WorldWideScience

Sample records for hybrid organic-inorganic polymers

  1. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  2. Inorganic-organic hybrid polymer for preparation of affiliating material using electron beam irradiation

    International Nuclear Information System (INIS)

    Chung, Jaeseung; Kim, Seongeun; Kim, Byounggak; Lee, Jongchan; Park, Jihyun; Lee, Byeongcheol

    2011-01-01

    Recently, silver nano materials have gained a lot of attentions in a variety of applications due to the unique biological, optical, and electrical properties. Especially, the antifouling property of these material is considered to be an important character for biomedical field, marine coatings industry, biosensor, and drug delivery. In this study, we design and synthesize the inorganic-organic hybrid polymer for preparation of affiliating materials. Silver nano materials having antifouling property with different shapes are prepared by control the electron beam irradiation conditions. Inorganic-organic hybrid polymer was synthesized and characterized. → Morphology and size controlled nano materials are prepared using electron beam irradiation. → Silver nano materials having various shapes can be used for antifouling material

  3. Synthesis and properties of imidazole-grafted hybrid inorganic-organic polymer membranes

    International Nuclear Information System (INIS)

    Li Siwen; Zhou Zhen; Liu Meilin; Li Wen; Ukai, Junzo; Hase, Kohei; Nakanishi, Masatsugu

    2006-01-01

    Imidazole rings were grafted on alkoxysilane with a simple nucleophilic substitute reaction to form hybrid inorganic-organic polymers with imidazole rings. Proton exchange membranes (PEM) based on these hybrid inorganic-organic polymers and H 3 PO 4 exhibit high proton conductivity and high thermal stability in an atmosphere of low relative humidity. The grafted imidazole rings improved the proton conductivity of the membranes in the high temperature range. It is found that the proton conductivities increase with H 3 PO 4 content and temperature, reaching 3.2 x 10 -3 S/cm at 110 deg. C in a dry atmosphere for a membrane with 1 mole of imidazole ring and 7 moles of H 3 PO 4 . The proton conductivity increases with relative humidity (RH) as well, reaching 4.3 x 10 -2 S/cm at 110 deg. C when the RH is increased to about 20%. Thermogravimetric analysis (TGA) indicates that these membranes are thermally stable up to 250 deg. C in dry air, implying that they have a good potential to be used as the membranes for high-temperature PEM fuel cells

  4. Inorganic-organic hybrid polymers for food packaging

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2015-09-01

    Full Text Available packaging application. Numerous hybrid inorganic-organic materials have been developed using low temperature sol-gel chemistry, which enables the tailoring of the nanostructure and the resulting material is often multifunctional, offering a wide range...

  5. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  6. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  7. Organic-inorganic hybrid polymer electrolytes based on polyether diamine, alkoxysilane, and trichlorotriazine: Synthesis, characterization, and electrochemical applications

    Science.gov (United States)

    Saikia, Diganta; Wu, Cheng-Gang; Fang, Jason; Tsai, Li-Duan; Kao, Hsien-Ming

    2014-12-01

    A new type of highly conductive organic-inorganic hybrid polymer electrolytes has been synthesized by the reaction of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), 2,4,6-trichloro-1,3,5-triazine and alkoxysilane precursor 3-(glycidyloxypropyl)trimethoxysilane, followed by doping of LiClO4. The 13C and 29Si solid-sate NMR results confirm the successful synthesis of the organic-inorganic hybrid structure. The solid hybrid electrolyte thus obtained exhibits a maximum ionic conductivity of 1.6 × 10-4 S cm-1 at 30 °C, which is the highest among the organic-inorganic hybrid electrolytes. The hybrid electrolytes are electrochemically stable up to 4.2 V. The prototype electrochromic device with such a solid hybrid electrolyte demonstrates a good coloration efficiency value of 183 cm2 C-1 with a cycle life over 200 cycles. For the lithium-ion battery test, the salt free solid hybrid membrane is swelled with a LiPF6-containing electrolyte solution to reach an acceptable ionic conductivity value of 6.5 × 10-3 S cm-1 at 30 °C. The battery cell carries an initial discharge capacity of 100 mAh g-1 at 0.2C-rate and a coulombic efficiency of about 95% up to 30 cycles without the sign of cell failure. The present organic-inorganic hybrid electrolytes hold promise for applications in electrochromic devices and lithium ion batteries.

  8. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Science.gov (United States)

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  9. Hybrid organic-inorganic rotaxanes and molecular shuttles.

    Science.gov (United States)

    Lee, Chin-Fa; Leigh, David A; Pritchard, Robin G; Schultz, David; Teat, Simon J; Timco, Grigore A; Winpenny, Richard E P

    2009-03-19

    The tetravalency of carbon and its ability to form covalent bonds with itself and other elements enables large organic molecules with complex structures, functions and dynamics to be constructed. The varied electronic configurations and bonding patterns of inorganic elements, on the other hand, can impart diverse electronic, magnetic, catalytic and other useful properties to molecular-level structures. Some hybrid organic-inorganic materials that combine features of both chemistries have been developed, most notably metal-organic frameworks, dense and extended organic-inorganic frameworks and coordination polymers. Metal ions have also been incorporated into molecules that contain interlocked subunits, such as rotaxanes and catenanes, and structures in which many inorganic clusters encircle polymer chains have been described. Here we report the synthesis of a series of discrete rotaxane molecules in which inorganic and organic structural units are linked together mechanically at the molecular level. Structural units (dialkyammonium groups) in dumb-bell-shaped organic molecules template the assembly of essentially inorganic 'rings' about 'axles' to form rotaxanes consisting of various numbers of rings and axles. One of the rotaxanes behaves as a 'molecular shuttle': the ring moves between two binding sites on the axle in a large-amplitude motion typical of some synthetic molecular machine systems. The architecture of the rotaxanes ensures that the electronic, magnetic and paramagnetic characteristics of the inorganic rings-properties that could make them suitable as qubits for quantum computers-can influence, and potentially be influenced by, the organic portion of the molecule.

  10. Investigations of inorganic and hybrid inorganic-organic nanostructures

    Science.gov (United States)

    Kam, Kinson Chihang

    This thesis focuses on the exploratory synthesis and characterization of inorganic and hybrid inorganic-organic nanomaterials. In particular, nanostructures of semiconducting nitrides and oxides, and hybrid systems of nanowire-polymer composites and framework materials, are investigated. These materials are characterized by a variety of techniques for structure, composition, morphology, surface area, optical properties, and electrical properties. In the study of inorganic nanomaterials, gallium nitride (GaN), indium oxide (In2O3), and vanadium dioxide (VO2) nanostructures were synthesized using different strategies and their physical properties were examined. GaN nanostructures were obtained from various synthetic routes. Solid-state ammonolysis of metastable gamma-Ga2O 3 nanoparticles was found to be particularly successful; they achieved high surface areas and photoluminescent study showed a blue shift in emission as a result of surface and size defects. Similarly, In2O3 nanostructures were obtained by carbon-assisted solid-state syntheses. The sub-oxidic species, which are generated via a self-catalyzed vapor-liquid-solid mechanism, resulted in 1D nanostructures including nanowires, nanotrees, and nanobouquets upon oxidation. On the other hand, hydrothermal methods were used to obtain VO2 nanorods. After post-thermal treatment, infrared spectroscopy demonstrated that these nanorods exhibit a thermochromic transition with temperature that is higher by ˜10°C compared to the parent material. The thermochromic behavior indicated a semiconductor-to-metal transition associated with a structural transformation from monoclinic to rutile. The hybrid systems, on the other hand, enabled their properties to be tunable. In nanowire-polymer composites, zinc oxide (ZnO) and silver (Ag) nanowires were synthesized and incorporated into polyaniline (PANI) and polypyrrole (PPy) via in-situ and ex-situ polymerization method. The electrical properties of these composites are

  11. Advances in Organic and Organic-Inorganic Hybrid Polymeric Supports for Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Anna Maria Pia Salvo

    2016-09-01

    Full Text Available In this review, the most recent advances (2014–2016 on the synthesis of new polymer-supported catalysts are reported, focusing the attention on the synthetic strategies developed for their preparation. The polymer-supported catalysts examined will be organic-based polymers and organic-inorganic hybrids and will include, among others, polystyrenes, poly-ionic liquids, chiral ionic polymers, dendrimers, carbon nanotubes, as well as silica and halloysite-based catalysts. Selected examples will show the synthesis and application in the field of organocatalysis and metal-based catalysis both for non-asymmetric and asymmetric transformations.

  12. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.; Coates, Nelson E.; Yee, Shannon K.

    2017-11-28

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  13. Autonomic healable waterborne organic-inorganic polyurethane hybrids based on aromatic disulfide moieties

    Directory of Open Access Journals (Sweden)

    R. H. Aguirresarobe

    2017-04-01

    Full Text Available Aromatic disulfide dynamic structures were incorporated as chain extenders in waterborne organic-inorganic polyurethane hybrids in order to provide autonomic healable characteristics. The synthesis was carried out following the acetone process methodology and the influence of the introduction of the healing agents in the polymer dispersion stability was analyzed. After the crosslinking process at room temperature, organic-inorganic hybrid films, which presented autonomic healing characteristics, were obtained. These features were evaluated by means of stress-strain tests and the films showed repetitive healing abilities. Thus, the optimum healing time at room temperature (25 °C as well as the influence of different parameters in the healing efficiency, such the aromatic disulfide concentration or the physical properties of the polymer matrix were analyzed.

  14. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    Science.gov (United States)

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  15. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Polymerizable Ionic Liquid Crystals Comprising Polyoxometalate Clusters toward Inorganic-Organic Hybrid Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Takeru Ito

    2017-07-01

    Full Text Available Solid electrolytes are crucial materials for lithium-ion or fuel-cell battery technology due to their structural stability and easiness for handling. Emergence of high conductivity in solid electrolytes requires precise control of the composition and structure. A promising strategy toward highly-conductive solid electrolytes is employing a thermally-stable inorganic component and a structurally-flexible organic moiety to construct inorganic-organic hybrid materials. Ionic liquids as the organic component will be advantageous for the emergence of high conductivity, and polyoxometalate, such as heteropolyacids, are well-known as inorganic proton conductors. Here, newly-designed ionic liquid imidazolium cations, having a polymerizable methacryl group (denoted as MAImC1, were successfully hybridized with heteropolyanions of [PW12O40]3− (PW12 to form inorganic-organic hybrid monomers of MAImC1-PW12. The synthetic procedure of MAImC1-PW12 was a simple ion-exchange reaction, being generally applicable to several polyoxometalates, in principle. MAImC1-PW12 was obtained as single crystals, and its molecular and crystal structures were clearly revealed. Additionally, the hybrid monomer of MAImC1-PW12 was polymerized by a radical polymerization using AIBN as an initiator. Some of the resulting inorganic-organic hybrid polymers exhibited conductivity of 10−4 S·cm−1 order under humidified conditions at 313 K.

  17. Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array

    International Nuclear Information System (INIS)

    Tong, Fei; Kim, Kyusang; Martinez, Daniel; Thapa, Resham; Ahyi, Ayayi; Williams, John; Park, Minseo; Kim, Dong-Joo; Lee, Sungkoo; Lim, Eunhee; Lee, Kyeong K

    2012-01-01

    We report on the photovoltaic characteristics of organic/inorganic hybrid solar cells fabricated on ‘flexible’ transparent substrates. The solar cell device is composed of ZnO nanorod array and the bulk heterojunction structured organic layer which is the blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM). The ZnO nanorod array was grown on indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates via a low-temperature (85 °C) aqueous solution process. The blend solution consisting of conjugated polymer P3HT and fullerene PCBM was spin coated at a low spinning rate of 400 rpm on top of the ZnO nanorod array structure and then the photoactive layer was slow dried at room temperature in air to promote its infiltration into the nanorod network. As a top electrode, silver was sputtered on top of the photoactive layer. The flexible solar cell with the structure of PET/ITO/ZnO thin film/ZnO nanorods/P3HT:PCBM/Ag exhibited a photovoltaic performance with an open circuit voltage (V OC ) of 0.52 V, a short circuit current density (J SC ) of 9.82 mA cm −2 , a fill factor (FF) of 35% and a power conversion efficiency (η) of 1.78%. All the measurements were performed under 100 mW cm −2 of illumination with an air mass 1.5 G filter. To the best of our knowledge, this is the first presentation of investigation into the fabrication and characterization of organic/inorganic hybrid solar cells based on bulk heterojunction structured conjugated polymer/fullerene photoactive layer and ZnO nanorod array constructed on flexible transparent substrates. (paper)

  18. Anticorrosive organic/inorganic hybrid coatings

    Science.gov (United States)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  19. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review

    Science.gov (United States)

    Samiey, Babak; Cheng, Chil-Hung; Wu, Jiangning

    2014-01-01

    Over the past decades, organic-inorganic hybrid polymers have been applied in different fields, including the adsorption of pollutants from wastewater and solid-state separations. In this review, firstly, these compounds are classified. These compounds are prepared by sol-gel method, self-assembly process (mesopores), assembling of nanobuilding blocks (e.g., layered or core-shell compounds) and as interpenetrating networks and hierarchically structures. Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions on adsorption capacity, are studied. PMID:28788483

  20. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  1. Hybrid Organic/Inorganic Perovskite–Polymer Nanocomposites: Toward the Enhancement of Structural and Electrical Properties

    KAUST Repository

    Privitera, Alberto; Righetto, Marcello; de Bastiani, Michele; Carraro, Francesco; Rancan, Marzio; Armelao, Lidia; Granozzi, Gaetano; Bozio, Renato; Franco, Lorenzo

    2017-01-01

    Hybrid organic/inorganic perovskite nanoparticles (NPs) have garnered remarkable research attention because of their promising photophysical properties. New and interesting properties emerge after combining perovskite NPs with semiconducting materials. Here, we report the synthesis and investigation of a composite material obtained by mixing CH3NH3PbBr3 nanocrystals with the semiconducting polymer poly(3-hexylthiophene) (P3HT). By the combination of structural techniques and optical and magnetic spectroscopies we observed multiple effects of the perovskite NPs on the P3HT: (i) an enlargement of P3HT crystalline domains, (ii) a strong p-doping of the P3HT, and (iii) an enhancement of interchain order typical of H-aggregates. These observations open a new avenue toward innovative perovskite NP-based applications.

  2. Hybrid Organic/Inorganic Perovskite–Polymer Nanocomposites: Toward the Enhancement of Structural and Electrical Properties

    KAUST Repository

    Privitera, Alberto

    2017-11-30

    Hybrid organic/inorganic perovskite nanoparticles (NPs) have garnered remarkable research attention because of their promising photophysical properties. New and interesting properties emerge after combining perovskite NPs with semiconducting materials. Here, we report the synthesis and investigation of a composite material obtained by mixing CH3NH3PbBr3 nanocrystals with the semiconducting polymer poly(3-hexylthiophene) (P3HT). By the combination of structural techniques and optical and magnetic spectroscopies we observed multiple effects of the perovskite NPs on the P3HT: (i) an enlargement of P3HT crystalline domains, (ii) a strong p-doping of the P3HT, and (iii) an enhancement of interchain order typical of H-aggregates. These observations open a new avenue toward innovative perovskite NP-based applications.

  3. Toxicology of organic-inorganic hybrid molecules: bio-organometallics and its toxicology.

    Science.gov (United States)

    Fujie, Tomoya; Hara, Takato; Kaji, Toshiyuki

    2016-01-01

    Bio-organometallics is a research strategy of biology that uses organic-inorganic hybrid molecules. The molecules are expected to exhibit useful bioactivities based on the unique structure formed by interaction between the organic structure and intramolecular metal(s). However, studies on both biology and toxicology of organic-inorganic hybrid molecules have been incompletely performed. There can be two types of toxicological studies of bio-organometallics; one is evaluation of organic-inorganic hybrid molecules and the other is analysis of biological systems from the viewpoint of toxicology using organic-inorganic hybrid molecules. Our recent studies indicate that cytotoxicity of hybrid molecules containing a metal that is nontoxic in inorganic forms can be more toxic than that of hybrid molecules containing a metal that is toxic in inorganic forms when the structure of the ligand is the same. Additionally, it was revealed that organic-inorganic hybrid molecules are useful for analysis of biological systems important for understanding the toxicity of chemical compounds including heavy metals.

  4. Optical studies of photoactive states in mixed organic-inorganic hybrid perovskites stabilized in polymers

    Science.gov (United States)

    Kardynal, Beata; Xi, Lifei; Salim, Teddy; Borghardt, Sven; Stoica, Toma; Lam, Yeng Ming

    2015-03-01

    Mixed organic-inorganic hybrid perovskites MAX-PbY2(X,Y =I, Br,Cl) have been demonstrated as very attractive materials for absorbers of solar cells and active layers of light emitting diodes and optically driven lasers. The bandgap of the perovskites can be tuned by mixing halogen atoms in different ratios. In this presentation we study mixed MAX-PbY2(X,Y =I, Br, Cl) particles synthesized directly in protective polymer matrices as light emitters. Both, time integrated and time resolved photoluminescence have been used to study the materials. So synthesized MAX-PbX2 are very stable when measured at room temperature and in air with radiative recombination of photogenerated carriers as the main decay path. In contrast, MAX-PbY2 with mixed halogen atoms display luminescence from sub-bandgap states which saturate at higher excitation levels. The density of these states depends on the used polymer matrix and increases upon illumination. We further compare the MAX-PbY2 synthesized in polymers and as films and show that these states are inherent to the material rather than its microstructure. This works has been supported by EU NWs4LIGHT grant.

  5. Design of novel hybrid organic-inorganic nanostructured biomaterials for immunoassay applications

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, G [Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, PO Box 486, 31270.901, Belo Horizonte, MG (Brazil); Barbosa-Stancioli, E F [Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, PO Box 486, 31270.901, Belo Horizonte, MG (Brazil); Piscitelli Mansur, A A [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil); Vasconcelos, W L [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil); Mansur, H S [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil)

    2006-12-01

    The purpose of this study was to develop novel hybrid organic-inorganic materials based on poly(vinyl alcohol) (PVA) polymer chemically crosslinked network to be tested as solid support on bovine herpesvirus immunoassay. Hybrids were synthesized by reacting PVA with three different alkoxysilanes modifying chemical groups: tetraethoxysilane (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). PVA-derived hybrids were also modified by chemically crosslinking with glutaraldehyde (GA) during the synthesis reaction. In order to investigate the structure in the nanometer-scale, PVA-derived hybrids were characterized by using small-angle x-ray scattering synchrotron radiation (SAXS) and x-ray diffraction (XRD). PVA hybrids' chemical functionalities and their interaction with herpesviruses were also characterized by Fourier transform infrared spectroscopy (FTIR). The bioactivity assays were tested through enzyme linked immunosorbent assay (ELISA). SAXS results have indicated nano-ordered disperse domains for PVA hybrids with different x-ray scattering patterns for PVA polymer and PVA-derived hybrids. FTIR spectra have shown major vibration bands associated with organic-inorganic chemical groups present in the PVA, PVA-derived by silane modifier and PVA chemically crosslinked by GA. The immunoassay results have shown that PVA hybrids with chemically functionalized structures regulated to some extent the specific bioimmobilization of herpesvirus onto solid phase. We think that it is due to the overall balance of forces associated with van der Waals interaction, hydrophilic and hydrophobic forces and steric hindrance acting at the surface. PVA and PVA-derived hybrid materials were successfully produced with GA crosslinking in a nanometer-scale network. Also, such a PVA-based material could be advantageously used in immunoassays with enhanced specificity for diagnosis.

  6. Design of novel hybrid organic-inorganic nanostructured biomaterials for immunoassay applications

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, G [Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, PO Box 486, 31270.901, Belo Horizonte, MG (Brazil); Barbosa-Stancioli, E F [Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, PO Box 486, 31270.901, Belo Horizonte, MG (Brazil); Piscitelli Mansur, A A [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil); Vasconcelos, W L [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil); Mansur, H S [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil)

    2006-12-01

    The purpose of this study was to develop novel hybrid organic-inorganic materials based on poly(vinyl alcohol) (PVA) polymer chemically crosslinked network to be tested as solid support on bovine herpesvirus immunoassay. Hybrids were synthesized by reacting PVA with three different alkoxysilanes modifying chemical groups: tetraethoxysilane (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). PVA-derived hybrids were also modified by chemically crosslinking with glutaraldehyde (GA) during the synthesis reaction. In order to investigate the structure in the nanometer-scale, PVA-derived hybrids were characterized by using small-angle x-ray scattering synchrotron radiation (SAXS) and x-ray diffraction (XRD). PVA hybrids' chemical functionalities and their interaction with herpesviruses were also characterized by Fourier transform infrared spectroscopy (FTIR). The bioactivity assays were tested through enzyme linked immunosorbent assay (ELISA). SAXS results have indicated nano-ordered disperse domains for PVA hybrids with different x-ray scattering patterns for PVA polymer and PVA-derived hybrids. FTIR spectra have shown major vibration bands associated with organic-inorganic chemical groups present in the PVA, PVA-derived by silane modifier and PVA chemically crosslinked by GA. The immunoassay results have shown that PVA hybrids with chemically functionalized structures regulated to some extent the specific bioimmobilization of herpesvirus onto solid phase. We think that it is due to the overall balance of forces associated with van der Waals interaction, hydrophilic and hydrophobic forces and steric hindrance acting at the surface. PVA and PVA-derived hybrid materials were successfully produced with GA crosslinking in a nanometer-scale network. Also, such a PVA-based material could be advantageously used in immunoassays with enhanced specificity for diagnosis.

  7. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    Science.gov (United States)

    Liu, Ruchuan

    2014-01-01

    Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591

  8. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts

    International Nuclear Information System (INIS)

    Zhang Bin; Chen Xudong; Ma Shaohua; Yang Jin; Zhang Mingqiu; Chen Yujie

    2010-01-01

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  9. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts.

    Science.gov (United States)

    Zhang, Bin; Chen, Xudong; Ma, Shaohua; Chen, Yujie; Yang, Jin; Zhang, Mingqiu

    2010-02-10

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  10. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  11. Organic against inorganic electrodes grown onto polymer substrates for flexible organic electronics applications

    International Nuclear Information System (INIS)

    Logothetidis, S.; Laskarakis, A.

    2009-01-01

    One of the most challenging topics in the area of organic electronic devices is the growth of transparent electrodes onto flexible polymeric substrates that will be characterized by enhanced conductivity in combination with high optical transparency. An essential aspect for these materials is their synthesis and/or microstructure which define the transparency, the stability and the interfacial chemistry which in turn determine the performance and stability of the organic electronic devices, such as organic light emitting diodes, organic photovoltaics, etc. In this work, we will discuss the latest advances in the growth of organic (e.g. PEDOT:PSS) and inorganic (e.g. zinc oxide-ZnO, indium tin oxide-ITO) conductive materials and their deposition onto flexible polymeric substrates. We will compare the optical, structural, nano-mechanical and nano-topographical properties of the inorganic and organic materials and we investigate the effect of their structure on their properties and functionality. In the case of the organic conductive materials, we will discuss the effects of PEDOT:PSS weight ratios and the various spin speeds on their optical and electrical properties. Furthermore, in the case of ZnO the growth mechanisms, interface phenomena, crystallinity and optical properties of ZnO thin films grown onto polymer and hybrid (inorganic-organic) flexible substrates will be also discussed.

  12. Characterization of Selected Parameters of Organic-Inorganic Hybrid Membranes Based on Various Polymers and Nd-Fe-B Fillers

    Directory of Open Access Journals (Sweden)

    Rybak A.

    2016-12-01

    Full Text Available In this paper magnetic organic-inorganic hybrid membranes based on EC, PPO polymer matrices and various magnetic powder microparticles were synthesized and studied. Constant pressure permeation technique and the Time Lag method were used to obtain the gas transport coefficients. The mechanical, rheological and magnetic parameters of magnetic hybrid membranes were examined. It was found that their separation and gas transport properties (D, P, S and α were improved with the decrease in powder particle size and the increase of membrane’s remanence, saturation magnetization and magnetic particle filling. The increase of the magnetic powder addition and a decrease of its granulation improved also mechanical and rheological parameters of the tested membranes. This improvement also had a positive effect on their gas separation properties and their potential usage in the future.

  13. A hybrid organic-inorganic electrode for enhanced charge injection or collection in organic optoelectronic devices

    International Nuclear Information System (INIS)

    Yilmaz, Omer F; Chaudhary, Sumit; Ozkan, Mihrimah

    2006-01-01

    Here we report a novel hybrid organic-inorganic anode for organic light-emitting diodes (LEDs) and photovoltaic (PV) cells. This hybrid anode structure is realized from a composite of poly(3,4-ethylene dioxythiophene) doped with polystyrenesulfonic acid (PEDOT:PSS) and indium tin oxide (ITO) nanoparticles. Owing to the phase separation, this anodic structure leads to a graded work function from patterned ITO to the photoactive polymer, which in turn reduces the barrier height for holes by ∼70%. The resulting devices based on this design show up to 67% reduction in turn-on voltage (for polymer LEDs) and up to 40% increase in short-circuit current and power conversion efficiency (for PV cells). Current-voltage characteristics, Fowler-Nordheim analysis, SEM imaging and energy band diagram analysis are employed to characterize the improved performance of our devices. The reported approach is expected to be immensely useful for the molecular design of next-generation efficient organic devices

  14. Synthesis and characterizations of anion exchange organic-inorganic hybrid materials based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)

    International Nuclear Information System (INIS)

    Zhang Shaoling; Wu Cuiming; Xu Tongwen; Gong Ming; Xu Xiaolong

    2005-01-01

    A series of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based organic-inorganic hybrid materials for anion exchange were prepared through sol-gel process of polymer precursors PPO-Si(OCH 3 ) 3 . PPO-Si(OCH 3 ) 3 were obtained from the reaction of bromomethylated PPO with 3-aminopropyl-trimethoxysilane (A1110). These polymer precursors then underwent hydrolysis and condensation with additional A1110 to generate hybrid materials. The reaction to produce polymer precursors was identified by FTIR; while FTIR, TGA, XRD, SEM, as well as conventional ion exchange capacity (IEC) measurements were conducted for the structures and properties of the prepared hybrids. TGA results show that this series of hybrid materials possess high thermal stability; XRD and SEM indicate that the prepared hybrid materials are amorphous and the inorganic and organic contents show good compatibility if the ratio between them is proper. The IEC values of the hybrid materials due to the amine groups range from 1.13 mmol/gBPPO (material i) to 4.80 mmol/gBPPO (material iv)

  15. Chemical sensors of benzene and toluene based on inorganic and hybrid organic-inorganic polymers elaborated by a sol-gel process

    International Nuclear Information System (INIS)

    Calvo Munoz, Maria Luisa

    2000-01-01

    As mono-cyclic aromatic hydrocarbons (MAH) are a matter of concern in terms of pollution, and are to be monitored due to new regulations regarding air quality control, this research thesis first aims at explaining why these compounds are to be monitored, at recalling their sources, at outlining what we know about their negative impact on health and how this impact is determined, which are the means implemented to monitor these compounds and which are their drawbacks, and at recalling which requirements are defined by European directives. The author then reports a literature survey of the current technology regarding chemical sensors, and identifies the required characteristics of an ideal sensor. The author proposes a review of studied performed on sol-gel process and of inorganic polymer synthesis methods based on sol-gel process. He reports the synthesis and characterization of inorganic or hybrid organic-inorganic host matrices, monolithic or in thin layers, used to produce MAH sensors. A matrix pore local polarity study is reported. Benzene and toluene trapping is studied with respect to the polarity and thickness of the host matrix. Pollutant trapping is directly monitored by their absorption in the near-UV and visible range. The author finally reports the study of interactions between fluorescent probe molecules and pollutants, as well as the effect of an interfering gas (oxygen) on the fluorescence of probe molecules [fr

  16. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  17. The Formation of Exciplex and Improved Turn-on Voltage in a Hybrid Organic-Inorganic Light-Emitting Diode

    International Nuclear Information System (INIS)

    Zhang Yan-Fei; Zhao Su-Ling; Xu Zheng; Kong Chao

    2012-01-01

    In order to take advantage of organic and inorganic materials, we chose the polymer MEH-PPV as the luminous layer and ZnS as the electron transporting layer to prepare hybrid organic-inorganic light-emitting diodes (HOILEDs): ITO/MEH-PPV(∼70 nm)/ZnS(20 nm)/Al by thermal evaporation and spin coating. Compared with the single-layer device ITO/MEH-PPV(∼70 nm)/Al, spectral broadening and a slightly red shift are observed. Compared with the pure organic device ITO/MEH-PPV(∼70 nm)/BCP (20 nm)/Al and combined with the energy level structure diagram, it is concluded that the spectral broadening and red shift are due to the exciplex luminescence at the interface between MEH-PPV and ZnS or BCP. In addition, the hybrid inorganic-organic device shows a lower turn-on voltage, but the current efficiency is lower than that of the pure organic device with the same structure

  18. Controllable synthesis of organic-inorganic hybrid MoOx/polyaniline nanowires and nanotubes.

    Science.gov (United States)

    Wang, Sinong; Gao, Qingsheng; Zhang, Yahong; Gao, Jing; Sun, Xuhui; Tang, Yi

    2011-02-01

    A novel chemical oxidative polymerization approach has been proposed for the controllable preparation of organic-inorganic hybrid MoO(x)/polyaniline (PANI) nanocomposites based on the nanowire precursor of Mo(3)O(10)(C(6)H(8)N)(2)·2H(2)O with sub-nanometer periodic structures. The nanotubes, nanowires, and rambutan-like nanoparticles of MoO(x)/PANI were successfully obtained through simply modulating the pH values to 2.5-3.5, ≈2.0 and ≈1.0, respectively. Through systematic physicochemical characterization, such as scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and so forth, the composition and structure of MoO(x)/PANI hybrid nanocomposites are well confirmed. It is found that the nanowire morphology of the precursor is the key to achieve the one-dimensional (1D) structures of final products. A new polymerization-dissolution mechanism is proposed to explain the formation of such products with different morphologies, in which the match between polymerization and dissolution processes of the precursor plays the important role. This approach will find a new way to controllably prepare various organic-inorganic hybrid 1D nanomaterials especially for polymer-hybrid nanostructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    Science.gov (United States)

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  20. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    Science.gov (United States)

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning.

    Science.gov (United States)

    Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N

    2015-04-15

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  2. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    Science.gov (United States)

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  3. Hybrid active layers from a conjugated polymer and inorganic nanoparticles for organic light emitting devices with emission colour tuned by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Andrey N; Alexandrova, Elena L; Shcherbakov, Igor P [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26, Polytechnicheskaya Str., St Petersburg 194021 (Russian Federation)], E-mail: aleshin@transport.ioffe.ru

    2009-05-21

    We report on the investigation of the electrical and optical properties of hybrid active layers for organic devices consisting of a conjugated polymer MEH-PPV mixed with ZnO and Si nanoparticles. The effect of an electric field on the photoluminescence (PL) from a MEH-PPV : ZnO composite film is studied. We have found that in the absence of an electric field PL emission from the MEH-PPV : ZnO composites have two main maxima in the blue-red regions. Three additional minor PL maxima attributed to the exciplex states were found at {approx}420-480 nm. Application of a voltage bias to planar electrodes significantly suppresses the blue emission. Generation of excited states in the MEH-PPV : ZnO structures implies the presence of several radiative recombination mechanisms with the formation of polymer-nanoparticle complexes including exciplex states and charge transfer between the polymer and nanoparticles that can be controlled by an electric field. This effect provides the possibility to tune by an electric field the emission colour of organic light emitting diodes by combining an efficient emission from both organic/inorganic materials involved.

  4. Hybrid active layers from a conjugated polymer and inorganic nanoparticles for organic light emitting devices with emission colour tuned by electric field

    International Nuclear Information System (INIS)

    Aleshin, Andrey N; Alexandrova, Elena L; Shcherbakov, Igor P

    2009-01-01

    We report on the investigation of the electrical and optical properties of hybrid active layers for organic devices consisting of a conjugated polymer MEH-PPV mixed with ZnO and Si nanoparticles. The effect of an electric field on the photoluminescence (PL) from a MEH-PPV : ZnO composite film is studied. We have found that in the absence of an electric field PL emission from the MEH-PPV : ZnO composites have two main maxima in the blue-red regions. Three additional minor PL maxima attributed to the exciplex states were found at ∼420-480 nm. Application of a voltage bias to planar electrodes significantly suppresses the blue emission. Generation of excited states in the MEH-PPV : ZnO structures implies the presence of several radiative recombination mechanisms with the formation of polymer-nanoparticle complexes including exciplex states and charge transfer between the polymer and nanoparticles that can be controlled by an electric field. This effect provides the possibility to tune by an electric field the emission colour of organic light emitting diodes by combining an efficient emission from both organic/inorganic materials involved.

  5. Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways

    International Nuclear Information System (INIS)

    Chen, Pingping; Hao, Lie; Wu, Wenjia; Li, Yifan; Wang, Jingtao

    2016-01-01

    Highlights: • A series of hybrid membranes are prepared using fillers with different structures. • The fillers (0-D, 1-D, and 2-D) are sulfonated to ensure close surface component. • The effect of filler’s structure on microstructure of hydrid membrane is explored. • For single-kind filler series, 2-D filler has the strongest conduction promotion. • The synergy effect of different kinds of fillers is systematacially investigated. - Abstract: For hybrid membrane, the polymer-inorganic interface along filler surface can be facilely created to be distinctive and controllable pathway for mass transfer. Herein, three kinds of fillers are used as inorganic additives including zero-dimensional silica (0-D, SiO_2), one-dimensional halloysite nanotube (1-D, HNT), and two-dimensional graphene oxide (2-D, GO), which are functionalized by sulfonated polymer layer to ensure close surface component. Then the fillers are incorporated into two types of polymer matrixes (phase-separated sulfonated poly(ether ether ketone) and non-phase-separated chitosan) to prepare three series of hybrid membranes with single-kind filler, double-kinds fillers, or triple-kinds fillers, respectively. The microstructures, physicochemical properties, and proton conduction properties (under hydrated and anhydrous conditions) of the membranes are extensively investigated. It is found that (i) for the single-kind filler-filled membranes, 2-D filler has the strongest promotion ability for proton conductivity of membrane due to the constructed wide and long-range pathways for proton transfer; (ii) while for the hybrid membranes with double-kinds fillers, instead of synergistic promotion effect, the fillers cause more tortuous transfer pathways within membranes and then decrease proton conductivity; (iii) the hybrid membranes with triple-kinds fillers exhibit similar behavior but a little higher conductivity than the membranes with double-kinds fillers.

  6. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    Science.gov (United States)

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  7. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Lin, Zhiqun [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2012-08-22

    Semiconductor organic-inorganic hybrid solar cells incorporating conjugated polymers (CPs) and nanocrystals (NCs) offer the potential to deliver efficient energy conversion with low-cost fabrication. The CP-based photovoltaic devices are complimented by an extensive set of advantageous characteristics from CPs and NCs, such as lightweight, flexibility, and solution-processability of CPs, combined with high electron mobility and size-dependent optical properties of NCs. Recent research has witnessed rapid advances in an emerging field of directly tethering CPs on the NC surface to yield an intimately contacted CP-NC nanocomposite possessing a well-defined interface that markedly promotes the dispersion of NCs within the CP matrix, facilitates the photoinduced charge transfer between these two semiconductor components, and provides an effective platform for studying the interfacial charge separation and transport. In this Review, we aim to highlight the recent developments in CP-NC nanocomposite materials, critically examine the viable preparative strategies geared to craft intimate CP-NC nanocomposites and their photovoltaic performance in hybrid solar cells, and finally provide an outlook for future directions of this extraordinarily rich field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    Science.gov (United States)

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  9. Preparation of Organic-Inorganic Multifunctional Nanocomposite Coating via Sol-Gel Routes

    International Nuclear Information System (INIS)

    Li Haoying; Chen Yunfa; Ruan Chengxiang; Gao Weimin; Xie Yusheng

    2001-01-01

    The inorganic-organic nanocomposite coatings are prepared on poly(methyl methacrylate) (PMMA) substrate by the spinning technique which involves incorporating homogeneously nanosized ZnO particle into the molecular inorganic-organic hybrid matrices. The hybrid matrices are derived from tetraethoxyasilane (TEOS) and 3-glycidoxypropyltrimethoxyailane (GLYMO). To avoid the destruction of the polymer structure caused by ZnO and modify the interface between nanoparticles and organic groups, ZnO was first surface-coated with SiO 2 from hydrolyzed TEOS using ammonia water as catalyst. The coatings thus obtained are dense, flexible, abrasion resistant and UV absorbent

  10. Organic/inorganic hybrid filters based on dendritic and cyclodextrin "nanosponges" for the removal of organic pollutants from water.

    Science.gov (United States)

    Arkas, Michael; Allabashi, Roza; Tsiourvas, Dimitris; Mattausch, Eva-Maria; Perfler, Reinhard

    2006-04-15

    Long-alkyl chain functionalized poly(propylene imine) dendrimer, poly(ethylene imine) hyperbranched polymer, and beta-cyclodextrin derivatives, which are completely insoluble in water, have the property of encapsulating organic pollutants from water. Ceramic porous filters can be impregnated with these compounds resulting in hybrid organic/ inorganic filter modules. These hybrid filter modules were tested for the effective purification of water, by continuous filtration experiments, employing a variety of water pollutants. It has been established that polycyclic aromatic hydrocarbons (PAHs) can be removed very efficiently (more than 95%), and final concentrations of several ppb (microg/ L) are easily obtained. Representatives of the pollutant group of trihalogen methanes (THMs), monoaromatic hydrocarbons (BTX), and pesticides (simazine) can also be removed (>80%), although the filters are saturated considerably faster in these cases.

  11. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    OpenAIRE

    Chiku, Masanobu; Tomita, Shoji; Higuchi, Eiji; Inoue, Hiroshi

    2011-01-01

    Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  12. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  13. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa

    2016-09-08

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  14. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa; Marzouk, Asma; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-01-01

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  15. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  16. Hybrid organic-inorganic coatings based on alkoxy-terminated macromonomers

    Energy Technology Data Exchange (ETDEWEB)

    Kaddami, H. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon---Bat 403, 69621 Villeurbanne (France); Cuney, S. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon---Bat 403, 69621 Villeurbanne (France)]|[BSN Emballage-Centre de Recherche de Saint-Romain-en-Gier, 69700 Givors Cedex (France); Pascault, J.P. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon-Bat 403, 69621 Villeurbanne (France); Gerard, J.F. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon-Bat 403, 69621 Villeurbanne (France)

    1996-01-01

    From the use of alkoxysilane-terminated macromonomers based on hydrogenated polybutadiene and polycaprolactone oligomers and by using the polyurethane chemistry, hybrid organic{emdash}inorganic materials are prepared. These ones are two-phases systems in which the continuous phase is organic reinforced by silicon rich dispersed particles. These nanosized dispersed particles are formed {ital in} {ital situ} during the hydrolysis and condensation of the sol-gel process according to the phase separation process occurring between the organic and inorganic phases. The gelation process and the final morphologies were found to be very dependent on the acid(catalyst)-to-silicon ratio, on the molar mass of the oligomers, and on the solubility parameter of the soft segment. In fact, during the synthesis, there is a competition between the gelation and the phase separation process which could be perturbated by the vitrification of the silicon-rich clusters. The final morphologies observed by TEM and SAXS are discussed on the basis of the microstructural model proposed by Wilkes and Huang. Such hybrid organic-inorganic materials are applied as coatings on glass float plates tested in a bi-axial mode. The reinforcement is discussed as a function of the morphology of the coatings. {copyright} {ital 1996 American Institute of Physics.}

  17. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  18. Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si

    Science.gov (United States)

    Javadi, Mohammad; Gholami, Mahdiyeh; Torbatiyan, Hadis; Abdi, Yaser

    2018-03-01

    Various configurations like p-n junctions, metal-semiconductor Schottky barriers, and metal-oxide-semiconductor structures have been widely used in position-sensitive detectors. In this report, we propose a PEDOT:PSS/n-Si heterojunction as a hybrid organic/inorganic configuration for position-sensitive detectors. The influence of the thickness of the PEDOT:PSS layer, the wavelength of incident light, and the intensity of illumination on the device performance are investigated. The hybrid PSD exhibits very high sensitivity (>100 mV/mm), excellent nonlinearity (0.995) with a response time of heterojunction are very promising for developing a new class of position-sensitive detectors based on the hybrid organic/inorganic junctions.

  19. Anisotropic Self-Assembly of Organic–Inorganic Hybrid Microtoroids

    KAUST Repository

    Al-Rehili, Safa’a

    2016-10-24

    Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic–inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

  20. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    Science.gov (United States)

    Pate, Ryan; Lantz, Kevin R.; Dhawan, Anuj; Vo-Dinh, Tuan; Stiff-Roberts, Adrienne D.

    2010-10-01

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate) (PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  1. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    International Nuclear Information System (INIS)

    Pate, Ryan; Lantz, Kevin R.; Stiff-Roberts, Adrienne D.; Dhawan, Anuj; Vo-Dinh, Tuan

    2010-01-01

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy )-1,4-(1-cyanovinylene)phenylene](MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate)(PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  2. Hybrid inorganic-organic polymer electrolytes: synthesis, FT-Raman studies and conductivity of {l_brace}Zr[(CH{sub 2}CH{sub 2}O){sub 8.7}]{sub {rho}}/(LiClO{sub 4}){sub z}{r_brace}{sub n} network complexes

    Energy Technology Data Exchange (ETDEWEB)

    Di Noto, Vito; Zago, Vanni; Biscazzo, Simone; Vittadello, Michele

    2003-01-15

    This paper describes the synthesis and characterization of three-dimensional hybrid inorganic-organic networks prepared by a polycondensation reaction between Zr(O(CH{sub 2}){sub 3}CH{sub 3}){sub 4} and polyethylene glycol 400 (PEG400). Eleven hybrid networks doped with varying concentrations of LiClO{sub 4} salt were prepared. On the basis of analytical data and FT-Raman studies it was concluded that these polymer electrolytes consist of inorganic-organic networks with zirconium atoms bonded together by PEG400 bridges. These polymers are transparent with a solid rubber consistency and are very stable under inert atmosphere. Scanning electron microscopy revealed a smooth glassy surface. X-ray fluorescence microanalysis with energy dispersive spectroscopy demonstrated that all the constituent elements are homogeneously distributed in the materials. Thermogravimetric measurements revealed that these materials are thermally stable up to 262 deg. C. Differential Scanning Calorimetry measurements indicated that the glass transition temperature T{sub g} of these inorganic-organic hybrids varies from -43 to -15 deg. C with increasing LiClO{sub 4} concentration. FT-Raman investigations revealed the TGT (T=trans, G=gauche) conformation of polyether chains and allowed characterization of the types of ion-ion and ion-polymer host interactions in the bulk materials. The conductivity of the materials at different temperatures was determined by impedance spectroscopy over the 20 Hz-1 MHz frequency range. Results indicated that the materials conduct ionically and that their ionic conductivity is strongly influenced by the segmental motion of the polymer network and the type of ionic species distributed in the bulk material. Finally, it is to be highlighted that the hybrid network with a n{sub Li}/n{sub O} molar ratio of 0.0223 shows a conductivity of ca. 1x10{sup -5} S cm{sup -1} at 40 deg. C.

  3. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    Science.gov (United States)

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.

  4. Synthesis and stabilization of oxide-based colloidal suspensions in organic media: application in the preparation of hybrids organic-inorganic materials for very high laser damage threshold coatings

    International Nuclear Information System (INIS)

    Marchet, N.

    2008-02-01

    Multilayer coatings are widely used in optic and particular in the field of high power laser on the components of laser chains. The development of a highly reflective coating with a laser damage resistance requires the fine-tuning of a multilayer stack constituted by a succession alternated by materials with low and high refractive index. In order to limit the number of layers in the stack, refractive indexes must be optimized. To do it, an original approach consists in synthesizing new organic-inorganic hybrid materials satisfying the criteria of laser damage resistance and optimized refractive index. These hybrid materials are constituted by nano-particles of metal oxides synthesized by sol-gel process and dispersed in an organic polymer with high laser damage threshold. Nevertheless, this composite system requires returning both compatible phases between them by chemical grafting of alc-oxy-silanes or carboxylic acids. We showed that it was so possible to disperse in a homogeneous way these functionalized nano-particles in non-polar, aprotic solvent containing solubilized organic polymers, to obtain time-stable nano-composite solutions. From these organic-inorganic hybrid solutions, thin films with optical quality and high laser damage threshold were obtained. These promising results have permitted to realize highly reflective stacks, constituted by 7 pairs with optical properties in agreement with the theoretical models and high laser damage threshold. (author)

  5. Low-Threshold Lasing from 2D Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perovskite Single Crystals.

    Science.gov (United States)

    Raghavan, Chinnambedu Murugesan; Chen, Tzu-Pei; Li, Shao-Sian; Chen, Wei-Liang; Lo, Chao-Yuan; Liao, Yu-Ming; Haider, Golam; Lin, Cheng-Chieh; Chen, Chia-Chun; Sankar, Raman; Chang, Yu-Ming; Chou, Fang-Cheng; Chen, Chun-Wei

    2018-05-09

    Organic-inorganic hybrid two-dimensional (2D) perovskites have recently attracted great attention in optical and optoelectronic applications due to their inherent natural quantum-well structure. We report the growth of high-quality millimeter-sized single crystals belonging to homologous two-dimensional (2D) hybrid organic-inorganic Ruddelsden-Popper perovskites (RPPs) of (BA) 2 (MA) n-1 Pb n I 3 n+1 ( n = 1, 2, and 3) by a slow evaporation at a constant-temperature (SECT) solution-growth strategy. The as-grown 2D hybrid perovskite single crystals exhibit excellent crystallinity, phase purity, and spectral uniformity. Low-threshold lasing behaviors with different emission wavelengths at room temperature have been observed from the homologous 2D hybrid RPP single crystals. Our result demonstrates that solution-growth homologous organic-inorganic hybrid 2D perovskite single crystals open up a new window as a promising candidate for optical gain media.

  6. Robust platforms for creating organic-inorganic nanocomposite microspheres: decorating polymer microspheres containing mussel-inspired adhesion layers with inorganic nanoparticles.

    Science.gov (United States)

    Satoh, H; Saito, Y; Yabu, H

    2014-12-07

    We describe a method for creating robust and stable core-shell polymer microspheres decorated with inorganic (IO) nanoparticles (NPs) by a self-organization process and heterocoagulation using a mussel-inspired polymer adhesive layer between the IO NPs and the microspheres.

  7. Organic-inorganic hybrid polyionic liquid based polyoxometalate as nano porous material for selective oxidation of sulfides

    Science.gov (United States)

    Rafiee, Ezzat; Shahebrahimi, Shabnam

    2017-07-01

    Organic-inorganic hybrid nano porous materials based on poly(ionic liquid)-polyoxometalate (PIL-POM) were reported. These hybrid materials were synthesized by the reaction of 4-vinyl pyridine with 1,3-propanesultone, followed by the polymerization and also sulfonate-functionalized cross-linked poly(4-vinylpyridine) and combining these polymers with H5PMo10V2O40 (PMo10V2). Activity of prepared PIL-PMo10V2 hybrids were investigated as catalysts for oxidation of sulfides with H2O2 as oxidant. For understanding catalytic activities of the PIL-PMo10V2 hybrids in oxidation of sulfides, effect of catalyst composition, substrate, and reaction conditions were studied. The results show that the PIL-PMo10V2 hybrids are active as selective heterogeneous catalysts for oxidation of sulfides and can be recovered and reused. The catalyst was characterized by FT-IR, TGA-DSC, XRD, SEM/EDX, BET, CV and zeta potential measurement. Also, average molecular weight of prepared catalysts were measured.

  8. Photochromic dynamics of organic-inorganic hybrids supported on transparent and flexible recycled PET

    Science.gov (United States)

    Cruz, R. P.; Nalin, M.; Ribeiro, S. J. L.; Molina, C.

    2017-04-01

    Organic-inorganic hybrids (OIH) synthesized by sol gel process containing phosphotungstic acid (PWA) entrapped have been attracted much attention for ultraviolet sensitive materials. However, the limitations for practical photochromic application of these materials are the poor interaction with flexible polymer substrates such as Poly(ethyleneterephthalate) (PET) and also photo response under ultraviolet radiation. This paper describes the use of the d-ureasil HOI, based on siliceous network grafted through linkages to both ends of polymer chain containing 2.5 poly(oxyethylene) units with PWA entrapped prepared as films on recycled PET. Films were characterized by IR-ATR, XRD, TG/DTG, UV-Vis and Contact angle. XRD patterns showed that both pristine hybrid matrix and those containing PWA are amorphous. IR showed that PWA structure is preserved in the matrix and interactions between them occur by intermolecular forces. Films are thermally stable up to 325 °C and contact angle of 25.1° showed a good wettability between substrate and hybrid matrix. Furthermore, films showed fast photochromic response after 1 min of ultraviolet exposure time. The bleaching process revealed that the relaxation process is dependent of the temperature and the activation energy of 47.2 kJ mol-1 was determined. The properties of these films make them potential candidates for applications in flexible photochromic materials.

  9. Hybrid inorganic-organic membranes: Tuning pore properties by sequential grafting

    NARCIS (Netherlands)

    Sripathi, V.G.P.

    2014-01-01

    In this thesis, the synthesis of inorganic - polymeric hybrid membranes by sequential grafting is discussed, for application in gas separation. At high pressures and temperatures, organic (olymer) membranes may suffer from swelling and plasticization. Generally, this causes a reduced molecular

  10. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks

    OpenAIRE

    Schreck, Kathleen M.; Leung, Diana; Bowman, Christopher N.

    2011-01-01

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (Tg) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins ...

  11. Hybrid organic-inorganic heterojunctions for photovoltaic applications

    OpenAIRE

    Dietmüller, Roland

    2012-01-01

    Hybrid organic-inorganic bulk heterojunction solar cells based on silicon nanocrystals (Si-nc) have been realized and investigated. A photo-induced charge transfer could be demonstrated in composites made of silicon nanocrystals and poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) via light-induced electron spin resonance measurements. With bulk heterojunction solar cells made of P3HT/Si-nc composites in a sandwich structure, open-circuit voltages of up to 0....

  12. Self-organization of a tetrasubstituted tetrathiafulvalene (TTF) in a silica based hybrid organic-inorganic material.

    Science.gov (United States)

    Cerveau, Geneviève; Corriu, Robert J P; Lerouge, Frédéric; Bellec, Nathalie; Lorcy, Dominique; Nobili, Maurizio

    2004-02-21

    A hybrid organic inorganic nanostructured material containing a TTF core substituted by four arms exhibited a high level of both condensation at silicon (96%) and self-organization as evidenced by X-ray diffraction and an unprecedented birefringent behaviour.

  13. Organic-inorganic hybrid material SUNCONNECT® for photonic integrated circuit

    Science.gov (United States)

    Nawata, Hideyuki; Oshima, Juro; Kashino, Tsubasa

    2018-02-01

    In this paper, we report the feature and properties about organic-inorganic hybrid material, "SUNCONNECT®" for photonic integrated circuit. "SUNCONNECT®" materials have low propagation loss at 1310nm (0.29dB/cm) and 1550nm (0.45dB/cm) respectively. In addition, the material has high thermal resistance both high temperature annealing test at 300°C and also 260°C solder heat resistance test. For actual device application, high reliability is required. 85°C /85% test was examined by using multi-mode waveguide. As a result, it indicated that variation of insertion loss property was not changed significantly after high temperature / high humidity test. For the application to photonic integrated circuit, it was demonstrated to fabricate polymer optical waveguide by using three different methods. Single-micron core pattern can be fabricated on cladding layer by using UV lithography with proximity gap exposure. Also, single-mode waveguide can be also fabricated with over cladding. On the other hands, "Mosquito method" and imprint method can be applied to fabricate polymer optical waveguide. Remarkably, these two methods can fabricate gradedindex type optical waveguide without using photo mask. In order to evaluate the optical performance, NFP's observation, measurement of insertion loss and propagation loss by cut-back methods were carried out by using each waveguide sample.

  14. Atomically thin two-dimensional organic-inorganic hybrid perovskites

    Science.gov (United States)

    Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong

    2015-09-01

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

  15. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Organic / IV, III-V Semiconductor Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Pang-Leen Ong

    2010-03-01

    Full Text Available We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V, nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines, conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented.

  17. Growth of ZnSe nano-needles by pulsed laser deposition and their application in polymer/inorganic hybrid solar cells

    International Nuclear Information System (INIS)

    Chen, L.; Lai, J.S.; Fu, X.N.; Sun, J.; Ying, Z.F.; Wu, J.D.; Lu, H.; Xu, N.

    2013-01-01

    Using pulsed-laser deposition method, crystalline ZnSe nano-needles have been grown on catalyst-coated silicon (100) substrates. The crystalline ZnSe nano-needles with the middle diameters of about 20–80 nm, and the lengths ranging from 100 to 600 nm can be grown densely on 300–400 °C substrates. The as-grown ZnSe nano-needles were well crystalline and base-grown. They are potential electron-capturing materials in polymer/inorganic hybrid solar cells for their properties of good electron-conductance and high ratio surface area. Based on the ZnSe nano-needle cathode, a five-layer composite structure of polymer/inorganic hybrid solar cell has been designed and fabricated. The absorption spectra of the blend of regioregular poly(3-hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:PCBM), ZnSe nano-needles and the combination of P3HT:PCBM and ZnSe nano-needles were examined by ultraviolet–visible-infrared spectrophotometer, respectively. The absorption bands of the combination of P3HT:PCBM and ZnSe nano-needles fit well with the solar spectral distribution. - Highlights: ► Crystalline ZnSe nano-needles grown by pulsed laser deposition. ► A five-layer polymer/inorganic hybrid solar cell based on ZnSe nano-needles cathode. ► ZnSe nano-needles improve light absorption. ► Employment of ZnSe nano-needles increase the open-circuit voltage and fill factor

  18. Application of hybrid organic/inorganic polymers as coatings on metallic substrates

    Science.gov (United States)

    Augustinho, T. R.; Motz, G.; Ihlow, S.; Machado, R. A. F.

    2016-09-01

    Acrylic polymers, particularly poly (methyl methacrylate) (PMMA), have certain specific properties, such as good film formation, transparency, and good mechanical properties, which have been widely used in paints, coatings and adhesives. However, the limited chemical and physical stability of these pure polymers limits their applications when exposed to hostile conditions, as in ship hulls, for example. A suitable way to enhance PMMA properties is the addition of silicon polymers with very good protective characteristics. In this study, a PMMA and HTT 1800 (commercial silazane) copolymer were applied on metallic substrate and compared to pure PMMA and HTT 1800. All the materials were applied as coatings. They were applied on stainless steel via dip-coating to investigate the coating properties. Thermal cycling was employed to analyze coating durability at high temperatures (50 °C to 600 °C). Optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the coated surfaces, and the adhesion of pure PMMA, pure HTT 1800 and PMMA/HTT 1800 coatings on metallic substrate was investigated by Cross-Cut-Test (ASTM D 3359). The sessile drop method was used to determine the contact angle. PMMA coatings presented complete degradation from 250 °C, while hybrid coatings of PMMA and HTT 1800 have good protection until 400 °C. The adherence of the coating on metallic substrate showed improvement in all synthesized materials when compared to pure PMMA, obtaining the best adherence possible. The contact angle test showed that the hydrophobicity of the hybrid coatings is higher than that of the pure coatings.

  19. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides

    Science.gov (United States)

    Ahmad, Shahab; Baumberg, Jeremy J.; Vijaya Prakash, G.

    2013-12-01

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices.

  20. Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids

    International Nuclear Information System (INIS)

    Lai, Wei-Jung; Li, Shao-Sian; Lin, Chih-Cheng; Kuo, Chun-Chiang; Chen, Chun-Wei; Chen, Kuei-Hsien; Chen, Li-Chyong

    2010-01-01

    We propose a nanostructured near infrared photodetector based on indium nitride (InN) nanorod/poly(3-hexylthiophene) hybrids. The current-voltage characteristic of the hybrid device demonstrates the typical p-n heterojunction diode behavior, consisting of p-type polymer and n-type InN nanorods. The device shows a photoresponse range of 900-1260 nm under various reverse biases. An external quantum efficiency of 3.4% at 900 nm operated at -10 V reverse bias was obtained, which is comparable with devices based on lead sulfide and lead selenide hybrid systems.

  1. Hybrid Organic-Inorganic Perovskite Photodetectors.

    Science.gov (United States)

    Tian, Wei; Zhou, Huanping; Li, Liang

    2017-11-01

    Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A hybrid organic-inorganic perovskite dataset

    Science.gov (United States)

    Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi; Ramprasad, Rampi

    2017-05-01

    Hybrid organic-inorganic perovskites (HOIPs) have been attracting a great deal of attention due to their versatility of electronic properties and fabrication methods. We prepare a dataset of 1,346 HOIPs, which features 16 organic cations, 3 group-IV cations and 4 halide anions. Using a combination of an atomic structure search method and density functional theory calculations, the optimized structures, the bandgap, the dielectric constant, and the relative energies of the HOIPs are uniformly prepared and validated by comparing with relevant experimental and/or theoretical data. We make the dataset available at Dryad Digital Repository, NoMaD Repository, and Khazana Repository (http://khazana.uconn.edu/), hoping that it could be useful for future data-mining efforts that can explore possible structure-property relationships and phenomenological models. Progressive extension of the dataset is expected as new organic cations become appropriate within the HOIP framework, and as additional properties are calculated for the new compounds found.

  3. Phonon properties and slow organic-to-inorganic sub-lattice thermalization in hybrid perovskites

    Science.gov (United States)

    Chan, Maria; Chang, Angela; Xia, Yi; Sadasivam, Sridhar; Guo, Peijun; Kinaci, Alper; Lin, Hao-Wu; Darancet, Pierre; Schaller, Richard

    Organic-inorganic hybrid perovskite halide compounds have been investigated extensively for photovoltaics (PVs) and related applications. The thermal transport properties of hybrid perovskites, including phonon-carrier and phonon-phonon interactions, are of significance for their PV and solar thermoelectric applications. The interlocking organic and inorganic sublattices can be thought of as an extreme form of nanostructuring. A result of this nanostructuring is the large gap in phonon frequencies between the organic and inorganic sublattices, which is expected to create bottlenecks in phonon equilibration. In this work, we use a combination of ultrafast spectroscopy including photoluminescence and transient absorption, as well as first principles density functional theory (DFT), ab initio molecular dynamics calculations, phonon lifetimes derived from DFT force constants, and non-equilibrium phonon dynamics accounting for phonon lifetimes, to determine the phonon and charge interaction processes. We find evidence that thermalization of carriers occur at an atypically slow 50-100 ps time scale owing to the complex interplay between electronic and phonon excitations.

  4. Fire-Retardant, Self-Extinguishing Inorganic/Polymer Composite Memory Foams.

    Science.gov (United States)

    Chatterjee, Soumyajyoti; Shanmuganathan, Kadhiravan; Kumaraswamy, Guruswamy

    2017-12-27

    Polymeric foams used in furniture and automotive and aircraft seating applications rely on the incorporation of environmentally hazardous fire-retardant additives to meet fire safety norms. This has occasioned significant interest in novel approaches to the elimination of fire-retardant additives. Foams based on polymer nanocomposites or based on fire-retardant coatings show compromised mechanical performance and require additional processing steps. Here, we demonstrate a one-step preparation of a fire-retardant ice-templated inorganic/polymer hybrid that does not incorporate fire-retardant additives. The hybrid foams exhibit excellent mechanical properties. They are elastic to large compressional strain, despite the high inorganic content. They also exhibit tunable mechanical recovery, including viscoelastic "memory". These hybrid foams are prepared using ice-templating that relies on a green solvent, water, as a porogen. Because these foams are predominantly comprised of inorganic components, they exhibit exceptional fire retardance in torch burn tests and are self-extinguishing. After being subjected to a flame, the foam retains its porous structure and does not drip or collapse. In micro-combustion calorimetry, the hybrid foams show a peak heat release rate that is only 25% that of a commercial fire-retardant polyurethanes. Finally, we demonstrate that we can use ice-templating to prepare hybrid foams with different inorganic colloids, including cheap commercial materials. We also demonstrate that ice-templating is amenable to scale up, without loss of mechanical performance or fire-retardant properties.

  5. Inorganic/organic hybrid nanocomposite coating applications: Formulation, characterization, and evaluation

    Science.gov (United States)

    Eyassu, Tsehaye

    Nanotechnology applications in coatings have shown significant growth in recent years. Systematic incorporation of nano-sized inorganic materials into polymer coating enhances optical, electrical, thermal and mechanical properties significantly. The present dissertation will focus on formulation, characterization and evaluation of inorganic/organic hybrid nanocomposite coatings for heat dissipation, corrosion inhibition and ultraviolet (UV) and near infrared (NIR) cut applications. In addition, the dissertation will cover synthesis, characterization and dispersion of functional inorganic fillers. In the first project, we investigated factors that can affect the "Molecular Fan" cooling performance and efficiency. The investigated factors and conditions include types of nanomaterials, size, loading amount, coating thickness, heat sink substrate, substrate surface modification, and power input. Using the optimal factors, MF coating was formulated and applied on commercial HDUs, and cooling efficiencies up to 22% and 23% were achieved using multi-walled carbon nanotube and graphene fillers. The result suggests that molecular fan action can reduce the size and mass of heat-sink module and thus offer a low cost of LED light unit. In the second project, we report the use of thin organic/inorganic hybrid coating as a protection for corrosion and as a thermal management to dissipate heat from galvanized steel. Here, we employed the in-situ phosphatization method for corrosion inhibition and "Molecular fan" technique to dissipate heat from galvanized steel panels and sheets. Salt fog tests reveal successful completion of 72 hours corrosion protection time frame for samples coated with as low as ~0.7microm thickness. Heat dissipation measurement shows 9% and 13% temperature cooling for GI and GL panels with the same coating thickness of ~0.7microm respectively. The effect of different factors, in-situ phosphatization reagent (ISPR), cross-linkers and nanomaterial on corrosion

  6. Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer

    International Nuclear Information System (INIS)

    Shin, Min Jeong; Gwon, Dong-Oh; Lee, Chan-Mi; Lee, Gang Seok; Jeon, In-Jun; Ahn, Hyung Soo; Yi, Sam Nyung; Ha, Dong Han

    2015-01-01

    Highlights: • A hybrid device was demonstrated by using MEH-PPV, PEDOT:PSS, and GaN nanoneedles. • I–V curve of the hybrid device showed its rectification behaviour, similar to a diode. • EL peak originated by the different potential barriers at MEH-PPV and GaN interface. - Abstract: A hybrid device that combines the properties of organic and inorganic semiconductors was fabricated and studied. It incorporated poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as organic polymers and GaN nanoneedles as an inorganic semiconductor. Layers of the two polymers were spin coated on to the GaN nanoneedles. The one peak in the electroluminescence spectrum originated from the MEH-PPV layer owing to the different potential barriers of electrons and holes at its interface with the GaN nanoneedles. However, the photoluminescence spectrum showed peaks due to both GaN nanoneedles and MEH-PPV. Such hybrid structures, suitably developed, might be able to improve the efficiency of optoelectronic devices

  7. Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Min Jeong; Gwon, Dong-Oh; Lee, Chan-Mi; Lee, Gang Seok [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Jeon, In-Jun [Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Ahn, Hyung Soo [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Yi, Sam Nyung, E-mail: snyi@kmou.ac.kr [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Ha, Dong Han [Division of Convergence Technology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)

    2015-08-15

    Highlights: • A hybrid device was demonstrated by using MEH-PPV, PEDOT:PSS, and GaN nanoneedles. • I–V curve of the hybrid device showed its rectification behaviour, similar to a diode. • EL peak originated by the different potential barriers at MEH-PPV and GaN interface. - Abstract: A hybrid device that combines the properties of organic and inorganic semiconductors was fabricated and studied. It incorporated poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as organic polymers and GaN nanoneedles as an inorganic semiconductor. Layers of the two polymers were spin coated on to the GaN nanoneedles. The one peak in the electroluminescence spectrum originated from the MEH-PPV layer owing to the different potential barriers of electrons and holes at its interface with the GaN nanoneedles. However, the photoluminescence spectrum showed peaks due to both GaN nanoneedles and MEH-PPV. Such hybrid structures, suitably developed, might be able to improve the efficiency of optoelectronic devices.

  8. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides

    International Nuclear Information System (INIS)

    Ahmad, Shahab; Vijaya Prakash, G.; Baumberg, Jeremy J.

    2013-01-01

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C 12 H 25 NH 3 ) 2 PbI 4(1−y) Br 4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices

  9. Organic-inorganic hybrid thin film solar cells using conducting polymer and gold nanoparticles

    Science.gov (United States)

    Hwan Jung, Hyung; Ho Kim, Dong; Su Kim, Chang; Bae, Tae-Sung; Bum Chung, Kwun; Yoon Ryu, Seung

    2013-05-01

    We employed poly(styrenesulfonate)-doped poly (3,4-ethylenedioxythiophene) (PEDOT:PSS) as a p-layer on textured fluorine-tin-oxide (FTO) glass in pin-type hydrogenated amorphous silicon solar cells (a-Si:H SCs). An amorphous tungsten oxide (WO3) layer and gold nanoparticles (Au-NPs) 10 nm in size were included to prevent the degradation and to increase short-circuit current by the Plasmon effect, respectively, between the PEDOT:PSS and intrinsic-Si layer. The energy band between PEDOT:PSS and WO3 was meaningfully adjusted by Au-NPs. The p-type PEDOT:PSS layer in these organic-inorganic hybrid a-Si:H SCs results in an increased conversion efficiency from ˜2.42% to ˜5.49% and an increased open-circuit voltage from ˜0.29 V to ˜0.56 V. PEDOT:PSS on textured FTO glass is sufficiently showing that it can replace the p-type Si layer in pin-type a-Si:H SCs.

  10. Methodological comparison on hybrid nano organic solar cell fabrication

    Science.gov (United States)

    Vairavan, Rajendaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad

    2018-02-01

    The development of low cost solar cells has been the main focus in recent years. This has lead to the generation of photovoltaic cells based on hybrid of nanoparticle-organic polymer materials. This type of hybrid photovoltaic cells can overcome the problem of polymeric devices having low optical absorption and carrier mobilities. The hybrid cell has the potential of bridging the efficiency gap, which in present in organic and inorganic semiconductor materials. This project focuses on obtaining an hybrid active layer consisting of nanoparticles and organic polymer, to understand the parameter involved in obtaining this active layer and finally to investigate if the addition of nano particles in to the active layer could enhance the output of the hybrid solar cell. The hybrid active layer have will be deposited using the spin coating technique by using CdTe, CdS nano particles mixed with poly (2-methoxy,5-(2-ethyl-hexyloxy)-p-phenylvinylene)MEH-PPV.

  11. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    Science.gov (United States)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  12. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    Science.gov (United States)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  13. Hybrid organic-inorganic materials based on hydroxyapatite structure

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, Sana Ben; Bachouâ, Hassen [U.R. Matériaux et synthèse organique UR17ES31, Institut Préparatoire aux Etudes d’Ingénieur de Monastir, Université de Monastir, 5019 Monastir (Tunisia); Gruselle, Michel, E-mail: michel.gruselle@upmc.fr [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005 Paris (France); Beaunier, Patricia [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F-75005 Paris (France); Flambard, Alexandrine [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005 Paris (France); Badraoui, Béchir [U.R. Matériaux et synthèse organique UR17ES31, Institut Préparatoire aux Etudes d’Ingénieur de Monastir, Université de Monastir, 5019 Monastir (Tunisia)

    2017-04-15

    The present article details the formation of calcium hydroxyapatite synthesized by the hydrothermal way, in presence of glycine or sarcosine. The presence of these amino-acids during the synthetic processes reduces the crystalline growthing through the formation of hybrid organic-inorganic species The crystallite sizes are decreasing and the morphology is modified with the increase of the amino-acid concentration. - Graphical abstract: Formation of Ca carboxylate salt leading to the grafting of glycine and sarcosine on the Ca=Hap surface (R= H, CH3).

  14. Colour tuning in white hybrid inorganic/organic light-emitting diodes

    International Nuclear Information System (INIS)

    Bruckbauer, Jochen; Brasser, Catherine; Edwards, Paul R; Martin, Robert W; Findlay, Neil J; Skabara, Peter J; Wallis, David J

    2016-01-01

    White hybrid inorganic/organic light-emitting diodes (LEDs) were fabricated by combining a novel organic colour converter with a blue inorganic LED. An organic small molecule was specifically synthesised to act as down-converter. The characteristics of the white colour were controlled by changing the concentration of the organic molecule based on the BODIPY unit, which was embedded in a transparent matrix, and volume of the molecule and encapsulant mixture. The concentration has a critical effect on the conversion efficiency, i.e. how much of the absorbed blue light is converted into yellow light. With increasing concentration the conversion efficiency decreases. This quenching effect is due to aggregation of the organic molecule at higher concentrations. Increasing the deposited amount of the converter does not increase the yellow emission despite more blue light being absorbed. Degradation of the organic converter was also observed during a period of 15 months from LED fabrication. Angular-dependent measurements revealed slight deviation from a Lambertian profile for the blue and yellow emission peaks leading to a small change in ‘whiteness’ with emission angle. Warm white and cool white light with correlated colour temperatures of 2770 K and 7680 K, respectively, were achieved using different concentrations of the converter molecule. Although further work is needed to improve the lifetime and poor colour rendering, these hybrid LEDs show promising results as an alternative approach for generating white LEDs compared with phosphor-based white LEDs. (paper)

  15. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Bober, Patrycja; Kotek, Jiří; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1020-1027 ISSN 0366-6352 R&D Projects: GA ČR GA202/09/1626; GA AV ČR(CZ) IAAX08240901 Institutional support: RVO:61389013 Keywords : polyaniline * montmorillonite * organic-inorganic composite Subject RIV: JI - Composite Materials Impact factor: 1.193, year: 2013

  16. Synthesis, structural, thermal and optical studies of inorganic-organic hybrid semiconductors, R-PbI4

    Science.gov (United States)

    Pradeesh, K.; Nageswara Rao, K.; Vijaya Prakash, G.

    2013-02-01

    Wide varieties of naturally self-assembled two-dimensional inorganic-organic (IO) hybrid semiconductors, (4-ClC6H4NH3)2PbI4, (C6H9C2H4NH3)2PbI4, (CnH2n+1NH3)2PbI4 (where n = 12, 16, 18), (CnH2n-1NH3)2PbI4 (where n = 3, 4, 5), (C6H5C2H4NH3)2PbI4, NH3(CH2)12NH3PbI4, and (C4H3SC2H4NH3)2PbI4, were fabricated by intercalating structurally diverse organic guest moieties into lead iodide perovskite structure. The crystal packing of all these fabricated IO-hybrids comprises of well-ordered organic and inorganic layers, stacked-up alternately along c-axis. Almost all these hybrids are thermally stable upto 200 °C and show strong room-temperature exciton absorption and photoluminescence features. These strongly confined optical excitons are highly influenced by structural deformation of PbI matrix due to the conformation of organic moiety. A systematic correlation of optical exciton behavior of IO-hybrids with the organic/inorganic layer thicknesses, intercalating organic moieties, and various structural disorders were discussed. This systematic study clearly suggests that the PbI layer crumpling is directly responsible for the tunability of optical exciton energy.

  17. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel; Archer, Lynden A.

    2011-01-01

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona

  18. The First Organic-Inorganic Hybrid Luminescent Multiferroic: (Pyrrolidinium)MnBr3.

    Science.gov (United States)

    Zhang, Yi; Liao, Wei-Qiang; Fu, Da-Wei; Ye, Heng-Yun; Liu, Cai-Ming; Chen, Zhong-Ning; Xiong, Ren-Gen

    2015-07-08

    A hybrid organic-inorganic compound, (pyrrolidinium)MnBr3 , distinguished from rare earth (RE)-doped inorganic perovskites, is discovered as a new member of the ferroelectrics family, having excellent luminescent properties and relatively large spontaneous polarization of 6 μC cm(-2) , as well as a weak ferromagnetism at about 2.4 K. With a quantum yield of >28% and emission lifetime >0.1 ms, such multiferroic photoluminescence is a suitable candidate for future applications in luminescence materials, photovoltaics, and magneto-optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Control of the interphase interaction and morphology in the organic-inorganic polymer nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Matějka, Libor; Murias, Piotr

    2010-01-01

    Roč. 4, č. 10 (2010), s. 45-50 ISSN 1934-8959 R&D Projects: GA AV ČR IAA400500701 Institutional research plan: CEZ:AV0Z40500505 Keywords : organic-inorganic polymer * interphase interaction * nanocomposite Subject RIV: CD - Macromolecular Chemistry http://www.davidpublishing.com

  20. Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites

    International Nuclear Information System (INIS)

    Kassiba, A; Boucle, J; Makowska-Janusik, M; Errien, N

    2007-01-01

    Hybrid nanocomposites which combine polymer as host matrix and nanocrystals as active elements are promising functional materials for electronics, optics or photonics. In these systems, the physical response is governed by the nanocrystal features (size, surface and defect states), the polymer properties and the polymer-nanocrystal interface. This work reviews some selective nanostructured architectures based on active elements such as silicon carbide (SiC) nanocrystals and polymer host matrices. Beyond an overview of some key properties of the nanocrystals, a main part will be devoted to the electro-optical (EO) properties of SiC based hybrid systems where SiC nanocrystals are embedded in polymer matrices of different chemical nature such as poly-(methylmethacrylate) (PMMA), poly-vinylcarbazole (PVK) or polycarbonate. Using this approach, the organic-inorganic interface effects are emphasised with regard to the dielectric or hole transporting behaviour of PMMA and PVK respectively. These effects are illustrated through different EO responses associated with hybrid composites based on PMMA or PVK

  1. Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites

    Science.gov (United States)

    Kassiba, A.; Bouclé, J.; Makowska-Janusik, M.; Errien, N.

    2007-08-01

    Hybrid nanocomposites which combine polymer as host matrix and nanocrystals as active elements are promising functional materials for electronics, optics or photonics. In these systems, the physical response is governed by the nanocrystal features (size, surface and defect states), the polymer properties and the polymer-nanocrystal interface. This work reviews some selective nanostructured architectures based on active elements such as silicon carbide (SiC) nanocrystals and polymer host matrices. Beyond an overview of some key properties of the nanocrystals, a main part will be devoted to the electro-optical (EO) properties of SiC based hybrid systems where SiC nanocrystals are embedded in polymer matrices of different chemical nature such as poly-(methylmethacrylate) (PMMA), poly-vinylcarbazole (PVK) or polycarbonate. Using this approach, the organic-inorganic interface effects are emphasised with regard to the dielectric or hole transporting behaviour of PMMA and PVK respectively. These effects are illustrated through different EO responses associated with hybrid composites based on PMMA or PVK.

  2. Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    Science.gov (United States)

    Sinibaldi, Alberto; Danz, Norbert; Munzert, Peter; Michelotti, Francesco

    2018-06-01

    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.

  3. Magnetic phase transition in layered inorganic-organic hybrid (C12H25NH3)2CuCl4

    Science.gov (United States)

    Bochalya, Madhu; Kumar, Sunil; Kanaujia, Pawan K.; Prakash, G. Vijaya

    2018-05-01

    Inorganic-organic (IO) hybrids are material systems which have become an interesting theme of research for physicist and chemists recently due to the possibility of engineering specific magnetic, thermal or optoelectronic properties by playing around with the transition metal, halides and the organic components. Our experiments on (C12H25NH3)2CuCl4 show that the system exhibits a long range ferromagnetic order below ˜11 K. In such an inorganic-organic hybrid system, Jahn-Teller distortion of the copper ions results into a weak ferromagnetic order as compared to the antiferromagnetic spin-spin exchange in the pure inorganic CuCl2 compound. Moreover, this particular hybrid system also exhibits photoluminescence when excited below absorption maximum related to charge transfer peak though the effect is much weaker as compared to that in extensively studied other MX4-based (M = Sn, Pb; X = Cl, Br, I) counterparts.

  4. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Science.gov (United States)

    Stiff-Roberts, Adrienne D.; Ge, Wangyao

    2017-12-01

    Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.

  5. Responsive hybrid inorganic-organic system derived from lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhan [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Jiang, Lasheng; Yang, Jinglian [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006 (China)

    2016-05-15

    Highlights: • A novel covalent hybrid material was used to detect hemoglobin. • All the recognition experiments were performed in buffer solution. • Porous nano-structures was extensively studied for the recognition. - Abstract: Terbium ions were incorporated into new organic-inorganic matrices to achieve intense green emissions. Hemoglobin (HB) interactions lead to dramatic changes in the luminescence emission intensities. Infrared spectra, morphological studies and photoluminescence give information for the speciation and process of hemoglobin additions. The porous material has a large specific surface area of 351 cm{sup 2}/g and the detection limit for HB (0.7 μM) was much lower than its physical doped material (8 μM). This promising hybrid material will lead to the design of versatile optical probes that are efficiently responding to the external targets.

  6. Synchrotron radiation studies of inorganic-organic semiconductor interfaces

    International Nuclear Information System (INIS)

    Evans, D.A.; Steiner, H.J.; Vearey-Roberts, A.R.; Bushell, A.; Cabailh, G.; O'Brien, S.; Wells, J.W.; McGovern, I.T.; Dhanak, V.R.; Kampen, T.U.; Zahn, D.R.T.; Batchelor, D.

    2003-01-01

    Organic semiconductors (polymers and small molecules) are widely used in electronic and optoelectronic technologies. Many devices are based on multilayer structures where interfaces play a central role in device performance and where inorganic semiconductor models are inadequate. Synchrotron radiation techniques such as photoelectron spectroscopy (PES), near-edge X-ray absorption fine structure (NEXAFS) and X-ray standing wave spectroscopy (XSW) provide a powerful means of probing the structural, electronic and chemical properties of these interfaces. The surface-specificity of these techniques allows key properties to be monitored as the heterostructure is fabricated. This methodology has been directed at the growth of hybrid organic-inorganic semiconductor interfaces involving copper phthalocyanine as the model organic material and InSb and GaAs as the model inorganic semiconductor substrates. Core level PES has revealed that these interfaces are abrupt and chemically inert due to the weak bonding between the molecules and the inorganic semiconductor. NEXAFS studies have shown that there is a preferred orientation of the molecules within the organic semiconductor layers. The valence band offsets for the heterojunctions have been directly measured using valence level PES and were found to be very different for copper phthalocyanine on InSb and GaAs (0.7 and -0.3 eV respectively) although an interface dipole is present in both cases

  7. 2D Organic-Inorganic Hybrid Thin Films for Flexible UV-Visible Photodetectors

    KAUST Repository

    Velusamy, Dhinesh Babu

    2017-02-13

    Flexible 2D inorganic MoS and organic g-CN hybrid thin film photodetectors with tunable composition and photodetection properties are developed using simple solution processing. The hybrid films fabricated on paper substrate show broadband photodetection suitable for both UV and visible light with good responsivity, detectivity, and reliable and rapid photoswitching characteristics comparable to monolayer devices. This excellent performance is retained even after the films are severely deformed at a bending radius of ≈2 mm for hundreds of cycles. The detailed charge transfer and separation processes at the interface between the 2D materials in the hybrid films are confirmed by femtosecond transient absorption spectroscopy with broadband capability.

  8. In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells

    Science.gov (United States)

    Pradeesh, K.; Baumberg, J. J.; Prakash, G. Vijaya

    2009-07-01

    Thin films of self-organized quantum wells of inorganic-organic hybrid perovskites of (C6H9C2H4NH3)2PbI4 are formed from a simple intercalation strategy to yield well-ordered uniform films over centimeter-size scales. These films compare favorably with traditional solution-chemistry-synthesized thin films. The hybrid films show strong room-temperature exciton-related absorption and photoluminescence, which shift with fabrication protocol. We demonstrate the potential of this method for electronic and photonic device applications.

  9. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds

    Czech Academy of Sciences Publication Activity Database

    Strachota, Adam; Ribot, F.; Matějka, Libor; Whelan, P.; Starovoytova, Larisa; Pleštil, Josef; Steinhart, Miloš; Šlouf, Miroslav; Hromádková, Jiřina; Kovářová, Jana; Špírková, Milena; Strachota, Beata

    2012-01-01

    Roč. 45, č. 1 (2012), s. 221-237 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500701; GA ČR GAP108/11/2151 Institutional research plan: CEZ:AV0Z40500505 Keywords : stannoxane * organic-inorganic hybrid * epoxy Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.521, year: 2012

  10. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    Science.gov (United States)

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  11. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    Science.gov (United States)

    Park, Nayoung; Kwon, Yongwoo; Choi, Jaeho; Jang, Ho Won; Cha, Pil-Ryung

    2018-04-01

    We demonstrate thermally assisted hopping (TAH) as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC) model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  12. Interplay between organic cations and inorganic framework and incommensurability in hybrid lead-halide perovskite CH3NH3PbBr3

    Science.gov (United States)

    Guo, Yinsheng; Yaffe, Omer; Paley, Daniel W.; Beecher, Alexander N.; Hull, Trevor D.; Szpak, Guilherme; Owen, Jonathan S.; Brus, Louis E.; Pimenta, Marcos A.

    2017-09-01

    Organic-inorganic coupling in the hybrid lead-halide perovskite is a central issue in rationalizing the outstanding photovoltaic performance of these emerging materials. Here, we compare and contrast the evolution of the structure and dynamics of hybrid CH3NH3PbBr3 and inorganic CsPbBr3 lead-halide perovskites with temperature, using Raman spectroscopy and single-crystal x-ray diffraction. Results reveal a stark contrast between their order-disorder transitions, which are abrupt for the hybrid whereas smooth for the inorganic perovskite. X-ray diffraction observes an intermediate incommensurate phase between the ordered and the disordered phases in CH3NH3PbBr3 . Low-frequency Raman scattering captures the appearance of a sharp soft mode in the incommensurate phase, ascribed to the theoretically predicted amplitudon mode. Our work highlights the interaction between the structural dynamics of organic cation CH3NH3+ and the lead-halide framework, and unravels the competition between tendencies for the organic and inorganic moieties to minimize energy in the incommensurate phase of the hybrid perovskite structure.

  13. Hybrid nanocomposites based on conducting polymer and silicon nanowires for photovoltaic application

    International Nuclear Information System (INIS)

    Chehata, Nadia; Ltaief, Adnen; Ilahi, Bouraoui; Salem, Bassem; Bouazizi, Abdelaziz; Maaref, Hassen; Baron, Thierry

    2014-01-01

    Hybrid nanocomposites based on a nanoscale combination of organic and inorganic semiconductors are a promising way to enhance the performance of solar cells through a higher aspect ratio of the interface and the good processability of polymers. Nanocomposites are based on a heterojunction network between poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) as an organic electron donor and silicon nanowires (SiNWs) as an inorganic electron acceptor. Nanowires (NWs) seem to be a promising material for this purpose, as they provide a large surface area for contact with the polymer and a designated conducting pathway whilst their volume is low. In this paper, silicon nanowires are introduced by mixing them into the polymer matrix. Hybrid nanocomposites films were deposited onto ITO substrate by spin coating method. Optical properties and photocurrent response were investigated. Charge transfer between the polymer and SiNWs has been demonstrated through photoluminescence measurements. The photocurrent density of ITO/MEH-PPV:SiNWs/Al structures have been obtained by J–V characteristics. The J sc value is about 0.39 µA/cm 2 . - Highlights: • SiNWs synthesis by Vapor–Liquid–Solid (VLS) mechanism. • SiNWs contribution to absorption spectra enhancement of MEH-PPV:SiNWs nanocomposites. • Decrease of PL intensity of MEH-PPV by addition of SiNWs. • Charge transfer process was taken place. • ITO/MEH-PPV:SiNWs/Al structure shows a photovoltaic effect, with a FF of 0.32

  14. Polyacrylamide-based inorganic hybrid flocculants with self-degradable property

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinfang [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Tao, Junshi; Li, Mingzhi; Zhu, Bishan; Li, Xuan; Ma, Zhiyu; Zhao, Tingjie; Wang, Bingzhu; Suo, Biao [Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Wang, Haiwang, E-mail: whwdbdx@126.com [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Yang, Jun, E-mail: jyang@ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Ye, Li, E-mail: yeli@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190 (China); Qi, Xiwei, E-mail: qxw@mail.neuq.edu.cn [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2017-05-01

    Polyacrylamide (PAM)-based inorganic hybrid materials are of great potential as flocculants in soil-liquid separation. Herein, we reported the design of inorganic soil-TiO{sub 2}-PAM hybrid materials using a unique process, which involved coating of titanium dioxide (TiO{sub 2}) nanoparticles on the surface of inorganic soils and subsequent polymerization of acrylamide (AM) on these nanoparticles under visible light. Inorganic soils including kaolin, bentonite, montmorillonite and diatomaceous earth were used to control the volume and to reduce the cost, and the TiO{sub 2} nanoparticles accelerated PAM degradation. The nanoparticles initiated AM polymerization directly under visible light, thus providing a facile strategy for the synthesis of new organic-inorganic hybrid flocculants. The obtained hybrid materials were characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. The degradation of PAM initiated by UV irradiation exceeded 24% in 2 h, depending on its initial concentration. - Highlights: • A new polyacrylamide (PAM)-based inorganic hybrid flocculants with self-degradable property was developed. • TiO{sub 2} nanoparticles show a unique surface-initiated property under the condition of visible light. • We designed a facile strategy for the synthesis of inorganic soil@TiO{sub 2}@PAM hybrid materials.

  15. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries

    Science.gov (United States)

    Xiao, Wei; Wang, Zhiyan; Zhang, Yan; Fang, Rui; Yuan, Zun; Miao, Chang; Yan, Xuemin; Jiang, Yu

    2018-04-01

    To improve the ionic conductivity as well as enhance the mechanical strength of the gel polymer electrolyte, poly(vinylidene fluoride-hexafluoroprolene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with the organic-inorganic hybrid particles poly(methyl methacrylate) -ZrO2 (PMMA-ZrO2) are prepared by phase inversion method, in which PMMA is successfully grafted onto the surface of the homemade nano-ZrO2 particles via in situ polymerization confirmed by FT-IR. XRD and DSC patterns show adding PMMA-ZrO2 particles into P(VDF-HFP) can significantly decrease the crystallinity of the CPE membrane. The CPE membrane doped with 5 wt % PMMA-ZrO2 particles can not only present a homogeneous surface with abundant interconnected micro-pores, but maintain its initial shape after thermal exposure at 160 °C for 1 h, in which the ionic conductivity and lithium ion transference number at room temperature can reach to 3.59 × 10-3 S cm-1 and 0.41, respectively. The fitting results of the EIS plots indicate the doped PMMA-ZrO2 particles can significantly lower the interface resistance and promote lithium ions diffusion rate. The Li/CPE-sPZ/LiCoO2 and Li/CPE-sPZ/Graphite coin cells can deliver excellent rate and cycling performance. Those results suggest the P(VDF-HFP)-based CPE doped with 5 wt % PMMA-ZrO2 particles can become an exciting potential candidate as polymer electrolyte for the lithium ion battery.

  16. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    Directory of Open Access Journals (Sweden)

    Nayoung Park

    2018-04-01

    Full Text Available We demonstrate thermally assisted hopping (TAH as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  17. BaZrO3 perovskite nanoparticles as emissive material for organic/inorganic hybrid light-emitting diodes

    DEFF Research Database (Denmark)

    Tamulevičius, S.; Ivaniuk, K.; Cherpak, V.

    2017-01-01

    In the present work we have demonstrated double-channel emission from organic exciplexes coupled to inorganic nanoparticles. The process is demonstrated by yellow-green emission in light-emitting diodes based on organic exciplexes hybridized with perovskite-type dispersed BaZrO3 nanoparticles...

  18. Transparent bulk-size nanocomposites with high inorganic loading

    International Nuclear Information System (INIS)

    Chen, Shi; Gaume, Romain

    2015-01-01

    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymer nanocomposite containing 61 vol. % CaF 2 nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications

  19. Synthesis of hybrid organic–inorganic nanocomposite materials based on CdS nanocrystals for energy conversion applications

    International Nuclear Information System (INIS)

    Laera, A. M.; Resta, V.; Ferrara, M. C.; Schioppa, M.; Piscopiello, E.; Tapfer, L.

    2011-01-01

    Efficient solar energy conversion is strongly related to the development of new materials with enhanced functional properties. In this context, a wide variety of inorganic, organic, or hybrid nanostructured materials have been investigated. In particular, in hybrid organic–inorganic nanocomposites are combined the convenient properties of organic polymers, such as easy manipulation and mechanical flexibility, and the unique size-dependent properties of nanocrystals (NCs). However, applications of hybrid nanocomposites in photovoltaic devices require a homogeneous and highly dense dispersion of NCs in polymer in order to guarantee not only an efficient charge separation, but also an efficient transport of the carriers to the electrodes without recombination. In previous works, we demonstrated that cadmium thiolate complexes are suitable precursors for the in situ synthesis of nanocrystalline CdS. Here, we show that the soluble [Cd(SBz) 2 ] 2 ·(1-methyl imidazole) complex can be efficiently annealed in a conjugated polymer obtaining a nanocomposite with a regular and compact network of NCs. The proposed synthetic strategies require annealing temperatures well below 200 °C and short time for the thermal treatment, i.e., less than 30 min. We also show that the same complex can be used to synthesize CdS NCs in mesoporous TiO 2 . The adsorption of cadmium thiolate molecule in TiO 2 matrix can be obtained by using chemical bath deposition technique and subsequent thermal annealing. The use of NCs, quantum dots, as sensitizers of TiO 2 matrices represents a very promising alternative to common dye-sensitized solar cells and an interesting solution for heterogeneous photocatalysis.

  20. Role of surfactant on thermoelectric behaviors of organic-inorganic composites

    Science.gov (United States)

    Shin, Sunmi; Roh, Jong Wook; Kim, Hyun-Sik; Chen, Renkun

    2018-05-01

    Hybrid organic/inorganic composites have recently attracted intensive interests as a promising candidate for flexible thermoelectric (TE) devices using inherently soft polymers as well as for increasing the degree of freedom to control TE properties. Experimentally, however, enhanced TE performance in hybrid composites has not been commonly observed, primarily due to inhomogeneous mixing between the inorganic and organic components which leads to limited electrical conduction in the less conductive component and consequently a low power factor in the composites compared to their single-component counterparts. In this study, we investigated the effects of different surfactants on the uniformity of mixing and the TE behaviors of the hybrid composites consisting of Bi0.5Sb1.5Te3 (BST) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). We found that compared to dimethyl sulfoxide, which is the most widely used surfactant, Triton X-100 (TX-100) can lead to homogenous dispersion of BST in PEDOT:PSS. By systematically studying the effects of the surfactant concentration, we can attribute the better mixing capability of TX-100 to its non-ionic property, which results in homogenous mixing with a lower critical micelle concentration. Consequently, we observed simultaneous increase in electrical conductivity and Seebeck coefficient in the BST/PEDOT:PSS composites with the TX-100 surfactant.

  1. Biexciton Auger Recombination Differs in Hybrid and Inorganic Halide Perovskite Quantum Dots.

    Science.gov (United States)

    Eperon, Giles E; Jedlicka, Erin; Ginger, David S

    2018-01-04

    We use time-resolved photoluminescence measurements to determine the biexciton Auger recombination rate in both hybrid organic-inorganic and fully inorganic halide perovskite nanocrystals as a function of nanocrystal volume. We find that the volume scaling of the biexciton Auger rate in the hybrid perovskites, containing a polar organic A-site cation, is significantly shallower than in the fully inorganic Cs-based nanocrystals. As the nanocrystals become smaller, the Auger rate in the hybrid nanocrystals increases even less than expected, compared to the fully inorganic nanocrystals, which already show a shallower volume dependence than other material systems such as chalcogenide quantum dots. This finding suggests there may be differences in the strength of Coulombic interactions between the fully inorganic and hybrid perovskites, which may prove to be crucial in selecting materials to obtain the highest performing devices in the future, and hints that there could be something "special" about the hybrid materials.

  2. Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.

    Science.gov (United States)

    Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing

    2015-10-01

    In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hybrid organic-inorganic coatings and films containing conducting polyaniline nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Stejskal, Jaroslav; Prokeš, J.

    2004-01-01

    Roč. 212, č. 1 (2004), s. 343-348 ISSN 1022-1360. [Electrical and Related Properties of Polymers and Other Organic Solids /9./. Prague, 14.07.2002-18.07.2002] R&D Projects: GA AV ČR KSK4050111; GA ČR GA203/01/0735 Institutional research plan: CEZ:AV0Z4050913 Keywords : atomic force microscopy * films * hybrid networks Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.691, year: 2004

  4. Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature.

    Science.gov (United States)

    Tan, Rui; Gao, Rongtan; Zhao, Yan; Zhang, Mingjian; Xu, Junyi; Yang, Jinlong; Pan, Feng

    2016-11-16

    A novel type of organic-inorganic hybrid polymer electrolytes with high electrochemical performances around room temperature is formed by hybrid of nanofillers, Y-type oligomer, polyoxyethylene and Li-salt (PBA-Li), of which the T g and T m are significantly lowered by blended heterogeneous polyethers and embedded nanofillers with benefit of the dipole modification to achieve the high Li-ion migration due to more free-volume space. The quasi-solid-state Li-ion batteries based on the LiFePO 4 /15PBA-Li/Li-metal cells present remarkable reversible capacities (133 and 165 mAh g -1 @0.2 C at 30 and 45 °C, respectively), good rate ability and stable cycle performance (141.9 mAh g -1 @0.2 C at 30 °C after 150 cycles).

  5. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators

    Science.gov (United States)

    Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok

    2018-06-01

    A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.

  6. Inorganic polymers and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2001-01-01

    This DOE-sponsored project was focused on the design, synthesis, characterization, and applications of new types of boron and silicon polymers with a goal of attaining processable precursors to advanced ceramic materials of technological importance. This work demonstrated a viable design strategy for the systematic formation of polymeric precursors to ceramics based on the controlled functionalization of preformed polymers with pendant groups of suitable compositions and crosslinking properties. Both the new dipentylamine-polyborazylene and pinacolborane-hydridopolysilazane polymers, unlike the parent polyborazylene and other polyborosilazanes, are stable as melts and can be easily spun into polymer fibers. Subsequent pyrolyses of these polymer fibers then provide excellent routes to BN and SiNCB ceramic fibers. The ease of synthesis of both polymer systems suggests new hybrid polymers with a range of substituents appended to polyborazylene or polysilazane backbones, as well as other types of preceramic polymers, should now be readily achieved, thereby allowing even greater control over polymer and ceramic properties. This control should now enable the systematic tailoring of the polymers and derived ceramics for use in different technological applications. Other major recent achievements include the development of new types of metal-catalyzed methods needed for the polymerization and modification of inorganic monomers and polymers, and the modification studies of polyvinylsiloxane and related polymers with substituents that enable the formation of single source precursors to high-strength, sintered SiC ceramics.

  7. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites

    Science.gov (United States)

    Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky

    2016-03-01

    Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed.Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled

  8. Three inorganic-organic hybrids of bismuth(III) iodide complexes containing substituted 1,2,4-triazole organic components with charaterizations of diffuse reflectance spectra

    International Nuclear Information System (INIS)

    Liu Bing; Xu Ling; Guo Guocong; Huang Jinshun

    2006-01-01

    The reactions of two kinds of substituted 1,2,4-triazoles with BiI 3 yielded three inorganic-organic hybrids: [HL1] 4 [Bi 6 I 22 ].[L1] 4 .4H 2 O (1) (L1=3-(1,2,4-triazole-4-yl)-1H-1,2,4-triazole); [HL2] 4 [Bi 6 I 22 ].6H 2 O (2); [HL2] 2 [Bi 2 I 8 ].[L2] 2 (3) (L2=(m-phenol)-1,2,4-triazole). Both 1 and 2 have polynuclear anions of [Bi 6 I 22 ] 4- to build up the inorganic layers and substituted 1,2,4-triazoles as the organic layers. Hybrid 3 consists of two BiI 5 square pyramids as inorganic layers. There exist hydrogen bondings and I...;I interactions in the structures of 1, 2 and 3. Optical absorption spectra of 1, 2 and 3 reveal the presence of sharp optical gaps of 1.77, 1.77 and 2.07 eV, respectively, suggesting that these materials behave as semiconductors. - Graphical abstract: The reactions of two kinds of the substituted 1,2,4-triazoles with BiI 3 yielded three layered inorganic-organic hybrids [HL1] 4 [Bi 6 I 22 ].[L1] 4 .4H 2 O (1), [HL2] 4 [Bi 6 I 22 ].6H 2 O (2), [HL2] 2 [Bi 2 I 8 ].[L2] 2 (3) with optical gaps of 1.77, 1.77 and 2.07 eV, respectively. The structures of 1-3 are constructed from inorganic layers of polynuclear anions of bismuth iodine and organic layers of the substituted 1,2,4-triazoles

  9. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

    Science.gov (United States)

    Willander, M.; Nur, O.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I.

    2011-06-01

    Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 °C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current-voltage (I-V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.

  10. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

    International Nuclear Information System (INIS)

    Willander, M; Nur, O; Zaman, S; Zainelabdin, A; Bano, N; Hussain, I

    2011-01-01

    Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 0 C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current-voltage (I-V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.

  11. Coexisting Ferromagnetic and Ferroelectric Order in a CuCl4-based Organic-Inorganic Hybrid

    NARCIS (Netherlands)

    Polyakov, Alexey O.; Arkenbout, Anne H.; Baas, Jacob; Blake, Graeme R.; Meetsma, Auke; Caretta, Antonio; van Loosdrecht, Paul H. M.; Palstra, Thomas T. M.

    2012-01-01

    We investigate the structural, magnetic, and dielectric properties of the organic-inorganic hybrid material CuCl4(C6H5CH2CH2NH3)(2) and demonstrate that spontaneous ferroelectric order sets in below 340 K, which coexists with ferromagnetic ordering below 13 K. We use X-ray diffraction to show that

  12. Enhancing Optically Pumped Organic-Inorganic Hybrid Perovskite Amplified Spontaneous Emission via Compound Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2018-03-01

    Full Text Available Organic-inorganic hybrid perovskite has attracted intensive attention from researchers as the gain medium in lasing devices. However, achieving electrically driven lasing remains a significant challenge. Modifying the devices’ structure to enhance the optically pumped amplified spontaneous emission (ASE is the key issue. In this work, gold nanoparticles (Au NPs are first doped into PEDOT: PSS buffer layer in a slab waveguide device structure: Quartz/PEDOT: PSS (with or w/o Au NPs/CH3NH3PbBr3. As a result, the facile device shows a significantly enhanced ASE intensity and a narrowed full width at half maximum. Based on experiments and theoretical simulation data, the improvement is mainly a result of the compound surface plasmon resonance, including simultaneous near- and far-field effects, both of which could increase the density of excitons excited state and accelerate the radiative decay process. This method is highly significant for the design and development and fabrication of high-performance organic-inorganic hybrid perovskite lasing diodes.

  13. Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data

    NARCIS (Netherlands)

    Stenzel, O.; Hassfeld, H.; Thiedmann, R.; Koster, L. J. A.; Oosterhout, S. D.; van Bavel, S. S.; Wienk, M. M.; Loos, J.; Janssen, R. A. J.; Schmidt, V.

    A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas

  14. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Directory of Open Access Journals (Sweden)

    Yuanhang Ren

    2015-03-01

    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  15. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    Science.gov (United States)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  16. {pi}-{pi} Interactions and magnetic properties in a series of hybrid inorganic-organic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Lemus-Santana, A.A. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Mexico, D. F. (Mexico); Rodriguez-Hernandez, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Mexico, D. F. (Mexico); Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Knobel, M. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, SP (Brazil); Reguera, E., E-mail: edilso.reguera@gmail.com [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Mexico, D. F. (Mexico)

    2013-01-15

    The series of hybrid inorganic-organic solids T(Im){sub 2}[Ni(CN){sub 4}] with T=Fe, Co, Ni and Im=imidazole were prepared by soft chemical routes from aqueous solutions of the involved building units: imidazole, T{sup 2+} metal and the [Ni(CN){sub 4}]{sup 2-} anionic block. The obtained samples were characterized from infrared and UV-vis spectroscopies, and thermogravimetric, X-ray diffraction and magnetic measurements. Anhydrous solids which crystallize with a monoclinic unit cell, in the I2/a space group with four formula units per cell (Z=4) were obtained. Their crystal structure was solved ab initio from the recorded X-ray powder patterns and then refined by the Rietveld method. The metal T is found with octahedral coordination to four N ends of CN groups and two imidazole molecules while the inner Ni atom preserves its planar coordination. The system of layers remains stacked in an ordered 3D structure through dipole-dipole and {pi}-{pi} interactions between imidazole rings from neighboring layers. In this way, a pillared structure is achieved without requiring the coordination of both nitrogen atoms from imidazole ring. The recorded magnetic data indicate the occurrence of a predominant ferromagnetic interaction at low temperature for Co and Ni but not for Fe. Such magnetic ordering is more favorable for Ni with transition temperature of 14.67 K, which was ascribed to the relatively high polarizing power for this metal. Within the considered T metals, to nickel the highest electron-withdrawing ability corresponds and this leads to an increase for the metal-ligand electron clouds overlapping and to a stronger {pi}-{pi} attractive interaction, two factors that result into a higher magnetic ordering temperature. - Graphical Abstract: Magnetic ordering through the {pi}-{pi} interaction between the imidazole rings. Highlights: Black-Right-Pointing-Pointer Hybrid inorganic-organic solids. Black-Right-Pointing-Pointer Hybrid inorganic-organic molecular based

  17. Fabrication of InP-pentacene inorganic-organic hybrid heterojunction using MOCVD grown InP for photodetector application

    Science.gov (United States)

    Sarkar, Kalyan Jyoti; Pal, B.; Banerji, P.

    2018-04-01

    We fabricated inorganic-organic hybrid heterojunction between indium phosphide (InP) and pentacene for photodetector application. InP layer was grown on n-Si substrate by atmospheric pressure metal organic chemical vapour deposition (MOCVD) technique. Morphological properties of InP and pentacene thin film were characterized by atomic force microscopy (AFM). Current-voltage characteristics were investigated in dark and under illumination condition at room temperature. During illumination, different wavelengths of visible and infrared light source were employed to perform the electrical measurement. Enhancement of photocurrent was observed with decreasing in wavelength of incident photo radiation. Ideality factor was found to be 1.92. High rectification ratio of 225 was found at ± 3 V in presence of infrared light source. This study provides new insights of inorganic-organic hybrid heterojunction for broadband photoresponse in visible to near infrared (IR) region under low reverse bias condition.

  18. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  19. Evaluation of Surface Characteristics of Denture Base Using Organic-Inorganic Hybrid Coating: An SEM Study.

    Science.gov (United States)

    Aa, Jafari; Mh, Lotfi-Kamran; M, Ghafoorzadeh; Sm, Shaddel

    2017-06-01

    Despite the numerous positive features of acrylic denture base, there are a number of undeniable associated disadvantages. The properties of denture base have been improved through various interventions including application of different types of filler and coatings. This study aimed to evaluate the surface roughness, thickness and coating quality of organic-inorganic coating on the denture base through scanning electron microscopy. Moreover, the colour change was evaluated visually. The organic-inorganic hybrid coatings were prepared. Acrylic discs of 10×10 mm were fabricated. The test discs were dipped in the hybrid coating and cured. In order to evaluate the surface roughness and coating thickness, the surface and cross-section of the samples in both coated and control groups were subjected to scanning electron microscopy. The colour change and transparency were visually evaluated with naked eyes. The data were statistically analyzed by student's t test. The hybrid materials perfectly covered all the surfaces of acrylic resin and established proper thickness. The coated group seemed smoother and flatter than the control group; however, the difference was not statistically significant ( for all parameters p > 0.05). It was quite a thin coating and no perceptible colour change was observed. The hybrid coating maintained good binding, caused no noticeable discoloration, and thoroughly covered the acrylic resin surface with uniform delicate thickness. It also slightly improved the acrylic resin surface roughness.

  20. Syntheses, structures and properties of four organic-inorganic hybrid nicotinate-bridging rare-earth-containing phosphotungstates

    Science.gov (United States)

    Gong, Peijun; Pang, Jingjing; Zhai, Cuiping; Zhao, Junwei

    2018-04-01

    Four novel organic-inorganic hybrid nicotinate-bridging dimeric rare-earth (RE)-containing phosphotungstates [H2N(CH3)2]8[RE(H2O)(NA)(α-HPW11O39)]2·24H2O (RE = HoIII for 1, ErIII for 2, TbIII for 3, DyIII for 4; HNA = nicotinic acid) have been synthesized from the reaction of trivacant Keggin precursor Na9[α-PW9O34]•16H2O, RE(NO3)3·6H2O, HNA by employing dimethylamine hydrochloride as organic solubilizing agent in the conventional aqueous solution system, which have been further characterized by elemental analyses, IR spectra, thermogravimetric analyses and single-crystal X-ray diffraction. Structural analysis indicates that the hybrid dimeric {[RE(H2O)(NA)(α-HPW11O39)]2}8- polyoxoanion in 1-4 can be considered as two head-to-head mono-RE-containing Keggin [RE(H2O)(NA)(α-HPW11O39)]4- subunits bridged by two (η2,μ-1,1)-nicotinate linkers, which stands for the first organic-inorganic hybrid RE-containing phosphotungstates functionalized by nicotinate ligands. What's more, the solid-state photoluminescence properties and lifetime decay behaviors of 1-4 have been measured at room temperature and their photoluminescence spectra display the characteristic emission bands of corresponding trivalent RE cations.

  1. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  2. Influence of the polymer amount on bioactivity and biocompatibility of SiO{sub 2}/PEG hybrid materials synthesized by sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-03-01

    SiO{sub 2}/PEG organic–inorganic hybrid materials, which differ in polyethylene glycol (PEG) content, were synthesized by sol–gel technique and the characterization of their structure and biological properties was carried out in order to evaluate the possible use in biomedical field. FT-IR spectroscopy detected that the two components of the hybrids (SiO{sub 2} and PEG) are linked by hydrogen bonds between the Si–OH groups of the inorganic phase and the terminal alcoholic groups and/or the ethereal oxygen atoms in the repeating units of polymer. X-ray diffraction analysis ascertained the amorphous nature of the gels and the observation of their morphology by SEM microscopy confirmed that the interpenetration of the two phases (organic and inorganic) occurs on nanometric scale. The biological characterization was carried out as a function of the polymer amount to study its influence on material behavior. The results showed that the synthesized materials were bioactive and biocompatible. The formation of a hydroxyapatite layer, indeed, was observed on their surface by SEM/EDX analysis after soaking in simulated body fluid. Moreover, the biocompatibility of SiO{sub 2}/PEG hybrids was assessed performing MTT and SRB cytotoxicity tests on fibroblast cell NIH 3T3 after 24 and 48 h of exposure, as well as Trypan Blue dye exclusion test. The response to the presence of the investigated materials was positive. The cell growth and proliferation showed dependence on polymer amount and time of exposure to the material extracts. Therefore, the obtained results are encouraging for the use of the obtained hybrids in dental or orthopedic applications. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Chemical and morphological characterization of hybrid materials • Chemical interactions between inorganic and organic components • Biological characterizations with MTT and SRB cytotoxicity tests

  3. Organic-inorganic hybrid foams with diatomite addition: Effect on functional properties

    Science.gov (United States)

    Verdolotti, L.; D'Auria, M.; Lavorgna, M.; Vollaro, P.; Iannace, S.; Capasso, I.; Galzerano, B.; Caputo, D.; Liguori, B.

    2016-05-01

    Organic-inorganic hybrid foams were prepared by using metakaolin, diatomite as a partial (or total) replacement of metakaolin, as matrix, silicon and whipped protein as pore forming. The foamed systems were hardened at defined temperature and time and then characterized by mechanical point of view through compression tests and by functional point of view through fire reaction and acoustic tests. The experimental findings highlighted that the replacement of diatomite in the formulation affected the morphological structure of the foams and consequently their mechanical properties. In particular, the consolidation mechanism in the diatomite based-hybrid foams changed from geopolymerization to a silicate polycondensation mechanism. Therefore, mechanical performances enhanced with increasing of the diatomite content. Fire reaction tests, such as non-combustibility and cone calorimeter tests, showed positive thermal inertia of samples regardless of the content of diatomite.

  4. Organic-inorganic semiconductor hybrid systems. Structure, morphology, and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    El Helou, Mira

    2012-08-22

    This dissertation addresses the preparation and characterization of hybrid semiconducting systems combining organic with inorganic materials. Characterization methods used included to determine the structure, morphology, and thermal stability comprised X-ray diffraction (XRD), atomic force microscopy (AFM), thermal desorption spectroscopy (TDS), and X-ray photoelectron spectroscopy (XPS). One organic-inorganic semiconducting system was pentacene (C{sub 22}H{sub 14}) and zinc oxide. This interface was investigated in detail for pentacene on an oxygen-terminated zinc oxide surface, i.e. ZnO(000 anti 1). An extended study on the promising p-n junction was carried out for pentacene on ZnO with different orientations which exhibit different chemical and structural characteristics: ZnO(000 anti 1), ZnO(0001), and ZnO(10 anti 10). Moreover, the organic crystal structure of pentacene was selectively tuned by carefully choosing the substrate temperature. This defined interface with a physisorbed pentacene layer on ZnO was characterized by optical absorption which depends on the temperature of the measured system, the pentacene film thickness, and the molecular orientation and packing. The high quality of the pentacene films allowed in one case to characterize the Davydov splitting by linear polarized light focused on a single crystallite. Another subject in the field of organic-inorganic hybrid materials comprised conjugated dithiols used as self-assembled monolayers (SAMs) for immobilizing semiconducting CdS nanoparticles (NPs) on Au substrates. It was demonstrated that an appropriate selection and preparation of the conjugated SAMs is crucial for building up a light-addressable potentiometric sensor with a sufficient efficiency. An optimized electron transfer was achieved with SAMs of long range ordering, high stability, and adequate conductivity. This was examined for different linkers and was best for stilbenedithiol immobilized in solution at higher temperatures. Due

  5. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.

    Science.gov (United States)

    Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L

    2013-03-13

    We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.

  6. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    Science.gov (United States)

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  7. The Specific Refractive Index Increments for POSS Polymers in Solution

    National Research Council Canada - National Science Library

    Largo, Sheryl

    2004-01-01

    Partial contents: Hybrid Inorganic/Organic Polymers, Introduction to POSS, Anatomy of a POSS Nanostructure, POSS Polymer Incorporation, POSS Styrene Monomer Synthesis, POSS Styrene Copolymer Synthesis, 1HNMR...

  8. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  9. Nearly Perfect Triplet-Triplet Energy Transfer from Wannier Excitons to Naphthalene in Organic-Inorganic Hybrid Quantum-Well Materials

    Science.gov (United States)

    Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.

    2008-06-01

    We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.

  10. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks.

    Science.gov (United States)

    Schreck, Kathleen M; Leung, Diana; Bowman, Christopher N

    2011-09-15

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (T(g)) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins incorporating silsesquioxane (SSQ) species into the photopolymerized networks were investigated as a route to improve these properties. Thiol- and ene-functionalized SSQs (SH-SSQ and allyl-SSQ, respectively) were synthesized via alkoxysilane hydrolysis/condensation chemistry, using a photopolymerizable monomer [either pentaerythriol tetrakis(3-mercaptopropionate) (PETMP) or 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO)] as the reaction solvent. The resulting SSQ-containing solutions (SSQ-PETMP and SSQ-TATATO) were characterized, and their incorporation into photopolymerized networks was evaluated.

  11. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo

    2017-03-01

    Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Methods for Introducing Inorganic Polymer Concepts throughout the Undergraduate Curriculum

    Science.gov (United States)

    de Lill, Daniel T.; Carraher, Charles E., Jr.

    2017-01-01

    Inorganic polymers can be introduced in a variety of undergraduate courses to discuss concepts related to polymer chemistry. Inorganic polymers such as silicates and polysiloxanes are simple materials that can be incorporated into an introductory or descriptive inorganic course. Polymers based on inorganic carbon, including diamond and graphite,…

  13. Synthesis, characterization and flocculation activity of novel Fe(OH)3-polyacrylamide hybrid polymer

    International Nuclear Information System (INIS)

    Wang Huilong; Cui Jinyan; Jiang Wenfeng

    2011-01-01

    Highlights: → The preparation of a novel Fe(OH) 3 -PAM hybrid polymer flocculant is achieved via free radical solution polymerization. → Flocculation of kaolin suspensions using this novel Fe(OH) 3 -PAM hybrid polymer flocculant is revealed in this study. → The statistical model was first applied for calculating the thermodynamic parameters for the kaolin flocculating process. - Abstract: A novel Fe(OH) 3 -polyacrylamide inorganic-organic hybrid polymer (FHPAM) was synthesized via free radical solution polymerization initiated by a redox initiation system ((NH 4 ) 2 S 2 O 8 -NaHSO 3 ) in an aqueous medium. Reaction parameters influencing the intrinsic viscosity and the yield of the hybrid polymer, such as initiator concentration, monomer mass fraction, temperature and reaction time were investigated and optimized. The results show that the maximum intrinsic viscosity and up to 94% yields of the hybrid polymer can be achieved using initiator concentration of 0.3% with acrylamide monomer mass fraction of 20% under solution polymerization at 40 deg. C for 7 h. The physicochemical properties of this hybrid flocculant were characterized with TEM, FTIR spectra, TGA, and conductivity. It was found that a chemical bond exists between Fe(OH) 3 colloid and polyacrylamide chains in the FHPAM. The application of the hybrid polymer for the treatment of 2.5 g L -1 kaolin suspension indicates that it had an excellent flocculation capacity and its flocculation efficiency was much better than that of commercial available polyacrylamide (PAM) and polymeric ferric sulfate (PFS). The optimal conditions for the flocculation treatment of kaolin suspension were the FHPAM dosage of 40 mg L -1 at pH 7.0. The thermodynamic parameters for the flocculation process were calculated based on a statistical model. Interpretation of the results was given.

  14. Color tunable hybrid light-emitting diodes based on perovskite quantum dot/conjugated polymer

    Science.gov (United States)

    Germino, José C.; Yassitepe, Emre; Freitas, Jilian N.; Santiago, Glauco M.; Bonato, Luiz Gustavo; de Morais, Andréia; Atvars, Teresa D. Z.; Nogueira, Ana F.

    2017-08-01

    Inorganic organic metal halide perovskite materials have been investigated for several technological applications, such as photovoltaic cells, lasers, photodetectors and light emitting diodes (LEDs), either in the bulk form or as colloidal nanoparticles. Recently, all inorganic Cesium Lead Halide (CsPbX3, X=Cl,Br, I) perovskite quantum dots (PQDs) were reported with high photoluminescence quantum yield with narrow emission lines in the visible wavelengths. Here, green-emitting perovskite quantum dots (PQDs) prepared by a synthetic method based on a mixture of oleylamine and oleic acid as surfactants were applied in the electroluminescent layer of hybrid LEDs in combination with two different conjugated polymers: polyvinylcarbazole (PVK) or poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO). The performance of the diodes and the emission color tuning upon dispersion of different concentrations of the PQDs in the polymer matrix is discussed. The presented approach aims at the combination of the optical properties of the PQDs and their interaction with wide bandgap conjugated polymers, associated with the solution processing ability of these materials.

  15. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honghu [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering. Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.

  16. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    International Nuclear Information System (INIS)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien; Deleporte, Emmanuelle; Audebert, Pierre; Galmiche, Laurent

    2009-01-01

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH 2 ) n NH 3 ) 2 PbX 4 . These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH 2 ) n NH 3 + ) to study the relationship between their structures and the optical properties of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  17. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.

    2010-01-01

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3](infinity) chains directed organic cations aggregation to Kagomé-shaped tubular architecture.

    Science.gov (United States)

    Zhao, Hai-Rong; Li, Dong-Ping; Ren, Xiao-Ming; Song, You; Jin, Wan-Qin

    2010-01-13

    Four isostructural inorganic-organic hybrid ferroelectric compounds, assembled from achiral 3-R-benzylidene-1-aminopyridiniums (R = NO(2), Br, Cl, or F for 1-4, respectively) and [PbI(3)](-) anions with the chiral Kagomé-shaped tubular aggregating architecture, show larger spontaneous polarizations.

  20. An insight into the mechanism of charge transfer properties of hybrid organic (MEH-PPV): Inorganic (TiO2) nanocomposites

    International Nuclear Information System (INIS)

    Mittal, Tanu; Tiwari, Sangeeta; Mehta, Aarti; Sharma, Shailesh N.

    2016-01-01

    Now a days, inorganic nanoparticles are gaining importance and are potential candidate in different organic electronic device application like (LEDs, PVs) due to their novel properties and confinement in Nano-dimensions. [1, 2] In the present work, we have compared the properties of titanium di oxide (TiO 2 ) nanoparticles (NPs) synthesized by using two different chemical routes aqueous and ethanol respectively. These synthesized TiO 2 nanoparticles have been characterized by X-ray diffraction spectroscopy (XRD) for phase confirmation. It was observed that synthesized nanoparticles are in anatase phase for both preparation routes. Morphological information was collected by scanning electron microscopy (SEM) which confirms that particles are almost spherical in shape and distributed uniformly which is further ensured by transmission electron microscopy (TEM). Dynamic light scattering (DLS) technique was also used for further confirmation of size distribution of as-synthesized nanoparticles. Optical properties were also investigated by photoluminescence and UV-Vis spectroscopy and calculated bandgap was found to be in the range of 3.3-3.5eV for TiO 2 (aq/eth) nanoparticles. The increase in bandgap values with respect to bulk (3.2 eV) confirms that as- synthesized nanoparticles are confined in nanodimensions. As synthesized nanoparticles were interacted with MEHPPV polymer (donor) matrix to make their respective MEHPPV: TiO 2 nanocomposites and to confirm the charge transfer mechanism from polymer to nanoparticles. It can be observed from photoluminescence (PL) quenching experiments that continuous quenching obtained for respective nanocomposites confirms better charge transfer from polymer to inorganic TiO 2 nanoparticles respectively. Because of, better quenching and simultaneously enhanced charge transfer of respective nanocomposites, ensures that these nanocomposites are greatly applicable for photovoltaics (PVs) especially in Hybrid Solar cells (HSCs).

  1. Frequency Dependence of Electrical Parameters of an Organic-Inorganic Hybrid Composite Based Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Rizwan Akram

    2016-05-01

    Full Text Available The present study highlights the interdependence of ambient humidity levels on the electrical parameters of organic-inorganic hybrid composite based humidity sensor at varied AC frequencies of input signal. Starting from the bottom, the layer stack of the fabricated humidity sensor was 200-nm silver (Ag thin film and 4 μm spun-coated PEPC+NiPC+Cu2O active layer. Silver thin films were deposited by thermal evaporator on well cleaned microscopic glass slides, which served as a substrate. Conventional optical lithography procedure was adapted to define pairs of silver-silver surface electrodes with two sorts of configurations, i.e., interdigitated and rectangular. Humidity-sensitive layers of organic-inorganic composite were then spun-cast upon the channel between the silver electrodes. The changes in relative humidity levels induced variation in capacitance and impedance of the sensors. These variations in electrical parameters of sensors were also found to be highly dependent upon frequency of input AC signal. Our findings reveal that the organic-inorganic composite shows higher humidity sensitivity at smaller orders of frequency. This finding is in accordance with the established fact that organic semiconductors-based devices are not applicable for high frequency applications due to their lower charge carrier mobility values. Two distinct geometries of semiconducting medium between the silver electrodes were investigated to optimize the sensing parameters of the humidity sensor. Furthermore, the effect of temperature change on the resistance of organic composite has also been studied.

  2. Synthesis, characterization and flocculation activity of novel Fe(OH){sub 3}-polyacrylamide hybrid polymer

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huilong; Cui Jinyan [Department of Chemistry, Dalian University of Technology, Dalian 116023 (China); Jiang Wenfeng, E-mail: dlutjiangwf@yahoo.com.cn [Department of Chemistry, Dalian University of Technology, Dalian 116023 (China)

    2011-11-01

    Highlights: {yields} The preparation of a novel Fe(OH){sub 3}-PAM hybrid polymer flocculant is achieved via free radical solution polymerization. {yields} Flocculation of kaolin suspensions using this novel Fe(OH){sub 3}-PAM hybrid polymer flocculant is revealed in this study. {yields} The statistical model was first applied for calculating the thermodynamic parameters for the kaolin flocculating process. - Abstract: A novel Fe(OH){sub 3}-polyacrylamide inorganic-organic hybrid polymer (FHPAM) was synthesized via free radical solution polymerization initiated by a redox initiation system ((NH{sub 4}){sub 2}S{sub 2}O{sub 8}-NaHSO{sub 3}) in an aqueous medium. Reaction parameters influencing the intrinsic viscosity and the yield of the hybrid polymer, such as initiator concentration, monomer mass fraction, temperature and reaction time were investigated and optimized. The results show that the maximum intrinsic viscosity and up to 94% yields of the hybrid polymer can be achieved using initiator concentration of 0.3% with acrylamide monomer mass fraction of 20% under solution polymerization at 40 deg. C for 7 h. The physicochemical properties of this hybrid flocculant were characterized with TEM, FTIR spectra, TGA, and conductivity. It was found that a chemical bond exists between Fe(OH){sub 3} colloid and polyacrylamide chains in the FHPAM. The application of the hybrid polymer for the treatment of 2.5 g L{sup -1} kaolin suspension indicates that it had an excellent flocculation capacity and its flocculation efficiency was much better than that of commercial available polyacrylamide (PAM) and polymeric ferric sulfate (PFS). The optimal conditions for the flocculation treatment of kaolin suspension were the FHPAM dosage of 40 mg L{sup -1} at pH 7.0. The thermodynamic parameters for the flocculation process were calculated based on a statistical model. Interpretation of the results was given.

  3. Integration of organic LEDs with inorganic LEDs for a hybrid lighting system

    Science.gov (United States)

    Kong, H. J.; Park, J. W.; Kim, Y. M.

    2013-01-01

    We demonstrate that a surface-emitting hybrid light source can be realized by a combination of organic and inorganic light-emitting devices (LEDs). To this end, a blue inorganic LED bar is deployed at one side of a transparent light guide plate (LGP), and a yellow organic LED (OLED) is in contact with the rear surface of the LGP. In such a configuration, it is found that the overall luminance is almost equivalent to the sum of the luminances measured from each light source, and the overall luminance uniformity is determined mainly by the luminance uniformity of the OLED panel at high luminances. We have achieved a white color showing the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (x = 0.34, y = 0.33), the power efficiency of 9.3 lm/W, the luminance uniformity of 63% at the luminance of 3100 cd m-2, the color rendering index as high as 89.3, and the correlated color temperature finely tunable within the range between 3000 and 8000 K. Such a system facilitates color tuning by adjusting their luminous intensities and hence the implementation of the emotional lighting system.

  4. Integration of organic LEDs with inorganic LEDs for a hybrid lighting system

    International Nuclear Information System (INIS)

    Kong, H J; Kim, Y M; Park, J W

    2013-01-01

    We demonstrate that a surface-emitting hybrid light source can be realized by a combination of organic and inorganic light-emitting devices (LEDs). To this end, a blue inorganic LED bar is deployed at one side of a transparent light guide plate (LGP), and a yellow organic LED (OLED) is in contact with the rear surface of the LGP. In such a configuration, it is found that the overall luminance is almost equivalent to the sum of the luminances measured from each light source, and the overall luminance uniformity is determined mainly by the luminance uniformity of the OLED panel at high luminances. We have achieved a white color showing the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (x = 0.34, y = 0.33), the power efficiency of 9.3 lm/W, the luminance uniformity of 63% at the luminance of 3100 cd m –2 , the color rendering index as high as 89.3, and the correlated color temperature finely tunable within the range between 3000 and 8000 K. Such a system facilitates color tuning by adjusting their luminous intensities and hence the implementation of the emotional lighting system. (paper)

  5. Strontium-doped organic-inorganic hybrids towards three-dimensional scaffolds for osteogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    John, Łukasz, E-mail: lukasz.john@chem.uni.wroc.pl [Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław (Poland); Podgórska, Marta [Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław (Poland); Nedelec, Jean-Marie [Université Clermont Auvergne, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63178 Aubiere (France); Cwynar-Zając, Łucja [Department of Histology and Embryology, Wrocław Medical University, 6a Chałubińskiego, 50-368 Wrocław (Poland); Dzięgiel, Piotr [Department of Histology and Embryology, Wrocław Medical University, 6a Chałubińskiego, 50-368 Wrocław (Poland); Department of Physiotherapy and Occupational Therapy in Conservative and Interventional Medicine, 35 Paderewskiego, 51-612 Wrocław (Poland)

    2016-11-01

    Biomimetic organic–inorganic hybrid bioscaffolds are developed to complement or replace damaged fragments in bone tissue surgery. The aim of this work was to develop a simple and fast method to prepare composite material for bone engineering, avoiding time consuming and complex methodologies. The resulting materials (also called in this work as hybrid composites or hybrid scaffolds) have a three-dimensional macroporous polymer-like network derived from triethoxyvinylsilane (TEVS) and 2-hydroxyethylmethacrylate (HEMA) monomers, with incorporated calcium, strontium, and phosphate ions. The materials were fully characterized using FT-IR, biomineralization studies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, scratch tests, Young's modulus and compressive strength tests, and gas physisorption. We report a comprehensive study on the in vitro effect of novel strontium doped materials on human bone cells. In vitro investigations were conducted using a normal human osteoblast cell line that mimics the cellular events of the in vivo intramembranous bone formation process. The materials do not have a negative impact on the survival of the normal human osteoblasts; moreover, materials doped with strontium show that not only are cells able to survive, but they also attach to and grow on a bioscaffolds surface. For this reason, they may be used in future in vivo experiments. - Highlights: • New hybrid scaffolds derived from TEVS and HEMA doped with Ca{sup 2+}, Sr{sup 2+}, and PO{sub 4}{sup 3-} ions have been developed. • A comprehensive characterization of the scaffolds for regenerative medicine was performed. • The incorporation of Sr{sup 2+} ions into the scaffolds was non-cytotoxic to the osteoblasts.

  6. Holographic patterning of organic-inorganic photopolymerizable nanocomposites

    Science.gov (United States)

    Sakhno, Oksana V.; Goldenberg, Leonid M.; Smirnova, Tatiana N.; Stumpe, J.

    2009-09-01

    We present here novel easily processible organic-inorganic nanocomposites suitable for holographic fabrication of diffraction optical elements (DOE). The nanocomposites are based on photocurable acrylate monomers and inorganic nanoparticles (NP). The compatibility of inorganic NP with monomers was achieved by capping the NP surface with proper organic shells. Surface modification allows to introduce up to 50wt.% of inorganic NP in organic media. Depending on the NP nature (metal oxides, phosphates, semiconductors, noble metals) and their properties, the materials for both efficient DOE and multifunctional elements can be designed. Organic-inorganic composites prepared have been successfully used for the effective inscription of periodic volume refractive index structures using the holographic photopolymerization method. The nanocomposite preparation procedure, their properties and optical performance of holographic gratings are reported. The use of functional NP makes it possible to obtain effective holographic gratings having additional physical properties such as light-emission or NLO. Some examples of such functional polymer-NP structures and their possible application fields are presented. The combination of easy photo-patterning of soft organic compounds with physical properties of inorganic materials in new nanocomposites and the flexibility of the holographic patterning method allow the fabrication of mono- and multifunctional one- and multi-dimensional passive or active optical and photonic elements.

  7. Clay-containing polymer nanocomposites: from fundamentals to real applications

    CSIR Research Space (South Africa)

    Sinha Ray, S

    2013-01-01

    Full Text Available Much research and development effort has emerged in addressing hybrid organic-inorganic systems; particular attention has been given to those systems in which nanofillers are dispersed in polymer matrices. This class of materials called polymer...

  8. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    Science.gov (United States)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  9. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Deleporte, Emmanuelle, E-mail: Emmanuelle.Deleporte@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Audebert, Pierre; Galmiche, Laurent [Laboratoire de Photophysique et Photochimie Supramoleculaires et Macromoleculaires de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France)

    2009-06-15

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH{sub 2}){sub n}NH{sub 3}{sup +}) to study the relationship between their structures and the optical properties of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  10. Organic-inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency

    Science.gov (United States)

    Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping

    2018-03-01

    Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.

  11. Resistive switching characteristics of solution-processed organic-inorganic blended films for flexible memory applications

    Science.gov (United States)

    Baek, Il-Jin; Cho, Won-Ju

    2018-02-01

    We developed a hybrid organic-inorganic resistive random access memory (ReRAM) device that uses a solution-process to overcome the disadvantages of organic and inorganic materials for flexible memory applications. The drawbacks of organic and inorganic materials are a poor electrical characteristics and a lack of flexibility, respectively. We fabricated a hybrid organic-inorganic switching layer of ReRAM by blending HfOx or AlOx solution with PMMA solution and investigated the resistive switching behaviour in Ti/PMMA/Pt, Ti/PMMA-HfOx/Pt and Ti/PMMA-AlOx/Pt structures. It is found that PMMA-HfOx or PMMA-AlOx hybrid switching layer has a larger memory window, more stable durability and retention characteristics, and a better set/reset voltage distribution than PMMA layer. Further, it is confirmed that the flexibility of the PMMA-HfOx and PMMA-AlOx blended films was almost similar to that of the organic PMMA film. Thus, the solution-processed organic-inorganic blended films are considered a promising material for a non-volatile memory device on a flexible or wearable electronic system.

  12. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  13. Nonhydrolytic sol-gel approach to facile creation of surface-bonded zirconia organic-inorganic hybrid coatings for sample preparation. Ι. Capillary microextraction of catecholamine neurotransmitters.

    Science.gov (United States)

    Alhendal, Abdullah; Mengis, Stephanie; Matthews, Jacob; Malik, Abdul

    2016-10-14

    Nonhydrolytic sol-gel (NHSG) route was used for the creation of novel zirconia-polypropylene oxide (ZrO 2 -PPO) sol-gel hybrid sorbents in the form of surface coatings for the extraction and preconcentration of catecholamine neurotransmitters and molecules structurally related to their deaminated metabolites. In comparison to other sorbents made of inorganic transition metal oxides, the presented hybrid organic-inorganic sorbents facilitated reversible sorption properties that allowed for efficient desorption of the extracted analytes by LC-MS compatible mobile phases. The presented sol-gel hybrid sorbents effectively overcame the major drawbacks of traditional silica- or polymer-based sorbents by providing superior pH stability (pH range: 0-14), and a variety of intermolecular interactions. Nonaqueous sol-gel treatment of PPO with ZrCl 4 was employed for the derivatization of the terminal hydroxyl groups on PPO, providing zirconium trichloride-containing end groups characterized by enhanced sol-gel reactivity. NHSG ZrO 2 -PPO sorbent provided excellent microextraction performance for catecholamines, low detection limits (5.6-9.6pM), high run-to-run reproducibility (RSD 0.6-5.1%), high desorption efficiency (95.0-99.5%) and high enrichment factors (∼1480-2650) for dopamine and epinephrine, respectively, extracted from synthetic urine samples. The presented sol-gel sorbents provided effective alternative to conventional extraction media providing unique physicochemical characteristics and excellent extraction capability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Coagulation and flocculation of dissolved organic substances with organic polymers

    OpenAIRE

    Kvinnesland, Thomas

    2002-01-01

    Coagulation of natural organic matter (NOM) in water is a well-established process, enabling or enhancing the removal of these substances by different particle separation processes. The dominating coagulating agents used are, however, inorganic salts of iron (Fe3+) and aluminium (Al3+). The primary use of organic polymers is as flocculating agents for already coagulated aggregates. However, in recent years the use of cationic organic polymers have received increasing attent...

  15. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel

    2011-03-15

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona brush that stabilizes them against aggregation. When these hybrid particles are dispersed in poly-α-olefin (PAO) oligomers, they form homogeneous nanocomposite fluids at both low and high particle loadings. By varying the volume fraction of the SiO2 nanostructures in the PAO nanocomposites, we show that exceptionally stable hybrid lubricants can be created and that their mechanical properties can be tuned to span the spectrum from simple liquids to complex gels. We further show that these hybrid lubricants simultaneously exhibit lower interfacial friction coefficients, enhanced wear and mechanical properties, and superior thermal stability in comparison with either PAO or its nanocomposites created at low nanoparticle loadings. Profilometry and energy dispersive X-ray spectroscopic analysis of the wear track show that the enhanced wear characteristics in PAO-SiO2 composite lubricants originate from two sources: localization of the SiO2 particles into the wear track and extension of the elastohydrodynamic lubrication regime to Sommerfeld numbers more than an order of magnitude larger than for PAO. © 2011 American Chemical Society.

  16. Inorganic-Organic hybrid materials for uranium extraction from phosphoric acid

    International Nuclear Information System (INIS)

    El-Mourabit, Sabah

    2013-01-01

    Phosphate rocks are industrially processed in large quantities to produce phosphoric acid and fertilisers. These rocks contain significant concentration of uranium (50 to 300 ppm) which could be interesting for nuclear industry. This work deals with the valorisation of uranium as a by-product from fertiliser industry. The aim of this study is to develop a hybrid material, constituted of an inorganic solid support grafted with an extractant (complexing molecule), which can extract selectively uranium from phosphoric acid medium. The first step of our approach was to identify an inorganic support which is stable under these particular conditions (strong acidity and complexing medium). The chemical and mechanical stability of different meso-porous materials, such as silica, glass and carbon was studied. In a second phase, we focused on the identification and the optimisation of complexing molecules, specific of uranium in phosphoric acid. These ligands were then grafted on the most stable solids. Finally, the efficiency of these hybrid systems was evaluated through different tests of extraction, selectivity and de-extraction. (author) [fr

  17. The electronic structure of organic-inorganic hybrid compounds : (NH4)(2)CuCl4, (CH3NH3)(2)CuCl4 and (C2H5NH3)(2)CuCl4

    NARCIS (Netherlands)

    Zolfaghari, P.; de Wijs, G. A.; de Groot, R. A.

    2013-01-01

    Hybrid organic-inorganic compounds are an intriguing class of materials that have been experimentally studied over the past few years because of a potential broad range of applications. The electronic and magnetic properties of three organic-inorganic hybrid compounds with compositions

  18. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  19. Polystyrene-poly(vinylphenol) copolymers as compatibilzers for organic-inorganic composites

    International Nuclear Information System (INIS)

    Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.

    1996-01-01

    Random, graft, and block copolymers of polystyrene (PS) and poly(4-vinylphenol) (PVPh), and PVPh homopolymer are shown to act as compatibilizers for incompatible organic-inorganic composite materials. The VPh component reacts, or interacts strongly with the polymerizing inorganic (titanium or zirconium) alkoxide. The organic components studied were PS, poly(vinyl methyl ether), and poly(styrene-co-acrylonitrile). The use of such compatibilizers provides a means of combining in situ polymerized inorganic oxides and hydrophobic polymers. This is seen as a reduction in the size of the dispersed inorganic phase and results in improved optical and mechanical properties

  20. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    Science.gov (United States)

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  1. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires

    Science.gov (United States)

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-01

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

  2. Two new inorganic-organic hybrid materials based on inorganic ...

    Indian Academy of Sciences (India)

    fields such as catalysis, pharmacology, medicine, nan- otechnology, and molecular ... such POM-based hybrid materials: (a) organic ligands graft onto POMs directly; .... average value of 6.028, close to the ideal value of 6 for MoVI. The bond ...

  3. Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode

    International Nuclear Information System (INIS)

    Han Zhangang; Zhao Yulong; Peng Jun; Liu Qun; Wang Enbo

    2005-01-01

    An inorganic-organic hybrid polyoxometalate (POM) (Hbpy) 4 [SiMo 12 O 40 ] (1) (bpy = 2,4-bipyridine), has been prepared and characterized. X-ray diffraction study reveals that compound 1 contains interesting organic double helical chains. The hybrid nanoparticles was used as a solid bulkmodifier to fabricate a three-dimensional chemically modified carbon paste electrode (1-CPE) by direct mixing. The electrochemical behavior and electrocatalysis of 1-CPE has been studied in detail. The results indicate that 1-CPE has a good electrocatalytic activity toward the reduction of nitrite in 1 M H 2 SO 4 aqueous solution. 1-CPE shows remarkable stability that can be ascribed to the interactions existed between POM anions and organic double helical bpy chains, which are very important for practical applications in electrode modification

  4. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  5. Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography

    Science.gov (United States)

    Cheng, Z. Y.; Wang, Z.; Xing, R. B.; Han, Y. C.; Lin, J.

    2003-07-01

    Perovskite-type organic/inorganic hybrid layered compound (C 6H 5C 2H 4NH 3) 2PbI 4 was synthesized. The patterning of (C 6H 5C 2H 4NH 3) 2PbI 4 thin films on silicon substrate was realized by the micromolding in capillaries (MIMIC) process, a kind of soft lithography. Bright green luminescent stripes with different widths (50, 15, 0.8 μm) have been obtained. The structure and optical properties of (C 6H 5C 2H 4NH 3) 2PbI 4 films were characterized by X-ray diffraction (XRD), UV/Vis absorption and photoluminescence excitation and emission spectra, respectively. It is shown that the organic-inorganic layered (C 6H 5C 2H 4NH 3) 2PbI 4 film was c-axis oriented, paralleling to the substrate plane. Green exciton emission at 525 nm was observed in the film, and the explanations for it were given.

  6. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2010-05-04

    To enhance the corrosion resistance of stainless steel (SS) and to impart its surface with antibacterial functionality for inhibiting biofilm formation and biocorrosion, well-defined inorganic-organic hybrid coatings, consisting of a polysilsesquioxane inner layer and quaternized poly(2-(dimethyamino)ethyl methacrylate) (P(DMAEMA)) outer blocks, were prepared via successive surface-initiated atom transfer radical polymerization (ATRP) of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The cross-linked P(TMASPMA), or polysilsesquioxane, inner layer provided a durable and resistant coating to electrolytes. The pendant tertiary amino groups of the P(DMAEMA) outer block were quaternized with alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. The so-synthesized inorganic-organic hybrid coatings on the SS substrates exhibited good anticorrosion and antibacterial effects and inhibited biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater media, as revealed by antibacterial assay and electrochemical analyses, and they are potentially useful to steel-based equipment under harsh industrial and marine environments.

  7. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  8. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo; Garnett, Erik C.; Wang, Shuang; Yu, Zongfu; Fan, Shanhui; Brongersma, Mark L.; McGehee, Michael D.; Cui, Yi

    2012-01-01

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  9. Organic-inorganic membranes for filtration of corn distillery

    Directory of Open Access Journals (Sweden)

    Myronchuk Valeriy G.

    2016-01-01

    Full Text Available Organic-inorganic membranes were obtained by modification of polymer microfiltration membrane with inorganic ion-exchangers, which form secondary porosity inside macroporous substrate (zirconium hydrophosphate or simultaneously in the macroporous substrate and active layer, depending of the particle size (from ≈50 nm up to several microns. Precipitation of the inorganic constituent is considered from the point of view of Ostwald-Freundlich equation. Such processes as pressing test in deionized water and filtration of corn distillery at 1-6 bar were investigated. Theoretical model allowing to establish fouling mechanism, was applied. It was found that the particles both in the substrate and active layer prevent fouling of the membrane with organics and provide rejection of colloidal particles.

  10. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  11. Ultra-tough and strong, hybrid thin films based on ionically crosslinked polymers and 2D inorganic platelets

    Science.gov (United States)

    Ji, Dong Hwan; Choi, Suji; Kim, Jaeyun; nanobiomaterials lab Team

    Integration of high strength and toughness tend to be mutually exclusive and synthesized hybrid films with superior mechanical properties have been difficult to fabricate controllable shapes and various scales. Although diverse synthesized hybrid films consisting of organic matrix and inorganic materials with brick-and-mortar structure, show improved mechanical properties, these films are still limited in toughness and fabrication methods. Herein, we report ultra-tough and strong hybrid thin films with self-assembled uniform microstructures with controllable shapes and various scale based on hydrogel-mediated process. Ca2+-crosslinking in alginate chains and well-aligned alumina platelets in alginate matrix lead to a synergistic enhancement of strength and toughness in the resulting film. Consequentially, Ca2+-crosslinked Alg/Alu films showed outstanding toughness of 29 MJ m-3 and tensile strength of 160 MPa. Furthermore, modifying Alu surface with polyvinylpyrrolidone (PVP), tensile strength was further improved up to 200 MPa. Our results suggest an alternative approach to design and processing of self-assembled hydrogel-mediated hybrid films with outstanding mechanical properties.

  12. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies.

    Science.gov (United States)

    Patil, Avinash J; Li, Mei; Mann, Stephen

    2013-08-21

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of "inorganic molecular wrapping" of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as "armour-plated" enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  13. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies

    Science.gov (United States)

    Patil, Avinash J.; Li, Mei; Mann, Stephen

    2013-07-01

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of ``inorganic molecular wrapping'' of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as ``armour-plated'' enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  14. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  15. Synthesis and characterization of a multifunctional inorganic-organic hybrid mixed-valence copper(I/II) coordination polymer: {[CuCN][Cu(isonic)2]}n

    Science.gov (United States)

    Liu, Dong-Sheng; Chen, Wen-Tong; Ye, Guang-Ming; Zhang, Jing; Sui, Yan

    2017-12-01

    A new multifunctional mixed-valence copper(I/II) coordination polymer, {[CuCN][Cu(isonic)2]}n(1) (Hisonic = isonicotinic acid), was synthesized by treating isonicotinic acid and 5-amino-tetrazolate (Hatz = 5-amino-tetrazolate) with copper(II) salts under hydrothermal conditions, and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction, respectively. The X-ray diffraction analysis reveals that compound exhibit noncentrosymmetric polar packing arrangement. It is three-dimensional (3D) framework with (3,5)-connected 'seh-3' topological network constructed from metal organic framework {[Cu(isonic)2]}n and the inorganic linear chain{Cu(CN)}n subunits. A remarkable feature of 1 is the rhombic open channels that are occupied by a linear chain of {Cu(CN)}n. Impressively compound 1 displays not only a second harmonic generation (SHG) response, but also a ferroelectric behavior and magnetic properties.

  16. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    Science.gov (United States)

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.

  17. High Charge Carrier Mobility Polymers for Organic Transistors

    OpenAIRE

    Erdmann, Tim

    2017-01-01

    I) Introduction p-Conjugated polymers inherently combine electronic properties of inorganic semiconductor crystals and material characteristics of organic plastics due to their special molecular design. This unique combination has led to developing new unconventional optoelectronic technologies and, further, resulted in the evolution of semiconducting polymers (SCPs) as fundamental components for novel electronic devices, such as organic field-effect transistors (OFETs), organic light-emit...

  18. Improved efficiency in organic/inorganic hybrid solar cells by interfacial modification of ZnO nanowires with small molecules

    International Nuclear Information System (INIS)

    Chang, Sehoon; Park, Hyesung; Cheng, Jayce J; Rekemeyer, Paul H; Gradečak, Silvija

    2014-01-01

    We demonstrate improved photovoltaic performance of ZnO nanowire/poly(3-hexylthiophene) (P3HT) nanofiber hybrid devices using an interfacial modification of ZnO nanowires. Formation of cascade energy levels between the ZnO nanowire and P3HT nanofiber was achieved by interfacial modification of ZnO nanowires using small molecules tetraphenyldibenzoperiflanthene (DBP) and 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI). The successful demonstration of improved device performance owing to the cascade energy levels by small molecule modification is a promising approach toward highly efficient organic/inorganic hybrid solar cells. (paper)

  19. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design.

    Science.gov (United States)

    Saparov, Bayrammurad; Mitzi, David B

    2016-04-13

    Although known since the late 19th century, organic-inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic-inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.

  20. Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells

    Directory of Open Access Journals (Sweden)

    Guiming Peng

    2015-01-01

    Full Text Available The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.

  1. Rashba and Dresselhaus Effects in Hybrid Organic-Inorganic Perovskites: From Basics to Devices.

    Science.gov (United States)

    Kepenekian, Mikaël; Robles, Roberto; Katan, Claudine; Sapori, Daniel; Pedesseau, Laurent; Even, Jacky

    2015-12-22

    We use symmetry analysis, density functional theory calculations, and k·p modeling to scrutinize Rashba and Dresselhaus effects in hybrid organic-inorganic halide perovskites. These perovskites are at the center of a recent revolution in the field of photovoltaics but have also demonstrated potential for optoelectronic applications such as transistors and light emitters. Due to a large spin-orbit coupling of the most frequently used metals, they are also predicted to offer a promising avenue for spin-based applications. With an in-depth inspection of the electronic structures and bulk lattice symmetries of a variety of systems, we analyze the origin of the spin splitting in two- and three-dimensional hybrid perovskites. It is shown that low-dimensional nanostructures made of CH3NH3PbX3 (X = I, Br) lead to spin splittings that can be controlled by an applied electric field. These findings further open the door for a perovskite-based spintronics.

  2. Structure of hybrid organic-inorganic sols for the preparation of hydrothermally stable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L.; Sah, A; Blank, D.H.A.; Ten Elshof, J.E. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Geenevasen, J.A.J. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands); Kreiter, R.; Vente, J.F. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-06-15

    A procedure for the preparation of hybrid sols for the synthesis of organic-inorganic microporous materials and thin film membranes is reported. We describe silane reactivity and sol structure for acid-catalysed colloidal sols from mixtures of either tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES), or bis(triethoxysilyl)ethane (BTESE) and MTES. Early-stage hydrolysis and condensation rates of the individual silane precursors were followed with 29Si liquid NMR and structural characteristics of more developed sols were studied with Dynamic Light Scattering. Condensation was found to proceed at more or less similar rates for the different precursors. Homogeneously mixed hybrid colloids can therefore be formed from precursor mixtures. The conditions of preparation under which clear sols with low viscosity could be formed from BTESE/MTES were determined. These sols were synthesised at moderate water/silane and acid/silane ratios and could be applied for the coating of defect-free microporous membranes for molecular separations under hydrothermal conditions.

  3. Two inorganic-organic hybrid materials based on polyoxometalate anions and methylene blue: Preparations, crystal structures and properties

    International Nuclear Information System (INIS)

    Nie Shanshan; Zhang Yaobin; Liu Bin; Li Zuoxi; Hu Huaiming; Xue Ganglin; Fu Feng; Wang Jiwu

    2010-01-01

    Two novel inorganic-organic hybrid materials based on an organic dye cation methylene blue (MB) and Lindqvist-type POM polyanions, [C 22 H 18 N 3 S] 2 Mo 6 O 19 2DMF (1) and [C 22 H 18 N 3 S] 2 W 6 O 19 2DMF (2) were synthesized under ambient conditions and characterized by CV, IR spectroscopy, solid diffuse reflectance spectrum, UV-vis spectra in DMF solution, luminescent spectrum and single crystal X-ray diffraction. Crystallographic data reveal that compounds 1 and 2 are isostructural and both crystallize in the triclinic space group P1-bar . Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong π...π stacking interactions between dimeric MB cations and near distance interactions among organic dye cations, Lindqvist-type POM polyanions and DMF molecules. The solid diffuse reflectance spectra and UV-vis spectra in DMF solution appear new absorption bands ascribed to the charge-transfer transition between the cationic MB donor and the POM acceptors. Studies of the photoluminescent properties show that the formation of 1 and 2 lead to the fluorescence quenching of starting materials. -- Graphical abstract: Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong π...π stacking interactions between dimeric MB cations. Display Omitted

  4. Sol-gel synthesis and characterization of hybrid inorganic-organic Tb(III)-terephthalate containing layered double hydroxides

    Science.gov (United States)

    Smalenskaite, A.; Salak, A. N.; Ferreira, M. G. S.; Skaudzius, R.; Kareiva, A.

    2018-06-01

    Mg3/Al1 and Mg3Al1-xTbx layered double hydroxides (LDHs) intercalated with terephthalate anion were synthesized using sol-gel method. The obtained materials were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS) and scanning electron microscopy (SEM). The Tb3+ substitution effects in the Mg3Al1-xTbx LDHs were investigated by changing the Tb3+ concentration in the cation layers. The study indicates that the organic guest-terephthalate in the interlayer spacing of the LDH host influences the luminescence of the hybrid inorganic-organic materials.

  5. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs.

    Science.gov (United States)

    Di Martino, Antonio; Guselnikova, Olga A; Trusova, Marina E; Postnikov, Pavel S; Sedlarik, Vladimir

    2017-06-30

    The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500μg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of subcritical CO{sub 2} on ionic conductivity of (Al[O(CH{sub 2}CH{sub 2}O){sub 8.7}]{sub r}/(LiClO{sub 4}){sub z}){sub n} hybrid inorganic-organic networks

    Energy Technology Data Exchange (ETDEWEB)

    Vezzu, Keti; Bertucco, Alberto [Universita di Padova, Padova (Italy). Dipartimento di Principi e Impianti di Ingegneria Chimica ' I. Sorgato' ; Zago, Vanni; Vittadello, Michele; Noto, Vito Di [Universita di Padova, Padova (Italy). Dipartimento di Scienze Chimiche

    2006-01-20

    The aim of this work is to study the effect of CO{sub 2} under pressure on hybrid inorganic-organic polymer electrolytes, by using broad band dielectric spectroscopy (BDS) in the frequency interval 40Hz-10MHz and in the temperature range of -80 to 120{sup o}C. Eleven inorganic-organic hybrid materials of the ORMOCERs type, with general formula (Al[O(CH{sub 2}CH{sub 2}O){sub 8.7}]{sub r}/(LiClO{sub 4}){sub z}){sub n} were treated by applying CO{sub 2} at 293K and 5MPa. The results demonstrated that the CO{sub 2} treatment generally depressed the conductivity of about one order of magnitude. The decreased conductivity in treated complexes is explained in terms of a smaller anion-trapping ability of the Al centers. Residual CO{sub 2} molecules are likely to inhibit the interaction of the perchlorate anions with Al centers within the structure. Segmental motion of the polymer chains plays a crucial role in the conductivity of investigated samples, while the ion-hopping phenomenon is the most important charge transfer mechanism both in the pristine and CO{sub 2} treated materials. Equivalent conductivity studies have elucidated the different ionic species present at various salt concentrations and gave insight about the role of CO{sub 2} in modifying the transport properties of the samples. (author)

  7. Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3

    Science.gov (United States)

    Wang, Ji; Zhang, Ao; Yan, Jun; Li, Dan; Chen, Yunlin

    2017-03-01

    The properties of defects in organic-inorganic hybrid perovskite are widely studied from the first-principles calculation. However, the defects of methylamine (methylamine = CH3NH2), which would be easily formed during the preparation of the organic-inorganic hybrid perovskite, are rarely investigated. Thermodynamic properties as well as defect states of methylamine embedded MAPbX3 (MA = methyl-ammonium = CH3NH3, X = Br, I) are studied based on first-principles calculations of density functional theory. It was found that there is a shallow defect level near the highest occupied molecular orbital, which induced by the interstitial methylamine defect in MAPbBr3, will lead to an increase of photoluminescence. The calculation results showed that interstitial defect states of methylamine may move deeper due to the interaction between methylamine molecules and methyl-ammonium cations. It was also showed that the interstitial methylamine defect is stable at room temperature, and the defect can be removed easily by annealing.

  8. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science.

    Science.gov (United States)

    Czarnecki, Sebastian; Bertin, Annabelle

    2018-03-07

    Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    Science.gov (United States)

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  10. A facile synthesis of C{sub 60}-organosilicon hybrid polymers: Considering their tunable optical properties for spin-on-silicon hardmask materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin-Kyu; Dao, Tung Duy; Kim, Ye-Seul; Jeong, Hyun-Dam, E-mail: hdjeong@chonnam.ac.kr

    2016-09-15

    Organic-inorganic hybrid materials with high refractive index have attracted considerable attention for many optoelectronic applications, including spin-on-type hardmask for ArF lithography (193 nm). In this study, we demonstrate the synthesis of a C{sub 60}-embedded organosilicon hybrid polymer, C{sub 60}-embedded poly-xylene-hexamethyltrisiloxane hybrid (C{sub 60}-PXS), of tunable optical properties. C{sub 60} was covalently bonded to the PXS backbone through Pt-catalyzed hydrosilylation, in which the PXS was formed possibly by unexpected transition metal-catalyzed benzylic C−H silylation and oxygenation of the o-xylene. The C{sub 60}-PXS thin films fabricated using a spin-coating method showed much higher refractive index by 5–22% according to the curing temperatures, than the PXS thin films containing no C{sub 60}. In particular, the C{sub 60}-PXS thin film cured at 350 °C showed the refractive index (n) and extinction coefficient (k) at 193 nm to be 1.61 and 0.29 that are very close to the optimum values for the Si-hardmask. This implies the high applicability of the C{sub 60}-embedded organosilicon hybrid polymer, C{sub 60}-PXS, for the spin-on Si-hardmask in ArF lithography. - Highlights: • A facile synthetic route for C{sub 60}-embedded organosilicon hybrid polymer was presented. • The hybrid polymer showed much higher refractive index than the polymer without C{sub 60}. • The hybrid polymer is highly applicable for Si-hardmask in terms of optical properties. • It is believed that the properties of the hybrid polymer can be further optimized.

  11. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-03-01

    To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.

  12. Preparation and characterization of a layered perovskite-type organic-inorganic hybrid compound (C8NH6-CH2CH2NH3)2CuCl4

    International Nuclear Information System (INIS)

    Zheng Yingying; Wu Gang; Deng Meng; Chen Hongzheng; Wang Mang; Tang, B.-Z.

    2006-01-01

    The organic-inorganic hybrid compound (C 8 NH 6 -CH 2 CH 2 NH 3 ) 2 CuCl 4 (AEI-CuCl 4 ) was synthesized from ethanol solution containing copper chloride and 3-2-(aminoethyl) indole hydrochloride (AEI-HCl). High order diffraction peaks corresponding to (0 0 l; l = 2, 4, 6, ...) observed in the X-ray diffraction profile of AEI-CuCl 4 indicated the formation of hybrid crystal with layered perovskite structure. The organic-inorganic hybrid crystal thin film can be easily prepared by spin-coating method from the ethanol solution of the AEI-CuCl 4 perovskite and it showed characteristic absorptions of CuCl-based layered perovskite centered at 288 and 388 nm, as well as the photoluminescence peak at around 420 nm. The unaided-eye-detectable blue fluorescence emission comes from the cooperation of AEI-HCl and AEI-CuCl 4 perovskite, in which protonized aminoethyl indole dominates the shape of the spectrum and the enhancement of emission intensity is due to the formation of the perovskite structure. The thermal analysis presented that the AEI-CuCl 4 perovskite started to melt at 182 deg. C, together with the beginning of the decomposition of the hybrids. Compared with the organic-inorganic perovskite hybrids reported previously, the AEI-CuCl 4 perovskite shows a novel stepwise decomposition behavior

  13. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    International Nuclear Information System (INIS)

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X.

    2010-01-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  14. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X., E-mail: qdchen@pku.edu.cn [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, No. 5, Yiheyuan Load, Haidian District Beijing 100871 (China)

    2010-07-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  15. 有机/无机杂化渗透汽化优先透醇膜研究进展%Advances in organic/inorganic hybrid alcohol perm-selective pervaporation membrane

    Institute of Scientific and Technical Information of China (English)

    李杰; 王乃鑫; 纪树兰

    2014-01-01

    渗透汽化优先透醇膜分离技术可有效解决燃料乙醇和丁醇生产中发酵产率较低的瓶颈问题,受到广泛关注。膜材料的选择与改性以及膜结构的构建是提高透醇性能的关键。有机/无机杂化膜可以实现有机和无机材料的优势互补,被认为是未来分离膜领域最重要的发展方向之一。本文扼要回顾了用于优先透醇渗透汽化分离的有机无机杂化材料,结合本文作者课题组的研究工作,重点阐述了杂化粒子的结构、粒径、界面相容性、纳微分散、负载量等因素对渗透汽化传递过程的作用机制,进一步对近年来发展的成膜新方法进行了总结。在此基础上,提出今后有机/无机杂化渗透汽化优先透醇膜研究的主要方向是发展新型纳米级、超疏水并与有机聚合物具有高度界面相容性的无机粒子,以及构建高负载量的纳微结构与超亲醇表面。%Alcohol perm-selective pervaporations membrane could resolve the product inhibition problem effectively for the use of ethanol and butanol recovery from fermentation process. The selection and modification of membrane material,and the construction of membrane structure are the key issues for better pervaporation performance. Organic/inorganic hybrid membranes combine the advantages of both organic polymers and inorganic materials,forming highly promising membranes for separation. This paper reviews the advances in organic/inorganic hybrid alcohol perm-selective pervaporation membrane materials. Several issues and research priorities which will impact the pervaporation ability of hybrid membrane for biofuel recovery are identified and discussed,including particle structure,particle size,compatibility and dispersion of inorganic particles in the polymer,and particle loading. Novel preparation methods in recent years are also presented in detail. Finally,the prospect of developing novel particles with nano size

  16. Synthesis and Applications of Inorganic/Organic-Polymer Nanocomposites

    Science.gov (United States)

    Goyal, Anubha

    (vinylidene fluoride-hexafluoropropylene (PVDF-HFP) polymer electrolyte with the three-dimensional (3D), nanostructured electrode composed of aligned carbon nanotube (CNT)-copper oxide hybrid. This hybrid electrode was fabricated by a combination of chemical vapor deposition and electrodeposition techniques. Embedding it in PVDF polymer results in a flexible system and also renders an external separator redundant. This new design shows an improvement in electrochemical performance over pure CNTs as both CNTs and Cu2O contribute towards electrochemical activity. Efforts have also been undertaken towards synthesizing synthetic adhesives by mimicking the design principles found in nature. Aligned patterned CNTs have been used to replicate the fibrillar structure found in geckos' toes which generates adhesion through van der Waals forces. The adhesive forces in CNTs were found to be higher than in geckos and the key to this phenomenon lies in the extensive side-wall contact obtained on compressing CNTs against a surface.

  17. Luminescence mechanisms of organic/inorganic hybrid organic light-emitting devices fabricated utilizing a Zn2SiO4:Mn color-conversion layer

    International Nuclear Information System (INIS)

    Choo, D.C.; Ahn, S.D.; Jung, H.S.; Kim, T.W.; Lee, J.Y.; Park, J.H.; Kwon, M.S.

    2010-01-01

    Zn 2 SiO 4 :Mn phosphor layers used in this study were synthesized by using the sol-gel method and printed on the glass substrates by using a vehicle solution and a heating process. Organic/inorganic hybrid organic light-emitting devices (OLEDs) utilizing a Zn 2 SiO 4 :Mn color-conversion layer were fabricated. X-ray diffraction data for the synthesized Zn 2 SiO 4 :Mn phosphor films showed that the Zn ions in the phosphor were substituted into Mn ions. The electroluminescence (EL) spectrum of the deep blue OLEDs showed that a dominant peak at 461 nm appeared. The photoluminescence spectrum for the Zn 2 SiO 4 :Mn phosphor layer by using a 470 nm excitation source showed that a dominant peak at 527 nm appeared, which originated from the 4 T 1 - 6 A 1 transitions of Mn ions. The appearance of the peak around 527 nm of the EL spectra for the OLEDs fabricated utilizing a Zn 2 SiO 4 :Mn phosphor layer demonstrated that the emitted blue color from the deep blue OLEDs was converted into a green color due to the existence of the color-conversion layer. The luminescence mechanisms of organic/inorganic hybrid OLEDs fabricated utilizing a Zn 2 SiO 4 :Mn color-conversion layer are described on the basis of the EL and PL spectra.

  18. Synthesis of novel inorganic-organic hybrid materials for simultaneous adsorption of metal ions and organic molecules in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xinliang [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Li, Yanfeng, E-mail: liyf@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Yu, Cui; Ma, Yingxia; Yang, Liuqing; Hu, Huaiyuan [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Novel hybrid materials were synthesized and employed in the absorption of heavy metal and organic pollutants. Black-Right-Pointing-Pointer A novel method for amphiphilic adsorbent material synthesis was first reported in this paper. Black-Right-Pointing-Pointer The adsorbent material showed excellent adsorption capacity to Pb(II) and phenol. - Abstract: In this paper, atom transfer radical polymerization (ATRP) and radical grafting polymerization were combined to synthesize a novel amphiphilic hybrid material, meanwhile, the amphiphilic hybrid material was employed in the absorption of heavy metal and organic pollutants. After the formation of attapulgite (ATP) ATRP initiator, ATRP block copolymers of styrene (St) and divinylbenzene (DVB) were grafted from it as ATP-P(S-b-DVB). Then radical polymerization of acrylonitrile (AN) was carried out with pendent double bonds in the DVD units successfully, finally we got the inorganic-organic hybrid materials ATP-P(S-b-DVB-g-AN). A novel amphiphilic hybrid material ATP-P(S-b-DVB-g-AO) (ASDO) was obtained after transforming acrylonitrile (AN) units into acrylamide oxime (AO) as hydrophilic segment. The adsorption capacity of ASDO for Pb(II) could achieve 131.6 mg/g, and the maximum removal capacity of ASDO towards phenol was found to be 18.18 mg/g in the case of monolayer adsorption at 30 Degree-Sign C. The optimum pH was 5 for both lead and phenol adsorption. The adsorption kinetic suited pseudo-second-order equation and the equilibrium fitted the Freundlich model very well under optimal conditions. At the same time FT-IR, TEM and TGA were also used to study its structure and property.

  19. Preparation and characterization of organic-inorganic hybrid perovskite (C4H9NH3)2CuCl4

    International Nuclear Information System (INIS)

    Xiao Zelong; Chen Hongzheng; Shi Minmin; Wu Gang; Zhou Renjia; Yang Zhisheng; Wang Mang; Tang Benzhong

    2005-01-01

    Organic-inorganic hybrid perovskite (C 4 H 9 NH 3 ) 2 CuCl 4 was prepared via the reaction between copper chloride and butylammonium chloride. Its chemical structure was characterized by FT-IR and elemental analysis. Its thin film was obtained by spin-coating, and X-ray diffraction (XRD) measurements indicated the formation of two-dimensional layered perovskites structure, with the c-axis perpendicular to the substrate surface. The electronic structure, thermal properties and electrical properties of the hybrid perovskite (C 4 H 9 NH 3 ) 2 CuCl 4 were also studied by UV-vis, photoluminescience (PL), TGA, DSC, and Hall measurement

  20. Surface modification of polyamide reverse osmosis membrane with organic-inorganic hybrid material for antifouling

    Science.gov (United States)

    Zhang, Yang; Wan, Ying; Pan, Guoyuan; Yan, Hao; Yao, Xuerong; Shi, Hongwei; Tang, Yujing; Wei, Xiangrong; Liu, Yiqun

    2018-03-01

    A series of thin-film composite reverse osmosis membranes based on polyamide have been modified by coating the polyvinyl alcohol and 3-mercaptopropyltriethoxysilane aqueous solution prepared by a sol-gel process on the membrane surface, followed by thermal crosslinking treatment. In order to improve the hydrophilicity of the modified TFC membranes, the membranes were then immersed into H2O2 aqueous solution to convert -SH into -SO3H. The resulting TFC membranes were characterized by SEM, AFM, ATR-FTIR, streaming potential, XPS as well as static contact angle. After surface modification with the organic-inorganic hybrid material, the TFC membranes show increased NaCl rejection and decreased water flux with increasing 3-mercaptopropyltrimethoxysilane content in coating solution. The optimal modification membrane (PA-SMPTES-0.8) exhibits a NaCl rejection of 99.29%, higher than that (97.20%) of the virgin PA membrane, and a comparable water flux to virgin PA membrane (41.7 L/m2 h vs 47.9 L/m2 h). More importantly, PA-SMPTES-0.8 membrane shows much more improved fouling resistance to BSA than virgin PA and PVA modified PA (PA-PVA-1.0) membranes. PA-SMPTES-0.8 membrane loses about 13% of the initial flux after BSA fouling for 12 h, which is lower than that of virgin PA and PA-PVA-1.0 membranes (42% and 18%). Furthermore, the flux recovery of PA-SMPTES-0.8 membrane reaches 94% after cleaning. Thus the TFC membranes modified by this organic-inorganic hybrid technology show potential applications as antifouling RO membrane for desalination and purification.

  1. Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains

    Institute of Scientific and Technical Information of China (English)

    Yuxiang Li; Seyeong Song; Song Yi Park; Jin Young Kim; Han Young Woo

    2017-01-01

    Three types of semi-cry stalline photovoltaic polymers were synthesized by incorporating a siloxane-terminated organic/inorganic hybrid side-chain and changing the number of fluorine substituents.A branch point away from a polymer main backbone in the siloxane-containing side-chains and the intra-and/or interchain noncovalent coulombic interactions enhance a chain planarity and facile interchain organization.The resulting polymers formed strongly agglomerated films with high roughness,suggesting strong intermolecular interactions.The optical band gap of ca.1.7 eV was measured for all polymers with a pronounced shoulder peak due to tight π-π stacking.With increasing the fluorine substituents,the frontier energy levels decreased and preferential face-on orientation was observed.The siloxane-terminated side-chains and fluorine substitution promoted the intermolecular packing,showing well resolved lamellar scatterings up to(300) for this series of polymers in the grazing incidence wide angle X-ray scattering measurements.The PPsiDTBT,PPsiDTFBT and PPsiDT2 FBT devices showed a power conversion efficiency of 3.16%,4.40%and 5.65%,respectively,by blending with PC71BM.Langevin-type bimolecular charge recombination was similar for three polymeric solar cells.The main loss in the photocurrent generation for PPsiDTBT:PC71BM was interpreted to originate from the trap assisted charge recombination by measuring light-intensity dependent short-circuit current density(JSC) and open-circuit voltage(VOc).Our results provide a new insight into the rational selection of solubilizing substituents for optimizing crystalline interchain packing with appropriate miscibility with PC71 BM for further optimizing polymer solar cells.

  2. Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains

    Institute of Scientific and Technical Information of China (English)

    Yuxiang Li; Seyeong Song; Song Yi Park; Jin Young Kim; Han Young Woo

    2017-01-01

    Three types of semi-crystalline photovoltaic polymers were synthesized by incorporating a siloxane-terminated organic/inorganic hybrid side-chain and changing the number of fluorine substituents.A branch point away from a polymer main backbone in the siloxane-containing side-chains and the intra-and/or interchain noncovalent coulombic interactions enhance a chain planarity and facile interchain organization.The resulting polymers formed strongly agglomerated films with high roughness,suggesting strong intermolecular interactions.The optical band gap of ca.1.7 eV was measured for all polymers with a pronounced shoulder peak due to tight π-π stacking.With increasing the fluorine substituents,the frontier energy levels decreased and preferential face-on orientation was observed.The siloxane-terminated side-chains and fluorine substitution promoted the intermolecular packing,showing well resolved lamellar scatterings up to (300) for this series of polymers in the grazing incidence wide angle X-ray scattering measurements.The PPsiDTBT,PPsiDTFBT and PPsiDT2FBT devices showed a power conversion efficiency of 3.16%,4.40% and 5.65%,respectively,by blending with PC71BM.Langevin-type bimolecular charge recombination was similar for three polymeric solar cells.The main loss in the photocurrent generation for PPsiDTBT:PC71BM was interpreted to originate from the trap assisted charge recombination by measuring light-intensity dependent short-circuit current density (Jsc) and open-circuit voltage (Voc).Our results provide a new insight into the rational selection of solubilizing substituents for optimizing crystalline interchain packing with appropriate miscibility with PC71BM for further optimizing polymer solar cells.

  3. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    Science.gov (United States)

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  4. Dehydration of an ethanol/water azeotrope by novel organic-inorganic hybrid membranes based on quaternized chitosan and tetraethoxysilane.

    Science.gov (United States)

    Uragami, Tadashi; Katayama, Takuya; Miyata, Takashi; Tamura, Hiroshi; Shiraiwa, Tadashi; Higuchi, Akon

    2004-01-01

    To control swelling of quaternized chitosan (q-Chito) membranes, mixtures of q-Chito as an organic component and tetraethoxysilane (TEOS) as an inorganic component were prepared using the sol-gel reaction, and novel q-Chito/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation, the effect of TEOS content on the water/ethanol selectivity of q-Chito/TEOS hybrid membranes was investigated. Hybrid membranes containing up to 45 mol % TEOS exhibited higher water/ethanol selectivity than the q-Chito membrane. This resulted from depressed swelling of the membranes by formation of a cross-linked structure. However, introduction of excess TEOS led to greater swelling of the hybrid membranes. Therefore, the water/ethanol selectivity of the hybrid membranes containing more than 45 mol % TEOS was lower than that of the q-Chito membrane. The relationship between the structure of q-Chito/TEOS hybrid membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotrope is discussed in detail.

  5. Energy storage in hybrid organic-inorganic materials hexacyanoferrate-doped polypyrrole as cathode in reversible lithium cells

    DEFF Research Database (Denmark)

    Torres-Gomez, G,; Skaarup, Steen; West, Keld

    2000-01-01

    A study of the hybrid oganic-inorganic hexacyanoferrate-polypyrrole material as a cathode in rechargeable lithium cells is reported as part of a series of functional hybrid materials that represent a new concept in energy storage. The effect of synthesis temperatures of the hybrid in the specific...

  6. Synthesis of a conjugated pyrrolopyridazinedione–benzodithiophene (PPD–BDT) copolymer and its application in organic and hybrid solar cells

    KAUST Repository

    Knall, Astrid-Caroline

    2017-03-30

    Herein, we describe the synthesis and characterization of a conjugated donor–acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD–BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC70BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD–BDT/CuInS2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.Graphical abstract

  7. Synthesis of a conjugated pyrrolopyridazinedione-benzodithiophene (PPD-BDT) copolymer and its application in organic and hybrid solar cells.

    Science.gov (United States)

    Knall, Astrid-Caroline; Jones, Andrew O F; Kunert, Birgit; Resel, Roland; Reishofer, David; Zach, Peter W; Kirkus, Mindaugas; McCulloch, Iain; Rath, Thomas

    2017-01-01

    Herein, we describe the synthesis and characterization of a conjugated donor-acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD-BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC 70 BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS 2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD-BDT/CuInS 2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.

  8. White light generation tuned by dual hybridization of nanocrystals and conjugated polymers

    International Nuclear Information System (INIS)

    Demir, Hilmi Volkan; Nizamoglu, Sedat; Ozel, Tuncay; Mutlugun, Evren; Huyal, Ilkem Ozge; Sari, Emre; Holder, Elisabeth; Tian Nan

    2007-01-01

    Dual hybridization of highly fluorescent conjugated polymers and highly luminescent nanocrystals (NCs) is developed and demonstrated in multiple combinations for controlled white light generation with high color rendering index (CRI) (> 80) for the first time. The generated white light is tuned using layer-by-layer assembly of CdSe/ZnS core-shell NCs closely packed on polyfluorene, hybridized on near-UV emitting nitride-based light emitting diodes (LEDs). The design, synthesis, growth, fabrication and characterization of these hybrid inorganic-organic white LEDs are presented. The following experimental realizations are reported: (i) layer-by-layer hybridization of yellow NCs (λ PL =580 nm) and blue polyfluorene (λ PL =439 nm) with tristimulus coordinates of (x, y)=(0.31, 0.27), correlated color temperature of T c =6962 K and CRI of R a =53.4; (ii) layer-by-layer assembly of yellow and green NCs (λ PL =580 and 540 nm) and blue polyfluorene (λ PL =439 nm) with (x, y)=(0.23, 0.30), T c =14395 K and R a =65.7; and (iii) layer-by-layer deposition of yellow, green and red NCs (λ PL =580, 540 and 620 nm) and blue polyfluorene (λ PL =439 nm) with (x, y)=(0.38, 0.39), T c =4052 K and R a = 83.0. The CRI is demonstrated to be well controlled and significantly improved by increasing multi-chromaticity of the NC and polymer emitters

  9. A review of organic and inorganic biomaterials for neural interfaces.

    Science.gov (United States)

    Fattahi, Pouria; Yang, Guang; Kim, Gloria; Abidian, Mohammad Reza

    2014-03-26

    Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.

  10. Keggin type inorganic-organic hybrid material containing Mn(II) monosubstituted phosphotungstate and S-(+)-sec-butyl amine: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Ketan [Chemistry Department, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India); Patel, Anjali, E-mail: aupatel_chem@yahoo.com [Chemistry Department, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India)

    2012-02-15

    Graphical abstract: A new organic-inorganic hybrid material containing Keggin type manganese substituted phosphotungstate and S-(+)-sec-butyl amine was synthesized and systematically characterized. Highlights: Black-Right-Pointing-Pointer New hybrid material comprising Mn substituted phosphotungstate (PW{sub 11}Mn) and S-(+)-sec-butyl amine (SBA) was synthesized. Black-Right-Pointing-Pointer The spectral studies reveal the attachment of SBA to the PW{sub 11}Mn without any distortion of structure. Black-Right-Pointing-Pointer The synthesized material comprises chirality. Black-Right-Pointing-Pointer The synthesized hybrid material can be used as a heterogeneous catalyst for carrying out asymmetric synthesis. -- Abstract: A new inorganic-organic POM-based hybrid material comprising Keggin type mono manganese substituted phosphotungstate and enantiopure S-(+)-sec-butyl amine was synthesized in an aqueous media by simple ligand substitution method. The synthesized hybrid material was systematically characterized in solid as well as solution by various physicochemical techniques such as elemental analysis, TGA, UV-vis, FT-IR, ESR and multinuclear solution NMR ({sup 31}P, {sup 1}H, {sup 13}C). The presence of chirality in the synthesized material was confirmed by CD spectroscopy and polarimeter. The above study reveals the attachment of S-(+)-sec-butyl amine to Keggin type mono manganese substituted phosphotungstate through N {yields} Mn bond. It also indicates the retainment of Keggin unit and presence of chirality in the synthesized material. An attempt was made to use the synthesized material as a heterogeneous catalyst for carrying out aerobic asymmetric oxidation of styrene using molecular oxygen. The catalyst shows the potential of being used as a stable recyclable catalytic material after simple regeneration without significant loss in conversion.

  11. Visible Photodetectors Based on Organic-Inorganic Hybrids Using Electrostatic Spraying Technology

    Directory of Open Access Journals (Sweden)

    Liang-Wen Ji

    2013-12-01

    Full Text Available This paper discusses an organic-inorganic hybrid white photodetector with the structure of ITO /AZO/ZnO NWs:P3HT: PCBM/PEDOT: PSS/Al produced with an electrostatic spraying method. The method of production was as follows: First, different spraying methods (continuous spraying, discontinuous spraying and different spraying times were tested before the final electrostatic spraying. Then, different annealing times (10 min and 20 min were tested to anneal the coated film. Lastly, we investigated the photoelectric properties, including transparency analysis of the film surface topography through XRD, OM, FE-SEM, AFM and UV-VIS. The results showed that the detector with discontinuous spraying and 20 mins annealing had a photocurrent of approx. 22.1×10-4A, dark current (drain current of approx. 1.94×10-7A, and a ratio of photocurrent to dark current of approximately 1.14×104, which produced optimal photoelectric characteristics.

  12. Hybrid dual gate ferroelectric memory for multilevel information storage

    KAUST Repository

    Khan, Yasser; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2015-01-01

    Here, we report hybrid organic/inorganic ferroelectric memory with multilevel information storage using transparent p-type SnO semiconductor and ferroelectric P(VDF-TrFE) polymer. The dual gate devices include a top ferroelectric field

  13. Synthesis of boronate-functionalized organic-inorganic hybrid monolithic column for the separation of cis-diol containing compounds at low pH.

    Science.gov (United States)

    Zhao, Heqing; Lyu, Haixia; Qin, Wenfei; Xie, Zenghong

    2018-04-01

    In this work, an organic-inorganic hybrid boronate affinity monolithic column was prepared via "one-pot" process using 4-vinylphenylboronic acid as organic monomer and divinylbenzene as cross-linker. The effects of reaction temperature, solvents and composition of organic monomers on the column properties (e.g. morphology, permeability, and mechanical stability) were investigated. A series of test compounds including small neutral molecules, aromatic amines, and cis-diol compounds were used to evaluate the retention behaviors of the prepared hybrid monolithic column. The results demonstrated that the prepared hybrid monolith exhibited mixed-interactions including hydrophilicity, cation exchange, and boronate affinity interaction. The run-to-run, day-to-day and batch-to-batch reproducibilities of the prepared hybrid monolith for thiourea's retention time were satisfactory with the relative standard deviations (RSDs) less than 0.09, 1.45 and 4.05% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rare earth doped nanoparticles in organic and inorganic host materials for application in integrated optics

    NARCIS (Netherlands)

    Dekker, R.; Hilderink, L.T.H.; Diemeer, Mart; Stouwdam, J.W.; Sudarsan, V; van Veggel, F.C.J.M.; Driessen, A.; Worhoff, Kerstin; Misra, D; Masscher, P.; Sundaram, K.; Yen, W.M.; Capobianco, J.

    2006-01-01

    The preparation and the optical properties of lanthanum fluoride (LaF3) nanoparticles doped with erbium and neodymium will be discussed. Organic and inorganic materials in the form of polymers and sol-gels were used to serve as the hosts for the inorganic nanoparticles, respectively. The organic

  15. Hybrid Solar Cells: Materials, Interfaces, and Devices

    Science.gov (United States)

    Mariani, Giacomo; Wang, Yue; Kaner, Richard B.; Huffaker, Diana L.

    Photovoltaic technologies could play a pivotal role in tackling future fossil fuel energy shortages, while significantly reducing our carbon dioxide footprint. Crystalline silicon is pervasively used in single junction solar cells, taking up 80 % of the photovoltaic market. Semiconductor-based inorganic solar cells deliver relatively high conversion efficiencies at the price of high material and manufacturing costs. A great amount of research has been conducted to develop low-cost photovoltaic solutions by incorporating organic materials. Organic semiconductors are conjugated hydrocarbon-based materials that are advantageous because of their low material and processing costs and a nearly unlimited supply. Their mechanical flexibility and tunable electronic properties are among other attractions that their inorganic counterparts lack. Recently, collaborations in nanotechnology research have combined inorganic with organic semiconductors in a "hybrid" effort to provide high conversion efficiencies at low cost. Successful integration of these two classes of materials requires a profound understanding of the material properties and an exquisite control of the morphology, surface properties, ligands, and passivation techniques to ensure an optimal charge carrier generation across the hybrid device. In this chapter, we provide background information of this novel, emerging field, detailing the various approaches for obtaining inorganic nanostructures and organic polymers, introducing a multitude of methods for combining the two components to achieve the desired morphologies, and emphasizing the importance of surface manipulation. We highlight several studies that have fueled new directions for hybrid solar cell research, including approaches for maximizing efficiencies by controlling the morphologies of the inorganic component, and in situ molecular engineering via electrochemical polymerization of a polymer directly onto the inorganic nanowire surfaces. In the end, we

  16. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Science.gov (United States)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  17. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    Science.gov (United States)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the

  18. Research Update: Hybrid organic-inorganic perovskite (HOIP thin films and solar cells by vapor phase reaction

    Directory of Open Access Journals (Sweden)

    Po-Shen Shen

    2016-09-01

    Full Text Available With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP thin films, this new class of photovoltaic (PV technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  19. Sorption and thermodynamic of cation-basic center interactions of inorganic-organic hybrids synthesized from RUB-18

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, T.R. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, Sao Paulo (Brazil); Petrucelli, G.C. [Institute of Chemistry, Federal University of Goias, UFG, P.O. Box 03, 75805-190 Jatai, Goias (Brazil); Airoldi, C., E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, Sao Paulo (Brazil)

    2010-04-20

    Synthesized nanostructured hybrids from RUB-18 layered silicate, containing one (N) or three (3N) basic nitrogen atoms attached to pendant chains were applied for copper, nickel and cobalt sorptions. The isotherms obtained from batchwise processes were adjusted to the Freundlich and the Langmuir-Freundlich models for heterogeneous systems. The basic nitrogen centers/acidic cation interactions were followed by calorimetry under batchwise conditions and the results were analyzed by a modified Langmuir equation. The exothermic enthalpic values of -2.50 {+-} 0.30, -1.62 {+-} 0.10 and -1.35 {+-} 0.20 and -15.61 {+-} 0.20, -8.05 {+-} 0.14 and -20.48 {+-} 0.15 kJ mol{sup -1}, obtained for Cu{sup 2+}, Ni{sup 2+} and Co{sup 2+} titrations with C-RUB-xN (x = 1, 3) materials, suggest a favorable process at the solid/liquid interface for inorganic/organic hybrid cation sorptions. These thermodynamic data, expressed also by reaction spontaneity, infer the use of such hybrids for cation removal from aqueous solution.

  20. Core/Shell Conjugated Polymer/Quantum Dot Composite Nanofibers through Orthogonal Non-Covalent Interactions

    Directory of Open Access Journals (Sweden)

    Brad W. Watson

    2016-11-01

    Full Text Available Nanostructuring organic polymers and organic/inorganic hybrid materials and controlling blend morphologies at the molecular level are the prerequisites for modern electronic devices including biological sensors, light emitting diodes, memory devices and solar cells. To achieve all-around high performance, multiple organic and inorganic entities, each designed for specific functions, are commonly incorporated into a single device. Accurate arrangement of these components is a crucial goal in order to achieve the overall synergistic effects. We describe here a facile methodology of nanostructuring conjugated polymers and inorganic quantum dots into well-ordered core/shell composite nanofibers through cooperation of several orthogonal non-covalent interactions including conjugated polymer crystallization, block copolymer self-assembly and coordination interactions. Our methods provide precise control on the spatial arrangements among the various building blocks that are otherwise incompatible with one another, and should find applications in modern organic electronic devices such as solar cells.

  1. Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Khan, Sajid; Göbel, Ole

    2010-01-01

    This review gives an overview of the progress made in recent years in the development of low-cost parallel patterning techniques for ceramic materials, silica, and organic–inorganic silsesquioxane-based hybrids from wet-chemical solutions and suspensions on the micrometer and nanometer-scale. The

  2. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer

  3. Temperature Dependent Surface Structures and Electronic Properties of Organic-Inorganic Hybrid Perovskite Single Crystals

    Science.gov (United States)

    Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.

    Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.

  4. Full color stop bands in hybrid organic/inorganic block copolymer photonic gels by swelling-freezing.

    Science.gov (United States)

    Kang, Changjoon; Kim, Eunjoo; Baek, Heeyoel; Hwang, Kyosung; Kwak, Dongwoo; Kang, Youngjong; Thomas, Edwin L

    2009-06-10

    We report a facile way of fabricating hybrid organic/inorganic photonic gels by selective swelling and subsequent infiltration of SiO(2) into one type of lamellar microdomain previously self-assembled from modest-molecular-weight block copolymers. Transparent, in-plane lamellar films were first prepared by assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP), and subsequently the P2VP domains were swollen with a selective solvent, methanol. The swollen structures were then fixated by synthesizing SiO(2) nanoparticles within P2VP domains. The resulting frozen photonic gels (f-photonic gels) exhibited strong reflective colors with stop bands across the visible region of wavelengths.

  5. White light generation tuned by dual hybridization of nanocrystals and conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Demir, Hilmi Volkan [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Nizamoglu, Sedat [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Ozel, Tuncay [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Mutlugun, Evren [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Huyal, Ilkem Ozge [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Sari, Emre [Devices and Sensors Group and Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Holder, Elisabeth [Functional Polymers Group and Institute of Polymer Technology, University of Wuppertal, Gaussstrasse 20, D-42097 Wuppertal (Germany); Tian Nan [Functional Polymers Group and Institute of Polymer Technology, University of Wuppertal, Gaussstrasse 20, D-42097 Wuppertal (Germany)

    2007-10-15

    Dual hybridization of highly fluorescent conjugated polymers and highly luminescent nanocrystals (NCs) is developed and demonstrated in multiple combinations for controlled white light generation with high color rendering index (CRI) (> 80) for the first time. The generated white light is tuned using layer-by-layer assembly of CdSe/ZnS core-shell NCs closely packed on polyfluorene, hybridized on near-UV emitting nitride-based light emitting diodes (LEDs). The design, synthesis, growth, fabrication and characterization of these hybrid inorganic-organic white LEDs are presented. The following experimental realizations are reported: (i) layer-by-layer hybridization of yellow NCs ({lambda}{sub PL}=580 nm) and blue polyfluorene ({lambda}{sub PL}=439 nm) with tristimulus coordinates of (x, y)=(0.31, 0.27), correlated color temperature of T{sub c}=6962 K and CRI of R{sub a}=53.4; (ii) layer-by-layer assembly of yellow and green NCs ({lambda}{sub PL}=580 and 540 nm) and blue polyfluorene ({lambda}{sub PL}=439 nm) with (x, y)=(0.23, 0.30), T{sub c}=14395 K and R{sub a}=65.7; and (iii) layer-by-layer deposition of yellow, green and red NCs ({lambda}{sub PL}=580, 540 and 620 nm) and blue polyfluorene ({lambda}{sub PL}=439 nm) with (x, y)=(0.38, 0.39), T{sub c}=4052 K and R{sub a}= 83.0. The CRI is demonstrated to be well controlled and significantly improved by increasing multi-chromaticity of the NC and polymer emitters.

  6. Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material

    International Nuclear Information System (INIS)

    Heyman, J. N.; Alebachew, B. A.; Kaminski, Z. S.; Nguyen, M. D.; Coates, N. E.; Urban, J. J.

    2014-01-01

    We report terahertz and infrared transmission measurements of a high-performance thermoelectric material containing tellurium nanowires in a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix. The DC electrical conductivity of the hybrid material (41 S/cm) is approximately one hundred times that of pure PEDOT:PSS and more than 400 times that of a film of pure tellurium nanowires, while the terahertz-frequency (THz) conductivity of PEDOT:PSS and the hybrid material are comparable at f ∼ 2THz. A frequency-dependent conductivity model indicates that the increased DC conductivity of the hybrid material results from an increase in the DC charge mobility rather than in the free charge density. We suggest that the increased DC conductivity of the hybrid material results from an increase in linkage between PEDOT domains by the tellurium nanowires

  7. Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, J. N., E-mail: heyman@macalester.edu; Alebachew, B. A.; Kaminski, Z. S.; Nguyen, M. D. [Physics Department, Macalester College, St. Paul, Minnesota 55105 (United States); Coates, N. E.; Urban, J. J. [The Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-04-07

    We report terahertz and infrared transmission measurements of a high-performance thermoelectric material containing tellurium nanowires in a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix. The DC electrical conductivity of the hybrid material (41 S/cm) is approximately one hundred times that of pure PEDOT:PSS and more than 400 times that of a film of pure tellurium nanowires, while the terahertz-frequency (THz) conductivity of PEDOT:PSS and the hybrid material are comparable at f ∼ 2THz. A frequency-dependent conductivity model indicates that the increased DC conductivity of the hybrid material results from an increase in the DC charge mobility rather than in the free charge density. We suggest that the increased DC conductivity of the hybrid material results from an increase in linkage between PEDOT domains by the tellurium nanowires.

  8. New organic-inorganic hybrid molecular systems and highly organized materials in catalysis

    Science.gov (United States)

    Kustov, L. M.

    2015-11-01

    Definitions of hybrid materials are suggested, and applications of these materials are considered. Particular attention is focused on the application of hybrid materials in hydrogenation, partial oxidation, plant biomass conversion, and natural gas reforming, primarily on the use of core-shell nanoparticles and decorated metal nanoparticles in these reactions. Application prospects of various hybrid materials, particularly those of metal-organic frameworks, are discussed.

  9. Stability and carrier mobility of organic-inorganic hybrid perovskite CH3NH3PbI3 in two-dimensional limit

    Science.gov (United States)

    Huang, Kui; Lai, Kang; Yan, Chang-Lin; Zhang, Wei-Bing

    2017-10-01

    Recently, atomically thin organic-inorganic hybrid perovskites have been synthesized experimentally, which opens up new opportunities for exploring their novel properties in the 2D limit. Based on the comparative density functional theory calculation with and without spin-orbit coupling effects, the stability, electronic structure, and carrier mobility of the two-dimensional organic-inorganic hybrid perovskites MAPbI3 (MA = CH3NH3) have been investigated systemically. Two single-unit-cell-thick 2D MAPbI3 terminated by PbI2 and CH3NH3I are constructed, and their thermodynamic stabilities are also evaluated using the first-principles constrained thermodynamics method. Our results indicate that both 2D MAPbI3 with different terminations can be stable under certain conditions and have a suitable direct bandgap. Moreover, they are also found to have termination-dependent band edge and carrier mobility. The acoustic-phonon-limited carrier mobilities estimated using the deformation theory and effective mass approximation are on the order of thousands of square centimeters per volt per second and also highly anisotropic. These results indicate that 2D MAPbI3 are competitive candidates for low-dimensional photovoltaic applications.

  10. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  11. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    Science.gov (United States)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  12. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    Science.gov (United States)

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC-hybrid

  13. Local coordination of Eu(III) in organic/inorganic amine functionalized hybrids

    International Nuclear Information System (INIS)

    Carlos, L.D.; Sa Ferreira, R.A.; Goncalves, M.C.; Zea Bermudez, V. de

    2004-01-01

    The sol-gel method was used to prepare two families of organic/inorganic hybrids incorporating europium triflate, classed as di-urethanesils and aminosils. A siliceous network to which short polyether chains are covalently bonded through urethane linkages, composes the di-urethanesil host. A siliceous network containing pendant amine terminated propyl chains, forms the aminosils. The xerogels were investigated by photoluminescence, particularly the local interaction between the Eu 3+ ions and the host matrix. The Eu 3+ local coordination was modelled in terms of a local-field perturbation representing the ion's nearest ligands interaction potential. While for the aminosils the Eu 3+ ions occupy one low-symmetry local site--crystal-field strength of ca. 760.5 cm -1 and 5 D 0 lifetime of 0.6-0.7 ms--two local Eu 3+ environments with distinct point symmetry group, 5 D 0 lifetimes (ca. 0.2-0.3 and 1.4-1.8 ms, respectively) and covalent nature--crystal-field strengths of ca. 540 and 740-780 cm -1 , respectively--were identified in the di-urethanesils

  14. Characterization of organic-inorganic hybrid coatings for corrosion protection of galvanized steel and electroplated ZnFe steel

    Directory of Open Access Journals (Sweden)

    Maria Eliziane Pires de Souza

    2006-03-01

    Full Text Available The development of hybrids materials has been extensively investigated in recent years. The combination of a wide variety of compositions and production processes had permitted the use of these materials in different applications like coatings for corrosion protection of metals. In this work organic-inorganic hybrid materials have been prepared from the hydrolysis of tetraethylorthosilicate and silanol-terminated polidymetilmetoxysilane using a sol-gel process. These materials have been applied on galvanized steel and on steel electroplated with a ZnFe. In order to evaluate the degradation behavior of these coatings, electrochemical techniques (Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization were used. EIS data was fitted to an equivalent circuit from which the electrochemical parameters were obtained. Results show a good protective character of the hybrid films, when compared with uncovered specimens. The overall performance of the coating systems appears to be highly dependent on the kind of metallic coating applied to the steel.

  15. Enantiomers Recognition of Propranolol Based on Organic-Inorganic Hybrid Open-Tubular MIPs-CEC Column Using 3-(Trimethoxysilyl)Propyl Methacrylate as a Cross-Linking Monomer.

    Science.gov (United States)

    Chen, Guo-Ning; Li, Ning; Luo, Tian; Dong, Yu-Ming

    2017-04-01

    In this study, 3-(trimethoxysilyl)propyl methacrylate (γ-MPS), a bifunctional group compound, was used as a single cross-linking agent to prepare molecular imprinted inorganic-organic hybrid polymers by in situ polymerization for open-tubular capillary electro chromatography (CEC) column. The optimal preparation conditions were: the ratio between template molecule and functional monomer was 1:4; the volume proportion of porogen toluene and methanol was 1:1 and the volume of cross-linking agent γ-MPS was 69 μL. The optimal separation conditions were separation voltage of 15 kV; detection wavelength at 215 nm and background electrolyte composed of 70% acetonitrile/20 mmol/L boric acid salt (pH 6.9). Under the optimized conditions, the propranolol enantiomers can be separated well by CEC. The method is simple and fast, it can be a potentially useful approach for propranolol enantiomers separation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Organic-inorganic semiconductor devices and 3, 4, 9, 10 perylenetetracarboxylic dianhydride: an early history of organic electronics

    International Nuclear Information System (INIS)

    Forrest, S R

    2003-01-01

    The demonstration, over 20 years ago, of an organic-inorganic heterojunction (OI HJ) device along with investigations of the growth and physical properties of the archetypal crystalline molecular organic semiconductor 3, 4, 9, 10 perylenetetracarboxylic dianhydride are discussed. Possible applications of OI HJ devices are introduced and the dramatic change in conductive properties of these materials when exposed to high-energy ion beams is described. The past and future prospects for hybrid organic-on-inorganic semiconductor structures for use in electronic and photonic applications are also presented

  17. 3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic-organic hybrid perovskite solar cells.

    Science.gov (United States)

    Li, Wei; Otsuka, Munechika; Kato, Takehito; Wang, Yang; Mori, Takehiko; Michinobu, Tsuyoshi

    2016-01-01

    The ever increasing demand for clean energy has encouraged researchers to intensively investigate environmentally friendly photovoltaic devices. Inorganic-organic hybrid perovskite solar cells (PSCs) are very promising due to their potentials of easy fabrication processes and high power conversion efficiencies (PCEs). Designing hole-transporting materials (HTMs) is one of the key factors in achieving the high PCEs of PSCs. We now report the synthesis of two types of carbazole-based polymers, namely 3,6-Cbz-EDOT and 2,7-Cbz-EDOT, by Stille polycondensation. Despite the same chemical composition, 3,6-Cbz-EDOT and 2,7-Cbz-EDOT displayed different optical and electrochemical properties due to the different connectivity mode of the carbazole unit. Therefore, their performances as hole-transporting polymeric materials in the PSCs were also different. The device based on 2,7-Cbz-EDOT showed better photovoltaic properties with the PCE of 4.47% than that based on 3,6-Cbz-EDOT. This could be due to its more suitable highest occupied molecular orbital (HOMO) level and higher hole mobility.

  18. Ultraviolet/visible and Fourier transform infrared spectroscopic investigations of organic–inorganic hybrid layers for UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Präfke, Christiane, E-mail: christiane.praefke@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena (Germany); Schulz, Ulrike, E-mail: ulrike.schulz@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Kaiser, Norbert, E-mail: norbert.kaiser@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Tünnermann, Andreas, E-mail: andreas.tuennermann@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena (Germany)

    2013-04-01

    A study of vacuum-deposited organic–inorganic hybrid coatings for ultraviolet (UV) protection of polycarbonate is presented. For this purpose, UV-absorbing organic molecules were embedded in a silica matrix by thermal co-evaporation. Typical UV absorbers, namely a benzotriazole, a hydroxyphenyltriazine, and a cyanoacrylate, were used as organic materials. The hybrid layers were investigated by means of ultraviolet/visible (UV/VIS) and Fourier transform infrared spectroscopy (FTIR) concerning their UV/VIS absorption properties and the influence of the silica network on the organic molecules. The porosity and silica–organic interactions are discussed with reference to the infrared spectra. UV irradiation experiments were carried out to demonstrate the UV protection ability of the hybrid layers. Hybrid layers containing the hydroxyphenyltriazine compound showed the best results. - Highlights: ► Vacuum deposited organic–inorganic UV protective coatings for polycarbonate ► Thermal co-evaporation of organic UV absorbing compounds with silica ► Matrix materials and the absorber concentration influence the absorption behavior. ► The coatings on PC show improved UV stability under artificial irradiation. ► The hydroxyphenyltriazine–silica layer shows best UV protection results.

  19. Optimization of hybrid organic/inorganic poly(3-hexylthiophene-2,5-diyl)/silicon solar cells

    Science.gov (United States)

    Weingarten, Martin; Sanders, Simon; Stümmler, Dominik; Pfeiffer, Pascal; Vescan, Andrei; Kalisch, Holger

    2016-04-01

    In the last years, hybrid organic/silicon solar cells have attracted great interest in photovoltaic research due to their potential to become a low-cost alternative for the conventionally used silicon pn-junction solar cells. This work is focused on hybrid solar cells based on the polymer poly(3-hexylthiophene-2,5-diyl), which was deposited on n-doped crystalline silicon via spin-coating under ambient conditions. By employing an anisotropic etching step with potassium hydroxide (KOH), the reflection losses at the silicon surface were reduced. Hereby, the short-circuit current density of the hybrid devices was increased by 31%, leading to a maximum power conversion efficiency (PCE) of 13.1% compared to a PCE of 10.7% for the devices without KOH etching. In addition, the contacts were improved by replacing gold with the more conductive silver as top grid material to reduce the contact resistance and by introducing a thin (˜0.5 nm) lithium fluoride layer between the silicon and the aluminum backside contact to improve electron collection and hole blocking. Hereby, the open-circuit voltage and the fill factor of the hybrid solar cells were further improved and devices with very high PCE up to 14.2% have been realized.

  20. Structure and magnetic properties of SiO{sub 2}/PCL novel sol–gel organic–inorganic hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Cristina Mozzati, Maria [Department of Physics, CNISM and INSTM, University of Pavia, Via Bassi 6, 27100 Pavia (Italy); Ferrara, Chiara; Mustarelli, Piercarlo [Department of Chemistry, Section of Physical Chemistry, University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia (Italy)

    2013-07-15

    Organic–inorganic nanocomposite materials have been synthesized via sol–gel. They consist of an inorganic SiO{sub 2} matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si–OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunity to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO{sub 2}/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount. - Graphical abstract: Characterization and magnetic properties of SiO{sub 2}/PCL organic–inorganic hybrid materials synthesized via sol–gel. FT-IR, Fourier transform infrared spectroscopy; solid-state NMR: solid-state nuclear magnetic resonance; SQUID: superconducting quantum interference device. - Highlights: • Sol–gel synthesis of SiO{sub 2}/PCL amorphous class I organic–inorganic hybrid materials. • FT-IR and NMR analyses show the hydrogen bonds formation between SiO{sub 2} and PCL. • AFM and SEM analyses confirm that the SiO{sub 2}/PCL are homogenous hybrid materials. • The SQUID measures show that the simples are diamagnetic. • Diamagnetic susceptibility of SiO{sub 2}/PCL materials increases with the PCL amount.

  1. Organosilica hybrid nanomaterials with a high organic content: syntheses and applications of silsesquioxanes

    KAUST Repository

    Croissant, Jonas G.

    2016-11-07

    Organic-inorganic hybrid materials garner properties from their organic and inorganic matrices as well as synergistic features, and therefore have recently attracted much attention at the nanoscale. Non-porous organosilica hybrid nanomaterials with a high organic content such as silsesquioxanes (R-SiO, with R organic groups) and bridged silsesquioxanes (OSi-R-SiO) are especially attractive hybrids since they provide 20 to 80 weight percent of organic functional groups in addition to the known chemistry and stability of silica. In the organosilica family, silsesquioxanes (R-SiO) stand between silicas (SiO) and silicones (RSiO), and are variously called organosilicas, ormosil (organically-modified silica), polysilsesquioxanes and silica hybrids. Herein, we comprehensively review non-porous silsesquioxane and bridged silsesquioxane nanomaterials and their applications in nanomedicine, electro-optics, and catalysis.

  2. Inorganic-Organic Molecules and Solids with Nanometer-Sized Pores

    Energy Technology Data Exchange (ETDEWEB)

    Maverick, Andrew W

    2011-12-17

    We are constructing porous inorganic-organic hybrid molecules and solids, many of which contain coordinatively unsaturated metal centers. In this work, we use multifunctional ²-diketone ligands as building blocks to prepare extended-solid and molecular porous materials that are capable of reacting with a variety of guest molecules.

  3. Nanostructured hybrid materials from aqueous polymer dispersions.

    Science.gov (United States)

    Castelvetro, Valter; De Vita, Cinzia

    2004-05-20

    Organic-inorganic (O-I) hybrids with well-defined morphology and structure controlled at the nanometric scale represent a very interesting class of materials both for their use as biomimetic composites and because of their potential use in a wide range of technologically advanced as well as more conventional application fields. Their unique features can be exploited or their role envisaged as components of electronic and optoelectronic devices, in controlled release and bioencapsulation, as active substrates for chromatographic separation and catalysis, as nanofillers for composite films in packaging and coating, in nanowriting and nanolithography, etc. A synergistic combination or totally new properties with respect to the two components of the hybrid can arise from nanostructuration, achieved by surface modification of nanostructures, self-assembling or simply heterophase dispersion. In fact, owing to the extremely large total surface area associated with the resulting morphologies, the interfacial interactions can deeply modify the bulk properties of each component. A wide range of starting materials and of production processes have been studied in recent years for the controlled synthesis and characterization of hybrid nanostructures, from nanoparticle or lamellar dispersions to mesoporous materials obtained from templating nanoparticle dispersions in a continuous, e.g. ceramic precursor, matrix. This review is aimed at giving some basic definitions of what is intended as a hybrid (O-I) material and what are the main synthetic routes available. The various methods for preparing hybrid nanostructures and, among them, inorganic-organic or O-I core-shell nanoparticles, are critically analyzed and classified based on the reaction medium (aqueous, non-aqueous), and on the role it plays in directing the final morphology. Particular attention is devoted to aqueous systems and water-borne dispersions which, in addition to being environmentally more acceptable or even a

  4. Overview of one transistor type of hybrid organic ferroelectric non-volatile memory

    Institute of Scientific and Technical Information of China (English)

    Young; Tea; Chun; Daping; Chu

    2015-01-01

    Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent years.This emerging type of memory devices can lead to a new instrument system as a potential alternative to previous non-volatile memory building blocks in future processing units because of their numerous merits such as cost-effective process,simple structure and freedom in substrate choices.This bi-stable non-volatile memory device of information storage has been investigated using several organic or inorganic semiconductors with organic ferroelectric polymer materials.Recent progresses in this ferroelectric memory field,hybrid system have attracted a lot of attention due to their excellent device performance in comparison with that of all organic systems.In this paper,a general review of this type of ferroelectric non-volatile memory is provided,which include the device structure,organic ferroelectric materials,electrical characteristics and working principles.We also present some snapshots of our previous study on hybrid ferroelectric memories including our recent work based on zinc oxide nanowire channels.

  5. Synthesis of polymer hybrid latex poly(methyl methacrylate-co-butyl acrylate) with organo montmorillonite via miniemulsion polymerization method for barrier paper

    Science.gov (United States)

    Chanra, J.; Budianto, E.; Soegijono, B.

    2018-03-01

    Hybrid polymer latex based on combination of organic-inorganic materials, poly(methyl methacrylate-co-butyl acrylate) (PMMBA) and organo-montmorillonite (OMMT) were synthesized via miniemulsion polymerization technique. Modification of montmorillonite (MMT) through the incorporation of myristyltrimethylammonium bromide (MTAB) into the clay’s interlayer spaces were investigated by Small-Angle X-ray Scattering (SAXS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). Barrier property and thermal stability of polymer latex film sample were investigated through its Water Vapor Transmission Rate (WVTR) and Thermogravimetric Analysis (TGA). The results indicated that addition of OMMT as filler in PMMBA increased the barrier property and thermal stability of the latex film. Addition of 8.0% (wt) OMMT increased the barrier property and thermal stability. Miniemusion polymerization process with higher addition (>8.0 wt%) of OMMT resulting in high latex viscosity, particle size, and high amount of coagulum. The utilization of this hybrid polymer could benefits paper and board industries to produce high quality barrier paper for food packaging.

  6. Full-color tuning in binary polymer:perovskite nanocrystals organic-inorganic hybrid blends

    Science.gov (United States)

    Perulli, A.; Balena, A.; Fernandez, M.; Nedelcu, G.; Cretí, A.; Kovalenko, M. V.; Lomascolo, M.; Anni, M.

    2018-04-01

    The excellent optical and electronic properties of metal halide perovskites recently proposed these materials as interesting active materials for optoelectronic applications. In particular, the high color purity of perovskite colloidal nanocrystals (NCs) had recently motivated their exploration as active materials for light emitting diodes with tunable emission across the visible range. In this work, we investigated the emission properties of binary blends of conjugated polymers and perovskite NCs. We demonstrate that the emission color of the blends is determined by the superposition of the component photoluminescence spectra, allowing color tuning by acting on the blend relative composition. The use of two different polymers, two different perovskite NCs, and different blend compositions is exploited to tune the blend color in the blue-green, yellow-red, and blue-red ranges, including white light generation.

  7. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Takeuchi, Ichiro, E-mail: takeuchi@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740 (United States); Yao, Yangyi; Hsu, Wei-Lun; Dagenais, Mario [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740 (United States)

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  8. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Yangang Liang

    2016-01-01

    Full Text Available We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  9. In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers

    Science.gov (United States)

    Malinauskas, Mangirdas; Baltriukiene, Daiva; Kraniauskas, Antanas; Danilevicius, Paulius; Jarasiene, Rasa; Sirmenis, Raimondas; Zukauskas, Albertas; Balciunas, Evaldas; Purlys, Vytautas; Gadonas, Roaldas; Bukelskiene, Virginija; Sirvydis, Vytautas; Piskarskas, Algis

    2012-09-01

    Films and microstructured scaffolds have been fabricated using direct laser writing out of different polymers: hybrid organic-inorganic ORMOCORE b59, acrylate-based AKRE23, novel organic-inorganic Zr containing hybrid SZ2080, and biodegradable PEG-DA-258. Adult myogenic stem cells were grown on these surfaces in vitro. Their adhesion, growth, and viability test results suggest good potential applicability of the materials in biomedical practice. Pieces of these polymers were implanted in rat's paravertebral back tissue. Histological examination of the implants and surrounding tissue ex vivo after 3 weeks of implantation was conducted and results show the materials to be at least as biocompatible as surgical clips or sutures. The applied direct laser writing technique seems to offer good future prospects in a polymeric 3D scaffold design for artificial tissue engineering with autologous stem cells.

  10. Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures

    Directory of Open Access Journals (Sweden)

    Jacky Even

    2014-01-01

    Full Text Available Potentialities of density functional theory (DFT based methodologies are explored for photovoltaic materials through the modeling of the structural and optoelectronic properties of semiconductor hybrid organic-inorganic perovskites and GaAs/GaP heterostructures. They show how the properties of these bulk materials, as well as atomistic relaxations, interfaces, and electronic band-lineups in small heterostructures, can be thoroughly investigated. Some limitations of available standard DFT codes are discussed. Recent improvements able to treat many-body effects or based on density-functional perturbation theory are also reviewed in the context of issues relevant to photovoltaic technologies.

  11. Sb(III)-Imprinted Organic-Inorganic Hybrid Sorbent Prepared by Hydrothermal-Assisted Surface Imprinting Technique for Selective Adsorption of Sb(III)

    Science.gov (United States)

    Zhang, Dan; Zhao, Yue; Xu, Hong-Bo

    2018-03-01

    Sb(III)-imprinted organic-inorganic hybrid sorbent was prepared by hydrothermal-assisted surface imprinting technique and was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy coupled to an energy dispersive spectrometer and N2 adsorption/desorption isotherms. Hydrothermal-assisted process can improve the selectivity of the Sb(III)-imprinted hybrid sorbent for Sb(III) due to stable control of temperature and pressure. The Sb(III)-imprinted hybrid sorbent IIS indicated higher selectivity for Sb(III), had high static adsorption capacity of 37.3 mg g-1 for Sb(III), displayed stable adsorption capacity in pH range from 4 to 8, reached an rapid adsorption equilibrium within 30 min. According to the correlation coefficient ( r 2 > 0.99), the experimental data fitted better the pseudo-second-order kinetic model and Langmuir equilibrium isotherm.

  12. Hybrid inorganic-organic adsorbents Part 1: Synthesis and characterization of mesoporous zirconium titanate frameworks containing coordinating organic functionalities.

    Science.gov (United States)

    Griffith, Christopher S; De Los Reyes, Massey; Scales, Nicholas; Hanna, John V; Luca, Vittorio

    2010-12-01

    A series of functional hybrid inorganic-organic adsorbent materials have been prepared through postsynthetic grafting of mesoporous zirconium titanate xerogel powders using a range of synthesized and commercial mono-, bis-, and tris-phosphonic acids, many of which have never before been investigated for the preparation of hybrid phases. The hybrid materials have been characterized using thermogravimetric analysis, diffuse reflectance infrared (DRIFT) and 31P MAS NMR spectroscopic techniques and their adsorption properties studied using a 153Gd radiotracer. The highest level of surface functionalization (molecules/nm2) was observed for methylphosphonic acid (∼3 molecules/nm2). The level of functionalization decreased with an increase in the number of potential surface coordinating groups of the phosphonic acids. Spectral decomposition of the DRIFT and 31P MAS NMR spectra showed that each of the phosphonic acid molecules coordinated strongly to the metal oxide surface but that for the 1,1-bis-phosphonic acids and tris-phosphonic acids the coordination was highly variable resulting in a proportion of free or loosely coordinated phosphonic acid groups. Functionalization of a porous mixed metal oxide framework with the tris-methylenephosphonic acid (ATMP-ZrTi-0.33) resulted in a hybrid with the highest affinity for 153Gd3+ in nitric acid solutions across a wide range of acid concentrations. The ATMP-ZrTi-0.33 hybrid material extracted 153Gd3+ with a Kd value of 1×10(4) in 0.01 M HNO3 far exceeding that of the other hybrid phases. The unfunctionalized mesoporous mixed metal oxide had negligible affinity for Gd3+ (KdATMP-ZrTi-0.33 hybrid phase for Gd3+ has been determined to be about 0.005 mmol/g in 0.01 M HNO3. This behavior and that of the other hybrid phases suggests that the surface-bound ATMP ligand functions as a chelating ligand toward 153Gd3+ under these acidic conditions.

  13. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer

    Science.gov (United States)

    Vallé, Karine; Belleville, Philippe; Pereira, Franck; Sanchez, Clément

    2006-02-01

    The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.

  14. Preparation and properties of UV curable organic/inorganic hybrid nanocomposites based on layered double hydroxides

    International Nuclear Information System (INIS)

    Shichang Lv; Wenfang Shi

    2007-01-01

    The organo-modified layered double hydroxides (LDHs), M-LDH and N-LDH, were obtained by the ionic exchange reaction of a magnesium-aluminium nitrate LDH with modifiers. The LDHs/acrylate organic/inorganic hybrid nanocomposites were prepared from organo-modified LDHs, and aliphatic polyurethane acrylate oligomer and an acrylate monomer, through a bulk photopolymerization process at the presence of a photoinitiator. The effects of LDHs content in the resin on the dispersion, and the properties of UV cured nanocomposites film were investigated by using X-ray diffraction, FTIR, thermal analysis, pendulum/pencil hardness measurement. With the good solubility in acrylate resins, the organo-modified LDHs are hopefully to be used in adhesives, coating, inks as toughness modifiers, fire-retardant additives. (Author)

  15. Electroluminescence from GaN-polymer heterojunction

    International Nuclear Information System (INIS)

    Chitara, Basant; Lal, Nidhi; Krupanidhi, S.B.; Rao, C.N.R.

    2011-01-01

    Inorganic and organic semiconductor devices are generally viewed as distinct and separate technologies. Herein we report a hybrid inorganic-organic light-emitting device employing the use of an air stable polymer, Poly (9,9-dioctylfluorene-alt-benzothiadiazole) as a p-type layer to create a heterojunction, avoiding the use of p-type GaN, which is difficult to grow, being prone to the complex and expensive fabrication techniques that characterises it. I-V characteristics of the GaN-polymer heterojunction fabricated by us exhibits excellent rectification. The luminescence onset voltage is typically about 8-10 V. The device emits yellowish white electroluminescence with CIE coordinates (0.42, 0.44). - Highlights: → We use a polymer Poly (9,9-dioctylfluorene-alt-benzothiadiazole) as a p-type layer to create a heterojunction. → I-V characteristics of the device fabricated by us exhibits excellent rectification. → The p-type polymer also emits yellow light, which when combined in proper composition with GaN, give rise to white light. → Device can be readily fabricated by just spin coating the polymer over GaN reducing the cost of the device.

  16. Perspective: Hybrid solar cells: How to get the polymer to cooperate?

    Directory of Open Access Journals (Sweden)

    Jonas Weickert

    2013-08-01

    Full Text Available Lately, a lot of attention has been paid to metal oxide-organic hybrid solar cells. In these devices, conjugated polymers replace the typically transparent hole transporter as usually used in solid-state dye-sensitized solar cells in order to maximize the photon absorption efficiency. However, to unleash the full potential of hybrid solar cells it is imperative to push the photocurrent contribution of the absorbing polymer.

  17. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  18. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Papale, F.; Bollino, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2014-07-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO{sub 2}/PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line.

  19. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    International Nuclear Information System (INIS)

    Catauro, M.; Papale, F.; Bollino, F.; Gallicchio, M.; Pacifico, S.

    2014-01-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO 2 /PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line

  20. Development of hybrid organic-inorganic optical coatings to prevent laser damage

    International Nuclear Information System (INIS)

    Compoint, Francois

    2015-01-01

    The optical devices (lents, mirrors, portholes...) that are set on the chains of the Laser Megajoule (LMJ) may be damaged by the high energy laser beam especially around the UV wavelength of 351 nm. The damages are micronic craters on the rear of the optics that grows exponentially after each laser shots. The study aims at developing some optical thin coatings on the rear of the optical substrates to prevent the growth of the damage by amortizing the laser shock wave, self-healing the craters that has appeared, or repairing the laser hole after the damage occurs. The thin coatings have been prepared by a sol-gel method by using silica precursor and a polydimethylsiloxane (PDMS) elastomer. The two species reacted together to get a hybrid organic-inorganic Ormosil (organically modified silica) material, by creating a silica network linked to the PDMS species with covalent and hydrogen bounds. The thin layers are obtained from the sol-gel solution by using a dip and spin coating method. The coatings have an excellent optical transmission around the UV (351 nm) wavelength. They also have some self-healing properties by using mechanical (viscoelastic) mechanism and chemical reversible hydrogen bounds action in the materials. The silica-PDMS coatings prove to be resistant to the laser beam at 351 nm, despite some optimizations that still need to be done to reach the sought laser damage threshold. (author) [fr

  1. Color optimization of conjugated-polymer/InGaN hybrid white light emitting diodes by incomplete energy transfer

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Lai, Chun-Feng; Madhusudhana Reddy, P.; Chen, Yung-Lin; Chiou, Wei-Yung; Chang, Shinn-Jen

    2015-01-01

    By using the wavelength conversion method, white light emitting diodes (WLEDs) were produced by applying mixtures of polysiloxane and fluorescent polymers on InGaN based light emitting diodes. UV curable organic–inorganic hybrid materials with high refractive index (1.561), compromised optical, thermal and mechanical properties was used as encapsulants. Red light emitting fluorescent FABD polymer (with 9,9-dioctylfluorene (F), anthracene (A) and 2,1,3-benzothiadiazole (B), and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (D) repeating units) and green light emitting fluorescent FAB polymer were used as wavelength converters. The encapsulant/fluorescent polymer mixture and InGaN produce the white light by incomplete energy transfer mechanism. WLEDs with high color rendering index (CRI, about 93), and tunable correlated color temperature (CCT) properties can be produced by controlling the composition and chemical structures of encapsulating polymer and fluorescent polymer in hybrid materials, offering cool-white and neutral-white LEDs. - Highlights: • Highly efficient white light-emitting diodes (WLEDs) were produced. • Conjugated-polymer/InGaN hybrid WLEDs by incomplete energy transfer mechanism. • WLEDs with high color-rendering index and tunable correlated color temperature. • Polysiloxane encapsulant with superior optical, mechanical and thermal properties

  2. Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells.

    Science.gov (United States)

    Jin, Xiao; Sun, Weifu; Zhang, Qin; Ruan, Kelian; Cheng, Yuanyuan; Xu, Haijiao; Xu, Zhongyuan; Li, Qinghua

    2015-06-01

    Charge carrier transport in bulk heterojunction that is central to the device performance of solar cells is sensitively dependent on the energy level alignment of acceptor and donor. However, the effect of energy level regulation induced by nickel ions on the primary photoexcited electron transfer and the performance of P3HT/TiO2 hybrid solar cells remains being poorly understood and rarely studied. Here we demonstrate that the introduction of the versatile nickel ions into TiO2 nanocrystals can significantly elevate the conduction and valence band energy levels of the acceptor, thus resulting in a remarkable reduction of energy level offset between the conduction band of acceptor and lowest unoccupied molecular orbital of donor. By applying transient photoluminescence and femtosecond transient absorption spectroscopies, we demonstrate that the electron transfer becomes more competitive after incorporating nickel ions. In particular, the electron transfer life time is shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor, thus leading to a notable increase of power conversion efficiency in organic/inorganic hybrid solar cells. This work underscores the promising virtue of engineering the reduction of 'excess' energy offset to accelerate electron transport and demonstrates the potential of nickel ions in applications of solar energy conversion and photon detectors.

  3. Ultrathin Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability.

    Science.gov (United States)

    Yang, Shuang; Niu, Wenxin; Wang, An-Liang; Fan, Zhanxi; Chen, Bo; Tan, Chaoliang; Lu, Qipeng; Zhang, Hua

    2017-04-03

    Two-dimensional (2D) organic-inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single- and few-layer free-standing phenylethylammonium lead halide perovskite NSs, that is, (PEA) 2 PbX 4 (PEA=C 8 H 9 NH 3 , X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production.

    Science.gov (United States)

    Kornienko, Nikolay; Sakimoto, Kelsey K; Herlihy, David M; Nguyen, Son C; Alivisatos, A Paul; Harris, Charles B; Schwartzberg, Adam; Yang, Peidong

    2016-10-18

    The rise of inorganic-biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic-abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica-cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO 2 to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M. thermoacetica Transient absorption (TA) spectroscopy revealed that photoexcited electron transfer rates increase with increasing hydrogenase (H 2 ase) enzyme activity. On the same time scale as the TA spectroscopy, time-resolved infrared (TRIR) spectroscopy showed spectral changes in the 1,700-1,900-cm -1 spectral region. The quantum efficiency of this system for photosynthetic acetic acid generation also increased with increasing H 2 ase activity and shorter carrier lifetimes when averaged over the first 24 h of photosynthesis. However, within the initial 3 h of photosynthesis, the rate followed an opposite trend: The bacteria with the lowest H 2 ase activity photosynthesized acetic acid the fastest. These results suggest a two-pathway mechanism: a high quantum efficiency charge-transfer pathway to H 2 ase generating H 2 as a molecular intermediate that dominates at long time scales (24 h), and a direct energy-transducing enzymatic pathway responsible for acetic acid production at short time scales (3 h). This work represents a promising platform to utilize conventional spectroscopic methodology to extract insights from more complex biotic-abiotic hybrid systems.

  5. Linear electro-optical behavior of hybrid nanocomposites based on silicon carbide nanocrystals and polymer matrices

    Science.gov (United States)

    Bouclé, J.; Kassiba, A.; Makowska-Janusik, M.; Herlin-Boime, N.; Reynaud, C.; Desert, A.; Emery, J.; Bulou, A.; Sanetra, J.; Pud, A. A.; Kodjikian, S.

    2006-11-01

    An electro-optical activity has been recently reported for hybrid nanocomposite thin films where inorganic silicon carbide nanocrystals (ncSiC) are incorporated into polymer matrices. The role of the interface SiC polymer is suggested as the origin of the observed second order nonlinear optical susceptibility in the hybrid materials based on poly-(methylmethacrylate) (PMMA) or poly-( N -vinylcarbazole) matrices. In this work, we report an analysis of the electro-optical response of this hybrid system as a function of the ncSiC content and surface state in order to precise the interface effect in the observed phenomenon. Two specific ncSiC samples with similar morphology and different surface states are incorporated in the PMMA matrix. The effective Pockels parameters of the corresponding hybrid nanocomposites have been estimated up to 7.59±0.74pm/V ( 1wt.% of ncSiC in the matrix). The interfacial region ncSiC polymer is found to play the main role in the observed effect. Particularly, the electronic defects on the ncSiC nanocrystal surface modify the interfacial electrical interactions between the two components. The results are interpreted and discussed on the basis of the strong influence of these active centers in the interfacial region at the nanoscale, which are found to monitor the local hyperpolarizabilities and the macroscopic nonlinear optical susceptibilities. This approach allows us to complete the description and understanding of the electro-optical response in the hybrid SiC /polymer systems.

  6. Solution processeable organic-inorganic hybrids based on pyrene functionalized mixed cubic silsesquioxanes as emitters in OLEDs

    KAUST Repository

    Yang, Xiaohui

    2012-01-01

    Traditional materials for application in organic light emitting diodes (OLEDs) are primarily based on small molecules and polymers, with much fewer examples of intermediate molecular weight materials. Our interest lies in this intermediate molecular weight range, specifically in hybrids based on 3-dimensional silsesquioxane (SSQ) cores that represents a new class of versatile materials for application in solution processable OLEDs. We report here various SSQ based hybrids that are easily prepared in one high-yield step from the Heck coupling of commercially available 1-bromopyrene, and 1-bromo-4-heptylbenzene with octavinyl-T8-SSQ, and a mixture of octavinyl-T8-, decavinyl-T10- and dodecavinyl-T12-SSQ. The resulting materials offer numerous advantages for OLEDs including amorphous properties, high-glass-transition temperatures (T g), low polydispersity, solubility in common solvents, and high purity via column chromatography. Solution processed OLEDs prepared from the SSQ hybrids provide sky-blue emission with external quantum efficiencies and current efficiencies of 3.64% and 9.56 cd A -1 respectively. © 2012 The Royal Society of Chemistry.

  7. Long-Term Stability of Photovoltaic Hybrid Perovskites achieved by Graphene Passivation via a Water- and Polymer-Free Graphene Transfer Method

    Science.gov (United States)

    Tseng, W.-S.; Jao, M.-H.; Hsu, C.-C.; Wu, C.-I.; Yeh, N.-C.

    Organic-inorganic hybrid perovskites such as CH3NH3PbX3 (X = I, Br) have been intensively studied in recent years because of their rapidly improving photovoltaic power conversion efficiency. However, severe instability of these materials in ambient environment has been a primary challenge for practical applications. To address this issue, we employ high-quality PECVD-grown graphene to passivate the hybrid perovskites. In contrast to existing processes for transferring graphene from the growth substrates to other surfaces that involve either polymer or water, which are incompatible with photovoltaic applications of these water-sensitive hybrid perovskites, we report here a new water- and polymer-free graphene transferring method. Studies of the Raman, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) demonstrated excellent quality of monolayer PECVD-grown graphene samples after their transfer onto different substrates with the water- and polymer-free processing method. In particular, graphene was successfully transferred onto the surface of CH3NH3PbI3 thin films with sample quality intact. Moreover, XPS and UPS studies indicated that even after 3 months, the fully graphene-covered perovskite films remained spectroscopically invariant, which was in sharp contrast to the drastic changes, after merely one week, in both the XPS and UPS of a control CH3NH3PbI3 sample without graphene protection. Beckman Inst. in Caltech. Dragon Gate Program in Taiwan.

  8. Synthesis of inorganic polymers using fly ash and primary lead slag.

    Science.gov (United States)

    Onisei, S; Pontikes, Y; Van Gerven, T; Angelopoulos, G N; Velea, T; Predica, V; Moldovan, P

    2012-02-29

    The present work reports on the synthesis and properties of inorganic polymers ("geopolymers") made of 100% fly ash from lignite's combustion, 100% primary lead slag and mixtures of the two. In the inorganic polymers with both fly ash and lead slag the main crystalline phases detected are wüstite, magnetite, sodium zinc silicate, quartz, anorthite, and gehlenite; litharge partially dissolves. FTIR analysis in these samples revealed that the main peaks and bands of end members also exist, along with a new amorphous reaction product. In terms of microstructure, both fly ash and lead slag dissolve and contribute in the binding phase whereas the larger particles act as aggregates. For an increasing lead slag in the composition, the binding phase is changing in chemistry and reaches PbO values higher than 50 wt.% for the 100% lead slag inorganic polymer. Regarding the properties of fly ash and lead slag inorganic polymers, compressive strength is higher than 35 MPa in all cases and water absorption diminishes as the lead slag content increases. A comparison of leaching results before and after polymerisation reveals that pH is an important factor as Pb is immobilised in the binding phase, unlike Zn and As. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Biocompatible Polymer/Quantum Dots Hybrid Materials: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Lei Shen

    2011-12-01

    Full Text Available Quantum dots (QDs are nanometer-sized semiconductor particles with tunable fluorescent optical property that can be adjusted by their chemical composition, size, or shape. In the past 10 years, they have been demonstrated as a powerful fluorescence tool for biological and biomedical applications, such as diagnostics, biosensing and biolabeling. QDs with high fluorescence quantum yield and optical stability are usually synthesized in organic solvents. In aqueous solution, however, their metallic toxicity, non-dissolubility and photo-luminescence instability prevent the direct utility of QDs in biological media. Polymers are widely used to cover and coat QDs for fabricating biocompatible QDs. Such hybrid materials can provide solubility and robust colloidal and optical stability in water. At the same time, polymers can carry ionic or reactive functional groups for incorporation into the end-use application of QDs, such as receptor targeting and cell attachment. This review provides an overview of the recent development of methods for generating biocompatible polymer/QDs hybrid materials with desirable properties. Polymers with different architectures, such as homo- and co-polymer, hyperbranched polymer, and polymeric nanogel, have been used to anchor and protect QDs. The resulted biocompatible polymer/QDs hybrid materials show successful applications in the fields of bioimaging and biosensing. While considerable progress has been made in the design of biocompatible polymer/QDs materials, the research challenges and future developments in this area should affect the technologies of biomaterials and biosensors and result in even better biocompatible polymer/QDs hybrid materials.

  10. LDRD final report on intelligent polymers for nanodevice performance control

    Energy Technology Data Exchange (ETDEWEB)

    JAMISON,GREGORY M.; LOY,DOUGLAS A.; WHEELER,DAVID R.; SAUNDERS,RANDALL S.L; SHELNUTT,JOHN A.; CARR,MARTIN J.; SHALTOUT,RAAFAT M.

    2000-01-01

    A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.

  11. Hybrid thin-film solar cells comprising mesoporous titanium dioxide and conjugated polymers; Hybride Duennschicht-Solarzellen aus mesoporoesem Titandioxid und konjugierten Polymeren

    Energy Technology Data Exchange (ETDEWEB)

    Schattauer, Sylvia

    2010-12-01

    The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO{sub 2} and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO{sub 2} layer has been prepared. All these properties of the TiO{sub 2} films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO{sub 2} layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO{sub 2} layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and

  12. Self-assembled organic-inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles.

    Science.gov (United States)

    Denadai, Angelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S; Sinisterra, Rubén D

    2012-01-01

    Organic-inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr(3+) and Cr(2)O(7) (2-) ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer-Emmett-Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn.

  13. Characterization of the surface organization of nanostructured hybrid organic-inorganic materials by time-of-flight secondary ion mass spectrometry

    Science.gov (United States)

    Cerveau; Corriu; Dabosi; Fischmeister-Lepeytre; Combarieu

    1999-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used to analyse the surface composition of organic-inorganic hybrid solids obtained by a sol-gel process. Gels of type O(1.5)Si-R-SiO(1. 5), obtained from bis-silylated precursors (R'O)(3)-R-Si(OR')(3) (R' = Me, Et and R = (-CH(2))(n)-, n = 1, 2, 6, 10, 12;--CH=CH-; (-CH(2))(3)NH(CH(2))(3)-; 1, 1'-ferrocenyl; (CH(2))(n)-Ph-(CH(2))(n)- with Ph = 1,4-phenylene and n = 0, 1, 2; Ph = 1,3,5-phenyl and n = 0) were analysed. The results were highly dependent on the nature of the organic group. When the organic group was small or 'rigid', the main peaks detected corresponded to SiOH and SiOR' residual groups. Fragment ions from the organic group were poorly detected in this case. When the organic group was larger and more 'flexible', characteristic mass fragment ions were detected at higher relative intensities, indicative of a different organization of the organic units in the solid. TOF-SIMS clearly showed the differences between the xerogels derived from mono- and bis-silylated organic precursors : the organic group is present at the surface of mono-silylated xerogels, whereas for bis-silylated ones, the organization is dependent on the length and the flexibility of the organic units. These TOF-SIMS results are in agreement with other features already reported. Copyright 1999 John Wiley & Sons, Ltd.

  14. CO 2 Capture Capacity and Swelling Measurements of Liquid-like Nanoparticle Organic Hybrid Materials via Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Park, Youngjune

    2012-01-12

    Novel nanoparticle organic hybrid materials (NOHMs), which are comprised of organic oligomers or polymers tethered to an inorganic nanosized cores of various sizes, have been synthesized, and their solvating property for CO 2 was investigated using attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy. Simultaneous measurements of CO 2 capture capacity and swelling behaviors of polyetheramine (Jeffamine M-2070) and its corresponding NOHMs (NOHM-I-PE2070) were reported at temperatures of (298, 308, 323 and 353) K and CO 2 pressure conditions ranging from (0 to 5.5) MPa. The polymeric canopy, or polymer bound to the nanoparticle surface, showed significantly less swelling behavior with enhanced or comparable CO 2 capture capacity compared to pure unbound polyetheramine. © 2011 American Chemical Society.

  15. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Vorwerk, Christian [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy; Hartmann, Claudia [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Cocchi, Caterina [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy; Sadoughi, Golnaz [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Habisreutinger, Severin N. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado, United States; Félix, Roberto [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Wilks, Regan G. [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany; Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bär, Marcus [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany; Draxl, Claudia [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy

    2018-03-23

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L3 and the Pb M5 edges of the methylammonium lead iodide (MAPbI3) hybrid inorganic-organic perovskite and its binary phase PbI2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI3 are essentially given by its inorganic component, with negligible influence from the organic groups. The theoretical analysis complementing experimental observations provides the conceptual insights required for a full characterization of this complex material.

  16. Structure and optical properties of several organic-inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra.

    Science.gov (United States)

    Mitzi, D B; Brock, P

    2001-04-23

    Two organic-inorganic bismuth iodides of the form (H3N-R-NH3)BiI5 are reported, each containing long and relatively flexible organic groups, R. The norganic framework in each case consists of distorted BiI6 octahedra sharing cis vertexes to form zigzag chains. Crystals of (H3NC18H24S2NH3)BiI5 were grown from a slowly cooled ethylene glycol/2-butanol solution containing bismuth(III) iodide and AETH.2HI, where AETH = 1,6-bis[5'-(2' '-aminoethyl)-2'-thienyl]hexane. The new compound, (H2AETH)BiI5, adopts an orthorhombic (Aba2) cell with the lattice parameters a = 20.427(3) A, b = 35.078(5) A, c = 8.559(1) A, and Z = 8. The structure consists of corrugated layers of BiI5(2-) chains, with Bi-I bond lengths ranging from 2.942(3) to 3.233(3) A, separated by layers of the organic (H2AETH)(2+) cations. Crystals of the analogous (H3NC12H24NH3)BiI5 compound were also prepared from a concentrated aqueous hydriodic acid solution containing bismuth(III) iodide and the 1,12-dodecanediamine (DDDA) salt, DDDA.2HI. (H2DDDA)BiI5 crystallizes in an orthorhombic (Ibam) cell with a = 17.226(2) A, b = 34.277(4) A, c = 8.654(1) A, and Z = 8. The Bi-I bonds range in length from 2.929(1) to 3.271(1) A. While the inorganic chain structure is nearly identical for the two title compounds, as well as for the previously reported (H3NC6H12NH3)BiI5 [i.e., (H2DAH)BiI5] structure, the packing of the chains is strongly influenced by the choice of organic cation. Optical absorption spectra for thermally ablated thin films of the three organic-inorganic hybrids containing BiI5(2-) chains are reported as a function of temperature (25-290 K). The dominant long-wavelength feature in each case is attributed to an exciton band, which is apparent at room temperature and, despite the similar inorganic chain structure, varies in position from 491 to 541 nm (at 25 K).

  17. Excitonic Properties of Chemically Synthesized 2D Organic-Inorganic Hybrid Perovskite Nanosheets.

    Science.gov (United States)

    Zhang, Qi; Chu, Leiqiang; Zhou, Feng; Ji, Wei; Eda, Goki

    2018-05-01

    2D organic-inorganic hybrid perovskites (OIHPs) represent a unique class of materials with a natural quantum-well structure and quasi-2D electronic properties. Here, a versatile direct solution-based synthesis of mono- and few-layer OIHP nanosheets and a systematic study of their electronic structure as a function of the number of monolayers by photoluminescence and absorption spectroscopy are reported. The monolayers of various OIHPs are found to exhibit high electronic quality as evidenced by high quantum yield and negligible Stokes shift. It is shown that the ground exciton peak blueshifts by ≈40 meV when the layer thickness reduces from bulk to monolayer. It is also shown that the exciton binding energy remains effectively unchanged for (C 6 H 5 (CH 2 ) 2 NH 3 ) 2 PbI 4 with the number of layers. Similar trends are observed for (C 4 H 9 NH 3 ) 2 PbI 4 in contrast to the previous report. Further, the photoluminescence lifetime is found to decrease with the number of monolayers, indicating the dominant role of surface trap states in nonradiative recombination of the electron-hole pairs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and characterization of hybrid organic-inorganic materials of polyamide-imide (PAI) and copolysilsesquioxanes of 3-aminopropyltriethoxysilane (APES) and phenyltriethoxysilane (PTES)

    International Nuclear Information System (INIS)

    Demarchi, A.A.; Pezzin, S.H.

    2010-01-01

    In this work, organic-inorganic hybrids were obtained by adding copolysilsesquioxanes of 3-aminopropyltriethoxysilane (APES) and phenyltriethoxysilane (PTES), prepared by sol-gel, to the polyamide-imide (PAI). The synthesis of PAI oligomer from trimellitic anhydride (TMA) and 4,4-diphenyl-methane diisocyanate (MDI), was monitored by FTIR, noting that two steps of 80 deg C and 120 deg C for 2 h each are sufficient to obtain it. PAI-copolysilsesquioxanes hybrids were characterized by FTIR, viscometry, thermogravimetry, NMR and microscopy. The spectrum of the PAI and PAI-hybrid copolysilsesquioxanes show the formation of amide and imide. Copolysilsesquioxanes with high levels of APES increased the viscosity and generated the PAI oligomer gelatinization, hindering the formation of uniform films. Gelatinization did not occur with copolysilsesquioxanes rich PTES, allowing the formation of homogeneous films improvements in thermal resistance. (author)

  19. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15

    NARCIS (Netherlands)

    Santen, van R.A.; Zhang, Lei; Abbenhuis, H.C.L.; Gerritsen, G.; Ní Bhriain, N.M.; Magusin, P.C.M.M.; Mezari, B.; Han, W.; Yang, Q.; Li, Can

    2007-01-01

    A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active

  20. Multiple-Stage Structure Transformation of Organic-Inorganic Hybrid Perovskite CH3NH3PbI3

    Science.gov (United States)

    Chen, Qiong; Liu, Henan; Kim, Hui-Seon; Liu, Yucheng; Yang, Mengjin; Yue, Naili; Ren, Gang; Zhu, Kai; Liu, Shengzhong; Park, Nam-Gyu; Zhang, Yong

    2016-07-01

    By performing spatially resolved Raman and photoluminescence spectroscopy with varying excitation wavelength, density, and data acquisition parameters, we achieve a unified understanding towards the spectroscopy signatures of the organic-inorganic hybrid perovskite, transforming from the pristine state (CH3NH3PbI3 ) to the fully degraded state (i.e., PbI2 ) for samples with varying crystalline domain size from mesoscopic scale (approximately 100 nm) to macroscopic size (centimeters), synthesized by three different techniques. We show that the hybrid perovskite exhibits multiple stages of structure transformation occurring either spontaneously or under light illumination, with exceptionally high sensitivity to the illumination conditions (e.g., power, illumination time, and interruption pattern). We highlight four transformation stages (stages I-IV, with stage I being the pristine state) along either the spontaneous or photoinduced degradation path exhibiting distinctly different Raman spectroscopy features at each stage, and point out that previously reported Raman spectra in the literature reflect highly degraded structures of either stage III or stage IV. Additional characteristic optical features of partially degraded materials under the joint action of spontaneous and photodegradation are also given. This study offers reliable benchmark results for understanding the intrinsic material properties and structure transformation of this unique category of hybrid materials, and the findings are pertinently important to a wide range of potential applications where the hybrid material is expected to function in greatly different environment and light-matter interaction conditions.

  1. Photoconducting hybrid perovskite containing carbazole moiety as the organic layer: Fabrication and characterization

    International Nuclear Information System (INIS)

    Deng Meng; Wu Gang; Cheng Siyuan; Wang Mang; Borghs, Gustaaf; Chen Hongzheng

    2008-01-01

    PbCl 2 -based thin films of perovskite structure with hole-transporting carbazole derivatives as the organic layer were successfully prepared by spin-coating from dimethylformamide solution containing stoichiometric amounts of organic and inorganic moieties. The crystal structure and optical property of the hybrid perovskite were characterized by Fourier transform infrared (FT-IR) spectrum, X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL). FT-IR spectra confirmed the formation of organic-inorganic hybrid perovskite structure. UV-vis spectra of hybrid perovskite thin films exhibited a wide absorption band in ultraviolet region as well as a sharp peak at 330 nm characteristic of PbCl 2 -based layered perovskite. X-ray diffraction profiles indicated that the layered structure was oriented parallel to the silica glass slide plane. Meanwhile, double-layer photoreceptors of the hybrid perovskite were also fabricated, which showed the enhancement of photoconductivity by carbazole chromophore

  2. PLASMA SPRAYED Al₂O₃-13 WT.%TiO₂ COATING SEALED WITH ORGANIC-INORGANIC HYBRID AGENT AND ITS CORROSION RESISTANCE IN ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Zehua Zhou

    2016-07-01

    Full Text Available A novel organic-inorganic hybrid material of γ-methacryloxypropyltrime-thoxysilane (KH570 -SiO₂ was fabricated by Sol-Gel method. The hybrid material was used as the sealing agent for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating. Infrared spectrum and grafted mechanism of the hybrid agent (HA were studied. Moreover, morphology and porosity, as well as characteristics of immersion plus electrochemical corrosion in acid environment of the coating with and without sealing treatment were evaluated, compared with those of the coating sealed with the conventional silicone resin agent (SRA. The results reveal that KH570 was successfully grafted onto the surface of SiO₂. The HA film sealed on the surface of the coating presents a little better quality than the SRA film. The porosities of the coatings after the sealing treatment decreased. Furthermore, the sealing treatment can improve efficiently the corrosion resistance of the coating in 5 vol.% HCl solution. The hybrid sealing agent can become a candidate for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating used in acid environment to overcome some disadvantages of organic agents such as severely environmental pollution.

  3. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  4. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.

    Science.gov (United States)

    Liang, Yongye; Li, Yanguang; Wang, Hailiang; Dai, Hongjie

    2013-02-13

    Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic nanoparticles and nanocarbon, leading to nonprecious metal-based electrocatalysts with improved activity and durability for the oxygen reduction reaction for fuel cells and chlor-alkali catalysis, oxygen evolution reaction, and hydrogen evolution reaction. X-ray absorption near-edge structure and scanning transmission electron microscopy are employed to characterize the hybrids materials and reveal the coupling effects between inorganic nanomaterials and nanocarbon substrates. Z-contrast imaging and electron energy loss spectroscopy at single atom level are performed to investigate the nature of catalytic sites on ultrathin graphene sheets. Nanocarbon-based hybrid materials may present new opportunities for the development of electrocatalysts meeting the requirements of activity, durability, and cost for large-scale electrochemical applications.

  5. Photostability of 2D Organic-Inorganic Hybrid Perovskites

    Directory of Open Access Journals (Sweden)

    Yi Wei

    2014-06-01

    Full Text Available We analyze the behavior of a series of newly synthesized (R-NH32PbX4 perovskites and, in particular, discuss the possible reasons which cause their degradation under UV illumination. Experimental results show that the degradation process depends a lot on their molecular components: not only the inorganic part, but also the chemical structure of the organic moieties play an important role in bleaching and photo-chemical reaction processes which tend to destroy perovskites luminescent framework. In addition, we find the spatial arrangement in crystal also influences the photostability course. Following these trends, we propose a plausible mechanism for the photodegradation of the films, and also introduced options for optimized stability.

  6. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.

    Science.gov (United States)

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.

  7. Hybrid Organic-Inorganic Bridged Silsesquioxane Nanoparticles for Cancer Nanomedicine

    KAUST Repository

    Fatieiev, Yevhen

    2017-10-01

    It is well established that cancer is one of the leading causes of death globally. Its complete eradication requires early detection and intensive drug treatment. In many cases it might also require surgery. Unfortunately, current medicine is still more focused on cancer treatment rather than elimination of its reason. The mechanism of tumor emergence and development is quite complicated, although, we are constantly advancing in this field. Nanomedicine is envisioned as the silver bullet against cancer. Thus, nanoscale systems with therapeutic and diagnostic modalities can simultaneously perform several functions: accurate detection of tumor site, precise targeting, and controlled drug release inside abnormal cells and tissues while being nontoxic to healthy ones. Moreover, surface modification of such nanoparticles allows them to be invisible to the immune system and have longer blood circulating time. The performed research in this dissertation is completely based on hybrid organicinorganic bridged silsesquioxane (also known as organosilica) nanomaterials, therefore comprising "soft" organic/bioorganic part which can imitate certain biorelevant structures and facilitates successful escape from the immune system for more efficient accumulation in cancer cells, while "hard" inorganic part serves as a rigid and stable basis for the creation of cargo nanocarriers and imaging agents. This dissertation discusses the 5 critical points of safe biodegradable nanoplatforms, delivery of large biomolecules, and cytotoxicity regarding the shape of nanoparticles. As a result novel fluorescent biodegradable oxamide-based organosilica nanoparticles were developed, light-triggered surface charge reversal for large biomolecule delivery was applied with hollow bridged silsesquioxane nanomaterials, and biocompatibility of periodic mesoporous organosilicas with different morphologies was studied. Furthermore, the current achievements and future perspectives of mesoporous silica

  8. Hybrid Organic-Inorganic Bridged Silsesquioxane Nanoparticles for Cancer Nanomedicine

    KAUST Repository

    Fatieiev, Yevhen

    2017-01-01

    It is well established that cancer is one of the leading causes of death globally. Its complete eradication requires early detection and intensive drug treatment. In many cases it might also require surgery. Unfortunately, current medicine is still more focused on cancer treatment rather than elimination of its reason. The mechanism of tumor emergence and development is quite complicated, although, we are constantly advancing in this field. Nanomedicine is envisioned as the silver bullet against cancer. Thus, nanoscale systems with therapeutic and diagnostic modalities can simultaneously perform several functions: accurate detection of tumor site, precise targeting, and controlled drug release inside abnormal cells and tissues while being nontoxic to healthy ones. Moreover, surface modification of such nanoparticles allows them to be invisible to the immune system and have longer blood circulating time. The performed research in this dissertation is completely based on hybrid organicinorganic bridged silsesquioxane (also known as organosilica) nanomaterials, therefore comprising "soft" organic/bioorganic part which can imitate certain biorelevant structures and facilitates successful escape from the immune system for more efficient accumulation in cancer cells, while "hard" inorganic part serves as a rigid and stable basis for the creation of cargo nanocarriers and imaging agents. This dissertation discusses the 5 critical points of safe biodegradable nanoplatforms, delivery of large biomolecules, and cytotoxicity regarding the shape of nanoparticles. As a result novel fluorescent biodegradable oxamide-based organosilica nanoparticles were developed, light-triggered surface charge reversal for large biomolecule delivery was applied with hollow bridged silsesquioxane nanomaterials, and biocompatibility of periodic mesoporous organosilicas with different morphologies was studied. Furthermore, the current achievements and future perspectives of mesoporous silica

  9. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.

    Science.gov (United States)

    Elzoghby, Ahmed O; Hemasa, Ayman L; Freag, May S

    2016-12-10

    Recently, a great interest has been paid to the development of hybrid protein-inorganic nanoparticles (NPs) for drug delivery and cancer diagnostics in order to combine the merits of both inorganic and protein nanocarriers. This review primarily discusses the most outstanding advances in the applications of the hybrids of naturally-occurring proteins with iron oxide, gadolinium, gold, silica, calcium phosphate NPs, carbon nanotubes, and quantum dots in drug delivery and cancer imaging. Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs and the mechanisms involved in the drug loading process are discussed. How can the protein functionalization overcome the limitations of colloidal stability, poor dispersibility and toxicity associated with inorganic NPs is also investigated. Moreover, issues relating to the influence of protein hybridization on the cellular uptake, tumor targeting efficiency, systemic circulation, mucosal penetration and skin permeation of inorganic NPs are highlighted. A special emphasis is devoted to the novel approaches utilizing the protein-inorganic nanohybrids in combined cancer therapy, tumor imaging, and theranostic applications as well as stimuli-responsive drug release from the nanohybrids. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hybrid-organic photodetectors for radiography. Final report

    International Nuclear Information System (INIS)

    Schmidt, Oliver; Bonrad, Klaus; Adam, Jens; Kraus, Tobias; Gimmler, Christoph

    2016-02-01

    HOP-X aimed to combine the advantages of nanotechnology and organic electronics for application in medical X-ray imaging in order to enable more cost-effective imaging at lower dose. Solution-processing of organic semiconductors enables easy hybridization with X-ray absorbers and processing on large areas. In this project, nano-sized scintillators and quantum dots have been synthesized and characterized as X-ray absorbers. Organic semiconductor materials have been identified which allow charge carrier extraction from layers with a thickness of up to 200 μm. Hybrid-organic photodiodes have been processed and the ideal mixture of organic semiconductor and inorganic X-ray absorber was determined. This mixture provide a high X-ray absorption and an efficient charge carrier extraction at the same time. Photodiodes have been integrated on TFT-matrix backplanes in order to demonstrate the concept in X-ray imagers.

  11. A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.

    Science.gov (United States)

    Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya

    2014-03-17

    This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Non-hydrolytic sol-gel synthesis of epoxysilane-based inorganic-organic hybrid resins

    International Nuclear Information System (INIS)

    Jana, Sunirmal; Lim, Mi Ae; Baek, In Chan; Kim, Chang Hae; Seok, Sang Il

    2008-01-01

    A silica-based inorganic-organic hybrid resins (IOHR) were synthesized by non-hydrolytic sol-gel process from 3-glycidoxypropyltrimethoxysilane (GLYMO) and diphenylsilanediol (DPSD) at a fixed amount of (20 mol%) phenyltrimethoxysilane using barium hydroxide as a catalyst. The confirmation of condensation reaction in the IOHR was done by liquid state 29 Si NMR (Nuclear Magnetic Resonance) spectroscopy, measurement of viscosity as well as weight average molecular weight (W m ) of the IOHR. The W m of the IOHR was varied from 1091 to 2151, depending upon the DPSD content. Fourier transform infrared (FTIR) spectroscopic measurements were performed to investigate the details of vibrational absorption bands in the IOHR. It was seen that up to 50 mol% of DPSD there were no absorption peaks in the region of 3000-3600 cm -1 responsible for O-H groups and it reappeared at 60 mol% of DPSD due to some unreacted OH groups present in the resin. The IOHR at all the compositions was oily transparent liquid, miscible with various organic solvents like toluene, cyclohexanone, chloroform, tehrahydrofuran (THF), etc., and also commercial epoxy resins but immiscible with water. The color of the IOHR was pale yellow, which lightened with increasing DPSD content. The IOHR having 40-50 mol% of DPSD were storable. The refractive index at 632.8 nm of the resin films varied from 1.556 to 1.588, depending upon the resin composition. Physico-chemical properties such as the thermal stability, visible transparency, etc. after curing were investigated as a function of the chemical composition

  13. Chemical, electrical and electrochemical characterization of hybrid organic/inorganic polypyrrole/PW{sub 12}O{sub 40}{sup 3-} coating deposited on polyester fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2011-09-15

    A study of the stability of conducting fabrics of polyester (PES) coated with polypyrrole/PW{sub 12}O{sub 40}{sup 3-} (organic/inorganic hybrid material) in different pH solutions (1, 7, 13) has been done. Washing tests were also done in views of its possible application in electronic textiles such as antistatic clothing. X-ray photoelectron spectroscopy (XPS) studies have been done to quantify the amount of counter ion that remains in the polymer matrix and determine the doping ratio (N{sup +}/N) after the different tests. Scanning electron microscopy (SEM) was also used to observe morphological differences after the different tests. Surface resistivity changes were measured by means of electrochemical impedance spectroscopy (EIS). Scanning electrochemical microscopy (SECM) was employed to measure changes in electroactivity after the different tests. Higher pHs caused a decrease of the doping ratio (N{sup +}/N), the loss of part of the counter ions and the decrease of its conducting and electrocatalytic properties. The stability in acid media and neutral media and after the washing test was good. Only at pH 13 the loss of the counter ion was widespread and there was a decrease of its conducting and catalytic properties; although the fabrics continued acting mainly as a conducting material.

  14. Degradation and Its Control of Ultraviolet Avalanche Photodiodes Using PEDOT:PSS/ZnSSe Organic-Inorganic Hybrid Structure

    Science.gov (United States)

    Abe, Tomoki; Uchida, Shigeto; Tanaka, Keita; Fujisawa, Takanobu; Kasada, Hirofumi; Ando, Koshi; Akaiwa, Kazuaki; Ichino, Kunio

    2018-05-01

    We investigated device degradation in PEDOT:PSS/ZnSSe organic-inorganic hybrid ultraviolet avalanche photodiodes (UV-APDs). ZnSSe/n-GaAs wafers were grown by molecular beam epitaxy, and PEDOT:PSS window layers were formed by inkjet technique. We observed rapid degradation with APD-mode stress (˜ 30 V) in the N2 (4 N) atmosphere, while we observed no marked change in forward bias current stress and photocurrent stress. In the case of a vacuum condition, we observed no detectable degradation in the dark avalanche current with APD-mode stress. Therefore, the degradation in the PEDOT:PSS/ZnSSe interface under the APD-mode stress was caused by the residual water vapor or oxygen in the N2 atmosphere and could be controlled by vacuum packaging.

  15. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries

    Science.gov (United States)

    Chen, Shaojie; Wang, Junye; Zhang, Zhihua; Wu, Linbin; Yao, Lili; Wei, Zhenyao; Deng, Yonghong; Xie, Dongjiu; Yao, Xiayin; Xu, Xiaoxiong

    2018-05-01

    Nano-sized fillers in a polymer matrix with good distribution can play a positive role in improving polymer electrolytes in the aspects of ionic conductivity, mechanical property and electrochemical performance of Li-ion cells. Herein, polyethylene oxide (PEO)/Li3PS4 hybrid polymer electrolyte is prepared via a new in-situ approach. The ionic conductivities of the novel hybrid electrolytes with variable proportions are measured, and the optimal electrolyte of PEO-2%vol Li3PS4 presents a considerable ionic conductivity of 8.01 × 10-4 S cm-1 at 60 °C and an electrochemical window up to 5.1 V. The tests of DSC and EDXS reveal that the Li3PS4 nanoparticles with better distribution, as active fillers scattering in the PEO, exhibit a positive effect on the transference of lithium ion and electrochemical interfacial stabilities. Finally, the assembled solid-state LiFePO4/Li battery presents a decent cycling performance (80.9% retention rate after 325 cycles at 60 °C) and excellent rate capacities with 153, 143, 139 and 127 mAh g-1 at the discharging rate of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C. It is fully proved that it is an advanced strategy to preparing the new organic/inorganic hybrid electrolytes for lithium-ion batteries applications.

  16. Polyfunctional inorganic-organic hybrid materials: an unusual kind of NLO active layered mixed metal oxalates with tunable magnetic properties and very large second harmonic generation.

    Science.gov (United States)

    Cariati, Elena; Macchi, Roberto; Roberto, Dominique; Ugo, Renato; Galli, Simona; Casati, Nicola; Macchi, Piero; Sironi, Angelo; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante

    2007-08-01

    Mixed M(II)/M(III) metal oxalates, as "stripes" connected through strong hydrogen bonding by para-dimethylaminobenzaldeide (DAMBA) and water, form an organic-inorganic 2D network that enables segregation in layers of the cationic organic NLO-phore trans-4-(4-dimethylaminostyryl)-1-methylpyridinium, [DAMS+]. The crystalline hybrid materials obtained have the general formula [DAMS]4[M2M'(C2O4)6].2DAMBA.2H2O (M = Rh, Fe, Cr; M' = Mn, Zn), and their overall three-dimensional packing is non-centrosymmetric and polar, therefore suitable for second harmonic generation (SHG). All the compounds investigated are characterized by an exceptional SHG activity, due both to the large molecular quadratic hyperpolarizability of [DAMS+] and to the efficiency of the crystalline network which organizes [DAMS+] into head-to-tail arranged J-type aggregates. The tunability of the pairs of metal ions allows exploiting also the magnetic functionality of the materials. Examples containing antiferro-, ferro-, and ferri-magnetic interactions (mediated by oxalato bridges) are obtained by coupling proper M(III) ions (Fe, Cr, Rh) with M(II) (Mn, Zn). This shed light on the role of weak next-nearest-neighbor interactions and main nearest-neighbor couplings along "stripes" of mixed M(II)/M(III) metal oxalates of the organic-inorganic 2D network, thus suggesting that these hybrid materials may display isotropic 1D magnetic properties along the mixed M(II)/M(III) metal oxalates "stripes".

  17. Luminescent hybrid materials based on (8-hydroxyquinoline)-substituted metal-organic complexes and lead-borate glasses

    Science.gov (United States)

    Petrova, Olga B.; Anurova, Maria O.; Akkuzina, Alina A.; Saifutyarov, Rasim R.; Ermolaeva, Ekaterina V.; Avetisov, Roman I.; Khomyakov, Andrew V.; Taydakov, Ilya V.; Avetissov, Igor Ch.

    2017-07-01

    Novel luminescent organic-inorganic hybrid materials based on 8-hydroxyquinoline metal complexes (Liq, Kq, Naq, Rbq, Mgq2, Srq2, Znq2, Scq3, Alq3, Gaq3, and Inq3) have been synthesized by a high temperature exchange reaction with 80PbF2-20B2O3 inorganic low-melting glass. The mechanical and optical properties, transmission spectra, emission an excitation photoluminescence, and luminescence kinetic of hybrid materials were studied. All hybrid materials showed a wide luminescence band in the range 400-700 nm.

  18. Integrated Optical Mach-Zehnder Interferometer Based on Organic-Inorganic Hybrids for Photonics-on-a-Chip Biosensing Applications.

    Science.gov (United States)

    Bastos, Ana R; Vicente, Carlos M S; Oliveira-Silva, Rui; Silva, Nuno J O; Tacão, Marta; Costa, João P da; Lima, Mário; André, Paulo S; Ferreira, Rute A S

    2018-03-12

    The development of portable low-cost integrated optics-based biosensors for photonics-on-a-chip devices for real-time diagnosis are of great interest, offering significant advantages over current analytical methods. We report the fabrication and characterization of an optical sensor based on a Mach-Zehnder interferometer to monitor the growing concentration of bacteria in a liquid medium. The device pattern was imprinted on transparent self-patternable organic-inorganic di-ureasil hybrid films by direct UV-laser, reducing the complexity and cost production compared with lithographic techniques or three-dimensional (3D) patterning using femtosecond lasers. The sensor performance was evaluated using, as an illustrative example, E. coli cell growth in an aqueous medium. The measured sensitivity (2 × 10 -4 RIU) and limit of detection (LOD = 2 × 10 -4 ) are among the best values known for low-refractive index contrast sensors. Furthermore, the di-ureasil hybrid used to produce this biosensor has additional advantages, such as mechanical flexibility, thermal stability, and low insertion losses due to fiber-device refractive index mismatch (~1.49). Therefore, the proposed sensor constitutes a direct, compact, fast, and cost-effective solution for monitoring the concentration of lived-cells.

  19. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures.

    Science.gov (United States)

    Bäuerlein, Edmund

    2003-02-10

    With evolution, Nature has ingeniously succeeded in giving rise to an impressive variety of inorganic structures. Every organism that synthesizes biogenic minerals does so in a form that is unique to that species. This biomineralization is apparently biologically controlled. It is thus expected that both the synthesis and the form of every specific biogenic mineral is genetically determined and controlled. An investigation of the mechanism of biomineralization has only become possible with the development of modern methods in molecular biology. Unicellular organisms such as magnetic bacteria, calcareous algae, and diatoms, all of which are amongst the simplest forms of life, are particularly suited to be investigated by these methods. Crystals and composites of proteins and amorphous inorganic polymers are formed as complex structures within these organisms; these structures are not known in conventional inorganic chemistry.

  20. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    Science.gov (United States)

    Silva Mojica, Ernesto

    spectroscopic investigation of the interactions of CO 2 with amine molecules under simulated CO2 capture conditions. Industrial CO2 capture processes involve fluidization and require degradation-resistant sorbents in the form of pellets. Agglomeration of silica-based CO2 capture sorbents involved the formulation of a polymer binder solution and the design of a scalable pelletization process. The characterization of these pellets revealed the formation of a CO 2-permeable polymer-silica network, which is resistant to attrition, and exhibits similar CO2 capture and degradation performance as the non-pelletized sorbents. The performance of these sorbents and pellets was tested in lab-scale and bench-scale adsorption units, using in-house fabricated fixed-bed and fluidized-bed reactors. A compartmental modeling technique was used to simulate the CO2 adsorption process and to elucidate the kinetic and thermodynamic parameters that impact the commercial viability of emerging CO2 capture technologies. The fundamental concepts and experimental techniques developed for the preparation of CO2 capture sorbents served as a basis for fabricating amine-functionalized polymer-silica hybrids for applications in catalysis of organic reactions. (i) Basic catalysts for carbon-carbon addition reactions were prepared by immobilization of amine molecules on silica supports. The activity of these catalysts and the mechanisms of base-catalyzed organic condensation reactions were investigated by an in-situ FTIR micro-scale reactor. (ii) Particle-loaded PVA composite membranes were selected for immobilization of glucose oxidase (GOx). GOx was immobilized by adsorption at pH values between 3.5 and 7.1. The results showed that adsorption was primarily achieved via hydrophobic interactions, and that PVA membranes loaded with amine-functionalized particles could help retain the activity of immobilized GOx by providing a proper hydrophilic/hydrophobic balance to the immobilized enzymes micro-environment.

  1. Hybrid Glasses from Strong and Fragile Metal-Organic Framework Liquids

    DEFF Research Database (Denmark)

    Bennett, T.D.; Tan, J.C.; Yue, Yuanzheng

    2015-01-01

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship betwee...

  2. Annealing effect of hybrid solar cells based on poly (3-hexylthiophene) and zinc-oxide nanostructures

    CSIR Research Space (South Africa)

    Motaung, DE

    2013-06-01

    Full Text Available The structural growth and optical and photovoltaic properties of the organic–inorganic hybrid structures of zinc oxide (ZnO)-nanorods/poly-3-hexylthiophene (P3HT) and two variations of organic polymer blends of ZnO/P3HT:C(sub60) fullerene and ZnO/P3...

  3. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    Science.gov (United States)

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.

    2016-01-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470

  4. Inorganic-organic hybrids based on poly (ε-Caprolactone and silica oxide and characterization by relaxometry applying low-field NMR

    Directory of Open Access Journals (Sweden)

    Mariana Sato de Souza de Bustamante Monteiro

    2012-12-01

    Full Text Available Poly (ε-caprolactone (PCL based hybrids containing different amounts of modified (Aerosil® R972 and unmodified (Aerosil® A200 silica oxide were prepared employing the solution method, using chloroform. The relationships of the amount of nanofillers, organic coating, molecular structure and intermolecular interaction of the hybrid materials were investigated mainly using low-field nuclear magnetic resonance (NMR. The NMR analyses involved the hydrogen spin-lattice relaxation time (T1H and hydrogen spin-lattice relaxation time in the rotating frame (T1ρH. The spin-lattice relaxation time measurements revealed that the PCL/silica oxide hybrids were heterogeneous, meaning their components were well dispersed. X-ray diffraction (XRD, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA were also employed. The DSC data showed that all the materials had lower crystallization temperature (Tc and melting temperature (Tm, so the crystallinity degree of the PCL decreased in the hybrids. The TGA analysis demonstrated that the addition of modified and unmodified silica oxide does not cause considerable changes to PCL's thermal stability, since no significant variations in the maximum temperature (Tmax were observed in relation to the neat polymer.

  5. Composite materials with ionic conductivity: from inorganic composites to hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslavtsev, Andrei B [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-11-30

    Information on composite materials with ionic conductivity including inorganic composites and hybrid polymeric ion exchange membranes containing inorganic or polymeric nanoparticles is generalized. The nature of the effect of increase in the ionic conductivity in this type of materials and the key approaches used for theoretical estimation of the conductivity are considered. Data on the ionic conductivity and some other important properties of composites and membrane materials are presented. Prospects for utilization of composite materials and hybrid membranes in hydrogen power engineering are briefly outlined.

  6. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  7. Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Du-Hwan; Noh, Sang-Geol; Park, Jong-Tae; Kang, Choon-Ho [POSCO Technical Research Laboratories, Pohang (Korea, Republic of)

    2015-10-15

    Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

  8. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric

    Science.gov (United States)

    Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng

    2018-01-01

    In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.

  9. Hybrid-organic photodetectors for radiography. Final report; Hybrid organische Photodetektoren fuer die Radiographie. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Oliver [Siemens Healthcare GmbH, Erlangen (Germany); Bonrad, Klaus [Merck KGaA, Darmstadt (Germany); Adam, Jens; Kraus, Tobias [INM - Leibniz-Institut fuer Neue Materialien gGmbH, Saarbruecken (Germany); Gimmler, Christoph [CAN GmbH, Hamburg (Germany)

    2016-02-15

    HOP-X aimed to combine the advantages of nanotechnology and organic electronics for application in medical X-ray imaging in order to enable more cost-effective imaging at lower dose. Solution-processing of organic semiconductors enables easy hybridization with X-ray absorbers and processing on large areas. In this project, nano-sized scintillators and quantum dots have been synthesized and characterized as X-ray absorbers. Organic semiconductor materials have been identified which allow charge carrier extraction from layers with a thickness of up to 200 μm. Hybrid-organic photodiodes have been processed and the ideal mixture of organic semiconductor and inorganic X-ray absorber was determined. This mixture provide a high X-ray absorption and an efficient charge carrier extraction at the same time. Photodiodes have been integrated on TFT-matrix backplanes in order to demonstrate the concept in X-ray imagers.

  10. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  11. A new inorganic-organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA).

    Science.gov (United States)

    Moussas, P A; Zouboulis, A I

    2009-08-01

    Currently, research is focused on the synthesis of new composite coagulants, which are constituted of both inorganic and organic materials. In this paper, the development of relevant reagents was investigated, by combining the inorganic pre-polymerised iron-based coagulant Polyferric Sulphate (PFS) with an organic, non-ionic polymer (Polyacrylamide, PAA) under different PAA/Fe (mg/l) and OH/Fe molar ratios. Moreover, the new reagents were characterised in terms of typical properties, stability and morphological analysis (XRD, FTIR, SEM). Their coagulation performance, when treating low or high turbid kaolin-humic acid suspensions, was also investigated, whereas the applied coagulation mechanisms were discussed by using the Photometric Dispersion Analysis (PDA) analysis. The results show that the new coagulation reagents present improved properties, including increased effective polymer species concentration, and they exhibit very good stability. The respective tests using PDA confirmed that the predominant coagulation mechanism of PFS-PAA is the bridge formation mechanism. Coagulation experiments in low or high turbid kaolin-humic acid suspensions reveal that the novel composite reagent PFS-PAA exhibits better coagulation performance, when compared with simple PFS, in terms of zeta-potential reduction, turbidity and organic matter removal and residual iron concentration.

  12. Investigation of the two-photon polymerisation of a Zr-based inorganic-organic hybrid material system

    International Nuclear Information System (INIS)

    Bhuian, B.; Winfield, R.J.; O'Brien, S.; Crean, G.M.

    2006-01-01

    Two-photon polymerisation of photo-sensitive materials allows the fabrication of three dimensional micro- and nano-structures for photonic, electronic and micro-system applications. However the usable process window and the applicability of this fabrication technique is significantly determined by the properties of the photo-sensitive material employed. In this study investigation of a custom inorganic-organic hybrid system, cross-linked by a two-photon induced process, is described. The material was produced by sol-gel synthesis using a silicon alkoxide species that also possessed methacrylate functionality. Stabilized zirconium alkoxide precursors were added to the precursor solution in order to reduce drying times and impart enhanced mechanical stability to deposited films. This enabled dry films to be used in the polymerisation process. A structural, optical and mechanical analysis of the optimised sol-gel material is presented. A Ti:sapphire laser with 80 MHz repetition rate, 100 fs pulse duration and 795 nm is used. The influence of both material system and laser processing parameters including: laser power, photo-initiator concentration and zirconium loading, on achievable micro-structure and size is presented

  13. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  14. Hybrid organic-inorganic coatings including nanocontainers for corrosion protection of magnesium alloy ZK30

    Science.gov (United States)

    Kartsonakis, I. A.; Koumoulos, E. P.; Charitidis, C. A.; Kordas, G.

    2013-08-01

    This study is focused on the fabrication, characterization, and application of corrosion protective coatings to magnesium alloy ZK30. Hybrid organic-inorganic coatings were synthesized using organic-modified silicates together with resins based on bisphenol A diglycidyl ether. Cerium molybdate nanocontainers (ncs) with diameter 100 ± 20 nm were loaded with corrosion inhibitor 2-mercaptobenzothiazole and incorporated into the coatings in order to improve their anticorrosion properties. The coatings were investigated for their anticorrosion and nanomechanical properties. The morphology of the coatings was examined by scanning electron microscopy. The composition was estimated by energy-dispersive X-ray analysis. The mechanical integrity of the coatings was studied through nanoindentation and nanoscratch techniques. Scanning probe microscope imaging of the coatings revealed that the addition of ncs creates surface incongruity; however, the hardness to modulus ratio revealed significant strengthening of the coating with increase of ncs. Studies on their corrosion behavior in 0.5 M sodium chloride solutions at room temperature were made using electrochemical impedance spectroscopy. Artificial defects were formatted on the surface of the films in order for possible self-healing effects to be evaluated. The results showed that the coated magnesium alloys exhibited only capacitive response after exposure to corrosive environment for 16 months. This behavior denotes that the coatings have enhanced barrier properties and act as an insulator. Finally, the scratched coatings revealed a partial recovery due to the increase of charge-transfer resistance as the immersion time elapsed.

  15. Cu-containing Keggin-type polyoxometalates-based organic-inorganic hybrids with double electro-catalytic behaviors

    Science.gov (United States)

    Zhou, Wanli; Zheng, Yanping; Peng, Jun

    2018-02-01

    Four new organic-inorganic hybrids consisting of Keggin-type polyoxometalates: [Cu5(bimpy)5(α-BW12O40)]·4H2O (1), [Cu4(bimpy)4(α-SiW12O40)]·2H2O (2), [Cu4(bimpy)4(α-HPMo12O40)2]·2H2O (3), [Cu2(bimpy)4(H2O)2(α-HPW12O40)2]·8H2O (4) (bimpy = 2,5-bis(1H-imidazol-1-yl)pyridine), have been hydrothermally synthesized. Compounds 1-4 are constructed from Cu/bimpy segments modified different types of Keggin POMs. The 1D double chains of compound 1 are featured by {-Cu/bimpy-POM-Cu/bimpy-}n chains and {-Cu-bimpy-Cu-}n metal-organic chains; compound 2 with 1D "ladder-like" structure stemmed from {-Cu-bimpy-Cu-}n wave-like chains and α-SiW12 clusters; In compound 3, [Cu4(bimpy)4]4+ motifs are linked by α-PMo12 clusters to give rise to a (3,4)-connected two-dimensional architecture with the (83)(86) topology, while compound 4 has a (3,4,5)-connected 3D framework with the (42,6)(42,6,83)(42,65,83) topology. Cyclic voltammetries of compounds 1-4 show discrepant double electro-catalytic properties for reduction of nitrite and oxidation of ascorbic acid owing to variant Keggin-type POMs and Cu/bimpy complexes.

  16. Biofilm formed from organic-inorganic hybrid tri-ureasil PPO for transdermal drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Eduardo F.; Jesus, Natana Aparecida; Oliveira, Pollyana Francielli; Furtado, Ricardo A.; Tavares, Denise Crispim, E-mail: eduardo.molina@unifran.edu.br [Universidade de Franca (UNIFRAN), SP (Brazil)

    2016-07-01

    Full text: In this work we evaluated the viability of the tri-ureasil PPO hybrid as biofilm forming for release of active substances such as lignans. The samples were characterized by X-ray diffraction (XRD) and infrared (FTIR). The swelling degree and the influence of the catalyst on time of formation of a hybrid biofilm were evaluated. The cytotoxicity of the materials were evaluated using the XTT colorimetric assay where GM07492A strain was treated with different concentrations of the hybrid. The time of film formation depends on the quantity of the catalyst used in the synthesis. By varying the catalyst quantity during the synthesis, a good flexible film can be obtained, which is easy to be coated on the skin surface and in situ formed a very thin and comfortable film with an aesthetical appearance. Moreover, the hybrid films were colorless and transparent. The toxicity/viability of all samples has also been studied using normal human cells for future applications. The hybrid matrices did not significantly reduce cell viability, demonstrating that siloxane-polyether materials were biocompatible. All the materials presenting a amorphous structure (XRD) and the characteristic bands of vibrations (FTIR) of the polymer chain do not change after incorporation of lignans. (author)

  17. Biofilm formed from organic-inorganic hybrid tri-ureasil PPO for transdermal drug delivery system

    International Nuclear Information System (INIS)

    Molina, Eduardo F.; Jesus, Natana Aparecida; Oliveira, Pollyana Francielli; Furtado, Ricardo A.; Tavares, Denise Crispim

    2016-01-01

    Full text: In this work we evaluated the viability of the tri-ureasil PPO hybrid as biofilm forming for release of active substances such as lignans. The samples were characterized by X-ray diffraction (XRD) and infrared (FTIR). The swelling degree and the influence of the catalyst on time of formation of a hybrid biofilm were evaluated. The cytotoxicity of the materials were evaluated using the XTT colorimetric assay where GM07492A strain was treated with different concentrations of the hybrid. The time of film formation depends on the quantity of the catalyst used in the synthesis. By varying the catalyst quantity during the synthesis, a good flexible film can be obtained, which is easy to be coated on the skin surface and in situ formed a very thin and comfortable film with an aesthetical appearance. Moreover, the hybrid films were colorless and transparent. The toxicity/viability of all samples has also been studied using normal human cells for future applications. The hybrid matrices did not significantly reduce cell viability, demonstrating that siloxane-polyether materials were biocompatible. All the materials presenting a amorphous structure (XRD) and the characteristic bands of vibrations (FTIR) of the polymer chain do not change after incorporation of lignans. (author)

  18. Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing.

    Science.gov (United States)

    Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano

    2017-07-26

    A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

  19. Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment.

    Science.gov (United States)

    Long, Run; Prezhdo, Oleg V

    2015-07-08

    Hybrid organic/inorganic polymer/quantum dot (QD) solar cells are an attractive alternative to the traditional cells. The original, simple models postulate that one-dimensional polymers have continuous energy levels, while zero-dimensional QDs exhibit atom-like electronic structure. A realistic, atomistic viewpoint provides an alternative description. Electronic states in polymers are molecule-like: finite in size and discrete in energy. QDs are composed of many atoms and have high, bulk-like densities of states. We employ ab initio time-domain simulation to model the experimentally observed ultrafast photoinduced dynamics in a QD/polymer hybrid and show that an atomistic description is essential for understanding the time-resolved experimental data. Both electron and hole transfers across the interface exhibit subpicosecond time scales. The interfacial processes are fast due to strong electronic donor-acceptor, as evidenced by the densities of the photoexcited states which are delocalized between the donor and the acceptor. The nonadiabatic charge-phonon coupling is also strong, especially in the polymer, resulting in rapid energy losses. The electron transfer from the polymer is notably faster than the hole transfer from the QD, due to a significantly higher density of acceptor states. The stronger molecule-like electronic and charge-phonon coupling in the polymer rationalizes why the electron-hole recombination inside the polymer is several orders of magnitude faster than in the QD. As a result, experiments exhibit multiple transfer times for the long-lived hole inside the QD, ranging from subpicoseconds to nanoseconds. In contrast, transfer of the short-lived electron inside the polymer does not occur beyond the first picosecond. The energy lost by the hole on its transit into the polymer is accommodated by polymer's high-frequency vibrations. The energy lost by the electron injected into the QD is accommodated primarily by much lower-frequency collective and

  20. Increasing the efficiency of polymer solar cells by silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07743 Jena (Germany); Sensfuss, S, E-mail: bjoern.eisenhawer@ipht-jena.de [Thuringian Institute for Textile and Plastics Research, Breitscheidstrasse 97, 07407 Rudolstadt (Germany)

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  1. Increasing the efficiency of polymer solar cells by silicon nanowires

    International Nuclear Information System (INIS)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F; Sensfuss, S

    2011-01-01

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  2. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15.

    Science.gov (United States)

    Zhang, Lei; Abbenhuis, Hendrikus C L; Gerritsen, Gijsbert; Bhriain, Nollaig Ní; Magusin, Pieter C M M; Mezari, Brahim; Han, Wei; van Santen, Rutger A; Yang, Qihua; Li, Can

    2007-01-01

    A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.

  3. Interface engineering in inorganic hybrid structures towards improved photocatalysis (Conference Presentation)

    Science.gov (United States)

    Xiong, Yujie

    2016-10-01

    Designing new photocatalytic materials for improving photoconversion efficiency is a promising route to alleviate the steadily worsening environmental issues and energy crisis. Despite the invention of a large number of catalytic materials with well-defined structures, their overall efficiency in photocatalysis is still quite limited as the three key steps - light harvesting, charge generation and separation, and charge transfer to surface for redox reactions - have not been substantially improved. To improve each step in the complex process, there is a major trend to develop materials based on inorganic hybrid structures. In this case, interface engineering holds the promise for boosting the overall efficiency, given the key roles of interface structures in charge and energy transfer. In this talk, I will demonstrate several different approaches to designing inorganic hybrid structures with improved photocatalytic performance via interface engineering. The typical demonstrations include semiconductor-plasmonics systems for broad-spectrum light harvesting, metal-semiconductor interfaces for improved charge separation, semiconductor-MOF (metal-organic framework) configurations for activated surface reactions. It is anticipated that this series of works open a new window to rationally designing inorganic hybrid materials for photo-induced applications. References: (1) Bai, S.; Yang, L.; Wang, C.; Lin, Y.; Lu, J.; Jiang, J. and Xiong, Y.*, Angew. Chem. Int. Ed. 54, 14810-14814 (2015). (2) Bai, S.; Jiang, J.; Zhang, Q. and Xiong, Y.*, Chem. Soc. Rev. 44, 2893-2939 (2015). (3) Bai, S.; Li, X.; Kong, Q.; Long, R.; Wang, C.; Jiang, J. and Xiong, Y.*, Adv. Mater. 27, 3444-3452 (2015). (4) Bai, S.; Ge, J.; Wang, L.; Gong, M.; Deng, M.; Kong, Q.; Song, L.; Jiang, J.;* Zhang, Q.;* Luo, Y.; Xie, Y. and Xiong, Y.*, Adv. Mater. 26, 5689-5695 (2014). (5) Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H. L.; Jiang, J.;* Zhang, Q.;* Xie, Y. and Xiong, Y.*, Adv. Mater

  4. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    International Nuclear Information System (INIS)

    Rybak, Aleksandra; Kaszuwara, Waldemar

    2015-01-01

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O 2 , N 2 and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO polymers and

  5. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    polymers and various magnetic powders. • Polymer hybrid membranes with the magnetic powder for air separation. • Experimental studies of transport processes through magnetic hybrid membranes. • Correlation between gas transport and magnetic properties with XRD characteristics. • Positive effect of the remanence growth on separation properties of membranes.

  6. Dependency of Nanodiamond Particle Size and Outermost-Surface Composition on Organo-Modification: Evaluation by Formation of Organized Molecular Films and Nanohybridization with Organic Polymers.

    Science.gov (United States)

    Tasaki, Taira; Guo, Yifei; Meng, Qi; Mamun, Muhammad Abdullah Al; Kasahara, Yusuke; Akasaka, Shuichi; Fujimori, Atsuhiro

    2017-04-26

    The formation behavior of organized organo-modified nanodiamond films and polymer nanocomposites has been investigated using nanodiamonds of several different particle sizes and outermost-surface compositions. The nanodiamond particle sizes used in this study were 3 and 5 nm, and the outermost surface contained -OH and/or -COOH groups. The nanodiamond was organo-modified to prepare -OH 2 + cations and -COO - anions on the outermost surface by carboxylic anion of fatty acid and long-chain phosphonium cation, respectively. The surface of nanodiamond is known to be covered with a nanolayer of adsorbed water, which was exploited here for the organo-modification of nanodiamond with long-chain fatty acids via adsorption, leading to nanodispersions of nanodiamond in general organic solvents as a mimic of solvency. Particle multilayers were then formed via the Langmuir-Blodgett technique and subjected to fine structural analysis. The organo-modification enabled integration and multilayer formation of inorganic nanoparticles due to enhancement of the van der Waals interactions between the chains. Therefore, "encounters" between the organo-modifying chain and the inorganic particles led to solubilization of the inorganic particles and enhanced interactions between the particles; this can be regarded as imparting a new functionality to the organic molecules. Nanocomposites with a transparent crystalline polymer were fabricated by nanodispersing the nanodiamond into the polymer matrix, which was achievable due to the organo-modification. The resulting transparent nanocomposites displayed enhanced degrees of crystallization and improved crystallization temperatures, compared with the neat polymer, due to a nucleation effect.

  7. Low-Voltage Solution-Processed Hybrid Light-Emitting Transistors.

    Science.gov (United States)

    Chaudhry, Mujeeb Ullah; Tetzner, Kornelius; Lin, Yen-Hung; Nam, Sungho; Pearson, Christopher; Groves, Chris; Petty, Michael C; Anthopoulos, Thomas D; Bradley, Donal D C

    2018-05-21

    We report the development of low operating voltages in inorganic-organic hybrid light-emitting transistors (HLETs) based on a solution-processed ZrO x gate dielectric and a hybrid multilayer channel consisting of the heterojunction In 2 O 3 /ZnO and the organic polymer "Super Yellow" acting as n- and p-channel/emissive layers, respectively. Resulting HLETs operate at the lowest voltages reported to-date (<10 V) and combine high electron mobility (22 cm 2 /(V s)) with appreciable current on/off ratios (≈10 3 ) and an external quantum efficiency of 2 × 10 -2 % at 700 cd/m 2 . The charge injection, transport, and recombination mechanisms within this HLET architecture are discussed, and prospects for further performance enhancement are considered.

  8. Sol-gel approach to the novel organic-inorganic hybrid composite films with ternary europium complex covalently bonded with silica matrix

    International Nuclear Information System (INIS)

    Dong Dewen; Yang Yongsheng; Jiang Bingzheng

    2006-01-01

    Novel organic-inorganic hybrid composite films with ternary lanthanide complex covalently bonded with silica matrix were prepared in situ via co-ordination of N-(3-propyltriethoxysilane)-4-carboxyphthalimide (TAT) and 1,10-phenanthroline (Phen) with europium ion (Eu 3+ ) during a sol-gel approach and characterized by the means of spectrofluorimeter, phosphorimeter and infrared spectrophotometer (FTIR). The resulting transparent films showed improved photophysical properties, i.e. increased luminescence intensity and longer luminescence lifetime, compared with the corresponding binary composite films without Phen. All the results revealed that the intense luminescence of the composite film was attributed to the efficient energy transfer from ligands, especially Phen, to chelated Eu 3+ and the reduced non-radiation through the rigid silica matrix and 'site isolation'

  9. m-Carboranylphosphinate as Versatile Building Blocks To Design all Inorganic Coordination Polymers.

    Science.gov (United States)

    Oleshkevich, Elena; Viñas, Clara; Romero, Isabel; Choquesillo-Lazarte, Duane; Haukka, Matti; Teixidor, Francesc

    2017-05-15

    The first examples of coordination polymers of manganese(II) and a nickel(II) complex with a purely inorganic carboranylphosphinate ligand are reported, together with its exhaustive characterization. X-ray analysis revealed 1D polymeric chains with carboranylphosphinate ligands bridging two manganese(II) centers. The reactivity of polymer 1 with water and Lewis bases has also been studied.

  10. Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II–VI and IV–VI Inorganic Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ryan Kisslinger

    2017-01-01

    Full Text Available Bulk heterojunction solar cells based on blends of quantum dots and conjugated polymers are a promising configuration for obtaining high-efficiency, cheaply fabricated solution-processed photovoltaic devices. Such devices are of significant interest as they have the potential to leverage the advantages of both types of materials, such as the high mobility, band gap tunability and possibility of multiple exciton generation in quantum dots together with the high mechanical flexibility and large molar extinction coefficient of conjugated polymers. Despite these advantages, the power conversion efficiency (PCE of these hybrid devices has remained relatively low at around 6%, well behind that of all-organic or all-inorganic solar cells. This is attributed to major challenges that still need to be overcome before conjugated polymer–quantum dot blends can be considered viable for commercial application, such as controlling the film morphology and interfacial structure to ensure efficient charge transfer and charge transport. In this work, we present our findings with respect to the recent development of bulk heterojunctions made from conjugated polymer–quantum dot blends, list the ongoing strategies being attempted to improve performance, and highlight the key areas of research that need to be pursued to further develop this technology.

  11. Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qian

    2014-01-01

    Full Text Available A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs. The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography both in vitro and in vivo and can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX- loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higher in vitro and in vivo tumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.

  12. Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3

    Science.gov (United States)

    Lu, Ying-Bo; Kong, Xianghua; Chen, Xiaobin; Cooke, David G.; Guo, Hong

    2017-01-01

    Carrier mobility is one of the most important parameters for semiconducting materials and their use in optoelectronic devices. Here we report a systematic first principles analysis of the acoustic phonon scattering mechanism that limits the mobility of CH3NH3PbI3 (MAPbI3) perovskites. Due to the unique hybrid organic-inorganic structure, the mechanical, electronic and transport properties are dominated by the same factor, i.e. the weak interatomic bond and the easy rotation of methylammonium (MA) molecules under strain. Both factors make MAPbI3 soft. Rotation of MA molecule induces a transverse shift between Pb and I atoms, resulting in a very low deformation potential and a strong piezoelectricity in MAPbI3. Hence the carrier mobility of pristine MAPbI3 is limited by the piezoelectric scattering, which is consistent to the form of its temperature dependence. Our calculations suggest that in the pristine limit, a high mobility of about several thousand cm2 V−1 S−1 is expected for MAPbI3. PMID:28150743

  13. Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica

    International Nuclear Information System (INIS)

    Salehi, E.; Naderi, Reza; Ramezanzadeh, B.

    2017-01-01

    Highlights: • An organic/inorganic hybrid green corrosion inhibitive pigment was synthesized and characterized. • Chemical structure and morphology of the hybrid complex were characterized. • Zinc acetate/Urtica Dioica showed effective inhibition action in saline solution on carbon steel. • The synergistic effect between Zn 2+ cations and inhibitive compounds existed in U.D resulted in protective film deposition on the steel surface. - Abstract: This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV–vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn 2+ and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.

  14. Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, E.; Naderi, Reza [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh@aut.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2017-02-28

    Highlights: • An organic/inorganic hybrid green corrosion inhibitive pigment was synthesized and characterized. • Chemical structure and morphology of the hybrid complex were characterized. • Zinc acetate/Urtica Dioica showed effective inhibition action in saline solution on carbon steel. • The synergistic effect between Zn{sup 2+} cations and inhibitive compounds existed in U.D resulted in protective film deposition on the steel surface. - Abstract: This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV–vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn{sup 2+} and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.

  15. The Effect of Ash and Inorganic Pigment Fill on the Atomic Oxygen Erosion of Polymers and Paints (ISMSE-12)

    Science.gov (United States)

    Banks, Bruce A.; Simmons, Julie C.; de Groh, Kim K.; Miller, Sharon K.

    2012-01-01

    Low atomic oxygen fluence (below 1x10(exp 20) atoms/sq cm) exposure of polymers and paints that have a small ash content and/or inorganic pigment fill does not cause a significant difference in erosion yield compared to unfilled (neat) polymers or paints. However, if the ash and/or inorganic pigment content is increased, the surface population of the inorganic content will begin to occupy a significant fraction of the surface area as the atomic oxygen exposure increases because the ash is not volatile and remains as a loosely attached surface layer. This results in a reduction of the flux of atomic oxygen reacting with the polymer and a reduction in the rate of erosion of the polymer remaining. This paper presents the results of ground laboratory and low Earth orbital (LEO) investigations to evaluate the fluence dependence of atomic oxygen erosion yields of polymers and paints having inorganic fill content.

  16. Broadband-Emitting 2 D Hybrid Organic-Inorganic Perovskite Based on Cyclohexane-bis(methylamonium) Cation.

    Science.gov (United States)

    Neogi, Ishita; Bruno, Annalisa; Bahulayan, Damodaran; Goh, Teck Wee; Ghosh, Biplab; Ganguly, Rakesh; Cortecchia, Daniele; Sum, Tze Chien; Soci, Cesare; Mathews, Nripan; Mhaisalkar, Subodh Gautam

    2017-10-09

    A new broadband-emitting 2 D hybrid organic-inorganic perovskite (CyBMA)PbBr 4 based on highly flexible cis-1,3-bis(methylaminohydrobromide)cyclohexane (CyBMABr) core has been designed, synthesized, and investigated, highlighting the effects of stereoisomerism of the templating cation on the formation and properties of the resulting perovskite. The new 2 D material has high exciton binding energy of 340 meV and a broad emission spanning from 380 to 750 nm, incorporating a prominent excitonic band and a less intense broad peak at room temperature. Significant changes in the photoluminescence (PL) spectrum were observed at lower temperatures, showing remarkable enhancement in the intensity of the broadband at the cost of excitonic emission. Temperature-dependent PL mapping indicates the effective role of only a narrow band of excitonic absorption in the generation of the active channel for emission. Based on the evidences obtained from the photophysical investigations, we attributed the evolution of the broad B-band of (CyBMA)PbBr 4 to excitonic self-trapped states. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hybrid Polymer-Network Hydrogels with Tunable Mechanical Response

    Directory of Open Access Journals (Sweden)

    Sebastian Czarnecki

    2016-03-01

    Full Text Available Hybrid polymer-network gels built by both physical and covalent polymer crosslinking combine the advantages of both these crosslinking types: they exhibit high mechanical strength along with excellent fracture toughness and extensibility. If these materials are extensively deformed, their physical crosslinks can break such that strain energy is dissipated and irreversible fracturing is restricted to high strain only. This mechanism of energy dissipation is determined by the kinetics and thermodynamics of the physical crosslinking contribution. In this paper, we present a poly(ethylene glycol (PEG based material toolkit to control these contributions in a rational and custom fashion. We form well-defined covalent polymer-network gels with regularly distributed additional supramolecular mechanical fuse links, whose strength of connectivity can be tuned without affecting the primary polymer-network composition. This is possible because the supramolecular fuse links are based on terpyridine–metal complexation, such that the mere choice of the fuse-linking metal ion adjusts their kinetics and thermodynamics of complexation–decomplexation, which directly affects the mechanical properties of the hybrid gels. We use oscillatory shear rheology to demonstrate this rational control and enhancement of the mechanical properties of the hybrid gels. In addition, static light scattering reveals their highly regular and well-defined polymer-network structures. As a result of both, the present approach provides an easy and reliable concept for preparing hybrid polymer-network gels with rationally designed properties.

  18. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng, E-mail: cpufengc@163.com [China Pharmaceutical University, Department of Pharmaceutics, School of Pharmacy (China)

    2015-12-15

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC{sub 0–6h} values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes.

  19. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    International Nuclear Information System (INIS)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng

    2015-01-01

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC 0–6h values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes

  20. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    International Nuclear Information System (INIS)

    Wang Yige; Wang Li; Li Huanrong; Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-01-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex

  1. A comparison of organic and inorganic nitrates/nitrites.

    Science.gov (United States)

    Omar, Sami A; Artime, Esther; Webb, Andrew J

    2012-05-15

    Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites

    KAUST Repository

    Yin, Jun

    2017-01-20

    We theoretically characterize the unusual white-light emission properties of two-dimensional (2D) hybrid organic inorganic perovskites with an APbX(4) structure (where A is a bidentate organic cation and X = Cl, Br). In addition to band structure calculations including corrections due to spin orbit couplings and electron hole interactions, a computationally intensive molecular cluster approach is exploited to describe the excitonic and polaronic properties of these 2D perovskites at the atomistic level. Upon adding or removing an electron from the neutral systems, we find that strongly localized small polarons form in the 2D clusters. The polaron charge density is distributed over just lattice sites, which is consistent with the calculated large polaron binding energies, on the order of similar to 0.4-1.2 eV.

  3. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene Diamine

    Directory of Open Access Journals (Sweden)

    Hsien-Ming Kao

    2012-06-01

    Full Text Available Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol-block-poly(ethylene glycol-block-poly(propylene glycol bis(2-aminopropyl ether complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS and 3-(triethoxysilylpropyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC, Fourier transform infrared (FTIR spectroscopy, alternating current (AC impedance and solid-state nuclear magnetic resonance (NMR spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains.

  4. Redox-active Hybrid Materials for Pseudocapacitive Energy Storage

    Science.gov (United States)

    Boota, Muhammad

    Organic-inorganic hybrid materials show a great promise for the purpose of manufacturing high performance electrode materials for electrochemical energy storage systems and beyond. Molecular level combination of two best suited components in a hybrid material leads to new or sometimes exceptional sets of physical, chemical, mechanical and electrochemical properties that makes them attractive for broad ranges of applications. Recently, there has been growing interest in producing redox-active hybrid nanomaterials for energy storage applications where generally the organic component provides high redox capacitance and the inorganic component offers high conductivity and robust support. While organic-inorganic hybrid materials offer tremendous opportunities for electrochemical energy storage applications, the task of matching the right organic material out of hundreds of natural and nearly unlimited synthetic organic molecules to appropriate nanostructured inorganic support hampers their electrochemical energy storage applications. We aim to present the recent development of redox-active hybrid materials for pseudocapacitive energy storage. We will show the impact of combination of suitable organic materials with distinct carbon nanostructures and/or highly conductive metal carbides (MXenes) on conductivity, charge storage performance, and cyclability. Combined experimental and molecular simulation results will be discussed to shed light on the interfacial organic-inorganic interactions, pseudocapacitive charge storage mechanisms, and likely orientations of organic molecules on conductive supports. Later, the concept of all-pseudocapacitive organic-inorganic asymmetric supercapacitors will be highlighted which open up new avenues for developing inexpensive, sustainable, and high energy density aqueous supercapacitors. Lastly, future challenges and opportunities to further tailor the redox-active hybrids will be highlighted.

  5. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

    KAUST Repository

    Fernandes, Nikhil J.

    2013-03-01

    Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create hairy nanoparticles (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle-matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure-performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures. © 2013 Materials Research Society.

  6. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

    KAUST Repository

    Fernandes, Nikhil J.; Koerner, Hilmar; Giannelis, Emmanuel P.; Vaia, Richard A.

    2013-01-01

    Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create hairy nanoparticles (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle-matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure-performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures. © 2013 Materials Research Society.

  7. Room-temperature polar order in [NH4][Cd(HCOO)3]--a hybrid inorganic-organic compound with a unique perovskite architecture.

    Science.gov (United States)

    Gómez-Aguirre, L C; Pato-Doldán, B; Stroppa, A; Yáñez-Vilar, S; Bayarjargal, L; Winkler, B; Castro-García, S; Mira, J; Sánchez-Andújar, M; Señarís-Rodríguez, M A

    2015-03-02

    We report on the hybrid inorganic-organic ammonium compound [NH4][Cd(HCOO)3], which displays a most unusual framework structure: instead of the expected 4(9)·6(6) topology, it shows an ABX3 perovskite architecture with the peculiarity and uniqueness (among all the up-to-date reported hybrid metal formates) that the Cd ions are connected only by syn-anti formate bridges, instead of anti-anti ones. This change of the coordination mode of the formate ligand is thus another variable that can provide new possibilities for tuning the properties of these versatile functional metal-organic framework materials. The room-temperature crystal structure of [NH4][Cd(HCOO)3] is noncentrosymmetric (S.G.: Pna21) and displays a polar axis. DFT calculations and symmetry mode analysis show that the rather large polarization arising from the off-center shift of the ammonium cations in the cavities (4.33 μC/cm(2)) is partially canceled by the antiparallel polarization coming from the [Cd(HCOO)3](-) framework, thus resulting in a net polarization of 1.35 μC/cm(2). As shown by second harmonic generation studies, this net polarization can be greatly increased by applying pressure (Pmax = 14 GPa), an external stimulus that, in turn, induces the appearance of new structural phases, as confirmed by Raman spectroscopy.

  8. Preparation of silica-based hybrid materials by gamma irradiation

    International Nuclear Information System (INIS)

    Gomes, S.R.; Margaca, F.M.A.; Miranda Salvado, I.M.; Ferreira, L.M.; Falcao, A.N.

    2006-01-01

    Gamma-ray irradiation is well known to promote the crosslinking of polymer chains. The method is now used by the authors to prepare hybrid materials from a mixture of polymer and metallic alkoxides of silicium and zirconium that are usually obtained via the sol-gel process. Macroscopically homogeneous and transparent hybrid materials have been obtained by γ-irradiation of polydimethylsiloxane (PDMS), tetraethylorthosilicate (TEOS) and zirconium propoxide (PrZr). The influence of several parameters has been studied. The dose rate was found to have no significant impact in the prepared material. The polymer molecular weight was also observed not to play any special role. It was found that all irradiated samples consist of a polymer gel matrix. In the case where both alkoxides are present there are inorganic oxide regions linked to the PDMS network. However when one of the alkoxides is absent there is no formation of inorganic oxide regions linked to the polymer matrix, there being only a few individual derived molecules of the other alkoxide linked to the polymer

  9. Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer.

    Science.gov (United States)

    Mitzi, D B

    2000-12-25

    Thin sheetlike crystals of the metal-deficient perovskites (H2AEQT)M2/3I4 [M = Bi or Sb; AEQT = 5,5"'-bis-(aminoethyl)-2,2':5',2'':5'',2'''-quaterthiophene] were formed from slowly cooled ethylene glycol/2-butanol solutions containing the bismuth(III) or antimony(III) iodide and AEQT.2HI salts. Each structure was refined in a monoclinic (C2/m) subcell, with the lattice parameters a = 39.712(13) A, b = 5.976(2) A, c = 6.043(2) A, beta = 92.238(5) degrees, and Z = 2 for M = Bi and a = 39.439(7) A, b = 5.952(1) A, c = 6.031(1) A, beta = 92.245(3) degrees, and Z = 2 for M = Sb. The trivalent metal cations locally adopt a distorted octahedral coordination, with M-I bond lengths ranging from 3.046(1) to 3.218(3) A (3.114 A average) for M = Bi and 3.012(1) to 3.153(2) A (3.073 A average) for M = Sb. The new organic-inorganic hybrids are the first members of a metal-deficient perovskite family consisting of (Mn+)2/nV(n-2)/nX4(2-) sheets, where V represents a vacancy (generally left out of the formula) and the metal cation valence, n, is greater than 2. The organic layers in the AEQT-based organic-inorganic hybrids feature edge-to-face aromatic interactions among the rigid, rodlike quaterthiophene moieties, which may help to stabilize the unusual metal-deficient layered structures.

  10. High Refractive Organic–Inorganic Hybrid Films Prepared by Low Water Sol-Gel and UV-Irradiation Processes

    Directory of Open Access Journals (Sweden)

    Hsiao-Yuan Ma

    2016-03-01

    Full Text Available Organic-inorganic hybrid sols (Ti–O–Si precursor were first synthesized by the sol-gel method at low addition of water, and were then employed to prepare a highly refractive hybrid optical film. This film was obtained by blending the Ti–O–Si precursor with 2-phenylphenoxyethyl acrylate (OPPEA to perform photo-polymerization by ultraviolet (UV irradiation. Results show that the film transparency of poly(Ti–O–Si precursor-co-OPPEA film is higher than that of a pure poly(Ti–O–Si precursor film, and that this poly(Ti–O–Si precursor-co-OPPEA hybrid film exhibits a high transparency of ~93.7% coupled with a high refractive index (n of 1.83 corresponding to a thickness of 2.59 μm.

  11. The effect of dimensionality of nanostructured carbon on the architecture of organic-inorganic hybrid materials.

    Science.gov (United States)

    Misra, R D K; Depan, D; Shah, J

    2013-08-21

    The natural tendency of carbon nanotubes (CNTs) to agglomerate is an underlying reason that prevents the realization of their full potential. On the other hand, covalent functionalization of CNTs to control dispersion leads to disruption of π-conjugation in CNTs and the non-covalent functionalization leads to a weak CNT-polymer interface. To overcome these challenges, we describe the characteristics of fostering of direct nucleation of polymers on nanostructured carbon (CNTs of diameters (~2-200 nm), carbon nanofibers (~200-300 nm), and graphene), which culminates in interfacial adhesion, resulting from electrostatic and van der Waals interaction in the hybrid nanostructured carbon-polymer architecture. Furthermore, the structure is tunable through a change in undercooling. High density polyethylene and polypropylene were selected as two model polymers and two sets of experiments were carried out. The first set of experiments was carried out using CNTs of diameter ~2-5 nm to explore the effect of undercooling and polymer concentration. The second set of experiments was focused on studying the effect of dimensionality on geometrical confinements. The periodic crystallization of polyethylene on small diameter CNTs is demonstrated to be a consequence of the geometrical confinement effect, rather than epitaxy, such that petal-like disks nucleate on large diameter CNTs, carbon nanofibers, and graphene. The application of the process is illustrated in terms of fabricating a system for cellular uptake and bioimaging.

  12. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  13. Organic 'Plastic' Optoelectronic Devices

    International Nuclear Information System (INIS)

    Sariciftci, N.S.

    2006-01-01

    Recent developments on conjugated polymer based photovoltaic diodes and photoactive organic field effect transistors (photOFETs) are discussed. The photophysics of such devices is based on the photoinduced charge transfer from donor type semiconducting conjugated polymers onto acceptor type conjugated polymers or acceptor molecules such as Buckminsterfullerene, C 6 0. Potentially interesting applications include sensitization of the photoconductivity and photovoltaic phenomena as well as photoresponsive organic field effect transistors (photOFETs). Furthermore, organic polymeric/inorganic nanoparticle based 'hybrid' solar cells will be discussed. This talk gives an overview of materials' aspect, charge-transport, and device physics of organic diodes and field-effect transistors. Furthermore, due to the compatibility of carbon/hydrogen based organic semiconductors with organic biomolecules and living cells there can be a great opportunity to integrate such organic semiconductor devices (biOFETs) with the living organisms. In general the largely independent bio/lifesciences and information technology of today, can be thus bridged in an advanced cybernetic approach using organic semiconductor devices embedded in bio-lifesciences. This field of bio-organic electronic devices is proposed to be an important mission of organic semiconductor devices

  14. Evidence and detailed study of a second-order phase transition in the (C6H11NH3)2[PbI4] organic-inorganic hybrid material

    International Nuclear Information System (INIS)

    Yangui, A.; Pillet, S.; Garrot, D.; Boukheddaden, K.; Triki, S.; Abid, Y.

    2015-01-01

    The thermal properties of the organic-inorganic hybrid material (C 6 H 11 NH 3 ) 2 [PbI 4 ] are investigated using diffuse reflectivity, spectroscopic ellipsometry, differential scanning calorimetry, Raman spectroscopy, and X-ray diffraction. The diffuse reflectivity, performed in heating mode, clearly evidences the presence of a singularity at 336 K. This is confirmed by the temperature dependence of the spectroscopic ellipsometry spectra, which points out a second-order phase transition at 336 K with a critical exponent ∼0.5. Differential scanning calorimetry measurements on a polycrystalline powder of (C 6 H 11 NH 3 ) 2 [PbI 4 ] show a reversible phase transition detected at T C  = 336 K without hysteresis. Raman spectroscopy data suggest that this transition arises from a change in the interactions between inorganic sheets (([PbI 4 ] 2− ) ∞ ) and organic protonated molecules ([C 6 H 11 NH 3 ] + ). The structural analysis from power X-ray diffraction reveals an incomplete order-disorder transition of the cyclohexylammonium cation, causing a subtle contraction of the inter-plane distance. The transition results from repulsive close contacts between the organic molecules in the interlayer spacing

  15. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Marciano, S.; Pacifico, S.

    2015-01-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO 2 /PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials

  16. RIR-MAPLE deposition of conjugated polymers and hybrid nanocomposites for application to optoelectronic devices

    International Nuclear Information System (INIS)

    Stiff-Roberts, Adrienne D.; Pate, Ryan; McCormick, Ryan; Lantz, Kevin R.

    2012-01-01

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a variation of pulsed laser deposition that is useful for organic-based thin films because it reduces material degradation by selective absorption of infrared radiation in the host matrix. A unique emulsion-based RIR-MAPLE approach has been developed that reduces substrate exposure to solvents and provides controlled and repeatable organic thin film deposition. In order to establish emulsion-based RIR-MAPLE as a preferred deposition technique for conjugated polymer or hybrid nanocomposite optoelectronic devices, studies have been conducted to demonstrate the value added by the approach in comparison to traditional solution-based deposition techniques, and this work will be reviewed. The control of hybrid nanocomposite thin film deposition, and the photoconductivity in such materials deposited using emulsion-based RIR-MAPLE, will also be reviewed. The overall result of these studies is the demonstration of emulsion-based RIR-MAPLE as a viable option for the fabrication of conjugated polymer and hybrid nanocomposite optoelectronic devices that could yield improved device performance.

  17. White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates.

    Science.gov (United States)

    Guo, Tzung-Fang; Wen, Ten-Chin; Huang, Yi-Shun; Lin, Ming-Wei; Tsou, Chuan-Cheng; Chung, Chia-Tin

    2009-11-09

    This study reports fabrication of white-emissive, tandem-type, hybrid organic/polymer light-emitting diodes (O/PLED). The tandem devices are made by stacking a blue-emissive OLED on a yellow-emissive phenyl-substituted poly(para-phenylene vinylene) copolymer-based PLED and applying an organic oxide/Al/molybdenum oxide (MoO(3)) complex structure as a connecting structure or charge-generation layer (CGL). The organic oxide/Al/MoO(3) CGL functions as an effective junction interface for the transport and injection of opposite charge carriers through the stacked configuration. The electroluminescence (EL) spectra of the tandem-type devices can be tuned by varying the intensity of the emission in each emissive component to yield the visible-range spectra from 400 to 750 nm, with Commission Internationale de l'Eclairage chromaticity coordinates of (0.33, 0.33) and a high color rendering capacity as used for illumination. The EL spectra also exhibit good color stability under various bias conditions. The tandem-type device of emission with chromaticity coordinates, (0.30, 0.31), has maximum brightness and luminous efficiency over 25,000 cd/m(2) and approximately 4.2 cd/A, respectively.

  18. First organic–inorganic hybrid nanomaterial constructed from a Keggin-type polyoxometallate and a copper-dithiocarbamate complex: sonochemical synthesis, crystal structure and its adsorption performance for organic dye pollutants

    Czech Academy of Sciences Publication Activity Database

    Farhadi, S.; Dušek, Michal; Siadatnasab, F.; Eigner, Václav; Mokhtari Andani, A.

    2017-01-01

    Roč. 126, Apr (2017), s. 227-238 ISSN 0277-5387 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : organic–inorganic hybrid * polyoxometallate * dithiocarbamate * adsorption * organic dye pollutants Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.926, year: 2016

  19. TiO{sub 2}/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Marciano, S.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-02-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO{sub 2}/PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials.

  20. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  1. Evaluation of inorganic and organic light-emitting diode displays for signage application

    Science.gov (United States)

    Sharma, Pratibha; Kwok, Harry

    2006-08-01

    High-brightness, inorganic light-emitting diodes (LEDs) have been successfully utilized for edge-lighting of large displays for signage. Further interest in solid-state lighting technology has been fueled with the emergence of small molecule and polymer-based organic light-emitting diodes (OLEDs). In this paper, edgelit inorganic LED-based displays and state-of-the-art OLED-based displays are evaluated on the basis of electrical and photometric measurements. The reference size for a signage system is assumed to be 600 mm x 600mm based on the industrial usage. With the availability of high power light-emitting diodes, it is possible to develop edgelit signage systems of the standard size. These displays possess an efficacy of 18 lm/W. Although, these displays are environmentally friendly and efficient, they suffer from some inherent limitations. Homogeneity of displays, which is a prime requirement for illuminated signs, is not accomplished. A standard deviation of 3.12 lux is observed between the illuminance values on the surface of the display. In order to distribute light effectively, reflective gratings are employed. Reflective gratings aid in reducing the problem but fail to eliminate it. In addition, the overall cost of signage is increased by 50% with the use of these additional components. This problem can be overcome by the use of a distributed source of light. Hence, the organic-LEDs are considered as a possible contender. In this paper, we experimentally determine the feasibility of using OLEDs for signage applications and compare their performance with inorganic LEDs. Passive matrix, small-molecule based, commercially available OLEDs is used. Design techniques for implementation of displays using organic LEDs are also discussed. It is determined that tiled displays based on organic LEDs possess better uniformity than the inorganic LED-based displays. However, the currently available OLEDs have lower light-conversion efficiency and higher costs than the

  2. Low-temperature fabrication and characterization of a symmetric hybrid organic–inorganic slab waveguide for evanescent light microscopy

    Science.gov (United States)

    Agnarsson, Björn; Mapar, Mokhtar; Sjöberg, Mattias; Alizadehheidari, Mohammadreza; Höök, Fredrik

    2018-06-01

    Organic and inorganic solid materials form the building blocks for most of today’s high-technological instruments and devices. However, challenges related to dissimilar material properties have hampered the synthesis of thin-film devices comprised of both organic and inorganic films. We here give a detailed description of a carefully optimized processing protocol used for the construction of a three-layered hybrid organic–inorganic waveguide-chip intended for combined scattering and fluorescence evanescent-wave microscopy in aqueous environments using conventional upright microscopes. An inorganic core layer (SiO2 or Si3N4), embedded symmetrically in an organic cladding layer (CYTOP), aids simple, yet efficient in-coupling of light, and since the organic cladding layer is refractive index matched to water, low stray-light (background) scattering of the propagating light is ensured. Another major advantage is that the inorganic core layer makes the chip compatible with multiple well-established surface functionalization schemes that allows for a broad range of applications, including detection of single lipid vesicles, metallic nanoparticles or cells in complex environments, either label-free—by direct detection of scattered light—or by use of fluorescence excitation and emission. Herein, focus is put on a detailed description of the fabrication of the waveguide-chip, together with a fundamental characterization of its optical properties and performance, particularly in comparison with conventional epi illumination. Quantitative analysis of images obtained from both fluorescence and scattering intensities from surface-immobilized polystyrene nanoparticles in suspensions of different concentrations, revealed enhanced signal-to-noise and signal-to-background ratios for the waveguide illumination compared to the epi-illumination.

  3. Enhanced emission from Eu(III) beta-diketone complex combined with ether-type oxygen atoms of di-ureasil organic-inorganic hybrids

    CERN Document Server

    Molina, C; Messaddeq, Y; Ribeiro, S J L; Silva, M A P; Zea-Bermudez, V D; Carlos, L D

    2003-01-01

    Organic-inorganic hybrids, named di-ureasils and described by polyether-based chains grafted to both ends to a siliceous backbone through urea cross linkages, were used as hosts for incorporation of the well-known coordination complex of trivalent europium (Eu sup 3 sup +) ions described by the formula [Eu(TTA) sub 3 (H sub 2 O) sub 2] (where TTA stands for thenoyltrifluoroacetone). By comparing with Eu sup 3 sup + -doped di-ureasil without complex form the new materials prepared here enhanced the quantum efficiency for photoemission of Eu sup 3 sup + ions. The enhancement can be explained by the coordination ability of the organic counterpart of the host structure which is strong enough to displace water molecules in [Eu(TTA) sub 3 (H sub 2 O) sub 2] from the rare earth neighbourhood after the incorporation process. High intensity of Eu sup 3 sup + emission was observed with a low non-radiative decay rate under ultraviolet excitation. The quantum efficiency calculated from the decay of sup 5 D sub 0 emission...

  4. Structural and optical studies of local disorder sensitivity in natural organic-inorganic self-assembled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vijaya Prakash, G; Pradeesh, K [Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi (India); Ratnani, R; Saraswat, K [Department of Pure and Applied Chemistry, MDS University, Ajmer (India); Light, M E [School of Chemistry, University of Southampton, Southampton (United Kingdom); Baumberg, J J, E-mail: prakash@physics.iitd.ac.i [Nanophotonic Centre, Cavendish Laboratory, University Cambridge, Cambridge CB3 OHE (United Kingdom)

    2009-09-21

    The structural and optical spectra of two related lead iodide (PbI) based self-assembled hybrid organic-inorganic semiconductors are compared. During the synthesis, depending on the bridging of organic moiety intercalated between the PbI two-dimensional planes, different crystal structures are produced. These entirely different networks show different structural and optical features, including excitonic bandgaps. In particular, the modified organic environment of the excitons is sensitive to the local disorder both in single crystal and thin film forms. Such information is vital for incorporating these semiconductors into photonic device architectures.

  5. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    Science.gov (United States)

    Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.

    2014-02-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  6. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    International Nuclear Information System (INIS)

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Han, Z.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-01-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature

  7. Omnidirectional Harvesting of Weak Light Using a Graphene Quantum Dot-Modified Organic/Silicon Hybrid Device

    KAUST Repository

    Tsai, Meng-Lin

    2017-04-21

    Despite great improvements in traditional inorganic photodetectors and photovoltaics, more progress is needed in the detection/collection of light at low-level conditions. Traditional photodetectors tend to suffer from high noise when operated at room temperature; therefore, these devices require additional cooling systems to detect weak or dim light. Conventional solar cells also face the challenge of poor light-harvesting capabilities in hazy or cloudy weather. The real world features such varying levels of light, which makes it important to develop strategies that allow optical devices to function when conditions are less than optimal. In this work, we report an organic/inorganic hybrid device that consists of graphene quantum dot-modified poly(3,4-ethylenedioxythiophene) polystyrenesulfonate spin-coated on Si for the detection/harvest of weak light. The hybrid configuration provides the device with high responsivity and detectability, omnidirectional light trapping, and fast operation speed. To demonstrate the potential of this hybrid device in real world applications, we measured near-infrared light scattered through human tissue to demonstrate noninvasive oximetric photodetection as well as characterized the device\\'s photovoltaic properties in outdoor (i.e., weather-dependent) and indoor weak light conditions. This organic/inorganic device configuration demonstrates a promising strategy for developing future high-performance low-light compatible photodetectors and photovoltaics.

  8. Inorganic and organic radiation chemistry: state and problems

    International Nuclear Information System (INIS)

    Kalyazin, E.P.; Bugaenko, L.T.

    1990-01-01

    Radiation inorganic and organic chemistry is presented on the basis of the general scheme and classification of radiolysis products and elementary processes, by which evolution of radiation-affected substances up to the final radiolysis products takes place. The evolution is traced for the representatives of inorganic and organic compounds. The contribution of radiation inorganic and organic chemistry to radiation technology, radiation materials technology, radiation ecology and medicine, is shown. Tendencies in the development of radiation chemistry and prediction of its certain directions are considered

  9. Polymer degradation rate control of hybrid rocket combustion

    Science.gov (United States)

    Stickler, D. B.; Ramohalli, K. N. R.

    1970-01-01

    Polymer degradation to small fragments is treated as a rate controlling step in hybrid rocket combustion. Both numerical and approximate analytical solutions of the complete energy and polymer chain bond conservation equations for the condensed phase are obtained. Comparison with inert atmosphere data is very good. It is found that the intersect of curves of pyrolysis rate versus interface temperature for hybrid combustors, with the thermal degradation theory, falls at a pyrolysis rate very close to that for which a pressure dependence begins to be observable. Since simple thermal degradation cannot give sufficient depolymerization at higher pyrolysis rates, it is suggested that oxidative catalysis of the process occurs at the surface, giving a first order dependence on reactive species concentration at the wall. Estimates of the ratio of this activation energy and interface temperature are in agreement with best fit procedures for hybrid combustion data. Requisite active species concentrations and flux are shown to be compatible with turbulent transport. Pressure dependence of hybrid rocket fuel regression rate is thus shown to be describable in a consistent manner in terms of reactive species catalysis of polymer degradation.

  10. Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites.

    Science.gov (United States)

    Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J; Lee, Jooseop; Ruff, Jacob P C; Ko, J Y Peter; Brown, Craig M; Harriger, Leland W; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J; Lee, Seung-Hun

    2017-07-18

    Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic-inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance.

  11. Characterization of ureasil-polyethylene oxide/chitosan hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Paredes Zaldivar, M.; Pulcinelli, S.H.; Peniche Covas, C.; Santilli, C.V. [Universidad de la Habana, Havana (Cuba); Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2016-07-01

    Full text: Siloxane-polyether hybrids are an interesting and versatile family of multifunctional organic-inorganic hybrid materials, also named ureasils. Ureasils have been the object of intensive studies in the last years due to their versatility and wide range of applications. Polyethylene oxide (PEO) and chitosan are biocompatible and low toxicity polymers that were used as organic phase while the inorganic phase was siloxane. Therefore, the aim of this work was the characterization of these hybrids that were prepared by the sol–gel route. Hydrochloric and acetic acids were used as catalysts. Due to the insolubility of chitosan in ethanol and organic solvents, water was used in the hydrolysis solution as the main component or alone. The obtained materials were transparent, rubbery, flexible and water-insoluble. They were characterized by different physicochemical techniques such as FTIR (Fourier Transform Infrared Spectroscopy), DSC (Differential Scanning Calorimetry), TG (Thermogravimetric Analysis), XRD (X-Ray Diffraction), SAXS (Small Angle X-ray Scattering) and NMR (Nuclear Magnetic Resonance Spectroscopy). Results showed that chitosan addition did not provoke appreciable changes in the thermal properties but modifies the polycondensation degree and the nanoscopic structure of the materials. Significant changes were not found neither by the hydrolysis solution nor by the type of acid, except in the thermal stability. It depended on the type of acid catalyst, being higher in hybrids prepared with HCl. We can conclude that these materials can be synthesized just with water as the hydrolysis solution and that any of the two acids can be used as catalyst without significantly affect its final properties. (author)

  12. Epoxy-silica hybrid organic–inorganic electrolytes with a high Li-ion conductivity

    International Nuclear Information System (INIS)

    Vélez, J.F.; Procaccini, R.A.; Aparicio, M.; Mosa, J.

    2013-01-01

    Organic–inorganic hybrid electrolytes were prepared by co-hydrolysis and co-condensation of 3-glycidoxipropyltrimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) doped with lithium acetate as self-supported materials and thin-films. The effects of the relative molar content of LiAc on the physicochemical properties of electrolytes, such as morphology, thermal, chemical and electrochemical properties were investigated. Two and four probes test cells were designed for comparative studies of ionic conductivity of hybrid electrolytes using electrochemical impedance spectroscopy (EIS). Similar ionic conductivities were obtained using both measurement methods, reaching a maximum ionic conductivity value of around 10 −6 S/cm at 25 °C. The conductivity mechanism presents Arrehenius behavior with the increase of the temperature from 25 °C to 120 °C. The electrochemical stability window is found to be in the range of 0–5 V, which ensures that hybrid organic–inorganic materials are potential electrolytes for solid-state rechargeable lithium ion batteries

  13. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    Science.gov (United States)

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-05

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    Science.gov (United States)

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-03-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3-xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3-xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3-xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3-xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br- (0.23 eV) than for I- (0.29-0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film.

  15. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  16. Synthèse d'hybrides polymère-polymère par la polymérisation en miniémulsion et la caractérisation des latex hybrides

    OpenAIRE

    Udagama , Ravindra

    2009-01-01

    The objectives of work presented in this thesis are to understand droplet and particle formulation processes in order to make useful polymer-polymer hybrids in aqueous dispersions and use our fundamental understanding of these processes to: 1. Improve monomer conversion as much as possible. 2. Understand impact of these processes on hybrid film properties. Specific case studies of interest under commercially feasible conditions (i.e. solids content of 50wt %) were done based on two systems na...

  17. Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials

    Science.gov (United States)

    Smyslov, R. Yu; Ezdakova, K. V.; Kopitsa, G. P.; Khripunov, A. K.; Bugrov, A. N.; Tkachenko, A. A.; Angelov, B.; Pipich, V.; Szekely, N. K.; Baranchikov, A. E.; Latysheva, E.; Chetverikov, Yu O.; Haramus, V.

    2017-05-01

    Scanning electron microscopy, ultra-small-angle neutron scattering (USANS), small-angle neutron and X-ray scattering (SANS and SAXS), as well as low-temperature nitrogen adsorption, were used in the studies of micro- and mesostructure of polymer matrix prepared from air-dry preliminarily disintegrated cellulose nano-gel film (synthesized by Gluconacetobacter xylinus) and the composites based on this bacterial cellulose. The composites included ZrO2 nanoparticles, Tb3+ in the form of low molecular weight salt and of metal-polymer complex with poly(vinylpyrrolydone)-poly(methacryloyl-o-aminobenzoic acid) copolymer. The combined analysis of the data obtained allowed revealing three levels of fractal organization in mesostructure of G. xylinus cellulose and its composites. It was shown that both the composition and an aggregation state of dopants have a significant impact on the structural characteristics of the organic-inorganic composites. The composites containing Tb3+ ions demonstrate efficient luminescence; its intensity is an order of magnitude higher in the case of the composites with the metal-polymer complex. It was found that there is the optimal content of ZrO2 nanoparticles in composites resulting in increased Tb3+ luminescence.

  18. Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.

  19. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for

  20. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Feng; Spring, Andrew M. [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Sato, Hiromu [Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Maeda, Daisuke; Ozawa, Masa-aki; Odoi, Keisuke [Nissan Chemical Industries, Ltd., 2-10-1 Tuboi Nishi, Funabashi, Chiba 274-8507 (Japan); Aoki, Isao; Otomo, Akira [National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Yokoyama, Shiyoshi, E-mail: s-yokoyama@cm.kyushu-u.ac.jp [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan)

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that of the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.

  1. Hybrid Photonic Integration on a Polymer Platform

    Directory of Open Access Journals (Sweden)

    Ziyang Zhang

    2015-09-01

    Full Text Available To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard, which provides flexible optical input/ouptut interfaces (I/Os that allow robust coupling of indium phosphide (InP-based active components, passive insertion of thin-film-based optical elements, and on-chip attachment of optical fibers. This work reviews the recent progress of our polyboard platform. On the fundamental level, multi-core waveguides and polymer/silicon nitride heterogeneous waveguides have been fabricated, broadening device design possibilities and enabling 3D photonic integration. Furthermore, 40-channel optical line terminals and compact, bi-directional optical network units have been developed as highly functional, low-cost devices for the wavelength division multiplexed passive optical network. On a larger scale, thermo-optic elements, thin-film elements and an InP gain chip have been integrated on the polyboard to realize a colorless, dual-polarization optical 90° hybrid as the frontend of a coherent receiver. For high-end applications, a wavelength tunable 100Gbaud transmitter module has been demonstrated, manifesting the joint contribution from the polyboard technology, high speed polymer electro-optic modulator, InP driver electronics and ceramic electronic interconnects.

  2. Effect of silica nanoparticles on the morphology of polymer blends

    NARCIS (Netherlands)

    Li, Weizhen

    2011-01-01

    Polymeric materials are often a combination of different polymers and plasticizers, stabilizers, and organic/inorganic additives to tailor the properties. The type and fineness of the morphology is the key factor for the ultimate properties of polymer blends. Recently, the use of inorganic

  3. A van der Waals pn heterojunction with organic/inorganic semiconductors

    International Nuclear Information System (INIS)

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi; Wang, Xinran; Pan, Yiming; Wang, Baigeng; Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua; Gu, Shuai; Zhu, Jia; Chai, Yang

    2015-01-01

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C 8 -BTBT) and n-type MoS 2 . We find that few-layer C 8 -BTBT molecular crystals can be grown on monolayer MoS 2 by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C 8 -BTBT/MoS 2 vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10 5 at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents

  4. A van der Waals pn heterojunction with organic/inorganic semiconductors

    Science.gov (United States)

    He, Daowei; Pan, Yiming; Nan, Haiyan; Gu, Shuai; Yang, Ziyi; Wu, Bing; Luo, Xiaoguang; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Ni, Zhenhua; Wang, Baigeng; Zhu, Jia; Chai, Yang; Shi, Yi; Wang, Xinran

    2015-11-01

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C8-BTBT) and n-type MoS2. We find that few-layer C8-BTBT molecular crystals can be grown on monolayer MoS2 by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C8-BTBT/MoS2 vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 105 at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  5. A van der Waals pn heterojunction with organic/inorganic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi, E-mail: yshi@nju.edu.cn, E-mail: xrwang@nju.edu.cn; Wang, Xinran, E-mail: yshi@nju.edu.cn, E-mail: xrwang@nju.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Pan, Yiming; Wang, Baigeng [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua [Department of Physics, Southeast University, Nanjing 211189 (China); Gu, Shuai; Zhu, Jia [College of Engineering and Applied Science, Nanjing University, Nanjing 210093 (China); Chai, Yang [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2015-11-02

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C{sub 8}-BTBT) and n-type MoS{sub 2}. We find that few-layer C{sub 8}-BTBT molecular crystals can be grown on monolayer MoS{sub 2} by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C{sub 8}-BTBT/MoS{sub 2} vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10{sup 5} at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  6. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system

    Directory of Open Access Journals (Sweden)

    Vivek Dave

    2017-12-01

    Full Text Available Poly lactic acid is a biodegradable, biocompatible, and non-toxic polymer, widely used in many pharmaceutical preparations such as controlled release formulations, parenteral preparations, surgical treatment applications, and tissue engineering. In this study, we prepared lipid-polymer hybrid nanoparticles for topical and site targeting delivery of Norfloxacin by emulsification solvent evaporation method (ESE. The design of experiment (DOE was done by using software to optimize the result, and then a surface plot was generated to compare with the practical results. The surface morphology, particle size, zeta potential and composition of the lipid-polymer hybrid nanoparticles were characterized by SEM, TEM, AFM, and FTIR. The thermal behavior of the lipid-polymer hybrid nanoparticles was characterized by DSC and TGA. The prepared lipid-polymer hybrid nanoparticles of Norfloxacin exhibited an average particle size from 178.6 ± 3.7 nm to 220.8 ± 2.3 nm, and showed very narrow distribution with polydispersity index ranging from 0.206 ± 0.36 to 0.383 ± 0.66. The surface charge on the lipid-polymer hybrid nanoparticles were confirmed by zeta potential, showed the value from +23.4 ± 1.5 mV to +41.5 ± 3.4 mV. An Antimicrobial study was done against Staphylococcus aureus and Pseudomonas aeruginosa, and the lipid-polymer hybrid nanoparticles showed potential activity against these two. Lipid-polymer hybrid nanoparticles of Norfloxacin showed the %cumulative drug release of 89.72% in 24 h. A stability study of the optimized formulation showed the suitable condition for the storage of lipid-polymer hybrid nanoparticles was at 4 ± 2 °C/60 ± 5% RH. These results illustrated high potential of lipid-polymer hybrid nanoparticles Norfloxacin for usage as a topical antibiotic drug carriers.

  7. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    International Nuclear Information System (INIS)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-01-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg 2+ , Ca 2+ and Ba 2+ ) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO) 4 , which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (4 4 ·6 2 ) 3 (4 9 ·6 6 ) 2 . The calcium compound consists of 1D infinite “Ca-O” inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D “Ba-O” inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions’ influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies. - Graphical abstract: Three alkaline

  8. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD Coatings on Thermoplastic Polyurethane Polymers

    Directory of Open Access Journals (Sweden)

    Daniel Heim

    2012-04-01

    Full Text Available Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide as well as diamond-like carbon (DLC coating materials on polymer surfaces (thermoplastic polyurethane, deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti. In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.

  9. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers.

    Science.gov (United States)

    Lackner, Juergen M; Waldhauser, Wolfgang; Hartmann, Paul; Bruckert, Franz; Weidenhaupt, Marianne; Major, Roman; Sanak, Marek; Wiesinger, Martin; Heim, Daniel

    2012-04-17

    Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.

  10. Core-shell nanophosphor architecture: toward efficient energy transport in inorganic/organic hybrid solar cells.

    Science.gov (United States)

    Li, Qinghua; Yuan, Yongbiao; Chen, Zihan; Jin, Xiao; Wei, Tai-huei; Li, Yue; Qin, Yuancheng; Sun, Weifu

    2014-08-13

    In this work, a core-shell nanostructure of samarium phosphates encapsulated into a Eu(3+)-doped silica shell has been successfully fabricated, which has been confirmed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution TEM. Moreover, we report the energy transfer process from the Sm(3+) to emitters Eu(3+) that widens the light absorption range of the hybrid solar cells (HSCs) and the strong enhancement of the electron-transport of TiO2/poly(3-hexylthiophene) (P3HT) bulk heterojunction (BHJ) HSCs by introducing the unique core-shell nanoarchitecture. Furthermore, by applying femtosecond transient absorption spectroscopy, we successfully obtain the electron transport lifetimes of BHJ systems with or without incorporating the core-shell nanophosphors (NPs). Concrete evidence has been provided that the doping of core-shell NPs improves the efficiency of electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor. Consequently, a notable power conversion efficiency of 3.30% for SmPO4@Eu(3+):SiO2 blended TiO2/P3HT HSCs is achieved at 5 wt % as compared to 1.98% of pure TiO2/P3HT HSCs. This work indicates that the core-shell NPs can efficiently broaden the absorption region, facilitate electron-transport of BHJ, and enhance photovoltaic performance of inorganic/organic HSCs.

  11. Preparation and Characterization of Hybrid Nanocomposite of Polyacrylamide/Silica-Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2013-01-01

    Full Text Available Polyacrylamides are water soluble macromolecules. These polymers are widely used for flocculation, separation and treatment of solid-liquid phase materials. In this research, organic-inorganic hybrid of polyacrylamide/silica nanoparticle is prepared via radical polymerization. First, the silica nanoparticle surfaces were modified by 3-methacryloxypropyltrimethoxysilane as coupling agent using a sol-gel technique in aqueous media in acidic condition. Afterwards, the modified nanoparticles are copolymerized by acrylamide monomer in presence of a peroxide initiator during a free radical polymerization. The chemical structure of the prepared modified nano-silica as well as polyacrylamide nanocomposite was studied and confirmed by FTIR spectroscopy technique. The morphology of nanocomposite was investigated by scanning electron microscopy. The SEM micrograph showed that the surface of the composite did not display any phase separation. Nanoparticles distribution was investigated by SEM-EDX technique. The results showed a uniform distribution of particles throughout the polymer bulk. TEM analysis showed the presence of silica nanoparticles in bulk of polymer which is an indicative of suitable dispersion of nanoparticles. The thermal stability of hybrid nanocomosite with that of polyacrylamide was compared by TGA technique. The higher thermal stability of hybrid nanocomposite with respect to homopolymer is indicative of a reaction between the modified nanoparticles and polyacrylamide chain. The presence of silica particles in copolymer was also confirmed with EDX analysis in ash content of hybrid nanocomposite.

  12. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  13. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  14. Investigation of Coating Performance of UV-Curable Hybrid Polymers Containing 1H,1H,2H,2H-Perfluorooctyltriethoxysilane Coated on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Mustafa Çakır

    2017-03-01

    Full Text Available This study describes preparation and characterization of fluorine-containing organic-inorganic hybrid coatings. The organic part consists of bisphenol-A glycerolate (1 glycerol/phenol diacrylate resin and 1,6-hexanediol diacrylate reactive diluent. The inorganically rich part comprises trimethoxysilane-terminated urethane, 1H,1H,2H,2H-perfluorooctyltriethoxysilane, 3-(trimethoxysilyl propyl methacrylate and sol–gel precursors that are products of hydrolysis and condensation reactions. Bisphenol-A glycerolate (1 glycerol/phenol diacrylate resin was added to the inorganic part in predetermined amounts. The resultant mixture was utilized in the preparation of free films as well as coatings on aluminum substrates. Thermal and mechanical tests such as DSC, thermo-gravimetric analysis (TGA, and tensile and shore D hardness tests were performed on free films. Water contact angle, gloss, Taber abrasion test, cross-cut and tubular impact tests were conducted on the coated samples. SEM examination and EDS analysis was performed on the fractured surfaces of free films. The hybrid coatings on the aluminum sheets gave rise to properties such as moderately glossed surface; low wear rate and hydrophobicity. Tensile strength of free films increased with up to 10% inorganic content in the hybrid structure and this increase was approximately three times that of the control sample. As expected; the % strain value decreased by 17.3 with the increase in inorganic content and elastic modulus values increased by a factor of approximately 6. Resistance to ketone-based solvents was proven and an increase in hardness was observed as the ratio of the inorganic part increased. Samples which contain 10% sol–gel content were observed to provide optimal properties.

  15. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  16. Enzymatic synthesis of lignin-siloxane hybrid functional polymers.

    Science.gov (United States)

    Prasetyo, Endry Nugroho; Kudanga, Tukayi; Fischer, Roman; Eichinger, Reinhard; Nyanhongo, Gibson S; Guebitz, Georg M

    2012-02-01

    This study combines the properties of siloxanes and lignin polymers to produce hybrid functional polymers that can be used as adhesives, coating materials, and/or multifunctionalized thin-coating films. Lignin-silica hybrid copolymers were synthesized by using a sol-gel process. Laccases from Trametes hirsuta were used to oxidize lignosulphonates to enhance their reactivity towards siloxanes and then were incorporated into siloxane precursors undergoing a sol-gel process. In vitro copolymerization studies using pure lignin monomers with aminosilanes or ethoxytrimethylsilane and analysis by ²⁹Si NMR spectroscopy revealed hybrid products. Except for kraft lignin, an increase in lignin concentration positively affected the tensile strength in all samples. Similarly, the viscosity generally increased in all samples with increasing lignin concentration and also affected the curing time. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of organic and inorganic amendments on soil erodibility

    Directory of Open Access Journals (Sweden)

    Nutullah Özdemir

    2015-10-01

    Full Text Available The objective of the present investigation is to find out the effect of incorporating of various organic and inorganic matter sources such as lime (L, zeolit (Z, polyacrylamide (PAM and biosolid (BS on the instability index. A bulk surface (0–20 cm depth soil sample was taken from Samsun, in northern part of Turkey. Some soil properties were determined as follows; fine in texture, modarete in organic matter content, low in pH and free of alkaline problem. The soil samples were treated with the inorganic and organic materials at four different levels including the control treatments in a randomized factorial block design. The soil samples were incubated for ten weeks. After the incubation period, corn was grown in all pots. The results can be summarized as organic and inorganic matter treatments increased structure stability and decreased soil erodibility. Effectiveness of the treatments varied depending on the types and levels of organic and inorganic materials.

  18. Superconducting selenides intercalated with organic molecules: synthesis, crystal structure, electric and magnetic properties, superconducting properties, and phase separation in iron based-chalcogenides and hybrid organic-inorganic superconductors

    Science.gov (United States)

    Krzton-Maziopa, Anna; Pesko, Edyta; Puzniak, Roman

    2018-06-01

    Layered iron-based superconducting chalcogenides intercalated with molecular species are the subject of intensive studies, especially in the field of solid state chemistry and condensed matter physics, because of their intriguing chemistry and tunable electric and magnetic properties. Considerable progress in the research, revealing superconducting inorganic–organic hybrid materials with transition temperatures to superconducting state, T c, up to 46 K, has been brought in recent years. These novel materials are synthesized by low-temperature intercalation of molecular species, such as solvates of alkali metals and nitrogen-containing donor compounds, into layered FeSe-type structure. Both the chemical nature as well as orientation of organic molecules between the layers of inorganic host, play an important role in structural modifications and may be used for fine tuning of superconducting properties. Furthermore, a variety of donor species compatible with alkali metals, as well as the possibility of doping also in the host structure (either on Fe or Se sites), makes this system quite flexible and gives a vast array of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed with a particular attention paid to the influence of the unique nature of intercalating species on the crystal structure and physical properties of the hybrid inorganic–organic materials. To get a full picture of these materials, a comprehensive description of the most effective chemical and electrochemical methods, utilized for synthesis of intercalated species, with critical evaluation of their strong and weak points, related to feasibility of synthesis, phase purity, crystal size and morphology of final products, is included as well.

  19. Organic-inorganic hybrid rare earth complexes based on polymolybdates with intrinsic photosensitive properties.

    Science.gov (United States)

    Wang, Yuan; Ma, Pengtao; Niu, Jingyang

    2015-03-14

    A series of organic–inorganic hybrid rare earth complexes {[RE2(PO)2(H2O)10][H2Mo36O112(OH2)12(PO)4]}·5PO·2(CH3CN)·nH2O [n = 23–42, RE(III) = Nd(III), 1; Sm(III), 2; Eu(III), 3; Gd(III), 4; Dy(III), 5; Er(III), 6; Tm(III), 7; Yb(III), 8; Lu(III), 9; Y(III), 10; PO = piperidin-2-one] have been synthesized and fully characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR spectra, thermogravimetric analysis and UV-vis spectra. Structural analysis reveals that compounds 1-10 are isostructural and crystallize in the monoclinic P2(1)/n space group. Each compound contains a centrosymmetric anionic cluster [Mo36O112(OH2)12(PO)4](8-), which could be described as the derivative of [Mo36O112(OH2)16](8-) with four water molecules substituted by organic PO molecules. Each {Mo18} subunit connects with one RE(III) ion via its two terminal O atoms from two independent {MoO6} octahedra. The eight coordinated RE(III) ion with a distorted tetragonal antiprism coordination geometry is also surrounded by another six oxygen atoms, five of them from five water molecules and the final one from one PO molecule. Compounds 1-10 show considerable photosensitive behavior under visible light excitation. In addition, compound 3 exhibits three emission bands at 580, 595 and 617 nm in the solid state, which could be assigned to (5)D0→(7)F0, (5)D0→(7)F1 and (5)D0→(7)F2 transitions of Eu(III) ions, respectively.

  20. Structural, vibrational, and gasochromic properties of porous WO sub 3 films templated with a sol-gel organic-inorganic hybrid

    CERN Document Server

    Opara-Krasovec, U; Orel, B; Grdadolnik, J; Drazic, G

    2002-01-01

    The structure and the gasochromic properties of sol-gel-derived WO sub 3 films with a monoclinic structure (m-WO sub 3) were studied by focusing attention on the size of the monoclinic grains. The size of the m-WO sub 3 grains is modified by the addition of an organic-inorganic hybrid to the initial peroxopolytungstic acid (W-PTA) sols which are based on chemically bonded poly-(propylene glycol) to triethoxysilane end-capping groups (ICS-PPG). The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the heat treatment (500 sup o C) of WO sub 3 /ICS- IPG (0.5, 1, 2, 5, and 10 mol%) composite films results in a change of their morphology, and nanodimensional pores are formed between the grains. High-resolution TEM (HRTEM) analysis revealed the presence of an amorphous phase on the outside of the m-WO sub 3 grains, whereas energy-dispersive x-ray spectra (EDXS) showed that this amorphous phase contained W and Si. Impregnation of the WO sub 3 /ICS-PPG film ...

  1. Strong room-temperature ultraviolet to red excitons from inorganic organic-layered perovskites, (MX4 (M=Pb, Sn, Hg; X=I-, Br-)

    Science.gov (United States)

    Ahmad, Shahab; Prakash, G. Vijaya

    2014-01-01

    Many varieties of layered inorganic-organic (IO) perovskite of type (MX4 (where R: organic moiety, M: divalent metal, and X: halogen) were successfully fabricated and characterized. X-ray diffraction data suggest that these inorganic and organic structures are alternatively stacked up along c-axis, where inorganic mono layers are of extended corner-shared MX6 octahedra and organic spacers are the bi-layers of organic entities. These layered perovskites show unusual room-temperature exciton absorption and photoluminescence due to the quantum and dielectric confinement-induced enhancement in the exciton binding energies. A wide spectral range of optical exciton tunability (350 to 600 nm) was observed experimentally from systematic compositional variation in (i) divalent metal ions (M=Pb, Sn, Hg), (ii) halides (X=I and Br-), and (iii) organic moieties (R). Specific photoluminescence features are due to the structure of the extended MX42- network and the eventual electronic band structure. The compositionally dependent photoluminescence of these IO hybrids could be useful in various photonic and optoelectronic devices.

  2. Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Baslak, Canan, E-mail: cananbaslak@gmail.com [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey); Demirel Kars, Meltem, E-mail: dmeltem@yahoo.com [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Sarayonu Vocational High School, Selcuk University, 42430 Konya (Turkey); Karaman, Mustafa; Kus, Mahmut [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemical Engineering, Faculty of Engineering, Selcuk University, 42075 Konya (Turkey); Cengeloglu, Yunus; Ersoz, Mustafa [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey)

    2015-04-15

    Herein we report the synthesis of polymer coated quantum dots (QDs)–carbon nanotube composite material with high biocompatibility and low cellular toxicity. The synthesized multi-walled carbon nanotube (MWCNT)–QD-(-poly(glycidyl methacrylate)) (pGMA) hybrids were characterized using X-ray photoelectron spectroscopy, laser scanning confocal microscopy, transmission electron microscopy and scanning electron microscopy. The results showed that quantum dots were well-distributed on nanotube surfaces in high density. The toxicological assessments of QDs and MWCNT–QD–polymer hybrids in human mammary carcinoma cells and their fluorescence imaging in living cell system were carried out. MWCNT–QD–polymer hybrids possess intense red fluorescence signal under confocal microscopy and good fluorescence stability over 6-h exposure in living cell system. The toxicity comparison of QDs and MWCNT–QD–polymer hybrids has shown that the existence of PGMA thin coating on MWCNT–QD hybrid surface decreased the cellular toxicity and increased biocompatibility. - Highlights: • We report that polymer coating of QDs on CNTs increased their biocompatibility by decreasing cellular toxicity. • QD–CNT polymer hybrid material may be proposed as a good diagnostic agent to visualize cancer cells which may be improved as a therapeutic carrier in future. • Coating QDs with polymer seems to be a right choice to be used in medicinal applications both for diagnosis and for therapy.

  3. Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications

    International Nuclear Information System (INIS)

    Baslak, Canan; Demirel Kars, Meltem; Karaman, Mustafa; Kus, Mahmut; Cengeloglu, Yunus; Ersoz, Mustafa

    2015-01-01

    Herein we report the synthesis of polymer coated quantum dots (QDs)–carbon nanotube composite material with high biocompatibility and low cellular toxicity. The synthesized multi-walled carbon nanotube (MWCNT)–QD-(-poly(glycidyl methacrylate)) (pGMA) hybrids were characterized using X-ray photoelectron spectroscopy, laser scanning confocal microscopy, transmission electron microscopy and scanning electron microscopy. The results showed that quantum dots were well-distributed on nanotube surfaces in high density. The toxicological assessments of QDs and MWCNT–QD–polymer hybrids in human mammary carcinoma cells and their fluorescence imaging in living cell system were carried out. MWCNT–QD–polymer hybrids possess intense red fluorescence signal under confocal microscopy and good fluorescence stability over 6-h exposure in living cell system. The toxicity comparison of QDs and MWCNT–QD–polymer hybrids has shown that the existence of PGMA thin coating on MWCNT–QD hybrid surface decreased the cellular toxicity and increased biocompatibility. - Highlights: • We report that polymer coating of QDs on CNTs increased their biocompatibility by decreasing cellular toxicity. • QD–CNT polymer hybrid material may be proposed as a good diagnostic agent to visualize cancer cells which may be improved as a therapeutic carrier in future. • Coating QDs with polymer seems to be a right choice to be used in medicinal applications both for diagnosis and for therapy

  4. Inorganic nanocomposite films with polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition

    Science.gov (United States)

    Darwish, Abdalla M.; Sarkisov, Sergey S.; Mele, Paolo; Saini, Shrikant; Moore, Shaelynn; Bastian, Tyler; Dorlus, Wydglif; Zhang, Xiaodong; Koplitz, Brent

    2017-08-01

    We report on the new class of inorganic nanocomposite films with the inorganic phase hosting the polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition of the inorganic target material and matrix assisted pulsed laser evaporation of the polymer (MBMT-PLD/MAPLE). We used the exemplary nanocomposite thermoelectric films of aluminum-doped ZnO known as AZO with the nanofillers made of poly(methyl methacrylate) known as PMMA on various substrates such as SrTiO3, sapphire, fused silica, and polyimide. The AZO target was ablated with the second harmonic (532 nm) of the Nd:YAG Q-switched laser while PMMA was evaporated from its solution in chlorobenzene frozen in liquid nitrogen with the fundamental harmonic (1064 nm) of the same laser (50 Hz pulse repetition rate). The introduction of the polymer nanofillers increased the electrical conductivity of the nanocomposite films (possibly due to the carbonization of PMMA and the creation of additional channels of electric current) three times and reduced the thermal conductivity by 1.25 times as compared to the pure AZO films. Accordingly, the increase of the thermoelectric figure-of merit ZT would be 4 times. The best performance was observed for the sapphire substrates where the films were the most uniform. The results point to a huge potential of the optimization of a broad variety of optical, opto-electronic, and solar-power nanocomposite inorganic films by the controllable introduction of the polymer nanofillers using the MBMT-PLD/MAPLE method.

  5. Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications

    Science.gov (United States)

    Sami, Haider; Maparu, Auhin K.; Kumar, Ashok; Sivakumar, Sri

    2012-01-01

    Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification. PMID:22649489

  6. Generic delivery of payload of nanoparticles intracellularly via hybrid polymer capsules for bioimaging applications.

    Directory of Open Access Journals (Sweden)

    Haider Sami

    Full Text Available Towards the goal of development of a generic nanomaterial delivery system and delivery of the 'as prepared' nanoparticles without 'further surface modification' in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM capsules has been reported, where polystyrene sulfonate (PSS/polyallylamine hydrochloride (PAH polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells, without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb(3+ was observed after internalization of LaF(3:Tb(3+(5% nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery without the need of individual cargo design/modification.

  7. Synthesis and characterization of hybrid carbon nanotube/polymer for use in the active layer of organic solar cells'

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Luiza De Lazari; Calado, Hallen Daniel Rezende, E-mail: luizadl@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Nowadays, the fast development of portable and flexible devices such as smart phones, smart watches and adhesive sensors, has stimulated research into alternative energy generators for the operation of these devices. Organic solar cells (OPVs) are seen as a promising technology in this scenario because their properties such as low weight, semi-transparency, low cost and flexibility. Intrinsically conducting polymers (CPs) are studied as active layer in OPVs because their good electrical and optical properties. The carbon nanotube - CNT in the polymer matrix leads to the formation of interconnected nano networks influencing the crystalline CP behavior and reducing the resistance in the charge transfer. This increases the transport of electrons and minimizes recombination by p-p and p-CH{sub 2} interaction with CPs, enhancing its properties and improving the efficiency of OPVs optoelectronics. To preparing the hybrid for this work in 3 stages it was used a homemade multi-walled CNT. Initially, the CNT's were functionalized with amine 1,3-diaminopropane - DAP (CNT-DAP) and then with an amine monomer from p-aminobenzoic acid - ABA. In a subsequent step, the hybrid (CNT-DAP-ABA-P3HT) was obtained by polymerizing using FeCl{sub 3} 3- hexylthiophene (3HT) in the presence of NTC-DAP-ABA, which led to obtaining the PC directly connected to CNT. The resulting hybrid was characterized by FTIR, Raman, XPS, thermal analysis, SEM, optical absorption and fluorescence. FTIR spectra showed bands associated with functional groups present in the functionalization steps. Raman results showed the increase of the ratio ID/IG caused by greater disorder by inserting the new groups to the CNT. The electrochemical profile was studied by cyclic voltammetry at different scan rates, generating curves with almost reversible profile. The analyzes showed that the CNT were functionalized covalently and have potential for application in active layer of OPVs. (author)

  8. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  9. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  10. Residue-and-polymer-free graphene transfer: DNA-CTMA/graphene/GaN bio-hybrid photodiode for light-sensitive applications

    Science.gov (United States)

    Reddy, M. Siva Pratap; Park, Herie; Lee, Jung-Hee

    2018-02-01

    In this work, we present a residue-and-polymer-free graphene transfer method by using the adhesive force between graphene and a target substrate, the hydrophobic property of graphene, and the surface tension of the solutions. We used an n-type GaN substrate as the target substrate to make a photodiode (PD). Recently, the inclusion of biomolecules in photodetection technology has attracted considerable attention in the electronics and photonics research, particularly due to the rapid evolution of organic-inorganic bio-hybrid PDs (Bio-HPDs). This report presents a significant photoresponse of the bioinspired graphene-based PD fabricated with deoxyribonucleic acid-cetyltrimetylammonium chloride (DNA-CTMA) biomolecules on the n-type GaN substrate. Bio-HPDs respond to the infrared, visible, and ultraviolet wavelengths. Moreover, the Bio-HPDs show photosensitivities (Iphoto/Idark) of 21, 143, and 1194 for infrared, visible, and ultraviolet wavebands, respectively, which can be attributed to the integration of high-mobility graphene and photosensitive DNA-CTMA biomolecules. In addition, the corresponding charge transfer mechanisms in the PDs are explained by energy band diagrams.

  11. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation

    Energy Technology Data Exchange (ETDEWEB)

    Bergemann, Claudia [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Cornelsen, Matthias [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Quade, Antje [Leibniz-Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Laube, Thorsten; Schnabelrauch, Matthias [INNOVENT e.V., Biomaterials Department, Pruessingstrasse 27B, D-07745 Jena (Germany); Rebl, Henrike [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Weißmann, Volker [Institute for Polymer Technologies (IPT) e.V., Alter Holzhafen 19, D-23966 Wismar (Germany); Seitz, Hermann [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Nebe, Barbara, E-mail: barbara.nebe@med.uni-rostock.de [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany)

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(L-lactide-co-D,L-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA — improvement of compressive strength of calcium phosphate scaffolds – is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10 mm hybrid scaffold were dynamically cultivated for 14 days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. - Highlights: • Mechanical stabilization of β-tricalcium phosphate scaffolds by PLA infiltration • Hybrid scaffolds with higher cell attraction due to plasma polymerized allylamine • 3D perfusion in vitro model for observation of cell migration inside scaffolds • Enhanced cell migration within plasma polymer coated TCP hybrid scaffolds.

  12. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation

    International Nuclear Information System (INIS)

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-01-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(L-lactide-co-D,L-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA — improvement of compressive strength of calcium phosphate scaffolds – is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10 mm hybrid scaffold were dynamically cultivated for 14 days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. - Highlights: • Mechanical stabilization of β-tricalcium phosphate scaffolds by PLA infiltration • Hybrid scaffolds with higher cell attraction due to plasma polymerized allylamine • 3D perfusion in vitro model for observation of cell migration inside scaffolds • Enhanced cell migration within plasma polymer coated TCP hybrid scaffolds

  13. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    Science.gov (United States)

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  14. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I perovskites for solar cell absorbers

    Directory of Open Access Journals (Sweden)

    Jing Feng

    2014-08-01

    Full Text Available The crystal structures, elastic and anisotropic properties of CH3NH3BX3 (B = Sn, Pb; X = Br, I compounds as solar cell absorber layers are investigated by the first-principles calculations. The type and strength of chemical bond B-X are found to determine the elastic properties. B-X bonds and the organic cations are therefore crucial to the functionalities of such absorbers. The bulk, shear, Young's modulus ranges from 12 to 30 GPa, 3 to 12 GPa, and 15 to 37 GPa, respectively. Moreover, the interaction among organic and inorganic ions would have negligible effect for elastic properties. The B/G and Poisson's ratio show it would have a good ductile ability for extensive deformation as a flexible/stretchable layer on the polymer substrate. The main reason is attributed to the low shear modulus of such perovskites. The anisotropic indices AU, AB AG, A1, A2, and A3 show ABX3 perovskite have very strong anisotropy derived from the elastic constants, chemical bonds, and symmetry.

  15. Impact of organic and inorganic nanomaterials in the soil microbial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Veronica; Lopes, Isabel [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Rocha-Santos, Teresa [ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, 3515-776 Lordosa, Viseu (Portugal); Santos, Ana L. [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Rasteiro, Graca M.; Antunes, Filipe [CIEPQPF, Department of Chemical Engineering, Faculty of Science and Technology, Polo II, University of Coimbra, 3030-290 Coimbra (Portugal); Goncalves, Fernando; Soares, Amadeu M.V.M.; Cunha, Angela; Almeida, Adelaide [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Gomes, Newton N.C.M., E-mail: gomesncm@ua.pt [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Pereira, Ruth [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre 4169-007 Porto (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal)

    2012-05-01

    In this study the effect of organic and inorganic nanomaterials (NMs) on the structural diversity of the soil microbial community was investigated by Denaturing Gradient Gel Electrophoresis, after amplification with universal primers for the bacterial region V6-V8 of 16S rDNA. The polymers of carboxylmethyl-cellulose (CMC), of hydrophobically modified CMC (HM-CMC), and hydrophobically modified polyethylglycol (HM-PEG); the vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) and of monoolein/sodium oleate (Mo/NaO); titanium oxide (TiO{sub 2}), titanium silicon oxide (TiSiO{sub 4}), CdSe/ZnS quantum dots, gold nanorods, and Fe/Co magnetic fluid were the NMs tested. Soil samples were incubated, for a period of 30 days, after being spiked with NM suspensions previously characterized by Dynamic Light Scattering (DLS) or by an ultrahigh-resolution scanning electron microscope (SEM). The analysis of similarities (ANOSIM) of DGGE profiles showed that gold nanorods, TiO{sub 2}, CMC, HM-CMC, HM-PEG, and SDS/DDAB have significantly affected the structural diversity of the soil bacterial community. - Highlights: Black-Right-Pointing-Pointer Organic and inorganic nanomaterials on soil microbial community. Black-Right-Pointing-Pointer Structural diversity was investigated by Denaturing Gradient Gel Electrophoresis. Black-Right-Pointing-Pointer All the organic nanomaterials, TiO{sub 2} and gold nanorods significantly affected the structural diversity.

  16. Impact of organic and inorganic nanomaterials in the soil microbial community structure

    International Nuclear Information System (INIS)

    Nogueira, Verónica; Lopes, Isabel; Rocha-Santos, Teresa; Santos, Ana L.; Rasteiro, Graça M.; Antunes, Filipe; Gonçalves, Fernando; Soares, Amadeu M.V.M.; Cunha, Angela; Almeida, Adelaide; Gomes, Newton N.C.M.; Pereira, Ruth

    2012-01-01

    In this study the effect of organic and inorganic nanomaterials (NMs) on the structural diversity of the soil microbial community was investigated by Denaturing Gradient Gel Electrophoresis, after amplification with universal primers for the bacterial region V6–V8 of 16S rDNA. The polymers of carboxylmethyl-cellulose (CMC), of hydrophobically modified CMC (HM-CMC), and hydrophobically modified polyethylglycol (HM-PEG); the vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) and of monoolein/sodium oleate (Mo/NaO); titanium oxide (TiO 2 ), titanium silicon oxide (TiSiO 4 ), CdSe/ZnS quantum dots, gold nanorods, and Fe/Co magnetic fluid were the NMs tested. Soil samples were incubated, for a period of 30 days, after being spiked with NM suspensions previously characterized by Dynamic Light Scattering (DLS) or by an ultrahigh-resolution scanning electron microscope (SEM). The analysis of similarities (ANOSIM) of DGGE profiles showed that gold nanorods, TiO 2 , CMC, HM-CMC, HM-PEG, and SDS/DDAB have significantly affected the structural diversity of the soil bacterial community. - Highlights: ► Organic and inorganic nanomaterials on soil microbial community. ► Structural diversity was investigated by Denaturing Gradient Gel Electrophoresis. ► All the organic nanomaterials, TiO 2 and gold nanorods significantly affected the structural diversity.

  17. Graphite and Hybrid Nanomaterials as Lubricant Additives

    Directory of Open Access Journals (Sweden)

    Zhenyu J. Zhang

    2014-04-01

    Full Text Available Lubricant additives, based on inorganic nanoparticles coated with organic outer layer, can reduce wear and increase load-carrying capacity of base oil remarkably, indicating the great potential of hybrid nanoparticles as anti-wear and extreme-pressure additives with excellent levels of performance. The organic part in the hybrid materials improves their flexibility and stability, while the inorganic part is responsible for hardness. The relationship between the design parameters of the organic coatings, such as molecular architecture and the lubrication performance, however, remains to be fully elucidated. A survey of current understanding of hybrid nanoparticles as lubricant additives is presented in this review.

  18. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

    Science.gov (United States)

    Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.

    2018-04-01

    We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

  19. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier

    International Nuclear Information System (INIS)

    Barletta, M.; Gisario, A.; Puopolo, M.; Vesco, S.

    2015-01-01

    Highlights: • Polysiloxane coatings as protective barriers to delay erosion/corrosion of Fe 430 B metal substrates. • Methyl groups feature a very small steric hindrance and confer ductility to the Si–O–Si backbone. • Phenyl groups feature a larger steric hindrance, but they ensure stability and high chemical inertness. • Remarkable adhesion to the substrate, good scratch resistance and high wear endurance. • Innovative ways to design of long lasting protective barriers against corrosion and aggressive chemicals. - Abstract: Polysiloxanes are widely used as protective barriers to delay erosion/corrosion and increase chemical inertness of metal substrates. In the present work, a high molecular weight methyl phenyl polysiloxane resin was designed to manufacture a protective coating for Fe 430 B structural steel. Methyl groups feature very small steric hindrance and confer ductility to the Si–O–Si backbone of the organic inorganic hybrid resin, thus allowing the achievement of high thickness. Phenyl groups feature larger steric hindrance, but they ensure stability and high chemical inertness. Visual appearance and morphology of the coatings were studied by field emission scanning electron microscopy and contact gauge surface profilometry. Micro-mechanical response of the coatings was analyzed by instrumented progressive load scratch, while wear resistance by dry sliding linear reciprocating tribological tests. Lastly, chemical inertness and corrosion endurance of the coatings were evaluated by linear sweep voltammetry and chronoamperometry in aggressive acid environment. The resulting resins yielded protective materials, which feature remarkable adhesion to the substrate, good scratch resistance and high wear endurance, thus laying the foundations to manufacture long lasting protective barriers against corrosion and, more in general, against aggressive chemicals

  20. Semitransparent ZnO/poly(3,4-ethylenedioxythiophene) based hybrid inorganic/organic heterojunction thin film diodes prepared by combined radio-frequency magnetron-sputtering and electrodeposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Moreno, Jorge; Navarrete-Astorga, Elena; Martin, Francisco [Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ing. Quimica, Universidad de Malaga, E29071 Malaga (Spain); Schrebler, Ricardo [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Ramos-Barrado, Jose R. [Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ing. Quimica, Universidad de Malaga, E29071 Malaga (Spain); Dalchiele, Enrique A., E-mail: dalchiel@fing.edu.uy [Instituto de Fisica, Facultad de Ingenieria, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay)

    2012-12-15

    n-ZnO/p-poly(3,4-ethylenedioxythiophene) (PEDOT) semitransparent inorganic-organic hybrid vertical heterojunction thin film diodes have been fabricated with PEDOT and ZnO thin films grown by electrodeposition and radio-frequency magnetron-sputtering respectively, onto a tin doped indium oxide coated glass substrate. The diode exhibited an optical transmission of {approx} 40% to {approx} 50% in the visible region between 450 and 700 nm. The current-voltage (I-V) characteristics of the heterojunction show good rectifying diode characteristics, with a ratio of forward current to the reverse current as high as 35 in the range - 4 V to + 4 V. The I-V characteristic was examined in the framework of the thermionic emission model. The ideality factor and barrier height were obtained as 4.0 and 0.88 eV respectively. - Highlights: Black-Right-Pointing-Pointer Semitransparent inorganic-organic heterojunction thin film diodes investigated Black-Right-Pointing-Pointer n-ZnO/p-poly(3,4-ethylenedioxythipohene) used for the heterojunction Black-Right-Pointing-Pointer Diodes exhibited an optical transmission of {approx} 40%-{approx} 50% in the visible region Black-Right-Pointing-Pointer Heterojunction current-voltage features show good rectifying diode characteristics Black-Right-Pointing-Pointer A forward to reverse current ratio as high as 35 (- 4 V to + 4 V range) was attained.

  1. Organic/inorganic electrochromic nanocomposites with various interfacial interactions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shanxin, E-mail: xiongsx@xust.edu.cn; Yin, Siyuan; Wang, Yuyun; Kong, Zhenzhen; Lan, Jinpeng; Zhang, Runlan; Gong, Ming; Wu, Bohua; Chu, Jia; Wang, Xiaoqin

    2017-07-15

    Highlights: • We review the effects of interfacial interactions in electrochromic nanocomposites. • Interfacial interactions are useful for film fabrication and property-enhancement. • The strong interaction can enhance the electron conduction and structural strength. • The weak interactions exist widely between organic and inorganic phases. • Multiple weak interactions can provide various performance-adjusting approaches. - Abstract: Electrochromic properties of organic or inorganic materials can be improved through preparing organic/inorganic electrochromic nanocomposites. In electrochromic nanocomposites, the interfacial interactions between the organic and inorganic phases play three important roles in preparation and application of the nanocomposites. Firstly, the interfacial interactions result in stable molecular structures. Secondly, they also improve the electron conduction and ion transport process in the nanocomposites. Thirdly, they enhance the electrochemical and electrochromic properties of the nanocomposites. In this paper, we review the common interfacial interactions including covalent bond, coordination bond, electrostatic interaction, hydrogen bond and π-π stacking interaction between the organic and inorganic phases in the electrochromic nanocomposites. The preparation method, the relationship between the structure and properties, and the mechanism of modulation of electrochromic effect in the nanocomposites with various interfacial interactions are surveyed. The strong interfacial interaction, e.g., covalent bond, is helpful for obtaining electrochromic nanocomposites with high electron conduction and high structural strength. However it is very complicated to construct covalent bond between the organic and inorganic phases. Another strong interfacial interaction, the coordination bond is mainly confined to preparation of electrochromic complex of metal ion and pyridine derivative. While, the weak interfacial interactions, e

  2. Organic/inorganic electrochromic nanocomposites with various interfacial interactions: A review

    International Nuclear Information System (INIS)

    Xiong, Shanxin; Yin, Siyuan; Wang, Yuyun; Kong, Zhenzhen; Lan, Jinpeng; Zhang, Runlan; Gong, Ming; Wu, Bohua; Chu, Jia; Wang, Xiaoqin

    2017-01-01

    Highlights: • We review the effects of interfacial interactions in electrochromic nanocomposites. • Interfacial interactions are useful for film fabrication and property-enhancement. • The strong interaction can enhance the electron conduction and structural strength. • The weak interactions exist widely between organic and inorganic phases. • Multiple weak interactions can provide various performance-adjusting approaches. - Abstract: Electrochromic properties of organic or inorganic materials can be improved through preparing organic/inorganic electrochromic nanocomposites. In electrochromic nanocomposites, the interfacial interactions between the organic and inorganic phases play three important roles in preparation and application of the nanocomposites. Firstly, the interfacial interactions result in stable molecular structures. Secondly, they also improve the electron conduction and ion transport process in the nanocomposites. Thirdly, they enhance the electrochemical and electrochromic properties of the nanocomposites. In this paper, we review the common interfacial interactions including covalent bond, coordination bond, electrostatic interaction, hydrogen bond and π-π stacking interaction between the organic and inorganic phases in the electrochromic nanocomposites. The preparation method, the relationship between the structure and properties, and the mechanism of modulation of electrochromic effect in the nanocomposites with various interfacial interactions are surveyed. The strong interfacial interaction, e.g., covalent bond, is helpful for obtaining electrochromic nanocomposites with high electron conduction and high structural strength. However it is very complicated to construct covalent bond between the organic and inorganic phases. Another strong interfacial interaction, the coordination bond is mainly confined to preparation of electrochromic complex of metal ion and pyridine derivative. While, the weak interfacial interactions, e

  3. Organic and inorganic osmolytes at lipid membrane interfaces

    DEFF Research Database (Denmark)

    Westh, P.; Peters, Günther H.j.

    2008-01-01

    This chapter discusses the interactions of organic osmolytes and membranous interfaces, and the effects of these interactions on the properties of the membrane. It also includes a treatment of inorganic ions at the membrane interface since osmolyte effects involve a balance between organic...... and inorganic components. Before turning to the physicochemical discussion of interfacial interactions, the chapter outlines some central parts of the biology and biotechnology of organic osmolytes. It reviews the central relationships in preferential interaction theory, which we use in subsequent paragraphs...

  4. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor

    Science.gov (United States)

    Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.

    2017-12-01

    Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

  5. Preparation And Characterization Of Silicon Carbide Foam By Using In-Situ Generated Polyurethane Foam

    Directory of Open Access Journals (Sweden)

    Shalini Saxena

    2015-08-01

    Full Text Available Abstract The open cell silicon carbide SiC foam was prepared using highly crosslinked hybrid organic- inorganic polymer resin matrix. As inorganic polymer polycarbosilane was taken and organic resin was taken as a mixture of epoxy resin and diisocyanates. The resultant highly crosslinked hybrid resin matrix on heating and subsequently on pyrolysis yielded open cell silicon carbide foam. The hybrid resin matrix was characterized by Fourier transform Infrared Spectroscopy FT-IR and thermal properties i.e. Thermogravimetric analysis TGA amp Differential Scanning Calorimetry DSC were also studied. The morphological studies of silicon carbide ceramic foam were carried out using X-ray Spectroscopy XRD amp Scanning Electron Microscopy SEM.

  6. An artificial muscle model unit based on inorganic nanosheet sliding by photochemical reaction.

    Science.gov (United States)

    Nabetani, Yu; Takamura, Hazuki; Hayasaka, Yuika; Sasamoto, Shin; Tanamura, Yoshihiko; Shimada, Tetsuya; Masui, Dai; Takagi, Shinsuke; Tachibana, Hiroshi; Tong, Zhiwei; Inoue, Haruo

    2013-04-21

    From the viewpoint of developing photoresponsive supramolecular systems in microenvironments to exhibit more sophisticated photo-functions even at the macroscopic level, inorganic/organic hybrid compounds based on clay or niobate nanosheets as the microenvironments were prepared, characterized, and examined for their photoreactions. We show here a novel type of artificial muscle model unit having much similarity with that in natural muscle fibrils. Upon photoirradiation, the organic/inorganic hybrid nanosheets reversibly slide horizontally on a giant scale, and the interlayer spaces in the layered hybrid structure shrink and expand vertically. In particular, our layered hybrid molecular system exhibits a macroscopic morphological change on a giant scale (~1500 nm) compared with the molecular size of ~1 nm, based on a reversible sliding mechanism.

  7. Biomimetic synthesis of hybrid nanocomposite scaffolds by freeze

    Indian Academy of Sciences (India)

    The aim of this study is to biomimetically synthesize hydroxyapatite–hydrophilic polymer scaffolds for biomedical applications. This organic–inorganic hybrid has been structurally characterized and reveals a good microstructural control as seen by the SEM analysis and the nanosize of the particulates is confirmed by AFM ...

  8. Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance

    International Nuclear Information System (INIS)

    Zhou, Junli; Yu, Lin; Sun, Ming; Ye, Fei; Lan, Bang; Diao, Guiqiang; He, Jun

    2013-01-01

    Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO 2 nanosheets were self-assembled in the presence of CTAB, and subsequently pillared with Keggin ions. The obtained CTAB-Al-MO with the basal spacing of 1.59 nm could be stable at 300 °C for 2 h and also possesses high total pore volumes (0.41 cm³ g −1 ) and high specific BET surface area (161 m 2 g −1 ), which is nine times larger than that of the pristine (19 m 2 g −1 ). Possible formation process for the highly thermal stable CTAB-Al-MO is proposed here. The decolorization experiments of methyl orange showed that the obtained CTAB-Al-MO exhibit excellent performance in wastewater treatment and the decolorization rate could reach 95% within 5 min. - Graphical Abstract: Well-ordered organic–inorganic hybrid LMO nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO 2 nanosheets were self-assembled by CTAB, and subsequently pillared with Keggin ions. Highlights: ► A two-step synthesis method was used to prepare the CTAB-Al-MO. ► The CTAB-Al-MO has the large basal spacing and high specific BET surface area. ► The thermal stability of the well-ordered CTAB-Al-MO could obviously improve. ► The CTAB-Al-MO exhibits excellent oxidation and absorption ability to remove organic pollutants.

  9. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  10. Solution-based colloidal synthesis of hybrid P3HT: Ternary CuInSe2 nanocomposites using a novel combination of capping agents for low-cost photovoltaics

    Science.gov (United States)

    Sharma, Shailesh Narain; Chawla, Parul; Akanksha; Srivastava, A. K.

    2016-06-01

    In this work, ternary CuInSe2 (CISe) chalcopyrite nanocrystallites efficiently passivated by a novel combination of capping agents viz: aniline and 1-octadecene during chemical route synthesis were dispersed in conducting polymer matrix poly(3-hexylthiophene) (P3HT). By varying the composition and concentration of the ligands, the properties of the resulting CISe nanocrystallites and its corresponding polymer nanocomposites thus could be tailored. The structural, morphological and optical studies accomplished by various complimentary techniques viz. Transmission Electron Microscopy (TEM), Contact angle, Photoluminescence (PL) and Raman have enabled us to compare the different hybrid organic (polymer)-inorganic nanocomposites. On the basis of aniline-octadecene equilibrium phase diagram, the polydispersity of the CISe nanocrystals could be tuned by using controlled variations in the reaction conditions of nucleation and growth such as composition of the solvent and temperature. To the best of author's knowledge, the beneficial effects of both the capping agents; aniline and octadecene contributing well in tandem in the development of large-sized (100-125 nm) high quality, sterically- and photo-oxidative stable polycrystalline CISe and its corresponding polymer (P3HT):CISe composites with enhanced charge transfer efficiency has been reported for the first time. The low-cost synthesis and ease of preparation renders this method of great potential for its possible application in low-cost hybrid organic-inorganic photovoltaics. The figure shows the Temperature vs Mole fraction graph of two different phases (aniline and 1-octadecene) in equilibrium.

  11. Assembling a Lasing Hybrid Material With Supramolecular Polymers and Nanocrystals

    National Research Council Canada - National Science Library

    Li, Leiming

    2003-01-01

    .... In the system containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid material forming an ultraviolet lasing medium with a lower threshold relative to pure ZnO nanocrystals.

  12. Engineering properties of inorganic polymer concretes (IPCs)

    International Nuclear Information System (INIS)

    Sofi, M.; Deventer, J.S.J. van; Mendis, P.A.; Lukey, G.C.

    2007-01-01

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures

  13. Enzyme-Polymers Conjugated to Quantum-Dots for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Alexandra Mansur

    2011-10-01

    Full Text Available In the present research, the concept of developing a novel system based on polymer-enzyme macromolecules was tested by coupling carboxylic acid functionalized poly(vinyl alcohol (PVA-COOH to glucose oxidase (GOx followed by the bioconjugation with CdS quantum-dots (QD. The resulting organic-inorganic nanohybrids were characterized by UV-visible spectroscopy, infrared spectroscopy, Photoluminescence spectroscopy (PL and transmission electron microscopy (TEM. The spectroscopy results have clearly shown that the polymer-enzyme macromolecules (PVA-COOH/GOx were synthesized by the proposed zero-length linker route. Moreover, they have performed as successful capping agents for the nucleation and constrained growth of CdS quantum-dots via aqueous colloidal chemistry. The TEM images associated with the optical absorption results have indicated the formation of CdS nanocrystals with estimated diameters of about 3.0 nm. The “blue-shift” in the visible absorption spectra and the PL values have provided strong evidence that the fluorescent CdS nanoparticles were produced in the quantum-size confinement regime. Finally, the hybrid system was biochemically assayed by injecting the glucose substrate and detecting the formation of peroxide with the enzyme horseradish peroxidase (HRP. Thus, the polymer-enzyme-QD hybrid has behaved as a nanostructured sensor for glucose detecting.

  14. Hybrid electroluminescent devices

    Science.gov (United States)

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  15. Sol-gel hybrid materials for aerospace applications: Chemical characterization and comparative investigation of the magnetic properties

    Science.gov (United States)

    Catauro, Michelina; Mozzati, Maria Cristina; Bollino, Flavia

    2015-12-01

    In the material science field, weightless conditions can be successfully used to understand the relationship between manufacturing process, structure and properties of the obtained materials. Aerogels with controlled microstructure could be obtained by sol-gel methods in microgravity environment, simulated using magnetic levitation if they are diamagnetic. In the present work, a sol-gel route was used to synthesize class I, organic-inorganic nanocomposite materials. Two different formulations were prepared: the former consisted in a SiO2 matrix in which different percentages of polyethylene glycol (PEG) were incorporated, the latter was a ZrO2 matrix entrapping different amounts of poly (ε-caprolactone) (PCL). Fourier Transform Infrared Spectroscopy (FT-IR) detected that the organic and the inorganic components in both the formulation interact by means of hydrogen bonds. X-ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials and Scanning Electron Microscope (SEM) showed that they have homogeneous morphology and are nanocomposites. Superconducting Quantum Interference Device (SQUID) magnetometry confirmed the expected diamagnetic character of those hybrid systems. The obtained results were compared to those achieved in previous studies regarding the influence of the polymer amount on the magnetic properties of SiO2/PCL and ZiO2/PEG hybrids, in order to understand how the diamagnetic susceptibility is influenced by variation of both the inorganic matrix and organic component.

  16. Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose.

    Science.gov (United States)

    Li, WanYun; Lu, ShiYu; Bao, ShuJuan; Shi, ZhuanZhuan; Lu, Zhisong; Li, ChangMing; Yu, Ling

    2018-01-15

    A visual colorimetric microfluidic paper-based analytical device (μPAD) was constructed following the direct synthesis of enzyme-inorganic hybrid nanomaterials on the paper matrix. An inorganic solution of MnSO 4 and KH 2 PO 4 containing a diluted enzyme (glucose oxidase, GOx) was subsequently pipetted onto cellulose paper for the in situ growth of GOx@Mn 3 (PO 4 ) 2 hybrid functional materials. The characterization of the morphology and chemical composition validated the presence of hybrid materials roots in the paper fiber, while the Mn 3 (PO 4 ) 2 of the hybrid provided both a surface for enzyme anchoring and a higher peroxidase-like catalytic activity as compared to the Mn 3 (PO 4 ) 2 crystal that was synthesized without enzyme modulation. This new approach for the in situ growth of an enzyme-inorganic hybrid on a paper matrix eliminates centrifugation and the dry process by casting the solution on paper. The sensing material loading was highly reproducible because of the accuracy and stability of pipetting, which eventually contributed to the reliability of the μPAD. The self-assembled natural and artificial enzyme hybrid on the μPADs specifically detected glucose from a group of interferences, which shows great specificity using this method. Moreover, the colorimetric signal exhibited detection limitation for glucose is 0.01mM, which lies in the physiological range of glucose in biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Immobilisation of ligands by radio-derivatized polymers

    International Nuclear Information System (INIS)

    Varga, J.M.; Fritsch, P.

    1995-01-01

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs

  18. Polycarboxylic acids as network modifiers for water durability improvement of inorganic-organic hybrid tin-silico-phosphate low-melting glasses

    International Nuclear Information System (INIS)

    Menaa, Bouzid; Mizuno, Megumi; Takahashi, Masahide; Tokuda, Yomei; Yoko, Toshinobu

    2006-01-01

    We investigated the water durability of the inorganic-organic hybrid tin-silico-phosphate glasses Me 2 SiO-SnO-P 2 O 5 (Me designs the organic methyl group) doped with organic acids (salicylic acid (SA), tartaric acid (TA), citric acid (Canada) and butane tetracarboxylic acid (BTCA)) containing one or more of carboxylic groups per molecule. The structure, thermal properties and durability of the final glasses obtained via a non-aqueous acid-base reaction were discussed owing to the nature and the concentration of the acid added. 29 Si magic angle spinning (MAS) NMR and 31 P MAS NMR spectra, respectively, showed clearly a modification of the network in the host glass matrix of the Me 2 SiO-SnO-P 2 O 5 system. The polycondensation enhancement to form -P-O-Si-O-P- linkages (PSP) and the increase of the Q 2 unit (two bridging oxygens per phosphorus atom) over the Q 3 unit (three bridging oxygens per phosphorus atom) as a function of the acid in the order SA 2 SiO-SnO-P 2 O 5 matrix. In addition, this structural change is accompanied by a decrease of the coefficient of thermal expansion and an increase of the water durability of the glasses with the acids containing a large number of carboxylic groups per molecule. The presence of carboxylic groups of the acid acting as network modifier may retard the movement of water molecules through the glasses due to the steric hindrance strengthening the PSP connections in a chain-like structure

  19. Characterization, phase change and conductivity crossover of new luminescent ferroelectric Mn (II) organic-inorganic hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Mohga F., E-mail: Mohga40@yahoo.com; El Dean, Thana Sh., E-mail: th_sh2000@yahoo.com; Tammam, Ahmed K., E-mail: physicsoman@yahoo.com

    2016-09-01

    Synthesis and characterization of new luminescent ferroelectric [(CH{sub 3})(C{sub 6}H{sub 5}){sub 3}P]{sub 2}MnBr{sub 4} organic-inorganic hybrid (OIH) are reported. Powder x-ray diffraction showed the following phases: {sup P2/m} {sup (280 K)} Phase (IV) {sup P21} {sup (298 K)} Phase (III) {sup Pna21} {sup (350 K)} Phase (II) {sup Pnma} {sup (370 K)} Phase (I). Room temperature lattice parameters are a = 9.6233 (Å), b = 12.5653 (Å) c = 16.4503 (Å) and β = 105.6° (T = 298 K). UV-VIS and Ac magnetic susceptibility confirm tetrahedral symmetry of [MnBr{sub 4}]{sup 2−}. DSC and dielectric measurements showed four phase transitions at T{sub 4peak} = 279.1 ± 1 K (ΔS = 1.03 J/mol K), T{sub 3peak} = 300.1 ± 2 K (ΔS = 2.33 J/mol K), T{sub 2peakt} = 353.2 ± 3 K (ΔS = 2.68 J/mol K) and T{sub 1peak} = 379.1 ± 3 K (ΔS = 2.43 J/mol K). Calculated lattice potential energy values vary from 827 (kJ/mol) at 280 K to (797 kJ/mol) at 370 K. Ac conductivity measurements (220 < T(K) < 400) and (0.081 < f (kHz) < 30) are presented. It is ferroelectric with Curie temperature T{sub c} = 309 K. Hybrid is semiconductor in the temperature range 309 ± 14 K, where conductivity follows Jonscher’s universal dielectric response otherwise it is an insulator where crossover to super-linear power law prevails. Comparison to the corresponding chloride is discussed. - Graphical abstract: Plot of real part of permittivity [ln(ε′)] versus temperature (K). - Highlights: • Conductivity crossover from SlPL to UDR is confirmed. • Change from semiconductor to insulator. • Structural phase transformation.

  20. First determination of the valence band dispersion of CH3NH3PbI3 hybrid organic-inorganic perovskite

    Science.gov (United States)

    Lee, Min-I.; Barragán, Ana; Nair, Maya N.; Jacques, Vincent L. R.; Le Bolloc'h, David; Fertey, Pierre; Jemli, Khaoula; Lédée, Ferdinand; Trippé-Allard, Gaëlle; Deleporte, Emmanuelle; Taleb-Ibrahimi, Amina; Tejeda, Antonio

    2017-07-01

    The family of hybrid organic-inorganic halide perovskites is in the limelight because of their recently discovered high photovoltaic efficiency. These materials combine photovoltaic energy conversion efficiencies exceeding 22% and low-temperature and low-cost processing in solution; a breakthrough in the panorama of renewable energy. Solar cell operation relies on the excitation of the valence band electrons to the conduction band by solar photons. One factor strongly impacting the absorption efficiency is the band dispersion. The band dispersion has been extensively studied theoretically, but no experimental information was available. Herein, we present the first experimental determination of the valence band dispersion of methylammonium lead halide in the tetragonal phase. Our results pave the way for contrasting the electronic hopping or the electron effective masses in different theories by comparing to our experimental bands. We also show a significant broadening of the electronic states, promoting relaxed conditions for photon absorption, and demonstrate that the tetragonal structure associated to the octahedra network distortion below 50 °C induces only a minor modification of the electronic bands, with respect to the cubic phase at high temperature, thus minimizing the impact of the cubic-tetragonal transition on solar cell efficiencies.

  1. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  2. THz waveguides, devices and hybrid polymer-chalcogenide photonic crystal fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Markos, Christos; Nielsen, Kristian

    2014-01-01

    In this contribution, we review our recent activities in the design, fabrication and characterization of polymer THz waveguides. Besides the THz waveguides, we finally will also briefly show some of our initial results on a novel hybrid polymer photonic crystal fiber with integrated chalcogenide...

  3. A Review on Recent Patents and Applications of Inorganic Material Binding Peptides.

    Science.gov (United States)

    Thota, Veeranjaneyulu; Perry, Carole C

    2017-01-01

    Although the popularity of using combinatorial display techniques for recognising unique peptides having high affinity for inorganic (nano) particles has grown rapidly, there are no systematic reviews showcasing current developments or patents on binding peptides specific to these materials. In this review, we summarize and discuss recent progress in patents on material binding peptides specifically exploring inorganic nano surfaces such as metals, metal oxides, minerals, carbonbased materials, polymer based materials, magnetic materials and semiconductors. We consider both the peptide display strategies used and the exploitation of the identified peptides in the generation of advanced nanomaterials. In order to get a clear picture on the number of patents and literature present to date relevant to inorganic material binding biomolecules and their applications, a thorough online search was conducted using national and worldwide databases. The literature search include standard bibliographic databases while patents included EPO Espacenet, WIPO patent scope, USPTO, Google patent search, Patent lens, etc. along with commercial databases such as Derwent and Patbase. Both English and American spellings were included in the searches. The initial number of patents found related to material binders were 981. After reading and excluding irrelevant patents such as organic binding peptides, works published before 2001, repeated patents, documents not in English etc., 51 highly relevant patents published from 2001 onwards were selected and analysed. These patents were further separated into six categories based on their target inorganic material and combinatorial library used. They include relevant patents on metal, metal oxide or combination binding peptides (19), magnetic and semiconductor binding peptides (8), carbon based (3), mineral (5), polymer (8) and other binders (9). Further, how these material specific binders have been used to synthesize simple to complex bio- or

  4. Hybrid structures formed by homo- and heteroleptic aliphatic dicarboxylates of lead with 2-D inorganic connectivity

    International Nuclear Information System (INIS)

    Thirumurugan, A.; Rao, C.N.R.

    2008-01-01

    Three-dimensional homoleptic (single type of ligand) lead dicarboxylates with hybrid structures involving Pb-O-Pb linkages of the compositions, Pb(C 5 H 6 O 4 ), I, and Pb(C 6 H 8 O 4 ), II and III, have been synthesized and characterized. Three-dimensional heteroleptic (mixed ligands) lead dicarboxylates of the formulae, Pb 2 (C 2 O 4 )(C 4 H 4 O 4 ), IV and Pb 2 (C 2 O 4 )(C 6 H 8 O 4 ), V, with hybrid structures involving Pb-O-Pb linkages have also been prepared and characterized along with a novel two-dimensional lead nitrate-oxalate of the composition, (OPb 2 ) 2 (C 2 O 4 )(NO 3 ) 2 , VI. In all these dicarboxylates, there is two-dimensional inorganic connectivity and the lead (II) cation has hemi- or holo-directed coordination geometry. Depending upon the torsional angle and the coordination mode of the dicarboxylate anions as well as the geometry of the lead (II) cations, these hybrid compounds exhibit two types of two-dimensional inorganic connectivities. - Graphical abstract: Three homoleptic and two heteroleptic three-dimensional lead aliphatic dicarboxylates along with a novel two-dimensional lead nitrate-oxalate with hybrid structures involving Pb-O-Pb linkages have been synthesized and charecterized. In all these dicarboxylates, there is two-dimensional inorganic connectivity. The lead (II) cation has hemi- or holo-directed coordination geometry

  5. Hybrid Organic-Inorganic Perovskites: Structural Diversity and Opportunities for Semiconductor Design

    Science.gov (United States)

    Mitzi, David

    Photovoltaic (PV) devices based on three-dimensional perovskites, (Cs, MA, FA)Pb(I, Br)3 (MA =methylammonium, FA =formamidinium), have attracted substantial recent interest, because of the unprecedented rise in power conversion efficiency to values above 20%, which in turn is made possible by the near ideal band gap, strong optical absorption, high carrier mobilities, long minority carrier lifetimes, and relatively benign defects and grain boundaries for the absorbers. Some of the same properties that render these materials near-ideal for PV, also make them attractive for LED and other optoelectronic applications. Despite the high levels of device performance, the incorporation of the heavy metal lead, coupled with issues of device stability and electrical hysteresis pose challenges for commercializing these exciting technologies. This talk will provide a perspective on and discuss recent advances related to the broader perovskite family, focusing on the extraordinary structural/chemical diversity, including ability to control structural/electronic dimensionality, substitute on the organic cation, metal or halogen sites, and prospects of multi-functionality arising from separately engineered organic/inorganic structural components (e.g., see). Further exploration within this perovskite structural and chemical space offers exciting opportunities for future energy and electronic materials design. This work has been financially supported by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Dept. of Energy, under Award Number DE-EE0006712.

  6. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    Science.gov (United States)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  7. Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids

    NARCIS (Netherlands)

    Kamminga, Machteld E.; Fang, Honghua; Filip, Marina R.; Giustino, Feliciano; Baas, Jacobus; Blake, Graeme R.; Loi, Maria Antonietta; Palstra, Thomas T. M.

    2016-01-01

    We use a layered solution crystal growth technique to synthesize high-quality single crystals of phenylalkylammonium lead iodide organic/inorganic hybrid compounds. Single-crystal X-ray diffraction reveals low-dimensional structures consisting of inorganic sheets separated by bilayers of the organic

  8. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  9. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo

    2017-06-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  10. One-step shell polymerization of inorganic nanoparticles and their applications in SERS/nonlinear optical imaging, drug delivery, and catalysis.

    Science.gov (United States)

    Liu, Tzu-Ming; Yu, Jiashing; Chang, C Allen; Chiou, Arthur; Chiang, Huihua Kenny; Chuang, Yu-Chun; Wu, Cheng-Han; Hsu, Che-Hao; Chen, Po-An; Huang, Chih-Chia

    2014-07-07

    Surface functionalized nanoparticles have found their applications in several fields including biophotonics, nanobiomedicine, biosensing, drug delivery, and catalysis. Quite often, the nanoparticle surfaces must be post-coated with organic or inorganic layers during the synthesis before use. This work reports a generally one-pot synthesis method for the preparation of various inorganic-organic core-shell nanostructures (Au@polymer, Ag@polymer, Cu@polymer, Fe3O4@polymer, and TiO2@polymer), which led to new optical, magnetic, and catalytic applications. This green synthesis involved reacting inorganic precursors and poly(styrene-alt-maleic acid). The polystyrene blocks separated from the external aqueous environment acting as a hydrophobic depot for aromatic drugs and thus illustrated the integration of functional nanoobjects for drug delivery. Among these nanocomposites, the Au@polymer nanoparticles with good biocompatibility exhibited shell-dependent signal enhancement in the surface plasmon resonance shift, nonlinear fluorescence, and surface-enhanced Raman scattering properties. These unique optical properties were used for dual-modality imaging on the delivery of the aromatic photosensitizer for photodynamic therapy to HeLa cells.

  11. Tungsten oxides as interfacial layers for improved performance in hybrid optoelectronic devices

    International Nuclear Information System (INIS)

    Vasilopoulou, M.; Palilis, L.C.; Georgiadou, D.G.; Argitis, P.; Kennou, S.; Kostis, I.; Papadimitropoulos, G.; Stathopoulos, N.A.; Iliadis, A.A.; Konofaos, N.; Davazoglou, D.; Sygellou, L.

    2011-01-01

    Tungsten oxide (WO 3 ) films with thicknesses ranging from 30 to 100 nm were grown by Hot Filament Vapor Deposition (HFVD). Films were studied by X-Ray Photoemission Spectroscopy (XPS) and were found to be stoichiometric. The surface morphology of the films was characterized by Atomic Force Microscopy (AFM). Samples had a granular form with grains in the order of 100 nm. The surface roughness was found to increase with film thickness. HFVD WO 3 films were used as conducting interfacial layers in advanced hybrid organic-inorganic optoelectronic devices. Hybrid-Organic Light Emitting Diodes (Hy-OLEDs) and Organic Photovoltaics (Hy-OPVs) were fabricated with these films as anode and/or as cathode interfacial conducting layers. The Hy-OLEDs showed significantly higher current density and a lower turn-on voltage when a thin WO 3 layer was inserted at the anode/polymer interface, while when inserted at the cathode/polymer interface the device performance was found to deteriorate. The improvement was attributed to a more efficient hole injection and transport from the Fermi level of the anode to the Highest Occupied Molecular Orbital (HOMO) of a yellow emitting copolymer (YEP). On the other hand, the insertion of a thin WO 3 layer at the cathode/polymer interface of Hy-OPV devices based on a polythiophene-fullerene bulk-heterojunction blend photoactive layer resulted in an increase of the produced photogenerated current, more likely due to improved electron extraction at the Al cathode.

  12. Review on Polymers for Thermoelectric Applications.

    Science.gov (United States)

    Culebras, Mario; Gómez, Clara M; Cantarero, Andrés

    2014-09-18

    In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3-4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

  13. Recent Advances in Conjugated Polymers for Light Emitting Devices

    Science.gov (United States)

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  14. Effect of hybrid carbon nanotubes-bimetallic composite particles on the performance of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Young [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Kim, Whi-Dong; Kim, Soo H. [Department of Nanosystem and Nanoprocess Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea); Kim, Do-Geun; Kim, Jong-Kuk; Jeong, Yong-Soo; Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Kim, Joo Hyun [Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Lee, Jae Keun [School of Mechanical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea)

    2010-05-15

    Hybrid carbon nanotubes-bimetallic composite nanoparticles with sea urchin-like structures (SU-CNTs) were introduced to bulk heterojunction polymer-fullerene solar cells to improve their performance. The SU-CNTs were composed of multi-walled CNTs, which were grown radially over the entire surface of the bimetallic nanoparticles composed of Ni and Al. SU-CNTs with a precisely controlled length of {proportional_to}200{+-}40 nm were dispersed homogenously in a polymer active layer. Compared with a pristine device (i.e., without SU-CNTs), the SU-CNTs-doped organic photovoltaic (OPV) cells showed an improved short-circuit current density and power conversion efficiency from 7.5 to 9.5 mA/cm{sup 2} and 2.1{+-}0.1% to 2.2{+-}0.2% (max. 2.5%), respectively. The specially designed SU-CNTs have strong potential as an effective exciton dissociation medium in the polymer active layer to enhance the performance of organic solar cells. (author)

  15. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien

    2015-01-01

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA) nano...... of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.......Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...

  16. Polymer-metal hybrid transparent electrodes for flexible electronics

    Science.gov (United States)

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius 95% and a sheet resistance solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  17. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    Science.gov (United States)

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  18. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    Science.gov (United States)

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  19. Preparation and characterization of an organic/inorganic hybrid sorbent (PLE) to enhance selectivity for As(V).

    Science.gov (United States)

    An, Byungryul; Kim, Hakchan; Park, Chanhyuk; Lee, Sang-Hyup; Choi, Jae-Woo

    2015-05-30

    For the selective removal of arsenate (As(V)) a hybrid sorbent was prepared using a non-toxic natural organic material, chitosan, by loading a transition metal, nickel. The immobilization of nickel was achieved by coordination with a deprotonated amino group (NH2) in the chitosan polymer chain. The amount of nickel was directly correlated to the presence of the amino group and was calculated to be 62 mg/g. FTIR spectra showed a peak shift from 1656 to 1637 cm(-1) after Ni(2+) loading, indicating the complexation between the amino group and nickel, and a peak of As(V) was observed at 834 cm(-1). An increase of sulfate concentration from 100 mg/L to 200 mg/L did not significantly affect As(V) sorption, and an increase in the concentration of bicarbonate reduced the As(V) uptake by 33%. The optimal pH of the solution was determined at pH 10, which is in accordance with the fraction of HAsO4(2-) and AsO4(-3). According to a fixed column test, a break through behavior of As(V) revealed that selectivity for As(V) was over sulfate. Regeneration using 5% NaCl extended the use of sorbent to up to uses without big loss of sorption capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Studies of solid-state electrochromic devices based on Peo/siliceous hybrids doped with lithium perchlorate

    International Nuclear Information System (INIS)

    Barbosa, P.C.; Silva, M.M.; Smith, M.J.; Goncalves, A.; Fortunato, E.

    2007-01-01

    Sol-gel hybrid organic-inorganic networks, doped with a lithium salt, have been used as electrolytes in prototype smart windows. The work described in this presentation is focused on the application of these networks as dual-function electrolyte/adhesive components in solid-state electrochromic devices. The performance of multi-layer electrochromic devices was characterized as a function of the choice of precursor used to prepare the polymer electrolyte component and the guest salt concentration. The prototype devices exhibited good open-circuit memory, coloration efficiency, optical contrast and stability

  1. Synthesis and characterization of TiO2/Ag/polymer ternary nanoparticles via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Park, Jung Tae; Koh, Joo Hwan; Seo, Jin Ah; Cho, Yong Soo; Kim, Jong Hak

    2011-01-01

    We report on the novel ternary hybrid materials consisting of semiconductor (TiO 2 ), metal (Ag) and polymer (poly(oxyethylene methacrylate) (POEM)). First, a hydrophilic polymer, i.e. POEM, was grafted from TiO 2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. These TiO 2 -POEM brush nanoparticles were used to template the formation of Ag nanoparticles by introduction of a AgCF 3 SO 3 precursor and a NaBH 4 aqueous solution for reduction process. Successful grafting of polymeric chains from the surface of TiO 2 nanoparticles and the in situ formation of Ag nanoparticles within the polymeric chains were confirmed using transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). FT-IR spectroscopy also revealed the specific interaction of Ag nanoparticles with the C=O groups of POEM brushes. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the semiconductor, producing ternary hybrid inorganic-organic nanomaterials.

  2. Functionalised hybrid materials of conducting polymers with individual wool fibers.

    Science.gov (United States)

    Kelly, Fern M; Johnston, James H; Borrmann, Thomas; Richardson, Michael J

    2008-04-01

    Composites of natural protein materials, such as merino wool, with the conducting polymers polypyrrole (PPy) and polyaniline (PAn) have been successfully synthesised. In doing so, hybrid materials have been produced in which the mechanical strength and flexibility of the fibers is retained whilst also incorporating the desired chemical and electrical properties of the polymer. Scanning electron microscopy shows PPy coatings to comprise individual polymer spheres, approximately 100 to 150 nm in diameter. The average size of the polymer spheres of PAn was observed to be approximately 50 to 100 nm in diameter. These spheres fuse together in a continuous sheet to coat the fibers in their entirety. The reduction of silver ions to silver metal nanoparticles onto the redox active polymer surface has also been successful and thus imparts anti-microbial properties to the hybrid materials. This gives rise to further applications requiring the inhibition of microbial growth. The chemical and physical characterisation of such products has been undertaken through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrical conductivity, cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and the testing of their anti-microbial activity.

  3. Chromate-free Hybrid Coating for Corrosion Protection of Electrogalvanized Steel Sheets

    International Nuclear Information System (INIS)

    Jo, Duhwan; Kwon, Moonjae; Kim, Jongsang

    2012-01-01

    Both electrogalvanized and hot-dip galvanized steel sheets have been finally produced via organic-inorganic surface coating process on the zinc surface to enhance corrosion resistance and afford additional functional properties. Recently, POSCO has been developed a variety of chromate-free coated steels that are widely used in household, construction and automotive applications. New organic-inorganic hybrid coating solutions as chromate alternatives are comprised of surface modified silicate with silane coupling agent and inorganic corrosion inhibitors as an aqueous formulation. In this paper we have prepared new type of hybrid coatings and evaluated quality performances such as corrosion resistance, spot weldability, thermal tolerance, and paint adhesion property etc. The electrogalvanized steels with these coating solutions exhibit good anti-corrosion property compared to those of chromate coated steels. Detailed components composition of coating solutions and experimental results suggest that strong binding between organic-inorganic hybrid coating layer and zinc surface plays a key role in the advanced quality performances

  4. Nanostructured films of inorganic-organic hybrid materials for application in photovoltaics; Nanostrukturierte Filme aus anorganisch-organischen Hybridmaterialien fuer die Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Perlich, Jan

    2009-06-25

    Nanostructured thin films of crystalline TiO{sub 2} for applications in photovoltaics were studied. The fabrication of the thin films is based on a hybrid approach. The anorganic metal oxide prepared via a sol-gel synthesis is structurated by the template properties of the applied organic block-copolymer. Via the film epitaxy by means of centrifugal coating first hybrid films (polymer-nanocomposite films) were fabricated, which were changed by calcination into crystalline TiO{sub 2} films with taylored morphology. The successful development of novel preparation approaches to the adaption to consisting conditions in the application field of photovoltaics contains a route to the fine-tuning of the morphology as well as the fabrication of hierarchical morphologies in different configurations. The structural study of the single nanostructurated TiO{sub 2} films up to the functional multilayer arrangement as photovoltaic demonstration cell was performed with conventionally imaging methods, as for instance scanning force microscopy and electron microscopy as well as the special small-angle X-ray scattering method under rigid incident angle (GISAXS). [German] Es wurden nanostrukturierte duenne Filme aus kristallinem TiO{sub 2} fuer Anwendungen in der Photovoltaik untersucht. Die Herstellung der duennen Filme basiert auf einem Hybridansatz. Das ueber eine Sol-Gel-Synthese bereitgestellte anorganische Metalloxid wird durch die Template-Eigenschaften des eingesetzten organischen Block-Copolymers strukturiert. Ueber die Filmaufbringung mittels Schleuderbeschichtung wurden zunaechst Hybridfilme (Polymer-Nanokompositfilme) hergestellt, die durch Kalzinierung in kristalline TiO{sub 2}-Filme mit massgeschneiderter Morphologie umgewandelt werden. Die erfolgreiche Entwicklung von neuartigen Praeparationsansaetzen zur Adaption an bestehende Gegebenheiten im Anwendungsgebiet der Photovoltaik beinhaltet eine Route zur Feineinstellung der Morphologie sowie die Herstellung von

  5. High mobility solution-processed hybrid light emitting transistors

    International Nuclear Information System (INIS)

    Walker, Bright; Kim, Jin Young; Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B.; Chae, Gil Jo; Cho, Shinuk; Seo, Jung Hwa

    2014-01-01

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm 2 /V s, current on/off ratios of >10 7 , and external quantum efficiency of 10 −2 % at 2100 cd/m 2 . These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective

  6. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO2 Hybrid Materials Synthesized via Sol-Gel Technique

    Directory of Open Access Journals (Sweden)

    Michelina Catauro

    2017-10-01

    Full Text Available Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic–inorganic hybrids. Among those, poly(e-caprolactone/zirconia (PCL/ZrO2 hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO2 hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO2 hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones enhance cell proliferation when compared to pure ZrO2 by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO2 hybrids differently supports cell proliferation suggests that PCL/ZrO2 hybrids could be useful tools with different potential clinical applications.

  7. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO2 Hybrid Materials Synthesized via Sol-Gel Technique

    Science.gov (United States)

    Tranquillo, Elisabetta; Illiano, Michela; Sapio, Luigi; Spina, Annamaria; Naviglio, Silvio

    2017-01-01

    Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic–inorganic hybrids. Among those, poly(e-caprolactone)/zirconia (PCL/ZrO2) hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO2 hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO2 hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones) enhance cell proliferation when compared to pure ZrO2 by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO2 hybrids differently supports cell proliferation suggests that PCL/ZrO2 hybrids could be useful tools with different potential clinical applications. PMID:29039803

  8. Electron-Rotor Interaction in Organic-Inorganic Lead Iodide Perovskites Discovered by Isotope Effects.

    Science.gov (United States)

    Gong, Jue; Yang, Mengjin; Ma, Xiangchao; Schaller, Richard D; Liu, Gang; Kong, Lingping; Yang, Ye; Beard, Matthew C; Lesslie, Michael; Dai, Ying; Huang, Baibiao; Zhu, Kai; Xu, Tao

    2016-08-04

    We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA(+)) have little impact on carrier lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA(+). Polaron model elucidates the electron-rotor interaction.

  9. Synthesis, structure and optical limiting effect of a novel inorganic-organic hybrid polymer containing mixed chains of copper(I)/iodine

    International Nuclear Information System (INIS)

    Li Haohong; Chen Zhirong; Li Junqian; Zhan Hongbing; Zhang Wenxuan; Huang Changcang; Ma Cheng; Zhao Bin

    2006-01-01

    In this paper, treatment of N-ethyl-benzo[f]quinolium (ebq) iodide and CuI with excess KI afforded an unusual coordination polymer [(ebq) 2 (Cu 3 I 4 )(CuI 2 )] n (1). 1 crystallizes in tetragonal system, space group P4(2)bc with cell parameters of a=23.2040(6)A, c=6.7393(3)A, V=3628.6(2)A 3 , Z=8, D c =2.622g/c 3 , R 1 =0.0447 and wR 2 =0.0974. A highly interesting feature of 1 is its presence of mixed types of chains [(Cu 3 I 4 ) n - and (CuI 2 ) n - chain] in one crystal lattice based on supramolecular self-assembly directed by cations. The infinite chains (Cu 3 I 4 ) n - and (CuI 2 ) n - in 1 could be described as the edge-sharing arrangement of CuI 4 tetrahedron. Furthermore, IR, EA, UV-Vis, thermal analysis and optical limiting measurements were adopted to characterize polymer 1. The optical limiting experiment shows that the present polymer exhibits a large optical limiting capacity

  10. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, Michiel

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  11. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  12. Review on Polymers for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Mario Culebras

    2014-09-01

    Full Text Available In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3–4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

  13. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    Science.gov (United States)

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD

  14. Growth and optical, magnetic and transport properties of (C4H9NH3)2MCl4 organic-inorganic hybrid films (M = Cu, Sn)

    Science.gov (United States)

    Aruta, C.; Licci, F.; Zappettini, A.; Bolzoni, F.; Rastelli, F.; Ferro, P.; Besagni, T.

    2005-10-01

    Films of (C4H9NH3)2MCl4 (M=Cu and Sn) organic-inorganic hybrid perovskites have been deposited in-situ by a single-source thermal ablation technique on glassy, crystalline and polymeric substrates. Independently of the substrate, the films were well crystallized, c-axis oriented and with a narrow rocking curve of the (0010) reflection (full width at half maximum photoluminescence spectra of typical (C4H9NH3)2SnCl4 films at 12 K had a broad yellow band, which did not correspond to any significant peak in the absorption spectrum. The films were semiconducting down to 250 K or, in the case of the best samples, down to 200 K and became insulating at lower temperature. The resistivity of the best films was (5±1) 104 Ω cm at 300 K, and the energy gap was 1.11 eV.

  15. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  16. Understanding the Slow Transient Optoelectronic Response of Hybrid Organic-Inorganic Halide Perovskites

    Science.gov (United States)

    Jacobs, Daniel Louis

    Hybrid organic-inorganic halide perovskites, particularly methylammonium lead triiodide (MAPbI3), have emerged within the past decade as an exciting class of photovoltaic materials. In less than ten years, MAPbI3-based photovoltaic devices have seen unprecedented performance growth, with photoconversion efficiency increasing from 3% to over 22%, making it competitive with traditional high-efficiency solar cells. Furthermore, the fabrication of MAPbI3 devices utilize low-temperature solution processing, which could facilitate ultra low cost manufacturing. However, MAPbI3 suffers from significant instabilities under working conditions that have limited their applications outside of the laboratory. The instability of the MAPbI3 material can be generalized as a complex, slow transient optoelectronic response (STOR). The mechanism of the generalized STOR is dependent on the native defects of MAPbI3, but detailed understanding of the material defect properties is complicated by the complex ionic bonding of MAPbI3. Furthermore, characterization of the intrinsic material's response is complicated by the diverse approach to material processing and device architecture across laboratories around the world. In order to understand and mitigate the significant problems of MAPbI3 devices, a new approach focused on the material response, rather than the full device response, must be pursued. This dissertation highlights the work to analyze and mitigate the STOR intrinsic to MAPbI3. An experimental platform was developed based on lateral interdigitated electrode (IDE) arrays capable of monitoring the current and photoluminescence response simultaneously. By correlating the dynamics of the current and photoluminescence (PL) responses, both charge trapping and ion migration mechanisms were identified to contribute to the STOR. Next, a novel fabrication technique is introduced that is capable of reliably depositing MAPbI3 thin films with grain sizes at least an order of magnitude

  17. Inorganic-organic Ag-rhodamine 6G hybrid nanorods: "turn on" fluorescent sensors for highly selective detection of Pb2+ ions in aqueous solution.

    Science.gov (United States)

    Tyagi, A K; Ramkumar, Jayshree; Jayakumar, O D

    2012-02-07

    Lead metal ions are of great concern and the monitoring of their concentration in the environment has become extremely important. In the present study, a new inorganic-organic hybrid assay of Ag nanorods (AgNR)-Rhodamine 6G (R6G) was developed for the sensitive and selective determination of Pb(2+) ions in aqueous solutions. To the best of our knowledge there is almost no literature on the use of silver nanorod sensors for determination of lead ions in aqueous solutions. The sensor is developed by the coating of R6G on the surface of AgNRs. The sensing is based on the photoluminescence of R6G. The sensor was rapid as the measurements were carried out within 3 min of addition of the test solution to the AgNR-R6G hybrid. Moreover, the system showed excellent stability at tested concentration levels of Pb(2+) ions. The naked eye detection of the colour was possible with 1 mg L(-1) of Pb(2+) ions. The present method has a detection limit of 50 μg L(-1) of Pb(2+) (for a signal/noise (S/N) ratio > 3). The selectivity toward Pb(2+) ions against other metal ions was improved using chelating agents. The proposed method was validated by analysis using different techniques.

  18. Thermal behavior of novel hybrid inorganic-organic phosphazene polymers

    NARCIS (Netherlands)

    Bosscher, G; Wieringa, RH; Jekel, AP; vandeGrampel, JC

    The thermal behavior of the following systems have been investigated by TGA and XPS: the homopolymer of N3P3Cl4(CH3)(CH2C6H4CH=CH2) (1), copolymers of 1 with MMA and styrene, and copolymers of N3P3Cl4(i-C3H7) {C[OC(O)CH3]=CH2} (2) with MMA and styrene. Upon heating under TGA conditions the highest

  19. Hybrid metal grid-polymer-carbon nanotube electrodes for high luminance organic light emitting diodes

    International Nuclear Information System (INIS)

    Sam, F Laurent M; Dabera, G Dinesha M R; Lai, Khue T; Mills, Christopher A; Rozanski, Lynn J; Silva, S Ravi P

    2014-01-01

    Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m −2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m −2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed. (paper)

  20. Influence of Organic and Inorganic Sources of Fertilizer on Growth ...

    African Journals Online (AJOL)

    Influence of Organic and Inorganic Sources of Fertilizer on Growth and Leaf Yield of Kale ... Journal of Agriculture, Science and Technology ... fertilizer gave leaf yields comparable to those applied with exclusively inorganic sources of fertilizer.