinderical geometry. The fusion reactor will have to be simulated by a (D,T) neutron generator. Fissile and fertile fuel will have to surround the neutron generator as a cylinderical blanket to simulate the boundary conditions of the hybrid blanket in a proper way. This geometry is consistent with Tandem Mirror Hybrid Blanket design and with most of the ICF blanket designs. A similar experimental installation will become operational around 1984 at the Swiss Federal Institute of Technology in Lausanne, Switzerland known under the project LOTUS. Due to the limited dimensions of the experimental cavity of the LOTUS-hybrid reactor, the LOTUS blankets have to be designed in plane geometry. Also, the bulky form of the Haefely neutron generator of the LOTUS facility obliges one to design a blanket in the plane geometry. This results in a vacuum left boundary conditions for the LOTUS blanket. The importance of a reflecting left boundary condition on the overall neutronic performance of a hybrid blanket has been analyzed in previous work in detail

  14. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    Science.gov (United States)

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  15. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

    Science.gov (United States)

    Hata, Hiroaki; Kitajima, Tetsuro

    2018-01-01

    Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504

  16. Position Analysis of a Hybrid Serial-Parallel Manipulator in Immersion Lithography

    Directory of Open Access Journals (Sweden)

    Jie-jie Shao

    2015-01-01

    Full Text Available This paper proposes a novel hybrid serial-parallel mechanism with 6 degrees of freedom. The new mechanism combines two different parallel modules in a serial form. 3-P̲(PH parallel module is architecture of 3 degrees of freedom based on higher joints and specializes in describing two planes’ relative pose. 3-P̲SP parallel module is typical architecture which has been widely investigated in recent researches. In this paper, the direct-inverse position problems of the 3-P̲SP parallel module in the couple mixed-type mode are analyzed in detail, and the solutions are obtained in an analytical form. Furthermore, the solutions for the direct and inverse position problems of the novel hybrid serial-parallel mechanism are also derived and obtained in the analytical form. The proposed hybrid serial-parallel mechanism is applied to regulate the immersion hood’s pose in an immersion lithography system. Through measuring and regulating the pose of the immersion hood with respect to the wafer surface simultaneously, the immersion hood can track the wafer surface’s pose in real-time and the gap status is stabilized. This is another exploration to hybrid serial-parallel mechanism’s application.

  17. Structure of herbivore communities in two oak (Quercus spp.) hybrid zones.

    Science.gov (United States)

    Boecklen, William J; Spellenberg, Richard

    1990-11-01

    We examined patterns of density and species diversity for leaf-mining Lepidopterans and gall-forming Hymenopterans in two oak (Quercus spp.) hybrid zones: Quercus depressipes x Q. rugosa and Q. emoryi x Q. coccolobifolia. In both species complexes, hybrid hosts typically supported significantly lower densities and species diversity of parasites than did parental types. This contradicts the findings of Whitham (1989) that suggested that hybrid hosts may act as parasite sinks both in ecological and evolutionary time. We discuss features of hybrid zones that are likely to influence patterns of herbivory.

  18. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher; Strutt, Nathan; Srinivasan, Sampath; Katsiev, Khabiboulakh; Hartlieb, Karel J.; Bakr, Osman; Stoddart, J. Fraser

    2015-01-01

    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  19. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher

    2015-05-18

    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  20. Information transmission on hybrid networks

    Science.gov (United States)

    Chen, Rongbin; Cui, Wei; Pu, Cunlai; Li, Jie; Ji, Bo; Gakis, Konstantinos; Pardalos, Panos M.

    2018-01-01

    Many real-world communication networks often have hybrid nature with both fixed nodes and moving modes, such as the mobile phone networks mainly composed of fixed base stations and mobile phones. In this paper, we discuss the information transmission process on the hybrid networks with both fixed and mobile nodes. The fixed nodes (base stations) are connected as a spatial lattice on the plane forming the information-carrying backbone, while the mobile nodes (users), which are the sources and destinations of information packets, connect to their current nearest fixed nodes respectively to deliver and receive information packets. We observe the phase transition of traffic load in the hybrid network when the packet generation rate goes from below and then above a critical value, which measures the network capacity of packets delivery. We obtain the optimal speed of moving nodes leading to the maximum network capacity. We further improve the network capacity by rewiring the fixed nodes and by considering the current load of fixed nodes during packets transmission. Our purpose is to optimize the network capacity of hybrid networks from the perspective of network science, and provide some insights for the construction of future communication infrastructures.

  1. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Science.gov (United States)

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  2. The effects of seed size on hybrids formed between oilseed rape (Brassica napus and wild brown mustard (B. juncea.

    Directory of Open Access Journals (Sweden)

    Yong-Bo Liu

    Full Text Available Seed size has significant implications in ecology, because of its effects on plant fitness. The hybrid seeds that result from crosses between crops and their wild relatives are often small, and the consequences of this have been poorly investigated. Here we report on plant performance of hybrid and its parental transgenic oilseed rape (Brassica napus and wild B. juncea, all grown from seeds sorted into three seed-size categories.Three seed-size categories were sorted by seed diameter for transgenic B. napus, wild B. juncea and their transgenic and non-transgenic hybrids. The seeds were sown in a field at various plant densities. Globally, small-seeded plants had delayed flowering, lower biomass, fewer flowers and seeds, and a lower thousand-seed weight. The seed-size effect varied among plant types but was not affected by plant density. There was no negative effect of seed size in hybrids, but it was correlated with reduced growth for both parents.Our results imply that the risk of further gene flow would probably not be mitigated by the small size of transgenic hybrid seeds. No fitness cost was detected to be associated with the Bt-transgene in this study.

  3. Template-based fabrication of nanowire-nanotube hybrid arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Liu Haidong; Schultz, Isabel; Wu Wenhao; Naugle, D G; Lyuksyutov, I

    2008-01-01

    The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO 2 nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co nanowires were then electrochemically deposited into the TiO 2 nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO 2 nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed

  4. A hybrid press system: Motion design and inverse kinematics issues

    Directory of Open Access Journals (Sweden)

    M. Erkan Kütük

    2016-06-01

    Full Text Available A hybrid machine (HM is a system integrating two types of motor; servo and constant velocity with a mechanism. The purpose is to make use of the energy in the system efficiently with a flexible system having more than one degree of freedom (DOF. A review is included on hybrid press systems. This study is included as a part of an industrial project used for metal forming. The system given here includes a 7 link mechanism, one of link is driven by a constant velocity motor (CV and the other is driven by a servo motor (SM. Kinematics analysis of the hybrid driven mechanism is presented here as inverse kinematics analysis. Motion design is very crucial step when using a hybrid machine. So motion design procedure is given with motion curve examples needed. Curve Fitting Toolbox (CFT in Matlab® is offered as an auxiliary method which can be successfully applied. Motion characteristics are chosen by looking at requirements taken from metal forming industry. Results are then presented herein.

  5. Application of Hybrid Optimization Algorithm in the Synthesis of Linear Antenna Array

    Directory of Open Access Journals (Sweden)

    Ezgi Deniz Ülker

    2014-01-01

    Full Text Available The use of hybrid algorithms for solving real-world optimization problems has become popular since their solution quality can be made better than the algorithms that form them by combining their desirable features. The newly proposed hybrid method which is called Hybrid Differential, Particle, and Harmony (HDPH algorithm is different from the other hybrid forms since it uses all features of merged algorithms in order to perform efficiently for a wide variety of problems. In the proposed algorithm the control parameters are randomized which makes its implementation easy and provides a fast response. This paper describes the application of HDPH algorithm to linear antenna array synthesis. The results obtained with the HDPH algorithm are compared with three merged optimization techniques that are used in HDPH. The comparison shows that the performance of the proposed algorithm is comparatively better in both solution quality and robustness. The proposed hybrid algorithm HDPH can be an efficient candidate for real-time optimization problems since it yields reliable performance at all times when it gets executed.

  6. DNA hybridization sensing for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dapra, Johannes; Brøgger, Anna Line

    2013-01-01

    are rearrangements between two chromosome arms that results in two derivative chromosomes having a mixed DNA sequence. The current detection method is a Fluorescent In situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the DNA sequences of two chromosomes involved...... in the translocation (Kwasny et al., 2012). We have developed a new double hybridization assay that allows for sorting of the DNA chromosomal fragments into separate compartment, moreover allowing for detection of the translocation. To detect the translocation it is necessary to determine that the two DNA sequences...... forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The first example of the translocation detection was presented on lab-on-a-disc using fluorescently labeled DNA fragments, representing the derivative chromosome (Brøgger et al., 2012). To allow...

  7. NOTICING HYBRID RECASTS IN TEXT CHAT

    Directory of Open Access Journals (Sweden)

    Mark J. Oliver

    2016-12-01

    Full Text Available This study examined ten EFL learners’ noticing of the corrective nature of a form of text-based SCMC (text chat feedback that combined a recast of a grammatical error with metalinguistic information. The feedback, termed a hybrid recast, was provided by a native-speaker interlocutor during two text chat activities: a spot-the-difference and picture-ordering task. Data was collected in two ways: analysis of task-based dyadic text chat interaction in which uptake was used as an indicator of learner noticing, and a post-task questionnaire containing questions that identified evidence of learner noticing. Interaction analysis showed that learners responded to almost two thirds of the hybrid recasts with uptake. In addition, every learner provided evidence that they had correctly perceived at least some of the hybrid recasts as corrective in their post-task questionnaire responses.

  8. DEVELOPMENT OF TOMATO HYBRIDS BASED ON FEMALE PARENTS FORMS WITH FUNCTIONAL MALE STERILITY

    Directory of Open Access Journals (Sweden)

    I. V. Uzun

    2016-01-01

    Full Text Available The rate of variability of functional male sterility (ps–2 depending on year of study, genotype and age of the plant is shown. The efficiency of the method of forced ejection of pollen from intact anthers to increase the degree of sterility is shown. The five tomato hybrids developed based on selected lines were submitted for the state variety trial of Moldova.

  9. Hybrid-hybrid matrix structural refinement of a DNA three-way junction from 3D NOESY-NOESY

    International Nuclear Information System (INIS)

    Thiviyanathan, Varatharasa; Luxon, Bruce A.; Leontis, Neocles B.; Illangasekare, Nishantha; Donne, David G.; Gorenstein, David G.

    1999-01-01

    Homonuclear 3D NOESY-NOESY has shown great promise for the structural refinement of large biomolecules. A computationally efficient hybrid-hybrid relaxation matrix refinement methodology, using 3D NOESY-NOESY data, was used to refine the structure of a DNA three-way junction having two unpaired bases at the branch point of the junction. The NMR data and the relaxation matrix refinement confirm that the DNA three-way junction exists in a folded conformation with two of the helical stems stacked upon each other. The third unstacked stem extends away from the junction, forming an acute angle (∼60 deg.) with the stacked stems. The two unpaired bases are stacked upon each other and are exposed to the solvent. Helical parameters for the bases in all three strands show slight deviations from typical values expected for right-handed B-form DNA. Inter-nucleotide imino-imino NOEs between the bases at the branch point of the junction show that the junction region is well defined. The helical stems show mobility (± 20 deg.) indicating dynamic processes around the junction region. The unstacked helical stem adjacent to the unpaired bases shows greater mobility compared to the other two stems. The results from this study indicate that the 3D hybrid-hybrid matrix MORASS refinement methodology, by combining the spectral dispersion of 3D NOESY-NOESY and the computational efficiency of 2D refinement programs, provides an accurate and robust means for structure determination of large biomolecules. Our results also indicate that the 3D MORASS method gives higher quality structures compared to the 2D complete relaxation matrix refinement method

  10. A Low Cost Air Hybrid Concept Un concept hybride à air et à bas prix

    Directory of Open Access Journals (Sweden)

    Lee C. Y.

    2010-02-01

    Full Text Available The air hybrid engine absorbs the vehicle kinetic energy during braking, stores it in an air tank in the form of compressed air, and reuses it to propel a vehicle during cruising and acceleration. Capturing, storing and reusing this braking energy to give additional power can therefore improve fuel economy, particularly in cities and urban areas where the traffic conditions involve many stops and starts. In order to reuse the residual kinetic energy, the vehicle operation consists of 3 basic modes, i.e. Compression Mode (CM, Expander Mode (EM and normal firing mode. Unlike previous works, a low cost air hybrid engine has been proposed and studied. The hybrid engine operation can be realized by means of production technologies, such as VVT and valve deactivation. In this work, systematic investigation has been carried out on the performance of the hybrid engine concept through detailed gas dynamic modelling using Ricardo WAVE software. Valve timing optimization has been done for the more efficient operation of air hybrid operation and obtaining higher braking and motoring mean effective pressure for CM and EM respectively. Le moteur hybride à air absorbe l’énergie cinétique du véhicule en cas de freinage, la stocke sous forme d’air comprimé, puis la réutilise pour faire avancer le véhicule en circulation ou en accélération. Capter, stocker et réutiliser cette énergie et créer ainsi une puissance plus importante peut donc permettre de plus grandes économies de carburant, surtout en ville et zone urbaine, lorsque les conditions de circulation imposent de nombreux arrêts et démarrages. Pour pouvoir réutiliser l’énergie cinétique, on distingue trois modes de base d’utilisation du véhicule : les modes compression (MC, expansion (ME et standard. Un moteur hybride à air et à bas prix a été proposé et étudié. Un tel moteur peut être opéré par le biais de technologies de production, comme le VVT et la d

  11. Hybrid, plug-in hybrid, or electric—What do car buyers want?

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-01-01

    We use a survey to compare consumers’ stated interest in conventional gasoline (CV), hybrid (HEV), plug-in hybrid (PHEV) and pure electric vehicles (EV) of varying designs and prices. Data are from 508 households representing new vehicle buyers in San Diego County, California in 2011. The mixed-mode survey collected information about access to residential recharge infrastructure, three days of driving patterns, and desired vehicle designs and motivations via design games. Across the higher and lower price scenarios, a majority of consumers designed and selected some form of PHEV for their next new vehicle, smaller numbers designed an HEV or a conventional vehicle, and only a few percent designed an EV. Of those who did not design an EV, the most frequent concerns with EVs were limited range, charger availability, and higher vehicle purchase prices. Positive interest in HEVs, PHEVs and EVs was associated with vehicle images of intelligence, responsibility, and support of the environment and nation (United States). The distribution of vehicle designs suggests that cheaper, smaller battery PHEVs may achieve more short-term market success than larger battery PHEVs or EV. New car buyers’ present interests align with less expensive first steps in a transition to electric-drive vehicles. - Highlights: • We assess consumer interest in various electric-drive vehicle designs. • Web-based design games completed by 508 households from San Diego, California. • Plug-in hybrids are most popular, followed by hybrids and conventional vehicles. • Only a few percent opted for a pure electric vehicle. • Electric-drive associated with intelligence, responsibility, and environment

  12. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors

    Science.gov (United States)

    Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti

    2013-05-01

    Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm-2, representing a more than 200% improvement over that of bare CNT electrodes.

  13. Berry Curvature in Magnon-Phonon Hybrid Systems.

    Science.gov (United States)

    Takahashi, Ryuji; Nagaosa, Naoto

    2016-11-18

    We study theoretically the Berry curvature of the magnon induced by the hybridization with the acoustic phonons via the spin-orbit and dipolar interactions. We first discuss the magnon-phonon hybridization via the dipolar interaction, and show that the dispersions have gapless points in momentum space, some of which form a loop. Next, when both spin-orbit and dipolar interactions are considered, we show anisotropic texture of the Berry curvature and its divergence with and without gap closing. Realistic evaluation of the consequent anomalous velocity is given for yttrium iron garnet.

  14. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  15. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    International Nuclear Information System (INIS)

    Xie, Yibing; Zhao, Ye

    2013-01-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO 2 ) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity

  16. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    International Nuclear Information System (INIS)

    Shin, Hong Gue; Kwon, Jong Tae; Seo, Young Ho; Kim, Byeong Hee

    2008-01-01

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 μm were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications

  17. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Gue; Kwon, Jong Tae [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of); Seo, Young Ho [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)], E-mail: mems@kangwon.ac.kr; Kim, Byeong Hee [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)

    2008-07-31

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 {mu}m were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications.

  18. Self-organizing bioinspired oligothiophene–oligopeptide hybrids

    Directory of Open Access Journals (Sweden)

    Alexey K. Shaytan

    2011-09-01

    Full Text Available In this minireview, we survey recent advances in the synthesis, characterization, and modeling of new oligothiophene–oligopeptide hybrids capable of forming nanostructured fibrillar aggregates in solution and on solid substrates. Compounds of this class are promising for applications because their self-assembly and stimuli-responsive properties, provided by the peptide moieties combined with the semiconducting properties of the thiophene blocks, can result in novel opportunities for the design of advanced smart materials. These bio-inspired molecular hybrids are experimentally shown to form stable fibrils as visualized by AFM and TEM. While the experimental evidence alone is not sufficient to reveal the exact molecular organization of the fibrils, theoretical approaches based on quantum chemistry calculations and large-scale atomistic molecular dynamics simulations are attempted in an effort to reveal the structure of the fibrils at the nanoscale. Based on the combined theoretical and experimental analysis, the most likely models of fibril formation and aggregation are suggested.

  19. Hybrid warfare of the USA in South America

    Directory of Open Access Journals (Sweden)

    A. V. Budaev

    2015-01-01

    Full Text Available Washington’s hybrid warfare in Latin American region differs by its inventive and sophisticated methods and in fact represents a complex and multidimensional phenomenon including symbiosis of the “soft” and “hard” power as well as their combination in the form of the “smart power”. The increasing importance of hybrid warfare technologies in the US foreign policy in Latin America predetermines the necessity of thorough studies and analysis of this phenomenon for providing Russian interests.

  20. Hybrid governance of aquaculture: Opportunities and challenges.

    Science.gov (United States)

    Vince, Joanna; Haward, Marcus

    2017-10-01

    The development of third party assessment and certification of fisheries and aquaculture has provided new forms of governance in sectors that were traditionally dominated by state based regulation. Emerging market based approaches are driven by shareholder expectations as well as commitment to corporate social responsibility, whereas community engagement is increasingly centered on the questions of social license to operate. Third party assessment and certification links state, market and community into an interesting and challenging hybrid form of governance. While civil society organizations have long been active in pursuing sustainable and safe seafood production, the development of formal non-state based certification provides both opportunities and challenges, and opens up interesting debates over hybrid forms of governance. This paper explores these developments in coastal marine resources management, focusing on aquaculture and the development and operation of the Aquaculture Stewardship Council. It examines the case of salmonid aquaculture in Tasmania, Australia, now Australia's most valuable seafood industry, which remains the focus of considerable community debate over its siting, operation and environmental impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Waste forms for plutonium disposition

    International Nuclear Information System (INIS)

    Johnson, S.G.; O'Holleran, T.P.; Frank, S.M.; Meyer, M.K.; Hanson, M.; Staples, B.A.; Knecht, D.A.; Kong, P.C.

    1997-01-01

    The field of plutonium disposition is varied and of much importance, since the Department of Energy has decided on the hybrid option for disposing of the weapons materials. This consists of either placing the Pu into mixed oxide fuel for reactors or placing the material into a stable waste form such as glass. The waste form used for Pu disposition should exhibit certain qualities: (1) provide for a suitable deterrent to guard against proliferation; (2) be of minimal volume, i.e., maximize the loading; and (3) be reasonably durable under repository-like conditions. This paper will discuss several Pu waste forms that display promising characteristics

  2. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    Science.gov (United States)

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In Situ Production of Graphene-Fiber Hybrid Structures

    DEFF Research Database (Denmark)

    Akia, Mandana; Cremar, Lee; Chipara, Mircea

    2017-01-01

    We report a scalable method to obtain a new material where large graphene sheets form webs linking carbon fibers. Film-fiber hybrid nonwoven mats are formed during fiber processing and converted to carbon structures after a simple thermal treatment. This contrasts with multistep methods...... that attempt to mix previously prepared graphene and fibers, or require complicated and costly processes for deposition of graphene over carbon fibers. The developed graphene-fiber hybrid structures have seamless connections between graphene and fibers, and in fact the graphene "veils" extend directly from one...... a capillarity effect that promoted the formation of thin veils, which become graphene sheets upon dehydration by sulfuric acid vapor followed by carbonization (at relatively low temperatures, below 800 °C). These veils extend over several micrometers within the pores of the fiber network, and consist...

  4. Effect of orbital hybridization on spin-polarized tunneling across Co/C60 interfaces

    NARCIS (Netherlands)

    Wang, Kai; Strambini, Elia; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2016-01-01

    The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we

  5. Theory of the Quantum Dot Hybrid Qubit

    Science.gov (United States)

    Friesen, Mark

    2015-03-01

    The quantum dot hybrid qubit, formed from three electrons in two quantum dots, combines the desirable features of charge qubits (fast manipulation) and spin qubits (long coherence times). The hybridized spin and charge states yield a unique energy spectrum with several useful properties, including two different operating regimes that are relatively immune to charge noise due to the presence of optimal working points or ``sweet spots.'' In this talk, I will describe dc and ac-driven gate operations of the quantum dot hybrid qubit. I will analyze improvements in the dephasing that are enabled by the sweet spots, and I will discuss the outlook for quantum hybrid qubits in terms of scalability. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), the USDOD, and the Intelligence Community Postdoctoral Research Fellowship Program. The views and conclusions contained in this presentation are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of the US government.

  6. Genetic relatedness of orbiviruses by RNA-RNA blot hybridization

    International Nuclear Information System (INIS)

    Bodkin, D.K.

    1985-01-01

    RNA-RNA blot hybridization was developed in order to identify type-specific genes among double-stranded (ds) RNA viruses, to assess the genetic relatedness of dsRNA viruses and to classify new strains. Viral dsRNA segments were electrophoresed through 10% polyacrylamide gels, transferred to membranes, and hybridized to [5' 32 P]-pCp labeled genomic RNA from a related strain. Hybridization was performed at 52 0 C, 50% formamide, 5X SSC. Under these conditions heterologous RNA species must share ≥ 74% sequence homology in order to form stable dsRNA hybrids. Cognate genes of nine members of the Palyam serogroup of orbiviruses were identified and their sequence relatedness to the prototype. Palyam virus, was determined. Reciprocal blot hybridizations were performed using radiolabeled genomic RNA of all members of the Palyam serogroup. Unique and variant genes were identified by lack of cross-homology or by weak homology between segments. Since genes 2 and 6 exhibited the highest degree of sequence variability, response to the vertebrate immune system may be a major cause of sequence divergence among members of a single serogroup. Changuinola serogroup isolates were compared by dot-blot hybridization, while Colorado tick fever (CTF) serogroup isolates were compared by the RNA-RNA blot hybridization procedure described for reovirus and Palyam serogroup isolates. Preliminary blot hybridization data were also obtained on the relatedness of members of different Orbivirus serogroups

  7. Rapid movement and instability of an invasive hybrid swarm.

    Science.gov (United States)

    Glotzbecker, Gregory J; Walters, David M; Blum, Michael J

    2016-07-01

    Unstable hybrid swarms that arise following the introduction of non-native species can overwhelm native congeners, yet the stability of invasive hybrid swarms has not been well documented over time. Here, we examine genetic variation and clinal stability across a recently formed hybrid swarm involving native blacktail shiner (Cyprinella venusta) and non-native red shiner (C. lutrensis) in the Upper Coosa River basin, which is widely considered to be a global hot spot of aquatic biodiversity. Examination of phenotypic, multilocus genotypic, and mitochondrial haplotype variability between 2005 and 2011 revealed that the proportion of hybrids has increased over time, with more than a third of all sampled individuals exhibiting admixture in the final year of sampling. Comparisons of clines over time indicated that the hybrid swarm has been rapidly progressing upstream, but at a declining and slower pace than rates estimated from historical collection records. Clinal comparisons also showed that the hybrid swarm has been expanding and contracting over time. Additionally, we documented the presence of red shiner and hybrids farther downstream than prior studies have detected, which suggests that congeners in the Coosa River basin, including all remaining populations of the threatened blue shiner (Cyprinella caerulea), are at greater risk than previously thought.

  8. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E. (Univ. of California, Berkeley (USA))

    1990-08-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a {beta}-turn and an {alpha}-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the {alpha}-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences.

  9. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    International Nuclear Information System (INIS)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E.

    1990-01-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a β-turn and an α-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the α-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences

  10. Synthesis and electrical characterization of low-temperature thermal-cured epoxy resin/functionalized silica hybrid-thin films for application as gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Moonkyong, E-mail: nmk@keri.re.kr [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); System on Chip Chemical Process Research Center, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 (Korea, Republic of); Kang, Young Taec [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Department of Polymer Science and Engineering, Pusan National University, Busan, 609-735 (Korea, Republic of); Kim, Sang Cheol [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Kim, Eun Dong [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of)

    2013-07-31

    Thermal-cured hybrid materials were synthesized from homogenous hybrid sols of epoxy resins and organoalkoxysilane-functionalized silica. The chemical structures of raw materials and obtained hybrid materials were characterized using Fourier transform infrared spectroscopy. The thermal resistance of the hybrids was enhanced by hybridization. The interaction between epoxy matrix and the silica particles, which caused hydrogen bonding and van der Waals force was strengthened by organoalkoxysilane. The degradation temperature of the hybrids was improved by approximately 30 °C over that of the parent epoxy material. The hybrid materials were formed into uniformly coated thin films of about 50 nm-thick using a spin coater. An optimum mixing ratio was used to form smooth-surfaced hybrid films. The electrical property of the hybrid film was characterized, and the leakage current was found to be well below 10{sup −6} A cm{sup −2}. - Highlights: • Preparation of thermal-curable hybrid materials using epoxy resin and silica. • The thermal stability was enhanced through hybridization. • The insulation property of hybrid film was investigated as gate dielectrics.

  11. Hybridization and sequencing of nucleic acids using base pair mismatches

    Science.gov (United States)

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  12. Maladaptive learning and memory in hybrids as a reproductive isolating barrier.

    Science.gov (United States)

    Rice, Amber M; McQuillan, Michael A

    2018-05-30

    Selection against hybrid offspring, or postzygotic reproductive isolation, maintains species boundaries in the face of gene flow from hybridization. In this review, we propose that maladaptive learning and memory in hybrids is an important, but overlooked form of postzygotic reproductive isolation. Although a role for learning in premating isolation has been supported, whether learning deficiencies can contribute to postzygotic isolation has rarely been tested. We argue that the novel genetic combinations created by hybridization have the potential to impact learning and memory abilities through multiple possible mechanisms, and that any displacement from optima in these traits is likely to have fitness consequences. We review evidence supporting the potential for hybridization to affect learning and memory, and evidence of links between learning abilities and fitness. Finally, we suggest several avenues for future research. Given the importance of learning for fitness, especially in novel and unpredictable environments, maladaptive learning and memory in hybrids may be an increasingly important source of postzygotic reproductive isolation. © 2018 The Author(s).

  13. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  14. Hybrid Arrays for Chemical Sensing

    Science.gov (United States)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  15. Control of DNA hybridization by photoswitchable molecular glue.

    Science.gov (United States)

    Dohno, Chikara; Nakatani, Kazuhiko

    2011-12-01

    Hybridization of DNA is one of the most intriguing events in molecular recognition and is essential for living matter to inherit life beyond generations. In addition to the function of DNA as genetic material, DNA hybridization is a key to control the function of DNA-based materials in nanoscience. Since the hybridization of two single stranded DNAs is a thermodynamically favorable process, dissociation of the once formed DNA duplex is normally unattainable under isothermal conditions. As the progress of DNA-based nanoscience, methodology to control the DNA hybridization process has become increasingly important. Besides many reports using the chemically modified DNA for the regulation of hybridization, we focused our attention on the use of a small ligand as the molecular glue for the DNA. In 2001, we reported the first designed molecule that strongly and specifically bound to the mismatched base pairs in double stranded DNA. Further studies on the mismatch binding molecules provided us a key discovery of a novel mode of the binding of a mismatch binding ligand that induced the base flipping. With these findings we proposed the concept of molecular glue for DNA for the unidirectional control of DNA hybridization and, eventually photoswitchable molecular glue for DNA, which enabled the bidirectional control of hybridization under photoirradiation. In this tutorial review, we describe in detail how we integrated the mismatch binding ligand into photoswitchable molecular glue for DNA, and the application and perspective in DNA-based nanoscience.

  16. Performance analysis of a photovoltaic-thermochemical hybrid system prototype

    International Nuclear Information System (INIS)

    Li, Wenjia; Ling, Yunyi; Liu, Xiangxin; Hao, Yong

    2017-01-01

    Highlights: •A modular photovoltaic-thermochemical hybrid system prototype is proposed. •Net solar-electric efficiency up to 41% is achievable. •Stable solar power supply is achievable via convenient energy storage. •The modular design facilitates the scalability of the hybrid system. -- Abstract: A solar photovoltaic (PV) thermochemical hybrid system consisting of a point-focus Fresnel concentrator, a PV cell and a methanol thermochemical reactor is proposed. In particular, a reactor capable of operating under high solar concentration is designed, manufactured and tested. Studies on both kinetic and thermodynamic characteristics of the reactor and the system are performed. Analysis of numerical and experimental results shows that with cascaded solar energy utilization and synergy among different forms of energy, the hybrid system has the advantages of high net solar-electric efficiency (up to 41%), stable solar energy power supply, solar energy storage (via syngas) and flexibility in application scale. The hybrid system proposed in this work provides a potential solution to some key challenges of current solar energy utilization technologies.

  17. Formation of diploid and triploid hybrid groupers (hybridization of Epinephelus coioides ♀ × Epinephelus lanceolatus ♂) and their 5S gene analysis.

    Science.gov (United States)

    Huang, Wen; Qin, Qinbo; Yang, Huirong; Li, Shuisheng; Hu, Chaoqun; Wang, Yude; Zhang, Yong; Liu, Shaojun; Lin, Haoran

    2016-10-07

    Interspecies hybridization is widely used to achieve heterosis or hybrid vigor, which has been observed and harnessed by breeders for centuries. Natural allopolyploid hybrids generally exhibit more superior heterosis than both the diploid progenies and their parental species. However, polyploid formation processes have been long ignored, the genetic basis of heterosis in polyploids remains elusive. In the present study, triploid hybrids had been demonstrated to contain two sets of chromosomes from mother species and one set from father species. Cellular polyploidization process in the embryos had been traced. The triploid hybrids might be formed by failure formation of the second polarized genome during the second meiosis stage. Four spindle centers were observed in anaphase stage of the first cell division. Three spindle centers were observed in side of cell plate after the first cell division. The 5S rDNA genes of four types of groupers were cloned and analyzed. The diploid and triploid hybrids had been proved to contain the tandem chimera structures which were recombined by maternal and paternal monomer units. The results indicated that genome re-fusion had occurred in the hybrid progenies. To further elucidate the genetic patterns of diploid and triploid hybrids, fluorescence chromosome location had been carried out, maternal 5S gene (M-386) were used as the probe. The triploid hybrids contained fewer fluorescence loci numbers than the maternal species. The results indicated that participation of paternal 5S gene in the triploid hybrid genome had degraded the match rates of M-386 probe. Our study is the first to investigate the cellular formation processes of natural allopolyploids in hybrid fish, the cellular polyploidization process may be caused by failure formation of the second polarized genome during the meiosis, and our results will provide the molecular basis of hybrid vigor in interspecies hybridization.

  18. Hybrid foundry patterns of bevel gears

    Directory of Open Access Journals (Sweden)

    Budzik G.

    2007-01-01

    Full Text Available Possibilities of making hybrid foundry patterns of bevel gears for investment casting process are presented. Rapid prototyping of gears with complex tooth forms is possible with the use of modern methods. One of such methods is the stereo-lithography, where a pattern is obtained as a result of resin curing with laser beam. Patterns of that type are applicable in precision casting. Removing of stereo-lithographic pattern from foundry mould requires use of high temperatures. Resin burning would generate significant amounts of harmful gases. In case of a solid stereo-lithographic pattern, the pressure created during gas burning may cause the mould to crack. A gas volume reduction may be achieved by using patterns of honeycomb structure. However, this technique causes a significant worsening of accuracy of stereo-lithographic patterns in respect of their dimensions and shape. In cooperation with WSK PZL Rzeszów, the Machine Design Department of Rzeszow University of Technology carried out research on the design of hybrid stereo-lithographic patterns. Hybrid pattern consists of a section made by stereo-lithographic process and a section made of casting wax. The latter material is used for stereo-lithographic pattern filling and for mould gating system. The hybrid pattern process consists of two stages: wax melting and then the burn-out of stereolithographic pattern. Use of hybrid patterns reduces the costs of production of stereolithographic patterns. High dimensional accuracy remains preserved in this process.

  19. Organic / IV, III-V Semiconductor Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Pang-Leen Ong

    2010-03-01

    Full Text Available We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V, nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines, conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented.

  20. A NEW HYBRID GENETIC ALGORITHM FOR VERTEX COVER PROBLEM

    OpenAIRE

    UĞURLU, Onur

    2015-01-01

    The minimum vertex cover  problem belongs to the  class  of  NP-compl ete  graph  theoretical problems. This paper presents a hybrid genetic algorithm to solve minimum ver tex cover problem. In this paper, it has been shown that when local optimization technique is added t o genetic algorithm to form hybrid genetic algorithm, it gives more quality solution than simple genet ic algorithm. Also, anew mutation operator has been developed especially for minimum verte...

  1. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Directory of Open Access Journals (Sweden)

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  2. Borazine-boron nitride hybrid hydrogen storage system

    Science.gov (United States)

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  3. Development of Premacy Hydrogen RE Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, N. [Mazda Motor Corporation, Hiroshima (Japan)

    2010-07-01

    Hydrogen powered ICE (internal combustion engine) vehicles can play an important role as an automotive power source in the future, because of its higher reliability and cost performance than those of fuel cell vehicles. Combined with hydrogen, Mazda's unique rotary engine (RE) has merits such as a prevention of hydrogen pre-ignition. Mazda has been developing hydrogen vehicles with the hydrogen RE from the early 1990s. Premacy (Mazda5) Hydrogen RE Hybrid was developed and launched in 2009, following RX-8 Hydrogen RE delivered in 2006. A series hybrid system was adopted in Premacy Hydrogen RE Hybrid. A traction motor switches its windings while the vehicle is moving. This switching technology allows the motor to be small and high-efficient. The lithium-ion high voltage battery, which has excellent input-output characteristics, was installed. These features extend the hydrogen fuel driving range to 200 km and obtain excellent acceleration performance. The hydrogen RE can be also operated by gasoline (Dual Fuel System). The additional gasoline operation makes hydrogen vehicles possible to drive in non-hydrogen station area. With approval from the Japanese Ministry of Land Infrastructure and Transport, Mazda Premacy Hydrogen RE Hybrid was delivered successfully to the Japanese market in the form of leasing. (orig.)

  4. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  5. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  6. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  7. Interspecific somatic hybridization between lettuce (Lactuca sativa) and wild species L. virosa.

    Science.gov (United States)

    Matsumoto, E

    1991-02-01

    Somatic hybrids between cultivated lettuce (Lactuca sativa) and a wild species L. virosa were produced by protoplast electrofusion. Hybrid selection was based on inactivation of L. sativa with 20mM iodoacetamide for 15 min, and the inability of L. virosa protoplasts to divide in the culture conditions used. Protoplasts were cultured in agarose beads in a revised MS media. In all 71 calli were formed and 21 of them differentiated shoots on LS medium containing 0.1mg/l NAA and 0.2mg/l BA. Most regenerated plants exhibited intermediate morphology. These plants were confirmed as hybrids by isoenzyme analysis. The majority of somatic hybrids had 2n=4x=36 chromosomes, and had more vigorous growth than either parent. Hybrids had normal flower morphology, but all were sterile.

  8. Hybrid keyword search auctions

    KAUST Repository

    Goel, Ashish

    2009-01-01

    Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1. We show that risk-seeking advertisers will choose only a per-impression bid whereas risk-averse advertisers will choose only a per-click bid, and argue that both kind of advertisers arise naturally. Hence, the ability to bid in a hybrid fashion is important to account for the risk characteristics of the advertisers. 2. For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, we show that having the extra information from the advertisers in the form of a per-impression bid can result in significantly higher revenue. 3. An advertiser who believes that its click-probability is much higher than the auctioneer\\'s estimate can use per-impression bids to correct the auctioneer\\'s prior without incurring any extra cost. 4. The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies to deal with the uncertainty in the click-probability using the same basic auction. The per-click and per-impression bidding schemes can only be used to implement two extreme cases of these strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction. The

  9. Hybrid keyword search auctions

    KAUST Repository

    Goel, Ashish; Munagala, Kamesh

    2009-01-01

    Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1. We show that risk-seeking advertisers will choose only a per-impression bid whereas risk-averse advertisers will choose only a per-click bid, and argue that both kind of advertisers arise naturally. Hence, the ability to bid in a hybrid fashion is important to account for the risk characteristics of the advertisers. 2. For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, we show that having the extra information from the advertisers in the form of a per-impression bid can result in significantly higher revenue. 3. An advertiser who believes that its click-probability is much higher than the auctioneer's estimate can use per-impression bids to correct the auctioneer's prior without incurring any extra cost. 4. The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies to deal with the uncertainty in the click-probability using the same basic auction. The per-click and per-impression bidding schemes can only be used to implement two extreme cases of these strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction. The hybrid

  10. A Hybrid Chaotic Quantum Evolutionary Algorithm

    DEFF Research Database (Denmark)

    Cai, Y.; Zhang, M.; Cai, H.

    2010-01-01

    A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....

  11. Engineering hybrid Co-picene structures with variable spin coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chunsheng [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shan, Huan; Li, Bin, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Zhao, Aidi, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Wang, Bing [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-04-25

    We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.

  12. A multigrid solution method for mixed hybrid finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W. [Universitaet Augsburg (Germany)

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  13. Novel blends of acrylonitrile butadiene rubber and polyurethane-silica hybrid networks

    Directory of Open Access Journals (Sweden)

    X. P. Wang

    2012-07-01

    Full Text Available Novel blends of acrylonitrile butadiene rubber (NBR and polyurethane-silica (PU-SiO2 hybrid networks have been prepared by melt blending. The PU-SiO2 hybrid networks were formed via the reaction of NCO groups of NCO-terminated PU prepolymer and OH groups of SiO2 in the absence of an external crosslinking agent (i.e. alcohols and amines during the curing process of NBR. Both in the neat PU-SiO2 system and the NBR/(PU-SiO2 system, the NCO-terminated PU prepolymer could be crosslinked by SiO2 to form PU-SiO2 hybrid networks. The effects of PU-SiO2 introduction into the NBR, on the properties of the resulting blends were studied. It was found that the vulcanization was activated by the incorporation of PU-SiO2. Transmission electronic microscopy (TEM studies indicated that the interpenetration and entanglement structures between NBR and PU-SiO2 increased with increasing PU-SiO2 content and the quasi-interpenetrating polymer networks (quasi-IPN structures were formed when the PU-SiO2 was 50 wt% in the NBR/(PU-SiO2 systems. The microstructures formed in the blends led to good compatibility between NBR and PU-SiO2 and significantly improved the mechanical properties, abrasion resistance and flex-fatigue life of the blends.

  14. Hybrid variational principles and synthesis method for finite element neutron transport calculations

    International Nuclear Information System (INIS)

    Ackroyd, R.T.; Nanneh, M.M.

    1990-01-01

    A family of hybrid variational principles is derived using a generalised least squares method. Neutron conservation is automatically satisfied for the hybrid principles employing two trial functions. No interfaces or reflection conditions need to be imposed on the independent even-parity trial function. For some hybrid principles a single trial function can be employed by relating one parity trial function to the other, using one of the parity transport equation in relaxed form. For other hybrid principles the trial functions can be employed sequentially. Synthesis of transport solutions, starting with the diffusion theory approximation, has been used as a way of reducing the scale of the computation that arises with established finite element methods for neutron transport. (author)

  15. Analysing mass balance of viruses in a coagulation-ceramic microfiltration hybrid system by a combination of the polymerase chain reaction (PCR) method and the plaque forming units (PFU) method.

    Science.gov (United States)

    Matsushita, T; Matsui, Y; Shirasaki, N

    2006-01-01

    Virus removal experiments using river water spiked with bacteriophages were conducted by an in-line coagulation-ceramic microfiltration hybrid system to investigate the effects of filtration flux (62.5 and 125 L/(m2 x h)) and type of virus (Qbeta and MS2) on virus removal. In addition, the mass balance of viruses through the hybrid system was analysed by quantifying the infectious and inactive viruses by a combination of the polymerase chain reaction (PCR) method and the plaque forming units (PFU) method. Even when the system was operated at high filtration flux (125 L/(m2 x h)), high virus removal (> 6 log) with short coagulation time (2.4 s) was successfully achieved by dosing polyaluminium chloride (PACI) at more than 1.08 mg-Al/L. Removal performances were different between Qbeta and MS2, although their diameters are almost the same: greater virus removal was achieved for MS2 at PACI dosing of 0.54 mg-Al/L, and for Qbeta at PACI dosing of more than 1.08 mg-Al/L. The combination of the PCR and PFU methods revealed that two phenomena, adsorption to/entrapment in aluminium floc and virucidal activity of PACI, partially account for the high virus removal in the coagulation-MF hybrid system.

  16. Experimental studies of the air hybrid engine charging operation

    OpenAIRE

    Zhao, H; Ma, T; Lee, CY

    2014-01-01

    Over the last few years, theoretical and modelling studies have been carried out on the feasibility and potential of novel mild air hybrid engine concepts based on production components. These mild air hybrid concepts are able to convert vehicle brake energy into pneumatic energy in the form of compressed air stored in the air tank. The compressed air can then be used to crank-start the engine by either injecting and expanding in the cylinder or driving a production air starter. Thus, the reg...

  17. Multi-dimensional conversion to the ion-hybrid mode

    International Nuclear Information System (INIS)

    Tracy, E.R.; Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.

    1996-01-01

    We first demonstrate that the dispersion matrix for linear conversion of a magnetosonic wave to an ion-hybrid wave (as in a D-T plasma) can be congruently transformed to Friedland's normal form. As a result, this conversion can be represented as a two-step process of successive linear conversions in phase space. We then proceed to study the multi-dimensional case of tokamak geometry. After fourier transforming the toroidal dependence, we deal with the two-dimensional poloidal xy-plane and the two-dimensional k x k y -plane, forming a four-dimensional phase space. The dispersion manifolds for the magnetosonic wave [D M (x, k) = 0] and the ion-hybrid wave [D H (x, k) = 0] are each three-dimensional. (Their intersection, on which mode conversion occurs, is two-dimensional.) The incident magnetosonic wave (radiated by an antenna) is a two-dimensional set of rays (a lagrangian manifold): k(x) = ∇θ(x), with θ(x) the phase of the magnetosonic wave. When these rays pierce the ion-hybrid dispersion manifold, they convert to a set of ion-hybrid rays. Then, when those rays intersect the magnetosonic dispersion manifold, they convert to a set of open-quotes reflectedclose quotes magnetosonic rays. This set of rays is distinct from the set of incident rays that have been reflected by the inner surface of the tokamak plasma. As a result, the total destructive interference that can occur in the one-dimensional case may become only partial. We explore the implications of this startling phenomenon both analytically and geometrically

  18. Hybrid vehicle assessment. Phase I. Petroleum savings analysis

    Energy Technology Data Exchange (ETDEWEB)

    Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H.

    1984-03-01

    This report presents the results of a comprehensive analysis of near-term electric-hybrid vehicles. Its purpose was to estimate their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles were first modeled. The projected US fleet composition was estimated, and conceptual hybrid vehicle designs were conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates were then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of several conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle-mission-battery combination. A discussion of lessons learned during the construction and test of the General Electric Hybrid Test Vehicle is also presented. Conclusions and recommendations are presented, and development recommendations are identified.

  19. Transgressive Hybrids as Hopeful Monsters.

    Science.gov (United States)

    Dittrich-Reed, Dylan R; Fitzpatrick, Benjamin M

    2013-06-01

    The origin of novelty is a critical subject for evolutionary biologists. Early geneticists speculated about the sudden appearance of new species via special macromutations, epitomized by Goldschmidt's infamous "hopeful monster". Although these ideas were easily dismissed by the insights of the Modern Synthesis, a lingering fascination with the possibility of sudden, dramatic change has persisted. Recent work on hybridization and gene exchange suggests an underappreciated mechanism for the sudden appearance of evolutionary novelty that is entirely consistent with the principles of modern population genetics. Genetic recombination in hybrids can produce transgressive phenotypes, "monstrous" phenotypes beyond the range of parental populations. Transgressive phenotypes can be products of epistatic interactions or additive effects of multiple recombined loci. We compare several epistatic and additive models of transgressive segregation in hybrids and find that they are special cases of a general, classic quantitative genetic model. The Dobzhansky-Muller model predicts "hopeless" monsters, sterile and inviable transgressive phenotypes. The Bateson model predicts "hopeful" monsters with fitness greater than either parental population. The complementation model predicts both. Transgressive segregation after hybridization can rapidly produce novel phenotypes by recombining multiple loci simultaneously. Admixed populations will also produce many similar recombinant phenotypes at the same time, increasing the probability that recombinant "hopeful monsters" will establish true-breeding evolutionary lineages. Recombination is not the only (or even most common) process generating evolutionary novelty, but might be the most credible mechanism for sudden appearance of new forms.

  20. Anticorrosive organic/inorganic hybrid coatings

    Science.gov (United States)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  1. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  2. Molas Baju Wara: Hybridity in Manggarai Rap Music

    Directory of Open Access Journals (Sweden)

    Ans. Prawati Yuliantari

    2017-06-01

    Full Text Available Rap music which has been popular since 2007 in Manggarai region, East Nusa Tenggara, Indonesia, gave rise to rap hybrid phenomenon. The mixture between American rap music formats and local elements of Manggarai attracted the attention of young people in the region. One of the local songs that feature hybridity in rap Manggarai is "Molas Baju Wara" created by Lipooz, one of the pioneers of rap in Ruteng, the capital city of Manggarai district. To discuss this phenomenon, the concept of hybridity in cultural territory proposed by James Lull is adopted. This concept is used particularly to analyze the forms of hybridity reflected in " Molas Baju Wara" and the ways they are used in showing the social and cultural conditions of Manggarai. "Molas Baju Wara" was selected as the object of study because the song is clearly showing the characteristics of hybridity in music. The study shows that hybridity could be perceived in Manggarai rap music specifically in the use of local musical instruments like drums, cajon, and tambourine as a substitute for percussive sounds of drums, boombox, or turn-table which are commonly used by rap musicians in their home country, the U.S.A. In addition, there are elements of local sound such as the sound of rain that represents Ruteng as the rain city. Hybridity characteristics can also be found in the use of Manggarai vernacular in the whole lyrics as well as the narration of local themes and certain sites that represent Ruteng.

  3. Hybrid spin-nanomechanics with single spins in diamond mechanical oscillators

    OpenAIRE

    Barfuss, Arne

    2017-01-01

    Hybrid spin-oscillator systems, formed by single spins coupled to mechanical oscillators, have attracted ever-increasing attention over the past few years, triggered largely by the prospect of employing such devices as high-performance nanoscale sensors or transducers in multi-qubit networks. Provided the spin-oscillator coupling is strong and robust, such systems can even serve as test-beds for studying macroscopic objects in the quantum regime. In this thesis we present a novel hybrid sp...

  4. Wave propagation near the lower hybrid resonance in toroidal plasmas

    International Nuclear Information System (INIS)

    Ohkubo, K.; Ohasa, K.; Matsuura, K.

    1975-10-01

    Dielectric tensor and equipotential curves (ray trajectories) of an electrostatic wave near the lower hybrid resonance are investigated for the toroidal plasma with a shear magnetic field. The ray trajectories start from the vicinity of the plasma surface, and rotate in a spiral form around the magnetic axis, and then reach the lower or upper parts of lower hybrid resonance layer. The numerical computations are performed on the parameters of JIPP T-II device with two dimensional inhomogeneity. (auth.)

  5. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  6. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  7. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo; Garnett, Erik C.; Wang, Shuang; Yu, Zongfu; Fan, Shanhui; Brongersma, Mark L.; McGehee, Michael D.; Cui, Yi

    2012-01-01

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  8. Hybrid integrated sensor for position measurement

    International Nuclear Information System (INIS)

    Schmidt, B.; Schott, H.; Just, H.-J.

    1986-01-01

    The design, fabrication and performance of an integrated two-dimensional position sensitive photodetector are presented. The optoelectronic device used as sensitive element in the circuit is a full area position sensitive photodiode (PPD) with high linearity over the full sensitive area. The PPD is integrated with the analog electronics in a hybrid circuit using thick film technology. The analog electronics includes the signal amplification and the signal conditioning to form the output signals proportional to the light beam center position at the sensor surface and an output signal proportional to the light beam intensity. Using hybrid integration a new position sensitive transducer is developed giving output signals, transmiting in large distances without problems and driving directly actuators in any control system

  9. Conceptual scheme of a hybrid mesocatalytic fusion reactor

    International Nuclear Information System (INIS)

    Petrov, Yu.V.

    1988-01-01

    To test the practical realization of the mesocatalytic method for energy production a preliminary engineering analysis and calculation of the separate units of the conceptual scheme of the hybrid mesocatalytic reactor was made. The construction and efficiency of the most characteristic separate blocks of the conceptual scheme for muon-catalyzed fusion are examined. The muon catalysis cycle in a dt mixture was assessed. The kinetics and energetics of muon production through a pion-forming target and a converter were evaluated. Concomitant questions, particularly the removal of helium from hydrogen, are discussed. Fusion chamber requirements were calculated and problems of heat removal were assessed. Blanket construction and efficiency were examined. The efficiency of different methods for power generation were comparatively reviewed including hybrid thermonuclear, electronuclear nuclear, and hybrid mesocatalytic methods. Energy balances and economic restrictions were examined

  10. Detection of DNA hybridizations using solid-state nanopores

    International Nuclear Information System (INIS)

    Balagurusamy, Venkat S K; Weinger, Paul; Sean Ling, Xinsheng

    2010-01-01

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  11. Detection of DNA hybridizations using solid-state nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Balagurusamy, Venkat S K; Weinger, Paul; Sean Ling, Xinsheng, E-mail: Xinsheng_Ling@brown.edu [Department of Physics, Brown University, Providence, RI 02912 (United States)

    2010-08-20

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  12. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  13. Hopping mixed hybrid excitations in multiple composite quantum wire structures

    International Nuclear Information System (INIS)

    Nguyen Ba An; Tran Thai Hoa

    1995-10-01

    A structure consisting of N pairs of inorganic semiconductor and organic quantum wires is considered theoretically. In such an isolated pair of wires, while the intrawire coupling forms Wannier-Mott exciton in an inorganic semiconductor quantum wire and Frenkel exciton in an organic one, the interwire coupling gives rise to hybrid excitons residing within the pair. When N pairs of wires are packed together 2N new mixed hybrid modes appear that are the true elementary excitations and can hop throughout the whole structure. Energies and wave functions of such hopping mixed hybrid excitations are derived analytically in detail accounting for the global interwire coupling and the different polarization configurations. (author). 19 refs

  14. Polyhedral oligomeric silsesquioxane (POSS)–poly(ethylene glycol) (PEG) hybrids as injectable biomaterials

    International Nuclear Information System (INIS)

    Engstrand, Johanna; López, Alejandro; Engqvist, Håkan; Persson, Cecilia

    2012-01-01

    One of the major issues with the currently available injectable biomaterials for hard tissue replacement is the mismatch between their mechanical properties and those of the surrounding bone. Hybrid bone cements that combine the benefits of tough polymeric and bioactive ceramic materials could become a good alternative. In this work, polyhedral oligomeric silsesquioxane (POSS) was copolymerized with poly(ethylene glycol) (PEG) to form injectable in situ cross-linkable hybrid cements. The hybrids were characterized in terms of their mechanical, rheological, handling and in vitro bioactive properties. The results indicated that hybridization improves the mechanical and bioactive properties of POSS and PEG. The Young moduli of the hybrids were lower than those of commercial cements and more similar to those of cancellous bone. Furthermore, the strength of the hybrids was similar to that of commercial cements. Calcium deficient hydroxyapatite grew on the surface of the hybrids after 28 days in PBS, indicating bioactivity. The study showed that PEG–POSS-based hybrid materials are a promising alternative to commercial bone cements. (paper)

  15. Social enterprise in health organisation and management: hybridity or homogeneity?

    Science.gov (United States)

    Millar, Ross

    2012-01-01

    The purpose of this paper is to reflect on social enterprise as an organisational form in health organisation and management. The paper presents a critique of the underlying assumptions associated with social enterprise in the context of English health and social care. The rise of social enterprise models of service provision reflects increasingly hybrid organisational forms and functions entering the health and social care market. Whilst at one level this hybridity increases the diversity of service providers promoting innovative and responsive services, the paper argues that further inspection of the assumptions associated with social enterprise reveal an organisational form that is symbolic of isomorphic processes pushing healthcare organisations toward greater levels of homogeneity, based on market-based standardisation and practices. Social enterprise forms part of isomorphic processes moving healthcare organisation and management towards market norms". In line with the aim of the "New Perspectives section", the paper aims to present a provocative perspective about developments in health and social care, as a spur to further debate and research in this area.

  16. Genetic engineering with tobacco protoplasts. [Hybridization by fusion of leaf protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H H

    1976-01-01

    Interspecific hybridization by fusion of leaf protoplasts of Nicotiana glauca (GG) and N. langsdorffii (LL) was confirmed and extended. Enzymatic digestion of leaf tissues to obtain protoplats was followed by fusion with the aid of polyethylene glycol. The hybrid calli were selected by their better growth on defined culture media. Mature hybrid plants were identified by their morphology and tumor formation. Cytological examination revealed a range in chromosome numbers from 56 to 64 rather than the amphiploid GGLL number of 42. About 75 percent of the hybrids were fertile. The potential range in combining widely disparate genotypes by somatic cell fusion was demonstrated by fusing tobacco GGLL protoplasts with human HeLa cells. The HeLa nucleus was observed inside the plant protoplasts, thus forming an interkingdom heterokaryon.

  17. Hybrid incompatibilities in the parasitic wasp genus Nasonia : Negative effects of hemizygosity and the identification of transmission ratio distortion loci

    NARCIS (Netherlands)

    Koevoets, T.; Niehuis, O.; van de Zande, L.; Beukeboom, L. W.

    The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the

  18. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik⊥ and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  19. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    Science.gov (United States)

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Hybride textuelle Strukturen und hybride textuelle Einheiten. Ein ...

    African Journals Online (AJOL)

    carrying set of all hybrid hierarchical structures are element-heterogeneous whilst the structure- carrying set of all ... grams of hierarchical hybrid article structures, the nodes for those text segments that establish the hybrid status of .... der; d ∈ ArtA ⊣ G|WAr (= Artikelangabe, anhand derer das Genus (= G) und zugleich die ...

  1. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  2. Influence of environment and mitochondrial heritage on the ecological characteristics of fish in a hybrid zone.

    Directory of Open Access Journals (Sweden)

    Nicolas Stolzenberg

    2009-06-01

    Full Text Available Ecological characteristics (growth, morphology, reproduction arise from the interaction between environmental factors and genetics. Genetic analysis of individuals' life history traits might be used to improve our understanding of mechanisms that form and maintain a hybrid zone.A fish hybrid zone was used to characterize the process of natural selection. Data were collected during two reproductive periods (2001 and 2002 and 1117 individuals (nase, Chondrostama nasus nasus, sofie C. toxostoma toxostoma and hybrids were sampled. Reproductive dates of the two parental species overlapped at sympatric sites. The nase had an earlier reproductive period than the sofie; males had longer reproductive periods for both species. Hybridisation between female nase and male sofie was the most likely. Hybrids had a reproductive period similar to the inherited parental mitochondrial type. Growth and reproductive information from different environments has been synthesised following a bayesian approach of the von Bertalanffy model. Hybrid life history traits appear to link with maternal heritage. Hybrid size from the age of two and size at first maturity appeared to be closer to the size of the maternal origin species (nase or sofie. Median growth rates for hybrids were similar and intermediate between those of the parental species. We observed variable life history traits for hybrids and pure forms in the different parts of the hybrid zone. Geometrical analysis of the hybrid fish shape gave evidence of two main morphologies with a link to maternal heritage.Selective mating seemed to be the underlying process which, with mitochondrial heritage, could explain the evolution of the studied hybrid zone. More generally, we showed the importance of studies on hybrid zones and specifically the study of individuals' ecological characteristics, to improve our understanding of speciation.

  3. Influence of environment and mitochondrial heritage on the ecological characteristics of fish in a hybrid zone.

    Science.gov (United States)

    Stolzenberg, Nicolas; Nguyen The, Bénédicte; Salducci, Marie Dominique; Cavalli, Laurent

    2009-06-18

    Ecological characteristics (growth, morphology, reproduction) arise from the interaction between environmental factors and genetics. Genetic analysis of individuals' life history traits might be used to improve our understanding of mechanisms that form and maintain a hybrid zone. A fish hybrid zone was used to characterize the process of natural selection. Data were collected during two reproductive periods (2001 and 2002) and 1117 individuals (nase, Chondrostama nasus nasus, sofie C. toxostoma toxostoma and hybrids) were sampled. Reproductive dates of the two parental species overlapped at sympatric sites. The nase had an earlier reproductive period than the sofie; males had longer reproductive periods for both species. Hybridisation between female nase and male sofie was the most likely. Hybrids had a reproductive period similar to the inherited parental mitochondrial type. Growth and reproductive information from different environments has been synthesised following a bayesian approach of the von Bertalanffy model. Hybrid life history traits appear to link with maternal heritage. Hybrid size from the age of two and size at first maturity appeared to be closer to the size of the maternal origin species (nase or sofie). Median growth rates for hybrids were similar and intermediate between those of the parental species. We observed variable life history traits for hybrids and pure forms in the different parts of the hybrid zone. Geometrical analysis of the hybrid fish shape gave evidence of two main morphologies with a link to maternal heritage. Selective mating seemed to be the underlying process which, with mitochondrial heritage, could explain the evolution of the studied hybrid zone. More generally, we showed the importance of studies on hybrid zones and specifically the study of individuals' ecological characteristics, to improve our understanding of speciation.

  4. Enhancement of Light Localization in Hybrid Thue-Morse/Periodic Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Rihab Asmi

    2016-01-01

    Full Text Available The electric field intensity in one-dimensional (1D quasiperiodic and hybrid photonics band-gap structures is studied in the present paper. The photonic structures are ordered according to Fibonacci, Thue-Morse, Cantor, Rudin-Shapiro, Period-Doubling, Paper-Folding, and Baum-Sweet sequences. The study shows that the electric field intensity is higher for the Thue-Morse multilayer systems. After that the Thue-Morse structure will be combined with a periodic structure to form a hybrid photonic structure. It is shown that this hybrid system is the best for a strong localization of light. The proposed structures have been modeled using the Transfer Matrix Method.

  5. TIMESHARE – AN INNOVATIVE FORM OF HOSPITALITY

    Directory of Open Access Journals (Sweden)

    Petya Hristova

    2016-06-01

    Full Text Available The paper examines timeshare as a hybrid form of ownership in which the use of property is distributed in time as an innovative form in hospitality. Data are presented on the distribution of the concept in the world, Europe and Bulgaria in particular, and problem areas and opportunities are outlined. The main conclusions are related to the potential of the timeshare as a multivariate and flexible hotel product, able to respond adequately to the dynamic characteristics of the holiday market.

  6. Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method

    International Nuclear Information System (INIS)

    Mostafapour Asl, A.; Khandani, S.T.

    2013-01-01

    Hybrid ratio of each reinforcement phase in hybrid composite can be defined as proportion of its volume to total reinforcement volume of the composite. The hybrid ratio is an important factor which controls the participation extent of each reinforcement phase in overall properties of hybrid composites. Hence, in the present work, surface hybrid nanocomposites of Al5083/Graphite p /Al 2 O 3p with different hybrid ratios were fabricated by friction stir processing method. Subsequently, effect of hybrid ratio on microstructural, mechanical and tribological properties of the nanocomposite was investigated. Optical microscopy and scanning electron microscopy were utilized to perform microstructural observation on the samples. Hardness value measurements, tensile and pin on disk dry sliding wear tests were carried out to investigate effect of hybrid ratio on mechanical and tribological properties of the nanocomposites. Microstructural investigations displayed better distribution with less agglomeration of reinforcement for lower volume fraction of reinforcement for both alumina and graphite particles. Hardness value, yield strength, ultimate tensile strength and wear rate of the nanocomposites revealed a two stage form along with hybrid ratio variation. The results are discussed based on microstructural observations of the nanocomposites and worn surface analyses.

  7. Disability and Bureaucratic Forms of Life

    Directory of Open Access Journals (Sweden)

    Thomas Abrams

    2015-06-01

    Full Text Available This paper employs a hybrid actor-network theory/phenomenological approach to a frequent bother in the lives of disabled persons: bureaucratic forms. I argue that these forms are key sites where disabled personhood emerges, something I examine through the lens of what philosopher Annemarie Mol calls ‘ontological politics’. To be disabled is to be entered into the bureaucratic form of life. These forms translate human existence into a categorize-able, transportable and combinable object, to be administered through ‘centers of calculation’. Combining Heidegger’s fundamental ontology with Latour’s theory of paperwork, I suggest that these forms represent disability in terms of ‘objective presence’, as a mere pre-existing thing, rather than a human way of being. I conclude with suggestions for further phenomenological research that takes embodied difference as its point of departure.

  8. Analysis of experimental mink enteritis virus infection in mink: in situ hybridization, serology, and histopathology

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Larsen, S; Lund, E

    1990-01-01

    Strand-specific hybridization probes were used in in situ hybridization studies to localize cells containing mink enteritis virus (MEV) virion DNA or MEV replicative-form DNA and mRNA. Following the experimental MEV infection of 3-month-old unvaccinated mink, a significant increase in serum antib...

  9. Irradiation effect on F2 segregation for earliness, productiveness and fibre length in Gossypium hirsutum x G. barbadense hybridization

    International Nuclear Information System (INIS)

    Stoilova, A.

    1984-01-01

    Two hybrid combinations between cv. Chirpan-433 (of the species G. hirsutum) and C-6030 and 5904-I (of the species G. barbadense) were studied. F 0 seeds were irradiated by 30 krad. Non-irradiated seeds were used as control. It was found that hybrid irradiation affected segregation of the characters in a different way. It retarded ripening, the negative effect being higher in the combination Chirpan-433x5904-N. In respect to productiveness and fibre lenght hybrid irradiation led to positive changes in the form-producing process. Hibrids of the combination Chirpan-433X5904-I responded more favourably to irradiation in respect to these two characters. Hybrid irradiation altered the type of segregation and created suplementary pool of forms with desired characters, increasing the possibilities of interspecific hybridization to combine the valuable economic characters of both species

  10. Hybrid calcium phosphate coatings for implants

    Science.gov (United States)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  11. Effect of sp3-hybridized defects on the oscillatory behavior of carbon nanotube oscillators

    International Nuclear Information System (INIS)

    Guo, Taiyu; Ding, Tony Weixi; Pei, Qing-Xiang; Zhang, Yong-Wei

    2011-01-01

    Using molecular dynamics simulations, we investigate the oscillatory behaviors of carbon nanotube oscillators containing sp 3 -hybridized defects formed by hydrogen chemisorption. It is found that the presence of these defects significantly affects the kinetic and potential energies of the nanotube systems, which in turn affects their oscillation periods and frequencies. We have also studied the oscillatory characteristics of the oscillators containing sp 3 -hybridized Stone-Wales defects. Our results show that it is possible to control the motion of the inner nanotube by introducing sp 3 -hybridized defects on the outer nanotube, which provides a potential way to tune the oscillatory behavior of nanotube oscillators. -- Highlights: → sp 3 -hybridized defects increase energy dissipation. → sp 3 -hybridized defects arranged in a row have stronger effect than that in a ring. → sp 3 -hybridized defects reduces the effect of SW defects.

  12. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  13. Investigation on thixojoining to produce hybrid components with intermetallic phase

    Science.gov (United States)

    Seyboldt, Christoph; Liewald, Mathias

    2018-05-01

    Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.

  14. Assembling a Lasing Hybrid Material With Supramolecular Polymers and Nanocrystals

    National Research Council Canada - National Science Library

    Li, Leiming

    2003-01-01

    .... In the system containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid material forming an ultraviolet lasing medium with a lower threshold relative to pure ZnO nanocrystals.

  15. Optimal control applied to the control strategy of a parallel hybrid vehicle; Commande optimale appliquee a la strategie de commande d'un vehicule hybride parallele

    Energy Technology Data Exchange (ETDEWEB)

    Delprat, S.; Guerra, T.M. [Universite de Valenciennes et du Hainaut-Cambresis, LAMIH UMR CNRS 8530, 59 - Valenciennes (France); Rimaux, J. [PSA Peugeot Citroen, DRIA/SARA/EEES, 78 - Velizy Villacoublay (France); Paganelli, G. [Center for Automotive Research, Ohio (United States)

    2002-07-01

    Control strategies are algorithms that calculate the power repartition between the engine and the motor of an hybrid vehicle in order to minimize the fuel consumption and/or emissions. Some algorithms are devoted to real time application whereas others are designed for global optimization in stimulation. The last ones provide solutions which can be used to evaluate the performances of a given hybrid vehicle or a given real time control strategy. The control strategy problem is firstly written into the form of an optimization under constraints problem. A solution based on optimal control is proposed. Results are given for the European Normalized Cycle and a parallel single shaft hybrid vehicle built at the LAMIH (France). (authors)

  16. Study on modes of energy action in laser-induction hybrid cladding

    International Nuclear Information System (INIS)

    Huang Yongjun; Zeng Xiaoyan

    2009-01-01

    The shape and microstructure in laser-induction hybrid cladding were investigated, in which the cladding material was provided by means of three different methods including the powder feeding, cold pre-placed coating (CPPC) and thermal pre-placed coating (TPPC). Moreover, the modes of energy action in laser-induction hybrid cladding were also studied. The results indicate that the cladding material supplying method has an important influence on the shape and microstructure of coating. The influence is decided by the mode of energy action in laser-induction hybrid cladding. During the TPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating. During the CPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating and substrate surface, respectively. In powder feeding hybrid cladding, a part of laser is absorbed by the powder particles directly, while the other part of laser penetrating powder cloud radiates on the molten pool. Meanwhile, the induction heating is entirely performed on the substrate. In addition, the wetting property on the interface is improved and the metallurgical bond between the coating and substrate is much easier to form. Therefore, the powder feeding laser-induction hybrid cladding has the highest cladding efficiency and the best bond property among three hybrid cladding methods.

  17. Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells.

    Science.gov (United States)

    Park, Ji Hun; Hong, Daewha; Lee, Juno; Choi, Insung S

    2016-05-17

    Nature has developed a fascinating strategy of cryptobiosis ("secret life") for counteracting the stressful, and often lethal, environmental conditions that fluctuate sporadically over time. For example, certain bacteria sporulate to transform from a metabolically active, vegetative state to an ametabolic endospore state. The bacterial endospores, encased within tough biomolecular shells, withstand the extremes of harmful stressors, such as radiation, desiccation, and malnutrition, for extended periods of time and return to a vegetative state by breaking their protective shells apart when their environment becomes hospitable for living. Certain ciliates and even higher organisms, for example, tardigrades, and others are also found to adopt a cryptobiotic strategy for survival. A common feature of cryptobiosis is the structural presence of tough sheaths on cellular structures. However, most cells and cellular assemblies are not "spore-forming" and are vulnerable to the outside threats. In particular, mammalian cells, enclosed with labile lipid bilayers, are highly susceptible to in vitro conditions in the laboratory and daily life settings, making manipulation and preservation difficult outside of specialized conditions. The instability of living cells has been a main bottleneck to the advanced development of cell-based applications, such as cell therapy and cell-based sensors. A judicious question arises: can cellular tolerance against harmful stresses be enhanced by simply forming cell-in-shell hybrid structures? Experimental results suggest that the answer is yes. A micrometer-sized "Iron Man" can be generated by chemically forming an ultrathin (cell. Since the report on silica nanoencapsulation of yeast cells, in which cytoprotective yeast-in-silica hybrids were formed, several synthetic strategies have been developed to encapsulate individual cells in a cytocompatible fashion, mimicking the cryptobiotic cell-in-shell structures found in nature, for example

  18. THEORIZING HYBRIDITY: INSTITUTIONAL LOGICS, COMPLEX ORGANIZATIONS, AND ACTOR IDENTITIES: THE CASE OF NONPROFITS

    Science.gov (United States)

    SKELCHER, CHRIS; SMITH, STEVEN RATHGEB

    2015-01-01

    We propose a novel approach to theorizing hybridity in public and nonprofit organizations. The concept of hybridity is widely used to describe organizational responses to changes in governance, but the literature seldom explains how hybrids arise or what forms they take. Transaction cost and organizational design literatures offer some solutions, but lack a theory of agency. We use the institutional logics approach to theorize hybrids as entities that face a plurality of normative frames. Logics provide symbolic and material elements that structure organizational legitimacy and actor identities. Contradictions between institutional logics offer space for them to be elaborated and creatively reconstructed by situated agents. We propose five types of organizational hybridity – segmented, segregated, assimilated, blended, and blocked. Each type is theoretically derived from empirically observed variations in organizational responses to institutional plurality. We develop propositions to show how our approach to hybridity adds value to academic and policy-maker audiences. PMID:26640298

  19. THEORIZING HYBRIDITY: INSTITUTIONAL LOGICS, COMPLEX ORGANIZATIONS, AND ACTOR IDENTITIES: THE CASE OF NONPROFITS.

    Science.gov (United States)

    Skelcher, Chris; Smith, Steven Rathgeb

    2015-06-01

    We propose a novel approach to theorizing hybridity in public and nonprofit organizations. The concept of hybridity is widely used to describe organizational responses to changes in governance, but the literature seldom explains how hybrids arise or what forms they take. Transaction cost and organizational design literatures offer some solutions, but lack a theory of agency. We use the institutional logics approach to theorize hybrids as entities that face a plurality of normative frames. Logics provide symbolic and material elements that structure organizational legitimacy and actor identities. Contradictions between institutional logics offer space for them to be elaborated and creatively reconstructed by situated agents. We propose five types of organizational hybridity - segmented, segregated, assimilated, blended, and blocked. Each type is theoretically derived from empirically observed variations in organizational responses to institutional plurality. We develop propositions to show how our approach to hybridity adds value to academic and policy-maker audiences.

  20. PRODUCTION OF HYBRID SEEDS OF THE VEGETABLE MARROW AT FREE POLLINATION

    Directory of Open Access Journals (Sweden)

    S. V. Kuzmin

    2018-01-01

    Full Text Available The purpose of this work performed in 2015-2017 on seedgrowing crops of the Crimean OSS VIR was receiving hybrid seeds of a vegetable marrow at free pollination and check of their quality by method of soil control. At laying of seed-growing crops, carrying out variety cleanings,, inspections and approbation were guided by the Instruction for approbation of seedgrowing crops of vegetable, melon cultures, fodder root crops and fodder cabbage (2008. The vegetable marrow with a high saturation pistillate flowers of Bl12, Su4 and Ar3 were used as maternal lines. Double processing by solution of an etrel was carried out to early phases of development of plants them. Use of this growth regulator has influenced blossoming of plants - in the lower knots men's flowers weren't formed, purely women's blossoming for the term of 14-17 days, sufficient for setting of seed fruits was observed. Control of blossoming of maternal forms was exercised by systematic inspections of plants on a floor. We have conducted three multiple examination. The first - before blossoming of maternal plants, in a budding phase when it is already possible to distinguish a sex of flowers, the second – in a phase of the beginning of blossoming. The third examination was conducted for definition of the beginning of blossoming of male flowers on plants of the maternal line. Timely carrying out inspections and variety cleanings, promotes receiving qualitative hybrid material. When carrying out soil control the high hybridism of seed material is revealed: F1 Bl12 x D1 - 95,3 %; F1 Su4 x D1 - 95,7 %; F1 Ar3 x D1 - 96,0 %. The results indicate that of the carried-out work, at free pollination of maternal and fatherly forms, vegetable marrow seeds with a high hybridism are received. Conducting the trial testing of new hybrids showed their high economic value. In comparison with the standard of Belogor F1, their total yield is higher by 16.7-25.7%, and the early yield by 10.5-27.7%. The

  1. Shape Memory Composite Hybrid Hinge

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  2. Alterations in the extracellular matrix organization associated with the reexpression of tumorigenicity in human cell hybrids.

    Science.gov (United States)

    Der, C J; Stanbridge, E J

    1980-10-15

    The expression of fibronectin on the cell surface was evaluated on a series of intraspecific human cell hybrids formed between HeLa and normal fibroblast strains. Although these hybrids continued to express many of the in vitro transformation properties of their corresponding tumorigenic HeLa parent, they were now unable to form tumors when inoculated into athymic nude mice. From these suppressed hybrid populations, rare tumorigenic segregant subpopulations arose which had regained their tumorigenic capacity. A comparison of the expression of fibronectin on the cell surface was made between these tumorigenic segregant cell lines and their corresponding non-tumorigenic HeLa/fibroblast hybrid. Following specific immunofluorescent staining for fibronectin, a striking alteration in the cell surface organization was observed to correspond with the reexpression of tumorigenicity in these hybrids. Tumorigenic HeLa/fibroblast hybrids were also significantly altered in both their cellular and colonial morphology. Double immunofluorescent staining to simultaneously visualize both surface fibronectin and collagen revealed that these two extracellular matrix proteins displayed an extensive degree of codistribution and expressed a coordinate shift in organization which correlated with the appearance of tumorigenic segregant hybrid populations. These observations are in agreement with the apparently close structural association between fibronectin and collagen and suggest that the organization of these two components in the extracellular matrix may be an important determinant for in vivo growth potential.

  3. The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage

    DEFF Research Database (Denmark)

    Lafuente-Barquero, Juan; Luke-Glaser, Sarah; Graf, Marco

    2017-01-01

    of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids...

  4. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    OpenAIRE

    Chiku, Masanobu; Tomita, Shoji; Higuchi, Eiji; Inoue, Hiroshi

    2011-01-01

    Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  5. Analysis of a Hybrid Mechanical Regenerative Braking System

    Directory of Open Access Journals (Sweden)

    Toh Xiang Wen Matthew

    2018-01-01

    Full Text Available Regenerative braking systems for conventional vehicles are gaining attention as fossil fuels continue to be depleted. The major forms of regenerative braking systems include electrical and mechanical systems, with the former being more widely adopted at present. However mechanical systems are still feasible, including the possible hybrid systems of two mechanical energy recovery systems. A literature study was made to compare the various mechanical energy recovery systems. These systems were compared based on their advantages and disadvantages with regards to energy storage, usage, and maintenance. Based on the comparison, the most promising concept appeared to be one that combined the flywheel and the pneumatic energy recovery systems. A CAD model of this hybrid system was produced to better visualise the design. This was followed by analytical modelling of the energy recovery systems. The analysis indicated that the angular velocity had an extremely significant impact on the power loss and energy efficiency. The results showed that the hybrid system can provide better efficiency but only when operating within certain parameters. Future work is required to further improve the efficiency of this hybrid system.

  6. Selfish evolution of cytonuclear hybrid incompatibility in Mimulus.

    Science.gov (United States)

    Case, Andrea L; Finseth, Findley R; Barr, Camille M; Fishman, Lila

    2016-09-14

    Intraspecific coevolution between selfish elements and suppressors may promote interspecific hybrid incompatibility, but evidence of this process is rare. Here, we use genomic data to test alternative models for the evolution of cytonuclear hybrid male sterility in Mimulus In hybrids between Iron Mountain (IM) Mimulus guttatus × Mimulus nasutus, two tightly linked M. guttatus alleles (Rf1/Rf2) each restore male fertility by suppressing a local mitochondrial male-sterility gene (IM-CMS). Unlike neutral models for the evolution of hybrid incompatibility loci, selfish evolution predicts that the Rf alleles experienced strong selection in the presence of IM-CMS. Using whole-genome sequences, we compared patterns of population-genetic variation in Rf at IM to a neighbouring population that lacks IM-CMS. Consistent with local selection in the presence of IM-CMS, the Rf region shows elevated FST, high local linkage disequilibrium and a distinct haplotype structure at IM, but not at Cone Peak (CP), suggesting a recent sweep in the presence of IM-CMS. In both populations, Rf2 exhibited lower polymorphism than other regions, but the low-diversity outliers were different between CP and IM. Our results confirm theoretical predictions of ubiquitous cytonuclear conflict in plants and provide a population-genetic mechanism for the evolution of a common form of hybrid incompatibility. © 2016 The Author(s).

  7. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  8. BROWN, BLACK, YELLOW, WHITE: FILIPINO MUSICIANSHIP IN HONG KONG AND THEIR HYBRIDIZED SOCIABILITY

    Directory of Open Access Journals (Sweden)

    Lee William Watkins

    2010-06-01

    Full Text Available This article addresses the issue of hybridity as one manifested in the everyday experiences of migrant Filipino musicians in Hong Kong, with a particular emphasis on their differences in a dialectic of the self and other as mobilised in performance, and, as a continuum woven into their racial colour and various social statuses. Where hybridity in music is the concern, most studies focus on hybridity as a matter of aesthetics, while in nonmusical areas, hybridity is addressed in the context of the relationship between colonized and colonizer during western imperialism, and between migrant and host in the contemporary age. This article combines these two areas: it will briefly include, but also move beyond the concern with aesthetics and propose hybridity through the cultural analysis of musical performance more as a form of social action resulting from colonialism, neocolonialism and transnationalism.

  9. On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models

    Science.gov (United States)

    Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.

    2017-12-01

    Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.

  10. DNA hybridization kinetics: zippering, internal displacement and sequence dependence.

    Science.gov (United States)

    Ouldridge, Thomas E; Sulc, Petr; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2013-10-01

    Although the thermodynamics of DNA hybridization is generally well established, the kinetics of this classic transition is less well understood. Providing such understanding has new urgency because DNA nanotechnology often depends critically on binding rates. Here, we explore DNA oligomer hybridization kinetics using a coarse-grained model. Strand association proceeds through a complex set of intermediate states, with successful binding events initiated by a few metastable base-pairing interactions, followed by zippering of the remaining bonds. But despite reasonably strong interstrand interactions, initial contacts frequently dissociate because typical configurations in which they form differ from typical states of similar enthalpy in the double-stranded equilibrium ensemble. Initial contacts must be stabilized by two or three base pairs before full zippering is likely, resulting in negative effective activation enthalpies. Non-Arrhenius behavior arises because the number of base pairs required for nucleation increases with temperature. In addition, we observe two alternative pathways-pseudoknot and inchworm internal displacement-through which misaligned duplexes can rearrange to form duplexes. These pathways accelerate hybridization. Our results explain why experimentally observed association rates of GC-rich oligomers are higher than rates of AT- rich equivalents, and more generally demonstrate how association rates can be modulated by sequence choice.

  11. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  12. Co-assembly of chitosan and phospholipids into hybrid hydrogels

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Shekarforoush, Elhamalsadat; Engwer, Christoph

    2016-01-01

    Novel hybrid hydrogels were formed by adding chitosan (Ch) to phospholipids (P) self-assembled particles in lactic acid. The effect of the phospholipid concentration on the hydrogel properties was investigated and was observed to affect the rate of hydrogel formation and viscoelastic properties...

  13. Dissecting the hybridization of oligonucleotides to structured complementary sequences.

    Science.gov (United States)

    Peracchi, Alessio

    2016-06-01

    When oligonucleotides hybridize to long target molecules, the process is slowed by the secondary structure in the targets. The phenomenon has been analyzed in several previous studies, but many details remain poorly understood. I used a spectrofluorometric strategy, focusing on the formation/breaking of individual base pairs, to study the kinetics of association between a DNA hairpin and >20 complementary oligonucleotides ('antisenses'). Hybridization rates differed by over three orders of magnitude. Association was toehold-mediated, both for antisenses binding to the target's ends and for those designed to interact with the loop. Binding of these latter, besides being consistently slower, was affected to variable, non-uniform extents by the asymmetric loop structure. Divalent metal ions accelerated hybridization, more pronouncedly when nucleation occurred at the loop. Incorporation of locked nucleic acid (LNA) residues in the antisenses substantially improved the kinetics only when LNAs participated to the earliest hybridization steps. The effects of individual LNAs placed along the antisense indicated that the reaction transition state occurred after invading at least the first base pair of the stem. The experimental approach helps dissect hybridization reactions involving structured nucleic acids. Toehold-dependent, nucleation-invasion models appear fully appropriate for describing such reactions. Estimating the stability of nucleation complexes formed at internal toeholds is the major hurdle for the quantitative prediction of hybridization rates. While analyzing the mechanisms of a fundamental biochemical process (hybridization), this work also provides suggestions for the improvement of technologies that rely on such process. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Corporate Hybrid Bonds

    OpenAIRE

    Ahlberg, Johan; Jansson, Anton

    2016-01-01

    Hybrid securities do not constitute a new phenomenon in the Swedish capital markets. Most commonly, hybrids issued by Swedish real estate companies in recent years are preference shares. Corporate hybrid bonds on the other hand may be considered as somewhat of a new-born child in the family of hybrid instruments. These do, as all other hybrid securities, share some equity-like and some debt-like characteristics. Nevertheless, since 2013 the interest for the instrument has grown rapidly and ha...

  15. Effect of Orbital Hybridization on Spin-Polarized Tunneling across Co/C60 Interfaces.

    Science.gov (United States)

    Wang, Kai; Strambini, Elia; Sanderink, Johnny G M; Bolhuis, Thijs; van der Wiel, Wilfred G; de Jong, Michel P

    2016-10-26

    The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we show that this hybridization affects spin transport across the interface significantly. We report spin-dependent electronic transport measurements for tunnel junctions comprising C 60 molecular thin films grown on top of face-centered-cubic (fcc) epitaxial Co electrodes, an AlO x tunnel barrier, and an Al counter electrode. Since only one ferromagnetic electrode (Co) is present, spin-polarized transport is due to tunneling anisotropic magnetoresistance (TAMR). An in-plane TAMR ratio of approximately 0.7% has been measured at 5 K under application of a magnetic field of 800 mT. The magnetic switching behavior shows some remarkable features, which are attributed to the rotation of interfacial magnetic moments. This behavior can be ascribed to the magnetic coupling between the Co thin films and the newly formed Co/C 60 hybridized interfacial states. Using the Tedrow-Meservey technique, the tunnel spin polarization of the Co/C 60 interface was found to be 43%.

  16. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan

    2014-02-20

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  18. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan; Corgié , Sté phane C.; Aneshansley, Daniel J.; Wang, Peng; Walker, Larry P.; Giannelis, Emmanuel P.

    2014-01-01

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

    Science.gov (United States)

    Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.

    2018-04-01

    We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

  20. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    Directory of Open Access Journals (Sweden)

    Hayami Takeda

    2013-05-01

    Full Text Available Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite. The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials.

  1. Typographia: A Hybrid, Alphabetic Exploration of Raleigh, NC

    Science.gov (United States)

    Rieder, David

    2010-01-01

    "As compositionists delve more deeply into the material and technical dimensions of digital media, the contemporary arts should be valued as a source for new approaches to hybrid forms of writing and textuality." In addition to "Typographia", this work includes a companion essay (PDF): From Street to Software: How a Lettered…

  2. Hybrid vehicle assessment. Phase 1: Petroleum savings analysis

    Science.gov (United States)

    Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H. C.

    1984-01-01

    The results of a comprehensive analysis of near term electric hybrid vehicles are presented, with emphasis on their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles are first modeled. The projected U.S. fleet composition is estimated, and conceptual hybrid vehicle designs are conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates are then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of sevral conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle mission battery combination. Conclusions and recommendations are presented, and development recommendations are identified.

  3. Circuit QED with hybrid metamaterial transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Ruloff, Stefan; Taketani, Bruno; Wilhelm, Frank [Theoretical Physics, Universitaet des Saarlandes, Saarbruecken (Germany)

    2016-07-01

    We're working on the theory of metamaterials providing some interesting results. The negative refraction index causes an opposite orientation of the wave vector k and the Poynting vector S of the travelling waves. Hence the metamaterial has a falling dispersion relation ∂ω(k)/∂k < 0 implying that low frequencies correspond to short wavelengths. Metamaterials are simulated by left-handed transmission lines consisting of discrete arrays of series capacitors and parallel inductors to ground. Unusual physics arises when right-and left-handed transmission lines are coupled forming a hybrid metamaterial transmission line. E.g. if a qubit is placed in front of a hybrid metamaterial transmission line terminated in an open circuit, the spontaneous emission rate is weakened or unaffected depending on the transition frequency of the qubit. Some other research interests are the general analysis of metamaterial cavities and the mode structure of hybrid metamaterial cavities for QND readout of multi-qubit operators. Especially the precise answer to the question about the definition of the mode volume of a metamaterial cavity is one of our primary goals.

  4. Heavy quarkonium hybrids: Spectrum, decay, and mixing

    Science.gov (United States)

    Oncala, Ruben; Soto, Joan

    2017-07-01

    We present a largely model-independent analysis of the lighter heavy quarkonium hybrids based on the strong coupling regime of potential nonrelativistic QCD. We calculate the spectrum at leading order, including the mixing of static hybrid states. We use potentials that fulfill the required short and long distance theoretical constraints and fit well the available lattice data. We argue that the decay width to the lower lying heavy quarkonia can be reliably estimated in some cases and provide results for a selected set of decays. We also consider the mixing with heavy quarkonium states. We establish the form of the mixing potential at O (1 /mQ) , mQ being the mass of the heavy quarks, and work out its short and long distance constraints. The weak coupling regime of potential nonrelativistic QCD and the effective string theory of QCD are used for that goal. We show that the mixing effects may indeed be important and produce large spin symmetry violations. Most of the isospin zero XYZ states fit well in our spectrum, either as a hybrid or standard quarkonium candidate.

  5. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    International Nuclear Information System (INIS)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao; Song, Yenan; Li, Zhenhua; Zhao, Pei; Shang, Xuefu

    2015-01-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm 2 , and field enhancement factor of ∼1.3 × 10 4 . The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport

  6. Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs

    Science.gov (United States)

    Bano, N.; Hussain, I.; Soomro, M. Y.; EL-Naggar, A. M.; Albassam, A. A.

    2018-05-01

    Improving luminance efficiency and colour purity are the most important challenges for zinc oxide (ZnO)-organic hybrid heterojunction light emitting diodes (LEDs), affecting their large area applications. If ZnO-organic hybrid heterojunction white LEDs are fabricated by a hydrothermal method, it is difficult to obtain pure and stable blue emission from PFO due to the presence of an undesirable green emission. In this paper, we present an inverted-structure ZnO-organic hybrid heterojunction LED to avoid green emission from PFO, which mainly originates during device processing. With this configuration, each ZnO nanorod (NR) forms a discrete p-n junction; therefore, large-area white LEDs can be designed without compromising the junction area. The configuration used for this novel structure is glass/ZnO NRs/PFO/PEDOT:PSS/L-ITO, which enables the development of efficient, large-area and low-cost hybrid heterojunction LEDs. Inverted-structure ZnO-organic hybrid heterojunction white LEDs offer several improvements in terms of brightness, size, colour, external quantum efficiency and a wider applicability as compared to normal architecture LEDs.

  7. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  8. Influence of miscibility phenomenon on crystalline polymorph transition in poly(vinylidene fluoride)/acrylic rubber/clay nanocomposite hybrid.

    Science.gov (United States)

    Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng

    2014-01-01

    In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules.

  9. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  10. Selection of Ethanol-Tolerant Yeast Hybrids in pH-Regulated Continuous Culture

    OpenAIRE

    Jiménez, Juan; Benítez, Tahía

    1988-01-01

    Hybrids between naturally occurring wine yeast strains and laboratory strains were formed as a method of increasing genetic variability to improve the ethanol tolerance of yeast strains. The hybrids were subjected to competition experiments under continuous culture controlled by pH with increasing ethanol concentrations over a wide range to select the fastest-growing strain at any concentration of ethanol. The continuous culture system was obtained by controlling the dilution rate of a chemos...

  11. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2012-01-01

    Full Text Available Hybrid thin films containing nano-sized inorganic domains were synthesized from UV-curable acrylate-modified waterborne polyurethane (WPU-AC and monodispersed colloidal silica with coupling agent. The coupling agent, 3-(trimethoxysilylpropyl methacrylate (MSMA, was bonded onto colloidal silica first, and then mixed with WPU-AC to form a precursor solution. This precursor was spin coated, dried and UV-cured to generate the hybrid films. The silica content in the hybrid thin films was varied from 0 to 30 wt%. Experimental results showed the aggregation of silica particles in the hybrid films. Thus, the silica domain in the hybrid films was varied from 30 to 50 nm by the different ratios of MSMAsilica to WPU-AC. The prepared hybrid films from the crosslinked WPU-AC/MSMA-silica showed much better thermal stability and mechanical properties than pure WPU-AC.

  12. Research on the innovative hybrid impact hydroforming

    Science.gov (United States)

    Lang, Lihui; Wang, Shaohua; Yang, Chunlei

    2013-12-01

    The innovative hybrid impact hydro-forming (IHF) technology is a kind of high strain rate forming technique which can be used for forming complex parts with small features, such as convex tables, bars etc. The present work investigates IHF using a numerical /experimental approach. In this paper, the theory of IHF is presented and finite element simulation was carried out by using MSC. The pressure distribution changes in the depth direction, but not in the width direction. However, the pressure is uniform everywhere in traditional hydro-forming. Using this shock wave loading conditions, forming experiments were carried out. Punching occurred as a result of combined tensile and shear stress effects. Furthermore, results show that using IHF technology, the design constraint to make precise die may be considerably reduced. The need to accurately control punch-die clearance may also be eliminated. Therefore, the research is very useful for forming complicated products.

  13. A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber

    International Nuclear Information System (INIS)

    Frazão, O; Silva, S F; Viegas, J; Baptista, J M; Santos, J L; Roy, P

    2010-01-01

    A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber is demonstrated. The hybrid interferometer presents three waves. Two parallel Fabry–Perot cavities with low finesse are formed between the splice region and the end of a dual-core microstructured fiber. A Michelson configuration is obtained by the two small cores of the microstructured fiber. The spectral response of the hybrid interferometer presents two pattern fringes with different frequencies due to the respective optical path interferometers. The hybrid interferometer was characterized in strain and temperature presenting different sensitivity coefficients for each topology. Due to these characteristics, this novel sensing head is able to measure strain and temperature, simultaneously

  14. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  15. Characterization of the Bulgarian sunflower hybrid Valin

    Directory of Open Access Journals (Sweden)

    G. Georgiev

    2016-09-01

    Full Text Available Abstract. A male sterile two-linear sunflower hybrid was developed at Dobrudzha Agricultural Institute – General Toshevo using the method of inter-linear hybridization. The mother component is line 10517 which possesses cytoplasmic male sterility, and the father component is line 10595R, a fertility restorer of branched type. Both parental forms have very good general and specific combining ability. Hybrid Valin is medium early, with vegetation period of 110 – 115 days, plant height 165 – 175 cm and head diameter 17 – 18 cm. The percent of kernel in seed is within the range of 65 – 73%. Seeds have absolute weight 50 – 55 g, and oil content in seed is 46 – 50%. The hybrid is resistant to lodging and moderately resistant to phoma and phomopsis. The resistance to downy mildew is as high as 95 % up to race 700, and the resistance to the parasite Orobanche is 100% (races A-F. In the breeding fields of DAI the hybrid went through threeyear testing according to a scheme and growing technology approved for this crop. During the first two years of the control testing it exceeded the mean standard by seed yield with 11.0% and 14.4%, respectively. During the third year, hybrid Valin was above the mean standard with 10.9% by seed yield and with 6.6% by oil yield in a unified competitive varietal testing. The maximum yield obtained at DAI was 4483 kg/ha, and the maximum oil content was 50.1%. In 2007 and 2008 hybrid Valin went through official testing within the structure of the Executive Agency of Variety Testing, Field Inspection and Seed Control of Bulgaria. By the index seed yield, the exceeding of the mean standard was 23.6 % in the first year, and in the second the yield was with 1.4 % below the standard. Oil content was a little below the standard in both years. The aim of this investigation was to make as full as possible a characterization of the new registered sunflower hybrid Valin on the base of biological, phytopatological and

  16. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  17. Preparation and characterization of hybrid materials based on polypyrrole and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Duc Nghia; Ngo Trinh Tung [Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: ducnghia264@fpt.vn

    2009-09-01

    Hybrid material is one of the most promising materials classed in the 21st century because of its unique properties and its advanced applications. In this work, hybrid materials based on polypyrrole (Ppy) and silver nanoparicles were prepared and characterized. The preparation of the hybrid material was performed by the chemical polymerization method. The structure, electrical and thermal properties of Ppy/Ag hybrid materials were characterized by XRD, SEM, and TGA and the conventional four probe method. The results showed that the Ag particles of 4-8 nm were agglomerated during the in-situ polymerization of PPy and formed some clusters with the diameter of 25 -150 nm. By the addition of Ag particles, the electrical conductivity of Ppy increased with increasing Ag concentration. The thermal stability of Ppy was significantly improved by modification with Ag particles.

  18. Preparation and characterization of hybrid materials based on polypyrrole and silver nanoparticles

    International Nuclear Information System (INIS)

    Nguyen Duc Nghia; Ngo Trinh Tung

    2009-01-01

    Hybrid material is one of the most promising materials classed in the 21st century because of its unique properties and its advanced applications. In this work, hybrid materials based on polypyrrole (Ppy) and silver nanoparicles were prepared and characterized. The preparation of the hybrid material was performed by the chemical polymerization method. The structure, electrical and thermal properties of Ppy/Ag hybrid materials were characterized by XRD, SEM, and TGA and the conventional four probe method. The results showed that the Ag particles of 4-8 nm were agglomerated during the in-situ polymerization of PPy and formed some clusters with the diameter of 25 -150 nm. By the addition of Ag particles, the electrical conductivity of Ppy increased with increasing Ag concentration. The thermal stability of Ppy was significantly improved by modification with Ag particles.

  19. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  20. Hybrid Arrangements as a Form of Ecological Modernization: The Case of the US Energy Efficiency Conservation Block Grants

    Directory of Open Access Journals (Sweden)

    Anya M. Galli

    2016-01-01

    Full Text Available How are environmental policy goals implemented and sustained in the context of political stagnation surrounding national climate policies in the United States? In this paper, we discuss Ecological Modernization Theory as a tool for understanding the complexity of climate governance at the sub-national level. In particular, we explore the emergence of hybrid governance arrangements during the local implementation of federal energy efficiency programs in US cities. We analyze the formation and advancement of programs associated with one effort to establish a sub-national low carbon energy policy: the Energy Efficiency and Conservation Block Grant (EECBG program administered by the US Department of Energy. Our findings highlight the diverse range of partnerships between state, private, and civil society actors that emerged through this program and point to some of the challenges associated with collaborative climate governance initiatives at the city level. Although some programs reflected ecologically modern outcomes, other cities were constrained in their ability to move beyond the status quo due to the demands of state bureaucracies and the challenges associated with inconsistent funding. We find that these programs cultivated hybrid arrangements in an effort to sustain the projects following the termination of federal grant funding. Overall, hybrid governance plays an important role in the implementation and long-term sustainability of climate-related policies.

  1. The development of phytosterol-lecithin mixed micelles and organogels.

    Science.gov (United States)

    Matheson, Andrew B; Dalkas, Georgios; Gromov, Andrei; Euston, Stephen R; Clegg, Paul S

    2017-12-13

    We demonstrate that by mixing the phytosterol-ester oryzanol with lecithin in an organic solvent, both components may be dispersed at much higher concentrations than they may be individually. Dynamic light scattering and molecular dynamics simulations show that the mechanism for this is the formation of r ∼ 4 nm mixed micelles. Infrared spectroscopy and simulations suggest that these micelles are formed due in part to hydrogen bonding of the phosphate of the lecithin head-group, and the phenol group of the oryzanol. Rheology shows that by mixing these materials at an equimolar ratio, highly viscous suspensions are created. Furthermore, by adding water to these samples, a solid-like gel may be formed which offers mechanical properties close to those desired for a margarine type spread, whilst still solubilizing the oryzanol.

  2. Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum

    Science.gov (United States)

    Cara, Nicolás; Marfil, Carlos F; Masuelli, Ricardo W

    2013-01-01

    Interspecific hybridization is known for triggering genetic and epigenetic changes, such as modifications on DNA methylation patterns and impact on phenotypic plasticity and ecological adaptation. Wild potatoes (Solanum, section Petota) are adapted to multiple habitats along the Andes, and natural hybridizations have proven to be a common feature among species of this group. Solanum × rechei, a recently formed hybrid that grows sympatrically with the parental species S. kurtzianum and S. microdontum, represents an ideal model for studying the ecologically and evolutionary importance of hybridization in generating of epigenetic variability. Genetic and epigenetic variability and their correlation with morphological variation were investigated in wild and ex situ conserved populations of these three wild potato species using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. We observed that novel methylation patterns doubled the number of novel genetic patterns in the hybrid and that the morphological variability measured on 30 characters had a higher correlation with the epigenetic than with the genetic variability. Statistical comparison of methylation levels suggested that the interspecific hybridization induces genome demethylation in the hybrids. A Bayesian analysis of the genetic data reveled the hybrid nature of S. × rechei, with genotypes displaying high levels of admixture with the parental species, while the epigenetic information assigned S. × rechei to its own cluster with low admixture. These findings suggested that after the hybridization event, a novel epigenetic pattern was rapidly established, which might influence the phenotypic plasticity and adaptation of the hybrid to new environments. PMID:24198938

  3. The role of meiotic drive in hybrid male sterility.

    Science.gov (United States)

    McDermott, Shannon R; Noor, Mohamed A F

    2010-04-27

    Meiotic drive causes the distortion of allelic segregation away from Mendelian expected ratios, often also reducing fecundity and favouring the evolution of drive suppressors. If different species evolve distinct drive-suppressor systems, then hybrid progeny may be sterile as a result of negative interactions of these systems' components. Although the hypothesis that meiotic drive may contribute to hybrid sterility, and thus species formation, fell out of favour early in the 1990s, recent results showing an association between drive and sterility have resurrected this previously controversial idea. Here, we review the different forms of meiotic drive and their possible roles in speciation. We discuss the recent empirical evidence for a link between drive and hybrid male sterility, also suggesting a possible mechanistic explanation for this link in the context of chromatin remodelling. Finally, we revisit the population genetics of drive that allow it to contribute to speciation.

  4. Statistical comparison of a hybrid approach with approximate and exact inference models for Fusion 2+

    Science.gov (United States)

    Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew

    2007-04-01

    One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.

  5. Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration.

    Science.gov (United States)

    Toskas, Georgios; Cherif, Chokri; Hund, Rolf-Dieter; Laourine, Ezzeddine; Mahltig, Boris; Fahmi, Amir; Heinemann, Christiane; Hanke, Thomas

    2013-05-15

    New hybrid nanofibers prepared with chitosan (CTS), containing a total amount of polyethylene oxide (PEO) down to 3.6wt.%, and silica precursors were produced by electrospinning. The solution of modified sol-gel particles contained tetraethoxysilane (TEOS) and the organosilane 3-glycidyloxypropyltriethoxysilane (GPTEOS). This is rending stable solution toward gelation and contributing in covalent bonding with chitosan. The fibers encompass advantages of biocompatible polymer template silicate components to form self-assembled core-shell structure of the polymer CTS/PEO encapsulated by the silica. Potential applicability of this hybrid material to bone tissue engineering was studied examining its cellular compatibility and bioactivity. The nanofiber matrices were proved cytocompatible when seeded with bone-forming 7F2-cells, promoting attachment and proliferation over 7 days. These found to enhance a fast apatite formation by incorporation of Ca(2+) ions and subsequent immersion in modified simulated body fluid (m-SBF). The tunable properties of these hybrid nanofibers can find applications as active biomaterials in bone repair and regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Link reliability based hybrid routing for tactical mobile ad hoc network

    Institute of Scientific and Technical Information of China (English)

    Xie Xiaochuan; Wei Gang; Wu Keping; Wang Gang; Jia Shilou

    2008-01-01

    Tactical mobile ad hoc network (MANET) is a collection of mobile nodes forming a temporary network,without the aid of pre-established network infrastructure. The routing protocol has a crucial impact on the networkperformance in battlefields. Link reliability based hybrid routing (LRHR) is proposed, which is a novel hybrid routing protocol, for tactical MANET. Contrary to the traditional single path routing strategy, multiple paths are established between a pair of source-destination nodes. In the hybrid routing strategy, the rate of topological change provides a natural mechanism for switching dynamically between table-driven and on-demand routing. The simulation results indicate that the performances of the protocol in packet delivery ratio, routing overhead, and average end-to-end delay are better than the conventional routing protocol.

  7. A hybrid reconfigurable solar and wind energy system

    Science.gov (United States)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  8. Hybridization experiments indicate incomplete reproductive isolating mechanism between Fasciola hepatica and Fasciola gigantica.

    Science.gov (United States)

    Itagaki, T; Ichinomiya, M; Fukuda, K; Fusyuku, S; Carmona, C

    2011-09-01

    Experiments on hybridization between Fasciola hepatica and Fasciola gigantica were carried out to clarify whether a reproductive isolating mechanism appears between the two Fasciola species. Molecular evidence for hybridization was based on the DNA sequence of the internal transcribed spacer 1 (ITS1) region in nuclear ribosomal DNA, which differs between the species. The results suggested that there were not pre-mating but post-mating isolating mechanisms between the two species. However, viable adults of the hybrids F1 and F2 were produced from both parental F. hepatica and F. gigantica. The hybrids inherited phenotypic characteristics such as ratio of body length and width and infectivity to rats from parental Fasciola hepatica and F. gigantica. These findings suggest that reproductive isolation is incomplete between Fasciola hepatica and F. gigantica. Adults of the hybrids F1 and F2 were completely different in mode of reproduction from aspermic Fasciola forms that occur in Asia and seem to be offspring originated from hybridization between F. hepatica and F. gigantica and to reproduce parthenogenetically.

  9. Surface hardness of hybrid ionomer cement after immersion in antiseptic solution

    Directory of Open Access Journals (Sweden)

    Anita Yuliati

    2006-06-01

    Full Text Available Hybrid ionomer cement or resin modified glass ionomer cement is a developed form of conventional glass ionomer cement. This hybrid ionomer cement can be eroded if in direct contact with acid solution which will affect surface hardness. The aim of this study is to learn surface hardness of hybrid ionomer cement after immersion in methyl salicylate 0.06% (pH 3.6 and povidon iodine 1% (pH 2.9 solution. Sample of hybrid ionomer cement with 5 mm diameter and 3 mm thickness was immersed in sterile aquadest solution (control, methyl salicylate pH 3.6, povidon iodine pH 2.9 for 1 minute, 7 and 14 minutes. Surface hardness was measured with Micro Vickers Hardness Tester. The obtained data was analyzed statistically with ANOVA followed by LSD test. The result of hybrid ionomer cement after immersion in sterile aquadest, methyl salicylate 0.06% pH 3.6 and povidon iodine 1% pH 2.9 for one minute, showed no significant difference; while immersion for 7 and 14 minutes showed a significant difference. The conclusion states that hybrid ionomer cement after 14 minutes immersion in povidon iodine 1% pH 2.9 has the lowest surface hardness.

  10. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates

    International Nuclear Information System (INIS)

    Chang, P.-Y.; Yeh, P.-C.; Yang, J.-M.

    2008-01-01

    The fatigue crack initiation behavior of a high modulus and hybrid boron/glass/aluminum fiber/metal laminate (FML) was investigated experimentally and analytically. Two types of hybrid boron/glass/aluminum FMLs were fabricated and studied, which consisted of aluminum alloy sheets as the metal layers and a mixture of boron fibers and glass fibers as the composite layers. For the first type, the boron fiber/prepreg and the glass fiber/prepreg were used separately in the composite layers, and for the second type, the boron fibers and the glass fibers were mingled together to form a hybrid boron/glass/prepreg composite layer. These hybrid FMLs were consolidated using an autoclave curing process. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, would improve the fatigue crack initiation life of the Al sheet. The experimental results clearly showed that the fatigue crack initiation lives for both types of hybrid boron/glass/aluminum FMLs were superior to the monolithic aluminum alloy under the same loading condition. An analytical approach was proposed to calculate the fatigue crack initiation lives of hybrid boron/glass/aluminum FMLs based on the classical laminate theory and the small-crack theory. A good correlation was obtained between the predictions and the experimental results

  11. Impulse Hydroforming Method for Very Thin Sheets from Metallic or Hybrid Materials

    OpenAIRE

    Beerwald, C.; Beerwald, M.; Dirksen, U.; Henselek, A.

    2010-01-01

    Forming of very thin metallic and hybrid material foils is a demanding task in several application areas as for example in food or pharmaceutical packaging industries. Narrow forming limits of very thin sheet metals as well as minor process reliability due to necessary exact tool manufacturing (small punch-die clearance), both, causes abiding interest in new and innovative forming processes. In this contribution a new method using high pressure pulses will be introduced to form small geometry...

  12. Receding horizon control of hybrid linear delayed systems: Application to sewer networks

    OpenAIRE

    Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela

    2013-01-01

    A control-oriented hybrid linear model for water transport in sewer networks is proposed as a suitable framework for the computation of real-time controllers for the minimization of flooding in presence of heavy-rain events. The model is based on individual network elements (sewers, gates, weirs and tanks) and does not rely on topological simplifications, thus providing a better description of the hydrological and hydraulic phenomena than in similar works. Using a generic form of a hybrid lin...

  13. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; Berrie, Barbara H. (NGA); (Bordeaux)

    2016-09-23

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm–1 for Pb(II) and ca. 1580 cm–1 for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.

  14. WWC Review of the Report "Interactive Online Learning on Campus: Testing MOOCs and Other Platforms in Hybrid Formats in the University System of Maryland." What Works Clearinghouse Single Study Review

    Science.gov (United States)

    What Works Clearinghouse, 2015

    2015-01-01

    In the 2014 study, "Interactive Online Learning on Campus: Testing MOOCs and Other Platforms in Hybrid Formats in the University System of Maryland," researchers examined the impact of using hybrid forms of interactive online learning in seven undergraduate courses across seven universities in Maryland. Hybrid forms of interactive online…

  15. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  16. Preparation of hybrid biomaterials for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Vilma Conceição Costa

    2007-03-01

    Full Text Available Tissue engineering has evolved from the use of biomaterials for bone substitution that fulfill the clinical demands of biocompatibility, biodegradability, non-immunogeneity, structural strength and porosity. Porous scaffolds have been developed in many forms and materials, but few reached the need of adequate physical, biological and mechanical properties. In the present paper we report the preparation of hybrid porous polyvinyl alcohol (PVA/bioactive glass through the sol-gel route, using partially and fully hydrolyzed polyvinyl alcohol, and perform structural characterization. Hybrids containing PVA and bioactive glass with composition 58SiO2-33CaO-9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass sol-gel precursor solution. Sol-gel solution was prepared from mixing tetraethoxysilane (TEOS, triethylphosphate (TEP, and calcium chloride as chemical precursors. The hybrid composites obtained after aging and drying at low temperature were chemically and morphologically characterized through infrared spectroscopy and scanning electron microscopy. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioglass composition ratios affect the synthesis procedure. Synthesis parameters must be very well combined in order to allow foaming and gelation. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm.

  17. Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers

    Directory of Open Access Journals (Sweden)

    Sofia Kakogianni

    2016-12-01

    Full Text Available Perfluorophenyl functionalities have been introduced as side chain substituents onto regioregular poly(3-hexyl thiophene (rr-P3HT, under various percentages. These functional groups were then converted to azides which were used to create polymeric hybrid materials with fullerene species, either C60 or C70. The P3HT–fullerene hybrids thus formed were thereafter evaluated as potential compatibilizers of BHJ active layers comprising P3HT and fullerene based acceptors. Therefore, a systematic investigation of the optical and morphological properties of the purified polymer–fullerene hybrid materials was performed, via different complementary techniques. Additionally, P3HT:PC70BM blends containing various percentages of the herein synthesized hybrid material comprising rr-P3HT and C70 were investigated via Transmission Electron Microscopy (TEM in an effort to understand the effect of the hybrids as additives on the morphology and nanophase separation of this typically used active layer blend for OPVs.

  18. Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice.

    Science.gov (United States)

    Gregorova, Sona; Gergelits, Vaclav; Chvatalova, Irena; Bhattacharyya, Tanmoy; Valiskova, Barbora; Fotopulosova, Vladana; Jansa, Petr; Wiatrowska, Diana; Forejt, Jiri

    2018-03-14

    Hybrid sterility is one of the reproductive isolation mechanisms leading to speciation. Prdm9 , the only known vertebrate hybrid-sterility gene, causes failure of meiotic chromosome synapsis and infertility in male hybrids that are the offspring of two mouse subspecies. Within species, Prdm9 determines the sites of programmed DNA double-strand breaks (DSBs) and meiotic recombination hotspots. To investigate the relation between Prdm9 -controlled meiotic arrest and asynapsis, we inserted random stretches of consubspecific homology on several autosomal pairs in sterile hybrids, and analyzed their ability to form synaptonemal complexes and to rescue male fertility. Twenty-seven or more megabases of consubspecific (belonging to the same subspecies) homology fully restored synapsis in a given autosomal pair, and we predicted that two or more DSBs within symmetric hotspots per chromosome are necessary for successful meiosis. We hypothesize that impaired recombination between evolutionarily diverged chromosomes could function as one of the mechanisms of hybrid sterility occurring in various sexually reproducing species. © 2018, Gregorova et al.

  19. Laser/TIG Hybrid Welding of Pot for Induction Heater

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sondrup, Lars de Caldas

    2004-01-01

    In this paper, systematic work is presented that shows the steps for realizing a hybrid welded tailored blank that is formed to a pot for induction heating. The bottom is made of ferritic stainless steel and the sides of austenitic stainless steel. Only the bottom will then interact directly...

  20. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    Science.gov (United States)

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  1. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  2. Morphology-tunable and photoresponsive properties in a self-assembled two-component gel system.

    Science.gov (United States)

    Zhou, Yifeng; Xu, Miao; Yi, Tao; Xiao, Shuzhang; Zhou, Zhiguo; Li, Fuyou; Huang, Chunhui

    2007-01-02

    Photoresponsive C3-symmetrical trisurea self-assembling building blocks containing three azobenzene groups (LC10 and LC4) at the rim were designed and synthesized. By introducing a trisamide gelator (G18), which can self-aggregate through hydrogen bonds of acylamino moieties to form a fibrous network, the mixture of LC10 (or LC4) and G18 forms an organogel with coral-like supramolecular structure from 1,4-dioxane. The cooperation of hydrogen bonding and the hydrophobic diversity between these components are the main contributions to the specific superstructure. The two-component gel exhibits reversible photoisomerization from trans to cis transition without breakage of the gel state.

  3. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    Science.gov (United States)

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  4. Mechanisms of hybrid governance : Administrative committees in non-equity alliances

    NARCIS (Netherlands)

    Reuer, Jeffrey; Devarakonda, S.V.

    2016-01-01

    Recent research on the governance of hybrid organizational forms has investigated the contractual foundations of collaborations by examining how firms craft complex contracts as well as plan for changing circumstances during contract execution. We build upon and extend this research by considering

  5. The plus-hybrid effect on the grain yield of two ZP maize hybrids

    Directory of Open Access Journals (Sweden)

    Božinović Sofija

    2010-01-01

    Full Text Available The combined effect of cytoplasmic male sterility and xenia on maize hybrid traits is referred to as the plus-hybrid effect. Two studied ZP hybrids differently responded to this effect for grain yield. All plus-hybrid combinations of the firstly observed hybrid had a higher yield than their fertile counterparts, but not significantly, while only one combination of the second hybrid positively responded, also without statistical significance. It seems that the observed effect mostly depended on the genotype of the female component.

  6. Novel hybrid adaptive controller for manipulation in complex perturbation environments.

    Directory of Open Access Journals (Sweden)

    Alex M C Smith

    Full Text Available In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.

  7. Implementation of hybrid parallel kanban-CONWIP system: A case study

    Directory of Open Access Journals (Sweden)

    Joshua Prakash

    2014-12-01

    Full Text Available The most common form of production control strategy in lean management is the pull system. One emerging form of pull system uses kanban and CONWIP systems to handle products with different demand patterns. Case studies have protractedly depicted the actual implementation of pull systems; however, the use of hybrid systems is rare. This paper examines the procedures involved in implementing a hybrid system in a low variety/low volume shop floor. This paper presents discussions on shop floor constraints in the proposed system and how the simplicity of a pull system is able to reduce work-in-process inventory by 23%. Guidelines for the replication of the system for similar production environments are also provided. The case study proves that pull systems can be successfully implemented in production environments that do not conform to the typical prerequisites of the kanban system.

  8. Toronto hybrid taxi pilot

    International Nuclear Information System (INIS)

    Stevens, M.; Marans, B.

    2009-10-01

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO 2 ) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO 2 emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  9. Toronto hybrid taxi pilot

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M. [CrossChasm Technologies, Cambridge, ON (Canada); Marans, B. [Toronto Atmospheric Fund, ON (Canada)

    2009-10-15

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO{sub 2}) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO{sub 2} emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  10. Influence of Miscibility Phenomenon on Crystalline Polymorph Transition in Poly(Vinylidene Fluoride)/Acrylic Rubber/Clay Nanocomposite Hybrid

    Science.gov (United States)

    Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng

    2014-01-01

    In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules. PMID:24551141

  11. Influence of miscibility phenomenon on crystalline polymorph transition in poly(vinylidene fluoride/acrylic rubber/clay nanocomposite hybrid.

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Abolhasani

    Full Text Available In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride (PVDF and acrylic rubber(ACM was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules.

  12. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Science.gov (United States)

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Natural selection interacts with recombination to shape the evolution of hybrid genomes.

    Science.gov (United States)

    Schumer, Molly; Xu, Chenling; Powell, Daniel L; Durvasula, Arun; Skov, Laurits; Holland, Chris; Blazier, John C; Sankararaman, Sriram; Andolfatto, Peter; Rosenthal, Gil G; Przeworski, Molly

    2018-05-11

    To investigate the consequences of hybridization between species, we studied three replicate hybrid populations that formed naturally between two swordtail fish species, estimating their fine-scale genetic map and inferring ancestry along the genomes of 690 individuals. In all three populations, ancestry from the "minor" parental species is more common in regions of high recombination and where there is linkage to fewer putative targets of selection. The same patterns are apparent in a reanalysis of human and archaic admixture. These results support models in which ancestry from the minor parental species is more likely to persist when rapidly uncoupled from alleles that are deleterious in hybrids. Our analyses further indicate that selection on swordtail hybrids stems predominantly from deleterious combinations of epistatically interacting alleles. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. THE SYNERGISTIC EFFECT OF HYBRID FLAME RETARDANTS ON PYROLYSIS BEHAVIOUR OF HYBRID COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    M. T. ALBDIRY

    2012-06-01

    Full Text Available The aim of this investigation is to comprehensively understand the polymeric composite behavior under direct fire sources. The synergistic effects of hybrid flame retardant material on inhabiting the pyrolysis of hybrid reinforced fibers, woven roving (0°- 45° carbon and kevlar (50/50 wt/wt, and an araldite resin composites were studied. The composites were synthesised and coated primarily by zinc borate (2ZnO.3B2O3.3.5H2O and modified by antimony trioxide (Sb2O3 with different amounts (10-30 wt% of flame retardant materials. In the experiments, the composite samples were exposed to a direct flame source generated by oxyacetylene flame (~3000ºC at variable exposure distances of 10-20 mm. The synergic flame retardants role of antimony trioxide and zinc borate on the composite surface noticeably improves the flame resistance of the composite which is attributed to forming a protective mass and heat barrier on the composite surface and increasing the melt viscosity.

  15. Dramatically improved RNA in situ hybridization signals using LNA-modified probes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Nielsen, Peter Stein; Jensen, Torben Heick

    2005-01-01

    . This increases the thermal stability of hybrids formed with RNA. The LNA-based probes detect specific RNAs in fixed yeast cells with an efficiency far better than conventional DNA oligonucleotide probes of the same sequence. Using this probe design, we were also able to detect poly(A)+ RNA accumulation within......In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues...

  16. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation

  17. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  18. Equipping a glovebox for waste form testing and characterization of plutonium bearing materials

    International Nuclear Information System (INIS)

    Noy, M.; Johnson, S.G.; Moschetti, T.L.

    1997-01-01

    The recent decision by the Department of Energy to pursue a hybrid option for the disposition of weapons plutonium has created the need for additional facilities that can examine and characterize waste forms that contain Pu. This hybrid option consists of the placement of plutonium into stable waste forms and also into mixed oxide fuel for commercial reactors. Glass and glass-ceramic waste forms have a long history of being effective hosts for containing radionuclides, including plutonium. The types of tests necessary to characterize the performance of candidate waste forms include: static leaching experiments on both monolithic and crushed waste forms, microscopic examination, and density determination. Frequently, the respective candidate waste forms must first be produced using elevated temperatures and/or high pressures. The desired operations in the glovebox include, but are not limited to the following: (1) production of vitrified/sintered samples, (2) sampling of glass from crucibles or other vessels, (3) preparing samples for microscopic inspection and monolithic and crushed static leach tests, and (4) performing and analyzing leach tests in situ. This paper will describe the essential equipment and modifications that are necessary to successfully accomplish the goal of outfitting a glovebox for these functions

  19. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  20. Continuity controlled hybrid automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  1. Continuity controlled hybrid automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2006-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  2. Behavioural isolation may facilitate homoploid hybrid speciation in cichlid fish

    NARCIS (Netherlands)

    Selz, O. M.; Thommen, R.; Maan, M. E.; Seehausen, O.

    Hybrid speciation is constrained by the homogenizing effects of gene flow from the parental species. In the absence of post-mating isolation due to structural changes in the genome, or temporal or spatial premating isolation, another form of reproductive isolation would be needed for homoploid

  3. Experimental investigations on the state of the friction-welded joint zone in steel hybrid components after process-relevant thermo-mechanical loadings

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Peshekhodov, I.; Matthias, T.; Kolbasnikov, N.; Sokolov, S.; Ganin, S.

    2016-10-01

    As a part of the newly established Collaborative Research Center 1153 (SFB 1153) "Process chain for the manufacturing of hybrid high-performance components by tailored forming" at the Leibniz Universität Hannover, the Institute of Forming Technology and Machines (IFUM) examines the influence of thermo-mechanical stresses on the reduced Young's modulus as well as the hardness of hybrid (steel-steel compound) joined semi-finished products. Currently the expertise in the production of bulk metal formed parts is limited to mono-materials. For manufacturing parts of hybrid materials and also for the methods of the new process routes, practical experience has to be gained. The subproject C1 within the collaborative research center 1153 with the short title "Failure Prediction" deals with the question, if the hybrid semi-finished products fulfill the thermo-mechanical demands or if they fail at the joining zone (JZ) during forging. For this purpose, stresses similar to those in the process were imposed on hybrid semi-finished products by torsion tests by using the thermo-mechanical test system Gleeble 3800. Afterwards, the specimens were examined metallographically and by nanoindentations with the help of a TriboIndenter TI950. Thus, first knowledge on the behaviour of thermo-mechanical stresses on the reduced Young's modulus and the hardness of hybrid joined semi-finished parts was gained.

  4. Capacitive coupling in hybrid graphene/GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, Pauline, E-mail: psimonet@phys.ethz.ch; Rössler, Clemens; Krähenmann, Tobias; Varlet, Anastasia; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2015-07-13

    Coupled hybrid nanostructures are demonstrated using the combination of lithographically patterned graphene on top of a two-dimensional electron gas (2DEG) buried in a GaAs/AlGaAs heterostructure. The graphene forms Schottky barriers at the surface of the heterostructure and therefore allows tuning the electronic density of the 2DEG. Conversely, the 2DEG potential can tune the graphene Fermi energy. Graphene-defined quantum point contacts in the 2DEG show half-plateaus of quantized conductance in finite bias spectroscopy and display the 0.7 anomaly for a large range of densities in the constriction, testifying to their good electronic properties. Finally, we demonstrate that the GaAs nanostructure can detect charges in the vicinity of the heterostructure's surface. This confirms the strong coupling of the hybrid device: localized states in the graphene ribbon could, in principle, be probed by the underlying confined channel. The present hybrid graphene/GaAs nanostructures are promising for the investigation of strong interactions and coherent coupling between the two fundamentally different materials.

  5. Capacitive coupling in hybrid graphene/GaAs nanostructures

    International Nuclear Information System (INIS)

    Simonet, Pauline; Rössler, Clemens; Krähenmann, Tobias; Varlet, Anastasia; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner

    2015-01-01

    Coupled hybrid nanostructures are demonstrated using the combination of lithographically patterned graphene on top of a two-dimensional electron gas (2DEG) buried in a GaAs/AlGaAs heterostructure. The graphene forms Schottky barriers at the surface of the heterostructure and therefore allows tuning the electronic density of the 2DEG. Conversely, the 2DEG potential can tune the graphene Fermi energy. Graphene-defined quantum point contacts in the 2DEG show half-plateaus of quantized conductance in finite bias spectroscopy and display the 0.7 anomaly for a large range of densities in the constriction, testifying to their good electronic properties. Finally, we demonstrate that the GaAs nanostructure can detect charges in the vicinity of the heterostructure's surface. This confirms the strong coupling of the hybrid device: localized states in the graphene ribbon could, in principle, be probed by the underlying confined channel. The present hybrid graphene/GaAs nanostructures are promising for the investigation of strong interactions and coherent coupling between the two fundamentally different materials

  6. Stochastic background of gravitational waves from hybrid preheating.

    Science.gov (United States)

    García-Bellido, Juan; Figueroa, Daniel G

    2007-02-09

    The process of reheating the Universe after hybrid inflation is extremely violent. It proceeds through the nucleation and subsequent collision of large concentrations of energy density in bubblelike structures, which generate a significant fraction of energy in the form of gravitational waves. We study the power spectrum of the stochastic background of gravitational waves produced at reheating after hybrid inflation. We find that the amplitude could be significant for high-scale models, although the typical frequencies are well beyond what could be reached by planned gravitational wave observatories. On the other hand, low-scale models could still produce a detectable stochastic background at frequencies accessible to those detectors. The discovery of such a background would open a new window into the very early Universe.

  7. Improving Hybrid III injury assessment in steering wheel rim to chest impacts using responses from finite element Hybrid III and human body model.

    Science.gov (United States)

    Holmqvist, Kristian; Davidsson, Johan; Mendoza-Vazquez, Manuel; Rundberget, Peter; Svensson, Mats Y; Thorn, Stefan; Törnvall, Fredrik

    2014-01-01

    The main aim of this study was to improve the quality of injury risk assessments in steering wheel rim to chest impacts when using the Hybrid III crash test dummy in frontal heavy goods vehicle (HGV) collision tests. Correction factors for chest injury criteria were calculated as the model chest injury parameter ratios between finite element (FE) Hybrid III, evaluated in relevant load cases, and the Total Human Model for Safety (THUMS). This is proposed to be used to compensate Hybrid III measurements in crash tests where steering wheel rim to chest impacts occur. The study was conducted in an FE environment using an FE-Hybrid III model and the THUMS. Two impactor shapes were used, a circular hub and a long, thin horizontal bar. Chest impacts at velocities ranging from 3.0 to 6.0 m/s were simulated at 3 impact height levels. A ratio between FE-Hybrid III and THUMS chest injury parameters, maximum chest compression C max, and maximum viscous criterion VC max, were calculated for the different chest impact conditions to form a set of correction factors. The definition of the correction factor is based on the assumption that the response from a circular hub impact to the middle of the chest is well characterized and that injury risk measures are independent of impact height. The current limits for these chest injury criteria were used as a basis to develop correction factors that compensate for the limitations in biofidelity of the Hybrid III in steering wheel rim to chest impacts. The hub and bar impactors produced considerably higher C max and VC max responses in the THUMS compared to the FE-Hybrid III. The correction factor for the responses of the FE-Hybrid III showed that the criteria responses for the bar impactor were consistently overestimated. Ratios based on Hybrid III and THUMS responses provided correction factors for the Hybrid III responses ranging from 0.84 to 0.93. These factors can be used to estimate C max and VC max values when the Hybrid III is

  8. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.

    Science.gov (United States)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip

    2017-10-11

    Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.

  9. Hybrid functional pseudopotentials

    Science.gov (United States)

    Yang, Jing; Tan, Liang Z.; Rappe, Andrew M.

    2018-02-01

    The consistency between the exchange-correlation functional used in pseudopotential construction and in the actual density functional theory calculation is essential for the accurate prediction of fundamental properties of materials. However, routine hybrid density functional calculations at present still rely on generalized gradient approximation pseudopotentials due to the lack of hybrid functional pseudopotentials. Here, we present a scheme for generating hybrid functional pseudopotentials, and we analyze the importance of pseudopotential density functional consistency for hybrid functionals. For the PBE0 hybrid functional, we benchmark our pseudopotentials for structural parameters and fundamental electronic gaps of the Gaussian-2 (G2) molecular dataset and some simple solids. Our results show that using our PBE0 pseudopotentials in PBE0 calculations improves agreement with respect to all-electron calculations.

  10. Estimation of polyclonal IgG4 hybrids in normal human serum.

    Science.gov (United States)

    Young, Elizabeth; Lock, Emma; Ward, Douglas G; Cook, Alexander; Harding, Stephen; Wallis, Gregg L F

    2014-07-01

    The in vivo or in vitro formation of IgG4 hybrid molecules, wherein the immunoglobulins have exchanged half molecules, has previously been reported under experimental conditions. Here we estimate the incidence of polyclonal IgG4 hybrids in normal human serum and comment on the existence of IgG4 molecules with different immunoglobulin light chains. Polyclonal IgG4 was purified from pooled or individual donor human sera and sequentially fractionated using light-chain affinity and size exclusion chromatography. Fractions were analysed by SDS-PAGE, immunoblotting, ELISA, immunodiffusion and matrix-assisted laser-desorption mass spectrometry. Polyclonal IgG4 purified from normal serum contained IgG4κ, IgG4λ and IgG4κ/λ molecules. Size exclusion chromatography showed that IgG4 was principally present in monomeric form (150 000 MW). SDS-PAGE, immunoblotting and ELISA showed the purity of the three IgG4 samples. Immunodiffusion, light-chain sandwich ELISA and mass spectrometry demonstrated that both κ and λ light chains were present on only the IgG4κ/λ molecules. The amounts of IgG4κ/λ hybrid molecules ranged from 21 to 33% from the five sera analysed. Based on the molecular weight these molecules were formed of two IgG4 heavy chains plus one κ and one λ light chain. Polyclonal IgG (IgG4-depleted) was similarly fractionated according to light-chain specificity. No evidence of hybrid IgG κ/λ antibodies was observed. These results indicate that hybrid IgG4κ/λ antibodies compose a substantial portion of IgG4 from normal human serum. © 2014 John Wiley & Sons Ltd.

  11. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  12. Patterns of Inclusion: Fostering Digital Citizenship through Hybrid Education

    Science.gov (United States)

    Pedersen, Alex Young; Nørgaard, Rikke Toft; Köppe, Christian

    2018-01-01

    Reconsidering the concept of digital citizenship and the essential component of education, the authors propose that the concept of Hybrid Education may serve both as a guideline for the utilization of digital technologies in education and as a methodology for fostering new forms of participation, inclusion and engagement in society. Following T.…

  13. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    Science.gov (United States)

    Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng

    2013-11-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.

  14. Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu Mingxian; Guo Baochun; Du Mingliang; Cai Xiaojia; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2007-11-14

    A naturally occurred microtubullar silicate, halloysite nanotubes (HNTs), was co-cured with epoxy/cyanate ester resin to form organic-inorganic hybrids. The coefficient of thermal expansion (CTE) of the hybrids with low HNT concentration was found to be substantially lower than that of the plain cured resin. The moduli of the hybrids in the glassy state and rubbery state were significantly higher than those for the plain cured resin. The dispersion of HNTs in the resin matrix was very uniform as revealed by the transmission electron microscopy (TEM) results. The interfacial reactions between the HNTs and cyanate ester (CE) were revealed by the results of Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS). The substantially increased properties of the hybrids were attributed to the covalent bonding between the nanotubes and the matrix.

  15. Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems

    International Nuclear Information System (INIS)

    Liu Mingxian; Guo Baochun; Du Mingliang; Cai Xiaojia; Jia Demin

    2007-01-01

    A naturally occurred microtubullar silicate, halloysite nanotubes (HNTs), was co-cured with epoxy/cyanate ester resin to form organic-inorganic hybrids. The coefficient of thermal expansion (CTE) of the hybrids with low HNT concentration was found to be substantially lower than that of the plain cured resin. The moduli of the hybrids in the glassy state and rubbery state were significantly higher than those for the plain cured resin. The dispersion of HNTs in the resin matrix was very uniform as revealed by the transmission electron microscopy (TEM) results. The interfacial reactions between the HNTs and cyanate ester (CE) were revealed by the results of Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS). The substantially increased properties of the hybrids were attributed to the covalent bonding between the nanotubes and the matrix

  16. Clonal evaluation of new ornamental pineapple hybrids to use as cut flowers

    Directory of Open Access Journals (Sweden)

    Davi Silva Costa Junior

    2016-09-01

    Full Text Available Embrapa Cassava and Fruits has developed ornamental pineapple hybrids for several categories of ornamental use including cut flowers, potted plants and landscaping. The objective of this study was to carry out a clonal evaluation of two ornamental hybrids using quantitative and qualitative morphological descriptors to recommend these hybrids as new ornamental pineapple cultivars. Twenty plants of each hybrid (PL01 and PL04 were evaluated regarding the response to floral induction as well as the stability and homogeneity of the clones in two production cycles. The descriptive statistics were calculated and analyzed to determine the genetic distance based on the Gower algorithm. Four groups were formed, two using parental data and the other two containing the different hybrids that were evaluated in the two growing cycles. In the floral evaluation, the time from field planting to harvest of the stem as a cut flower was determined to be as long as 17 months in the first cycle and 13.5 months in the second cycle for both hybrids. They were characterized as a novelty in the flower market; they showed genetic stability and homogeneity and can be recommended as new cultivars of ornamental pineapple because they exhibit satisfactory quality and meet the market requirements.

  17. Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) miniature thruster

    Science.gov (United States)

    Eilers, Shannon

    The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.

  18. Hybrid All-Pay and Winner-Pay Contests

    DEFF Research Database (Denmark)

    Lagerlöf, Johan

    2017-01-01

    In many contests in economic and political life, both all-pay and winner-pay expenditures matter for winning. This paper studies such hybrid contests under symmetry and asymmetry. The symmetric model is very general but still yields a simple closed-form solution. More contestants tend to lead to ...... expenditures. An endogenous bias that maximizes total expenditures disfavors the high-valuation contestant but still makes her the more likely one to win....

  19. Hybride textuelle Strukturen und hybride textuelle Einheiten. Ein Beitrag zur Theorie der Wörterbuchform

    Directory of Open Access Journals (Sweden)

    Herbert Ernst Wiegand

    2011-10-01

    Full Text Available

    ZUSAMMENFASSUNG: In diesem Beitrag wird die Bildung, Darstellung und Leistung von hybriden textuellen Strukturen, die akzessive Einträge aufweisen, am Beispiel von Wörterbuchartikeln behandelt sowie erklärt, welche Eigenschaften hybride textuelle Einheiten haben. Ein Wörterbuchartikel eines Printwörterbuchs weist immer dann neben einer hierarchischen reinen eine hierarchische hybride Textkonstituentenstruktur auf, wenn in ihm mindestens ein funktionaler Angabezusatz auftritt, z.B. ein oben oder unten erweiternder oder ein binnenerweiternder. Da funktionale Angabezusätze Textsegmente mit Angabefunktion aber ohne Textkonstituentenstatus sind, werden sie durch nichtfunktionale Segmentation ermittelt, so dass neben funktionalen auch nichtfunktionale Textsegmente gegeben sind, die dann bei der Strukturbildung in die Trägermengen eingehen, so dass die Trägermengen aller hybriden hierarchischen Strukturen elementenheterogen, während die Trägermengen aller hierarchischen reinen Strukturen elementenhomogen sind. In den Strukturgraphen für hierarchische hybride Artikelstrukturen sind dann die Knoten für diejenigen Textsegmente, die den Hybridstatus der Strukturen bewirken, entweder durch Pfeilkanten für die textarchitektonischen oberhalb/unterhalb-Relationen mit den Knoten für die Textkonstituenten verbunden, so dass die Strukturgraphen architektonisch angereichert sind, oder durch besonders markierte Kanten, die die Knoten für die nichtfunktionalen Textsegmente und die für die binnenerweiternden funktionalen Angabezusätze mit den Knoten für die Textkonstituenten verbinden. Zu jedem Typ von hierarchischer reiner Artikelstruktur gehören mehrere Typen von hybriden Artikelstrukturen; entsprechendes gilt für hierarchische reine Angabestrukturen. Nur eine Auswahl aus den Typologien der hybriden Artikel- und Angabestrukturen wird behandelt sowie eine kleine Auswahl von hybriden textuellen Einheiten, die kriteriale Eigenschaften von zwei

  20. Hybrid discrete-time neural networks.

    Science.gov (United States)

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  1. Using magnetorheological fluids in an innovative hybrid bicycle damper

    International Nuclear Information System (INIS)

    Shiao, Y J; Nguyen, T S

    2015-01-01

    Magnetorheological fluids are capable of changing their viscosity quickly. This can provide good controllability and fast dynamic response. A conventional passive suspension system with air spring or hydraulic damper has simple design and financial benefit for bicycles, but its operation is uncontrollable and non-adaptive. This paper presented a semi-active hybrid bicycle suspension system which combines conventional air spring and a new magnetorheological damping brake together to reduce vibration of a bicycle. A multi-layer magnetorheological brake and linkage mechanism are connected to bike fork to form the adaptive damping part of the innovative hybrid suspension system. The simulation results proved that the semi-active suspension system can reduce bike vibration effectively. (paper)

  2. Synthesis of bioactive poly(ethylene glycol)/SiO2-CaO-P2O5 hybrids for bone regeneration

    International Nuclear Information System (INIS)

    Liu Wei; Wu Xiaohong; Zhan Hongbing; Yan Fuhua

    2012-01-01

    Poly(ethylene glycol) (PEG)/SiO 2 -CaO-P 2 O 5 hybrid xerogels were prepared using a room temperature sol-gel process. The advantage of this hybrid material over conventional composites is the molecular scale interactions between the bioactive inorganic components and the biodegradable organic components. Since PEG was added into the sol when the hydrolysis of tetraethoxysilane occurred, the molecular chain of PEG was penetrated into the SiO 2 networks to form a semi-IPN structure. Due to the excellent biocompatibility and aqueous solubility of PEG molecules, as well as the bioactivity of the inorganic components, the biological and mechanical properties of this hybrid xerogel exhibit great potential for bone regeneration applications. The formation of hydroxyapatite was observed when the xerogel was immersed into simulated body fluid, demonstrating good bioactivity of the hybrid. The cell toxicity test also demonstrated that the hybrid material is suitable for the proliferation of MC3T3-E1 cells. Thus, the PEG/SiO 2 -CaO-P 2 O 5 hybrid xerogel has great potential to meet the demands of bone regeneration materials. - Highlights: ► PEG was penetrated into the SiO 2 networks to form a semi-IPN structure. ► This hybrid xerogel exhibit great potential for bone regeneration applications. ► SEM micrographs confirm the bioactivity of the samples.

  3. Performance analysis of AES-Blowfish hybrid algorithm for security of patient medical record data

    Science.gov (United States)

    Mahmud H, Amir; Angga W, Bayu; Tommy; Marwan E, Andi; Siregar, Rosyidah

    2018-04-01

    A file security is one method to protect data confidentiality, integrity and information security. Cryptography is one of techniques used to secure and guarantee data confidentiality by doing conversion to the plaintext (original message) to cipher text (hidden message) with two important processes, they are encrypt and decrypt. Some researchers proposed a hybrid method to improve data security. In this research we proposed hybrid method of AES-blowfish (BF) to secure the patient’s medical report data into the form PDF file that sources from database. Generation method of private and public key uses two ways of approach, those are RSA method f RSA and ECC. We will analyze impact of these two ways of approach for hybrid method at AES-blowfish based on time and Throughput. Based on testing results, BF method is faster than AES and AES-BF hybrid, however AES-BF hybrid is better for throughput compared with AES and BF is higher.

  4. Free vibration response of a multilayer smart hybrid composite plate with embedded SMA wires

    Directory of Open Access Journals (Sweden)

    K. Malekzadeh

    Full Text Available In this paper, free vibration response of a hybrid composite plate was studied. Effects of some geometrical, physical and material parameters on response of the composite plates embedded with shape memory alloy (SMA wires were investigated, which have not been reported in the literature thus far. Some of these parameters included important factors affecting free vibration response of the smart hybrid composite plates. The SMA wires were embedded within the layers of the composite laminate. First-order shear deformation theory (FSDT was utilized to obtain the governing equations of hybrid composite plates. Transverse shear and rotary inertia effects of the plate were taken into consideration. For simply-supported boundary conditions, systematic closed form solutions were obtained by Navier's technique. It was established that dynamic behavior of the smart hybrid composite plate depended on various parameters such as volume fraction, temperature dependent recovery stress and tensile pre-strain of SMA wires and aspect ratio of the laminated hybrid plate.

  5. Human hybrid hybridoma

    Energy Technology Data Exchange (ETDEWEB)

    Tiebout, R.F.; van Boxtel-Oosterhof, F.; Stricker, E.A.M.; Zeijlemaker, W.P.

    1987-11-15

    Hybrid hybridomas are obtained by fusion of two cells, each producing its own antibody. Several authors have reported the construction of murine hybrid hybridomas with the aim to obtain bispecific monoclonal antibodies. The authors have investigated, in a model system, the feasibility of constructing a human hybrid hybridoma. They fused two monoclonal cell lines: an ouabain-sensitive and azaserine/hypoxanthine-resistant Epstein-Barr virus-transformed human cell line that produces an IgG1kappa antibody directed against tetanus toxiod and an azaserine/hypoxanthine-sensitive and ouabain-resistant human-mouse xenohybrid cell line that produces a human IgG1lambda antibody directed against hepatitis-B surface antigen. Hybrid hybridoma cells were selected in culture medium containing azaserine/hypoxanthine and ouabain. The hybrid nature of the secreted antibodies was analyzed by means of two antigen-specific immunoassay. The results show that it is possible, with the combined use of transformation and xenohybridization techniques, to construct human hybrid hybridomas that produce bispecific antibodies. Bispecific antibodies activity was measured by means of two radioimmunoassays.

  6. Fabrication of genetically engineered polypeptide@quantum dots hybrid nanogels for targeted imaging

    Science.gov (United States)

    Yang, Jie; Yao, Ming-Hao; Zhao, Dong-Hui; Zhang, Xiao-Shuai; Jin, Rui-Mei; Zhao, Yuan-Di; Liu, Bo

    2017-08-01

    Nanogels have been widely used as multifunctional drug delivery carriers because of high water content, biocompatibility, and high loading capability. We designed and biosynthesized two triblock artificial polypeptides PC10A and PC10ARGD as vehicles for encapsulating hydrophobic materials. These polypeptides can form nanogels by self-assembly when the concentration is below 2% ( w/ v). The physical properties of nanogels, including size, surface potential, and targeting domain, are able to be tuned. Hydrophobic materials from molecular size to nano-size can be loaded into the polypeptide nanogels to form hybrid nanogels. Hydrophobic quantum dots CdSe@ZnS below 10 nM were loaded into the polypeptide nanogels by ultrasonic treatment. Encapsulation endows hydrophobic QDs with good tunability of size, water solubility, stability, targeting, and biocompatibility. PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels showed excellent biocompatibility, which the cellular viabilities of HeLa and MCF-7 cells treated with 1% PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels contained 20 nM QDs were above 90 and 80%, respectively. PC10ARGD@QDs hybrid nanogels with an arginine-glycine-aspartic acid motif present efficient receptor-mediated endocytosis in α v β 3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy. These results demonstrate that such polypeptide nanogels as nanocarriers are expected to have great potential applications in biomedicine.

  7. Megaspore competition in F1 and F2 hybrids between Oenothera hookeri and Oe. suaveolens

    Directory of Open Access Journals (Sweden)

    Renata Śnieżko

    2014-01-01

    Full Text Available Megasporogenesis and development of the embryo sac were investigated in F1 and F2 hybrids from crosses of Oe. hookeri and Oe. suaveolens. All hybrids form heteropolar and homopolar magaspore tetrads; the embryo sac, however, usually develops from the micropylar megaspore. Its development may occur immediately after degeneration of three other megaspores or after a period of competition between both apical megaspores. They develop simultaneously for a relatively short time, after which the growth of the chalazal megaspore is inhibited, although the latter does not degenerate. The micropylar megaspore as a rule develops without disturbances into the embryo sac, but in some ovules it is formed from the chalazal megaspore or double ones arise from both apical megaspores of the tetrad. The frequency of the micropylar embryo sac formation seems to be dependent above all on the hybrid plant genome and not on the haploid genome of the megaspore.

  8. Preparation of an amide group-connected graphene-polyaniline nanofiber hybrid and its application in supercapacitors.

    Science.gov (United States)

    Jianhua, Liu; Junwei, An; Yecheng, Zhou; Yuxiao, Ma; Mengliu, Li; Mei, Yu; Songmei, Li

    2012-06-27

    Polyaniline (PANI) nanofiber is grafted onto graphene to obtain a novel graphene-polyaniline (GP) hybrid. Graphene is activated using SOCl2 and reacts with PANI to form an amide group that intimately connects graphene and PANI. The existence of the amide group and its anchoring effect in the GP hybrid are confirmed and characterized by SEM, TEM, FT-IR, Raman, XPS and quantum chemistry analyses. Electrochemical tests reveal that the GP hybrid has high capacitance performances of 579.8 and 361.9 F g(-1) at current densities of 0.3 and 1 A g(-1). These values indicate superiority to materials interacted by van der Waals force. Long-term charge/discharge tests at high current densities show that the GP hybrid preserves 96% of its initial capacitance, demonstrating good electrochemical stability. The improved electrochemical performance suggests promising application of the GP hybrid in high-performance supercapacitors.

  9. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....

  10. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  11. Storing in carbon nano structures for hybrid systems solar hydrogen

    International Nuclear Information System (INIS)

    Marazzi, R.; Zini, G.; Tartarini, P.

    2009-01-01

    We have developed a hybrid energy system for converting energy from renewable sources and its storage in the form of hydrogen. The storage uses activated carbon and the methodology was modelled mathematically and simulated in numerical software. The results show that storage compression is cheaper storage for liquefaction. [it

  12. Effects of hybrid and bacterial inoculation on fermentation quality and fatty acid profile of barley silage.

    Science.gov (United States)

    Kim, Dong Hyeon; Amanullah, Sadar M; Lee, Hyuk Jun; Joo, Young Ho; Han, Ouk Kyu; Adesogan, Adegbola T; Kim, Sam Churl

    2018-01-01

    This study estimated the effects of hybrid and bacterial inoculant on fermentation quality and fatty acid profile of barley silages. Yuyeon (Silkless) and Youngyang (Silking) barley hybrids were harvested at 24.9 and 27.1% dry matter, respectively, and chopped to 10 cm lengths. Each hybrid was treated with or without an inoculant (2 × 10 4  colony-forming units/g of Lactobacillus plantarum). A total of 48 silos were prepared in an experiment with a 2 × 2 (hybrid × inoculant) treatment arrangement with four replications and three ensiling durations (2, 7 and 100 days). After 100 days of ensiling, Yuyeon silage had higher (P hybrids and increased (P hybrid might have better potential benefits on animal performances due to its smooth awn and silkless nature, and higher in vitro dry matter digestibility. Its higher C18:3n-3 would be better for improving fatty acid profile of meat or milk than Youngyang hybrid. © 2017 Japanese Society of Animal Science.

  13. Microwave oven fabricated hybrid memristor devices for non-volatile memory storage

    International Nuclear Information System (INIS)

    Verrelli, E; Gray, R J; O’Neill, M; Kemp, N T; Kelly, S M

    2014-01-01

    Novel hybrid non-volatile memories made using an ultra-fast microwave heating method are reported for the first time. The devices, consisting of aligned ZnO nanorods embedded in poly (methyl methacrylate), require no forming step and exhibit reliable and reproducible bipolar resistive switching at low voltages and with low power usage. We attribute these properties to a combination of the high aspect ratio of the nanorods and the polymeric hybrid structure of the device. The extremely easy, fast and low-cost solution based method of fabrication makes possible the simple and quick production of cheap memory cells. (paper)

  14. Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application

    Science.gov (United States)

    Dulgerbaki, Cigdem; Komur, Ali Ihsan; Nohut Maslakci, Neslihan; Kuralay, Filiz; Uygun Oksuz, Aysegul

    2017-08-01

    We report the first successful applications of tungsten oxide/conducting polymer hybrid nanofiber assemblies in electrochromic devices. Poly(3,4-ethylenedioxythiophene)/tungsten oxide (PEDOT/WO3) and polypyrrole/tungsten oxide (PPy/WO3) composites were prepared by an in situ chemical oxidative polymerization of monomers in different ionic liquids; 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI). Electrospinning process was used to form hybrid nanofibers from chemically synthesized nanostructures. The electrospun hybrid samples were compared from both morphological and electrochemical perspectives. Importantly, deposition of nanofibers from chemically synthesized hybrids can be achieved homogenously, on nanoscale dimensions. The morphologies of these assemblies were evaluated by SEM, whereas their electroactivity was characterized by cyclic voltammetry. Electrochromic devices made from hybrid nanofiber electrodes exhibited highest chromatic contrast of 37.66% for PEDOT/WO3/BMIMPF6, 40.42% for PPy/WO3/BMIMBF4 and show a strong electrochromic color change from transparent to light brown. Furthermore, the nanofiber devices exhibit outstanding stability when color switching proceeds, which may ensure a versatile platform for color displays, rear-view mirrors and smart windows.

  15. Hybridization State Detection of DNA-Functionalized Gold Nanoparticles Using Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Richard C. Murdock

    2017-01-01

    Full Text Available Hyperspectral imaging has the unique ability of capturing spectral data for multiple wavelengths at each pixel in an image. This gives the ability to distinguish, with certainty, different nanomaterials and/or distinguish nanomaterials from biological materials. In this study, 4 nm and 13 nm gold nanoparticles (Au NPs were synthesized, functionalized with complimentary oligonucleotides, and hybridized to form large networks of NPs. Scattering spectra were collected from each sample (unfunctionalized, functionalized, and hybridized and evaluated. The spectra showed unique peaks for each size of Au NP sample and also exhibited narrowing and intensifying of the spectra as the NPs were functionalized and then subsequently hybridized. These spectra are different from normal aggregation effects where the LSPR and reflected spectrum broaden and are red-shifted. Rather, this appears to be dependent on the ability to control the interparticle distance through oligonucleotide length, which is also investigated through the incorporation of a poly-A spacer. Also, hybridized Au NPs were exposed to cells with no adverse effects and retained their unique spectral signatures. With the ability to distinguish between hybridization states at nearly individual NP levels, this could provide a new method of tracking the intracellular actions of nanomaterials as well as extracellular biosensing applications.

  16. Genetic basis to hybrid inviability is more complex than hybrid male sterility in Caenorhabditis nematodes.

    Science.gov (United States)

    Bundus, Joanna D; Wang, Donglin; Cutter, Asher D

    2018-04-07

    Hybrid male sterility often evolves before female sterility or inviability of hybrids, implying that the accumulation of divergence between separated lineages should lead hybrid male sterility to have a more polygenic basis. However, experimental evidence is mixed. Here, we use the nematodes Caenorhabditis remanei and C. latens to characterize the underlying genetic basis of asymmetric hybrid male sterility and hybrid inviability. We demonstrate that hybrid male sterility is consistent with a simple genetic basis, involving a single X-autosome incompatibility. We also show that hybrid inviability involves more genomic compartments, involving diverse nuclear-nuclear incompatibilities, a mito-nuclear incompatibility, and maternal effects. These findings demonstrate that male sensitivity to genetic perturbation may be genetically simple compared to hybrid inviability in Caenorhabditis and motivates tests of generality for the genetic architecture of hybrid incompatibility across the breadth of phylogeny.

  17. On the Performance of RF-FSO Links with and without Hybrid ARQ

    KAUST Repository

    Makki, Behrooz

    2016-04-01

    This paper studies the performance of hybrid radiofrequency (RF) and free-space optical (FSO) links assuming perfect channel state information (CSI) at the receiver. Considering the cases with and without hybrid automatic repeat request (HARQ), we derive closed-form expressions for the message decoding probabilities as well as the throughput and the outage probability of the RF-FSO setups. We also evaluate the effect of adaptive power allocation and different channel conditions on the throughput and the outage probability. The results show the efficiency of the RF-FSO links in different conditions.

  18. 1-D hybrid code for FRM start-up

    International Nuclear Information System (INIS)

    Stark, R.A.; Miley, G.H.

    1982-01-01

    A one-D hybrid has been developed to study the start-up of the FRM via neutral-beam injection. The code uses a multi-group numerical model originally developed by J. Willenberg to describe fusion product dynamics in a solenoidal plasma. Earlier we described such a model for use in determining self-consistent ion currents and magnetic fields in FRM start-up. However, consideration of electron dynamics during start-up indicate that the electron current will oppose the injected ion current and may even foil the attempt to achieve reversal. For this reason, we have combined the multi-group ion (model) with a fluid treatment for electron dynamics to form the hybrid code FROST (Field Reversed One-dimensional STart-up). The details of this merger, along with sample results of operation of FROST, are given

  19. Fusion-fission hybrids: environmental aspects and their role in hybrid rationale

    International Nuclear Information System (INIS)

    Holdren, J.P.

    1981-01-01

    The rationale for developing hybrids depends on real or perceived liabilities of relying on pure fission to do the same job. Quite possibly the main constraint on expanded use of fission will be neither lack of fuel nor high costs, but perceived environmental liabilities - radioactive wastes, reactor safety, and links to nuclear weaponry. The environmental characteristics of hybrid systems and pure-fisson systems are compared here in detail. The findings are that significant environmental advantages for hybrids cannot now be demonstrated and may not exist. Therefore, if environmental drawbacks constrain the application of pure fission, hybrids probably also will be thus constrained

  20. Study of alteration in the mechanical properties in hybrid nanocomposite of polypropylene/sisal fibers/mineral clay irradiated with gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Nilson C.; Terence, Mauro C.; Miranda, Leila F., E-mail: nilpereira@mackenzie.com.b [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Escola de Engenharia. Curso de Engenharia de Materiais

    2009-07-01

    A new material class formed with reinforced filler, hybrid of organic and inorganic materials provides the technological development of materials with modified properties. And among great numbers of properties that can be modified by presence of hybrid filler to stand out the tension resistance. Polymer shows behavior of tensions and deformation that are not related of simple form. The answer of this material at mechanicals solicitations depends of structural factors and externals variables. As structural factors can be, for example, molecular weight, ramifications and crosslink. As external variables can be, for example, temperature, time or velocity of deformation, kind of solicitation and others. This work was possible to verify as nanostructures materials behavior, mechanically, after were submitted gamma radiation. This work utilized as polymeric matrix, recycled polypropylene, and as hybrid filler, a mixture of montimorillonite mineral clay with natural sisal fibers. It is known that form to magnify the tensile resistance is increase the number of crosslink of principal chain for gamma radiation. After irradiation the polypropylene was crosslinked structures that are result recombination of radicals formed during process of irradiation. It.s known that radicals formed occur preferentially in the amorphous region of polymer. Considering that polymeric matrix polypropylene, without addition fillers suffer strong structural influence when irradiated, was possible verify change in the extension, tensile strength and also maxim tensile in rupture, when this matrix was incorporated with fillers hybrids. (author)

  1. Study of alteration in the mechanical properties in hybrid nanocomposite of polypropylene/sisal fibers/mineral clay irradiated with gamma rays

    International Nuclear Information System (INIS)

    Pereira, Nilson C.; Terence, Mauro C.; Miranda, Leila F.

    2009-01-01

    A new material class formed with reinforced filler, hybrid of organic and inorganic materials provides the technological development of materials with modified properties. And among great numbers of properties that can be modified by presence of hybrid filler to stand out the tension resistance. Polymer shows behavior of tensions and deformation that are not related of simple form. The answer of this material at mechanicals solicitations depends of structural factors and externals variables. As structural factors can be, for example, molecular weight, ramifications and crosslink. As external variables can be, for example, temperature, time or velocity of deformation, kind of solicitation and others. This work was possible to verify as nanostructures materials behavior, mechanically, after were submitted gamma radiation. This work utilized as polymeric matrix, recycled polypropylene, and as hybrid filler, a mixture of montimorillonite mineral clay with natural sisal fibers. It is known that form to magnify the tensile resistance is increase the number of crosslink of principal chain for gamma radiation. After irradiation the polypropylene was crosslinked structures that are result recombination of radicals formed during process of irradiation. It.s known that radicals formed occur preferentially in the amorphous region of polymer. Considering that polymeric matrix polypropylene, without addition fillers suffer strong structural influence when irradiated, was possible verify change in the extension, tensile strength and also maxim tensile in rupture, when this matrix was incorporated with fillers hybrids. (author)

  2. When biogeographical provinces collide: Hybridization of reef fishes at the crossroads of marine biogeographical provinces in the Arabian Sea

    KAUST Repository

    DiBattista, Joseph

    2015-04-01

    Aim: Suture zones are areas where closely related species from different biogeographical regions come into contact and interbreed. This concept originated from the study of terrestrial ecosystems but it remains unclear whether a similar phenomenon occurs in the marine environment. Here we investigate a potential suture zone from a previously unknown hybrid hotspot at the Socotra Archipelago (Yemen), located in the Arabian Sea, where fauna from the Red Sea, Gulf of Aden, Arabian Sea, western Indian Ocean and greater Indo-Polynesian Province intersect. Location: Red Sea, Gulf of Aden, Arabian Sea and Indian Ocean. Methods: Putative hybrid reef fish were identified based on intermediate coloration and morphology. Underwater observations and collections were conducted to determine: (1) whether parent species form heterospecific social groups or breeding pairs; (2) the sex and reproductive status of morphologically intermediate individuals; and (3) whether parent species were forming mixed species associations owing to a dearth of conspecific partners. To support hybrid status, morphologically intermediate and parental individuals were genotyped using mitochondrial DNA cytochrome c oxidase subunit I (COI), nuclear recombination-activating gene 2 (RAG2) and the nuclear TMO-4C4 (TMO) gene. Results: We observed putative hybrids involving 14 species from four reef fish families at Socotra. Most cases involved a parental species with a restricted distribution (e.g. Red Sea or Arabian Sea) and a broadly distributed Indo-Pacific species. In most cases, at least one of the parent species was rare at Socotra. Hybrid gene flow was largely unidirectional, and although introgression was rare, we found evidence that some butterflyfish and surgeonfish hybrids were fertile and formed breeding groups with parental species. Main conclusions: The rate of hybrid discovery at Socotra is much greater than that recorded elsewhere in the marine environment and involved both allopatric and

  3. S 400 BlueHYBRID. First hybrid vehicle with Li-ion technology; S 400 BlueHYBRID. Erstes Hybridfahrzeug mit Li-Ionen-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Vollrath, Oliver; Armstrong, Neil; Schenk, Juergen; Bitsche, Otmar; Lamm, Arnold [Daimler AG, Stuttgart (Germany)

    2009-07-01

    Mercedes Benz advances the electrification of the drive strand in all performance classes and in all models from the start-stop system till to the full hybrid. Thereby, the S 400 BlueHYBRID presents the first Mercedes-Benz hybrid. Equipped with the characteristics of a start-stop system, with a recovery of the brake energy and with an electrical support of the drive, this hybrid obtains a saving of the consumption of approximately 20 %. By means of the design of the components and by means of the selection of a standard installation size, all hybrid-specific construction units in the vehicle porch could be arranged. Here, a special role comes to the used battery technology, since it became possible to arrange the hybrid battery in the size and the building area of a conventional starter battery accordingly.

  4. Efficient Generation of Long-Lived Triplet Excitons in 2D Hybrid Perovskite.

    Science.gov (United States)

    Younts, Robert; Duan, Hsin-Sheng; Gautam, Bhoj; Saparov, Bayrammurad; Liu, Jie; Mongin, Cedric; Castellano, Felix N; Mitzi, David B; Gundogdu, Kenan

    2017-03-01

    Triplet excitons form in quasi-2D hybrid inorganic-organic perovskites and diffuse over 100 nm before radiating with >11% photoluminescence quantum efficiency (PLQE) at low temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hybrid Magnetic Shielding

    Science.gov (United States)

    Royal, Kevin; Crawford, Christopher; Mullins, Andrew; Porter, Greg; Blanton, Hunter; Johnstone, Connor; Kistler, Ben; Olivera, Daniela

    2017-09-01

    The search for the electric dipole moment of the neutron requires the ambient magnetic field to be on the pT scale which is accomplished with large magnetic shielding rooms. These rooms are fitted with large mu-metal sheets to allow for passive cancellation of background magnetic fields. Active shielding technology cannot uniformly cancel background magnetic fields. These issues can be remedied by combining the methods into a hybrid system. The design used is composed of panels that have an active layer of cancellation between two sheets of mu-metal. The panels form a cube and draw in magnetic fields perpendicular to the surface which can then be reduced using active shielding. This work is supported by the Department of Energy under Contract DE-SC0008107.

  6. Agronomic divergence of sorghum hybrids for silage yield in the semiarid region of Paraiba

    Directory of Open Access Journals (Sweden)

    Thiago Carvalho da Silva

    2011-09-01

    Full Text Available The objective of this study was to evaluate the agronomic divergence of 25 sorghum hybrids (Sorghum bicolor L. Moench in the semiarid region of Paraiba. A randomized block design with three replications was used for evaluation of plant height (PH, total natural matter production (TNMP and total dry matter production (TDMP and the percentage of components of DM (panicle, leaf blade, stem and dead matter of the following hybrids: 866005, 866019, 866033, 866034, 866035, 866036, 866037, 866040, 866041, 866042, 866043, 866044, 870025, 870031, 870035, 870041, 870051, 870067, 870081, 870085, 870095, 1F305, BRS 610, Volumax, and XBS60329. Hybrid 1F305, followed by hybrid 866034, presented the highest average PH. There was a range from 7.679 to 20.948 kg/ha (average of 13,799 kg/ha for TDMP. Hybrids 1F305, BRS 610 and Volumax presented less potential, and hybrids 866,041 and 866,042 were the most productive. Based on cluster analysis and subjective cut in 50% of dissimilarity, it was possible to establish four hierarchical groups, from which two stood out concerning productive characteristics. The group formed by hybrids Volumax, BRS 610, and XBS60329 presented lower averages for yield and lower percentage of panicle. Hybrids 866041 and 866042 show a higher total dry matter production, with values around 20,000 kg/ha.

  7. A study on the control of a hybrid MTDC system supplying a passive network

    DEFF Research Database (Denmark)

    Kotb, Omar; Ghandhari, Mehrdad; Eriksson, Robert

    2014-01-01

    A hybrid Multi-Terminal DC (MTDC) system can combine the benefits of both Line Commutated Converter (LCC) and Voltage Source Converter (VSC) technologies in the form of reduced losses and flexibility to connect to weak and passive grids. In this paper, an analysis of control strategies used...... in a hybrid MTDC system is presented. A case study of a four terminal hybrid MTDC system supplying a passive AC network was considered for simulation study. A control scheme based on voltage margin was developed to cope with the condition of main DC voltage controlling station tripping. Two various control...... scenarios for controlling the VSCs connected to the passive network were presented and compared. The system performance was studied through EMTP-RV simulations under different disturbances. The results show the ability of selected converter control modes and proposed control schemes to operate the hybrid...

  8. The illusion of specific capture: surface and solution studies of suboptimal oligonucleotide hybridization

    Science.gov (United States)

    2013-01-01

    Background Hybridization based assays and capture systems depend on the specificity of hybridization between a probe and its intended target. A common guideline in the construction of DNA microarrays, for instance, is that avoiding complementary stretches of more than 15 nucleic acids in a 50 or 60-mer probe will eliminate sequence specific cross-hybridization reactions. Here we present a study of the behavior of partially matched oligonucleotide pairs with complementary stretches starting well below this threshold complementarity length – in silico, in solution, and at the microarray surface. The modeled behavior of pairs of oligonucleotide probes and their targets suggests that even a complementary stretch of sequence 12 nt in length would give rise to specific cross-hybridization. We designed a set of binding partners to a 50-mer oligonucleotide containing complementary stretches from 6 nt to 21 nt in length. Results Solution melting experiments demonstrate that stable partial duplexes can form when only 12 bp of complementary sequence are present; surface hybridization experiments confirm that a signal close in magnitude to full-strength signal can be obtained from hybridization of a 12 bp duplex within a 50mer oligonucleotide. Conclusions Microarray and other molecular capture strategies that rely on a 15 nt lower complementarity bound for eliminating specific cross-hybridization may not be sufficiently conservative. PMID:23445545

  9. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks

    OpenAIRE

    Schreck, Kathleen M.; Leung, Diana; Bowman, Christopher N.

    2011-01-01

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (Tg) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins ...

  10. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    Science.gov (United States)

    2013-01-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g−1 at a scan rate of 5 mV.s−1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors. PMID:24215772

  11. A versatile route to hybrid open-framework materials | Ayi | Global ...

    African Journals Online (AJOL)

    The isolation of the intermediate phase and its reaction with metal ions to form open framework solids has been explored and it has proven a facile route of synthesizing inorganic-organic hybrid materials with open pores. Here the amine phosphate route of templating inorganic open-framework materials has been reviewed ...

  12. In vitro evaluation of the contact angle formed between AH Plus, Hybrid Root Seal and mineral trioxide aggregate Plus sealer with dentin and gutta-percha.

    Science.gov (United States)

    Nikhil, Vineeta; Jaiswal, Shikha; Bajpai, Gauravi

    2018-01-01

    The purpose of this study was evaluation and comparison of the contact angle of new root canal sealers - Hybrid Root Seal, mineral trioxide aggregate (MTA) Plus, and the conventional AH Plus sealer with dentin and gutta-percha. Two groups (Group D - dentin and Group G - gutta-percha) of 18 samples each were further randomly divided into 3 subgroups based on the type of sealer used, that is, AH Plus, Hybrid Root Seal, and MTA Plus. Contact angle measurement device (Phoenix 300) was used to measure the contact angle of the sealers on both dentin and gutta-percha. The results thus obtained were analyzed using one-way analysis of variance and Student's t -test. MTA Plus recorded significantly higher values of contact angle on both the substrates, that is, dentin and gutta-percha when compared to AH Plus and Hybrid root canal sealer. The lowest value of contact angle in gutta-percha and dentin was shown by Hybrid root canal sealer and AH Plus, respectively. Both AH Plus and Hybrid Root Seal exhibited lower contact angle values, and hence, better wettability on both dentin and gutta-percha as compared to MTA Plus.

  13. A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2011-03-01

    Full Text Available Abstract Background Unisexual vertebrates have been demonstrated to reproduce by gynogenesis, hybridogenesis, parthenogenesis, or kleptogenesis, however, it is uncertain how the reproduction mode contributes to the clonal diversity. Recently, polyploid gibel carp has been revealed to possess coexisting dual modes of unisexual gynogenesis and sexual reproduction and to have numerous various clones. Using sexual reproduction mating between clone D female and clone A male and subsequent 7 generation multiplying of unisexual gynogenesis, we have created a novel clone strain with more than several hundred millions of individuals. Here, we attempt to identify genetic background of the novel clone and to explore the significant implication for clonal diversity contribution. Methods Several nuclear genome markers and one cytoplasmic marker, the mitochondrial genome sequence, were used to identify the genetic organization of the randomly sampled individuals from different generations of the novel clone. Results Chromosome number, Cot-1 repetitive DNA banded karyotype, microsatellite patterns, AFLP profiles and transferrin alleles uniformly indicated that nuclear genome of the novel clone is identical to that of clone A, and significantly different from that of clone D. However, the cytoplasmic marker, its complete mtDNA genome sequence, is same to that of clone D, and different from that of clone A. Conclusions The present data indicate that the novel clone is a nucleo-cytoplasmic hybrid between the known clones A and D, because it originates from the offspring of gonochoristic sexual reproduction mating between clone D female and clone A male, and contains an entire nuclear genome from the paternal clone A and a mtDNA genome (cytoplasm from the maternal clone D. It is suggested to arise via androgenesis by a mechanism of ploidy doubling of clone A sperm in clone D ooplasm through inhibiting the first mitotic division. Significantly, the selected nucleo

  14. A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp

    Science.gov (United States)

    2011-01-01

    Background Unisexual vertebrates have been demonstrated to reproduce by gynogenesis, hybridogenesis, parthenogenesis, or kleptogenesis, however, it is uncertain how the reproduction mode contributes to the clonal diversity. Recently, polyploid gibel carp has been revealed to possess coexisting dual modes of unisexual gynogenesis and sexual reproduction and to have numerous various clones. Using sexual reproduction mating between clone D female and clone A male and subsequent 7 generation multiplying of unisexual gynogenesis, we have created a novel clone strain with more than several hundred millions of individuals. Here, we attempt to identify genetic background of the novel clone and to explore the significant implication for clonal diversity contribution. Methods Several nuclear genome markers and one cytoplasmic marker, the mitochondrial genome sequence, were used to identify the genetic organization of the randomly sampled individuals from different generations of the novel clone. Results Chromosome number, Cot-1 repetitive DNA banded karyotype, microsatellite patterns, AFLP profiles and transferrin alleles uniformly indicated that nuclear genome of the novel clone is identical to that of clone A, and significantly different from that of clone D. However, the cytoplasmic marker, its complete mtDNA genome sequence, is same to that of clone D, and different from that of clone A. Conclusions The present data indicate that the novel clone is a nucleo-cytoplasmic hybrid between the known clones A and D, because it originates from the offspring of gonochoristic sexual reproduction mating between clone D female and clone A male, and contains an entire nuclear genome from the paternal clone A and a mtDNA genome (cytoplasm) from the maternal clone D. It is suggested to arise via androgenesis by a mechanism of ploidy doubling of clone A sperm in clone D ooplasm through inhibiting the first mitotic division. Significantly, the selected nucleo-cytoplasmic hybrid female

  15. G-centers in irradiated silicon revisited: A screened hybrid density functional theory approach

    KAUST Repository

    Wang, H.; Chroneos, A.; Londos, C. A.; Sgourou, E. N.; Schwingenschlö gl, Udo

    2014-01-01

    Electronic structure calculations employing screened hybrid density functional theory are used to gain fundamental insight into the interaction of carbon interstitial (Ci) and substitutional (Cs) atoms forming the CiCs defect known as G

  16. Rapid hybridization of nucleic acids using isotachophoresis

    Science.gov (United States)

    Bercovici, Moran; Han, Crystal M.; Liao, Joseph C.; Santiago, Juan G.

    2012-01-01

    We use isotachophoresis (ITP) to control and increase the rate of nucleic acid hybridization reactions in free solution. We present a new physical model, validation experiments, and demonstrations of this assay. We studied the coupled physicochemical processes of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally validated model enables a closed form solution for ITP-aided reaction kinetics, and reveals a new characteristic time scale which correctly predicts order 10,000-fold speed-up of chemical reaction rate for order 100 pM reactants, and greater enhancement at lower concentrations. At 500 pM concentration, we measured a reaction time which is 14,000-fold lower than that predicted for standard second-order hybridization. The model and method are generally applicable to acceleration of reactions involving nucleic acids, and may be applicable to a wide range of reactions involving ionic reactants. PMID:22733732

  17. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    Science.gov (United States)

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  18. Hybrid Neural Network Approach Based Tool for the Modelling of Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2015-01-01

    Full Text Available A hybrid neural network approach based tool for identifying the photovoltaic one-diode model is presented. The generalization capabilities of neural networks are used together with the robustness of the reduced form of one-diode model. Indeed, from the studies performed by the authors and the works present in the literature, it was found that a direct computation of the five parameters via multiple inputs and multiple outputs neural network is a very difficult task. The reduced form consists in a series of explicit formulae for the support to the neural network that, in our case, is aimed at predicting just two parameters among the five ones identifying the model: the other three parameters are computed by reduced form. The present hybrid approach is efficient from the computational cost point of view and accurate in the estimation of the five parameters. It constitutes a complete and extremely easy tool suitable to be implemented in a microcontroller based architecture. Validations are made on about 10000 PV panels belonging to the California Energy Commission database.

  19. Hybrid microcircuits for nuclear instrumentation

    International Nuclear Information System (INIS)

    Kulkarni, R.G.

    2005-01-01

    Hybrid microcircuits (HMCs) have distinct advantages over their rival products like printed circuit boards (PCBs) and integrated circuits (ICs), and are able to survive the onslaught of Moore's law, by retaining the niche market for themselves. The ASIC development cost is normally huge and when the volumes are small (less than ten thousand or so), the prohibitively high unit cost deters the potential customers. However the HMCs can be developed at a small fraction of an ASIC development cost and thus they are attractive when the volumes are small, as in the case of professional electronics industries like defense, broadcast, or instrumentation industries. The hybrid microcircuit (HMC) technology can involve one of the two processes: thick-film and thin- film. Broadly the thick-film process consists of printing and firing of, conductor and resistor pastes, on an Alumina substrate. The thin-film process consists of photo lithographic etching of, conductor and resistor patterns, on a metal/resistor sputtered high purity Alumina substrate. The active devices, either in die-form or in surface-mount form, are attached to the thick-film or the thin-film substrate. The passive devices like chip inductors and chip capacitors are also attached to the substrate. This paper discusses in detail the thick-film and the thin-film processes and their relative merits and demerits. The associated qualification and screening procedures followed to provide reliable HMCs to the customer are described. The existing HMC facilities and the product range available in Bharat Electronics including the HMCs developed for nuclear instrumentation are presented. (author)

  20. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids

    Directory of Open Access Journals (Sweden)

    Daniela Anahí Sánchez-Téllez

    2017-12-01

    Full Text Available The aims of this paper are: (1 to review the current state of the art in the field of cartilage substitution and regeneration; (2 to examine the patented biomaterials being used in preclinical and clinical stages; (3 to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1 the use of cell-free biomaterials; and (2 the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids, matrices (hydrogel-based, growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.

  1. Graphene-carbon nanotube hybrid materials and use as electrodes

    Science.gov (United States)

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  2. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  3. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  4. Evidence for mito-nuclear and sex-linked reproductive barriers between the hybrid Italian sparrow and its parent species.

    Directory of Open Access Journals (Sweden)

    Cassandra N Trier

    2014-01-01

    Full Text Available Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP markers. After filtering for coverage, genotyping success (>97% and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function ("mother's curse" at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome

  5. Quality control considerations for the development of the front end hybrid circuits for the CMS Outer Tracker upgrade

    CERN Document Server

    Gadek, Tomasz; Bonnaud, Julien Yves Robert; De Clercq, Jarne Theo; Honma, Alan; Koliatos, Alexandros; Kovacs, Mark Istvan; Luetic, Jelena

    2017-01-01

    The upgrade of the CMS Outer Tracker for the HL-LHC requires the design of new double-sensor modules. They contain two high-density front end hybrid circuits, equipped with flip-chip ASICs, passives and mechanical structures. First prototype hybrids in a close-to-final form have been ordered from three manufacturers. To qualify these hybrids a test setup was built, which emulates future tracker temperature and humidity conditions, provides temporary interconnection, and implements testing features. The system was automated to minimize the testing time in view of the production phase. Failure modes, deliberately implemented in the produced hybrids, provided feedback on the system’s effectiveness.

  6. Entanglement detection in hybrid optomechanical systems

    International Nuclear Information System (INIS)

    De Chiara, Gabriele; Paternostro, Mauro; Palma, G. Massimo

    2011-01-01

    We study a device formed by a Bose-Einstein condensate (BEC) coupled to the field of a cavity with a moving end mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.

  7. Mode conversion of lower hybrid waves at high ion cyclotron harmonics. Appendix F

    International Nuclear Information System (INIS)

    Swanson, D.G.; Cho, S.

    1985-05-01

    The problem of ion cyclotron harmonic absorption for a lower hybrid wave is shown to be a mode conversion problem. A new form of the dispersion relation is developed and then expanded to get a differential equation identical to that for the second harmonic problem. The validity of this model is restricted to the region far from the lower hybrid resonance layer. It is shown that mode couplings occur among the incident cold wave and two other waves, and the tunneling factor becomes singular there

  8. A 'hybrid space’ for peer review: can Facebook inspire new ways of thinking?

    OpenAIRE

    Head, A; Glen, N; Thompson, S

    2009-01-01

    Peer review can be broadly categorised as either the individual-based review system used to review academic papers for publication or the group peer review system \\ud used, more usefully, in student reviews of their work. Web 2.0 technologies present an opportunity to consider a hybrid of these two modes of peer review. Using the rapid \\ud communication with, and 24/7 access to, a shared online environment it is possible to identify explore a form of hybrid space between the two orthodox mode...

  9. Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application

    Institute of Scientific and Technical Information of China (English)

    R. YAHAYA; S.M. SAPUAN; M. JAWAID; Z. LEMAN; E.S. ZAINUDIN

    2016-01-01

    This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78%and 43.55%higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78%and 52.07%higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.

  10. Hybridization and genome evolution I: The role of contingency during hybrid speciation

    Directory of Open Access Journals (Sweden)

    Fabrice EROUKHMANOFF, Richard I. BAILEY, Glenn-Peter SæTRE

    2013-10-01

    Full Text Available Homoploid hybrid speciation (HHS involves the recombination of two differentiated genomes into a novel, functional one without a change in chromosome number. Theoretically, there are numerous ways for two parental genomes to recombine. Hence, chance may play a large role in the formation of a hybrid species. If these genome combinations can evolve rapidly following hybridization and sympatric situations are numerous, recurrent homoploid hybrid speciation is a possibility. We argue that three different, but not mutually exclusive, types of contingencies could influence this process. First, many of these “hopeful monsters” of recombinant parent genotypes would likely have low fitness. Only specific combinations of parental genomic contributions may produce viable, intra-fertile hybrid species able to accommodate potential constraints arising from intragenomic conflict. Second, ecological conditions (competition, geography of the contact zones or the initial frequency of both parent species might favor different outcomes ranging from sympatric coexistence to the formation of hybrid swarms and ultimately hybrid speciation. Finally, history may also play an important role in promoting or constraining recurrent HHS if multiple hybridization events occur sequentially and parental divergence or isolation differs along this continuum. We discuss under which conditions HHS may occur multiple times in parallel and to what extent recombination and selection may fuse the parent genomes in the same or different ways. We conclude by examining different approaches that might help to solve this intriguing evolutionary puzzle [Current Zoology 59 (5: 667-674, 2013]. 

  11. Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints

    International Nuclear Information System (INIS)

    Akarsu, Özgür; Kumar, Suresh; Myrzakulov, R.; Sami, M.; Xu, Lixin

    2014-01-01

    In this paper, we consider a simple form of expansion history of Universe referred to as the hybrid expansion law - a product of power-law and exponential type of functions. The ansatz by construction mimics the power-law and de Sitter cosmologies as special cases but also provides an elegant description of the transition from deceleration to cosmic acceleration. We point out the Brans-Dicke realization of the cosmic history under consideration. We construct potentials for quintessence, phantom and tachyon fields, which can give rise to the hybrid expansion law in general relativity. We investigate observational constraints on the model with hybrid expansion law applied to late time acceleration as well as to early Universe a la nucleosynthesis

  12. Importance of material and friction characterisation for FE-aided process design of hybrid bevel gears

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Matthias, T.

    2017-10-01

    Solid-forming components are often used in areas where they are subjected to very high loads. For most solid components locally divergent and sometimes contradictory requirements exist. Despite these contradictory requirements, almost exclusively monomaterials are nowadays used for the production of solid components. These components often reach their material-specific limits because of increasing demands on the products. Thus a significant increase in product quality and profitability would result from combining different materials in order to create tailored properties. In the Collaborative Research Center (CRC) 1153 "Tailored Forming" at the Leibniz Universität Hannover, this topic is investigated. The primary objective of the CRC 1153 is to develop and investigate new tailored manufacturing processes to produce reliable hybrid solid semi-finished components. In contrast to existing production processes of hybrid solid components, semi-finished workpieces in the CRC 1153 are joined before the forming phase. Thus, it will be possible to produce complex and highly stressable solid components made of different metals, which cannot be produced yet with the current used technologies. In this work the material and friction characteristics are investigated and the forming tool for the production of hybrid bevel gears made of different steel alloys (C22 and 41Cr4) is designed by numerical simulations. For this purpose, flow curves of both materials are determined by means of upsetting tests at process-related forming temperatures and strain rates. The temperature range for the forming process of the semi-finished product is determined by comparing the respective flow curves regarding similar flow stresses. Furthermore, the friction between the tool and the joining materials is investigated by means of ring upsetting tests at a process-relevant temperature. Finally, a stress analysis of the forming tools is carried out.

  13. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers.

    Science.gov (United States)

    Yan, Xingbin; Chen, Jiangtao; Yang, Jie; Xue, Qunji; Miele, Philippe

    2010-09-01

    In this work, we report a low-cost technique via simple rapid-mixture polymerization of aniline using graphene oxide (GO) and graphene papers as substrates, respectively, to fabricate free-standing, flexible GO-polyaniline (PANI) and graphene-PANI hybrid papers. The morphology and microstructure of the obtained papers were characterized by FESEM, FTIR, Raman, and XRD. As results, nanostructural PANI can be deposited on the surfaces of GO and graphene papers, forming thin, lightweight, and flexible paperlike hybrid papers. The hybrid papers display a remarkable combination of excellent electrochemical performances and biocompatibility, making the paperlike materials attractive for new kinds of applications in biosciences.

  14. Hybrids of ethylene vinyl acetate with Na-montmorillonite and titania: preparation and characterization

    International Nuclear Information System (INIS)

    Ashfaq, M.

    2010-01-01

    Hybrids of Ethylene vinyl acetate (EVA) with Na-montmorillonite and titania were formed. Montmorillonite was organically modified by two different modifiers: Pyridinium ions and 4. 4-oxydianilinium ions. X-ray diffraction results revealed that Pyridinium ions increased the .interlayer spacing by 0.33 nm and 4, 4-oxydianilinium by 0.55 nm approximately. These modified organo-clays were successfully exfoliated in EVA using melt blending. These hybrids showed improvement in mechanical and thermal properties. 4, 4-oxydianilinium ions were degraded at higher temperature due to which thermal degradation was enhanced in EVA. In addition to this, EVA/titania hybrids were also prepared using sot-gel technique and modified by triethoxy vinyl silane and (3-aminopropyI)- triethoxy silane to increase their compatibility with EVA. Some portion of unmodified titania was heat treated to 600 degree C to obtain particulate titania. The hybrid of particulate titania and modified titania improved the mechanical properties and thermal properties. Especially in case of modified titania toughness was almost doubled. (author)

  15. Competing Foreign Policy Visions: Rhetorical Hybrids after the Cold War.

    Science.gov (United States)

    Stuckey, Mary E.

    1995-01-01

    Examines ways in which two very different political actors, George Bush and Bill Clinton, attempted to construct a new foreign policy consensus by blending the rhetorical forms of the Cold War with other foreign policy metaphors. Argues that these hybrids have not proven persuasive as justifications for American actions in foreign policy. (SR)

  16. The Pace of Hybrid Incompatibility Evolution in House Mice.

    Science.gov (United States)

    Wang, Richard J; White, Michael A; Payseur, Bret A

    2015-09-01

    Hybrids between species are often sterile or inviable. This form of reproductive isolation is thought to evolve via the accumulation of mutations that interact to reduce fitness when combined in hybrids. Mathematical formulations of this "Dobzhansky-Muller model" predict an accelerating buildup of hybrid incompatibilities with divergence time (the "snowball effect"). Although the Dobzhansky-Muller model is widely accepted, the snowball effect has only been tested in two species groups. We evaluated evidence for the snowball effect in the evolution of hybrid male sterility among subspecies of house mice, a recently diverged group that shows partial reproductive isolation. We compared the history of subspecies divergence with patterns of quantitative trait loci (QTL) detected in F2 intercrosses between two pairs of subspecies (Mus musculus domesticus with M. m. musculus and M. m. domesticus with M. m. castaneus). We used a recently developed phylogenetic comparative method to statistically measure the fit of these data to the snowball prediction. To apply this method, QTL were partitioned as either shared or unshared in the two crosses. A heuristic partitioning based on the overlap of QTL confidence intervals produced unambiguous support for the snowball effect. An alternative approach combining data among crosses favored the snowball effect for the autosomes, but a linear accumulation of incompatibilities for the X chromosome. Reasoning that the X chromosome analyses are complicated by low mapping resolution, we conclude that hybrid male sterility loci have snowballed in house mice. Our study illustrates the power of comparative genetic mapping for understanding mechanisms of speciation. Copyright © 2015 by the Genetics Society of America.

  17. Hybrid sol-gel optical materials

    Science.gov (United States)

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  18. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  19. Kinematics and Application of a Hybrid Industrial Robot – Delta-RST

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2014-04-01

    Full Text Available Serial robots and parallel robots have their own pros and cons. While hybrid robots consisting of both of them are possible and expected to retain their merits and minimize the disadvantages. The Delta-RST presented here is such a hybrid robot built up by integrating a 3-DoFs traditional Delta parallel structure and a 3-DoFs RST robotic wrist. In this paper, we focus on its kinematics analysis and its applications in industry. Firstly, the robotic system of the Delta-RST will be described briefly. Then the complete and systemic kinematics of this kind of robot will be presented in detail, followed by simulations and applications to demonstrate the correctness of the analysis, as well as the effectiveness of the developed robotic system. The closed-form kinematic analysis results are universal for similar hybrid robots constructing with the Delta parallel mechanism and serial chains.

  20. Hybrid Polymer-Network Hydrogels with Tunable Mechanical Response

    Directory of Open Access Journals (Sweden)

    Sebastian Czarnecki

    2016-03-01

    Full Text Available Hybrid polymer-network gels built by both physical and covalent polymer crosslinking combine the advantages of both these crosslinking types: they exhibit high mechanical strength along with excellent fracture toughness and extensibility. If these materials are extensively deformed, their physical crosslinks can break such that strain energy is dissipated and irreversible fracturing is restricted to high strain only. This mechanism of energy dissipation is determined by the kinetics and thermodynamics of the physical crosslinking contribution. In this paper, we present a poly(ethylene glycol (PEG based material toolkit to control these contributions in a rational and custom fashion. We form well-defined covalent polymer-network gels with regularly distributed additional supramolecular mechanical fuse links, whose strength of connectivity can be tuned without affecting the primary polymer-network composition. This is possible because the supramolecular fuse links are based on terpyridine–metal complexation, such that the mere choice of the fuse-linking metal ion adjusts their kinetics and thermodynamics of complexation–decomplexation, which directly affects the mechanical properties of the hybrid gels. We use oscillatory shear rheology to demonstrate this rational control and enhancement of the mechanical properties of the hybrid gels. In addition, static light scattering reveals their highly regular and well-defined polymer-network structures. As a result of both, the present approach provides an easy and reliable concept for preparing hybrid polymer-network gels with rationally designed properties.

  1. First-Order Hybrid Logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Hybrid logic is an extension of modal logic which allows us to refer explicitly to points of the model in the syntax of formulas. It is easy to justify interest in hybrid logic on applied grounds, with the usefulness of the additional expressive power. For example, when reasoning about time one...... often wants to build up a series of assertions about what happens at a particular instant, and standard modal formalisms do not allow this. What is less obvious is that the route hybrid logic takes to overcome this problem often actually improves the behaviour of the underlying modal formalism....... For example, it becomes far simpler to formulate proof-systems for hybrid logic, and completeness results can be proved of a generality that is simply not available in modal logic. That is, hybridization is a systematic way of remedying a number of known deficiencies of modal logic. First-order hybrid logic...

  2. Adaptive radiation in the Hawaiian silversword alliance (Compositae-Madiinae). II. Cytogenetics of artificial and natural hybrids

    International Nuclear Information System (INIS)

    Carr, G.D.; Kyhos, D.W.

    1986-01-01

    The Hawaiian silversword alliance of Argyroxiphium, Dubautia, and Wilkesia, in spite of exhibiting spectacular morphological, ecological, physiological, and chromosomal diversity, is remarkably cohesive, genetically. This is attested to by the ease of production of artificial hybrids and by the high frequency of spontaneous hybridization among such life forms as mat-forming subshrub, monocarpic rosette shrub, polycarpic shrub, cushion plant, tree, and vine. Even the least fertile of these hybrids is capable of producing backcross progeny. Moreover, first generation interspecific and intergeneric hybrids have been successfully used to produce trispecific hybrids in a number of instances. In general, the widest hybrid combinations have been as readily produced as crosses within a species. At present eight genomes or chromosome races distinguished by reciprocal translocations are recognized on the basis of meiotic analysis of artificial and spontaneous hybrids. Seven of these races are found among those species with 14 pairs of chromosomes. The eighth genome very likely characterizes all nine species of this alliance that have 13 pairs of chromosomes. The cytogenetic data indicate that redundancy of translocations involving the same chromosomes has been a recurrent theme in the chromosomal differentiation of these taxa. There appears to be little, if any, correlation between chromosomal evolution and adaptive radiation as assessed by gross habital differentiation in this group. However, within Dubautia, a novel ecophysiological trait associated with colonization of xeric habitats is restricted to species with n = 13. In contrast to the bulk of the Hawaiian flora, which is characterized by self-compatibility and chromosomal stability, it is suggested that the occurrence of self-incompatibility in the Hawaiian Madiinae may have favored selection of supergenes via chromosomal repatterning, and this may account for the diversity of chromosome structure seen in this group

  3. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  4. Latex imaging by environmental STEM: application to the study of the surfactant outcome in hybrid alkyd/acrylate systems.

    Science.gov (United States)

    Faucheu, Jenny; Chazeau, Laurent; Gauthier, Catherine; Cavaillé, Jean-Yves; Goikoetxea, Monika; Minari, Roque; Asua, José M

    2009-09-01

    Among other uses, latexes are a successful alternative to solvent-borne binders for coatings. Efforts are made to produce hybrid nanostructured latexes containing an acrylic phase and an alkyd phase. However, after the film-forming process, the surfactant used to stabilize these latexes remains in the film, and its location can have a drastic effect on the application properties. Among the processing parameters, the alkyd hydrophobicity can strongly influence this location. This article aims at the imaging of these surfactant molecules in two hybrid latexes with different hydrophobicity level of the alkyd resin. A first part of this paper is dedicated to the understanding of the contrast provided by the surfactant in environmental STEM imaging of latexes. Then, the influence of surfactant-polymer affinity on the surfactant location after film-forming of those hybrid alkyd/acrylate latexes is studied by this technique. It is shown that in the hybrid latex with an alkyd shell (obtained with the most hydrophilic resin), the surfactant molecules tend to remain buried in the alkyd phase. Conversely, in the hybrid latex with an acrylate shell (in the case of the most hydrophobic resin), the surfactant molecules tend to gather into islands like in pure acrylate latex films.

  5. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  6. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  7. Optimal Energy Control Strategy Design for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yuan Zou

    2013-01-01

    Full Text Available A heavy-duty parallel hybrid electric truck is modeled, and its optimal energy control is studied in this paper. The fundamental architecture of the parallel hybrid electric truck is modeled feed-forwardly, together with necessary dynamic features of subsystem or components. Dynamic programming (DP technique is adopted to find the optimal control strategy including the gear-shifting sequence and the power split between the engine and the motor subject to a battery SOC-sustaining constraint. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement on the fuel economy can be achieved in the heavy-duty vehicle cycle from the natural driving statistics.

  8. Hybrid Metal/Electrolyte Monolithic Low Temperature SOFCs

    Science.gov (United States)

    2004-10-15

    ScSz system. • Modeling and simulation of steady state heat transfer and temperature distribution in externally insulated hybrid LCA fuel cell stack...amorphous LSM powder derived from the GNP was then annealed at 800oC for 4 hours to form the perovskite structure, as determined by X-ray diffraction...analysis. The perovskite LSM powder was then ball milled with YSZ in weight ratio of LSM:YSZ= 60:40, together with proper amount of an organic

  9. Genome reorganization in Nicotiana asymmetric somatic hybrids analysed by in situ hybridization

    International Nuclear Information System (INIS)

    Parokonny, A.S.; Kenton, A.Y.; Gleba, Y.Y.; Bennett, M.D.

    1992-01-01

    In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro

  10. Starch degradability of dry and ensiled high-moisture grains of corn hybrids with different textures at different grinding degrees

    Directory of Open Access Journals (Sweden)

    Wagner dos Reis

    2011-02-01

    Full Text Available This research evaluated corn grains with flint and dent texture (ensiled high-moisture or dried, submitted to grinding degrees, using the in situ ruminal degradation technique. Three rumen canulated adult sheeps were used in a complete randomized design, using a factorial outline 2 x 2 x 3, with two corn hybrids (flint and dent texture, two conservation methods (ensiled high-moisture and dry and three grinding degress (whole, coarsely and finely ground, corresponding to the sieve of 12; 10 and 8 mm. Starch soluble fraction (A of the dent hybrid ensiled corn grains was greater comparing to the dry materials and in both conservation forms this fraction was reduced in the flint texture hybrid, while the insoluble fraction potentially degradable (B the opposite occurred. The degradation potential was higher in grains ensiled in two textures. The ensiled allowed more starch effective degradation in relation to dry grain in two textures and the grains dent texture hybrid also increased such degradation in both conservation methods. The dent texture and the ensiled high-moisture grains proved the best option considering the starch degradability. Regardless of the conservation forms, the grains of corn hybrid flint texture should be finely ground, for providing higher ruminal degradation, while for the dent texture hybrid, the coarsely and whole grinding are the most suitable for ensiled and dry grain, respectively.

  11. Behaviour of hybrid fibre reinforced concrete beam–column joints under reverse cyclic loads

    International Nuclear Information System (INIS)

    Ganesan, N.; Indira, P.V.; Sabeena, M.V.

    2014-01-01

    Highlights: • Developed a high performance hybrid fibre reinforced cementitious composite. • Exterior beam-column joints have been tested under reversed cyclic loading. • Ductility factor, energy dissipation and stiffness degradation have been evaluated. • Contribution to reduce congestion of reinforcement in beam column joints. - Abstract: An experimental investigation was carried out to study the effect of hybrid fibres on the strength and behaviour of High performance concrete beam column joints subjected to reverse cyclic loads. A total of 12 reinforced concrete beams column joints were cast and tested in the present investigation. High performance concrete of M60 grade was designed using the modified ACI method suggested by Aïtcin. Crimped steel fibres and polypropylene fibres were used in hybrid form. The main variables considered were the volume fraction of (i) crimped steel fibres viz. 0.5% (39.25 kg/m 3 ) and 1.0% (78.5 kg/m 3 ) and (ii) polypropylene fibres viz. 0.1% (0.9 kg/m 3 ), 0.15% (1.35 kg/m 3 ), and 0.2% (1.8 kg/m 3 ). Addition of fibres in hybrid form improved many of the engineering properties such as the first crack load, ultimate load and ductility factor of the composite. The combination of 1% (78.5 kg/m 3 ) volume fraction of steel fibres and 0.15% (1.35 kg/m 3 ) volume fraction of polypropylene fibres gave better performance with respect to energy dissipation capacity and stiffness degradation than the other combinations

  12. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    Science.gov (United States)

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  13. Hot-injection synthesis of Ni-ZnO hybrid nanocrystals with tunable magnetic properties and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Deqian; Qiu, Yulong; Chen, Yuanzhi, E-mail: yuanzhi@xmu.edu.cn; Zhang, Qinfu; Liu, Xiang; Peng, Dong-Liang, E-mail: dlpeng@xmu.edu.cn [Xiamen University, Department of Materials Science and Engineering, Fujian Provincial Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials (China)

    2017-04-15

    Magnetic metal-semiconductor hybrid nanocrystals containing ferromagnetic Ni and semiconductor ZnO have been prepared via a hot-injection route. The Ni-ZnO hybrid nanocrystals have a flower-like morphology that consists of Ni inner cores and ZnO petal shells. In spite of their large lattice mismatch, ZnO nanocrystals can still grow on faceted Ni nanocrystals to form stable interfaces. The composition of Ni-ZnO hybrid nanocrystals is readily controlled, and the average size of Ni core is tunable from 25 to 50 nm. Room temperature ferromagnetic properties are observed in these hybrid nanocrystals, and tunable magnetic properties also can be achieved by varying the size of Ni core. The as-prepared Ni-ZnO hybrid nanocrystals exhibit enhanced photocatalytic performance under ultraviolet light illumination as compared to pure ZnO nanocrystals. Furthermore, the superior reusability of hybrid nanocrystals for photocatalytic application is achieved by virtue of their magnetic properties. The facile and efficient seed-mediate strategy is particularly attractive to construct hybrid magnetic-semiconducting heterostructures. The as-obtained Ni-ZnO hybrid nanocrystals offer great potential for various applications due to their combined magnetic and semiconducting properties and low-cost earth-abundant availability.

  14. Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird.

    Science.gov (United States)

    Barrera-Guzmán, Alfredo O; Aleixo, Alexandre; Shawkey, Matthew D; Weir, Jason T

    2018-01-09

    Hybrid speciation is rare in vertebrates, and reproductive isolation arising from hybridization is infrequently demonstrated. Here, we present evidence supporting a hybrid-speciation event involving the genetic admixture of the snow-capped ( Lepidothrix nattereri ) and opal-crowned ( Lepidothrix iris ) manakins of the Amazon basin, leading to the formation of the hybrid species, the golden-crowned manakin ( Lepidothrix vilasboasi ). We used a genome-wide SNP dataset together with analysis of admixture, population structure, and coalescent modeling to demonstrate that the golden-crowned manakin is genetically an admixture of these species and does not represent a hybrid zone but instead formed through ancient genetic admixture. We used spectrophotometry to quantify the coloration of the species-specific male crown patches. Crown patches are highly reflective white (snow-capped manakin) or iridescent whitish-blue to pink (opal-crowned manakin) in parental species but are a much less reflective yellow in the hybrid species. The brilliant coloration of the parental species results from nanostructural organization of the keratin matrix feather barbs of the crown. However, using electron microscopy, we demonstrate that the structural organization of this matrix is different in the two parental species and that the hybrid species is intermediate. The intermediate nature of the crown barbs, resulting from past admixture appears to have rendered a duller structural coloration. To compensate for reduced brightness, selection apparently resulted in extensive thickening of the carotenoid-laden barb cortex, producing the yellow crown coloration. The evolution of this unique crown-color signal likely culminated in premating isolation of the hybrid species from both parental species.

  15. Interactive Digital Storytelling: Towards a Hybrid Conceptual Approach

    OpenAIRE

    Spierling, Ulrike

    2005-01-01

    1 Introduction In this contribution, Interactive Digital Storytelling is viewed as a hybrid form of game design and cinematic storytelling for the understanding and making of future learning and entertainment applications. The paper shall present formal design models that provide a conceptual bridge between both traditional linear narrative techniques as well as agent-based emergent conversations with virtual characters. In summary, a theoretical classification of thinking models for authors ...

  16. Hybrid vehicle potential assessment. Volume 7: Hybrid vehicle review

    Science.gov (United States)

    Leschly, K. O.

    1979-01-01

    Review of hybrid vehicles built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes onroad hybrid passenger cars, trucks, vans, and buses.

  17. Generation of auroral kilometric radiation in upper hybrid wave-lower hybrid soliton interaction

    International Nuclear Information System (INIS)

    Pottelette, R.; Dubouloz, N.; Treumann, R.A.

    1992-01-01

    Sporadic bursts of auroral kilometric radiation (AKR) associated with strong bursty electrostatic turbulence in the vicinity of the lower hybrid frequency have been frequently recorded in the AKR source region by the Viking satellite. The variation time scale of these emissions is typically 1 s, long enough for lower hybrid waves to grow to amplitudes of several hundred millivolts per meter and to evolve nonlinearly into solitons. On the basis on these observations it is suggested that formation of lower hybrid solitons may play a role in the generation of AKR. A theoretical model is proposed which is based on the direct acceleration of electrons in the combined lower hybrid soliton and upper hybrid wave fields. The solitons act as sporadic, localized antennas allowing for efficient conversions of the electrostatic energy stored in upper hybrid waves into electromagnetic radiation at a frequency above the X mode cutoff. Excitation of lower hybrid waves is due to the presence of energetic electron beams in the auroral zone found to be associated with steep plasma density gradients. Upper hybrid waves can be excited by a population of energetic electrons with loss cone distributions. The power of the electromagnetic radiation obtained is only noticeable in regions where the plasma frequency is less than the electron gyrofrequency. The theory predicts spectral power densities of the order of 10 -11 to 10 -9 W m -2 Hz -1 in the source region, in good agreement with the Viking observations. The sporadic nature of the radiation derives from lower hybrid soliton collapses which occur on ∼1-s time scales

  18. A hybrid of cells and pancreatic islets toward a new bioartificial pancreas

    Directory of Open Access Journals (Sweden)

    Yuji Teramura

    2016-03-01

    Full Text Available Cell surface engineering using single-stranded DNA–poly(ethylene glycol-conjugated phospholipid (ssDNA–PEG-lipid is useful for inducing cell–cell attachment two and three dimensionally. In this review, we summarize our recent techniques for cell surface engineering and their applications to islet transplantation. Because any DNA sequence can be immobilized onto the cell surface by hydrophobic interactions between ssDNA–PEG-lipid and the cellular membrane without impairing cell function, a cell–cell hybrid can be formed through the DNA hybridization. With this technique, it would be possible to create three-dimensional hybrid structures of pancreatic islets coated with various accessory cells, such as patients’ own cells, mesenchymal and adipose-derived stem cells, endothelial progenitor cells, neural crest stem cells or regulatory T cells, which might significantly improve the outcome of islet transplantation in diabetic patients.

  19. Rapidity distributions of hadrons in the HydHSD hybrid model

    Energy Technology Data Exchange (ETDEWEB)

    Khvorostukhin, A. S., E-mail: hvorost@theor.jinr.ru; Toneev, V. D. [Joint Institute for Nuclear Research (Russian Federation)

    2017-03-15

    A multistage hybrid model intended for describing heavy-ion interactions in the energy region of the NICA collider under construction in Dubna is proposed. The model combines the initial, fast, interaction stage described by the model of hadron string dynamics (HSD) and the subsequent evolution that the expanding system formed at the first stage experiences at the second stage and which one treats on the basis of ideal hydrodynamics; after the completion of the second stage, the particles involved may still undergo rescattering (third interaction stage). The model admits three freeze-out scenarios: isochronous, isothermal, and isoenergetic. Generally, the HydHSD hybrid model developed in the present study provides fairly good agreement with available experimental data on proton rapidity spectra. It is shown that, within this hybrid model, the two-humped structure of proton rapidity distributions can be obtained either by increasing the freeze-out temperature and energy density or by more lately going over to the hydrodynamic stage. Although the proposed hybrid model reproduces rapidity spectra of protons, it is unable to describe rapidity distributions of pions, systematically underestimating their yield. It is necessary to refine the model by including viscosity effects at the hydrodynamic stage of evolution of the system and by considering in more detail the third interaction stage.

  20. Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties

    Science.gov (United States)

    Chen, Ge-Gu; Qi, Xian-Ming; Li, Ming-Peng; Guan, Ying; Bian, Jing; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2015-11-01

    A facile and environmentally friendly method was introduced to incorporate montmorillonite (MMT) as an inorganic phase into quaternized hemicelluloses (QH) for forming hemicellulose-based films. Two fillers, polyvinyl alcohol (PVA) and chitin nanowhiskers (NCH), were added into the hemicelluloses/MMT hybrid matrices to prepare hybrid films, respectively. The hybrid films were nanocomposites with nacre-like structure and multifunctional characteristics including higher strength and good oxygen barrier properties via the electrostatic and hydrogen bonding interactions. The addition of PVA and NCH could induce changes in surface topography, and effectively enhance mechanical strength, thermal stability, transparency, and oxygen barrier properties. The tensile strengths of the composite films FPVA(0.3), FPVA(0.5), and FNCH(0.8) were 53.7, 46.3, and 50.1 MPa, respectively, which were 171%, 134%, and 153% larger than the FQH-MMT film (19.8 MPa). The tensile strength, and oxygen transmission rate of QH-MMT-PVA film were better than those of quaternized hemicelluloses/MMT films. Thus, the proper filler is very important for the strength of the hybrid film. These results provide insights into the understanding of the structural relationships of hemicellulose-based composite films in coating and packaging application for the future.

  1. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength

    Science.gov (United States)

    Zima, A.

    2018-03-01

    Composites consisting of hydroxyapatite (HA) and chitosan (CTS) have recently been intensively studied. In this work, a novel inorganic-organic (I/O) HA/CTS materials in the form of granules were prepared through a simple solution-based chemical method. During the synthesis of these hybrids, the electrostatic complexes between positively charged, protonated amine groups of chitosan and the negative phosphate species (HPO42 - and H2PO4-) were formed. Our biocomposites belong to the class I of hybrids, which was confirmed by FTIR studies. XRD analysis revealed that the obtained materials consisted of hydroxyapatite as the only crystalline phase. Homogeneous dispersion of the components in HA/CTS composites was confirmed. The use of 17 wt% and 23 wt% of chitosan resulted in approximately 12-fold and 16-fold increase in the compressive strength of HA/CTS as compared to the non-modified HA material. During incubation of the studied materials in SBF, pH of the solution remained close to the physiological one. Formation of apatite layer on their surfaces indicated bioactive nature of the developed biomaterials.

  2. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite.

    Science.gov (United States)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV-visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (Ks) of GOx at the hybrid biocomposite was calculated to be 11.22s(-1). The higher Ks value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05-23.2mM. The limit of detection (LOD) was estimated to be 28μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. © 2013.

  3. Course on hybrid calculation

    International Nuclear Information System (INIS)

    Weill, J.; Tellier; Bonnemay; Craigne; Chareton; Di Falco

    1969-02-01

    After a definition of hybrid calculation (combination of analogue and digital calculation) with a distinction between series and parallel hybrid computing, and a description of a hybrid computer structure and of task sharing between computers, this course proposes a description of hybrid hardware used in Saclay and Cadarache computing centres, and of operations performed by these systems. The next part addresses issues related to programming languages and software. The fourth part describes how a problem is organised for its processing on these computers. Methods of hybrid analysis are then addressed: resolution of optimisation problems, of partial differential equations, and of integral equations by means of different methods (gradient, maximum principle, characteristics, functional approximation, time slicing, Monte Carlo, Neumann iteration, Fischer iteration)

  4. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  5. Effect of photocurrent enhancement in porphyrin–graphene covalent hybrids

    International Nuclear Information System (INIS)

    Tang, Jianguo; Niu, Lin; Liu, Jixian; Wang, Yao; Huang, Zhen; Xie, Shiqiang; Huang, Linjun; Xu, Qingsong; Wang, Yuan; Belfiore, Laurence A.

    2014-01-01

    Graphene oxide (GO) sheets were covalently functionalized with 5-p-aminophenyl-10,15,20-triphenylporphyrin (NH 2 TPP) by an amidation reaction between the amino group in NH 2 TPP and carboxyl groups in GO. The Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning and transmission electron microscopies reveal that NH 2 TPP covalent bonds form on the double surface of graphene oxide sheets, generating a unique nano-framework, i.e., NH 2 TPP-graphene-NH 2 TPP. Its UV–visible spectroscopy reveals that the absorption spectrum is not a linear superposition of the spectra of NH 2 TPP and graphene oxide, because a 59 nm red shift of the strong graphene oxide absorption is observed from 238 to 297 nm, with significant spectral broadening between 300 and 700 nm. Fluorescence emission spectroscopy indicates efficient quenching of NH 2 TPP photoluminescence in this hybrid material, suggesting that photo-induced electron transfer occurs at the interface between NH 2 TPP and GO. A reversible on/off photo-current density of 47 mA/cm 2 is observed when NH 2 TPP-graphene-NH 2 TPP hybrid sandwiches are subjected to pulsed white-light illumination. Covalently-bound porphyrins decrease the optical HOMO/LUMO band gap of graphene oxide by ≈ 1 eV, according to UV–visible spectroscopy. Cyclic voltammetry predicts a small HOMO/LUMO band gap of 0.84 eV for NH 2 TPP-graphene-NH 2 TPP hybrid sandwiches, which is consistent with efficient electron transfer and fluorescence quenching. - Highlights: • Porphyrins are covalently bound to sheets of graphene oxide via an amidation reaction. • The formed hetero-junction interface decreases the optical band gap of graphene oxide. • Cyclic voltammetry predicts a graphene oxide band gap of 0.84 eV, which is easily photo-excited. • Its on/off photo-current density of 46 μA/cm 2 is 5-fold larger than that for physically stacked hybrid

  6. Mirror hybrid reactor optimization studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1976-01-01

    A system model of the mirror hybrid reactor has been developed. The major components of the model include (1) the reactor description, (2) a capital cost analysis, (3) various fuel management schemes, and (4) an economic analysis that includes the hybrid plus its associated fission burner reactors. The results presented describe the optimization of the mirror hybrid reactor, the objective being to minimize the cost of electricity from the hybrid fission-burner reactor complex. We have examined hybrid reactors with two types of blankets, one containing natural uranium, the other thorium. The major difference between the two optimized reactors is that the uranium hybrid is a significant net electrical power producer, whereas the thorium hybrid just about breaks even on electrical power. Our projected costs for fissile fuel production are approximately 50 $/g for 239 Pu and approximately 125 $/g for 233 U

  7. Hybrid incompatibilities in the parasitic wasp genus Nasonia: negative effects of hemizygosity and the identification of transmission ratio distortion loci.

    Science.gov (United States)

    Koevoets, T; Niehuis, O; van de Zande, L; Beukeboom, L W

    2012-03-01

    The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the homogametic sex. Although haplodiploid reproduction (haploid males, diploid females) does not involve sex chromosomes, sex-specific incompatibilities are predicted to be prevalent in haplodiploid species. Here, we evaluate the effect of sex/ploidy level on hybrid incompatibilities and locate genomic regions that cause increased mortality rates in hybrid males of the haplodiploid wasps Nasonia vitripennis and Nasonia longicornis. Our data show that diploid F(1) hybrid females suffer less from hybridization than haploid F(2) hybrid males. The latter not only suffer from an increased mortality rate, but also from behavioural and spermatogenic sterility. Genetic mapping in recombinant F(2) male hybrids revealed that the observed hybrid mortality is most likely due to a disruption of cytonuclear interactions. As these sex-specific hybrid incompatibilities follow predictions based on Haldane's rule, our data accentuate the need to broaden the view of Haldane's rule to include species with haplodiploid sex determination, consistent with Haldane's original definition.

  8. Comments On Clock Models In Hybrid Automata And Hybrid Control Systems

    Directory of Open Access Journals (Sweden)

    Virginia Ecaterina OLTEAN

    2001-12-01

    Full Text Available Hybrid systems have received a lot of attention in the past decade and a number of different models have been proposed in order to establish mathematical framework that is able to handle both continuous and discrete aspects. This contribution is focused on two models: hybrid automata and hybrid control systems with continuous-discrete interface and the importance of clock models is emphasized. Simple and relevant examples, some taken from the literature, accompany the presentation.

  9. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    Science.gov (United States)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  10. Fuel Cell Electrodes Based on Carbon Nanotube/Metallic Nanoparticles Hybrids Formed on Porous Stainless Steel Pellets

    Directory of Open Access Journals (Sweden)

    S. M. Khantimerov

    2013-01-01

    Full Text Available The preparation of carbon nanotube/metallic particle hybrids using pressed porous stainless steel pellets as a substrate is described. The catalytic growth of carbon nanotubes was carried out by CVD on a nickel catalyst obtained by impregnation of pellets with a highly dispersive colloidal solution of nickel acetate tetrahydrate in ethanol. Granular polyethylene was used as the carbon source. Metallic particles were deposited by thermal evaporation of Pt and Ag using pellets with grown carbon nanotubes as a base. The use of such composites as fuel cell electrodes is discussed.

  11. Development of Cutaneous Bioadhesive Ureasil-Polyether Hybrid Films

    Directory of Open Access Journals (Sweden)

    João Augusto Oshiro Junior

    2015-01-01

    Full Text Available The hydrolysis and condensation reactions involved in synthesis of ureasil-polyether films influence the film formation time and the number of chemical groups able to form hydrogen bonds, responsible for the bioadhesion, with the biological substrate. The objective of this work was to study the influence of the use of an acid catalyst (hydrochloric acid and a basic catalyst (ammonium fluoride in the hydrolysis and condensation reactions on the time formation and bioadhesion of ureasil-polyether films. The toxicity of the films was evaluated. The MTT assay has shown cell viability of human skin keratinocytes higher than 70% of all analyzed materials suggesting low cytotoxicity. The bioadhesion of the films is strongly dependent on the viscosity and hydrophilic/hydrophobic balance of the polyether chains used to synthetize the hybrid molecules. The use of acid catalyst promotes the formation of less viscous films with higher bioadhesion. The hybrids formed by more hydrophilic PEO chains are more bioadherent, since they can interact more efficiently with the water present in the stratum corneum increasing the bioadhesion. Due to their low toxicity and high bioadhesion, the ureasil-PEO films obtained by using HCl as catalyst agent are good candidates for application to the skin as bioadhesive films.

  12. Spatial distribution of the chromosomal forms of anopheles gambiae in Mali

    Directory of Open Access Journals (Sweden)

    Traoré Sékou F

    2008-10-01

    Full Text Available Abstract Background Maps of the distribution of malaria vectors are useful tools for stratification of malaria risk and for selective vector control strategies. Although the distribution of members of the Anopheles gambiae complex is well documented in Africa, a continuous map of the spatial distribution of the chromosomal forms of An. gambiae s.s. is not yet available at country level to support control efforts. Methods Bayesian geostatistical methods were used to produce continuous maps of the spatial distribution of the chromosomal forms of An. gambiae s.s. (Mopti, Bamako, Savanna and their hybrids/recombinants based on their relative frequencies in relation to climatic and environmental factors in Mali. Results The maps clearly show that each chromosomal form favours a particular defined eco-climatic zone. The Mopti form prefers the dryer northern Savanna and Sahel and the flooded/irrigated areas of the inner delta of the Niger River. The Savanna form favours the Sudan savanna areas, particularly the South and South-Eastern parts of the country (Kayes and Sikasso regions. The Bamako form has a strong preference for specific environmental conditions and it is confined to the Sudan savanna areas around urban Bamako and the Western part of Sikasso region. The hybrids/recombinants favour the Western part of the country (Kayes region bordering the Republic of Guinea Conakry. Conclusion The maps provide valuable information for selective vector control in Mali (insecticide resistance management and may serve as a decision support tool for the basis for future malaria control strategies including genetically manipulated mosquitoes.

  13. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa

    2016-09-08

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  14. Lower hybrid wave cavities detected by the FREJA satellite

    International Nuclear Information System (INIS)

    Pecseli, H.L.; Iranpour, K.; Holter, Oe.; Lybekk, B.; Holtet J.; Truelsen, J.; Holback, B.

    1994-12-01

    Localized electrostatic wave packets in the frequency region of lower-hybrid waves have been detected by the instruments on the FREJA satellite. These waves are usually associated with local density depletions indicating that the structures can be interpreted as wave filled cavities. The basic features of the observations are discussed. Based on simple statistical arguments it is attempted to present some characteristics which have to be accommodated within an ultimate theory describing the observed wave phenomena. An explanation in terms of collapse of nonlinear lower-hybrid waves is discussed in particular. It is argued that such a model seems inapplicable, at least in its simplest form, by providing time and length scales which are not in agreement with observations. Alternatives to this model are presented. 24 refs., 8 figs

  15. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa; Marzouk, Asma; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-01-01

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  16. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  17. SFC Optimization for Aero Engine Based on Hybrid GA-SQP Method

    Science.gov (United States)

    Li, Jie; Fan, Ding; Sreeram, Victor

    2013-12-01

    This study focuses on on-line specific fuel consumption (SFC) optimization of aero engines. For solving this optimization problem, a nonlinear pneumatic and thermodynamics model of the aero engine is built and a hybrid optimization technique which is formed by combining the genetic algorithm (GA) and the sequential quadratic programming (SQP) is presented. The ability of standard GA and standard SQP in solving this type of problem is investigated. It has been found that, although the SQP is fast, very little SFC reductions can be obtained. The GA is able to solve the problem well but a lot of computational time is needed. The presented hybrid GA-SQP gives a good SFC optimization effect and saves 76.6% computational time when compared to the standard GA. It has been shown that the hybrid GA-SQP is a more effective and higher real-time method for SFC on-line optimization of the aero engine.

  18. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.

    Science.gov (United States)

    Zhang, Chao; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2016-02-10

    Regenerated silk fibroin (RSF)/graphene oxide (GO) hybrid silk fibers were dry-spun from a mixed dope of GO suspension and RSF aqueous solution. It was observed that the presence of GO greatly affect the viscosity of RSF solution. The RSF/GO hybrid fibers showed from FTIR result lower β-sheet content compared to that of pure RSF fibers. The result of synchrotron radiation wide-angle X-ray diffraction showed that the addition of GO confined the crystallization of silk fibroin (SF) leading to the decrease of crystallinity, smaller crystallite size, and new formation of interphase zones in the artificial silks. Synchrotron radiation small-angle X-ray scattering also proved that GO sheets in the hybrid silks and blended solutions were coated with a certain thickness of interphase zones due to the complex interaction between the two components. A low addition of GO, together with the mesophase zones formed between GO and RSF, enhanced the mechanical properties of hybrid fibers. The highest breaking stress of the hybrid fibers reached 435.5 ± 71.6 MPa, 23% improvement in comparison to that of degummed silk and 72% larger than that of pure RSF silk fiber. The hybrid RSF/GO materials with good biocompatibility and enhanced mechanical properties may have potential applications in tissue engineering, bioelectronic devices, or energy storage.

  19. In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells

    Science.gov (United States)

    Pradeesh, K.; Baumberg, J. J.; Prakash, G. Vijaya

    2009-07-01

    Thin films of self-organized quantum wells of inorganic-organic hybrid perovskites of (C6H9C2H4NH3)2PbI4 are formed from a simple intercalation strategy to yield well-ordered uniform films over centimeter-size scales. These films compare favorably with traditional solution-chemistry-synthesized thin films. The hybrid films show strong room-temperature exciton-related absorption and photoluminescence, which shift with fabrication protocol. We demonstrate the potential of this method for electronic and photonic device applications.

  20. Dehydration of an ethanol/water azeotrope by novel organic-inorganic hybrid membranes based on quaternized chitosan and tetraethoxysilane.

    Science.gov (United States)

    Uragami, Tadashi; Katayama, Takuya; Miyata, Takashi; Tamura, Hiroshi; Shiraiwa, Tadashi; Higuchi, Akon

    2004-01-01

    To control swelling of quaternized chitosan (q-Chito) membranes, mixtures of q-Chito as an organic component and tetraethoxysilane (TEOS) as an inorganic component were prepared using the sol-gel reaction, and novel q-Chito/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation, the effect of TEOS content on the water/ethanol selectivity of q-Chito/TEOS hybrid membranes was investigated. Hybrid membranes containing up to 45 mol % TEOS exhibited higher water/ethanol selectivity than the q-Chito membrane. This resulted from depressed swelling of the membranes by formation of a cross-linked structure. However, introduction of excess TEOS led to greater swelling of the hybrid membranes. Therefore, the water/ethanol selectivity of the hybrid membranes containing more than 45 mol % TEOS was lower than that of the q-Chito membrane. The relationship between the structure of q-Chito/TEOS hybrid membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotrope is discussed in detail.

  1. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  2. Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybrid materials

    International Nuclear Information System (INIS)

    Kusakabe, Akane; Hirota, Ken; Mizutani, Tadashi

    2017-01-01

    Partially phosphorylated poly(vinyl alcohol) was prepared by treating poly(vinyl alcohol) with 100% phosphoric acid, and 5, 10 and 20% of the hydroxyl groups were converted to phosphoric acid ester. Addition of Ca 2+ to an aqueous solution of phosphorylated poly(vinyl alcohol) gave a transparent gel. Five cycles of alternate soaking of the gel in aqueous CaCl 2 and aqueous (NH 4 ) 2 HPO 4 were carried out to crystallise hydroxyapatite (HAP) in the phosphorylated poly(vinyl alcohol) matrix. The X-ray diffraction peaks of HAP formed in 5% phosphorylated PVA were sharp, while those of HAP formed in 20% phosphorylated PVA were broad. The contents of inorganic phase in the hybrid powder were increased from 58 to 76 wt% as the fraction of phosphate groups in the gel was decreased from 20% to 5%. The hybrid powder was first subjected to uniaxial pressing, followed by cold isostatic pressing (CIP) and warm isostatic pressing (WIP) at 120 °C at pressures of 300–980 MPa, to obtain the specimens for three-point bending test. These hybrid specimens showed bending strengths of 15–53 MPa. The hybrid compacts prepared from 10% phosphorylated poly(vinyl alcohol) showed the smallest Young's modulus, the largest displacement at break, and the largest fracture energy, showing that it has the highest toughness among the hybrid materials prepared from poly(vinyl alcohol) with varying degrees of phosphorylation. - Graphical abstract: Densification of hydroxyapatite crystallised in 10% phosphorylated poly(vinyl alcohol) gave the toughest compact. - Highlights: • Hydroxyapatite was crystallised in phosphorylated poly(vinyl alcohol) gels. • Crystallite size of hydroxyapatite decreased as phosphate density was increased. • The hybrid specimens prepared in 10% phosphorylated gel was the toughest. • Phosphate density in organic matrix regulated the mechanical properties of the hybrid.

  3. Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Kusakabe, Akane; Hirota, Ken; Mizutani, Tadashi, E-mail: tmizutan@mail.doshisha.ac.jp

    2017-01-01

    Partially phosphorylated poly(vinyl alcohol) was prepared by treating poly(vinyl alcohol) with 100% phosphoric acid, and 5, 10 and 20% of the hydroxyl groups were converted to phosphoric acid ester. Addition of Ca{sup 2+} to an aqueous solution of phosphorylated poly(vinyl alcohol) gave a transparent gel. Five cycles of alternate soaking of the gel in aqueous CaCl{sub 2} and aqueous (NH{sub 4}){sub 2}HPO{sub 4} were carried out to crystallise hydroxyapatite (HAP) in the phosphorylated poly(vinyl alcohol) matrix. The X-ray diffraction peaks of HAP formed in 5% phosphorylated PVA were sharp, while those of HAP formed in 20% phosphorylated PVA were broad. The contents of inorganic phase in the hybrid powder were increased from 58 to 76 wt% as the fraction of phosphate groups in the gel was decreased from 20% to 5%. The hybrid powder was first subjected to uniaxial pressing, followed by cold isostatic pressing (CIP) and warm isostatic pressing (WIP) at 120 °C at pressures of 300–980 MPa, to obtain the specimens for three-point bending test. These hybrid specimens showed bending strengths of 15–53 MPa. The hybrid compacts prepared from 10% phosphorylated poly(vinyl alcohol) showed the smallest Young's modulus, the largest displacement at break, and the largest fracture energy, showing that it has the highest toughness among the hybrid materials prepared from poly(vinyl alcohol) with varying degrees of phosphorylation. - Graphical abstract: Densification of hydroxyapatite crystallised in 10% phosphorylated poly(vinyl alcohol) gave the toughest compact. - Highlights: • Hydroxyapatite was crystallised in phosphorylated poly(vinyl alcohol) gels. • Crystallite size of hydroxyapatite decreased as phosphate density was increased. • The hybrid specimens prepared in 10% phosphorylated gel was the toughest. • Phosphate density in organic matrix regulated the mechanical properties of the hybrid.

  4. Gonad morphogenesis defects drive hybrid male sterility in asymmetric hybrid breakdown of Caenorhabditis nematodes.

    Science.gov (United States)

    Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D

    2014-01-01

    Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between Caenorhabditis remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane's rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin's corollary to Haldane's rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis. © 2014 Wiley Periodicals, Inc.

  5. Thermal stability of DNA quadruplex-duplex hybrids.

    Science.gov (United States)

    Lim, Kah Wai; Khong, Zi Jian; Phan, Anh Tuân

    2014-01-14

    DNA has the capacity to adopt several distinct structural forms, such as duplex and quadruplex helices, which have been implicated in cellular processes and shown to exhibit important functional properties. Quadruplex-duplex hybrids, generated from the juxtaposition of these two structural elements, could find applications in therapeutics and nanotechnology. Here we used NMR and CD spectroscopy to investigate the thermal stability of two classes of quadruplex-duplex hybrids comprising fundamentally distinct modes of duplex and quadruplex connectivity: Construct I involves the coaxial orientation of the duplex and quadruplex helices with continual base stacking across the two components; Construct II involves the orthogonal orientation of the duplex and quadruplex helices with no base stacking between the two components. We have found that for both constructs, the stability of the quadruplex generally increases with the length of the stem-loop incorporated, with respect to quadruplexes comprising nonstructured loops of the same length, which showed a continuous drop in stability with increasing loop length. The stability of these complexes, particularly Construct I, can be substantially influenced by the base-pair steps proximal to the quadruplex-duplex junction. Bulges at the junction are largely detrimental to the adoption of the desired G-quadruplex topology for Construct I but not for Construct II. These findings should facilitate future design and prediction of quadruplex-duplex hybrids.

  6. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    International Nuclear Information System (INIS)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K s ) of GOx at the hybrid biocomposite was calculated to be 11.22 s −1 . The higher K s value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination

  7. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming, E-mail: smchen78@ms15.hinet.net

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K{sub s}) of GOx at the hybrid biocomposite was calculated to be 11.22 s{sup −1}. The higher K{sub s} value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination.

  8. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    Science.gov (United States)

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  9. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    Directory of Open Access Journals (Sweden)

    Yuji Miyahara

    2013-02-01

    Full Text Available Peptide nucleic acid (PNA has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  10. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  11. Hybrid biosorbents for removal of pollutants and remediation

    Science.gov (United States)

    Burlakovs, Juris; Klavins, Maris; Robalds, Artis; Ansone, Linda

    2014-05-01

    For remediation of soils and purification of polluted waters, wastewaters, biosorbents might be considered as prospective groups of materials. Amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However, peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes thereby, to expand peat application sphere, the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in understanding of biosorbent means natural, biomass based modified material, covered with another sorbent material, thus combining properties of both such as sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyappatite) and organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area and elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature as the calculation of sorption process thermodynamic parameters indicates the spontaneity of

  12. New hybrid systems

    International Nuclear Information System (INIS)

    Bernardin, B.

    2001-01-01

    New hybrid systems are made up of a subcritical core, a spallation target and a proton accelerator. The neutrons that are produced in the target by the flux of protons are necessary to maintain the chain reaction of fission. Some parameters that are important for a classical nuclear reactor like doppler coefficient or delayed neutron fraction do not matter in a hybrid system. In a PWR-type reactor or in a fast reactor the concentration of actinides has a bad impact on these 2 parameters, so it is justified to study hybrid systems as actinide transmuters. The hybrid system, because of its external source of neutrons can put aside an important reactivity margin. This reactivity margin can be used to design safer nuclear reactors (particularly in some situations of reactivity accidents) or to irradiate fuel elements containing high concentrations of minor actinides that could not be allowed in a classical reactor. This article reviews various ways of integrating hybrid systems in a population of already existing nuclear reactors in order to manage quantities of plutonium, of minor actinides or of long-life fission products. (A.C.)

  13. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  14. Femtomolar detection of single mismatches by discriminant analysis of DNA hybridization events using gold nanoparticles.

    Science.gov (United States)

    Ma, Xingyi; Sim, Sang Jun

    2013-03-21

    Even though DNA-based nanosensors have been demonstrated for quantitative detection of analytes and diseases, hybridization events have never been numerically investigated for further understanding of DNA mediated interactions. Here, we developed a nanoscale platform with well-designed capture and detection gold nanoprobes to precisely evaluate the hybridization events. The capture gold nanoprobes were mono-laid on glass and the detection probes were fabricated via a novel competitive conjugation method. The two kinds of probes combined in a suitable orientation following the hybridization with the target. We found that hybridization efficiency was markedly dependent on electrostatic interactions between DNA strands, which can be tailored by adjusting the salt concentration of the incubation solution. Due to the much lower stability of the double helix formed by mismatches, the hybridization efficiencies of single mismatched (MMT) and perfectly matched DNA (PMT) were different. Therefore, we obtained an optimized salt concentration that allowed for discrimination of MMT from PMT without stringent control of temperature or pH. The results indicated this to be an ultrasensitive and precise nanosensor for the diagnosis of genetic diseases.

  15. The Swedish electric and hybrid vehicle R, D and D program. Seminar October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This publication presents a selection of the ongoing projects in the form of abstracts, within the KFB RDD-program Electric- and Hybrid Vehicles. These projects were presented at a project manager seminar 20-21 October 1998

  16. Identification of Lycopersicon spp. hybrids on the basis of morphological and molecular (RAPD properties as well as evaluation of resistance to Tomato Spotted Wilt Virus (TSWV

    Directory of Open Access Journals (Sweden)

    Zbigniew Rusinowski

    2014-01-01

    Full Text Available The aim of the study was to evaluate the plants obtained as a result of cultivated tomato crosses with wild species meant to transfer resistance to TSWV. Six viable plants were obtained from L. esculentum x L. chilense and L. esculentum x L. peruvianum crosses after the application of in vitro embryo culture. In terms of such morphological traits as growth habit of plants, size and shape of leaves, the length and colour of internodes in branching stems, the plants displayed intermediate traits, resembling, nonetheless, the wild form. RAPD analysis with 8 primers revealed that all the hybrids had bands typical of the paternal forms. This confirms the paternal component in hybrid development. As far as the resistance to Polish TSWV isolates is concerned, two hybrids exhibited a high level of resistance, similar to negative control, three hybrids - enhanced resistance and one hybrid was susceptible to TSWV infection.

  17. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  18. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    Science.gov (United States)

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC-hybrid

  19. Development and assessment of the CONTAIN hybrid flow solver

    International Nuclear Information System (INIS)

    Murata, K.K.; Stamps, D.W.

    1996-11-01

    A new gravitational head formulation for the treatment of stratified conditions has been developed for CONTAIN 1.2, a control volume code used primarily for the analyses of postulated accidents in nuclear power plants. The new CONTAIN formulation of gravitational heads, termed the hybrid formulation, is described. This method of calculating stratified conditions is compared with the old, average-density formulation used in code versions prior to CONTAIN 1.2. Both formulations are assessed in this report with experimental data from three large-scale experiments in which stratified conditions formed by injection of a buoyant gas were observed. In general, the hybrid formulation gives a substantially higher degree of stratification than the old formulation. For stable, fully developed stratifications, the hybrid formulation also gives much better agreement with the measured degree of stratification than the old formulation. In addition, the predicted degree of stratification is robust and not sensitive to nodalization, provided a set of nodalization guidelines are followed. However, for stratification behavior controlled by special physics not modeled in CONTAIN, such as momentum convection, plume entrainment, or bulk molecular diffusion, one should not expect good agreement with experiment unless special measures to accommodate the missing physics are taken

  20. Hybrid male sterility between the fresh- and brackish-water types of ninespine stickleback Pungitius pungitius (Pisces, Gasterosteidae).

    Science.gov (United States)

    Takahashi, Hiroshi; Nagai, Terumi; Goto, Akira

    2005-01-01

    Two ecologically distinct forms, fresh- and brackish-water types, of ninespine stickleback co-exist in several freshwater systems on the coast of eastern Hokkaido. Recent genetic analyses of 13 allozyme loci revealed genetic separation between the two types even though their spawning grounds were in close proximity. On the other hand, there is only a small difference in mitochondrial DNA (mtDNA) sequence between the two types suggesting that they diverged quite recently or that mtDNA introgression occurred between them. To test for postzygotic reproductive isolating mechanisms and hybrid mediated gene flow, we examined the viability and reproductive performance of reciprocal F1 hybrids. The hybrids grew to the adult size normally and both sexes expressed secondary sexual characters in the reciprocal crosses. The female hybrids were reciprocally fertile, while the male hybrids were reciprocally sterile. Histological and flow-cytometric analyses of the hybrid testis revealed that the sterility pattern was classified as 'gametic sterility,' with gonads of normal size but abnormal spermatogenesis. To our knowledge, the present finding is a novel example of one sex hybrid sterility in the stickleback family (Gasterosteidae).