WorldWideScience

Sample records for hybrid optical computing

  1. Universal quantum computation using all-optical hybrid encoding

    Institute of Scientific and Technical Information of China (English)

    郭奇; 程留永; 王洪福; 张寿

    2015-01-01

    By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing.

  2. All-optical quantum computing with a hybrid solid-state processing unit

    CERN Document Server

    Pei, Pei; Li, Chong

    2011-01-01

    We develop an architecture of hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have prominent advantage of the insensitivity to dissipation process due to the virtual excitation of subsystems. Moreover, the QND measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid systems can merge and be integrated into one quantum processor afterwards.

  3. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  4. Optical computer motherboards

    Science.gov (United States)

    Jannson, Tomasz P.; Xu, Guoda; Bartha, John M.; Gruntman, Michael A.

    1997-09-01

    In this paper, we investigate the application of precision plastic optics into a communication/computer sub-system, such as a hybrid computer motherboard. We believe that using optical waveguides for next-generation computer motherboards can provide a high performance alternative for present multi-layer printed circuit motherboards. In response to this demand, we suggest our novel concept of a hybrid motherboard based on an internal-fiber-coupling (IFC) wavelength-division-multiplexing (WDM) optical backplane. The IFC/WDM backplane provides dedicated Tx/Rx connections, and applies low-cost, high-performance components, including CD LDs, GRIN plastic fibers, molding housing, and nonimaging optics connectors. Preliminary motherboard parameters are: speed 100 MHz/100 m, or 1 GHz/10 m; fiber loss approximately 0.01 dB/m; almost zero fan-out/fan-in optical power loss, and eight standard wavelength channels. The proposed hybrid computer motherboard, based on innovative optical backplane technology, should solve low-speed, low-parallelism bottlenecks in present electric computer motherboards.

  5. Computer Tomography and Hybrid Optical/Digital Methods for Aerodynamic Measurements.

    Science.gov (United States)

    1987-12-28

    on a separate optical table. This system included a mirror mounted on a piezo-electric crystal with a feedback control system for varying the phase by...Pontificia Universidad Catolica de Chile. Escuela de Ingenieria . Santiago, equal. The optical path length difference (OPD) be- Chile. tween the two rays...manufacturing, defense and energy research requires a precise control of the laser output: spatial, spectral, temporal, energy and power. Ability to

  6. Optical Quantum Computing

    National Research Council Canada - National Science Library

    Jeremy L. O'Brien

    2007-01-01

    In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors...

  7. Ternary optical computer principle

    Institute of Scientific and Technical Information of China (English)

    金翊; 何华灿; 吕养天

    2003-01-01

    The fundamental principle and the characteristics of ternary optical computer, using horizontal polarized light, vertical polarized light and no-intensity to express information, are propounded in thispaper. The practicability to make key parts of the ternary optical computer from modern micro or integrated optical devices, opto-electronic and electro-photonic elements is discussed. The principle can be applied in three-state optical fiber communication via horizontal and vertical polarized light.

  8. Hybridity in Embedded Computing Systems

    Institute of Scientific and Technical Information of China (English)

    虞慧群; 孙永强

    1996-01-01

    An embedded system is a system that computer is used as a component in a larger device.In this paper,we study hybridity in embedded systems and present an interval based temporal logic to express and reason about hybrid properties of such kind of systems.

  9. Hybrid Optical Inference Machines

    Science.gov (United States)

    1991-09-27

    imaging. A PC controlled data acquistion system with digital to analog-output was setup with serial- 66 - I controlled linear translation and rotation...rules in Eq. (4) of specific conclusions which are logica ,, .ferred form-the knowledge base. from the facts and rules in response to the queries. In...error rates, digital S 0ucries Conclusions optical signals (binary intensity levels) are assumed for all input and output signals in the optical

  10. Optical quantum computing.

    Science.gov (United States)

    O'Brien, Jeremy L

    2007-12-07

    In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high-efficiency single-photon detectors, and low-loss interfacing of these components.

  11. Computational optical biopsy

    Directory of Open Access Journals (Sweden)

    Jiang Ming

    2005-06-01

    Full Text Available Abstract Optical molecular imaging is based on fluorescence or bioluminescence, and hindered by photon scattering in the tissue, especially in patient studies. Here we propose a computational optical biopsy (COB approach to localize and quantify a light source deep inside a subject. In contrast to existing optical biopsy techniques, our scheme is to collect optical signals directly from a region of interest along one or multiple biopsy paths in a subject, and then compute features of an underlying light source distribution. In this paper, we formulate this inverse problem in the framework of diffusion approximation, demonstrate the solution uniqueness properties in two representative configurations, and obtain analytic solutions for reconstruction of both optical properties and source parameters.

  12. Advanced Hybrid Computer Systems. Software Technology.

    Science.gov (United States)

    This software technology final report evaluates advances made in Advanced Hybrid Computer System software technology . The report describes what...automatic patching software is available as well as which analog/hybrid programming languages would be most feasible for the Advanced Hybrid Computer...compiler software . The problem of how software would interface with the hybrid system is also presented.

  13. An Optical Tri-valued Computing System

    Directory of Open Access Journals (Sweden)

    Junjie Peng

    2014-03-01

    Full Text Available A new optical computing experimental system is presented. Designed based on tri-valued logic, the system is built as a photoelectric hybrid computer system which is much advantageous over its electronic counterparts. Say, the tri-valued logic of the system guarantees that it is more powerful in information processing than that of systems with binary logic. And the optical characteristic of the system makes it be much capable in huge data processing than that of the electronic computers. The optical computing system includes two parts, electronic part and optical part. The electronic part consists of a PC and two embedded systems which are used for data input/output, monitor, synchronous control, user data combination and separation and so on. The optical part includes three components. They are optical encoder, logic calculator and decoder. It mainly answers for encoding the users' requests into tri-valued optical information, computing and processing the requests, decoding the tri-valued optical information to binary electronic information and so forth. Experiment results show that the system is quite right in optical information processing which demonstrates the feasibility and correctness of the optical computing system.

  14. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    OpenAIRE

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  15. Nonlinear optics quantum computing with circuit QED.

    Science.gov (United States)

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  16. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  17. All-Optical Reversible Hybrid New Gate using TOAD

    Directory of Open Access Journals (Sweden)

    Goutam Kumar Maity

    2014-03-01

    Full Text Available Reversible logic is emerged as a promising computing paradigm with applications in low-power CMOS, quantum computing, optical computing and nanotechnology. Optical logic gates become potential component to work at macroscopic (light pulses carry information, or quantum (single photon carries information levels with high efficiency. In this paper, we propose a novel scheme of Hybrid new gate realization in all-optical domain. Simulation results verify the functionality of the gate as well as reversibility. Approximate insertion power loss in dB is also reported for the Gaussian incident and control pulse.

  18. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  19. Hybrid soft computing approaches research and applications

    CERN Document Server

    Dutta, Paramartha; Chakraborty, Susanta

    2016-01-01

    The book provides a platform for dealing with the flaws and failings of the soft computing paradigm through different manifestations. The different chapters highlight the necessity of the hybrid soft computing methodology in general with emphasis on several application perspectives in particular. Typical examples include (a) Study of Economic Load Dispatch by Various Hybrid Optimization Techniques, (b) An Application of Color Magnetic Resonance Brain Image Segmentation by ParaOptiMUSIG activation Function, (c) Hybrid Rough-PSO Approach in Remote Sensing Imagery Analysis,  (d) A Study and Analysis of Hybrid Intelligent Techniques for Breast Cancer Detection using Breast Thermograms, and (e) Hybridization of 2D-3D Images for Human Face Recognition. The elaborate findings of the chapters enhance the exhibition of the hybrid soft computing paradigm in the field of intelligent computing.

  20. Checkpointing for a hybrid computing node

    Energy Technology Data Exchange (ETDEWEB)

    Cher, Chen-Yong

    2016-03-08

    According to an aspect, a method for checkpointing in a hybrid computing node includes executing a task in a processing accelerator of the hybrid computing node. A checkpoint is created in a local memory of the processing accelerator. The checkpoint includes state data to restart execution of the task in the processing accelerator upon a restart operation. Execution of the task is resumed in the processing accelerator after creating the checkpoint. The state data of the checkpoint are transferred from the processing accelerator to a main processor of the hybrid computing node while the processing accelerator is executing the task.

  1. Reachability computation for hybrid systems with Ariadne

    NARCIS (Netherlands)

    L. Benvenuti; D. Bresolin; A. Casagrande; P.J. Collins (Pieter); A. Ferrari; E. Mazzi; T. Villa; A. Sangiovanni-Vincentelli

    2008-01-01

    htmlabstractAriadne is an in-progress open environment to design algorithms for computing with hybrid automata, that relies on a rigorous computable analysis theory to represent geometric objects, in order to achieve provable approximation bounds along the computations. In this paper we discuss the

  2. Computer code for intraply hybrid composite design

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A computer program has been developed and is described herein for intraply hybrid composite design (INHYD). The program includes several composite micromechanics theories, intraply hybrid composite theories and a hygrothermomechanical theory. These theories provide INHYD with considerable flexibility and capability which the user can exercise through several available options. Key features and capabilities of INHYD are illustrated through selected samples.

  3. Optics and Symbolic Computing

    Science.gov (United States)

    1988-03-31

    28, No. 10, 795 "- 979v 5. 6. A. Huang and S. Knauer, Starlite : A Wideband Digital Switch, Proc. IEEE Global Telecommunications Conference, Atlanta...4 31 : .-. I ?4 2A 8. A. Huang, The Relationship Between STARLITE , a Wideband Digital Switch and Optics, Proc. International Conference on...34 Applied Optics, voL 27, No. 2, pp. 202-203 (1988). [10] A. Huang. "The relationship between STARLITE . a wideband digital switch and optics". Proceedings of

  4. Hybrid materials for optics and photonics.

    Science.gov (United States)

    Lebeau, Benedicte; Innocenzi, Plinio

    2011-02-01

    The interest in organic-inorganic hybrids as materials for optics and photonics started more than 25 years ago and since then has known a continuous and strong growth. The high versatility of sol-gel processing offers a wide range of possibilities to design tailor-made materials in terms of structure, texture, functionality, properties and shape modelling. From the first hybrid material with optical functional properties that has been obtained by incorporation of an organic dye in a silica matrix, the research in the field has quickly evolved towards more sophisticated systems, such as multifunctional and/or multicomponent materials, nanoscale and self-assembled hybrids and devices for integrated optics. In the present critical review, we have focused our attention on three main research areas: passive and active optical hybrid sol-gel materials, and integrated optics. This is far from exhaustive but enough to give an overview of the huge potential of these materials in photonics and optics (254 references).

  5. Universal blind quantum computation for hybrid system

    Science.gov (United States)

    Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang

    2017-08-01

    As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.

  6. Accuracy Enhancement in Optical Computing

    Science.gov (United States)

    1993-03-25

    optical matrix-vector multiplier (OMVM). Redundant information can be introduced into the matriz : by increasinq the row dimcnsion of tlie matrix. The...Analog Devices for Optical Computing", LEOS, Boston , MA., November 1992. Papers Submitted to Major Professional Meetings 1. S. A. Ellett, J. F. Walkup

  7. Hybrid optical antennas with photonic resistors.

    Science.gov (United States)

    Butakov, N A; Schuller, J A

    2015-11-16

    Hybrid optical antennas, comprising active materials placed in the gaps of plasmonic split-ring-resonators and nano-dimers, have been the subject of numerous recent investigations. Engineered coupling between the two plasmonic resonators is achieved by modulating the active material, enabling control over the near- and far-field electromagnetic properties. Here, using electromagnetics calculations, we study the evolving optical response of a hybrid metal-semiconductor-metal nanorod antenna as the semiconductor free charge carrier density is continuously varied. In particular, we demonstrate qualitatively new behavior arising from epsilon-near-zero properties in intermediately doped semiconductors. In agreement with optical nano-circuit theory, we show that in the epsilon-near-zero regime such a load acts as an ideal optical resistor with an optimized damping response and strongly suppressed electromagnetic scattering. In periodic arrays, or metasurfaces, we then show how to use these effects to construct high-efficiency nanophotonic intensity modulators for dynamically shaping light.

  8. Optical technologies for computational intelligence

    Science.gov (United States)

    Pavlov, Alexander V.

    2001-11-01

    Optics has a number of deep analogies with main principles of Computational Intelligence. We can see strong analogies between basic optical phenomena, used in Fourier-holography, and mathematical foundations of Fuzzy Set Theory. Also, analogies between optical holography technique and principles of Neural Networks Paradigm can be seen. Progress in new holographic recording media with self-developing property leads to Evolutionary Computations holographic realization. Based on these analogies we review holographic techniques from two points of view: Fuzzy Logic and Fuzzy relations.

  9. Hybrid optical acoustic seafloor mapping

    Science.gov (United States)

    Inglis, Gabrielle

    The oceanographic research and industrial communities have a persistent demand for detailed three dimensional sea floor maps which convey both shape and texture. Such data products are used for archeology, geology, ship inspection, biology, and habitat classification. There are a variety of sensing modalities and processing techniques available to produce these maps and each have their own potential benefits and related challenges. Multibeam sonar and stereo vision are such two sensors with complementary strengths making them ideally suited for data fusion. Data fusion approaches however, have seen only limited application to underwater mapping and there are no established methods for creating hybrid, 3D reconstructions from two underwater sensing modalities. This thesis develops a processing pipeline to synthesize hybrid maps from multi-modal survey data. It is helpful to think of this processing pipeline as having two distinct phases: Navigation Refinement and Map Construction. This thesis extends existing work in underwater navigation refinement by incorporating methods which increase measurement consistency between both multibeam and camera. The result is a self consistent 3D point cloud comprised of camera and multibeam measurements. In map construction phase, a subset of the multi-modal point cloud retaining the best characteristics of each sensor is selected to be part of the final map. To quantify the desired traits of a map several characteristics of a useful map are distilled into specific criteria. The different ways that hybrid maps can address these criteria provides justification for producing them as an alternative to current methodologies. The processing pipeline implements multi-modal data fusion and outlier rejection with emphasis on different aspects of map fidelity. The resulting point cloud is evaluated in terms of how well it addresses the map criteria. The final hybrid maps retain the strengths of both sensors and show significant improvement

  10. Hybrid Systems: Computation and Control.

    Science.gov (United States)

    2007-11-02

    elbow) and a pinned first joint (shoul- der) (see Figure 2); it is termed an underactuated system since it is a mechanical system with fewer...Montreal, PQ, Canada, 1998. [10] M. W. Spong. Partial feedback linearization of underactuated mechanical systems . In Proceedings, IROS󈨢, pages 314-321...control mechanism and search for optimal combinations of control variables. Besides the nonlinear and hybrid nature of powertrain systems , hardware

  11. Pacifist's guide to optical computers

    Science.gov (United States)

    Caulfield, H. John

    1991-11-01

    Optical algebraic processors can perform complex calculations in parallel and at high speeds. However, they commonly suffer from a low analog accuracy which hinders their widespread application. Error detection and correction codes provide one technique for improving the accuracy of optical algebraic processors. The use of these codes would allow some of the errors that may occur during a computation to be detected and possibly corrected. This paper describes the results of various computer simulations of optical matrix-vector multipliers employing error-correction codes. It discusses the application of convolutional codes to optical matrix-vector multipliers along with several block codes. Both binary and nonbinary codes are not employing error-correction codes. Also, the type of noise, whether signal-independent or signal-dependent, has a significant effect on the performance of a matrix-vector multiplier employing an error code. The encoding and decoding operations required for the error codes can be performed optically.

  12. Optics and Symbolic Computing

    Science.gov (United States)

    1987-03-01

    computation. The well-structured data formats of vectors, matrices , etc. used in numeric computing give way to data structures that can change their shapes...complex circuitry, especially to emiIate and achieve capabilities typically if operacion requires uniformity over the complete associated with...function (PSF) P as a MxN matrix of rank R, then it is possible to decompose matrix P into a product of two unitary matrices and a diagonal matrix, ’ A

  13. Hybrid sol-gel optical materials

    Science.gov (United States)

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  14. Quantum Computation with Nonlinear Optics

    Science.gov (United States)

    Liu, Yang; Zhang, Wen-Hong; Zhang, Cun-Lin; Long, Gui-Lu

    2008-01-01

    We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the course of the computation; (3) It is resource efficient and conceptually simple.

  15. Quantum Computation with Nonlinear Optics

    Institute of Scientific and Technical Information of China (English)

    LU Ke; LIU Yang; LIN Zhen-Quan; ZHANG Wen-Hong; SUN Yun-Fei; ZHANG Cun-Lin; LONG Gui-Lu

    2008-01-01

    We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the courseof the computation; (3) It is resource efficient and conceptually simple.

  16. Optical printing in computer animation

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.L.; Blunden, J.A.

    1980-05-01

    The optical printer can be considered as an optical analog computer, which can perform geometric transformations and simple arithmetic operations on pictures very efficiently. The principles of operation of the printer are explained, and many of its applications to computer animation are listed and discussed briefly. Two techniques are discussed in detail: the use of high contrast masks to suppress the bright spots where two lines of different colors cross, and the use of continuous tone masks and multiple exposures to create realistic transparency at low cost.

  17. Hybrid silicon evanescent approach to optical interconnects

    OpenAIRE

    Liang, Di; Fang, Alexander W.; Chen, Hui-Wen; Sysak, Matthew N; Koch, Brian R.; Lively, Erica; Raday, Omri; Kuo, Ying-hao; Jones, Richard; Bowers, John E

    2009-01-01

    We discuss the recently developed hybrid silicon evanescent platform (HSEP), and its application as a promising candidate for optical interconnects in silicon. A number of key discrete components and a wafer-scale integration process are reviewed. The motivation behind this work is to realize silicon-based photonic integrated circuits possessing unique advantages of III–V materials and silicon-on-insulator waveguides simultaneously through a complementary metal-oxide semiconductor fabrication...

  18. Hybrid centralized pre-computing/local distributed optimization of shared disjoint-backup path approach to GMPLS optical mesh network intelligent restoration

    Science.gov (United States)

    Gong, Qian; Xu, Rong; Lin, Jintong

    2004-04-01

    Wavelength Division Multiplexed (WDM) networks that route optical connections using intelligent optical cross-connects (OXCs) is firmly established as the core constituent of next generation networks. Rapid failure recovery is fundamental to building reliable transport networks. Mesh restoration promises cost effective failure recovery compared with legacy ring networks, and is now seeing large-scale deployment. Many carriers are migrating away from SONET ring restoration for their core transport networks and replacing it with mesh restoration through "intelligent" O-E-O cross-connects (XC). The mesh restoration is typically provided via two fiber-disjoint paths: a service path and a restoration path. this scheme can restore any single link failure or node failure. And by used shared mesh restoration, although every service route is assigned a restoration route, no dedicated capacity needs to be reserved for the restoration route, resulting in capacity savings. The restoration approach we propose is Centralized Pre-computing, Local Distributed Optimization, and Shared Disjoint-backup Path. This approach combines the merits of centralized and distributed solutions. It avoids the scalability issues of centralized solutions by using a distributed control plane for disjoint service path computation and restoration path provisioning. Moreover, if the service routes of two demands are disjoint, no single failure will affect both demands simultaneously. This means that the restoration routes of these two demands can share link capacities, because these two routes will not be activated at the same time. So we can say, this restoration capacity sharing approach achieves low restoration capacity and fast restoration speed, while requiring few control plane changes.

  19. A ROBUST OPTICAL FLOW COMPUTATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a new method for robust and accurate optical flow estimation. The significance of this work is twofold. Firstly, the idea of bi-directional scheme is adopted to reduce the model error of optical flow equation, which allows the second order Taylor's expansion of optical flow equation for accurate solution without much extra computational burden; Secondly, this paper establishs a new optical flow equation based on LSCM (Local Structure Constancy Model) instead of BCM (Brightness Constancy Model), namely the optical flow equation does not act on scalar but on tensor-valued (matrix-valued) field, due to the two reason: (1) structure tensor-value contains local spatial structure information, which provides us more useable cues for computation than scalar; (2) local image structure is less sensitive to illumination variation than intensity, which weakens the disturbance of non-uniform illumination in real sequences. Qualitative and quantitative results for synthetic and real-world scenes show that the new method can produce an accurate and robust results.

  20. Hybrid Optical Switching for Data Center Networks

    Directory of Open Access Journals (Sweden)

    Matteo Fiorani

    2014-01-01

    Full Text Available Current data centers networks rely on electronic switching and point-to-point interconnects. When considering future data center requirements, these solutions will raise issues in terms of flexibility, scalability, performance, and energy consumption. For this reason several optical switched interconnects, which make use of optical switches and wavelength division multiplexing (WDM, have been recently proposed. However, the solutions proposed so far suffer from low flexibility and are not able to provide service differentiation. In this paper we introduce a novel data center network based on hybrid optical switching (HOS. HOS combines optical circuit, burst, and packet switching on the same network. In this way different data center applications can be mapped to the optical transport mechanism that best suits their traffic characteristics. Furthermore, the proposed HOS network achieves high transmission efficiency and reduced energy consumption by using two parallel optical switches. We consider the architectures of both a traditional data center network and the proposed HOS network and present a combined analytical and simulation approach for their performance and energy consumption evaluation. We demonstrate that the proposed HOS data center network achieves high performance and flexibility while considerably reducing the energy consumption of current solutions.

  1. Adaptation and hybridization in computational intelligence

    CERN Document Server

    Jr, Iztok

    2015-01-01

      This carefully edited book takes a walk through recent advances in adaptation and hybridization in the Computational Intelligence (CI) domain. It consists of ten chapters that are divided into three parts. The first part illustrates background information and provides some theoretical foundation tackling the CI domain, the second part deals with the adaptation in CI algorithms, while the third part focuses on the hybridization in CI. This book can serve as an ideal reference for researchers and students of computer science, electrical and civil engineering, economy, and natural sciences that are confronted with solving the optimization, modeling and simulation problems. It covers the recent advances in CI that encompass Nature-inspired algorithms, like Artificial Neural networks, Evolutionary Algorithms and Swarm Intelligence –based algorithms.  

  2. Lyapunov exponents computation for hybrid neurons.

    Science.gov (United States)

    Bizzarri, Federico; Brambilla, Angelo; Gajani, Giancarlo Storti

    2013-10-01

    Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.

  3. Hybrid Parallel Computation of Integration in GRACE

    CERN Document Server

    Yuasa, F; Kawabata, S; Perret-Gallix, D; Itakura, K; Hotta, Y; Okuda, M; Yuasa, Fukuko; Ishikawa, Tadashi; Kawabata, Setsuya; Perret-Gallix, Denis; Itakura, Kazuhiro; Hotta, Yukihiko; Okuda, Motoi

    2000-01-01

    With an integrated software package {\\tt GRACE}, it is possible to generate Feynman diagrams, calculate the total cross section and generate physics events automatically. We outline the hybrid method of parallel computation of the multi-dimensional integration of {\\tt GRACE}. We used {\\tt MPI} (Message Passing Interface) as the parallel library and, to improve the performance we embedded the mechanism of the dynamic load balancing. The reduction rate of the practical execution time was studied.

  4. Hybrid Nanoelectronics: Future of Computer Technology

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Ming Liu; Andrew Hsu

    2006-01-01

    Nanotechnology may well prove to be the 21st century's new wave of scientific knowledge that transforms people's lives. Nanotechnology research activities are booming around the globe. This article reviews the recent progresses made on nanoelectronic research in US and China, and introduces several novel hybrid solutions specifically useful for future computer technology. These exciting new directions will lead to many future inventions, and have a huge impact to research communities and industries.

  5. Computational Analysis of the Optical and Charge Transport Properties of Ultrasonic Spray Pyrolysis-Grown Zinc Oxide/Graphene Hybrid Structures.

    Science.gov (United States)

    Ali, Amgad Ahmed; Hashim, Abdul Manaf

    2016-12-01

    We demonstrate a systematic computational analysis of the measured optical and charge transport properties of the spray pyrolysis-grown ZnO nanostructures, i.e. nanosphere clusters (NSCs), nanorods (NRs) and nanowires (NWs) for the first time. The calculated absorbance spectra based on the time-dependent density functional theory (TD-DFT) shows very close similarity with the measured behaviours under UV light. The atomic models and energy level diagrams for the grown nanostructures were developed and discussed to explain the structural defects and band gap. The induced stresses in the lattices of ZnO NSCs that formed during the pyrolysis process seem to cause the narrowing of the gap between the energy levels. ZnO NWs and NRs show homogeneous distribution of the LUMO and HOMO orbitals all over the entire heterostructure. Such distribution contributes to the reduction of the band gap down to 2.8 eV, which has been confirmed to be in a good agreement with the experimental results. ZnO NWs and NRs exhibited better emission behaviours under the UV excitation as compared to ZnO NSCs and thin film as their visible range emissions are strongly quenched. Based on the electrochemical impedance measurement, the electrical models and electrostatic potential maps were developed to calculate the electron lifetime and to explain the mobility or diffusion behaviours in the grown nanostructure, respectively.

  6. Hybrid ion chains inside an optical cavity

    Science.gov (United States)

    Zhou, Zichao; Siverns, James; Quraishi, Qudsia

    2016-05-01

    Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.

  7. Hybrid optical antenna with high directivity gain.

    Science.gov (United States)

    Bonakdar, Alireza; Mohseni, Hooman

    2013-08-01

    Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ³/170. Despite the weak optical absorption coefficient of 2000 cm(-1) in the long infrared wavelength of ~8 μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna.

  8. Accelerating Climate Simulations Through Hybrid Computing

    Science.gov (United States)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  9. Facile Preparation of Optically Tailored Hybrid Nanocomposite

    Directory of Open Access Journals (Sweden)

    Susana Fernández de Ávila

    2014-01-01

    Full Text Available Lead sulfide nanoparticles (PbS NPs have been synthesized directly in poly[2-methoxy-5-(3′,7′-dimethyloctyloxy-1,4-phenylenevinylene] (MDMO-PPV semiconducting polymer by a simple low temperature method. Hybrid solutions with different concentrations of PbS with respect to the polymer have been prepared and characterized first in solution and then as thin film nanocomposites deposited on quartz substrates by spin coating. Quenching of photoluminescence emission is observed both in solutions and thin films when the ratio of PbS NPs increases with respect to the polymer, suggesting the occurrence of Dexter energy transfer from the polymer to the PbS NPs. Optical absorption is markedly increased for hybrid solutions compared to pure polymer. In thin nanocomposite films an enhancement of absorbance is observed with increasing PbS NPs concentration, which is more pronounced below 400 nm. The reported results could lead to the development of a method for tailoring the optical response of devices based on PbS NP-polymer nanocomposite by controlling the PbS NP concentration inside the polymer matrix.

  10. Quantum Computing: Linear Optics Implementations

    CERN Document Server

    Sundsøy, Pål

    2016-01-01

    One of the main problems that optical quantum computing has to overcome is the efficient construction of two-photon gates. Theoretically these gates can be realized using Kerr-nonlinearities, but the techniques involved are experimentally very difficult. We therefore employ linear optics with projective measurements to generate these non-linearities. The downside is that the measurement-induced nonlinearities achieved with linear optics are less versatile and the success rate can be quite low. This project is mainly the result of a literature study but also a theoretical work on the physics behind quantum optical multiports which is essential for realizing two-photon gates. By applying different postcorrection techniques we increase the probability of success in a modifed non-linear sign shift gate which is foundational for the two photon controlled-NOT gate. We prove that it's not possible to correct the states by only using a single beam splitter. We show that it might be possible to increase the probabilit...

  11. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  12. Characterisation of hybrid integrated all-optical flip-flop

    DEFF Research Database (Denmark)

    Liu, Y.; McDougall, R.; Seoane, Jorge

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given.......We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given....

  13. Optically simulated universal quantum computation

    Science.gov (United States)

    Francisco, D.; Ledesma, S.

    2008-04-01

    Recently, classical optics based systems to emulate quantum information processing have been proposed. The analogy is based on the possibility of encoding a quantum state of a system with a 2N-dimensional Hilbert space as an image in the input of an optical system. The probability amplitude of each state of a certain basis is associated with the complex amplitude of the electromagnetic field in a given slice of the laser wavefront. Temporal evolution is represented as the change of the complex amplitude of the field when the wavefront pass through a certain optical arrangement. Different modules that represent universal gates for quantum computation have been implemented. For instance, unitary operations acting on the qbits space (or U(2) gates) are represented by means of two phase plates, two spherical lenses and a phase grating in a typical image processing set up. In this work, we present CNOT gates which are emulated by means of a cube prism that splits a pair of adjacent rays incoming from the input image. As an example of application, we present an optical module that can be used to simulate the quantum teleportation process. We also show experimental results that illustrate the validity of the analogy. Although the experimental results obtained are promising and show the capability of the system for simulate the real quantum process, we must take into account that any classical simulation of quantum phenomena, has as fundamental limitation the impossibility of representing non local entanglement. In this classical context, quantum teleportation has only an illustrative interpretation.

  14. Hybrid silicon evanescent approach to optical interconnects

    Science.gov (United States)

    Liang, Di; Fang, Alexander W.; Chen, Hui-Wen; Sysak, Matthew N.; Koch, Brian R.; Lively, Erica; Raday, Omri; Kuo, Ying-Hao; Jones, Richard; Bowers, John E.

    2009-06-01

    We discuss the recently developed hybrid silicon evanescent platform (HSEP), and its application as a promising candidate for optical interconnects in silicon. A number of key discrete components and a wafer-scale integration process are reviewed. The motivation behind this work is to realize silicon-based photonic integrated circuits possessing unique advantages of III-V materials and silicon-on-insulator waveguides simultaneously through a complementary metal-oxide semiconductor fabrication process. Electrically pumped hybrid silicon distributed feedback and distributed Bragg reflector lasers with integrated hybrid silicon photodetectors are demonstrated coupled to SOI waveguides, serving as the reliable on-chip single-frequency light sources. For the external signal processing, Mach-Zehnder interferometer modulators are demonstrated, showing a resistance-capacitance-limited, 3 dB electrical bandwidth up to 8 GHz and a modulation efficiency of 1.5 V mm. The successful implementation of quantum well intermixing technique opens up the possibility to realize multiple III-V bandgaps in this platform. Sampled grating DBR devices integrated with electroabsorption modulators (EAM) are fabricated, where the bandgaps in gain, mirror, and EAM regions are 1520, 1440 and 1480 nm, respectively. The high-temperature operation characteristics of the HSEP are studied experimentally and theoretically. An overall characteristic temperature ( T 0) of 51°C, an above threshold characteristic temperature ( T 1) of 100°C, and a thermal impedance ( Z T ) of 41.8°C/W, which agrees with the theoretical prediction of 43.5°C/W, are extracted from the Fabry-Perot devices. Scaling this platform to larger dimensions is demonstrated up to 150 mm wafer diameter. A vertical outgassing channel design is developed to accomplish high-quality III-V epitaxial transfer to silicon in a timely and dimension-independent fashion.

  15. Digital optical computers at the optoelectronic computing systems center

    Science.gov (United States)

    Jordan, Harry F.

    1991-01-01

    The Digital Optical Computing Program within the National Science Foundation Engineering Research Center for Opto-electronic Computing Systems has as its specific goal research on optical computing architectures suitable for use at the highest possible speeds. The program can be targeted toward exploiting the time domain because other programs in the Center are pursuing research on parallel optical systems, exploiting optical interconnection and optical devices and materials. Using a general purpose computing architecture as the focus, we are developing design techniques, tools and architecture for operation at the speed of light limit. Experimental work is being done with the somewhat low speed components currently available but with architectures which will scale up in speed as faster devices are developed. The design algorithms and tools developed for a general purpose, stored program computer are being applied to other systems such as optimally controlled optical communication networks.

  16. An Object Detection Method Using Wavelet Optical Flow and Hybrid Linear-Nonlinear Classifier

    Directory of Open Access Journals (Sweden)

    Pengcheng Han

    2013-01-01

    Full Text Available We propose a new computational intelligence method using wavelet optical flow and hybrid linear-nonlinear classifier for object detection. With the existing optical flow methods, it is difficult to accurately estimate moving objects with diverse speeds. We propose a wavelet-based optical flow method, which uses wavelet decomposition in optical flow motion estimation. The algorithm can accurately detect moving objects with variable speeds in a scene. In addition, we use the hybrid linear-nonlinear classifier (HLNLC to classify moving objects and static background. HLNLC transforms a nonoptimal scalar variable into its likelihood ratio and uses a scalar quantity as the decision variable. This approach is appropriate for the classification of optical flow feature vectors with unequal variance matrices. The experimental results confirm that our proposed object detection method has an improved accuracy and computation efficiency over other state-of-the-art methods.

  17. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan

    2015-11-23

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  18. Computational imaging using lightweight diffractive-refractive optics.

    Science.gov (United States)

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-11-30

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  19. Quantum computation architecture using optical tweezers

    DEFF Research Database (Denmark)

    Weitenberg, Christof; Kuhr, Stefan; Mølmer, Klaus;

    2011-01-01

    We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits...... quantum computing....

  20. Optical-digital hybrid image search system in cloud environment

    Science.gov (United States)

    Ikeda, Kanami; Kodate, Kashiko; Watanabe, Eriko

    2016-09-01

    To improve the versatility and usability of optical correlators, we developed an optical-digital hybrid image search system consisting of digital servers and an optical correlator that can be used to perform image searches in the cloud environment via a web browser. This hybrid system employs a simple method to obtain correlation signals and has a distributed network design. The correlation signals are acquired by using an encoder timing signal generated by a rotating disk, and the distributed network design facilitates the replacement and combination of the digital correlation server and the optical correlator.

  1. Model of computation for Fourier optical processors

    Science.gov (United States)

    Naughton, Thomas J.

    2000-05-01

    We present a novel and simple theoretical model of computation that captures what we believe are the most important characteristics of an optical Fourier transform processor. We use this abstract model to reason about the computational properties of the physical systems it describes. We define a grammar for our model's instruction language, and use it to write algorithms for well-known filtering and correlation techniques. We also suggest suitable computational complexity measures that could be used to analyze any coherent optical information processing technique, described with the language, for efficiency. Our choice of instruction language allows us to argue that algorithms describable with this model should have optical implementations that do not require a digital electronic computer to act as a master unit. Through simulation of a well known model of computation from computer theory we investigate the general-purpose capabilities of analog optical processors.

  2. Modelling of data uncertainties on hybrid computers

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Anke (ed.)

    2016-06-15

    The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the

  3. New computation methods for geometrical optics

    CERN Document Server

    Lin, Psang Dain

    2014-01-01

    This book employs homogeneous coordinate notation to compute the first- and second-order derivative matrices of various optical quantities. It will be one of the important mathematical tools for automatic optical design. The traditional geometrical optics is based on raytracing only. It is very difficult, if possible, to compute the first- and second-order derivatives of a ray and optical path length with respect to system variables, since they are recursive functions. Consequently, current commercial software packages use a finite difference approximation methodology to estimate these derivatives for use in optical design and analysis. Furthermore, previous publications of geometrical optics use vector notation, which is comparatively awkward for computations for non-axially symmetrical systems.

  4. A fiber optic hybrid multifunctional AC voltage sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovsky, A.; Zadvornov, S. [IRE, Moscow (Russian Federation); Ryabko, M. [UFD, Moscow (Russian Federation)

    2008-07-01

    Hybrid sensors have the advantages of both electronic and optical technologies. Their sensing element is based on conventional transducers and the optical fiber is used as a transmission media for the optical signal encoded with information between the local module and the remote module. The power supply for the remote module is usually provided by a built-in photoelectric converter illuminated by the optical radiation going through the same or another optical fiber. Electro-optic hybrid sensors have been widely used because of the electrical isolation provided by optical fiber. In the conventional fiber optic voltage sensor, piezoelectric or electro-optic transducers are implemented. Processing and conditioning measurement information is a complex task in these sensors. Moreover, the considerable drawback of most of these systems is that only one parameter, usually voltage value, is measured. This paper presented a novel fiber optic hybrid sensor for alternating current voltage measurements. This instrument provides the simultaneous measurement of four parameters, notably voltage value, frequency, phase angle and the external temperature. The paper described the measurement technology of the instrument including the remote module and optical powering as well as the unique modulation algorithm. The results and conclusions were also presented. 7 refs., 4 figs.

  5. Optically induced interaction of magnetic moments in hybrid metamaterials.

    Science.gov (United States)

    Miroshnichenko, Andrey E; Luk'yanchuk, Boris; Maier, Stefan A; Kivshar, Yuri S

    2012-01-24

    We propose a novel type of hybrid metal-dielectric structures composed of silicon nanoparticles and split-ring resonators for advanced control of optically induced magnetic response. We reveal that a hybrid "metamolecule" may exhibit a strong distance-dependent magnetic interaction that may flip the magnetization orientation and support "antiferromagnetic" ordering in a hybrid metamaterial created by a periodic lattice of such metamolecules. The propagation of magnetization waves in the hybrid structures opens new ways for manipulating artificial "antiferromagnetic" ordering at high frequencies. © 2011 American Chemical Society

  6. Hybrid formulation of radiation transport in optically thick divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J.; Marandet, Y.; Bufferand, H.; Stamm, R. [PIIM, UMR 7345 Aix-Marseille Universite / CNRS, Centre de St-Jerome, Marseille (France); Reiter, D. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Juelich (Germany)

    2016-08-15

    Kinetic Monte Carlo simulations of coupled atom-radiation transport in optically thick divertor plasmas can be computationally very demanding, in particular in ITER relevant conditions or even larger devices, e.g. for power plant divertor studies. At high (∝ 10{sup 15} cm{sup -3}) atomic densities, it can be shown that sufficiently large divertors behave in certain areas like a black body near the first resonance line of hydrogen (Lyman α). This suggests that, at least in part, the use of continuum model (radiation hydrodynamics) can be sufficiently accurate, while being less time consuming. In this work, we report on the development of a hybrid model devoted to switch automatically between a kinetic and a continuum description according to the plasma conditions. Calculations of the photo-excitation rate in a homogeneous slab are performed as an illustration. The outlined hybrid concept might be also applicable to neutral atom transport, due to mathematical analogy of transport equations for neutrals and radiation. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  7. Optical Waveguides from Organic/Inorganic Hybrid Materials

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Organic/inorganic material has attracted great attentions because its importance as photonic materials. We report on our recent results on organic/inorganic hybrid sol-gel materials and optical waveguides like splitter, thermo-optic switch and micro-cavity laser.

  8. Optical Waveguides from Organic/Inorganic Hybrid Materials

    Institute of Scientific and Technical Information of China (English)

    Liying Liu; Lei Xu; Wencheng Wang

    2003-01-01

    Organic/inorganic material has attracted great attentions because its importance as photonic materials. We report on our recent results on organic/inorganic hybrid sol-gel materials and optical waveguides like splitter,thermo-optic switch and micro-cavity laser.

  9. Maze learning by a hybrid brain-computer system

    Science.gov (United States)

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-09-01

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.

  10. Software architecture for hybrid electrical/optical data center network

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    This paper presents hardware and software architecture based on Software-Defined Networking (SDN) paradigm and OpenFlow/NETCONF protocols for enabling topology management of hybrid electrical/optical switching data center networks. In particular, a development on top of SDN open-source controller...... OpenDaylight is presented to control an optical switching matrix based on Micro-Electro-Mechanical System (MEMS) technology.......This paper presents hardware and software architecture based on Software-Defined Networking (SDN) paradigm and OpenFlow/NETCONF protocols for enabling topology management of hybrid electrical/optical switching data center networks. In particular, a development on top of SDN open-source controller...

  11. Hybrid Computational Model for High-Altitude Aeroassist Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid continuum/noncontinuum computational model will be developed for analyzing the aerodynamics and heating on aeroassist vehicles. Unique features of this...

  12. Digital Potentiometer for Hybrid Computer EAI 680-PDP-8/I

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe; Olsen, Jens V.

    1974-01-01

    In this article a description is given of a 12 bit digital potentiometer for hybrid computer application. The system is composed of standard building blocks. Emphasis is laid on the development problems met and the problem solutions developed.......In this article a description is given of a 12 bit digital potentiometer for hybrid computer application. The system is composed of standard building blocks. Emphasis is laid on the development problems met and the problem solutions developed....

  13. Mapping coherence in measurement via full quantum tomography of a hybrid optical detector

    CERN Document Server

    Zhang, Lijian; Datta, Animesh; Puentes, Graciana; Lundeen, Jeff S; Jin, Xian-Min; Smith, Brian J; Plenio, Martin B; Walmsley, Ian A

    2012-01-01

    Quantum states and measurements exhibit wave-like --- continuous, or particle-like --- discrete, character. Hybrid discrete-continuous photonic systems are key to investigating fundamental quantum phenomena, generating superpositions of macroscopic states, and form essential resources for quantum-enhanced applications, e.g. entanglement distillation and quantum computation, as well as highly efficient optical telecommunications. Realizing the full potential of these hybrid systems requires quantum-optical measurements sensitive to complementary observables such as field quadrature amplitude and photon number. However, a thorough understanding of the practical performance of an optical detector interpolating between these two regions is absent. Here, we report the implementation of full quantum detector tomography, enabling the characterization of the simultaneous wave and photon-number sensitivities of quantum-optical detectors. This yields the largest parametrization to-date in quantum tomography experiments...

  14. Novel Organo-Soluble Optically Tunable Chiral Hybrid Gold Nanorods

    Science.gov (United States)

    2014-12-04

    alignment in liquid crystal media was achieved. Furthermore, 3D layer-by-layer graphene –gold nanoparticle hybrid architecture with tunable interlayer...nanoparticles which could further guide to fabricate novel nanophotonic and optical metamaterials . Figure TEM images of P8GNR in LCP. (A) Before UV...Building 3D layer-by-layer gold- graphene nanoparticle hybrid architecture with tunable interlayer distance. The ability to construct self-assembled

  15. Hybrid Ground Station Technology for RF and Optical Communication Links

    Science.gov (United States)

    Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

    2012-01-01

    To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

  16. Optically thin hybrid cavity for terahertz photo-conductive detectors

    Science.gov (United States)

    Thompson, R. J.; Siday, T.; Glass, S.; Luk, T. S.; Reno, J. L.; Brener, I.; Mitrofanov, O.

    2017-01-01

    The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

  17. Exploiting data redundancy in computational optical imaging.

    Science.gov (United States)

    Munro, Peter R T

    2015-11-30

    We present an algorithm which exploits data redundancy to make computational, coherent, optical imaging more computationally efficient. This algorithm specifically addresses the computation of how light scattered by a sample is collected and coherently detected. It is of greatest benefit in the simulation of broadband optical systems employing coherent detection, such as optical coherence tomography. Although also amenable to time-harmonic data, the algorithm is designed to be embedded within time-domain electromagnetic scattering simulators such as the psuedo-spectral and finite-difference time domain methods. We derive the algorithm in detail as well as criteria which ensure accurate execution of the algorithm. We present simulations that verify the developed algorithm and demonstrate its utility. We expect this algorithm to be important to future developments in computational imaging.

  18. Hybrid system for computing reachable workspaces for redundant manipulators

    Science.gov (United States)

    Alameldin, Tarek K.; Sobh, Tarek M.

    1991-03-01

    An efficient computation of 3D workspaces for redundant manipulators is based on a " hybrid" a!- gorithm between direct kinematics and screw theory. Direct kinematics enjoys low computational cost but needs edge detection algorithms when workspace boundaries are needed. Screw theory has exponential computational cost per workspace point but does not need edge detection. Screw theory allows computing workspace points in prespecified directions while direct kinematics does not. Applications of the algorithm are discussed.

  19. A Multimodality Hybrid Gamma-Optical Camera for Intraoperative Imaging

    Directory of Open Access Journals (Sweden)

    John E. Lees

    2017-03-01

    Full Text Available The development of low profile gamma-ray detectors has encouraged the production of small field of view (SFOV hand-held imaging devices for use at the patient bedside and in operating theatres. Early development of these SFOV cameras was focussed on a single modality—gamma ray imaging. Recently, a hybrid system—gamma plus optical imaging—has been developed. This combination of optical and gamma cameras enables high spatial resolution multi-modal imaging, giving a superimposed scintigraphic and optical image. Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as sentinel node detection. The hybrid camera concept can be extended to a multimodal detector design which can offer stereoscopic images, depth estimation of gamma-emitting sources, and simultaneous gamma and fluorescence imaging. Recent improvements to the hybrid camera have been used to produce dual-modality images in both laboratory simulations and in the clinic. Hybrid imaging of a patient who underwent thyroid scintigraphy is reported. In addition, we present data which shows that the hybrid camera concept can be extended to estimate the position and depth of radionuclide distribution within an object and also report the first combined gamma and Near-Infrared (NIR fluorescence images.

  20. Synthesis, characterizations and electro-optical properties of nonlinear optical polyimide/silica hybrid

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available Transparent Nonlinear Optical (NLO inorganic/organic (polyimide/silica hybrid composites with covalent links between the inorganic and the organic networks were prepared by the sol-gel method. The silica content in the hybrid films was varied from 0 to 22.5/wt%. The prepared PI hybrids were characterized by IR, UV-Vis, Thermogravimetric analysis (TGA, X-ray diffraction (XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. They exhibited fair good optical transparency. The SiO2 phase was well dispersed in the polymer matrix. DSC and TGA results showed that these hybrid materials had excellent thermal stability. The polymer solutions could be spin coated on the indium-tin-oxide (ITO glass to form optical quality thin films. The electro-optic coefficients (γ33 at the wavelength of 832 nm for polymer thin films poled were in the range of 19-27 pm/V.

  1. Optics in computing: introduction to the feature issue.

    Science.gov (United States)

    Drabik, T; Thienpont, H; Ishikawa, M

    2000-02-10

    This issue of Applied Optics features 21 papers that describe the implementation of optics in computer systems and applications. This feature is the eighth in a series on the application of optics in the field of computing.

  2. PDM-DPSK-MPPM hybrid modulation for multi-hop free-space optical communication

    Science.gov (United States)

    Wang, Zhuo; Shi, Wen-xiao; Wu, Peng-xia

    2016-11-01

    A hybrid polarization division multiplexed-differential phase shift keying-multipulse pulse position modulation (PDM-DPSK-MPPM) scheme for multi-hop free-space optical (FSO) communication is investigated. The analytical bit error rate ( BER) of the proposed system in Gamma-Gamma turbulence channels is derived and verified using computer simulation. The results show that both multi-hop and hybrid modulation schemes are efficient techniques to improve the performance of FSO links. Compared with the traditional binary phase shift keying (BPSK) and MPPM, the hybrid scheme can improve the bandwidth-utilization efficiency and reliability of the system. Compared with the coherent demodulation of PDM-QPSK-MPPM, the system complexity is reduced at the cost of the degradation of BER performance, which can improve the practicality of hybrid modulation technology in FSO system.

  3. Computational cameras: convergence of optics and processing.

    Science.gov (United States)

    Zhou, Changyin; Nayar, Shree K

    2011-12-01

    A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more useful visual information in the captured images, as compared with conventional cameras. In this paper, we survey computational cameras from two perspectives. First, we present a taxonomy of computational camera designs according to the coding approaches, including object side coding, pupil plane coding, sensor side coding, illumination coding, camera arrays and clusters, and unconventional imaging systems. Second, we use the abstract notion of light field representation as a general tool to describe computational camera designs, where each camera can be formulated as a projection of a high-dimensional light field to a 2-D image sensor. We show how individual optical devices transform light fields and use these transforms to illustrate how different computational camera designs (collections of optical devices) capture and encode useful visual information.

  4. Hybrid micro-/nanogels for optical sensing and intracellular imaging

    Directory of Open Access Journals (Sweden)

    Shuiqin Zhou

    2010-12-01

    Full Text Available Hybrid micro-/nanogels are playing an increasing important part in a diverse range of applications, due to their tunable dimensions, large surface area, stable interior network structure, and a very short response time. We review recent advances and challenges in the developments of hybrid micro-/nanogels toward applications for optical sensing of pH, temperature, glucose, ions, and other species as well as for intracellular imaging. Due to their unique advantages, hybrid micro-/nanogels as optical probes are attracting substantial interests for continuous monitoring of chemical parameters in complex samples such as blood and bioreactor fluids, in chemical research and industry, and in food quality control. In particular, their intracellular probing ability enables the monitoring of the biochemistry and biophysics of live cells over time and space, thus contributing to the explanation of intricate biological processes and the development of novel diagnoses. Unlike most other probes, hybrid micro-/nanogels could also combine other multiple functions into a single probe. The rational design of hybrid micro-/nanogels will not only improve the probing applications as desirable, but also implement their applications in new arenas. With ongoing rapid advances in bionanotechnology, the well-designed hybrid micro-/nanogel probes will be able to provide simultaneous sensing, imaging diagnosis, and therapy toward clinical applications.

  5. Metal-slotted hybrid optical waveguides for PCB-compatible optical interconnection.

    Science.gov (United States)

    Kim, Jin Tae; Ju, Jung Jin; Park, Suntak

    2012-04-23

    For development of electro-optical printed circuit board (PCB) systems, PCB-compatible metal-slotted hybrid optical waveguide was proposed and its optical characteristics are investigated at a wavelength of 1.31 μm. To confine light in a metallic multilayered structure, a metal film with a wide trench is inserted at the center of a dielectric medium that is sandwiched between metal films of infinite width. A circularly symmetric spot of the guided mode was measured at the center of the metal-slotted optical waveguide, which is a good agreement with the theoretical prediction by using the finite-element method. The measured propagation loss is about 1.5 dB/cm. Successful transmission of 2.5 Gbps optical signal without any distortion of the eye diagram confirms that the proposed hybrid optical waveguide holds a potential transmission line for the PCB-compatible optical interconnection.

  6. Resource-efficient linear optical quantum computation.

    Science.gov (United States)

    Browne, Daniel E; Rudolph, Terry

    2005-07-01

    We introduce a scheme for linear optics quantum computation, that makes no use of teleported gates, and requires stable interferometry over only the coherence length of the photons. We achieve a much greater degree of efficiency and a simpler implementation than previous proposals. We follow the "cluster state" measurement based quantum computational approach, and show how cluster states may be efficiently generated from pairs of maximally polarization entangled photons using linear optical elements. We demonstrate the universality and usefulness of generic parity measurements, as well as introducing the use of redundant encoding of qubits to enable utilization of destructive measurements--both features of use in a more general context.

  7. Hybrid Electro-Optically Modulated Microcombs

    CERN Document Server

    Del'Haye, Pascal; Diddams, Scott A

    2012-01-01

    Optical frequency combs based on mode-locked lasers have proven to be invaluable tools for a wide range of applications in precision spectroscopy and metrology. A novel principle of optical frequency comb generation in whispering-gallery mode microresonators ("microcombs") has been developed recently, which represents a promising route towards chip-level integration and out-of-the-lab use of these devices. Presently, two families of microcombs have been demonstrated: combs with electronically detectable mode spacing that can be directly stabilized, and broadband combs with up to octave-spanning spectra but mode spacings beyond electronic detection limits. However, it has not yet been possible to achieve these two key requirements simultaneously, as will be critical for most microcomb applications. Here we present a key step to overcome this problem by interleaving an electro-optic comb with the spectrum from a parametric microcomb. This allows, for the first time, direct control and stabilization of a microco...

  8. Computational Techniques for LED Optical Microcavities

    OpenAIRE

    García Santiago, Xavier

    2015-01-01

    The project consist on the development of numerical methods and computational techniques to model the processes of light extraction in power LED (Light-Emitting Diodes) devices. We aim at the use of complex corrugated microstructures to boost the efficiency of our current LUXEON LED products. In order to study extraction efficiency in these devices a 3D optics model of thin film micro-structures must be developed and tested. In this project we develop a numerical model for computing and st...

  9. Generalised Computability and Applications to Hybrid Systems

    DEFF Research Database (Denmark)

    Korovina, Margarita V.; Kudinov, Oleg V.

    2001-01-01

    We investigate the concept of generalised computability of operators and functionals defined on the set of continuous functions, firstly introduced in [9]. By working in the reals, with equality and without equality, we study properties of generalised computable operators and functionals. Also we...

  10. Electrochemical and Optical Evaluation of Noble Metal-and Carbon-ITO Hybrid Optically Transparent Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zudans, Imants; Paddock, Jean R.; Kuramitz, Hideki; Maghasi, Anne T.; Wansapura, Chamika M.; Conklin, Sean D.; Kaval, Necati; Shtoyko, Tanya; Monk, David J.; Bryan, Samuel A.; Hubler, Timothy L.; Richardson, John N.; Seliskar, Carl J.; Heineman, William R.

    2004-04-15

    Optically transparent hybrid electrodes were constructed by sputtering or thermally evaporating layers of varying thickness of Au, Pd, Pt, or C onto an existing conductive indium-tin oxide (ITO) layer on glass. These electrodes were characterized using UV-Vis spectroscopy and cyclic voltammetry; redox probes examined were potassium ferricyanide, tris-(2, 2'-bipyridyl)ruthenium(II) chloride, hydroquinone, and para-aminophenol (PAP). Each type of hybrid was evaluated and compared with other hybrids, as well as with bare ITO electrodes and commercially available Au, Pt, and glassy carbon disk electrodes. Our results indicated that these hybrid electrodes are reasonably robust, easy to prepare, and extend the capabilities of bare ITO surfaces with respect to the electrochemical response (especially for organic redox probes), while giving up little in the way of optical transparency. Because of these characteristics, hybrid electrodes should be especially suited to many spectroelectrochemical applications.

  11. Optical encryption with selective computational ghost imaging

    Science.gov (United States)

    Zafari, Mohammad; kheradmand, Reza; Ahmadi-Kandjani, Sohrab

    2014-10-01

    Selective computational ghost imaging (SCGI) is a technique which enables the reconstruction of an N-pixel image from N measurements or less. In this paper we propose an optical encryption method based on SCGI and experimentally demonstrate that this method has much higher security under eavesdropping and unauthorized accesses compared with previous reported methods.

  12. Topics in linear optical quantum computation

    Science.gov (United States)

    Glancy, Scott Charles

    This thesis covers several topics in optical quantum computation. A quantum computer is a computational device which is able to manipulate information by performing unitary operations on some physical system whose state can be described as a vector (or mixture of vectors) in a Hilbert space. The basic unit of information, called the qubit, is considered to be a system with two orthogonal states, which are assigned logical values of 0 and 1. Photons make excellent candidates to serve as qubits. They have little interactions with the environment. Many operations can be performed using very simple linear optical devices such as beam splitters and phase shifters. Photons can easily be processed through circuit-like networks. Operations can be performed in very short times. Photons are ideally suited for the long-distance communication of quantum information. The great difficulty in constructing an optical quantum computer is that photons naturally interact weakly with one another. This thesis first gives a brief review of two early approaches to optical quantum computation. It will describe how any discrete unitary operation can be performed using a single photon and a network of beam splitters, and how the Kerr effect can be used to construct a two photon logic gate. Second, this work provides a thorough introduction to the linear optical quantum computer developed by Knill, Laflamme, and Milburn. It then presents this author's results on the reliability of this scheme when implemented using imperfect photon detectors. This author finds that quantum computers of this sort cannot be built using current technology. Third, this dissertation describes a method for constructing a linear optical quantum computer using nearly orthogonal coherent states of light as the qubits. It shows how a universal set of logic operations can be performed, including calculations of the fidelity with which these operations may be accomplished. It discusses methods for reducing and

  13. Hybrid Optical Unobtrusive Blood Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Guangfei Zhang

    2017-07-01

    Full Text Available Blood pressure (BP is critical in diagnosing certain cardiovascular diseases such as hypertension. Some previous studies have proved that BP can be estimated by pulse transit time (PTT calculated by a pair of photoplethysmography (PPG signals at two body sites. Currently, contact PPG (cPPG and imaging PPG (iPPG are two feasible ways to obtain PPG signals. In this study, we proposed a hybrid system (called the ICPPG system employing both methods that can be implemented on a wearable device, facilitating the measurement of BP in an inconspicuous way. The feasibility of the ICPPG system was validated on a dataset with 29 subjects. It has been proved that the ICPPG system is able to estimate PTT values. Moreover, the PTT measured by the new system shows a correlation on average with BP variations for most subjects, which could facilitate a new generation of BP measurement using wearable and mobile devices.

  14. Optical neural computing for associative memories

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Ken Yuh.

    1990-01-01

    Optical techniques for implementing neural computers are presented. In particular, holographic associative memories with feedback are investigated. Characteristics of optical neurons and optical interconnections are discussed. An LCLV is used for simulating a 2-D array of approximately 160,000 optical neurons. Thermoplastic plates are used for providing holographic interconnections among these neurons. The problem of degenerate readout in holographic interconnections and the method of sampling grids to solve this problem are presented. Two optical neural networks for associative memories are implemented and demonstrated. The first one is an optical implementation of the Hopfield network. It performs the function of auto-association that recognizes 2-D images from a distorted or partially blocked input. The trade-off between distortion tolerance and discrimination capability against new images is discussed. The second optical loop is a 2-layer network with feedback. It performs the function of hetero-association, which locks the recognized input and its associated image as a stable state in the loop. In both optical loops, it is shown that the neural gain and the similarity between the input and the stored images are the main factors that determine the dynamics of the network. Neural network models for the optical loops are presented. Equations of motion for describing the dynamical behavior of the systems are derived. The reciprocal vector basis corresponding to stored images is derived. A geometrical method is then introduced which allows us to inspect the convergence property of the system. It is also shown that the main factors that determine the system dynamics are the neural gain and the initial conditions. Photorefractive holography for optical interconnections and sampling grids for volume holographic interconnections are presented.

  15. Cost Optimization Using Hybrid Evolutionary Algorithm in Cloud Computing

    Directory of Open Access Journals (Sweden)

    B. Kavitha

    2015-07-01

    Full Text Available The main aim of this research is to design the hybrid evolutionary algorithm for minimizing multiple problems of dynamic resource allocation in cloud computing. The resource allocation is one of the big problems in the distributed systems when the client wants to decrease the cost for the resource allocation for their task. In order to assign the resource for the task, the client must consider the monetary cost and computational cost. Allocation of resources by considering those two costs is difficult. To solve this problem in this study, we make the main task of client into many subtasks and we allocate resources for each subtask instead of selecting the single resource for the main task. The allocation of resources for the each subtask is completed through our proposed hybrid optimization algorithm. Here, we hybrid the Binary Particle Swarm Optimization (BPSO and Binary Cuckoo Search algorithm (BCSO by considering monetary cost and computational cost which helps to minimize the cost of the client. Finally, the experimentation is carried out and our proposed hybrid algorithm is compared with BPSO and BCSO algorithms. Also we proved the efficiency of our proposed hybrid optimization algorithm.

  16. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    Science.gov (United States)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  17. Multivariate optical computation for predictive spectroscopy.

    Science.gov (United States)

    Nelson, M P; Aust, J F; Dobrowolski, J A; Verly, P G; Myrick, M L

    1998-01-01

    A novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated using a data set from earlier work. In our approach, a regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal that is directly proportional to the chemical/physical property for which the regression vector was designed. This simple optical computational method for predictive spectroscopy is evaluated in several ways, using the example data for numeric simulation. First, we evaluate the sensitivity of the method to various types of spectroscopic errors commonly encountered and find the method to have the same susceptibilities toward error as standard methods. Second, we use propagation of errors to determine the effects of detector noise on the predictive power of the method, finding the optical computation approach to have a large multiplex advantage over conventional methods. Third, we use two different design approaches to the construction of the paired filter set for the example measurement to evaluate manufacturability, finding that adequate methods exist to design appropriate optical devices. Fourth, we numerically simulate the predictive errors introduced by design errors in the paired filters, finding that predictive errors are not increased over conventional methods. Fifth, we consider how the performance of the method is affected by light intensities that are not linearly related to chemical composition (as in transmission spectroscopy) and find that the method is only marginally affected. In summary, we conclude that many types of predictive measurements based on use of regression (or other) vectors and linear mathematics can be performed more rapidly, more effectly, and at considerably lower cost by the proposed optical computation method than by traditional dispersive or interferometric

  18. Load flow computations in hybrid transmission - distributed power systems

    NARCIS (Netherlands)

    Wobbes, E.D.; Lahaye, D.J.P.

    2013-01-01

    We interconnect transmission and distribution power systems and perform load flow computations in the hybrid network. In the largest example we managed to build, fifty copies of a distribution network consisting of fifteen nodes is connected to the UCTE study model, resulting in a system consisting

  19. Networked Operations of Hybrid Radio Optical Communications Satellites

    Science.gov (United States)

    Hylton, Alan; Raible, Daniel

    2014-01-01

    In order to address the increasing communications needs of modern equipment in space, and to address the increasing number of objects in space, NASA is demonstrating the potential capability of optical communications for both deep space and near-Earth applications. The Integrated Radio Optical Communications (iROC) is a hybrid communications system that capitalizes on the best of both the optical and RF domains while using each technology to compensate for the other's shortcomings. Specifically, the data rates of the optical links can be higher than their RF counterparts, whereas the RF links have greater link availability. The focus of this paper is twofold: to consider the operations of one or more iROC nodes from a networking point of view, and to suggest specific areas of research to further the field. We consider the utility of Disruption Tolerant Networking (DTN) and the Virtual Mission Operation Center (VMOC) model.

  20. Optical image encryption using Kronecker product and hybrid phase masks

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta

    2017-10-01

    In this paper, we propose a new technique for security enhancement in optical image encryption system. In this technique we have used the Kronecker product of two random matrices along with the double random phase encoding (DRPE) scheme in the Fresnel domain for optical image encryption. The phase masks used here are different than the random masks used in conventional DRPE scheme. These hybrid phase masks are generated by using the combination of random phase masks and a secondary image. For encryption, the input image is first randomized and then the DRPE in the Fresnel domain is performed using the hybrid phase masks. Secondly, the Kronecker product of two random matrices is multiplied with the DRPE output to get the final encoded image for transmission. The proposed technique consists of more unknown keys for enhanced security and robust against various attacks. The simulation results along with effects under various attacks are presented in support of the proposed technique.

  1. Hybrid quantum systems for enhanced nonlinear optical susceptibilities

    CERN Document Server

    Sullivan, Dennis; Kuzyk, Mark G

    2016-01-01

    Significant effort has been expended in the search for materials with ultra-fast nonlinear-optical susceptibilities, but most fall far below the fundamental limits. This work applies a theoretical materials development program that has identified a promising new hybrid made of a nanorod and a molecule. This system uses the electrostatic dipole moment of the molecule to break the symmetry of the metallic nanostructure that shifts the energy spectrum to make it optimal for a nonlinear-optical response near the fundamental limit. The structural parameters are varied to determine the ideal configuration, providing guidelines for making the best structures.

  2. Radiative transfer computations for optical beams

    CERN Document Server

    Kim, A D

    2003-01-01

    In this paper, we present a method for computing direct numerical simulations of narrow optical beam waves propagating and scattering in a plane-parallel medium. For these computations, we use Fourier and Chebyshev spectral methods for three-dimensional radiative transfer that also includes polar and azimuthal angle dependences. We treat anisotropic scattering with peaked forward scattering by using a Clenshaw-Curtis quadrature rule for the polar angle and an extended trapezoid rule for the azimuthal angle. To verify our results, we compare this spectral method to Monte Carlo simulations.

  3. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    Science.gov (United States)

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  4. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    Science.gov (United States)

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  5. Computer Modeling for Optical Waveguide Sensors.

    Science.gov (United States)

    1987-12-15

    COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and cleritify by DIock numnerl FIEL GRUP SB-GOUP Optical waveguide sensors Computer...reflection. The resultant probe beam transmission may be plotted as a function of changes in the refractive index of the surrounding fluid medium. BASIC...all angles of incidence about the critical angle ecr. It should be noted that N in equation (3) is a function of e, since = sin - l sin 8 , see

  6. Optical Linear Algebra for Computational Light Transport

    Science.gov (United States)

    O'Toole, Matthew

    Active illumination refers to optical techniques that use controllable lights and cameras to analyze the way light propagates through the world. These techniques confer many unique imaging capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering media), but at a significant cost; they often require long acquisition and processing times, rely on predictive models for light transport, and cease to function when exposed to bright ambient sunlight. We develop a mathematical framework for describing and analyzing such imaging techniques. This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant energy through an unknown environment with the so-called light transport matrix. Performing active illumination on a scene equates to applying a numerical operator on this unknown matrix. The brute-force approach to active illumination follows a two-step procedure: (1) optically measure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is infeasible in general, because the light transport matrix is often much too large to measure, store, and analyze directly. Using principles from optical linear algebra, we evaluate these matrix operators in the optical domain, without ever measuring the light transport matrix in the first place. Specifically, we explore numerical algorithms that can be implemented partially or fully with programmable optics. These optical algorithms provide solutions to many longstanding problems in computer vision and graphics, including the ability to (1) photo-realistically change the illumination conditions of a given photo with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence of complex transport properties and strong ambient illumination, and (3) overcome the multipath interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-new imaging regime---optical

  7. Computational algorithms for simulations in atmospheric optics.

    Science.gov (United States)

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.

  8. Hybrid Algorithm for Optimal Load Sharing in Grid Computing

    Directory of Open Access Journals (Sweden)

    A. Krishnan

    2012-01-01

    Full Text Available Problem statement: Grid Computing is the fast growing industry, which shares the resources in the organization in an effective manner. Resource sharing requires more optimized algorithmic structure, otherwise the waiting time and response time are increased and the resource utilization is reduced. Approach: In order to avoid such reduction in the performances of the grid system, an optimal resource sharing algorithm is required. In recent days, many load sharing technique are proposed, which provides feasibility but there are many critical issues are still present in these algorithms. Results: In this study a hybrid algorithm for optimization of load sharing is proposed. The hybrid algorithm contains two components which are Hash Table (HT and Distributed Hash Table (DHT. Conclusion: The results of the proposed study show that the hybrid algorithm will optimize the task than existing systems.

  9. Use of a hybrid computer in engineering-seismology research

    Science.gov (United States)

    Park, R.B.; Hays, W.W.

    1977-01-01

    A hybrid computer is an important tool in the seismological research conducted by the U.S. Geological Survey in support of the Energy Research and Development Administration nuclear explosion testing program at the Nevada Test Site and the U.S. Geological Survey Earthquake Hazard Reduction Program. The hybrid computer system, which employs both digital and analog computational techniques, facilitates efficient seismic data processing. Standard data processing operations include: (1) preview of dubbed magnetic tapes of data; (2) correction of data for instrument response; (3) derivation of displacement and acceleration time histories from velocity recordings; (4) extraction of peak-amplitude data; (5) digitization of time histories; (6) rotation of instrumental axes; (7) derivation of response spectra; and (8) derivation of relative transfer functions between recording sites. Catalog of time histories and response spectra of ground motion from nuclear explosions and earthquakes that have been processed by the hybrid computer are used in the Earthquake Hazard Research Program to evaluate the effects of source, propagation path, and site effects on recorded ground motion; to assess seismic risk; to predict system response; and to solve system design problems.

  10. Optical waveguides using PDMS-metal oxide hybrid nanocomposites

    Science.gov (United States)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.; Mullins, Michael E.

    2015-03-01

    Development of passive and active polymer based optical materials for high data rate waveguide routing and interconnects has gained increased attention because of their excellent properties such as low absorption, cost savings, and ease in fabrication. However, optical polymers are typically limited in the range of their refraction indices. Combining polymeric and inorganic optical materials provides advantages for as development of nano-composites with higher refractive indices with the possibility of being used as an active optical component. In this paper a new composite material is proposed based on polymer-metal oxide nano-composites for use as optical wave guiding structures and components. PDMS (Polydimethylsiloxane) is utilized for the polymer portion while the inorganic material is titanium dioxide. Refraction indices as high as 1.74 have been reported using these composites. For PDMS-TiO2 hybrids, the higher the ratio of titanium dioxide to PDMS, the higher the resulting refractive index. The index of refraction as a function of the PDMS:TiO2 ratio is reported with an emphasis on use as optical waveguide devices. Absorption spectrum of the nano-composites is measured showing low absorption at 850 nm and high absorption in the UV regime for direct UV laser/light curing. Prototype multimode waveguides are fabricated using soft imprint embossing that is compatible with the low viscosity nano-composite material. Cross dimensional shape and profile show the potential for full scale development utilizing the material set.

  11. A hybrid computational grid architecture for comparative genomics.

    Science.gov (United States)

    Singh, Aarti; Chen, Chen; Liu, Weiguo; Mitchell, Wayne; Schmidt, Bertil

    2008-03-01

    Comparative genomics provides a powerful tool for studying evolutionary changes among organisms, helping to identify genes that are conserved among species, as well as genes that give each organism its unique characteristics. However, the huge datasets involved makes this approach impractical on traditional computer architectures leading to prohibitively long runtimes. In this paper, we present a new computational grid architecture based on a hybrid computing model to significantly accelerate comparative genomics applications. The hybrid computing model consists of two types of parallelism: coarse grained and fine grained. The coarse-grained parallelism uses a volunteer computing infrastructure for job distribution, while the fine-grained parallelism uses commodity computer graphics hardware for fast sequence alignment. We present the deployment and evaluation of this approach on our grid test bed for the all-against-all comparison of microbial genomes. The results of this comparison are then used by phenotype--genotype explorer (PheGee). PheGee is a new tool that nominates candidate genes responsible for a given phenotype.

  12. TWDM-PON-AN optical backhaul solution for hybrid optical wireless networks

    Science.gov (United States)

    Naqshbandi, Fayiqa; Jha, Rakesh Kumar

    2016-10-01

    To improve the performance of broadband access networks Full Service Access Network selected Time and wavelength division multiplexed Passive Optical Network (TWDM-PON) as the primary solution for next-generation optical access (Next-Generation Passive Optical Networks 2 (NGPON2)). This paper reviews the recent progress in this access technology. Different possible solutions for the-next generation access are explained. Comparison of the different TWDM architectures experimentally demonstrated so far is made considering the large split, long reach and high capacity requirements of NGPON2. Major technical challenges in implementing the TWDM networks are discussed. Possible options for designing hybrid wireless-wireline architectures are explained taking care of the high bandwidth provided by the optical networks and high mobility of wireless networks. Also an integrated optical wireless architecture is suggested using TWDM-PON as an optical backhaul.

  13. A Hybrid Brain-Computer Interface-Based Mail Client

    Directory of Open Access Journals (Sweden)

    Tianyou Yu

    2013-01-01

    Full Text Available Brain-computer interface-based communication plays an important role in brain-computer interface (BCI applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG. With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI. An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  14. Computational simulation of intermingled-fiber hybrid composite behavior

    Science.gov (United States)

    Mital, Subodh K.; Chamis, Christos C.

    1992-01-01

    Three-dimensional finite-element analysis and a micromechanics based computer code ICAN (Integrated Composite Analyzer) are used to predict the composite properties and microstresses of a unidirectional graphite/epoxy primary composite with varying percentages of S-glass fibers used as hydridizing fibers at a total fiber volume of 0.54. The three-dimensional finite-element model used in the analyses consists of a group of nine fibers, all unidirectional, in a three-by-three unit cell array. There is generally good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite-element methods and the micromechanics equations embedded in the ICAN computer code can be used to obtain the properties of intermingled fiber hybrid composites needed for the analysis/design of hybrid composite structures. However, the finite-element model should be big enough to be able to simulate the conditions assumed in the micromechanics equations.

  15. Performance analysis of a hybrid fingerprint extracted from optical coherence tomography fingertip scans

    CSIR Research Space (South Africa)

    Darlow, Luke N

    2016-06-01

    Full Text Available International Conference on Biometrics (ICB), 13-16 June 2016, Halmstad, Sweden Performance analysis of a hybrid fingerprint extracted from optical coherence tomography fingertip scans Darlow LN Connan J Singh A ABSTRACT: The Hybrid fingerprint is a...

  16. Design of 2*6 optical hybrid in inter-satellite coherent laser communications

    Science.gov (United States)

    Xu, Nan; Liu, Liren; Liu, De'an; Wan, Lingyu; Zhou, Yu

    2008-08-01

    Compared with direct detection, homodyne binary phase shift keying receivers can achieve the best sensitivity theoretically, and became the trend of the research and application in inter-satellite coherent laser communications. In coherent optical communication systems an optical hybrid is an essential component of the receiver. It demodulates the incoming signal by mixing it with the local oscillator. We present a design of a 2*6 optical hybrid. 4 output ports of the hybrid give the narrow mixed beams of the incoming signal and the local oscillator shifted by 90°for communication, and the others give the wide mixed beams with a shifted degree of 180°for position errors detection. CCD captures the interference pattern from the wide beams, and then the pattern is processed and analyzed by the computer. Target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signals of PAT (pointing, acquisition and tracking) subsystem drive the receiver telescope to keep tracking to the target. The application extends to coherent laser rang finder.

  17. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    Science.gov (United States)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  18. The Detection of Defects in Optical Fibers Using a Hybrid Opto-electronic Correlator

    Institute of Scientific and Technical Information of China (English)

    LIU Yange; LIU Wei; ZHANG Yimo; ZHOU Ge

    2000-01-01

    A hybrid opto-electronic correlator for detecting defects in optical fibers is proposed. After the light from a He-Ne laser being expanded and filtered it is not collimated but directly passes a Fourier transform lens and illuminates a reference fiber and a test fiber at the same input plane. The Fourier transform spectrum of the two fibers is therefore obtained at the rear focal plane of the lens, where it is sampled via a CCD array connected with a computer through a frame grabber. The computer performs filter, inverse Fourier transform and setting threshold operation on classification. The system is an equivalent of joint transform correlator with a Fourier lens of long focal length. The experiment results for optical fibers having incoordinate defects are presented. The results indicate that the system can be used for fiber defect detection, and has the advantages of high identification, compact configuration, easy adjustment and flexible manipulation.

  19. Variational optical flow computation in real time.

    Science.gov (United States)

    Bruhn, Andrés; Weickert, Joachim; Feddern, Christian; Kohlberger, Timo; Schnörr, Christoph

    2005-05-01

    This paper investigates the usefulness of bidirectional multigrid methods for variational optical flow computations. Although these numerical schemes are among the fastest methods for solving equation systems, they are rarely applied in the field of computer vision. We demonstrate how to employ those numerical methods for the treatment of variational optical flow formulations and show that the efficiency of this approach even allows for real-time performance on standard PCs. As a representative for variational optic flow methods, we consider the recently introduced combined local-global method. It can be considered as a noise-robust generalization of the Horn and Schunck technique. We present a decoupled, as well as a coupled, version of the classical Gauss-Seidel solver, and we develop several multgrid implementations based on a discretization coarse grid approximation. In contrast, with standard bidirectional multigrid algorithms, we take advantage of intergrid transfer operators that allow for nondyadic grid hierarchies. As a consequence, no restrictions concerning the image size or the number of traversed levels have to be imposed. In the experimental section, we juxtapose the developed multigrid schemes and demonstrate their superior performance when compared to unidirectional multgrid methods and nonhierachical solvers. For the well-known 316 x 252 Yosemite sequence, we succeeded in computing the complete set of dense flow fields in three quarters of a second on a 3.06-GHz Pentium4 PC. This corresponds to a frame rate of 18 flow fields per second which outperforms the widely-used Gauss-Seidel method by almost three orders of magnitude.

  20. Compact Hybrid Subsystem of 16 Channel Optical Demultiplexer, 2x2 Switches, Optical Power Monitors and Control Circuit

    Institute of Scientific and Technical Information of China (English)

    Kenichiro Takahashi; Toshihiko Kishimoto; Shintaro Mouri; Youichi Hata; Hideaki Yusa; Mitsuaki Tamura; Kazuhito Saito; Hisao Maki

    2003-01-01

    A compact hybrid subsystem of 16channel optical demultiplexer, 2x2 switches, optical power monitors and control circuit board is developed. The subsystem is able to add or drop arbitrary optical channels and monitor the optical power level by software commands. The size of the subsystem is 170x200x30(mm).

  1. Accelerating Climate and Weather Simulations through Hybrid Computing

    Science.gov (United States)

    Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark

    2011-01-01

    Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.

  2. Optical high-performance computing: introduction to the JOSA A and Applied Optics feature.

    Science.gov (United States)

    Caulfield, H John; Dolev, Shlomi; Green, William M J

    2009-08-01

    The feature issues in both Applied Optics and the Journal of the Optical Society of America A focus on topics of immediate relevance to the community working in the area of optical high-performance computing.

  3. Nanostructured Fiber Optic Cantilever Arrays and Hybrid MEMS Sensors for Chemical and Biological Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advancements in nano-/micro-scale sensor fabrication and molecular recognition surfaces offer promising opportunities to develop miniaturized hybrid fiber optic and...

  4. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    National Research Council Canada - National Science Library

    Pereira, Fábio; Bernacka-Wojcik, Iwona; Ribeiro, Rita; Lobato, Maria; Fortunato, Elvira; Martins, Rodrigo; Igreja, Rui; Jorge, Pedro; Águas, Hugo; Oliva, Abel

    2016-01-01

    ...: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip...

  5. Parallel reservoir computing using optical amplifiers.

    Science.gov (United States)

    Vandoorne, Kristof; Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Bienstman, Peter

    2011-09-01

    Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

  6. Computing Temperatures in Optically Thick Protoplanetary Disks

    Science.gov (United States)

    Capuder, Lawrence F.. Jr.

    2011-01-01

    We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.

  7. Computational Study of Linear and Nonlinear Optical Properties of Single Molecules and Clusters of Organic Electro-Optic Chromophores

    Science.gov (United States)

    Garrett, Kerry

    Organic electro-optic (OEO) materials integrated into silicon-organic hybrid (SOH) devices afford significant improvements in size, weight, power, and bandwidth (SWAP) performance of integrated electronic/photonic systems critical for current and next generation telecommunication, computer, sensor, transportation, and defense technologies. Improvement in molecular first hyperpolarizability, and in turn electro-optic activity, is crucial to further improvement in the performance of SOH devices. The timely preparation of new chromophores with improved molecular first hyperpolarizability requires theoretical guidance; however, common density functional theory (DFT) methods often perform poorly for optical properties in systems with substantial intramolecular charge transfer character. The first part of this dissertation describes the careful evaluation of popular long-range correction (LC) and range-separated hybrid (RSH) density functional theory (DFT) for definition of structure/function relationships crucial for the optimization of molecular first hyperpolarizability, beta. In particular, a benchmark set of well-characterized OEO chromophores is used to compare calculated results with the corresponding experimentally measured linear and nonlinear optical properties; respectively, the wavelength of the peak one-photon absorption energy, lambdamax, and beta. A goal of this work is to systematically determine the amount of exact exchange in LC/RSH-DFT methods required for accurately computing these properties for a variety OEO chromophores. High-level electron correlation (post-Hartree-Fock) methods are also investigated and compared with DFT. Included are results for the computation of beta using second-order Moller-Plesset perturbation theory (MP2) and the double-hybrid method, B2PLYP. The second part of this work transitions from single-molecule studies to computing bulk electronic and nonlinear optical properties of molecular crystals and isotropic ensembles of a

  8. Evaluation of a Compact Hybrid Brain-Computer Interface System

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2017-01-01

    Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  9. Self-Healing Hybrid Protection Architecture for Passive Optical Networks

    Directory of Open Access Journals (Sweden)

    Waqas A. Imtiaz

    2015-08-01

    Full Text Available Expanding size of passive optical networks (PONs along with high availability expectation makes the reliability performance a crucial need. Most protection architectures utilize redundant network components to enhance network survivability, which is not economical. This paper proposes new self-healing protection architecture for passive optical networks (PONs, with a single ring topology and star-ring topology at feeder and distribution level respectively. The proposed architecture provides desirable protection to the network by avoiding fiber duplication at both feeder and distribution level. Moreover, medium access control (MAC controlled switching is utilized to provide efficient detection, and restoration of faults or cuts throughout the network. Analytical analysis reveals that the proposed self-healing hybrid protection architecture ensures survivability of the affected traffic along with desirable connection availability of 99.9994 % at minimum deployment cost, through simple architecture and simultaneous protection against failures.

  10. Hybrid electro-optical nanosystem for neurons investigation

    Science.gov (United States)

    Miu, Mihaela; Kleps, Irina; Craciunoiu, Florea; Simion, Monica; Bragaru, Adina; Ignat, Teodora

    2010-11-01

    The scope of this paper is development of a new laboratory-on-a-chip (LOC) device for biomedical studies consisting of a microfluidic system coupled to microelectronic/optical transducers with nanometric features, commonly called biosensors. The proposed device is a hybrid system with sensing element on silicon (Si) chip and microfluidic system on polydimethylsiloxane (PDMS) substrates, taking into accounts their particular advantages. Different types of nanoelectrode arrays, positioned in the reactor, have been investigated as sensitive elements for electrical detection and the recording of neuron extracellular electric activity has been monitorized in parallel with whole-cell patch-clamp membrane current. Moreover, using an additional porosification process the sensing element became efficient for optical detection also. The preliminary test results demonstrate the functionality of the proposed design and also the fabrication technology, the devices bringing advantages in terms enhancement of sensitivity in both optoelectronic detection schemes.

  11. Energy efficient hybrid computing systems using spin devices

    Science.gov (United States)

    Sharad, Mrigank

    Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.

  12. CSP: A Multifaceted Hybrid Architecture for Space Computing

    Science.gov (United States)

    Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron

    2014-01-01

    Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.

  13. Hybrid Wavelength Routed and Optical Packet Switched Ring Networks for the Metropolitan Area Network

    DEFF Research Database (Denmark)

    Nord, Martin

    2005-01-01

    Increased data traffic in the metropolitan area network calls for new network architectures. This paper evaluates optical ring architectures based on optical packet switching, wavelength routing, and hybrid combinations of the two concepts. The evaluation includes overall throughput and fairness...

  14. Silicon Carbide Lightweight Optics With Hybrid Skins for Large Cryo Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) has developed new silicon carbide (SiC) foam-based optics with hybrid skins that are composite, athermal and lightweight (FOCAL) that...

  15. Resilient backhaul network design using hybrid radio/free-space optical technology

    KAUST Repository

    Douik, Ahmed

    2016-07-26

    The radio-frequency (RF) technology is a scalable solution for the backhaul planning. However, its performance is limited in terms of data rate and latency. Free Space Optical (FSO) backhaul, on the other hand, offers a higher data rate but is sensitive to weather conditions. To combine the advantages of RF and FSO backhauls, this paper proposes a cost-efficient backhaul network using the hybrid RF/FSO technology. To ensure a resilient backhaul, the paper imposes a given degree of redundancy by connecting each node through K link-disjoint paths so as to cope with potential link failures. Hence, the network planning problem considered in this paper is the one of minimizing the total deployment cost by choosing the appropriate link type, i.e., either hybrid RF/FSO or optical fiber (OF), between each couple of base-stations while guaranteeing K link-disjoint connections, a data rate target, and a reliability threshold. The paper solves the problem using graph theory techniques. It reformulates the problem as a maximum weight clique problem in the planning graph, under a specified realistic assumption about the cost of OF and hybrid RF/FSO links. Simulation results show the cost of the different planning and suggest that the proposed heuristic solution has a close-to-optimal performance for a significant gain in computation complexity. © 2016 IEEE.

  16. Autonomic Management of Application Workflows on Hybrid Computing Infrastructure

    Directory of Open Access Journals (Sweden)

    Hyunjoo Kim

    2011-01-01

    Full Text Available In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints. The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.

  17. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    Science.gov (United States)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-04-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.

  18. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Raddo, Thiago R.; Garrido-Balsells, José María

    2016-01-01

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is ...

  19. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  20. Electric-Magneto-Optical Kerr Effect in a Hybrid Organic-Inorganic Perovskite.

    Science.gov (United States)

    Fan, Feng-Ren; Wu, Hua; Nabok, Dmitrii; Hu, Shunbo; Ren, Wei; Draxl, Claudia; Stroppa, Alessandro

    2017-09-20

    Hybrid organic-inorganic compounds attract a lot of interest for their flexible structures and multifunctional properties. For example, they can have coexisting magnetism and ferroelectricity whose possible coupling gives rise to magnetoelectricity. Here using first-principles computations, we show that, in a perovskite metal-organic framework (MOF), the magnetic and electric orders are further coupled to optical excitations, leading to an Electric tuning of the Magneto-Optical Kerr effect (EMOKE). Moreover, the Kerr angle can be switched by reversal of both ferroelectric and magnetic polarization only. The interplay between the Kerr angle and the organic-inorganic components of MOFs offers surprising unprecedented tools for engineering MOKE in complex compounds. Note that this work may be relevant to acentric magnetic systems in general, e.g., multiferroics.

  1. Computational toolbox for optical tweezers in geometrical optics

    CERN Document Server

    Callegari, Agnese; Gököz, A Burak; Volpe, Giovanni

    2014-01-01

    Optical tweezers have found widespread application in many fields, from physics to biology. Here, we explain in detail how optical forces and torques can be described within the geometrical optics approximation and we show that this approximation provides reliable results in agreement with experiments for particles whose characteristic dimensions are larger than the wavelength of the trapping light. Furthermore, we provide an object-oriented software package implemented in MatLab for the calculation of optical forces and torques in the geometrical optics regime: \\texttt{OTGO - Optical Tweezers in Geometrical Optics}. We provide all source codes for \\texttt{OTGO} as well as the documentation and code examples -- e.g., standard optical tweezers, optical tweezers with elongated particle, windmill effect, Kramers transitions between two optical traps -- necessary to enable users to effectively employ it in their research and teaching.

  2. Hybrid cloud and cluster computing paradigms for life science applications.

    Science.gov (United States)

    Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey

    2010-12-21

    Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.

  3. Computational optical sensing and imaging: introduction to feature issue.

    Science.gov (United States)

    Gerwe, David R; Harvey, Andrew; Gehm, Michael E

    2013-04-01

    The 2012 Computational Optical Sensing and Imaging (COSI) conference of the Optical Society of America was one of six colocated meetings composing the Imaging and Applied Optics Congress held in Monterey, California, 24-28 June. COSI, together with the Imaging Systems and Applications, Optical Sensors, Applied Industrial Optics, and Optical Remote Sensing of the Environment conferences, brought together a diverse group of scientists and engineers sharing a common interest in measuring and processing of information carried by optical fields. This special feature includes several papers based on presentations given at the 2012 COSI conference as well as independent contributions, which together highlight several important trends.

  4. Hybrid enabled thin film metrology using XPS and optical

    Science.gov (United States)

    Vaid, Alok; Iddawela, Givantha; Mahendrakar, Sridhar; Lenahan, Michael; Hossain, Mainul; Timoney, Padraig; Bello, Abner F.; Bozdog, Cornel; Pois, Heath; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Kang, Byung Cheol; Isbester, Paul; Sendelbach, Matthew; Yellai, Naren; Dasari, Prasad; Larson, Tom

    2016-03-01

    Complexity of process steps integration and material systems for next-generation technology nodes is reaching unprecedented levels, the appetite for higher sampling rates is on the rise, while the process window continues to shrink. Current thickness metrology specifications reach as low as 0.1A for total error budget - breathing new life into an old paradigm with lower visibility for past few metrology nodes: accuracy. Furthermore, for advance nodes there is growing demand to measure film thickness and composition on devices/product instead of surrogate planar simpler pads. Here we extend our earlier work in Hybrid Metrology to the combination of X-Ray based reference technologies (high performance) with optical high volume manufacturing (HVM) workhorse metrology (high throughput). Our stated goal is: put more "eyes" on the wafer (higher sampling) and enable move to films on pattern structure (control what matters). Examples of 1X front-end applications are used to setup and validate the benefits.

  5. Evaluation of systems and components for hybrid optical firing sets

    Energy Technology Data Exchange (ETDEWEB)

    Landry, M.J.; Rupert, J.W.; Mittas, A.

    1989-06-01

    High-energy density light appears to be a unique energy form that may be used to enhance the nuclear safety of weapon systems. Hybrid optical firing sets (HOFS) utilize the weak-link/strong-link exclusion region concept for nuclear safety; this method is similar to present systems, but uses light to transmit power across the exclusion region barrier. This report describes the assembling, operating, and testing of fourteen HOFS. These firing sets were required to charge a capacitor-discharge unit to 2.0 and 2.5 kV (100 mJ) in less than 1 s. First, we describe the components, the measurement techniques used to evaluate the components, and the different characteristics of the measured components. Second, we describe the HOFS studied, the setups used for evaluating them, and the resulting characteristics. Third, we make recommendations for improving the overall performance and suggest the best HOFS for packaging. 36 refs., 145 figs., 14 tabs.

  6. Optical computation based on nonlinear total reflectional optical switch at the interface

    Indian Academy of Sciences (India)

    Jianqi Zhang; Huan Xu

    2009-03-01

    A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.

  7. Computer assisted optical biopsy for colorectal polyps

    Science.gov (United States)

    Navarro-Avila, Fernando J.; Saint-Hill-Febles, Yadira; Renner, Janis; Klare, Peter; von Delius, Stefan; Navab, Nassir; Mateus, Diana

    2017-03-01

    We propose a method for computer-assisted optical biopsy for colorectal polyps, with the final goal of assisting the medical expert during the colonoscopy. In particular, we target the problem of automatic classification of polyp images in two classes: adenomatous vs non-adenoma. Our approach is based on recent advancements in convolutional neural networks (CNN) for image representation. In the paper, we describe and compare four different methodologies to address the binary classification task: a baseline with classical features and a Random Forest classifier, two methods based on features obtained from a pre-trained network, and finally, the end-to-end training of a CNN. With the pre-trained network, we show the feasibility of transferring a feature extraction mechanism trained on millions of natural images, to the task of classifying adenomatous polyps. We then demonstrate further performance improvements when training the CNN for our specific classification task. In our study, 776 polyp images were acquired and histologically analyzed after polyp resection. We report a performance increase of the CNN-based approaches with respect to both, the conventional engineered features and to a state-of-the-art method based on videos and 3D shape features.

  8. Physical Optics Based Computational Imaging Systems

    Science.gov (United States)

    Olivas, Stephen Joseph

    There is an ongoing demand on behalf of the consumer, medical and military industries to make lighter weight, higher resolution, wider field-of-view and extended depth-of-focus cameras. This leads to design trade-offs between performance and cost, be it size, weight, power, or expense. This has brought attention to finding new ways to extend the design space while adhering to cost constraints. Extending the functionality of an imager in order to achieve extraordinary performance is a common theme of computational imaging, a field of study which uses additional hardware along with tailored algorithms to formulate and solve inverse problems in imaging. This dissertation details four specific systems within this emerging field: a Fiber Bundle Relayed Imaging System, an Extended Depth-of-Focus Imaging System, a Platform Motion Blur Image Restoration System, and a Compressive Imaging System. The Fiber Bundle Relayed Imaging System is part of a larger project, where the work presented in this thesis was to use image processing techniques to mitigate problems inherent to fiber bundle image relay and then, form high-resolution wide field-of-view panoramas captured from multiple sensors within a custom state-of-the-art imager. The Extended Depth-of-Focus System goals were to characterize the angular and depth dependence of the PSF of a focal swept imager in order to increase the acceptably focused imaged scene depth. The goal of the Platform Motion Blur Image Restoration System was to build a system that can capture a high signal-to-noise ratio (SNR), long-exposure image which is inherently blurred while at the same time capturing motion data using additional optical sensors in order to deblur the degraded images. Lastly, the objective of the Compressive Imager was to design and build a system functionally similar to the Single Pixel Camera and use it to test new sampling methods for image generation and to characterize it against a traditional camera. These computational

  9. Performance evaluation for an optical hybrid switch with circuit queued reservations

    Science.gov (United States)

    Wong, Eric W. M.; Zukerman, Moshe

    2005-11-01

    We provide here a new loss model for an optical hybrid switch that can function as an optical burst switch or optical circuit switch or both simultaneously. We introduce the feature of circuit queued reservation. That is, if a circuit request arrives and cannot find a free wavelength, and if there are not too many requests queued for reservations, it may join a queue and wait until such wavelength becomes available. We first present an analysis based on a 3-dimension state-space Markov chain that provides exact results for the blocking probabilities of bursts and circuits. We also provide results for the proportion of circuits that are delayed and the mean delay of the circuits that are delay. Because it is difficult to exactly compute the blocking probability in realistic scenarios with a large number of wavelengths, we derive computationally scalable and accurate approximations which are based on reducing the 3-dimension state space into a single dimension. These scalable approximations that can produce performance results in a fraction of a second can readily enable switch dimensioning.

  10. Performance evaluation of an optical hybrid switch with circuit queued reservations and circuit priority preemption

    Science.gov (United States)

    Wong, Eric W. M.; Zukerman, Moshe

    2006-11-01

    We provide here a new loss model for an optical hybrid switch that can function as an optical burst switch and/or optical circuit switch. Our model is general as it considers an implementation whereby some of the circuits have preemptive priority over bursts and others are allowed to queue their reservations. We first present an analysis based on a 3-dimension state-space Markov chain that provides exact results for the blocking probabilities of bursts and circuits, the proportion of circuits that are delayed and the mean delay of the circuits that are delayed. Because it is difficult to exactly compute the blocking probability in realistic scenarios with a large number of wavelengths, we derive computationally a scalable and accurate approximations based on reducing the 3-dimension state space into a single dimension. These scalable approximations that can produce performance results in a fraction of a second can readily enable switch dimensioning. Extensive numerical results are presented to demonstrate the accuracy and the use of the new approximations.

  11. Directed assembly of hybrid nanostructures using optically resonant nanotweezers

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, David [Cornell Univ., Ithaca, NY (United States)

    2015-09-09

    This represents the final report for this project. Over the course of the project we have made significant progress in photonically driven nano-assembly including: (1) demonstrating the first direct optical tweezer based manipulation of proteins, (2) the ability to apply optical angular torques to microtubuals and other rod-shaped microparticles, (3) direct assembly of hybrid nanostructures comprising of polymeric nanoparticles and carbon nanotubes and, (4) the ability to drive biological reactions (specifically protein aggregation) that are thermodynamically unfavorable by applying localized optical work. These advancements are described in the list of papers provided in section 2.0 of the below. Summary details are provided in prior year annual reports. We have two additional papers which will be submitted shortly based on the work done under this award. An updated publication list will be provided to the program manager when those are accepted. In this report, we report on a new advancement made in the final project year, which uses the nanotweezer technology to perform direct measurements of particle-surface interactions. Briefly, these measurements are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions and current techniques are limited in their ability to measure piconewton scale interaction forces on sub-micrometer particles due to signal detection limits and thermal noise. In this project year we developed a new technique called “Nanophotonic Force Microscopy” which uses the localized region of exponentially decaying, near-field, light to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle the technique maps out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. The major advantage of the technique is that it can measure forces and energy wells below the thermal noise

  12. Computational fluid dynamics challenges for hybrid air vehicle applications

    Science.gov (United States)

    Carrin, M.; Biava, M.; Steijl, R.; Barakos, G. N.; Stewart, D.

    2017-06-01

    This paper begins by comparing turbulence models for the prediction of hybrid air vehicle (HAV) flows. A 6 : 1 prolate spheroid is employed for validation of the computational fluid dynamics (CFD) method. An analysis of turbulent quantities is presented and the Shear Stress Transport (SST) k-ω model is compared against a k-ω Explicit Algebraic Stress model (EASM) within the unsteady Reynolds-Averaged Navier-Stokes (RANS) framework. Further comparisons involve Scale Adaptative Simulation models and a local transition transport model. The results show that the flow around the vehicle at low pitch angles is sensitive to transition effects. At high pitch angles, the vortices generated on the suction side provide substantial lift augmentation and are better resolved by EASMs. The validated CFD method is employed for the flow around a shape similar to the Airlander aircraft of Hybrid Air Vehicles Ltd. The sensitivity of the transition location to the Reynolds number is demonstrated and the role of each vehicle£s component is analyzed. It was found that the ¦ns contributed the most to increase the lift and drag.

  13. "Hybrids" and the Gendering of Computing Jobs in Australia

    Directory of Open Access Journals (Sweden)

    Gillian Whitehouse

    2005-05-01

    Full Text Available This paper presents recent Australian evidence on the extent to which women are entering “hybrid” computing jobs combining technical and communication or “people management” skills, and the way these skill combinations are valued at organisational level. We draw on a survey of detailed occupational roles in large IT firms to examine the representation of women in a range of jobs consistent with the notion of “hybrid”, and analyse the discourse around these sorts of skills in a set of organisational case studies. Our research shows a traditional picture of labour market segmentation, with limited representation of women in high status jobs, and their relatively greater prevalence in more routine areas of the industry. While our case studies highlight perceptions of the need for hybrid roles and assumptions about the suitability of women for such jobs, the ongoing masculinity of core development functions appears untouched by this discourse.

  14. Optical tuning of near and far fields form hybrid dimer nanoantennas via laser-induced melting

    Science.gov (United States)

    Kolodny, Stanislav A.; Sun, Yali; Zuev, Dmitry A.; Makarov, Sergey V.; Krasnok, Alexander E.; Belov, Pavel A.

    2016-08-01

    Hybrid nanophotonics based on metal-dielectric nanostructures unifies the advantages of plasmonics and all-dielectric nanophotonics providing strong localization of light, magnetic optical response and specifically designed scattering properties. Here, we propose a new method for optical properties tuning of hybrid dimer nanoantenas via laser-induced melting at the nanoscale. We demonstrate numerically that near- and farfield properties of a hybrid nanoantenna dramatically changes with fs-laser modification of Au particle. The results lay the groundwork for the fine-tuning of hybrid nanoantennas and can be applied for effective light manipulation at the nanoscale, as well as biomedical and energy applications.

  15. Multi-carrier transmission for hybrid radio frequency with optical wireless communications

    Science.gov (United States)

    Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.

    2015-05-01

    Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.

  16. High resolution hybrid optical and acoustic sea floor maps (Invited)

    Science.gov (United States)

    Roman, C.; Inglis, G.

    2013-12-01

    This abstract presents a method for creating hybrid optical and acoustic sea floor reconstructions at centimeter scale grid resolutions with robotic vehicles. Multibeam sonar and stereo vision are two common sensing modalities with complementary strengths that are well suited for data fusion. We have recently developed an automated two stage pipeline to create such maps. The steps can be broken down as navigation refinement and map construction. During navigation refinement a graph-based optimization algorithm is used to align 3D point clouds created with both the multibeam sonar and stereo cameras. The process combats the typical growth in navigation error that has a detrimental affect on map fidelity and typically introduces artifacts at small grid sizes. During this process we are able to automatically register local point clouds created by each sensor to themselves and to each other where they overlap in a survey pattern. The process also estimates the sensor offsets, such as heading, pitch and roll, that describe how each sensor is mounted to the vehicle. The end results of the navigation step is a refined vehicle trajectory that ensures the points clouds from each sensor are consistently aligned, and the individual sensor offsets. In the mapping step, grid cells in the map are selectively populated by choosing data points from each sensor in an automated manner. The selection process is designed to pick points that preserve the best characteristics of each sensor and honor some specific map quality criteria to reduce outliers and ghosting. In general, the algorithm selects dense 3D stereo points in areas of high texture and point density. In areas where the stereo vision is poor, such as in a scene with low contrast or texture, multibeam sonar points are inserted in the map. This process is automated and results in a hybrid map populated with data from both sensors. Additional cross modality checks are made to reject outliers in a robust manner. The final

  17. Computer optics and photonics for students of laser engineering disciplines

    Science.gov (United States)

    Zakharov, V. P.

    2005-10-01

    The concept of teaching in optics and photonics for undergraduate and post-graduate students of laser engineering disciplines are discussed. The designed curriculum include as fundamental knowledge on modern mathematics, physics and computer methods as up-to-date industrial optical engineering software training. Distributed Web-server technology with Alpha cluster station background allow to support real-time training and teaching with a set of computer optical laboratories, which are used as a framework for most university special courses. Remote access to facilities of Russian Academy of Science make it possible to accumulate modern science achievements in optical education.

  18. A Self-Consistent Scheme for Optical Response of large Hybrid Networks of Semiconductor Quantum Dots and Plasmonic Metal Nanoparticles

    Science.gov (United States)

    Barbiellini, Bernardo; Hayati, L.; Lane, C.; Bansil, A.; Mosallaei, H.

    We discuss a self-consistent scheme for treating the optical response of large, hybrid networks of semiconducting quantum dots (SQDs) and plasmonic metallic nanoparticles (MNPs). Our method is efficient and scalable and becomes exact in the limiting case of weakly interacting SQDs. The self-consistent equations obtained for the steady state are analogous to the Heisenberg equations of motion for the density matrix of a SQD placed in an effective electric field computed within the discrete dipole approximation (DDA). Illustrative applications of the theory to square and honeycomb SQD, MNP and hybrid SDQ/MNP lattices as well as SQD-MNP dimers are presented. Our results demonstrate that hybrid SQD-MNP lattices can provide flexible platforms for light manipulation with tunable resonant characteristics.

  19. Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots and plasmonic metal nanoparticles

    Science.gov (United States)

    Hayati, L.; Lane, C.; Barbiellini, B.; Bansil, A.; Mosallaei, H.

    2016-06-01

    We discuss a self-consistent scheme for treating the optical response of large, hybrid networks of semiconducting quantum dots (SQDs) and plasmonic metallic nanoparticles (MNPs). Our method is efficient and scalable and becomes exact in the limiting case of weakly interacting SQDs. The self-consistent equations obtained for the steady state are analogous to the von Neumann equations of motion for the density matrix of a SQD placed in an effective electric field computed within the discrete dipole approximation. Illustrative applications of the theory to square and honeycomb SQD, MNP, and hybrid SDQ-MNP lattices as well as SQD-MNP dimers are presented. Our results demonstrate that hybrid SQD-MNP lattices can provide flexible platforms for light manipulation with tunable resonant characteristics.

  20. Design and performance evaluation of dynamic wavelength scheduled hybrid WDM/TDM PON for distributed computing applications.

    Science.gov (United States)

    Zhu, Min; Guo, Wei; Xiao, Shilin; Dong, Yi; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng

    2009-01-19

    This paper investigates the design and implementation of distributed computing applications in local area network. We propose a novel Dynamical Wavelength Scheduled Hybrid WDM/TDM Passive Optical Network, which is termed as DWS-HPON. The system is implemented by using spectrum slicing techniques of broadband light source and overlay broadcast-signaling scheme. The Time-Wavelength Co-Allocation (TWCA) Problem is defined and an effective greedy approach to this problem is presented for aggregating large files in distributed computing applications. The simulations demonstrate that the performance is improved significantly compared with the conventional TDM-over-WDM PON.

  1. A Massive Data Parallel Computational Framework for Petascale/Exascale Hybrid Computer Systems

    CERN Document Server

    Blazewicz, Marek; Diener, Peter; Koppelman, David M; Kurowski, Krzysztof; Löffler, Frank; Schnetter, Erik; Tao, Jian

    2012-01-01

    Heterogeneous systems are becoming more common on High Performance Computing (HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task to obtain optimal performance on the GPU. Approaches to simplifying this task include Merge (a library based framework for heterogeneous multi-core systems), Zippy (a framework for parallel execution of codes on multiple GPUs), BSGP (a new programming language for general purpose computation on the GPU) and CUDA-lite (an enhancement to CUDA that transforms code based on annotations). In addition, efforts are underway to improve compiler tools for automatic parallelization and optimization of affine loop nests for GPUs and for automatic translation of OpenMP parallelized codes to CUDA. In this paper we present an alternative approach: a new computational framework for the development of massively data parallel scientific codes applications suitable for use on such petascale/exascale hybrid systems built upon the highly scalable Cactus framework. As the first...

  2. Optical properties of hybrid semiconductor-metal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kreilkamp, L.E.; Pohl, M.; Akimov, I.A.; Yakovlev, D.R.; Bayer, M. [Experimentelle Physik 2, Technische Universitaet Dortmund, 44221 Dortmund (Germany); Belotelov, V.I.; Zvezdin, A.K. [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, 119992 Moscow (Russian Federation); Karczewski, G.; Wojtowicz, T. [Institute of Physics, Polish Academy of Sciences, 02668 Warsaw (Poland); Rudzinski, A.; Kahl, M. [Raith GmbH, Konrad-Adenauer-Allee 8, 44263 Dortmund (Germany)

    2012-07-01

    We study the optical properties of hybrid nanostructures comprising a semiconductor CdTe quantum well (QW) separated by a thin CdMgTe cap layer of 40 nm from a patterned gold film. The CdTe/CdMgTe QW structure with a well width of 10nm was grown by molecular beam epitaxy. The one-dimensional periodic gold films on top were made using e-beam lithography and lift-off process. The investigated structures can be considered as plasmonic crystals because the metal films attached to the semiconductor are patterned with a period in the range from 475 to 600 nm, which is comparable to the surface plasmon-polariton (SPP) wavelength. Angle dependent reflection spectra at room temperature clearly show plasmonic resonances. PL spectra taken at low temperatures of about 10 K under below- and above-barrier illumination show significant modifications compared to the unstructured QW sample. The number of emission lines and their position shift change depending on the excitation energy. The role of exciton-SPP coupling and Schottky barrier at the semiconductor-metal interface are discussed.

  3. Unified performance analysis of hybrid-ARQ with incremental redundancy over free-space optical channels

    KAUST Repository

    Zedini, Emna

    2014-09-01

    In this paper, we carry out a unified performance analysis of hybrid automatic repeat request (HARQ) with incremental redundancy (IR) from an information theoretic perspective over a point-to-point free-space optical (FSO) system. First, we introduce a novel unified expression for the distribution of a single FSO link modeled by the Gamma fading that accounts for pointing errors subject to both types of detection techniques at the receiver side (i.e. heterodyne detection and intensity modulation with direct detection (IM/DD)). Then, we provide analytical expressions for the outage probability, the average number of transmissions, and the average transmission rate for HARQ with IR, assuming a maximum number of rounds for the HARQ protocol. In our study, the communication rate per HARQ round is constant. Our analysis demonstrates the importance of HARQ in improving the performance and reliability of FSO communication systems. All the given results are verified via computer-based Monte-Carlo simulations.

  4. A novel optical beam splitter based on photonic crystal with hybrid lattices

    Institute of Scientific and Technical Information of China (English)

    Zhu Qing-Yi; Fu Yong-Qi; Hu De-Qing; Zhang Zhi-Min

    2012-01-01

    A novel optical beam splitter constructed on the basis of photonic crystal (PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams.Triangular-lattice graded-index PCs are combined for focusing each branch.Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design.The waveguide is unnecessary in the design.Thus the device has functions of both splitting and focusing beams.Size of the divided beam at site of full-width at half-maximum is of the order of λ/2.The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process.

  5. Surface plasmon-assisted optical bistability in the quantum dot-metal nanoparticle hybrid system

    Science.gov (United States)

    Bao, Chengjun; Qi, Yihong; Niu, Yueping; Gong, Shangqing

    2016-07-01

    We theoretically investigated optical bistability (OB) of a coupled excition-plasmon hybrid system in a unidirectional ring cavity. It is found that the threshold and the region of OB can be tuned by adjusting the center-center distance between the quantum dot and metal nanoparticle (MNP), the Rabi frequency of the control field and the radius of the MNP. Due to the significantly enhanced optical nonlinearity by the surface plasmon effect, the threshold of OB can be decreased greatly when the probe field is parallel to the major axis of the hybrid system. The enhanced OB may have promising applications in optical switching and optical storage.

  6. Hybrid Nonlinear Optical Materials for Applications in Power Limiting and Photorefractive Devices

    Science.gov (United States)

    2010-03-01

    Final 3. DATES COVERED (From - To) 04/01/2007 to 11/30/2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9550-07-1-0307 Hybrid Nonlinear Optical Materials for...Hybrid  Nonlinear   Optical   Materials  for Applications in Power  Limiting and Photorefractive devices      Prime Contract: FA95500710307

  7. Encoded diffractive optics for full-spectrum computational imaging

    Science.gov (United States)

    Heide, Felix; Fu, Qiang; Peng, Yifan; Heidrich, Wolfgang

    2016-09-01

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  8. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix

    2016-09-16

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  9. One-way quantum computing in the optical frequency comb.

    Science.gov (United States)

    Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier

    2008-09-26

    One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.

  10. Engineering multiphoton states for linear optics computation

    CERN Document Server

    Aniello, P; Napolitano, M; Paris, M G A; Aniello, Paolo; Lupo, Cosmo; Napolitano, Mario; Paris, Matteo G.A.

    2006-01-01

    Transformations achievable by linear optical components allow to generate the whole unitary group only when restricted to the one-photon subspace of a multimode Fock space. In this paper, we address the more general problem of encoding quantum information by multiphoton states, and elaborating it via ancillary extensions, linear optical passive devices and photodetection. Our scheme stems in a natural way from the mathematical structures underlying the physics of linear optical passive devices. In particular, we analyze an economical procedure for mapping a fiducial 2-photon 2-mode state into an arbitrary 2-photon 2-mode state using ancillary resources and linear optical passive N-ports assisted by post-selection. We found that adding a single ancilla mode is enough to generate any desired target state. The effect of imperfect photodetection in post-selection is considered and a simple trade-off between success probability and fidelity is derived.

  11. New Methods for Design and Computation of Freeform Optics

    Science.gov (United States)

    2015-07-09

    strategy for constructing weak solutions to nonlinear partial differential equations arising in design problems involving freeform optical surfaces[10...working in related areas of fully nonlinear partial differential equations , optics, and computational methods for optimization under extremely large...as a partial differential equation (PDE) of second order with nonstandard boundary conditions. The solution to this PDE problem is a scalar function

  12. Secured Authorized Data Using Hybrid Encryption in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Dinesh Shinde

    2017-03-01

    Full Text Available In today’s world to provide a security to a public network like a cloud network is become a toughest task however more likely to reduce the cost at the time of providing security using cryptographic technique to delegate the mask of the decryption task to the cloud servers to reduce the computing cost. As a result, attributebased encryption with delegation emerges. Still, there are caveats and questions remaining in the previous relevant works. For to solution to all problems the cloud servers could tamper or replace the delegated cipher text and respond a forged computing result with malicious intent. They may also cheat the eligible users by responding them that they are ineligible for the purpose of cost saving. Furthermore, during the encryption, the access policies may not be flexible enough as well. Since policy for general circuits enables to achieve the strongest form of access control, a construction for realizing circuit cipher text-policy attribute-based hybrid encryption with verifiable delegation has been considered in our work. In such a system, combined with verifiable computation and encrypt-then-mac mechanism, the data confidentiality, the fine-grained access control and the correctness of the delegated computing results are well guaranteed at the same time. Besides, our scheme achieves security against chosen-plaintext attacks under the k-multilinear Decisional Diffie-Hellman assumption. Moreover, an extensive simulation campaign confirms the feasibility and efficiency of the proposed solution. There are two complementary forms of attribute-based encryption. One is key-policy attribute-based encryption (KP-ABE [8], [9], [10], and the other is cipher text-policy attribute-based encryption. In a KP-ABE system, the decision of access policy is made by the key distributor instead of the enciphered, which limits the practicability and usability for the system in practical applicationsthe access policy for general circuits could be

  13. Enabling inter- and intra-chip optical wireless interconnect by the aid of hybrid plasmonic leaky-wave optical antennas

    Science.gov (United States)

    Ebrahimi, Vahid; Yousefi, Leila; Mohammad-Taheri, Mahmoud

    2017-01-01

    In this paper, we propose a new method to provide optical link in Photonic Integrated Circuits (PICs). The proposed method uses two hybrid plasmonic leaky-wave optical antennas, operating at the standard optical telecommunication wavelength of 1.55 μm, to provide inter-chip interconnect between two layers in a photonic chip and also intra-chip interconnect between two different photonic ICs. Linearly tapered couplers are designed to couple the optical signal from the silicon waveguide to the hybrid plasmonic antennas. The performance of the proposed optical link is verified using numerical full wave simulation. The proposed structure is planar, and can be fabricated using standard CMOS technology which makes it the superior candidate for realization of future multi-layered Photonic Integrated Circuits.

  14. A Hybrid Segmentation Framework for Computer-Assisted Dental Procedures

    Science.gov (United States)

    Hosntalab, Mohammad; Aghaeizadeh Zoroofi, Reza; Abbaspour Tehrani-Fard, Ali; Shirani, Gholamreza; Reza Asharif, Mohammad

    Teeth segmentation in computed tomography (CT) images is a major and challenging task for various computer assisted procedures. In this paper, we introduced a hybrid method for quantification of teeth in CT volumetric dataset inspired by our previous experiences and anatomical knowledge of teeth and jaws. In this regard, we propose a novel segmentation technique using an adaptive thresholding, morphological operations, panoramic re-sampling and variational level set algorithm. The proposed method consists of several steps as follows: first, we determine the operation region in CT slices. Second, the bony tissues are separated from other tissues by utilizing an adaptive thresholding technique based on the 3D pulses coupled neural networks (PCNN). Third, teeth tissue is classified from other bony tissues by employing panorex lines and anatomical knowledge of teeth in the jaws. In this case, the panorex lines are estimated using Otsu thresholding and mathematical morphology operators. Then, the proposed method is followed by calculating the orthogonal lines corresponding to panorex lines and panoramic re-sampling of the dataset. Separation of upper and lower jaws and initial segmentation of teeth are performed by employing the integral projections of the panoramic dataset. Based the above mentioned procedures an initial mask for each tooth is obtained. Finally, we utilize the initial mask of teeth and apply a variational level set to refine initial teeth boundaries to final contour. In the last step a surface rendering algorithm known as marching cubes (MC) is applied to volumetric visualization. The proposed algorithm was evaluated in the presence of 30 cases. Segmented images were compared with manually outlined contours. We compared the performance of segmentation method using ROC analysis of the thresholding, watershed and our previous works. The proposed method performed best. Also, our algorithm has the advantage of high speed compared to our previous works.

  15. Computational analysis on plug-in hybrid electric motorcycle chassis

    Science.gov (United States)

    Teoh, S. J.; Bakar, R. A.; Gan, L. M.

    2013-12-01

    Plug-in hybrid electric motorcycle (PHEM) is an alternative to promote sustainability lower emissions. However, the PHEM overall system packaging is constrained by limited space in a motorcycle chassis. In this paper, a chassis applying the concept of a Chopper is analysed to apply in PHEM. The chassis 3dimensional (3D) modelling is built with CAD software. The PHEM power-train components and drive-train mechanisms are intergraded into the 3D modelling to ensure the chassis provides sufficient space. Besides that, a human dummy model is built into the 3D modelling to ensure the rider?s ergonomics and comfort. The chassis 3D model then undergoes stress-strain simulation. The simulation predicts the stress distribution, displacement and factor of safety (FOS). The data are used to identify the critical point, thus suggesting the chassis design is applicable or need to redesign/ modify to meet the require strength. Critical points mean highest stress which might cause the chassis to fail. This point occurs at the joints at triple tree and bracket rear absorber for a motorcycle chassis. As a conclusion, computational analysis predicts the stress distribution and guideline to develop a safe prototype chassis.

  16. Distributed quantum computation via optical fibres

    CERN Document Server

    Serafini, A; Bose, S; Serafini, Alessio; Mancini, Stefano; Bose, Sougato

    2005-01-01

    We investigate the possibility of realising effective quantum gates between two atoms in distant cavities coupled by an optical fibre. We show that highly reliable swap and entangling gates are achievable. We exactly study the stability of these gates in presence of imperfections in coupling strengths and interaction times and prove them to be robust. Moreover, we analyse the effect of spontaneous emission and losses and show that such gates are very promising in view of the high level of coherent control currently achievable in optical cavities.

  17. Demonstration of optical computing logics based on binary decision diagram.

    Science.gov (United States)

    Lin, Shiyun; Ishikawa, Yasuhiko; Wada, Kazumi

    2012-01-16

    Optical circuits are low power consumption and fast speed alternatives for the current information processing based on transistor circuits. However, because of no transistor function available in optics, the architecture for optical computing should be chosen that optics prefers. One of which is Binary Decision Diagram (BDD), where signal is processed by sending an optical signal from the root through a serial of switching nodes to the leaf (terminal). Speed of optical computing is limited by either transmission time of optical signals from the root to the leaf or switching time of a node. We have designed and experimentally demonstrated 1-bit and 2-bit adders based on the BDD architecture. The switching nodes are silicon ring resonators with a modulation depth of 10 dB and the states are changed by the plasma dispersion effect. The quality, Q of the rings designed is 1500, which allows fast transmission of signal, e.g., 1.3 ps calculated by a photon escaping time. A total processing time is thus analyzed to be ~9 ps for a 2-bit adder and would scales linearly with the number of bit. It is two orders of magnitude faster than the conventional CMOS circuitry, ~ns scale of delay. The presented results show the potential of fast speed optical computing circuits.

  18. Hybrid optical-thermal antennas for enhanced light focusing and local temperature control

    CERN Document Server

    Boriskina, Svetlana V; Tong, Jonathan K; Hsu, Wei-Chun; Chen, Gang

    2016-01-01

    Metal nanoantennas supporting localized surface plasmon resonances have become an indispensable tool in bio(chemical) sensing and nanoscale imaging applications. The high plasmon-enhanced electric field intensity in the visible or near-IR range that enables the above applications may also cause local heating of nanoantennas. We present a design of hybrid optical-thermal antennas that simultaneously enable intensity enhancement at the operating wavelength in the visible and nanoscale local temperature control. We demonstrate a possibility to reduce the hybrid antenna operating temperature via enhanced infrared thermal emission. We predict via rigorous numerical modeling that hybrid optical-thermal antennas that support high-quality-factor photonic-plasmonic modes enable up to two orders of magnitude enhancement of localized electric fields and of the optical power absorbed in the nanoscale metal volume. At the same time, the hybrid antenna temperature can be lowered by several hundred degrees with respect to i...

  19. An efficient hybrid protection scheme with shared/dedicated backup paths on elastic optical networks

    Directory of Open Access Journals (Sweden)

    Nogbou G. Anoh

    2017-02-01

    Full Text Available Fast recovery and minimum utilization of resources are the two main criteria for determining the protection scheme quality. We address the problem of providing a hybrid protection approach on elastic optical networks under contiguity and continuity of available spectrum constraints. Two main hypotheses are used in this paper for backup paths computation. In the first case, it is assumed that backup paths resources are dedicated. In the second case, the assumption is that backup paths resources are available shared resources. The objective of the study is to minimize spectrum utilization to reduce blocking probability on a network. For this purpose, an efficient survivable Hybrid Protection Lightpath (HybPL algorithm is proposed for providing shared or dedicated backup path protection based on the efficient energy calculation and resource availability. Traditional First-Fit and Best-Fit schemes are employed to search and assign the available spectrum resources. The simulation results show that HybPL presents better performance in terms of blocking probability, compared with the Minimum Resources Utilization Dedicated Protection (MRU-DP algorithm which offers better performance than the Dedicated Protection (DP algorithm.

  20. All-optical reservoir computer based on saturation of absorption.

    Science.gov (United States)

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  1. Optical character recognition systems for different languages with soft computing

    CERN Document Server

    Chaudhuri, Arindam; Badelia, Pratixa; K Ghosh, Soumya

    2017-01-01

    The book offers a comprehensive survey of soft-computing models for optical character recognition systems. The various techniques, including fuzzy and rough sets, artificial neural networks and genetic algorithms, are tested using real texts written in different languages, such as English, French, German, Latin, Hindi and Gujrati, which have been extracted by publicly available datasets. The simulation studies, which are reported in details here, show that soft-computing based modeling of OCR systems performs consistently better than traditional models. Mainly intended as state-of-the-art survey for postgraduates and researchers in pattern recognition, optical character recognition and soft computing, this book will be useful for professionals in computer vision and image processing alike, dealing with different issues related to optical character recognition.

  2. Population Dynamics and the Optical Absorption in Hybrid Metal Nanoparticle - Semiconductor Quantum dot Nanosystem

    CERN Document Server

    Kim, Nam-Chol; Ko, Myong-Chol; So, Guang Hyok; Kim, Il-Guang

    2015-01-01

    We studied theoretically the population dynamics and the absorption spectrum of hybrid nanosystem consisted of a matal nanoparticle (MNP) and a semiconductor quantum dot(SQD). We investigated the exciton-plasmon coupling effects on the population dynamics and the absorption properties of the nanostructure. Our results show that the nonlinear optical response of the hybrid nanosystem can be greatly enhanced or depressed due to the exciton-plasmon couplings. The results obtained here may have the potential applications of nanoscale optical devices such as optical switches and quantum devices such as a single photon transistor.

  3. Applications of hybrid diffuse optics for clinical management of adults after brain injury

    Science.gov (United States)

    Kim, Meeri Nam

    Information about cerebral blood flow (CBF) is valuable for clinical management of patients after severe brain injury. Unfortunately, current modalities for monitoring brain are often limited by hurdles that include high cost, low throughput, exposure to ionizing radiation, probe invasiveness, and increased risk to critically ill patients when transportation out of their room or unit is required. A further limitation of current technologies is an inability to provide continuous bedside measurements that are often desirable for unstable patients. Here we explore the clinical utility of diffuse correlation spectroscopy (DCS) as an alternative approach for bedside CBF monitoring. DCS uses the rapid intensity fluctuations of near-infrared light to derive a continuous measure of changes in blood flow without ionizing radiation or invasive probing. Concurrently, we employ another optical technique, called diffuse optical spectroscopy (DOS), to derive changes in cerebral oxyhemoglobin ( HbO2) and deoxyhemoglobin (Hb) concentrations. Our clinical studies integrate DCS with DOS into a single hybrid instrument that simultaneously monitors CBF and HbO2/Hb in the injured adult brain. The first parts of this dissertation present the motivations for monitoring blood flow in injured brain, as well as the theory underlying diffuse optics technology. The next section elaborates on details of the hybrid instrumentation. The final chapters describe four human subject studies carried out with these methods. Each of these studies investigates an aspect of the potential of the hybrid monitor in clinical applications involving adult brain. The studies include: (1) validation of DCS-measured CBF against xenon-enhanced computed tomography in brain-injured adults; (2) a study of the effects of age and gender on posture-change-induced CBF variation in healthy subjects; (3) a study of the efficacy of DCS/DOS for monitoring neurocritical care patients during various medical interventions such

  4. ANIBAL - a Hybrid Computer Language for EAI 680-PDP 8/I, FPP 12

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1974-01-01

    A hybrid programming language ANIBAL has been developed for use in an open-shop computing centre with an EAI-680 analog computer, a PDP8/I digital computer, and a FFP-12 floating point processor. An 8K core memory and 812k disk memory is included. The new language consists of standard FORTRAN IV...

  5. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    Science.gov (United States)

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-01

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  6. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.;

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can...... the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  7. Computation of surface roughness using optical correlation

    Indian Academy of Sciences (India)

    A M hamed; M Saudy

    2007-05-01

    The laser speckle photography is used to calculate the average surface roughness from the autocorrelation function of the aluminum diffuse objects. The computed results of surface roughness obtained from the profile shapes of the autocorrelation function of the diffuser show good agreement with the results obtained by the stylus profile meter.

  8. Optical Image Classification Using Optical/digital Hybrid Image Processing Systems.

    Science.gov (United States)

    Li, Xiaoyang

    1990-01-01

    Offering parallel and real-time operations, optical image classification is becoming a general technique in the solution of real-life image classification problems. This thesis investigates several algorithms for optical realization. Compared to other statistical pattern recognition algorithms, the Kittler-Young transform can provide more discriminative feature spaces for image classification. We shall apply the Kittler-Young transform to image classification and implement it on optical systems. A feature selection criterion is designed for the application of the Kittler -Young transform to image classification. The realizations of the Kittler-Young transform on both a joint transform correlator and a matrix multiplier are successively conducted. Experiments of applying this technique to two-category and three-category problems are demonstrated. To combine the advantages of the statistical pattern recognition algorithms and the neural network models, processes using the two methods are studied. The Karhunen-Loeve Hopfield model is developed for image classification. This model has significant improvement in the system capacity and the capability of using image structures for more discriminative classification processes. As another such hybrid process, we propose the feature extraction perceptron. The application of feature extraction techniques to the perceptron shortens its learning time. An improved activation function of neurons (dynamic activation function), its design and updating rule for fast learning process and high space-bandwidth product image classification are also proposed. We have shortened by two-thirds the learning time on the feature extraction perceptron as compared with the original perceptron. By using this architecture, we have shown that the classification performs better than both the Kittler-Young transform and the original perceptron.

  9. Optical Simulation and Experimental Verification of a Fresnel Solar Concentrator with a New Hybrid Second Optical Element

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2016-01-01

    Full Text Available Fresnel solar concentrator is one of the most common solar concentrators in solar applications. For high Fresnel concentrating PV or PV/T systems, the second optical element (SOE is the key component for the high optical efficiency at a wider deflection angle, which is important for overcoming unavoidable errors from the tacking system, the Fresnel lens processing and installment technology, and so forth. In this paper, a new hybrid SOE was designed to match the Fresnel solar concentrator with the concentration ratio of 1090x. The ray-tracing technology was employed to indicate the optical properties. The simulation outcome showed that the Fresnel solar concentrator with the new hybrid SOE has a wider deflection angle scope with the high optical efficiency. Furthermore, the flux distribution with different deviation angles was also analyzed. In addition, the experiment of the Fresnel solar concentrator with the hybrid SOE under outdoor condition was carried out. The verifications from the electrical and thermal outputs were all made to analyze the optical efficiency comprehensively. The optical efficiency resulting from the experiment is found to be consistent with that from the simulation.

  10. ULTRA-HIGH BW OPTICAL COMMUNICATION USING OXYGEN PLASMA ASSISTED InP BASED HYBRID Si LASER

    Directory of Open Access Journals (Sweden)

    PRATTAY BIN ABDUL WAHAB

    2010-12-01

    Full Text Available This paper demonstrates the development of a hybrid integration platform to build major electrically driven photonic active devices: silicon evanescent DFB lasers, silicon evanescent amplifiers, silicon evanescent waveguide photo-detectors or pre-amplified photo-detectors on a single silicon platform consisting of III-V gain layers with passive waveguide for board to board and for chip to chip optical communication for tera scale computing. The structural description proposed here may push forward the manufacturing of photonic ICs tomake high speed communicational imaginings to reality and to start a new era.

  11. Computational wave optics library for C++: CWO++ library

    CERN Document Server

    Shimobaba, Tomoyoshi; Sakurai, Takahiro; Okada, Naohisa; Nishitsuji, Takashi; Takada, Naoki; Shiraki, Atsushi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2011-01-01

    Diffraction calculations, such as the angular spectrum method, and Fresnel diffractions, are used for calculating scalar light propagation. The calculations are used in wide-ranging optics fields: for example, computer generated holograms (CGHs), digital holography, diffractive optical elements, microscopy, image encryption and decryption, three-dimensional analysis for optical devices and so on. However, increasing demands made by large-scale diffraction calculations have rendered the computational power of recent computers insufficient. We have already developed a numerical library for diffraction calculations using a graphic processing unit (GPU), which was named the GWO library. However, this GWO library is not user-friendly, since it is based on C language and was also run only on a GPU. In this paper, we develop a new C++ class library for diffraction and CGH calculations, which is referred as to a CWO++ library, running on a CPU and GPU. We also describe the structure, performance, and usage examples o...

  12. Photodeposited diffractive optical elements of computer generated masks

    Energy Technology Data Exchange (ETDEWEB)

    Mirchin, N. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel)]. E-mail: mirchin@hait.ac.il; Peled, A. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Baal-Zedaka, I. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Margolin, R. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Zagon, M. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Lapsker, I. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Verdyan, A. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Azoulay, J. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel)

    2005-07-30

    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick.

  13. Photodeposited diffractive optical elements of computer generated masks

    Science.gov (United States)

    Mirchin, N.; Peled, A.; Baal-Zedaka, I.; Margolin, R.; Zagon, M.; Lapsker, I.; Verdyan, A.; Azoulay, J.

    2005-07-01

    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick.

  14. Hybrid optical-thermal devices and materials for light manipulation and radiative cooling

    CERN Document Server

    Boriskina, Svetlana V; Hsu, Wei-Chun; Weinstein, Lee; Huang, Xiaopeng; Loomis, James; Xu, Yanfei; Chen, Gang

    2015-01-01

    We report on optical design and applications of hybrid meso-scale devices and materials that combine optical and thermal management functionalities owing to their tailored resonant interaction with light in visible and infrared frequency bands. We outline a general approach to designing such materials, and discuss two specific applications in detail. One example is a hybrid optical-thermal antenna with sub-wavelength light focusing, which simultaneously enables intensity enhancement at the operating wavelength in the visible and reduction of the operating temperature. The enhancement is achieved via light recycling in the form of whispering-gallery modes trapped in an optical microcavity, while cooling functionality is realized via a combination of reduced optical absorption and radiative cooling. The other example is a fabric that is opaque in the visible range yet highly transparent in the infrared, which allows the human body to efficiently shed energy in the form of thermal emission. Such fabrics can find...

  15. Computed Optical Interferometric Imaging: Methods, Achievements, and Challenges.

    Science.gov (United States)

    South, Fredrick A; Liu, Yuan-Zhi; Carney, P Scott; Boppart, Stephen A

    2016-01-01

    Three-dimensional high-resolution optical imaging systems are generally restricted by the trade-off between resolution and depth-of-field as well as imperfections in the imaging system or sample. Computed optical interferometric imaging is able to overcome these longstanding limitations using methods such as interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) which manipulate the complex interferometric data. These techniques correct for limited depth-of-field and optical aberrations without the need for additional hardware. This paper aims to outline these computational methods, making them readily available to the research community. Achievements of the techniques will be highlighted, along with past and present challenges in implementing the techniques. Challenges such as phase instability and determination of the appropriate aberration correction have been largely overcome so that imaging of living tissues using ISAM and CAO is now possible. Computed imaging in optics is becoming a mature technology poised to make a significant impact in medicine and biology.

  16. Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)

    2015-09-15

    Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)

  17. Synergistically Enhanced Optical Limiting Property of Graphene Oxide Hybrid Materials Functionalized with Pt Complexes.

    Science.gov (United States)

    Liu, Rui; Hu, Jinyang; Zhu, Senqiang; Lu, Jiapeng; Zhu, Hongjun

    2017-09-12

    Recently, graphene-based materials have become well-known nonlinear optical materials for the potential application of laser protection. Two new graphene oxide-platinum  complex (GO-Pt) hybrid materials (GO-Pt-1, GO-Pt-2) have been fabricated through covalent modification and electrostatic adsorption of different Pt complexes with GO. The structural and photophysical properties of the resultant hybrid materials were studied. The nonlinear optical properties and optical power limiting (OPL) performance of Pt complexes, GO, and GO-Pt hybrid materials were investigated by using Z-scan measurements at 532 nm. At the same transmittance, the results illustrate that functionalization of GO makes GO-Pt hybrid materials possess better nonlinear optical properties and OPL performance than individual Pt complexes and GO due to a combination of nonlinear scattering, nonlinear absorption, and photoinduced electron and energy transfer between GO and Pt complex moieties. Furthermore, the nonlinear optics and OPL performance of GO-Pt-2 are better than those of GO-Pt-1, due to not only the excellent optical limiting of Pt-2 and more molecules per area of GO but also the way of combination of Pt-2 and GO.

  18. Hybrid NN/SVM Computational System for Optimizing Designs

    Science.gov (United States)

    Rai, Man Mohan

    2009-01-01

    A computational method and system based on a hybrid of an artificial neural network (NN) and a support vector machine (SVM) (see figure) has been conceived as a means of maximizing or minimizing an objective function, optionally subject to one or more constraints. Such maximization or minimization could be performed, for example, to optimize solve a data-regression or data-classification problem or to optimize a design associated with a response function. A response function can be considered as a subset of a response surface, which is a surface in a vector space of design and performance parameters. A typical example of a design problem that the method and system can be used to solve is that of an airfoil, for which a response function could be the spatial distribution of pressure over the airfoil. In this example, the response surface would describe the pressure distribution as a function of the operating conditions and the geometric parameters of the airfoil. The use of NNs to analyze physical objects in order to optimize their responses under specified physical conditions is well known. NN analysis is suitable for multidimensional interpolation of data that lack structure and enables the representation and optimization of a succession of numerical solutions of increasing complexity or increasing fidelity to the real world. NN analysis is especially useful in helping to satisfy multiple design objectives. Feedforward NNs can be used to make estimates based on nonlinear mathematical models. One difficulty associated with use of a feedforward NN arises from the need for nonlinear optimization to determine connection weights among input, intermediate, and output variables. It can be very expensive to train an NN in cases in which it is necessary to model large amounts of information. Less widely known (in comparison with NNs) are support vector machines (SVMs), which were originally applied in statistical learning theory. In terms that are necessarily

  19. Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells

    KAUST Repository

    Weintraub, Benjamin

    2009-11-09

    Wired up: The energy conversion efficiency of three-dimensional dye-sensitized solar cells (DSSCs) in a hybrid structure that integrates optical fibers and nanowire arrays is greater than that of a two-dimensional device. Internal axial illumination enhances the energy conversion efficiency of a rectangular fiber-based hybrid structure (see picture) by a factor of up to six compared to light illumination normal to the fiber axis from outside the device.

  20. Computational methods to compute wavefront error due to aero-optic effects

    Science.gov (United States)

    Genberg, Victor; Michels, Gregory; Doyle, Keith; Bury, Mark; Sebastian, Thomas

    2013-09-01

    Aero-optic effects can have deleterious effects on high performance airborne optical sensors that must view through turbulent flow fields created by the aerodynamic effects of windows and domes. Evaluating aero-optic effects early in the program during the design stages allows mitigation strategies and optical system design trades to be performed to optimize system performance. This necessitates a computationally efficient means to evaluate the impact of aero-optic effects such that the resulting dynamic pointing errors and wavefront distortions due to the spatially and temporally varying flow field can be minimized or corrected. To this end, an aero-optic analysis capability was developed within the commercial software SigFit that couples CFD results with optical design tools. SigFit reads the CFD generated density profile using the CGNS file format. OPD maps are then created by converting the three-dimensional density field into an index of refraction field and then integrating along specified paths to compute OPD errors across the optical field. The OPD maps may be evaluated directly against system requirements or imported into commercial optical design software including Zemax® and Code V® for a more detailed assessment of the impact on optical performance from which design trades may be performed.

  1. Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures

    Science.gov (United States)

    Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.

    2015-04-01

    In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.

  2. Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Zhu, Guang [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Guo, Wenxi [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Dong, Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); School of Materials Science and Enginnering, Zhenzhou University, Zhenghou 450001 (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing (China)

    2012-07-03

    An optical fiber-based 3D hybrid cell consisting of a coaxially structured dye-sensitized solar cell (DSSC) and a nanogenerator (NG) for simultaneously or independently harvesting solar and mechanical energy is demonstrated. The current output of the hybrid cell is dominated by the DSSC, and the voltage output is dominated by the NG; these can be utilized complementarily for different applications. The output of the hybrid cell is about 7.65 {mu}A current and 3.3 V voltage, which is strong enough to power nanodevices and even commercial electronic components. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Optical absorption and electrical transport in hybrid TiO2 and polymer nanocomposite films

    Science.gov (United States)

    Zhou, Xi-Song; Li, Zheng; Wang, Ning; Lin, Yuan-Hua; Nan, Ce-Wen

    2006-06-01

    Hybrid nanofilms of poly(2-methoxy-5-ethylhexyloxy-1,4-phenylene)vinylene (MEH-PPV) and anatase-TiO2 nanoparticles were prepared. The results showed that the optical absorption spectra and electrical transport properties of the TiO2/MEH-PPV nanocomposite films were strongly dependent on the particle size and concentration of TiO2 nanoparticles in the hybrid films. In comparison with pure TiO2 nanofilms, the hybrid TiO2/MEH-PPV films presented a shift of the absorption edge to the lower-energy region, and an obvious nonlinear current-voltage characteristic.

  4. Architectural and operational considerations emerging from hybrid RF-optical network loading simulations

    Science.gov (United States)

    Chen, Yijiang; Abraham, Douglas S.; Heckman, David P.; Kwok, Andrew; MacNeal, Bruce E.; Tran, Kristy; Wu, Janet P.

    2016-03-01

    A technology demonstration of free space optical communication at interplanetary distances is planned via one or more future NASA deep-space missions. Such demonstrations will "pave the way" for operational use of optical communications on future robotic/potential Human missions. Hence, the Deep Space Network architecture will need to evolve. Preliminary attempts to model the anticipated future mission set and simulate how well it loads onto assumed architectures with combinations of RF and optical apertures have been evaluated. This paper discusses the results of preliminary loading simulations for hybrid RF-optical network architectures and highlights key mission and ground infrastructure considerations that emerge.

  5. Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Zanotto, Simone; Pitanti, Alessandro [NEST, Istituto Nanoscienze–CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Lange, Christoph; Maag, Thomas; Huber, Rupert [Department of Physics, University of Regensburg, 93040 Regensburg (Germany); Miseikis, Vaidotas; Coletti, Camilla [CNI@NEST, Istituto Italiano di Tecnologia, P.za S. Silvestro 12, 56127 Pisa (Italy); Degl' Innocenti, Riccardo [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Baldacci, Lorenzo [Scuola Superiore Sant' Anna, Institute of Life Sciences, P.za Martiri della Libertà 33, 56127 Pisa (Italy); Tredicucci, Alessandro [NEST, Istituto Nanoscienze-CNR and Dipartimento di Fisica “E. Fermi,” Università di Pisa, L.go Pontecorvo 3, 56127 Pisa (Italy)

    2015-09-21

    By placing a material in close vicinity of a resonant optical element, its intrinsic optical response can be tuned, possibly to a wide extent. Here, we show that a graphene monolayer, spaced a few tenths of nanometers from a split ring resonator metasurface, exhibits a magneto-optical response which is strongly influenced by the presence of the metasurface itself. This hybrid system holds promises in view of thin optical modulators, polarization rotators, and nonreciprocal devices, in the technologically relevant terahertz spectral range. Moreover, it could be chosen as the playground for investigating the cavity electrodynamics of Dirac fermions in the quantum regime.

  6. Coincident Pulse Techniques for Hybrid Electronic Optical Computer Systems

    Science.gov (United States)

    1992-08-31

    specific interval of time, a message from a nodej to node i, i > j, the senderj writes a node can selectively read the message intended for it as its...That is, it has to wait until which means that nodej broadcasts a message, and all other e I-fI - I messages have passed and then it reads its own nodes

  7. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  8. Model-Invariant Hybrid Computations of Separated Flows for RCA Standard Test Cases

    Science.gov (United States)

    Woodruff, Stephen

    2016-01-01

    NASA's Revolutionary Computational Aerosciences (RCA) subproject has identified several smooth-body separated flows as standard test cases to emphasize the challenge these flows present for computational methods and their importance to the aerospace community. Results of computations of two of these test cases, the NASA hump and the FAITH experiment, are presented. The computations were performed with the model-invariant hybrid LES-RANS formulation, implemented in the NASA code VULCAN-CFD. The model- invariant formulation employs gradual LES-RANS transitions and compensation for model variation to provide more accurate and efficient hybrid computations. Comparisons revealed that the LES-RANS transitions employed in these computations were sufficiently gradual that the compensating terms were unnecessary. Agreement with experiment was achieved only after reducing the turbulent viscosity to mitigate the effect of numerical dissipation. The stream-wise evolution of peak Reynolds shear stress was employed as a measure of turbulence dynamics in separated flows useful for evaluating computations.

  9. Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction.

    Science.gov (United States)

    Agulleiro, J I; Vázquez, F; Garzón, E M; Fernández, J J

    2012-04-01

    Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping.

    Science.gov (United States)

    Fang, Jiancheng; Wang, Tao; Zhang, Hong; Li, Yang; Zou, Sheng

    2014-12-01

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz(1/2) is achieved with gradiometer arrangement.

  11. Computers and the design of ion beam optical systems

    Science.gov (United States)

    White, Nicholas R.

    Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.

  12. Hybrid optics for three-dimensional microstructuring of polymers via direct laser writing

    Science.gov (United States)

    Burmeister, Frank; Zeitner, Uwe D.; Nolte, Stefan; Tünnermann, Andreas

    2012-03-01

    We present an immersion hybrid optics specially designed for focusing ultrashort laser pulses into a polymer for direct laser writing via two-photon polymerization. The hybrid optics enables well corrected focusing over a working distance range of 577 μm with a numerical aperture (NA) of 1.33 thereby causing low internal dispersion. We combine the concepts of an aplanatic solid immersion lens (ASIL) for achieving a high NA with the correction of aberrations with a diffractive optical element (DOE). To demonstrate the improvements for volume structuring of the polymer, we compare achievable feature sizes of structures written with our optics and a commercial available oil immersion objective (100x, NA=1.4).

  13. Tunable hybridization at midzone and anomalous Bloch-Zener oscillations in optical waveguide ladders.

    Science.gov (United States)

    Zheng, Ming Jie; Wang, Gang; Yu, Kin Wah

    2010-12-01

    We have studied the optical oscillation and tunneling of light waves in optical waveguide ladders (OWLs) formed by two coupled planar optical waveguide arrays. For the band structure, a midzone gap is formed owing to band hybridization, and its wavenumber position can be tuned throughout the whole Brillouin zone, which is different from the Bragg gap. By imposing a gradient in the propagation constant in each array, Bloch-Zener oscillation (BZO) is realized with Zener tunneling between the bands occurring at the midzone, which is contrary to the common BZO with tunneling at the center or edge of the Brillouin zone. The occurrence of BZO is demonstrated by using the field-evolution analysis. The tunable hybridization at the midzone enhances the tunability of BZO in the OWLs. This Letter may offer new insights into the coherent phenomena in optical lattices.

  14. Nonclassical correlation between optical and microwave photons in a hybrid electro-optomechanical system

    Science.gov (United States)

    Xie, Hong; Chen, Xiang; Lin, Gongwei; Lin, Xiumin

    2016-10-01

    A scheme to correlate optical and microwave photons is proposed in a hybrid electro-optomechanical system, where mechanical resonator is coupled to both optical and microwave fields. Analytical and numerical simulation results show that the cross-correlation function between Stokes and anti-Stokes photons strongly violates the Cauchy-Schwarz inequality, which confirms the nonclassical correlation between the optical and microwave photons. It is worth noting that the nonclassical photon pairs with vast different wavelengths, which may be useful for quantum communication, are generated under the experimentally accessible weak coupling limit rather than single-photon strong coupling regime. In addition, the protocol provides a possible route to combine the respective advantages of optical photons, microwave photons, and phonons in a hybrid electro-optomechanical system.

  15. A Hybrid Computational Intelligence Approach Combining Genetic Programming And Heuristic Classification for Pap-Smear Diagnosis

    DEFF Research Database (Denmark)

    Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan

    2001-01-01

    The paper suggests the combined use of different computational intelligence (CI) techniques in a hybrid scheme, as an effective approach to medical diagnosis. Getting to know the advantages and disadvantages of each computational intelligence technique in the recent years, the time has come for p...

  16. 100-Gbps hybrid optical fiber-wireless transmission

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Caballero Jambrina, Antonio; Deng, Lei;

    2013-01-01

    We present experimental results on using optical transmission technologies such as I&Q modulators, digital coherent receivers, heterodyne up-conversion in fast photodiodes, to generate, transmit and detect high capacity wireless transmission. Both OFDM and QAM modulation formats are tested in the......-achieving capacities up to 100-Gbps with seamless optical fiber-wireless conversion.......We present experimental results on using optical transmission technologies such as I&Q modulators, digital coherent receivers, heterodyne up-conversion in fast photodiodes, to generate, transmit and detect high capacity wireless transmission. Both OFDM and QAM modulation formats are tested in the W...

  17. Development of a Hybrid Nanoprobe for Triple-Modality MR/SPECT/Optical Fluorescence Imaging

    Science.gov (United States)

    Madru, Renata; Svenmarker, Pontus; Ingvar, Christian; Ståhlberg, Freddy; Engels, Stefan-Andersson; Knutsson, Linda; Strand, Sven-Erik

    2014-01-01

    Hybrid clinical imaging is an emerging technology, which improves disease diagnosis by combining already existing technologies. With the combination of high-resolution morphological imaging, i.e., MRI/CT, and high-sensitive molecular detection offered by SPECT/PET/Optical, physicians can detect disease progression at an early stage and design patient-specific treatments. To fully exploit the possibilities of hybrid imaging a hybrid probe compatible with each imaging technology is required. Here, we present a hybrid nanoprobe for triple modality MR/SPECT/Fluorescence imaging. Our imaging agent is comprised of superparamagnetic iron oxide nanoparticles (SPIONs), labeled with 99mTc and an Alexa fluorophore (AF), together forming 99mTc-AF-SPIONs. The agent was stable in human serum, and, after subcutaneous injection in the hind paw of Wistar rats, showed to be highly specific by accumulating in the sentinel lymph node. All three modalities clearly visualized the imaging agent. Our results show that a single imaging agent can be used for hybrid imaging. The use of a single hybrid contrast agent permits simultaneous hybrid imaging and, more conventionally, allow for single modality imaging at different time points. For example, a hybrid contrast agent enables pre-operative planning, intra-operative guidance, and post-operative evaluation with the same contrast agent. PMID:26852675

  18. Effective-mass model and magneto-optical properties in hybrid perovskites

    OpenAIRE

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be effici...

  19. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    Science.gov (United States)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2016-07-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  20. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    Science.gov (United States)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2017-02-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  1. Hybrid optical and electronic laser locking using spectral hole burning

    CERN Document Server

    Farr, Warrick G; Ledingham, Patrick M; Korystov, Dmitry; Longdell, Jevon J

    2010-01-01

    We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The laser system exhibits very low phase noise. The spectrum of the beat signal between two lasers, over millisecond timescales, is either Fourier limited or limited by the -111dBc/Hz noise floor. The resulting laser is well suited to quantum optics and sensing applications involving rare earth ion dopants.

  2. Design of integrated hybrid silicon waveguide optical gyroscope.

    Science.gov (United States)

    Srinivasan, Sudharsanan; Moreira, Renan; Blumenthal, Daniel; Bowers, John E

    2014-10-20

    We propose and analyze a novel highly integrated optical gyroscope using low loss silicon nitride waveguides. By integrating the active optical components on chip, we show the possibility of reaching a detection limit on the order of 19°/hr/√Hz in an area smaller than 10 cm(2). This study examines a number of parameters, including the dependence of sensitivity on sensor area.

  3. Reducing the Digital Divide among Children Who Received Desktop or Hybrid Computers for the Home

    Directory of Open Access Journals (Sweden)

    Gila Cohen Zilka

    2016-06-01

    Full Text Available Researchers and policy makers have been exploring ways to reduce the digital divide. Parameters commonly used to examine the digital divide worldwide, as well as in this study, are: (a the digital divide in the accessibility and mobility of the ICT infrastructure and of the content infrastructure (e.g., sites used in school; and (b the digital divide in literacy skills. In the present study we examined the degree of effectiveness of receiving a desktop or hybrid computer for the home in reducing the digital divide among children of low socio-economic status aged 8-12 from various localities across Israel. The sample consisted of 1,248 respondents assessed in two measurements. As part of the mixed-method study, 128 children were also interviewed. Findings indicate that after the children received desktop or hybrid computers, changes occurred in their frequency of access, mobility, and computer literacy. Differences were found between the groups: hybrid computers reduce disparities and promote work with the computer and surfing the Internet more than do desktop computers. Narrowing the digital divide for this age group has many implications for the acquisition of skills and study habits, and consequently, for the realization of individual potential. The children spoke about self improvement as a result of exposure to the digital environment, about a sense of empowerment and of improvement in their advantage in the social fabric. Many children expressed a desire to continue their education and expand their knowledge of computer applications, the use of software, of games, and more. Therefore, if there is no computer in the home and it is necessary to decide between a desktop and a hybrid computer, a hybrid computer is preferable.

  4. Resilience of hybrid optical angular momentum qubits to turbulence.

    Science.gov (United States)

    Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P; Sciarrino, Fabio

    2015-02-12

    Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses.

  5. Cavity QED analysis of an exciton-plasmon hybrid molecule via the generalized nonlocal optical response method

    Science.gov (United States)

    Hapuarachchi, Harini; Premaratne, Malin; Bao, Qiaoliang; Cheng, Wenlong; Gunapala, Sarath D.; Agrawal, Govind P.

    2017-06-01

    A metal nanoparticle coupled to a semiconductor quantum dot forms a tunable hybrid system which exhibits remarkable optical phenomena. Small metal nanoparticles possess nanocavitylike optical concentration capabilities due to the presence of strong dipolar excitation modes in the form of localized surface plasmons. Semiconductor quantum dots have strong luminescent capabilities widely used in many applications such as biosensing. When a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole coupling occurs between the two nanoparticles giving rise to various optical signatures in the scattered spectra. This coupling makes the two nanoparticles behave like a single hybrid molecule. Hybrid molecules made of metal nanoparticles (MNPs) and quantum dots (QDs) under the influence of an external driving field have been extensively studied in literature, using the local response approximation (LRA). However, such previous work in this area was not adequate to explain some experimental observations such as the size-dependent resonance shift of metal nanoparticles which becomes quite significant with decreasing diameter. The nonlocal response of metallic nanostructures which is hitherto disregarded by such studies is a main reason for such nonclassical effects. The generalized nonlocal optical response (GNOR) model provides a computationally less-demanding path to incorporate such properties into the theoretical models. It allows unified theoretical explanation of observed experimental phenomena which previously seemed to require ab initio microscopic theory. In this paper, we analyze the hybrid molecule in an external driving field as an open quantum system using a cavity-QED approach. In the process, we quantum mechanically model the dipole moment operator and the dipole response field of the metal nanoparticle taking the nonlocal effects into account. We observe that the spectra resulting from the GNOR based model effectively demonstrate the

  6. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    Science.gov (United States)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  7. Hybrid optical-digital encryption system based on wavefront coding paradigm

    Science.gov (United States)

    Konnik, Mikhail V.

    2012-04-01

    The wavefront coding is a widely used in the optical systems to compensate aberrations and increase the depth of field. This paper presents experimental results on application of the wavefront coding paradigm for data encryption. We use a synthesised diffractive optical element (DOE) to deliberately introduce a phase distortion during the images registration process to encode the acquired image. In this case, an optical convolution of the input image with the point spread function (PSF) of the DOE is registered. The encryption is performed optically, and is therefore is fast and secure. Since the introduced distortion is the same across the image, the decryption is performed digitally using deconvolution methods. However, due to noise and finite accuracy of a photosensor, the reconstructed image is degraded but still readable. The experimental results, which are presented in this paper, indicate that the proposed hybrid optical-digital system can be implemented as a portable device using inexpensive off-the-shelf components. We present the results of optical encryption and digital restoration with quantitative estimations of the images quality. Details of hardware optical implementation of the hybrid optical-digital encryption system are discussed.

  8. Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas

    Science.gov (United States)

    Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi

    2016-08-01

    A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.

  9. Performance Comparison of Hybrid Signed Digit Arithmetic in Efficient Computing

    Directory of Open Access Journals (Sweden)

    VISHAL AWASTHI

    2011-10-01

    Full Text Available In redundant representations, addition can be carried out in a constant time independent of the word length of the operands. Adder forms a fundamental building block in almost majority of VLSI designs. A hybrid adder can add an unsigned number to a signed-digit number and hence their efficient performance greatly determinesthe quality of the final output of the concerned circuit. In this paper we designed and compared the speed of adders by reducing the carry propagation time with the help of combined effect of improved architectures of adders and signed digit representation of number systems. The key idea is to draw out a compromise between execution time of fast adding process and area available which is often very limited. In this paper we also tried to verify the various algorithms of signed digit and hybrid signed digit adders.

  10. Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas

    Science.gov (United States)

    Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi

    2016-11-01

    A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.

  11. Computational wave optics library for C++: CWO++ library

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Weng, Jiantong; Sakurai, Takahiro; Okada, Naohisa; Nishitsuji, Takashi; Takada, Naoki; Shiraki, Atsushi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-05-01

    Diffraction calculations, such as the angular spectrum method and Fresnel diffractions, are used for calculating scalar light propagation. The calculations are used in wide-ranging optics fields: for example, Computer Generated Holograms (CGHs), digital holography, diffractive optical elements, microscopy, image encryption and decryption, three-dimensional analysis for optical devices and so on. However, increasing demands made by large-scale diffraction calculations have rendered the computational power of recent computers insufficient. We have already developed a numerical library for diffraction calculations using a Graphic Processing Unit (GPU), which was named the GWO library. However, this GWO library is not user-friendly, since it is based on C language and was also run only on a GPU. In this paper, we develop a new C++ class library for diffraction and CGH calculations, which is referred to as a CWO++ library, running on a CPU and GPU. We also describe the structure, performance, and usage examples of the CWO++ library. Program summaryProgram title: CWO++ Catalogue identifier: AELL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 109 809 No. of bytes in distributed program, including test data, etc.: 4 181 911 Distribution format: tar.gz Programming language: C++ Computer: General computers and general computers with NVIDIA GPUs Operating system: Windows XP, Vista, 7 Has the code been vectorized or parallelized?: Yes. 1 core processor used in CPU and many cores in GPU. RAM: 256 M bytes Classification: 18 External routines: CImg, FFTW Nature of problem: The CWO++ library provides diffraction calculations which are useful for Computer Generated Holograms (CGHs), digital holography, diffractive

  12. Computational and experimental study of air hybrid engine concepts

    OpenAIRE

    Lee, Cho-Yu

    2011-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The air hybrid engine absorbs the vehicle kinetic energy during braking, stores it in an air tank in the form of compressed air, and reuses it to start the engine and to propel a vehicle during cruising and acceleration. Capturing, storing and reusing this braking energy to achieve stop-start operation and to give additional power can therefore improve fuel economy, particularly in cities and ...

  13. Control mechanism of double-rotator-structure ternary optical computer

    Science.gov (United States)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  14. Research of the grid computing system applied in optical simulation

    Science.gov (United States)

    Jin, Wei-wei; Wang, Yu-dong; Liu, Qiangsheng; Cen, Zhao-feng; Li, Xiao-tong; Lin, Yi-qun

    2008-03-01

    A grid computing in the field of optics is presented in this paper. Firstly, the basic principles and research background of grid computing are outlined in this paper, along with the overview of its applications and the development status quo. The paper also discusses several typical tasks scheduling algorithms. Secondly, it focuses on describing a task scheduling of grid computing applied in optical computation. The paper gives details about the task scheduling system, including the task partition, granularity selection and tasks allocation, especially the structure of the system. In addition, some details of communication on grid computing are also illustrated. In this system, the "makespan" and "load balancing" are comprehensively considered. Finally, we build a grid model to test the task scheduling strategy, and the results are analyzed in detail. Compared to one isolated computer, a grid comprised of one server and four processors can shorten the "makespan" to 1/4. At the same time, the experimental results of the simulation also illustrate that the proposed scheduling system is able to balance loads of all processors. In short, the system performs scheduling well in the grid environment.

  15. Optically envelope detected QAM and QPSK RF modulated signals in hybrid wireless-fiber systems

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Prince, Kamau; Seoane, Jorge;

    2009-01-01

    from a 1.6 GHz carrier frequency to an IF at 500 MHz, requiring no high frequency local oscillator and mixer at the remote base station. This result proves the feasibility of optical envelope detection for complex modulation formats of RF signals for hybrid wireless-fiber transmission links....

  16. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal

    2017-05-08

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  17. Hybrid computer techniques for solving partial differential equations

    Science.gov (United States)

    Hammond, J. L., Jr.; Odowd, W. M.

    1971-01-01

    Techniques overcome equipment limitations that restrict other computer techniques in solving trivial cases. The use of curve fitting by quadratic interpolation greatly reduces required digital storage space.

  18. Repeat-until-success linear optics distributed quantum computing.

    Science.gov (United States)

    Lim, Yuan Liang; Beige, Almut; Kwek, Leong Chuan

    2005-07-15

    We demonstrate the possibility to perform distributed quantum computing using only single-photon sources (atom-cavity-like systems), linear optics, and photon detectors. The qubits are encoded in stable ground states of the sources. To implement a universal two-qubit gate, two photons should be generated simultaneously and pass through a linear optics network, where a measurement is performed on them. Gate operations can be repeated until a success is heralded without destroying the qubits at any stage of the operation. In contrast with other schemes, this does not require explicit qubit-qubit interactions, a priori entangled ancillas, nor the feeding of photons into photon sources.

  19. Note: Computer controlled rotation mount for large diameter optics

    CERN Document Server

    Rakonjac, Ana; Deb, Amita B; Kjærgaard, Niels

    2012-01-01

    We describe the construction of a motorized optical rotation mount with a 40 mm clear aperture. The device is used to remotely control the power of large diameter laser beams for a magneto-optical trap (MOT). A piezo-electric ultrasonic motor on a printed circuit board (PCB) provides rotation with a precision better than 0.03 deg and allows for a very compact design. The rotation unit is controlled from a computer via serial communication, making integration into most software control platforms straightforward.

  20. A generalized hybrid transfinite element computational approach for nonlinear/linear unified thermal/structural analysis

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1987-01-01

    The present paper describes the development of a new hybrid computational approach for applicability for nonlinear/linear thermal structural analysis. The proposed transfinite element approach is a hybrid scheme as it combines the modeling versatility of contemporary finite elements in conjunction with transform methods and the classical Bubnov-Galerkin schemes. Applicability of the proposed formulations for nonlinear analysis is also developed. Several test cases are presented to include nonlinear/linear unified thermal-stress and thermal-stress wave propagations. Comparative results validate the fundamental capablities of the proposed hybrid transfinite element methodology.

  1. Hybrid RF/Optical Communications via 34-meter DSN Antennas

    Science.gov (United States)

    Vilnrotter, V.

    2010-02-01

    There is considerable interest in determining whether suitably modified versions of existing 34-m antennas at NASA's Goldstone Communications Complex, originally designed for X-band (nominally 8 GHz) and Ka-band (32 GHz) operation, could also be used to receive near-infrared optical signals. The robust backup structure of these antennas, together with extremely large collecting apertures and millidegree pointing capabilities, suggest that dual RF/optical communications may indeed be possible, at optical data rates approaching 1 gigabit per second (GBPS) from typical Mars distances. Several design concepts have emerged as possible candidates, requiring modifications ranging from polishing and coating of the existing aluminum panels of the main reflector, to significant redesign involving replacement of the panels with optical reflectors. Optical receiver parameters such as collecting area, field of view (FOV), and immunity to reflected sunlight differ markedly for each design concept, hence will likely lead to different levels of performance in terms of data throughput at a given error probability, and in terms of the ability to point close to the Sun. The communications performance of two candidate design concepts operating under realistic daytime conditions is evaluated, with particular emphasis on spatial and temporal acquisition algorithms and receiver optimization to achieve the best possible communication performance at high data rates.

  2. Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Agulleiro, J.I.; Vazquez, F.; Garzon, E.M. [Supercomputing and Algorithms Group, Associated Unit CSIC-UAL, University of Almeria, 04120 Almeria (Spain); Fernandez, J.J., E-mail: JJ.Fernandez@csic.es [National Centre for Biotechnology, National Research Council (CNB-CSIC), Campus UAM, C/Darwin 3, Cantoblanco, 28049 Madrid (Spain)

    2012-04-15

    Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. -- Highlights: Black-Right-Pointing-Pointer Hybrid computing allows full exploitation of the power (CPU+GPU) in a computer. Black-Right-Pointing-Pointer Proper orchestration of workload is managed by an on-demand strategy. Black-Right-Pointing-Pointer Total number of threads running in the system should be limited to the number of CPUs.

  3. A gold hybrid structure as optical coupler for quantum well infrared photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jiayi; Li, Qian; Jing, Youliang [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 (China); Chen, Xiaoshuang, E-mail: xschen@mail.sitp.ac.cn; Li, Zhifeng; Li, Ning; Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-08-28

    A hybrid structure consisting of a square lattice of gold disk arrays and an overlaying gold film is proposed as an optical coupler for a backside-illuminated quantum well infrared photodetector (QWIP). Finite difference time-domain method is used to numerically simulate the reflection spectra and the field distributions of the hybrid structure combined with the QWIP device. The results show that the electric field component perpendicular to the quantum well is strongly enhanced when the plasmonic resonant wavelength of the hybrid structure coincides with the response one of the quantum well infrared photodetector regardless of the polarization of the incident light. The effect of the diameter and thickness of an individual gold disk on the resonant wavelength is also investigated, which indicates that the localized surface plasmon also plays a role in the light coupling with the hybrid structure. The coupling efficiency can exceed 50 if the structural parameters of the gold disk arrays are well optimized.

  4. GHz bandwidth noise eater hybrid optical amplifier: design guidelines.

    Science.gov (United States)

    Danion, Gwennaël; Bondu, François; Loas, Goulc'hen; Alouini, Mehdi

    2014-07-15

    This Letter describes the design of an optical amplifier system optimized to reduce the relative intensity noise (RIN) of the input signal, and discloses its performance in terms of intensity noise reduction and bandwidth, without phase noise degradation. This polarization-maintaining amplifier is composed of an erbium-doped fiber amplifier (EDFA) cascaded with a semiconductor optical amplifier (SOA). The EDFA is sized to feed the SOA with a constant power corresponding to the optimal saturation level for noise reduction, through coherent population oscillations. When properly optimized, such an amplifier provides, simultaneously, 17 dB optical gain, 5.4 dB noise factor, and 20 dB reduction of the input-RIN across a 3 GHz bandwidth, without any electronics feedback loop.

  5. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  6. A Hybrid Circular Queue Method for Iterative Stencil Computations on GPUs

    Institute of Scientific and Technical Information of China (English)

    Yang Yang; Hui-Min Cui; Xiao-Bing Feng; Jing-Ling Xue

    2012-01-01

    In this paper,we present a hybrid circular queue method that can significantly boost the performance of stencil computations on GPU by carefully balancing usage of registers and shared-memory.Unlike earlier methods that rely on circular queues predominantly implemented using indirectly addressable shared memory,our hybrid method exploits a new reuse pattern spanning across the multiple time steps in stencil computations so that circular queues can be implemented by both shared memory and registers effectively in a balanced manner.We describe a framework that automatically finds the best placement of data in registers and shared memory in order to maximize the performance of stencil computations.Validation using four different types of stencils on three different GPU platforms shows that our hybrid method achieves speedups up to 2.93X over methods that use circular queues implemented with shared-memory only.

  7. Effective hybrid evolutionary computational algorithms for global optimization and applied to construct prion AGAAAAGA fibril models

    CERN Document Server

    Zhang, Jiapu

    2010-01-01

    Evolutionary algorithms are parallel computing algorithms and simulated annealing algorithm is a sequential computing algorithm. This paper inserts simulated annealing into evolutionary computations and successful developed a hybrid Self-Adaptive Evolutionary Strategy $\\mu+\\lambda$ method and a hybrid Self-Adaptive Classical Evolutionary Programming method. Numerical results on more than 40 benchmark test problems of global optimization show that the hybrid methods presented in this paper are very effective. Lennard-Jones potential energy minimization is another benchmark for testing new global optimization algorithms. It is studied through the amyloid fibril constructions by this paper. To date, there is little molecular structural data available on the AGAAAAGA palindrome in the hydrophobic region (113-120) of prion proteins.This region belongs to the N-terminal unstructured region (1-123) of prion proteins, the structure of which has proved hard to determine using NMR spectroscopy or X-ray crystallography ...

  8. A new hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.

  9. A new hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.

  10. Optical and electrical properties of electrochemically deposited polyaniline/CeO2 hybrid nanocomposite film

    Institute of Scientific and Technical Information of China (English)

    Anees A. Ansari; M. A. M. Khan; M. Naziruddin Khan; Salman A. Alrokayan; M. Alhoshan; M. S. Alsalhi

    2011-01-01

    This paper reports the optical and electrical properties of electrochemically deposited polyaniline (PANI)/cerium oxide (CeO2) hybrid nano-composite film onto indium-fin-oxide (ITO) glass substrate. UV-visible spectroscopy and I-V characteristic were performed to study the optical and electrical parameters of the electrochemically deposited film. The film exhibited a strong absorption below 400 nm (3.10 eV) with a well defined absorbance peak at around 285 nm (4.35 eV). The estimated band gap of the CeO2 sample was 3.44 eV, higher than bulk CeO2 powder (Eg = 3.19 eV) due to the quantum confinement effect. Optical and electrochemical characteristics indicated that the electrical properties of PANI/CeO2 hybrid nanocomposite film are dominated by PANI doping.

  11. Optical Biosensor with Multienzyme System Immobilized onto Hybrid Membrane for Pesticides Determination

    Directory of Open Access Journals (Sweden)

    Lyubov Yotova

    2011-12-01

    Full Text Available A construction of optical biosensor based on simultaneous immobilization of acetylcholinesterase and choline oxidase enzymes for the detection of pesticides residues is described. Different kinds of novel SiO2 hybrid membranes were synthesized to be suitable for optical biosensors using sol-gel techniques. The bioactive component of the sensor consists of a multi-enzyme system including acetylcholinesterase and choline oxidase covalently immobilized on new hybrid membranes. The sensor exhibited a linear response to acetylcholine in a concentration range of 2.5 - 30 mM. Inhibition plots obtained from testing carbamate (carbofuran pesticides exhibited concentration dependent behaviour and showed linear profiles in concentration ranges between 5x10-8 - 5x10-7 M for carbofuran. The factors affecting the constructed optical biosensors were investigated.

  12. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    Science.gov (United States)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  13. ULTRASOUND AND COMPUTED TOMOGRAPHIC DIAGNOSIS OF OPTIC NERVE TUMORS

    Directory of Open Access Journals (Sweden)

    S. V. Saakyan

    2012-01-01

    Full Text Available A comprehensive examination was made in 93 patients, including 18 children, with tumors of the optic nerve (ON. Duplex ultrasound scanning was performed in 39 patients, of them there were 11 patients with ON gliomas and 28 with ON meningiomas. The specific computed tomographic and echographic signs of ON glioma and meningiomas were detected. The studies have shown that duplex ultrasound scanning and structural computed tomography of orbital sockets are highly informative complementary imaging procedures for ON tumors, which permits one to make their correct diagnosis, to specify surgical volume, and to plan adequate treatment.

  14. The 2004 Latsis Symposium: Quantum optics for Communication and Computing

    CERN Multimedia

    2004-01-01

    1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental c...

  15. The 2004 Latsis Symposium: Quantum optics for Communication and Computing

    CERN Multimedia

    2004-01-01

    1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental ...

  16. The 2004 Latsis Symposium: Quantum optics for Communication and Computing

    CERN Multimedia

    2004-01-01

    1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental...

  17. Fourier optics through the looking glass of digital computers

    Science.gov (United States)

    Yaroslavsky, Leonid P.

    2011-10-01

    Optical transforms are represented in computers by their discrete versions. In particular, Fourier optics is represented through Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT). Being discrete representation of the optical Fourier transform, these transforms feature a number of peculiarities that cast a new light on such fundamental properties of the Fourier Transform as sampling theorem and the uncertainty principle. In this paper, we formulate the Discrete Sampling Theorem and the discrete uncertainty principle, demonstrate that discrete signals can be both bandlimited in DFT or DCT domains and have strictly limited support in signal domain and present examples of such "bandlimited/ space-limited" signals that remain to be so for whatever large of their samples.

  18. High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation

    CERN Document Server

    Yang, W L; Hu, Y; Feng, M; Du, J F

    2011-01-01

    We study a hybrid quantum computing system using nitrogen-vacancy center ensemble (NVE) as quantum memory, current-biased Josephson junction (CBJJ) superconducting qubit fabricated in a transmission line resonator (TLR) as quantum computing processor and the microwave photons in TLR as quantum data bus. The storage process is seriously treated by considering all kinds of decoherence mechanisms. Such a hybrid quantum device can also be used to create multi-qubit W states of NVEs through a common CBJJ. The experimental feasibility and challenge are justified using currently available technology.

  19. Realization of Shor's algorithm on an optical quantum computer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A research team led by Prof. PAN Jianwei with the University of Science and Technology of China (USTC), CAS has been successful in performing Shor's algorithm, a quantum algorithm for factorization, in an optical quantum computer. The feat is also independently made by another team led by Andrew White from the University of Queensland in Brisbane, Australia. Both results were published in the 19 December, 2007 issue of Physics Review Newsletters.

  20. Hybrid Computational Model for High-Altitude Aeroassist Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort addresses a need for accurate computational models to support aeroassist and entry vehicle system design over a broad range of flight conditions...

  1. Determination of Horizontal Motion through Optical Flow Computations

    Institute of Scientific and Technical Information of China (English)

    俞志和; FrankM.Caimi

    1997-01-01

    For intelligent/autonomous subsea vehicles,reliable short-range horizontal positioning is difficult to achieve,particularly over flat bottom topography.A potential solution proposed in this paper utilized a passive optical sensing method to estimate the vehicle displacement using the bottom surface texture.The suggested optical flow method does not require any feature correspondences in images and it is robust in allowing brightness changes between image frames.Fundamentally,this method is similar to correlation methods attempting to match images and compute the motion disparity.However,in correlation methods,searching a neighbor region blindly for best match is lengthy.Main contributions of this paper come from the analysis showing that optical flow computation based on the general model cannot avoid errors except for null motion although the sign of optical flow keeps correct,and from the development of an iterative shifting method based on the error characteristics to accurately determine motions.Advantages of the proposed method are verified by real image experiments.

  2. Hybrid PSO-MOBA for Profit Maximization in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Dr. Salu George

    2015-02-01

    Full Text Available Cloud service provider, infrastructure vendor and clients/Cloud user’s are main actors in any cloud enterprise like Amazon web service’s cloud or Google’s cloud. Now these enterprises take care in infrastructure deployment and cloud services management (IaaS/PaaS/SaaS. Cloud user ‘s need to provide correct amount of services needed and characteristic of workload in order to avoid over – provisioning of resources and it’s the important pricing factor. Cloud service provider need to manage the resources and as well as optimize the resources to maximize the profit. To manage the profit we consider the M/M/m queuing model which manages the queue of job and provide average execution time. Resource Scheduling is one of the main concerns in profit maximization for which we take HYBRID PSO-MOBA as it resolves the global convergence problem, faster convergence, less parameter to tune, easier searching in very large problem spaces and locating the right resource. In HYBRID PSO-MOBA we are combining the features of PSO and MOBA to achieve the benefits of both PSO and MOBA and have greater compatibility.

  3. Hybrid Quantum System of a Nanofiber Mode Coupled to Two Chains of Optically Trapped Atoms

    CERN Document Server

    Zoubi, Hashem

    2010-01-01

    A tapered optical nanofiber simultaneously used to trap and optically interface of cold atoms through evanescent fields constitutes a new and well controllable hybrid quantum system. The atoms are trapped in two parallel 1D optical lattices generated by suitable far blue and red detuned evanescent field modes very close to opposite sides of the nanofiber surface. Collective electronic excitations (excitons) of each of the optical lattices are resonantly coupled to the second lattice forming symmetric and antisymmetric common excitons. In contrast to the inverse cube dependence of the individual atomic dipole-dipole interaction, we analytically find an exponentially decaying coupling strength with distance between the lattices. The resulting symmetric (bright) excitons strongly interact with the resonant nanofiber photons to form fiber polaritons, which can be observed through linear optical spectra. For large enough wave vectors the polariton decay rate to free space is strongly reduced, which should render t...

  4. Optical properties of the organic-inorganic hybrid perovskite C H3N H3Pb I3 : Theory and experiment

    Science.gov (United States)

    Demchenko, D. O.; Izyumskaya, N.; Feneberg, M.; Avrutin, V.; Özgür, Ü.; Goldhahn, R.; Morkoç, H.

    2016-08-01

    We perform a theoretical and experimental study of the optical properties of a C H3N H3Pb I3 perovskite prepared by a vapor-assisted solution process, motivated in part by very high photovoltaic cell efficiencies. Several widespread theoretical approaches are used in an attempt to determine the most appropriate approach which would reproduce the experimental electronic structure and optical properties of the C H3N H3Pb I3 perovskite. We compare a semilocal approximation to the density functional theory with hybrid functionals and time-dependent hybrid functional calculations, evaluating the effects of exchange tuning and spin-orbit coupling. Using these methods we calculate the electronic structure, optical absorption spectrum, and frequency-dependent dielectric function of the C H3N H3Pb I3 perovskite. The results are compared to the experimentally obtained dielectric functions acquired from ellipsometry measurements. We demonstrate that inclusion of spin-orbit coupling in theoretical calculations is critical in describing the electronic and optical properties of the C H3N H3Pb I3 perovskite. Good agreement with experimental data is achieved when the optical spectra are computed using time-dependent hybrid density functional theory with spin-orbit coupling.

  5. Hybrid Radio/Free-Space Optical Design for Next Generation Backhaul Systems

    KAUST Repository

    Douik, Ahmed

    2016-04-22

    The deluge of date rate in today\\'s networks imposes a cost burden on the backhaul network design. Developing cost-efficient backhaul solutions becomes an exciting, yet challenging, problem. Traditional technologies for backhaul networks, including either radio-frequency (RF) backhauls or optical fibers (OF). While RF is a cost-effective solution as compared with OF, it supports the lower data rate requirements. Another promising backhaul solution is the free-space optics (FSO) as it offers both a high data rate and a relatively low cost. The FSO, however, is sensitive to nature conditions, e.g., rain, fog, and line-of-sight. This paper combines both the RF and FSO advantages and proposes a hybrid RF/FSO backhaul solution. It considers the problem of minimizing the cost of the backhaul network by choosing either OF or hybrid RF/FSO backhaul links between the base stations, so as to satisfy data rate, connectivity, and reliability constraints. It shows that under a specified realistic assumption about the cost of OF and hybrid RF/FSO links, the problem is equivalent to a maximum weight clique problem, which can be solved with moderate complexity. Simulation results show that the proposed solution shows a close-to-optimal performance, especially for reasonable prices of the hybrid RF/FSO links. They further reveal that the hybrid RF/FSO is a cost-efficient solution and a good candidate for upgrading the existing backhaul networks. © 2016 IEEE.

  6. Optical Code-Division Multiple-Access and Wavelength Division Multiplexing: Hybrid Scheme Review

    Directory of Open Access Journals (Sweden)

    P. Susthitha Menon

    2012-01-01

    Full Text Available Problem statement: Hybrid Optical Code-Division Multiple-Access (OCDMA and Wavelength-Division Multiplexing (WDM have flourished as successful schemes for expanding the transmission capacity as well as enhancing the security for OCDMA. However, a comprehensive review related to this hybrid system are lacking currently. Approach: The purpose of this paper is to review the literature on OCDMA-WDM overlay systems, including our hybrid approach of one-dimensional coding of SAC OCDMA with WDM signals. In addition, we present an additional review of other categorios of hybrid WDM/OCDMA schemes, where codes of OCDMA can be employed on each WDM wavelength. Furthermore, an essential background of OCDMA, recent coding techniques and security issues are also presented. Results: Our results indicate that the feasibility of transmitting both OCDMA and WDM users on the same spectrum band can be achieved using MQC family code with an acceptable performance as well as good data confidentiality. In addition, the WDM interference signals can be suppressed properly for detection of optical broadband CDMA using notch filters. Conclusion: The paper provides a comprehensive overview of hybrid OCDMA-WDM systems and can be used as a baseline study for other scientists in the similar scope of research.

  7. (Bio)hybrid materials based on optically active particles

    Science.gov (United States)

    Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

    2014-03-01

    In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

  8. Effects of optical backscattering on silicon photonic hybrid laser performance

    Science.gov (United States)

    Pacradouni, V.; Klein, J.; Pond, J.

    2016-04-01

    We present numerical results on the effect of backscattering at the junctions of double bus ring resonators in a Vernier ring hybrid laser design. The structure is comprised off a pair of III-V gain media evanescently coupled to a silicon on insulator racetrack comprised of a pair of double bus ring resonators coupled together through straight and flared waveguide sections. We show how the small backscattering at the ring resonator junctions has the effect of splitting and shifting the resonances off the clockwise and counter clockwise propagating modes thereby modifying the feedback spectrum from the ideal case. We then simulate results such as light current (LI) curves, relative intensity noise (RIN) and laser spectrum, and compare the laser performance including backscattering effects with the ideal case.

  9. Optical design and characterization of an advanced computational imaging system

    Science.gov (United States)

    Shepard, R. Hamilton; Fernandez-Cull, Christy; Raskar, Ramesh; Shi, Boxin; Barsi, Christopher; Zhao, Hang

    2014-09-01

    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the optical requirement trades associated with custom and commercial-off-the-shelf (COTS) optics and converge on the development of two low-cost and robust COTS testbeds. The first is a coded-aperture programmable pixel imager employing a digital micromirror device (DMD) for image plane per-pixel oversampling and spatial super-resolution experiments. The second is a simultaneous pupil-encoded and time-encoded imager employing a DMD for pupil apodization or a deformable mirror for wavefront coding experiments. These two testbeds are built to leverage two MIT Lincoln Laboratory focal plane arrays - an orthogonal transfer CCD with non-uniform pixel sampling and on-chip dithering and a digital readout integrated circuit (DROIC) with advanced on-chip per-pixel processing capabilities. This paper discusses the derivation of optical component requirements, optical design metrics, and performance analyses for the two testbeds built.

  10. Soft computing applications: the advent of hybrid systems

    Science.gov (United States)

    Bonissone, Piero P.

    1998-10-01

    Soft computing is a new field of computer sciences that deals with the integration of problem- solving technologies such as fuzzy logic, probabilistic reasoning, neural networks, and genetic algorithms. Each of these technologies provide us with complementary reasoning and searching methods to solve complex, real-world problems. We will analyze some of the most synergistic combinations of self computing technologies, with an emphasis on the development of smart algorithm-controllers, such as the use of FL to control GAs and NNs parameters. We will also discuss the application of GAs to evolve NNs or tune FL controllers; and the implementation of FL controllers as NNs tuned by backpropagation-type algorithms. We will conclude with a detailed description of a GA-tuned fuzzy controller to implement a train handling control.

  11. High-dynamic-range hybrid analog-digital control broadband optical spectral processor using micromirror and acousto-optic devices.

    Science.gov (United States)

    Riza, Nabeel A; Reza, Syed Azer

    2008-06-01

    For the first time, to the best of our knowledge, the design and demonstration of a programmable spectral filtering processor is presented that simultaneously engages the power of an analog-mode optical device such as an acousto-optic tunable filter and a digital-mode optical device such as the digital micromirror device. The demonstrated processor allows a high 50 dB attenuation dynamic range across the chosen 1530-1565 nm (~C band). The hybrid analog-digital spectral control mechanism enables the processor to operate with greater versatility when compared to analog- or digital-only processor designs. Such a processor can be useful both as a test instrument in biomedical applications and as an equalizer in fiber communication networks.

  12. Spatial and temporal variability in response to hybrid electro-optical stimulation

    Science.gov (United States)

    Duke, Austin R.; Lu, Hui; Jenkins, Michael W.; Chiel, Hillel J.; Jansen, E. Duco

    2012-06-01

    Hybrid electro-optical neural stimulation is a novel paradigm combining the advantages of optical and electrical stimulation techniques while reducing their respective limitations. However, in order to fulfill its promise, this technique requires reduced variability and improved reproducibility. Here we used a comparative physiological approach to aid the further development of this technique by identifying the spatial and temporal factors characteristic of hybrid stimulation that may contribute to experimental variability and/or a lack of reproducibility. Using transient pulses of infrared light delivered simultaneously with a bipolar electrical stimulus in either the marine mollusk Aplysia californica buccal nerve or the rat sciatic nerve, we determined the existence of a finite region of excitability with size altered by the strength of the optical stimulus and recruitment dictated by the polarity of the electrical stimulus. Hybrid stimulation radiant exposures yielding 50% probability of firing (RE50) were shown to be negatively correlated with the underlying changes in electrical stimulation threshold over time. In Aplysia, but not in the rat sciatic nerve, increasing optical radiant exposures (J cm-2) beyond the RE50 ultimately resulted in inhibition of evoked potentials. Accounting for the sources of variability identified in this study increased the reproducibility of stimulation from 35% to 93% in Aplysia and 23% to 76% in the rat with reduced variability.

  13. Performance study of macro-bending EDFA/Raman hybrid optical fiber amplifiers

    Science.gov (United States)

    Mahran, O.

    2015-10-01

    In this paper, we present an analytical study of a (macro-bending EDFA)/Raman hybrid optical amplifier. The bending radius is 4 mm with EDFA length 10 m with forward pump power in the range (100-500 mW) and Raman amplifier length (12-55 km) with backward pump power variations (80-200 mW) is considered in our model. Due to bending loss in EDFA, the gain of hybrid amplifier is increased to ~7 dB more than the normal EDFA/Raman hybrid amplifier and the noise figure is decreased by ~2 dB rather than without macro-bending EDFA/Raman hybrid amplifier. The signal to noise ratio (OSNR) calculations shows a better performance of macro-bending EDFA/Raman hybrid amplifier than without macro-bending one. A flat gain is obtained in the signal wavelength region (1560-1600 nm), which is the L-band. The calculated results for macro-bending case are compared with experimental results of normal case by Lee et al., in the L-band showing an increase in the gain, reduction in the noise figure and more gain flatness at the input signal -20 dBm for macro-bending EDFA/Raman hybrid amplifier.

  14. Hybrid structure of biotemplate-zinc-tin oxide for better optical, morphological and photocatalytic properties

    Science.gov (United States)

    Karpuraranjith, M.; Thambidurai, S.

    2017-03-01

    A new chitosan (as biotemplate)-zinc-tin oxide hybrid structure was successfully synthesized by a chemical precipitation method and annealed at 500 °C. We studied the structural changes, optical, thermal and photo catalytic properties. The chemical bonding of the Zn-O and Sn-O-Sn functional groups were confirmed by FT-IR absorption peaks appearing at 538 and 635 cm‑1. The different ratio of ZnO to SnO2 particles on the biotemplate matrix altered the morphology of the hybrids from an agglomerated state to a microcrystalline form confirmed by HR-SEM and TEM analysis. The formation of a Zn0.15Sn0.85O hybrid structure was observed in the visible light region, with an energy band gap of ∼3.19 eV and higher surface area of 98 m2 g‑1. The thermal property shows that CS-Zn0.15Sn0.85O has a higher thermal stability than a CS-Zn0.25Sn0.75O hybrid structure. The results demonstrate that the biotemplate-zinc-tin oxide hybrid structure has a reinforced effect compared to the other components. Therefore, a biotemplate-based zinc-tin oxide hybrid structure could be a promising material for better dye removal efficiency, which was obtained for ∼100 and 96% with MB and RY-15 dyes.

  15. Validation of a Hybrid Microwave-Optical Monitor to Investigate Thermal Provocation in the Microvasculature.

    Science.gov (United States)

    Al-Armaghany, Allann; Tong, Kenneth; Highton, David; Leung, Terence S

    2016-01-01

    We have previously developed a hybrid microwave-optical system to monitor microvascular changes in response to thermal provocation in muscle. The hybrid probe is capable of inducing deep heat from the skin surface using mild microwaves (1-3 W) and raises the tissue temperature by a few degrees Celsius. This causes vasodilation and the subsequent increase in blood volume is detected by the hybrid probe using near infrared spectroscopy. The hybrid probe is also equipped with a skin cooling system which lowers the skin temperature while allowing microwaves to warm up deeper tissues. The hybrid system can be used to assess the condition of the vasculature in response to thermal stimulation. In this validation study, thermal imaging has been used to assess the temperature distribution on the surface of phantoms and human calf, following microwave warming. The results show that the hybrid system is capable of changing the skin temperature with a combination of microwave warming and skin cooling. It can also detect thermal responses in terms of changes of oxy/deoxy-hemoglobin concentrations.

  16. Quantum information processing in nanostructures Quantum optics; Quantum computing

    CERN Document Server

    Reina-Estupinan, J H

    2002-01-01

    Since information has been regarded os a physical entity, the field of quantum information theory has blossomed. This brings novel applications, such as quantum computation. This field has attracted the attention of numerous researchers with backgrounds ranging from computer science, mathematics and engineering, to the physical sciences. Thus, we now have an interdisciplinary field where great efforts are being made in order to build devices that should allow for the processing of information at a quantum level, and also in the understanding of the complex structure of some physical processes at a more basic level. This thesis is devoted to the theoretical study of structures at the nanometer-scale, 'nanostructures', through physical processes that mainly involve the solid-state and quantum optics, in order to propose reliable schemes for the processing of quantum information. Initially, the main results of quantum information theory and quantum computation are briefly reviewed. Next, the state-of-the-art of ...

  17. Parallel processing using an optical delay-based reservoir computer

    Science.gov (United States)

    Van der Sande, Guy; Nguimdo, Romain Modeste; Verschaffelt, Guy

    2016-04-01

    Delay systems subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By implementing a neuro-inspired computational scheme relying on the transient response to optical data injection, high processing speeds have been demonstrated. However, reservoir computing systems based on delay dynamics discussed in the literature are designed by coupling many different stand-alone components which lead to bulky, lack of long-term stability, non-monolithic systems. Here we numerically investigate the possibility of implementing reservoir computing schemes based on semiconductor ring lasers. Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. We demonstrate that two independent machine learning tasks , even with different nature of inputs with different input data signals can be simultaneously computed using a single photonic nonlinear node relying on the parallelism offered by photonics. We illustrate the performance on simultaneous chaotic time series prediction and a classification of the Nonlinear Channel Equalization. We take advantage of different directional modes to process individual tasks. Each directional mode processes one individual task to mitigate possible crosstalk between the tasks. Our results indicate that prediction/classification with errors comparable to the state-of-the-art performance can be obtained even with noise despite the two tasks being computed simultaneously. We also find that a good performance is obtained for both tasks for a broad range of the parameters. The results are discussed in detail in [Nguimdo et al., IEEE Trans. Neural Netw. Learn. Syst. 26, pp. 3301-3307, 2015

  18. Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2015-01-01

    The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites...... with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites....... automatically using the Python based code. 3D computational studies of environment and fatigue analyses of multiscale composites with secondary nano-scale reinforcement in different material phases and different CNTs arrangements are carried out systematically in this paper. It was demonstrated that composites...

  19. Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure–properties relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    Hybrid and hierarchical polymer composites represent a promising group of materials for engineering applications. In this paper, computational studies of the strength and damage resistance of hybrid and hierarchical composites are reviewed. The reserves of the composite improvement are explored...... by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....

  20. Hybrid Computation Model for Intelligent System Design by Synergism of Modified EFC with Neural Network

    OpenAIRE

    2015-01-01

    In recent past, it has been seen in many applications that synergism of computational intelligence techniques outperforms over an individual technique. This paper proposes a new hybrid computation model which is a novel synergism of modified evolutionary fuzzy clustering with associated neural networks. It consists of two modules: fuzzy distribution and neural classifier. In first module, mean patterns are distributed into the number of clusters based on the modified evolutionary fuzzy cluste...

  1. Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas

    CERN Document Server

    Romalis, M V

    2010-01-01

    Optical pumping of an optically thick atomic vapor typically requires a quenching buffer gas, such as N$_{2}$, to prevent radiation trapping of unpolarized photons which would depolarize the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4.5 times higher polarization of K than direct optical pumping of K in the absence of N$_{2}$. Such spin-exchange polarization transfer from optically-thin species is useful in a variety of areas, including spin-polarized nuclear scattering targets and electron beams, quantum-non-demolition spin measurements, and ultra-sensitive magnetometry.

  2. SINET3: advanced optical and IP hybrid network

    Science.gov (United States)

    Urushidani, Shigeo

    2007-11-01

    This paper introduces the new Japanese academic backbone network called SINET3, which has been in full-scale operation since June 2007. SINET3 provides a wide variety of network services, such as multi-layer transfer, enriched VPN, enhanced QoS, and layer-1 bandwidth on demand (BoD) services to create an innovative and prolific science infrastructure for more than 700 universities and research institutions. The network applies an advanced hybrid network architecture composed of 75 layer-1 switches and 12 high-performance IP routers to accommodate such diversified services in a single network platform, and provides sufficient bandwidth using Japan's first STM256 (40 Gbps) lines. The network adopts lots of the latest networking technologies, such as next-generation SDH (VCAT/GFP/LCAS), GMPLS, advanced MPLS, and logical-router technologies, for high network convergence, flexible resource assignment, and high service availability. This paper covers the network services, network design, and networking technologies of SINET3.

  3. Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2010-09-01

    This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

  4. Computer-aided diagnosis system: a Bayesian hybrid classification method.

    Science.gov (United States)

    Calle-Alonso, F; Pérez, C J; Arias-Nicolás, J P; Martín, J

    2013-10-01

    A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k-nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified.

  5. Hybrid computing using a neural network with dynamic external memory.

    Science.gov (United States)

    Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis

    2016-10-27

    Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.

  6. Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications.

    Science.gov (United States)

    Buencuerpo, Jeronimo; Munioz-Camuniez, Luis E; Dotor, Maria L; Postigo, Pablo A

    2012-07-02

    A hybrid approach for light trapping using photonic crystal nanostructures (nanorods, nanopillars or nanoholes) on top of an ultra thin film as a substrate is presented. The combination of a nanopatterned layer with a thin substrate shows an enhanced optical absorption than equivalent films without patterning and can compete in performance with nanostructured systems without a substrate. The designs are tested in four relevant materials: amorphous silicon (a-Si), crystalline silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP). A consistent enhancement is observed for all of the materials when using a thin hybrid system (300 nm) even compared to the non patterned thin film with an anti-reflective coating (ARC). A realistic solar cell structure composed of a hybrid system with a layer of indium tin oxide (ITO) an ARC and a back metal layer is performed, showing an 18% of improvement for the nanostructured device.

  7. Theoretical Investigation of Nonlinear Optical Properties of Organic and Transition Metal Hybrid Azobenzene Dendrimers

    Institute of Scientific and Technical Information of China (English)

    LIU Cai-Ping; LIU Ping; WU Ke-Chen

    2008-01-01

    In this work, we report a theoretical exploration of the responses of organic azo-benzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, second and third generation (G1, G2 and G3, respectively) are investigated by semi-empirical methods. The calculated results show that the nonlinear optical (NLO)properties of these organic dendrimers are mainly determined by the azobenzene chromospheres.Additionally, the values of β and γ increase almost in proportion to the number of chromophores. On the other hand, two types of transition metal hybrid azobenzene dendrimers (core-hybrid and branch-end hybrid according to the sites combined with transition metals) are simulated and discussed in detail in the framework of time-dependent density functional theory (TDDFT). The calculated results reveal that the NLO responses of these metal dendrimers distinctly varied as a result of altering the charge transfer transition scale and the excitation energies.

  8. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    Directory of Open Access Journals (Sweden)

    Fábio M. Pereira

    2016-10-01

    Full Text Available This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii fluorescence-based bead counting.

  9. Optical manipulation of a magnon-photon hybrid system

    CERN Document Server

    Braggio, C; Guarise, M; Ortolan, A; Ruoso, G

    2016-01-01

    We demonstrate an all-optical method for manipulating the magnetization in a 1-mm YIG (yttrium-iron-garnet) sphere placed in a $\\sim0.17\\,$T uniform magnetic field. An harmonic of the frequency comb delivered by a multi-GHz infrared laser source is tuned to the Larmor frequency of the YIG sphere to drive magnetization oscillations, which in turn give rise to a radiation field used to thoroughly investigate the phenomenon. The radiation damping issue that occurs at high frequency and in the presence of highly magnetizated materials, has been overcome by exploiting magnon-photon strong coupling regime in microwave cavities. Our findings demonstrate an effective technique for ultrafast control of the magnetization vector in optomagnetic materials via polarization rotation and intensity modulation of an incident laser beam. We eventually get a second-order susceptibility value of $\\sim10^{-7}$ cm$^2$/MW for single crystal YIG.

  10. A Strip-Loading Optical Waveguide Using Well Poled Stability Organic/Inorganic Hybrid Materials

    Institute of Scientific and Technical Information of China (English)

    GAO Wei-Nan; TIAN Mei-Qiang; SUN Xiao-Qiang; WANG Wei; DENG Ling; GAO Lei; ZHANG Da-Ming

    2009-01-01

    An optical waveguide for a polymer modulator based on organic/inorganic hybrid electro-optic (EO) materials is designed and fabricated by utilizing a strip-loading structure.This hybrid material has a controllable refractive index,high EO coefficient and good poled stability,which are suitable for the EO modulators and switches.The embedded waveguide made of the above EO material can reduce the coupling loss. The light is coupled into the gnided-core layer and then undergoes a transition from the buried waveguide into the EO material.Obvious modulation is observed by application of ac voltage to the EO material.The measured Vπ of co-planar waveguide (CPW) is 5 V for the Mach-Zehnder (MZ) modulator in length of 3.5cm.

  11. Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis

    Science.gov (United States)

    Shushama, Kamrun Nahar; Rana, Md. Masud; Inum, Reefat; Hossain, Md. Biplob

    2017-01-01

    In this paper, a graphene coated optical fiber surface plasmon resonance (SPR) biosensor is presented for the detection of DNA Hybridization. For the proposed sensor, a four layer model (fiber core /metal /sensing layer /sample) where a sheet of graphene (biomolecular recognition elements (BRE)) acting as a sensing layer is coated around the gold film because graphene enhances the sensitivity of fiber optic SPR biosensor. Numerical analysis shows the variation of resonance wavelength and spectrum of transmitted power for mismatched DNA strands and for complementary DNA strands. For mismatched DNA strands variation is negligible whereas for complementary DNA strands is considerably countable. Proposed sensor successfully distinguishes hybridization and single nucleotide polymorphisms (SNP) by observing the variation level of resonance wavelength and spectrum of transmitted power.

  12. Performance optimization of EDFA-Raman hybrid optical amplifier using genetic algorithm

    Science.gov (United States)

    Singh, Simranjit; Kaler, R. S.

    2015-05-01

    For the first time, a novel net gain analytical model of EDFA-Raman hybrid optical amplifier (HOA) is designed and optimized the various parameters using genetic algorithm. Our method has shown to be robust in the simultaneous analysis of multiple parameters, such as Raman length, EDFA length and its pump powers, to obtained highest possible gain. The optimized HOA is further investigated and characterized on system level in the scenario of 100×10 Gbps dense wavelength division multiplexed (DWDM) system with 25 GHz interval. With an optimized HOA, a flat gain of >18 dB is obtained from frequency region 187 to 189.5 THz with a gain variation of less than 1.35 dB without using any gain flattened technique. The obtained noise figure is also the lowest value (<2 dB/channel) ever reported for proposed hybrid optical amplifier at reduced channel spacing with acceptable bit error rate.

  13. The diffractive achromat full spectrum computational imaging with diffractive optics

    KAUST Repository

    Peng, Yifan

    2016-07-11

    Diffractive optical elements (DOEs) have recently drawn great attention in computational imaging because they can drastically reduce the size and weight of imaging devices compared to their refractive counterparts. However, the inherent strong dispersion is a tremendous obstacle that limits the use of DOEs in full spectrum imaging, causing unacceptable loss of color fidelity in the images. In particular, metamerism introduces a data dependency in the image blur, which has been neglected in computational imaging methods so far. We introduce both a diffractive achromat based on computational optimization, as well as a corresponding algorithm for correction of residual aberrations. Using this approach, we demonstrate high fidelity color diffractive-only imaging over the full visible spectrum. In the optical design, the height profile of a diffractive lens is optimized to balance the focusing contributions of different wavelengths for a specific focal length. The spectral point spread functions (PSFs) become nearly identical to each other, creating approximately spectrally invariant blur kernels. This property guarantees good color preservation in the captured image and facilitates the correction of residual aberrations in our fast two-step deconvolution without additional color priors. We demonstrate our design of diffractive achromat on a 0.5mm ultrathin substrate by photolithography techniques. Experimental results show that our achromatic diffractive lens produces high color fidelity and better image quality in the full visible spectrum. © 2016 ACM.

  14. Cost-effective backhaul design using hybrid radio/free-space optical technology

    KAUST Repository

    Douik, Ahmed S.

    2015-06-08

    The deluge of date rate in today\\'s networks poses a cost burden on the backhaul network design. Developing cost efficient backhaul solutions becomes an interesting, yet challenging, problem. Traditional technologies for backhaul networks include either radio-frequency backhauls (RF) or optical fibres (OF). While RF is a cost-effective solution as compared to OF, it supports lower data rate requirements. Another promising backhaul solution that may combine both a high data rate and a relatively low cost is the free-space optics (FSO). FSO, however, is sensitive to nature conditions (e.g., rain, fog, line-ofsight, etc.). A more reliable alternative is, therefore, to combine RF and FSO solutions through a hybrid structure called hybrid RF/FSO. Consider a backhaul network, where the base-stations (BS) can be connected to each other either via OF or hybrid RF/FSO backhaul links. The paper addresses the problem of minimizing the cost of backhaul planning under connectivity and data rates constraints, so as to choose the appropriate costeffective backhaul type between BSs (i.e., either OF or hybrid RF/FSO). The paper solves the problem using graph theory techniques by introducing the corresponding planning graph. It shows that under a specified realistic assumption about the cost of OF and hybrid RF/FSO links, the problem is equivalent to a maximum weight clique problem, which can be solved with moderate complexity. Simulation results show that our proposed solution shows a close-to-optimal performance, especially for practical prices of the hybrid RF/FSO.

  15. Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber.

    Science.gov (United States)

    Cheng, Tonglei; Gao, Weiqing; Kawashima, Hiroyasu; Deng, Dinghuan; Liao, Meisong; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake

    2014-04-01

    When a chalcogenide-tellurite hybrid optical fiber with a high refractive index difference Δn=0.24 is pumped by an optical parametric oscillator with a pump wavelength from 1700 to 3000 nm, widely tunable second-harmonic generation (SHG) from 850 to 1502 nm is obtained. The observation of SHG is primarily due to the surface nonlinearity polarization at the core-cladding interface and the second-harmonic signal remains stable at the maximal level throughout the laser pulse irradiation.

  16. Piezo-phototronic UV/visible photosensing with optical-fiber-nanowire hybridized structures.

    Science.gov (United States)

    Wang, Zhaona; Yu, Ruomeng; Pan, Caofeng; Liu, Ying; Ding, Yong; Wang, Zhong Lin

    2015-03-04

    An optical-fiber-nanowire hybridized UV-visible photodetector (PD) is reported. The PD is designed to allow direct integration in optical communication systems without requiring the use of couplers via fiber-welding technology. The PD works in two modes: axial and off-axial illumination mode. By using the piezo-phototronic effect, the performance of the PD is enhanced/optimized by up to 718% in sensitivity and 2067% in photoresponsivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A hybrid fiber-optic sensor system for condition monitoring of large scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-01

    A hybrid fiber-optic sensor system which combines fiber Bragg grating (FBG) sensors and a Michelson interferometer is suggested for condition monitoring uses of large scale wind turbine blades. The system uses single broadband light source to address both sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light for the Michelson interferometer demodulation. For the feasibility test, different profiles of test strain, temperature and vibration have been applied to test structures, and successfully reconstructed with the proposed sensor system.

  18. Optical and Spectral Studies on β Alanine Metal Halide Hybrid Crystals

    Science.gov (United States)

    Sweetlin, M. Daniel; Selvarajan, P.; Perumal, S.; Ramalingom, S.

    2011-10-01

    We have synthesized and grown β alanine metal halide hybrid crystals viz. β alanine cadmium chloride (BACC), an amino acid transition metal halide complex crystal and β alanine potassium chloride (BAPC), an amino acid alkali metal halide complex crystal by slow evaporation method. The grown crystals were found to be transparent and have well defined morphology. The optical characteristics of the grown crystals were carried out with the help of UV-Vis Spectroscopy. The optical transmittances of the spectrums show that BAPC is more transparent than BACC. The Photoluminescence of the materials were determined by the Photoluminescent Spectroscopy

  19. Synthesis of hybrid chitosan/calcium aluminosilicate using a sol-gel method for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Elnahrawy, Amany Mohamed [Department of Solid State, Physics Division, National Research Center (NRC), Giza 12622, Cairo (Egypt); Kim, Yong Soo, E-mail: yskim2@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Ali, Ahmed I., E-mail: Ahmed_ali_2010@helwan.edu.eg [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Basic Science Department, Faculty of Industrial Education & Technology, Helwan University, Cairo 11281 (Egypt)

    2016-08-15

    Hybrid chitosan (CS)/calcium aluminosilicate nanocomposites thin films and membranes were prepared using a sol–gel method with three different concentrations of Al{sub 2}O{sub 3} (5, 7 and 10 mol. %). The prepared nanocomposites were characterized by transmission electron microscopy, X-ray diffraction and Fourier Transform Infrared spectroscopy. The optical properties of the prepared samples were analyzed by UV/Vis spectrophotometry and photoluminescence (PL) spectroscopy. The optical parameters revealed an increase in both the refractive index and band gap of the nanocomposites with increasing Al concentration. In addition, the PL spectra revealed a blue shift that was consistent with an increase in the optical band gap. These results suggest that CS/calcium aluminosilicate in two different forms can be a good candidate for optical sensors applications. - Highlights: • We show a large specific surface area of hybrid CS/calcium aluminosilicate thin films and membranes using sol-gel method. • Inorganic SiO{sub 2}-based phase are perfectly embedded onto chitosan matrix has a reliable stability. • CS/calcium aluminosilicate could be usable for optical sensors, planar waveguide, and bio-sensing.

  20. A Subfemtotesla Atomic Magnetometer Based on Hybrid Optical Pumping of Potassium and Rubidium

    Science.gov (United States)

    Li, Yang; Cai, Hongwei; Ding, Ming; Quan, Wei; Fang, Jiancheng

    2016-05-01

    Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have been researched and applied extensively. Higher sensitivity and spatial resolution combined with no cryogenic cooling of atomic magnetometers would enable many applications with low cost, including the magnetoencephalography (MEG). Ultrahigh sensitivity atomic magnetometer is considered to be the main development direction for the future. Hybrid optical pumping has been proposed to improve the efficiency of nuclear polarization. But it can also be used for magnetic field measurement. This method can control absorption of optical pumping light, which is benefit for improving the uniformity of alkali metal atoms polarization and the sensitivity of atomic magnetometer. In addition, it allows optical pumping in the absence of quenching gas. We conduct experiments with a hybrid optically pumped atomic magnetometer using a cell containing potassium and rubidium. By adjusting the density ratio of alkali metal and the pumping laser conditions, we measured the magnetic field sensitivity better than 0.7 fT/sqrt(Hz).

  1. Optical interconnection networks for high-performance computing systems.

    Science.gov (United States)

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  2. Computer Aided Interpretation Approach for Optical Tomographic Images

    CERN Document Server

    Klose, Christian D; Netz, Uwe; Beuthan, Juergen; Hielscher, Andreas H

    2010-01-01

    A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) of human finger joints in optical tomographic images. The image interpretation method employs a multi-variate signal detection analysis aided by a machine learning classification algorithm, called Self-Organizing Mapping (SOM). Unlike in previous studies, this allows for combining multiple physical image parameters, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging and inspection of optical tomographic images), were used as "ground truth"-benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities while...

  3. Non-diffusing photochromic gel for optical computed tomography phantoms

    Science.gov (United States)

    Jordan, K.

    2013-06-01

    This study examines photochromic response in radiation sensitive hydrogels. Genipin, crosslinked, gelatin gel can support high resolution images because the chromophores do not diffuse. A low power, 633 nm He-Ne laser was used to write lines into the gels by a photobleaching reaction. Optical cone-beam computed tomography (CBCT) scans mapped the high resolution images in 3D with 0.25 mm voxel resolution. A straight line was written into a deformed gel and then readout in its relaxed, initial shape. The curved, photo-bleached line demonstrated deformable 3D dosimetry is possible with this system to the balloon edge. High resolution, photochromic images provide key information for characterizing optical CT scanners and 3D dosimeters. Many, ionizing radiation, dosimeter materials demonstrate either a photochromic or photothermal response, allowing this approach to be widely used in quantitative 3D scanning.

  4. Dynamic computer-generated nonlinear-optical holograms

    Science.gov (United States)

    Liu, Haigang; Li, Jun; Fang, Xiangling; Zhao, Xiaohui; Zheng, Yuanlin; Chen, Xianfeng

    2017-08-01

    We propose and experimentally demonstrate dynamic nonlinear optical holograms by introducing the concept of computer-generated holograms for second-harmonic generation of a structured fundamental wave with a specially designed wave front. The generation of Laguerre-Gaussian second-harmonic beams is investigated in our experiment. Such a method, which only dynamically controls the wave front of the fundamental wave by a spatial light modulator, does not need domain inversion in nonlinear crystals and hence is a more flexible way to achieve the off-axis nonlinear second-harmonic beams. It can also be adopted in other schemes and has potential applications in nonlinear frequency conversion, optical signal processing, and real-time hologram, etc.

  5. Design and investigation of a novel silicon/ferroelectric hybrid electro-optical microring modulator

    Science.gov (United States)

    Qi, Zhipeng; Hu, Guohua; Liu, Chang; Li, Lei; Yun, Binfeng; Zhang, Ruohu; Cui, Yiping

    2017-02-01

    A silicon (Si) and lanthanum-doped lead zirconium titanate (PLZT) hybrid microring modulator based on silicon-on-insulator (SOI) platform is designed theoretically and investigated numerically in this paper. The heterogeneous integration of PLZT film with Si material enables the waveguide to acquire both excellent electro-optical property and strong mode confinement capacity. Such hybrid microring modulator (100 μm in radius) has a PLZT rib-loaded cladding and is integrated with optimized tuning electrodes. The simulation results demonstrated that the Si/PLZT hybrid microring modulator could operate at 14 GHz with a relative high modulation efficiency (<0.8 V cm), which is much better than the other proposed Si/ferroelectric modulators. Meanwhile, under a driving voltage of 20 V, our modulator exhibits an extinction ratio of 32 dB at 1550.22 nm wavelength and a resonant wavelength tunability of 25 pm/V for TE mode. With these outstanding performances, the Si/PLZT hybrid microring modulator holds a great potential as a reliable on-chip device for optical communications and links.

  6. Petascale computation performance of lightweight multiscale cardiac models using hybrid programming models.

    Science.gov (United States)

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-01-01

    Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g. the message passing interface (MPI)) with multithreading (e.g. OpenMP, POSIX pthreads). The objective of this work is to compare the performance of such hybrid programming models when applied to the simulation of a lightweight multiscale cardiac model. Our results show that the hybrid models do not perform favourably when compared to an implementation using only MPI which is in contrast to our results using complex physiological models. Thus, with regards to lightweight multiscale cardiac models, the user may not need to increase programming complexity by using a hybrid programming approach. However, considering that model complexity will increase as well as the HPC system size in both node count and number of cores per node, it is still foreseeable that we will achieve faster than real time multiscale cardiac simulations on these systems using hybrid programming models.

  7. Hybrid slime mould-based system for unconventional computing

    Science.gov (United States)

    Berzina, T.; Dimonte, A.; Cifarelli, A.; Erokhin, V.

    2015-04-01

    Physarum polycephalum is considered to be promising for the realization of unconventional computational systems. In this work, we present results of three slime mould-based systems. We have demonstrated the possibility of transporting biocompatible microparticles using attractors, repellents and a DEFLECTOR. The latter is an external tool that enables to conduct Physarum motion. We also present interactions between slime mould and conducting polymers, resulting in a variation of their colour and conductivity. Finally, incorporation of the Physarum into the organic memristive device resulted in a variation of its electrical characteristics due to the slime mould internal activity.

  8. Hybrid electro-optical stimulation of the rat sciatic nerve induces force generation in the plantarflexor muscles

    Science.gov (United States)

    Duke, Austin R.; Peterson, Erik; Mackanos, Mark A.; Atkinson, James; Tyler, Dustin; Jansen, E. Duco

    2012-12-01

    Objective. Optical methods of neural activation are becoming important tools for the study and treatment of neurological disorders. Infrared nerve stimulation (INS) is an optical technique exhibiting spatially precise activation in the native neural system. While this technique shows great promise, the risk of thermal damage may limit some applications. Combining INS with traditional electrical stimulation, a method known as hybrid electro-optical stimulation, reduces the laser power requirements and mitigates the risk of thermal damage while maintaining spatial selectivity. Here we investigate the capability of inducing force generation in the rat hind limb through hybrid stimulation of the sciatic nerve. Approach. Hybrid stimulation was achieved by combining an optically transparent nerve cuff for electrical stimulation and a diode laser coupled to an optical fiber for infrared stimulation. Force generation in the rat plantarflexor muscles was measured in response to hybrid stimulation with 1 s bursts of pulses at 15 and 20 Hz and with a burst frequency of 0.5 Hz. Main results. Forces were found to increase with successive stimulus trains, ultimately reaching a plateau by the 20th train. Hybrid evoked forces decayed at a rate similar to the rate of thermal diffusion in tissue. Preconditioning the nerve with an optical stimulus resulted in an increase in the force response to both electrical and hybrid stimulation. Histological evaluation showed no signs of thermally induced morphological changes following hybrid stimulation. Our results indicate that an increase in baseline temperature is a likely contributor to hybrid force generation. Significance. Extraneural INS of peripheral nerves at physiologically relevant repetition rates is possible using hybrid electro-optical stimulation.

  9. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Feng; Spring, Andrew M. [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Sato, Hiromu [Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Maeda, Daisuke; Ozawa, Masa-aki; Odoi, Keisuke [Nissan Chemical Industries, Ltd., 2-10-1 Tuboi Nishi, Funabashi, Chiba 274-8507 (Japan); Aoki, Isao; Otomo, Akira [National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Yokoyama, Shiyoshi, E-mail: s-yokoyama@cm.kyushu-u.ac.jp [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan)

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that of the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.

  10. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    Science.gov (United States)

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  11. Broadband energy-efficient optical modulation by hybrid integration of silicon nanophotonics and organic electro-optic polymer

    CERN Document Server

    Zhang, Xingyu; Subbaraman, Harish; Luo, Jingdong; Jen, Alex K -Y; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L; Chen, Ray T

    2015-01-01

    Silicon-organic hybrid integrated devices have emerging applications ranging from high-speed optical interconnects to photonic electromagnetic-field sensors. Silicon slot photonic crystal waveguides (PCWs) filled with electro-optic (EO) polymers combine the slow-light effect in PCWs with the high polarizability of EO polymers, which promises the realization of high-performance optical modulators. In this paper, a broadband, power-efficient, low-dispersion, and compact optical modulator based on an EO polymer filled silicon slot PCW is presented. A small voltage-length product of V{\\pi}*L=0.282Vmm is achieved, corresponding to an unprecedented record-high effective in-device EO coefficient (r33) of 1230pm/V. Assisted by a backside gate voltage, the modulation response up to 50GHz is observed, with a 3-dB bandwidth of 15GHz, and the estimated energy consumption is 94.4fJ/bit at 10Gbit/s. Furthermore, lattice-shifted PCWs are utilized to enhance the optical bandwidth by a factor of ~10X over other modulators bas...

  12. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (∼80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high...

  13. Special purpose hybrid transfinite elements and unified computational methodology for accurately predicting thermoelastic stress waves

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.

  14. Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods

    Directory of Open Access Journals (Sweden)

    Iván Pérez

    2013-01-01

    Full Text Available We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic general perturbation theories describe the motion of an orbiter only perturbed by the Earth’s oblateness.

  15. Linear optical quantum computing in a single spatial mode.

    Science.gov (United States)

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  16. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-15

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.

  17. Analysis of physical layer performance of hybrid optical-wireless access network

    Science.gov (United States)

    Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.

    2011-09-01

    The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.

  18. GPU-based computational adaptive optics for volumetric optical coherence microscopy

    Science.gov (United States)

    Tang, Han; Mulligan, Jeffrey A.; Untracht, Gavrielle R.; Zhang, Xihao; Adie, Steven G.

    2016-03-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique that measures reflectance from within biological tissues. Current higher-NA optical coherence microscopy (OCM) technologies with near cellular resolution have limitations on volumetric imaging capabilities due to the trade-offs between resolution vs. depth-of-field and sensitivity to aberrations. Such trade-offs can be addressed using computational adaptive optics (CAO), which corrects aberration computationally for all depths based on the complex optical field measured by OCT. However, due to the large size of datasets plus the computational complexity of CAO and OCT algorithms, it is a challenge to achieve high-resolution 3D-OCM reconstructions at speeds suitable for clinical and research OCM imaging. In recent years, real-time OCT reconstruction incorporating both dispersion and defocus correction has been achieved through parallel computing on graphics processing units (GPUs). We add to these methods by implementing depth-dependent aberration correction for volumetric OCM using plane-by-plane phase deconvolution. Following both defocus and aberration correction, our reconstruction algorithm achieved depth-independent transverse resolution of 2.8 um, equal to the diffraction-limited focal plane resolution. We have translated the CAO algorithm to a CUDA code implementation and tested the speed of the software in real-time using two GPUs - NVIDIA Quadro K600 and Geforce TITAN Z. For a data volume containing 4096×256×256 voxels, our system's processing speed can keep up with the 60 kHz acquisition rate of the line-scan camera, and takes 1.09 seconds to simultaneously update the CAO correction for 3 en face planes at user-selectable depths.

  19. Hybrid microscopy of human carotid atheroma by means of optical-resolution optoacoustic and non-linear optical microscopy

    Science.gov (United States)

    Seeger, Markus; Karlas, Angelos; Soliman, Dominik; Pelisek, Jaroslav; Ntziachristos, Vasilis

    2017-03-01

    Carotid atheromatosis is causally related to stroke, a leading cause of disability and death. We present the analysis of a human carotid atheroma using a novel hybrid microscopy system that combines optical-resolution optoacoustic (photoacoustic) microscopy and several non-linear optical microscopy modalities (second and third harmonic generation, as well as, two-photon excitation fluorescence) to achieve a multimodal examination of the extracted tissue within the same imaging framework. Our system enables the label-free investigation of atheromatous human carotid tissue with a resolution of about 1 μm and allows for the congruent interrogation of plaque morphology and clinically relevant constituents such as red blood cells, collagen, and elastin. Our data reveal mutual interactions between blood embeddings and connective tissue within the atheroma, offering comprehensive insights into its stage of evolution and severity, and potentially facilitating the further development of diagnostic tools, as well as treatment strategies.

  20. Computational studies of third-order nonlinear optical properties of pyridine derivative 2-aminopyridinium p-toluenesulphonate crystal

    Indian Academy of Sciences (India)

    ANUJ KUMAR; MAHESH PAL SINGH YADAV

    2017-07-01

    We have reported a theoretical investigation on nonlinear optical behaviour, electronic and optical properties and other molecular properties of the organic nonlinear optical crystal 2-aminopyridinium ptoluenesulphonate(APPTS). The computation has been done using density functional theory (DFT) methodemploying 6-31G(d) basis set and Becke’s three-parameter hybrid functional (B3LYP). Calculated values of static hyperpolarizability confirm the good nonlinear behaviour of the molecule. Electronic behaviour and global reactivity descriptor parameters are calculated and analysed using HOMO–LUMO analysis. Energy band gap and simulated UV–visible spectrum show good agreement with experimental results. Other important molecular properties like rotational constant, zero-point vibrational energy, total energy at room temperature and pressure have also beencalculated in the ground state.

  1. Computational studies of third-order nonlinear optical properties of pyridine derivative 2-aminopyridinium p-toluenesulphonate crystal

    Science.gov (United States)

    Kumar, Anuj; Yadav, Mahesh Pal Singh

    2017-07-01

    We have reported a theoretical investigation on nonlinear optical behaviour, electronic and optical properties and other molecular properties of the organic nonlinear optical crystal 2-aminopyridinium p-toluenesulphonate (APPTS). The computation has been done using density functional theory (DFT) method employing 6-31G(d) basis set and Becke's three-parameter hybrid functional (B3LYP). Calculated values of static hyperpolarizability confirm the good nonlinear behaviour of the molecule. Electronic behaviour and global reactivity descriptor parameters are calculated and analysed using HOMO-LUMO analysis. Energy band gap and simulated UV-visible spectrum show good agreement with experimental results. Other important molecular properties like rotational constant, zero-point vibrational energy, total energy at room temperature and pressure have also been calculated in the ground state.

  2. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  3. Enhanced Nonlinear Optical Effect in Hybrid Liquid Crystal Cells Based on Photonic Crystal

    Science.gov (United States)

    Bugaychuk, Svitlana; Iljin, Andrey; Lytvynenko, Oleg; Tarakhan, Ludmila; Karachevtseva, Lulmila

    2017-07-01

    Nonlinear-optical response of photorefractive hybrid liquid crystal (LC) cells has been studied by means of dynamic holographic technique in two-wave mixing arrangement. The LC cells include nonuniform silicon substrates comprising a micrometer-range photonic crystal. A thin LC layer is set between silicon substrate and a flat glass substrate covered by a transparent (ITO) electrode. A dynamic diffraction grating was induced in the LC volume by the two-wave mixing of laser beams with simultaneous application of DC electric field to the cell. Theoretical model of Raman-Nath self-diffraction was developed. This model allows for calculation of nonlinear optical characteristics in thin samples on the base of two-wave mixing experimental data, and with taking into account light losses on absorption and/or scattering. The hybrid LC cells demonstrate strong nonlinear optical effect, prospective for many applications in electro-optical microsystems, such as SLMs, as well as in multi-channel systems.

  4. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications.

    Science.gov (United States)

    Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W; Dokmeci, Mehmet Remzi; Boyden, Edward S; Khademhosseini, Ali

    2016-03-15

    To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such "hybrid microscopy" methods--combining physical and optical magnifications--can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes ("mini-microscopes"), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics--a process we refer to as Expansion Mini-Microscopy (ExMM)--is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.

  5. Hybrid VLSI/QCA Architecture for Computing FFTs

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarres, Katayoon; Spotnitz, Matthew

    2003-01-01

    A data-processor architecture that would incorporate elements of both conventional very-large-scale integrated (VLSI) circuitry and quantum-dot cellular automata (QCA) has been proposed to enable the highly parallel and systolic computation of fast Fourier transforms (FFTs). The proposed circuit would complement the QCA-based circuits described in several prior NASA Tech Briefs articles, namely Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), Vol. 25, No. 10 (October 2001), page 42; Compact Interconnection Networks Based on Quantum Dots (NPO-20855) Vol. 27, No. 1 (January 2003), page 32; and Bit-Serial Adder Based on Quantum Dots (NPO-20869), Vol. 27, No. 1 (January 2003), page 35. The cited prior articles described the limitations of very-large-scale integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCAbased signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes.

  6. Secure Data Sharing in Cloud Computing using Hybrid cloud

    Directory of Open Access Journals (Sweden)

    Er. Inderdeep Singh

    2015-06-01

    Full Text Available Cloud computing is fast growing technology that enables the users to store and access their data remotely. Using cloud services users can enjoy the benefits of on-demand cloud applications and data with limited local infrastructure available with them. While accessing the data from cloud, different users may have relationship among them depending on some attributes, and thus sharing of data along with user privacy and data security becomes important to get effective results. Most of the research has been done to secure the data authentication so that user’s don’t lose their private data stored on public cloud. But still data sharing is a significant hurdle to overcome by researchers. Research is going on to provide secure data sharing with enhanced user privacy and data access security. In this paper various research and challenges in this area are discussed in detail. It will definitely help the cloud users to understand the topic and researchers to develop a method to overcome these challenges.

  7. Multiscale modeling and computation of optically manipulated nano devices

    Science.gov (United States)

    Bao, Gang; Liu, Di; Luo, Songting

    2016-07-01

    We present a multiscale modeling and computational scheme for optical-mechanical responses of nanostructures. The multi-physical nature of the problem is a result of the interaction between the electromagnetic (EM) field, the molecular motion, and the electronic excitation. To balance accuracy and complexity, we adopt the semi-classical approach that the EM field is described classically by the Maxwell equations, and the charged particles follow the Schrödinger equations quantum mechanically. To overcome the numerical challenge of solving the high dimensional multi-component many-body Schrödinger equations, we further simplify the model with the Ehrenfest molecular dynamics to determine the motion of the nuclei, and use the Time-Dependent Current Density Functional Theory (TD-CDFT) to calculate the excitation of the electrons. This leads to a system of coupled equations that computes the electromagnetic field, the nuclear positions, and the electronic current and charge densities simultaneously. In the regime of linear responses, the resonant frequencies initiating the out-of-equilibrium optical-mechanical responses can be formulated as an eigenvalue problem. A self-consistent multiscale method is designed to deal with the well separated space scales. The isomerization of azobenzene is presented as a numerical example.

  8. Computationally Efficient Nonlinearity Compensation for Coherent Fiber-Optic Systems

    Institute of Scientific and Technical Information of China (English)

    Likai Zhu; Guifang Li

    2012-01-01

    Split-step digital backward propagation (DBP) can be combined with coherent detection to compensate for fiber nonlinear impairments. A large number of DBP steps is usually needed for a long-haul fiber system, and this creates a heavy computational load. In a trade-off between complexity and performance, interchannel nonlinearity can be disregarded in order to simplify the DBP algorithm. The number of steps can also be reduced at the expense of performance. In periodic dispersion-managed long-haul transmission systems, optical waveform distortion is dominated by chromatic dispersion. As a result, the nonlinearity of the optical signal repeats in every dispersion period. Because of this periodic behavior, DBP of many fiber spans can be folded into one span. Using this distance-folded DBP method, the required computation for a transoceanic transmission system with full inline dispersion compensation can be reduced by up to two orders of magnitude with negligible penalty. The folded DBP method can be modified to compensate for nonlinearity in fiber links with non-zero residua dispersion per span.

  9. Quantum computing by optical control of electron spins

    CERN Document Server

    Liu, Ren-Bao; Sham, L J

    2010-01-01

    We review the progress and main challenges in implementing large-scale quantum computing by optical control of electron spins in quantum dots (QDs). Relevant systems include self-assembled QDs of III-V or II-VI compound semiconductors (such as InGaAs and CdSe), monolayer fluctuation QDs in compound semiconductor quantum wells, and impurity centers in solids such as P-donors in silicon and nitrogen-vacancy centers in diamond. The decoherence of the electron spin qubits is discussed and various schemes for countering the decoherence problem are reviewed. We put forward designs of local nodes consisting of a few qubits which can be individually addressed and controlled. Remotely separated local nodes are connected by photonic structures (microcavities and waveguides) to form a large-scale distributed quantum system or a quantum network. The operation of the quantum network consists of optical control of a single electron spin, coupling of two spins in a local nodes, optically controlled quantum interfacing betwe...

  10. Computer-assisted optics teaching at the Moscow Institute of Physics and Technology

    Science.gov (United States)

    Soboleva, Natalia N.; Kozel, Stanislav M.; Lockshin, Gennady R.; Entin, M. A.; Galichsky, K. V.; Lebedinsky, P. L.; Zhdanovich, P. M.

    1995-10-01

    Traditional methods used in optics teaching lack clarity and vividness when illustrating abstract notions such as polarization or interference. Here's where computer models may help, but they usually show only a single phenomenon or process and don't let the student see the entire picture. For this reason at Moscow Institute of Physics and Technology was developed the courseware 'Wave Optics on the Computer' consisting of a number of related simulations. It is intended for students studying optics at the Universities. Recently we have developed different simulations in optics for secondary school level. They are included as part of large computer courseware 'Physics by Pictures'. The courseware 'Wave Optics on the Computer' consists of nine large simulation programs and the textbook. The programs are simulating basic phenomena of wave optics. parameters of optical systems can be varied by the user. The textbook contains theoretical considerations on studied optical phenomena, recommendations concerning work with computer programs, and, especially for those wishing to deeper understand wave optics, original problems for individual solution. At the Moscow Institute of Physics and Technology the course 'Wave Optics on the Computer' is used for teaching optics in the course of general physics. The course provides both the computer assisted teaching for lectures support and computer assisted learning for students during seminars in the computer classroom.

  11. Fatigue of hybrid glass/carbon composites: 3D computational studies

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2014-01-01

    3D computational simulations of fatigue of hybrid carbon/glass fiber reinforced composites is carried out using X-FEM and multifiber unit cell models. A new software code for the automatic generation of unit cell multifiber models of composites with randomly misaligned fibers of various properties...... and geometrical parameters is developed. With the use of this program code and the X-FEM method, systematic investigations of the effect of microstructure of hybrid composites (fraction of carbon versus glass fibers, misalignment, and interface strength) and the loading conditions (tensile versus compression...... cyclic loading effects) on fatigue behavior of the materials are carried out. It was demonstrated that the higher fraction of carbon fibers in hybrid composites is beneficial for the fatigue lifetime of the composites under tension-tension cyclic loading, but might have negative effect on the lifetime...

  12. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface

    Directory of Open Access Journals (Sweden)

    M. Jawad Khan

    2014-04-01

    Full Text Available The hybrid brain-computer interface (BCI’s multimodal technology enables precision brain-signal classification that can be used in the formulation of control commands. In the present study, an experimental hybrid near-infrared spectroscopy-electroencephalography (NIRS-EEG technique was used to extract and decode four different types of brain signals. The NIRS setup was positioned over the prefrontal brain region, and the EEG over the left and right motor cortex regions. Twelve subjects participating in the experiment were shown four direction symbols, namely, forward, backward, left and right. The control commands for forward and backward movement were estimated by performing arithmetic mental tasks related to oxy-hemoglobin (HbO changes. The left and right directions commands were associated with right and left hand tapping, respectively. The high classification accuracies achieved showed that the four different control signals can be accurately estimated using the hybrid NIRS-EEG technology.

  13. Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2015-01-01

    The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites...... with and without secondary CNT reinforcement is simulated using multiscale 3D unit cells. The materials behavior under both mechanical cyclic loading and combined mechanical and environmental loading (with phase properties degraded due to the moisture effects) is studied. The multiscale unit cells are generated...... with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites....

  14. Ultrabroadband Electro-Optic Modulator Based on Hybrid Silicon-Polymer Dual Vertical Slot Waveguide

    Directory of Open Access Journals (Sweden)

    Shouyuan Shi

    2011-01-01

    Full Text Available We present a novel hybrid silicon-polymer dual slot waveguide for high speed and ultra-low driving voltage electro-optic (EO modulation. The proposed design utilizes the unique properties of ferroelectric materials such as LiNbO3 to achieve dual RF and optical modes within a low index nanoslot. The tight mode concentration and overlap in the slot allow the infiltrated organic EO polymers to experience enhanced nonlinear interaction with the applied electric field. Half-wavelength voltage-length product and electro-optic response are rigorously simulated to characterize the proposed design, which reveals ultrabroadband operation, up to 250 GHz, and subvolt driving voltage for a 1 cm long modulator.

  15. Enhanced hybrid asymmetrically clipped orthogonal frequency division multiplexing for optical wireless communications

    Science.gov (United States)

    Guan, Rui; Huang, Nuo; Wang, Jin-Yuan; Wang, Houyu; Chen, Ming

    2016-05-01

    This paper presents an enhanced hybrid asymmetrically clipped optical orthogonal frequency division multiplexing (EHACO-OFDM) scheme, which benefits from the simultaneous transmission of ACO-OFDM, pulse-amplitude-modulated discrete multitone modulation, and direct-current-biased optical orthogonal frequency division multiplexing (DCO-OFDM). Since the entire available bandwidth is utilized for data modulation, this scheme can achieve higher spectral efficiency than HACO-OFDM and ACO-OFDM. Moreover, as a smaller DC bias is introduced in our scheme, it is more power efficient than asymmetrically clipped DC-biased optical OFDM (ADO-OFDM) and DCO-OFDM. A modified receiver is also designed for this system, taking advantage of an iterative algorithm and a pairwise averaging. It has been shown by simulation that our three-path simultaneous transmission scheme can surpass the existing mixed OFDM-based schemes at high data rates. In addition, compared with the noniterative receiver, the modified receiver exhibits significant gains.

  16. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    techniques with both coherent and incoherent optical sources are studied and demonstrated. Employments of advanced modulation formats including phase-shift keying (PSK), M-quadrature amplitude modulation (QAM) and orthogonal frequency-division multiplexing (OFDM) for high speed photonic-wireless transmission......Integration between fiber-optic and wireless communications systems in the "last mile" access networks is currently considered as a promising solution for both service providers and users, in terms of minimizing deployment cost, shortening upgrading period and increasing mobility and flexibility...... techniques. In conclusion, the results presented in the thesis show the feasibility of employing mm-wave signals, advanced modulation formats and spatial multiplexing technologies in next generation high capacity hybrid optical fiber-wireless access systems....

  17. Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology.

    Science.gov (United States)

    Lauermann, M; Weimann, C; Knopf, A; Heni, W; Palmer, R; Koeber, S; Elder, D L; Bogaerts, W; Leuthold, J; Dalton, L R; Rembe, C; Freude, W; Koos, C

    2016-05-30

    We demonstrate for the first time a waveguide-based frequency shifter on the silicon photonic platform using single-sideband modulation. The device is based on silicon-organic hybrid (SOH) electro-optic modulators, which combine conventional silicon-on-insulator waveguides with highly efficient electro-optic cladding materials. Using small-signal modulation, we demonstrate frequency shifts of up to 10 GHz. We further show large-signal modulation with optimized waveforms, enabling a conversion efficiency of -5.8 dB while suppressing spurious side-modes by more than 23 dB. In contrast to conventional acousto-optic frequency shifters, our devices lend themselves to large-scale integration on silicon substrates, while enabling frequency shifts that are several orders of magnitude larger than those demonstrated with all-silicon serrodyne devices.

  18. Extraction of linear anisotropic parameters using optical coherence tomography and hybrid Mueller matrix formalism.

    Science.gov (United States)

    Liao, Chia-Chi; Lo, Yu-Lung

    2015-04-20

    A method is proposed for extracting the linear birefringence (LB) and linear dichroism (LD) properties of an anisotropic optical sample using reflection-mode optical coherence tomography (OCT) and a hybrid Mueller matrix formalism. To ensure the accuracy of the extracted parameter values, a method is proposed for calibrating and compensating the polarization distortion effect induced by the beam splitters in the OCT system using a composite quarter-waveplate / half-waveplate / quarter-waveplate structure. The validity of the proposed method is confirmed by extracting the LB and LD properties of a quarter-wave plate and a defective polarizer. To the best of the authors' knowledge, the method proposed in this study represents the first reported attempt to utilize an inverse Mueller matrix formalism and a reflection-mode OCT structure to extract the LB and LD parameters of optically anisotropic samples.

  19. Applications integration in a hybrid cloud computing environment: modelling and platform

    Science.gov (United States)

    Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang

    2013-08-01

    With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.

  20. Linear Optical Quantum Computing in a Single Spatial Mode

    Science.gov (United States)

    Walmsley, Ian

    2014-05-01

    We present a scheme for linear optical quantum computing using time-bin encoded qubits in a single spatial mode. This scheme allows arbitrary numbers of qubits to be encoded in the same mode, circumventing the requirement for many spatial modes that challenges the scalability of other schemes, and exploiting the inherent stability and robustness of time-frequency optical modes. This approach leverages the architecture of modern telecommunications systems, and opens a door to very high dimensional Hilbert spaces while maintaining compact device designs. Further, temporal encodings benefit from intrinsic robustness to inhomogeneities in transmission mediums. These advantages have been recognized in works exploring the preparation of time-frequency entangled states both for tests of fundamental quantum phenomena, and for quantum communications technologies including key distribution and teleportation. Here we extend this idea to computation. In particular, we present methods for single-qubit operations and heralded controlled phase (CPhase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn scheme. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84 /pm 0.07. An analysis of the performance of current technologies suggests that our scheme offers a promising route for the construction of quantum circuits beyond the few-qubit level. In addition, we foresee that our investigation may motivate further development of the approaches presented into a regime in which time bins are temporally overlapped and frequency based manipulations become necessary, opening up encodings of even higher densities. This work was supported by the Engineering and Physical Sciences Research Council (EP/H03031X/1), the European Commission project Q-ESSENCE (248095) and the Air Force Office of Scientific Research

  1. Improvement of matrix condition of Hybrid, space variant optics by the means of parallel optics design.

    Science.gov (United States)

    Klapp, Iftach; Mendlovic, David

    2009-07-06

    The problem of image restoration of space variant blur is common and important. One of the most useful descriptions of this problem is in its algebraic form I=H*O, where O is the object represented as a column vector, I is the blur image represented as a column vector and H is the PSF matrix that represents the optical system. When inverting the problem to restore the geometric object from the blurred image and the known system matrix, restoration is limited in speed and quality by the system condition. Current optical design methods focus on image quality, therefore if additional image processing is needed the matrix condition is taken "as is". In this paper we would like to present a new optical approach which aims to improve the system condition by proper optical design. In this new method we use Singular Value Decomposition (SVD) to define the weak parts of the matrix condition. We design a second optical system based on those weak SVD parts and then we add the second system parallel to the first one. The original and second systems together work as an improved parallel optics system. Following that, we present a method for designing such a "parallel filter" for systems with a spread SVD pattern. Finally we present a study case in which by using our new method we improve a space variant image system with an initial condition number of 8.76e4, down to a condition number of 2.29e3. We use matrix inversion to simulate image restoration. Results show that the new parallel optics immunity to Additive White Gaussian Noise (AWGN) is much better then that of the original simple lens. Comparing the original and the parallel optics systems, the parallel optics system crosses the MSEIF=0 [db] limit in SNR value which is more than 50db lower then the SNR value in the case of the original simple lens. The new parallel optics system performance is also compared to another method based on the MTF approach.

  2. Computational Nanophotonics: Model Optical Interactions and Transport in Tailored Nanosystem Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, Mark [Georgia State University Research Foundation; Gray, Steven [Argon National Laboratory

    2014-02-21

    The program is directed toward development of new computational approaches to photoprocesses in nanostructures whose geometry and composition are tailored to obtain desirable optical responses. The emphasis of this specific program is on the development of computational methods and prediction and computational theory of new phenomena of optical energy transfer and transformation on the extreme nanoscale (down to a few nanometers).

  3. Domain-dependent electronic structure and optical absorption property in hybrid organic-inorganic perovskite.

    Science.gov (United States)

    Meng, Xiang; Zhang, Ruifeng; Fu, Zhongheng; Zhang, Qianfan

    2016-10-05

    Hybrid organic-inorganic perovskites, represented by materials in the CH3NH3PbI3 series, have become one of the most promising materials for solar cells with a high power conversion efficiency and low cost. The ordered Pb-I cage in such hybrid perovskites can induce the polarized cations to form a variety of polarization domains with long-range order, which will lead to the formation of specific atomic conformations or metastable crystalline phases, unique electronic band structures and optical absorption properties. Such domain-dependent characteristics play a critical role in the phase transition and service stability of such solar cells, and also open up the opportunity of tuning their electronic structure. In the present study, we systematically investigate the band structures and optical absorption properties of different electronically ordered domains in CH3NH3PbI3. By comparing different perovskites containing various cations, we have clarified the important influence of cation polarization on domain-dependent properties. Our results provide not only a possible pathway for the manipulation of band structure by applying an external field, but also a novel scheme for improving the performance and stability of hybrid perovskites.

  4. Hybrid liquid crystals: Enhanced electro-optic and nonlinear response for manipulating beams (Conference Presentation)

    Science.gov (United States)

    Kaczmarek, Malgosia; D'Alessandro, Giampaolo; Proctor, Matthew B.

    2016-09-01

    The manipulation and processing of light beams can be efficiently accomplished through devices based on soft matter placed in a hybrid "symbiosis" with other organic or inorganic, photoresponsive materials. The performance of such smart modulating systems often relies on a subtle balance between individual properties of each component, together with the varying interaction between organic and inorganic elements. Some promising demonstrations in the visible as well as in the THz regimes include liquid crystals integrated with plasmonic or ferroelectric nanoparticles, photoconductive or photosensitive polymers as well as metamaterials. They offer adaptive, flexible and tailor-made solutions for applications in displays and optoelectronics, switching, steering and modulating electromagnetic waves. Hybrid configurations that include multiple photoresponsive layers, sandwiched with liquid crystals, led to stronger modulation and steering of light beams in the visible. Such effects can also be observed in the other regions of spectrum, as inorganic nanoparticles dispersed in liquid crystals modify the magnitude of the material refractive indices measured in THz. The development of such hybrid materials has to be accompanied by comprehensive characterisation of their uniformity, stability and optical quality across the whole surface of the device, capable of determining their optical, electrical and physical parameters.

  5. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators.

    Science.gov (United States)

    Yan, Hai; Xu, Xiaochuan; Chung, Chi-Jui; Subbaraman, Harish; Pan, Zeyu; Chakravarty, Swapnajit; Chen, Ray T

    2016-12-01

    In an on-chip silicon-organic hybrid electro-optic (EO) modulator, the mode overlap with EO materials, in-device effective r33, and propagation loss are among the most critical factors that determine the performance of the modulator. Various waveguide structures have been proposed to optimize these factors, yet there is a lack of comprehensive consideration on all of them. In this Letter, a one-dimensional (1D) photonic crystal (PC) slot waveguide structure is proposed that takes all these factors into consideration. The proposed structure takes advantage of the strong mode confinement within a low-index region in a conventional slot waveguide and the slow-light enhancement from the 1D PC structure. Its simple geometry makes it robust to resist fabrication imperfections and helps reduce the propagation loss. Using it as a phase shifter in a Mach-Zehnder interferometer structure, an integrated silicon-organic hybrid EO modulator was experimentally demonstrated. The observed effective EO coefficient is as high as 490 pm/V. The measured half-wave voltage and length product is less than 1  V·cm and can be further improved. A potential bandwidth of 61 GHz can be achieved and further improved by tailoring the doping profile. The proposed structure offers a competitive novel phase-shifter design, which is simple, highly efficient, and with low optical loss, for on-chip silicon-organic hybrid EO modulators.

  6. Low-cost RAU with Optical Power Supply Used in a Hybrid RoF IEEE 802.11 Network

    Science.gov (United States)

    Kowalczyk, M.; Siuzdak, J.

    2014-09-01

    The paper presents design and implementation of a low-cost RAU (Remote Antenna Unit) device. It was designed to work in a hybrid Wi-Fi/optical network based on the IEEE 802.11b/g standard. An unique feature of the device is the possibility of optical power supply.

  7. 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz).

    Science.gov (United States)

    Pang, Xiaodan; Caballero, Antonio; Dogadaev, Anton; Arlunno, Valeria; Borkowski, Robert; Pedersen, Jesper S; Deng, Lei; Karinou, Fotini; Roubeau, Fabien; Zibar, Darko; Yu, Xianbin; Monroy, Idelfonso Tafur

    2011-12-05

    We experimentally demonstrate an 100 Gbit/s hybrid optical fiber-wireless link by employing photonic heterodyning up-conversion of optical 12.5 Gbaud polarization multiplexed 16-QAM baseband signal with two free running lasers. Bit-error-rate performance below the FEC limit is successfully achieved for air transmission distances up to 120 cm.

  8. 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz)

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Caballero Jambrina, Antonio; Dogadaev, Anton Konstantinovich;

    2011-01-01

    We experimentally demonstrate an 100 Gbit/s hybrid optical fiber-wireless link by employing photonic heterodyning up-conversion of optical 12.5 Gbaud polarization multiplexed 16-QAM baseband signal with two free running lasers. Bit-error-rate performance below the FEC limit is successfully achieved...

  9. Hybrid graphene/silicon integrated optical isolators with photonic spin-orbit interaction

    CERN Document Server

    Ma, Jingwen; Yu, Zejie; Sun, Xiankai

    2016-01-01

    Optical isolators are an important building block in photonic computation and communication. In traditional optics, isolators are realized with magneto-optical garnets. However, it remains challenging to incorporate such materials on an integrated platform because of the difficulty in material growth and bulky device footprint. Here, we propose an ultracompact integrated isolator by exploiting graphene's magneto-optical property on a silicon-on-insulator platform. The photonic nonreciprocity is achieved because the cyclotrons in graphene experiencing different optical spin exhibit different response to counterpropagating light. Taking advantage of cavity resonance effects, we have numerically optimized a device design, which shows excellent isolation performance with the extinction ratio over 45 dB and the insertion loss around 12 dB at a wavelength near 1.55 um. Featuring graphene's CMOS compatibility and substantially reduced device footprint, our proposal sheds light to monolithic integration of nonrecipro...

  10. INVESTIGATION ON HYBRID WDM (DWDM+CWDM FREE SPACE OPTICAL COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    S. Robinson

    2015-12-01

    Full Text Available Free Space Optical (FSO communication is being realized as an effective solution for future accessing networks, offering light passed through air. The performance of FSO can be primarily degraded by various atmospheric attenuation namely, rain, fog, haze and snow. At present, hybridization of Dense Wavelength Division Multiplexing (DWDM with Coarse Wavelength Division Multiplexing (CWDM becomes necessary to scale the speed and high bandwidth of the services. In this paper, hybrid WDM system is proposed, designed and the network parameters such as Bit Error Rate (BER, Quality Factor and receiver sensitivity are analyzed with respect to link distance for various weather conditions. For investigation, 4 CWDM and 8 DWDM channels are considered whose corresponding channel spacing is 20nm and 0.8nm, respectively. From the simulation, it is investigated that the average link distance of proposed hybrid WDM-FSO system for DWDM and CWDM system at very clear condition are around 810km and 780km. The proposed hybrid WDM based FSO system is designed to handle the quality of transmission for 12 users, each at a data rate of 2.5Gbps.

  11. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    OpenAIRE

    Lukas Falat; Dusan Marcek; Maria Durisova

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the sug...

  12. Solving Problems in Various Domains by Hybrid Models of High Performance Computations

    Directory of Open Access Journals (Sweden)

    Yurii Rogozhin

    2014-03-01

    Full Text Available This work presents a hybrid model of high performance computations. The model is based on membrane system (P~system where some membranes may contain quantum device that is triggered by the data entering the membrane. This model is supposed to take advantages of both biomolecular and quantum paradigms and to overcome some of their inherent limitations. The proposed approach is demonstrated through two selected problems: SAT, and image retrieving.

  13. Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography

    Directory of Open Access Journals (Sweden)

    Yosuke Ito

    2012-09-01

    Full Text Available We have developed an optically pumped atomic magnetometer using a hybrid cell of K and Rb. The hybrid optical pumping technique can apply dense alkali-metal vapor to the sensor head and leads to high signal intensity. We use dense Rb vapor as probed atoms, and achieve a sensitivity of approximately 100 fTrms/Hz1/2 around 10 Hz. In this case, the sensitivity is limited by the system noise, and the magnetic linewidth is narrower than that for direct Rb optical pumping. We demonstrated magnetocardiography using the magnetometer and obtained clear human magnetocardiograms.

  14. Performance of hybrid programming models for multiscale cardiac simulations: preparing for petascale computation.

    Science.gov (United States)

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-10-01

    Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g., the message-passing interface (MPI)] with multithreading (e.g., OpenMP, Pthreads). The objective of this study is to compare the performance of such hybrid programming models when applied to the simulation of a realistic physiological multiscale model of the heart. Our results show that the hybrid models perform favorably when compared to an implementation using only the MPI and, furthermore, that OpenMP in combination with the MPI provides a satisfactory compromise between performance and code complexity. Having the ability to use threads within MPI processes enables the sophisticated use of all processor cores for both computation and communication phases. Considering that HPC systems in 2012 will have two orders of magnitude more cores than what was used in this study, we believe that faster than real-time multiscale cardiac simulations can be achieved on these systems.

  15. Computationally efficient double hybrid density functional theory using dual basis methods

    CERN Document Server

    Byrd, Jason N

    2015-01-01

    We examine the application of the recently developed dual basis methods of Head-Gordon and co-workers to double hybrid density functional computations. Using the B2-PLYP, B2GP-PLYP, DSD-BLYP and DSD-PBEP86 density functionals, we assess the performance of dual basis methods for the calculation of conformational energy changes in C$_4$-C$_7$ alkanes and for the S22 set of noncovalent interaction energies. The dual basis methods, combined with resolution-of-the-identity second-order M{\\o}ller-Plesset theory, are shown to give results in excellent agreement with conventional methods at a much reduced computational cost.

  16. All-optical delay technique for supporting multiple antennas in a hybrid optical - wireless transmission system

    DEFF Research Database (Denmark)

    Prince, Kamau; Chiuchiarelli, A; Presi, M

    2008-01-01

    We introduce a novel continuously-variable optical delay technique to support beam-forming wireless communications systems using antenna arrays. We demonstrate delay with 64-QAM modulated signals at a rate of 15 Msymbol/sec with 2.5 GHz carrier frequency.......We introduce a novel continuously-variable optical delay technique to support beam-forming wireless communications systems using antenna arrays. We demonstrate delay with 64-QAM modulated signals at a rate of 15 Msymbol/sec with 2.5 GHz carrier frequency....

  17. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications

    Science.gov (United States)

    Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W.; Dokmeci, Mehmet Remzi; Boyden, Edward S.; Khademhosseini, Ali

    2016-03-01

    To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such “hybrid microscopy” methods—combining physical and optical magnifications—can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes (“mini-microscopes”), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics—a process we refer to as Expansion Mini-Microscopy (ExMM)—is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.

  18. Siloxane based Organic-Inorganic Hybrid Polymers and their Applications for Nanostructured Optical/Photonic Components

    Directory of Open Access Journals (Sweden)

    Rahmat Hidayat

    2014-11-01

    Full Text Available We have studied the preparation of organic-inorganic hybrid polymer precursors by sol-gel technique and their utilization for nanostructured optical components for photonic applications. The gel polymer precursors were prepared from siloxane modified by polymerizable acrylate groups, which can be processed further by photopolymerization process. Molecular structure characterizations by means of the FTIR measurements indicate the conversion of C=C bonds into C-C bonds after photopolymerization. This bond conversion produces high cross-linking between the organic and inorganic moieties, resulting in thermally stable and chemically resistant thin polymer layer which provide unique advantages of this material for particular optical/photonic applications. By employing laser interference technique, gratings with periodicity between 400-1000 nm have been successfully fabricated. Application of those sub-micron periodicity of grating structure as active elements in optically pumped polymer laser system and Surface Plasmon Resonance (SPR based measurement system have been also explored. The experimental results therefore also show the potential applications of this hybrid polymer as a building material for micro/nano-photonics components.

  19. Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011

    Directory of Open Access Journals (Sweden)

    P. Sawamura

    2014-03-01

    Full Text Available Retrievals of aerosol microphysical properties (e.g. effective radius, volume and surface-area concentrations and aerosol optical properties (e.g. complex index of refraction and single scattering albedo were obtained from a hybrid multiwavelength lidar dataset for the first time. In July of 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne in-situ and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar dataset combines elastic ground-based measurements at 355 nm with airborne High Spectral Resolution Lidar (HSRL measurements at 532 nm and elastic measurements at 1064 nm that were obtained less than 5 km apart of each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in-situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in-situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor of such discrepancies.

  20. Optical computing with soliton trains in Bose–Einstein condensates

    KAUST Repository

    Pinsker, Florian

    2015-07-01

    © 2015 World Scientific Publishing Company. Optical computing devices can be implemented based on controlled generation of soliton trains in single and multicomponent Bose-Einstein condensates (BEC). Our concepts utilize the phenomenon that the frequency of soliton trains in BEC can be governed by changing interactions within the atom cloud [F. Pinsker, N. G. Berloff and V. M. Pérez-García, Phys. Rev. A87, 053624 (2013), arXiv:1305.4097]. We use this property to store numbers in terms of those frequencies for a short time until observation. The properties of soliton trains can be changed in an intended way by other components of BEC occupying comparable states or via phase engineering. We elucidate, in which sense, such an additional degree of freedom can be regarded as a tool for controlled manipulation of data. Finally, the outcome of any manipulation made is read out by observing the signature within the density profile.

  1. Hybrid Optical Comb Filter with Multi-Port Fiber Coupler for DWDM Optical Network

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Optical comb filters based on multi-port fused fiber couplers are proposed and numerically analyzed, 3-arm MZI composed by 1×7 fiber splitter and 3×3 fiber coupler, and 2-stage cascaded FIR type MZI interleave filter.

  2. Computer-aided interpretation approach for optical tomographic images

    Science.gov (United States)

    Klose, Christian D.; Klose, Alexander D.; Netz, Uwe J.; Scheel, Alexander K.; Beuthan, Jürgen; Hielscher, Andreas H.

    2010-11-01

    A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging, and inspection of optical tomographic images), were used to produce ground truth benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities, while others to higher specificities when compared to single parameter classifications employed in previous studies. Maximum performances are reached when combining the minimum/maximum ratio of the absorption coefficient and image variance. In this case, sensitivities and specificities over 0.9 can be achieved. These values are much higher than values obtained when only single parameter classifications were used, where sensitivities and specificities remained well below 0.8.

  3. Computational Study of Stratified Combustion in an Optical Diesel Engine

    KAUST Repository

    Jaasim, Mohammed

    2017-03-28

    Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics provide valuable information, the high fidelity simulations with matched parametric conditions improve fundamental understanding of relevant physical and chemical processes by accessing additional observables such as the local mixture distribution, intermediate species concentrations, and detailed chemical reaction rates. Commercial software, CONVERGE™, was used as the main simulation tool, with the Reynolds averaged Navier-Stokes (RANS) turbulence model and the multi-zone (SAGE) combustion model to compute the chemical reaction terms. SOI is varied from late compression ignition (CI) to early partially premixed combustion (PPC) conditions. The simulation results revealed a stronger correlation between fuel injection timing and combustion phasing for late SOI conditions, whereas the combustion phasing starts to decouple from SOI for early SOI cases. The predictions are consistent with the experimental observations, in terms of the overall trends in combustion and emission characteristics, while the high fidelity simulations provided further insights into the effects of mixture stratifications resulting from different SOI conditions.

  4. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    Science.gov (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  5. 16th International Conference on Hybrid Intelligent Systems and the 8th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Haqiq, Abdelkrim; Alimi, Adel; Mezzour, Ghita; Rokbani, Nizar; Muda, Azah

    2017-01-01

    This book presents the latest research in hybrid intelligent systems. It includes 57 carefully selected papers from the 16th International Conference on Hybrid Intelligent Systems (HIS 2016) and the 8th World Congress on Nature and Biologically Inspired Computing (NaBIC 2016), held on November 21–23, 2016 in Marrakech, Morocco. HIS - NaBIC 2016 was jointly organized by the Machine Intelligence Research Labs (MIR Labs), USA; Hassan 1st University, Settat, Morocco and University of Sfax, Tunisia. Hybridization of intelligent systems is a promising research field in modern artificial/computational intelligence and is concerned with the development of the next generation of intelligent systems. The conference’s main aim is to inspire further exploration of the intriguing potential of hybrid intelligent systems and bio-inspired computing. As such, the book is a valuable resource for practicing engineers /scientists and researchers working in the field of computational intelligence and artificial intelligence.

  6. Self-similar evolutions of parabolic, Hermite-Gaussian, and hybrid optical pulses: Universality and diversity.

    Science.gov (United States)

    Chen, Shihua; Yi, Lin; Guo, Dong-Sheng; Lu, Peixiang

    2005-07-01

    Three novel types of self-similar solutions, termed parabolic, Hermite-Gaussian, and hybrid pulses, of the generalized nonlinear Schrödinger equation with varying dispersion, nonlinearity, and gain or absorption are obtained. The properties of the self-similar evolutions in various nonlinear media are confirmed by numerical simulations. Despite the diversity of their formations, these self-similar pulses exhibit many universal features which can facilitate significantly the achievement of well-defined linearly chirped output pulses from an optical fiber, an amplifier, or an absorption medium, under certain parametric conditions. The other intrinsic characteristics of each type of self-similar pulses are also discussed.

  7. Computer-Aided Design of Drugs on Emerging Hybrid High Performance Computers

    Science.gov (United States)

    2013-09-01

    Clustering using MapReduce , Workshop on Trends in High-Performance Distributed Computing, Vrije Universiteit, Amsterdam, NL. (Invited Talk) [25] February...and middleware packages for polarizable force fields on multi-core and GPU systems, supported by the MapReduce paradigm. NSF MRI #0922657, $451,051...High-throughput Molecular Datasets for Scalable Clustering using MapReduce , Workshop on Trends in High-Performance Distributed Computing, Vrije

  8. Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities

    Science.gov (United States)

    Li, Tao; Long, Gui-Lu

    2016-08-01

    We propose an effective, scalable, hyperparallel photonic quantum computation scheme in which photonic qubits are hyperencoded both in the spatial degrees of freedom (DOF) and the polarization DOF of each photon. The deterministic hyper-controlled-not (hyper-cnot) gate on a two-photon system is attainable with our interesting interface between the polarized photon and the collective spin wave (magnon) of an atomic ensemble embedded in a double-sided optical cavity, and it doubles the operations in the conventional quantum cnot gate. Moreover, we present a compact hyper-cnotN gate on N +1 hyperencoded photons with only two auxiliary cavity-magnon systems, not more, and it can be faithfully constituted with current experimental techniques. Our proposal enables various applications with the hyperencoded photons in quantum computing and quantum networks.

  9. Computational Model Of Fiber Optic, Arc Fusion Splicing; Experimental Comparison

    Science.gov (United States)

    Ruffin, Paul; Frost, Walter; Long, Wayne

    1989-02-01

    Acknowledgement: The assistance and support of the MICOM Army Missile Command is gratefully appreciated. An analytical tool to investigate the arc fusion splicing of optical fibers is developed. The physical model incorporates heat transfer and thermal, visco elastic strain. The heat transfer equations governing radiation, conduction and convection during arc heating are formulated. The radiation heat flux impinging on the fiber optics is modeled based on reported experimental analysis of a generic type arc discharge. The fusion process considers deformation of the fiber due to thermal, viscous and elastic strain. A Maxwell stress-strain relationship is assumed. The model assumes an initial gap at the beginning of the arc which is closed by a press-stroke during the heating cycle. All physical properties of the fused silica glass fibers are considered as functions of temperature based on available experimental data. A computer algorithm has been developed to solve the system of governing equations and parametric studies carried out. An experiment using a FSM-20 arc fusion splicer manufactured by Fujikura Ltd. was carried out to provide experimental verification of the analytical model. In the experiment a continuous fiber was positioned in the arc and cyclic heating and cooling was carried out. One end of the fiber was clamped and the other was free to move. The fiber was heated for 6 seconds and cooled for 3 minutes for several cycles. At the end of each cooling process, photographs of the deformation of the fiber were taken. The results showed that the fiber necked down on the free end and buldged up on the fixed end. With repeated heating and cooling cycles, the optical fiber eventually necked down to the point that it melted in two. The analytical model was run for the conditions of the experiment. Comparisons of the predicted deformation of the optical fiber with those measured is given. The analytical model displays all of the physical phenomenon of fiber

  10. HOWRAN: An Hybrid Optical Wireless Radio Access Network for WiMAX Antennas Backhauling

    Science.gov (United States)

    Gagnaire, Maurice; Youssef, Tony

    In comparison to existing 3G or 3G+ wireless systems, fourth generation (4G), long-term evolution (LTE) or mobile Wimax are characterized by higher bit rates, highly fluctuant traffic matrices and higher antenna’s density. Current backhauling techniques federating radio antennas are not suited to these new characteristics. Several investigations are carried out for the design of new generation radio access networks (NG-RAN) in charge of concentrating radio cellular traffic from the base stations to the core network. In this paper, we propose an original approach based on an Hybrid Optical Wireless Radio Access Network (HOWRAN) exploiting the benefits of radio-over-fiber technologies and of recent advances in the field of optical devices and systems. As an illustration, we apply the HOWRAN concept to the backhauling of fixed or mobile WiMAX base stations. The two main innovative aspects of HOWRAN are depicted: its hardware architecture and its control plane.

  11. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    Science.gov (United States)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  12. Optical properties of polysiloxane hybrid thin films containing nano-sized Ag-As-Se chalcogenide clusters

    Science.gov (United States)

    Zha, Congji; Osvath, Peter; Wilson, Gerry; Launikonis, Anton

    2009-02-01

    Chalcogenide glasses are attractive for all-optical signal processing due to their outstanding optical properties, including large optical nonlinearity, a high refractive index and high photosensitivity. In device fabrication, a challenge lies in the difficulty of obtaining thin films with a high stability and good uniformity. In this paper, optical thin films containing nano-sized chalcogenide clusters in polysiloxane matrices are fabricated by a modified plasma deposition process. The optical absorption and luminescence emission properties of the hybrid thin films were characterized by UV-Vis-NIR and fluorescence spectroscopy. Luminescent emission from Ag-As-Se nano-sized clusters was observed for the first time in these nano-hybrid thin films, and the mechanism was discussed.

  13. A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink

    Science.gov (United States)

    He, Chao; Tan, Ze-fu; Shao, Yu-feng; Cai, Li; Pu, He-sheng; Zhu, Yun-le; Huang, Si-si; Liu, Yu

    2016-09-01

    A full-duplex optical passive access scheme is proposed and verified by simulation, in which hybrid 64/16/4-quadrature amplitude modulation (64/16/4QAM) orthogonal frequency division multiplexing (OFDM) optical signal is for downstream transmission and non-return-to-zero (NRZ) optical signal is for upstream transmission. In view of the transmitting and receiving process for downlink optical signal, in-phase/quadrature-phase (I/Q) modulation based on Mach-Zehnder modulator (MZM) and homodyne coherent detection technology are employed, respectively. The simulation results show that the bit error ratio ( BER) less than hardware decision forward error correction (HD-FEC) threshold is successfully obtained over transmission path with 20-km-long standard single mode fiber (SSMF) for hybrid downlink modulation OFDM optical signal. In addition, by dividing the system bandwidth into several subchannels consisting of some continuous subcarriers, it is convenient for users to select different channels depending on requirements of communication.

  14. Optical imaging of oral pathological tissue using optical coherence tomography and synchrotron radiation computed microtomography

    Science.gov (United States)

    Cânjǎu, Silvana; Todea, Carmen; Sinescu, Cosmin; Negrutiu, Meda L.; Duma, Virgil; Mǎnescu, Adrian; Topalǎ, Florin I.; Podoleanu, Adrian Gh.

    2013-06-01

    The efforts aimed at early diagnosis of oral cancer should be prioritized towards developing a new screening instrument, based on optical coherence tomography (OCT), to be used directly intraorally, able to perform a fast, real time, 3D and non-invasive diagnosis of oral malignancies. The first step in this direction would be to optimize the OCT image interpretation of oral tissues. Therefore we propose plastination as a tissue preparation method that better preserves three-dimensional structure for study by new optical imaging techniques. The OCT and the synchrotron radiation computed microtomography (micro-CT) were employed for tissue sample analyze. For validating the OCT results we used the gold standard diagnostic procedure for any suspicious lesion - histopathology. This is a preliminary study of comparing features provided by OCT and Micro-CT. In the conditions of the present study, OCT proves to be a highly promising imaging modality. The use of x-ray based topographic imaging of small biological samples has been limited by the low intrinsic x-ray absorption of non-mineralized tissue and the lack of established contrast agents. Plastination can be used to enhance optical imagies of oral soft tissue samples.

  15. Contributions to Desktop Grid Computing : From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures

    OpenAIRE

    Fedak, Gilles

    2015-01-01

    Since the mid 90’s, Desktop Grid Computing - i.e the idea of using a large number of remote PCs distributed on the Internet to execute large parallel applications - has proved to be an efficient paradigm to provide a large computational power at the fraction of the cost of a dedicated computing infrastructure.This document presents my contributions over the last decade to broaden the scope of Desktop Grid Computing. My research has followed three different directions. The first direction has ...

  16. Numerical approach for solving kinetic equations in two-dimensional case on hybrid computational clusters

    Science.gov (United States)

    Malkov, Ewgenij A.; Poleshkin, Sergey O.; Kudryavtsev, Alexey N.; Shershnev, Anton A.

    2016-10-01

    The paper presents the software implementation of the Boltzmann equation solver based on the deterministic finite-difference method. The solver allows one to carry out parallel computations of rarefied flows on a hybrid computational cluster with arbitrary number of central processor units (CPU) and graphical processor units (GPU). Employment of GPUs leads to a significant acceleration of the computations, which enables us to simulate two-dimensional flows with high resolution in a reasonable time. The developed numerical code was validated by comparing the obtained solutions with the Direct Simulation Monte Carlo (DSMC) data. For this purpose the supersonic flow past a flat plate at zero angle of attack is used as a test case.

  17. Hybrid annealing using a quantum simulator coupled to a classical computer

    CERN Document Server

    Graß, Tobias

    2016-01-01

    Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Simulated annealing is a computational technique which explores the configuration space by mimicking thermal noise. By slow cooling, it freezes the system in a low-energy configuration, but the algorithm often gets stuck in local minima. In quantum annealing, the thermal noise is replaced by controllable quantum fluctuations, and the technique can be implemented in modern quantum simulators. However, quantum-adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configurati...

  18. Step Response Enhancement of Hybrid Stepper Motors Using Soft Computing Techniques

    Directory of Open Access Journals (Sweden)

    Amged S. El-Wakeel

    2014-05-01

    Full Text Available This paper presents the use of different soft computing techniques for step response enhancement of Hybrid Stepper Motors. The basic differential equations of hybrid stepper motor are used to build up a model using MATLAB software package. The implementation of Fuzzy Logic (FL and Proportional-Integral-Derivative (PID controllers are used to improve the motor performance. The numerical simulations by a PC-based controller show that the PID controller tuned by Genetic Algorithm (GA produces better performance than that tuned by Fuzzy controller. They show that, the Fuzzy PID-like controller produces better performance than the other linear Fuzzy controllers. Finally, the comparison between PID controllers tuned by genetic algorithm and the Fuzzy PID-like controller shows that, the Fuzzy PID-like controller produces better performance.

  19. Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guangdong [National Renewable Energy Laboratory,15013 Denver West Parkway,Golden, CO 80401e-mail: Guangdong.Zhu@nrel.gov; Turchi, Craig [National Renewable Energy Laboratory,15013 Denver West Parkway,Golden, CO 80401

    2017-01-27

    Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error and receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.

  20. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it [INFN Sezione di Ferrara and University of Ferrara (Italy); Baltzell, N. [Argonne National Laboratory, IL (United States); Benmokhtar, F. [Christopher Newport University, VA (United States); Duquesne University, PA (United States); Barion, L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Cisbani, E. [INFN Sezione di Roma – Gruppo Collega to Sanità (Italy); Italian National Institute of Health (Italy); El Alaoui, A. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Argonne National Laboratory, IL (United States); Hafidi, K. [Argonne National Laboratory, IL (United States); Hoek, M. [Glasgow University (United Kingdom); J. Gutenberg Universität, Mainz (Germany); Kubarovsky, V. [Thomas Jefferson National Laboratory, VA (United States); Lagamba, L. [INFN Sezione di Bari, University of Bari (Italy); Lucherini, V. [INFN Laboratori Nazionali di Frascati (Italy); Malaguti, R. [INFN Sezione di Ferrara and University of Ferrara (Italy); Mirazita, M. [INFN Laboratori Nazionali di Frascati (Italy); Montgomery, R. [Glasgow University (United Kingdom); INFN Laboratori Nazionali di Frascati (Italy); Movsisyan, A. [INFN Sezione di Ferrara and University of Ferrara (Italy); Musico, P. [INFN Sezione di Genova (Italy); Orecchini, D.; Orlandi, A. [INFN Laboratori Nazionali di Frascati (Italy); Pappalardo, L.L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Pereira, S. [INFN Laboratori Nazionali di Frascati (Italy); and others

    2014-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here. - Highlights: • A novel hybrid-optics configuration was proven to work with a large RICH prototype. • Innovative RICH components were studied both in laboratory tests and test-beams. • Aerogel of large Rayleigh scattering length at n=1.05 was characterized. • Novel vs commercially available multi-anode photomultipliers were compared. • The response of SiPM matrices to Cherenkov light was tested at various temperatures.

  1. Effective-mass model and magneto-optical properties in hybrid perovskites.

    Science.gov (United States)

    Yu, Z G

    2016-06-24

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  2. Effective-mass model and magneto-optical properties in hybrid perovskites

    Science.gov (United States)

    Yu, Z. G.

    2016-06-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  3. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Matthew R; Geyer, John W; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Aris, John P [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shifrin, Roger Y, E-mail: wbolch@ufl.edu [Department of Radiology, University of Florida, Gainesville, FL (United States)

    2011-08-07

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR(TM) and then imported to the 3D modeling software package Rhinoceros(TM) for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations

  4. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    Science.gov (United States)

    Maynard, Matthew R.; Geyer, John W.; Aris, John P.; Shifrin, Roger Y.; Bolch, Wesley

    2011-08-01

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR™ and then imported to the 3D modeling software package Rhinoceros™ for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in

  5. A hybrid model for the computationally-efficient simulation of the cerebellar granular layer

    Directory of Open Access Journals (Sweden)

    Anna eCattani

    2016-04-01

    Full Text Available The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system and its continuous counterpart (PDE system obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables.Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least $270$ times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround and time-windowing.

  6. SYNTHESIS AND OPTICAL PROPERTIES OF A NOVEL ORGANIC/INORGANIC HYBRID NONLINEAR OPTICAL POLYMER VIA SOL-GEL PROCESS

    Institute of Scientific and Technical Information of China (English)

    Hong-xia Xi; Zhong Li; Zhao-xi Liang

    2001-01-01

    A new organic/inorganic hybrid nonlinear optical (NLO) material was developed by the sol-gel process of an alkoxysilane dye with tetraethoxysilane. A NLO moiety based on 4-nitro-4′-hydroxy azobenzene was covalently bonded to the triethoxysilane derivative, i.e. γ-isocyanatopropyl triethoxysilane. The preparation process and properties of the sol-gel derived NLO polymer were studied and characterized by SEM, FTIR, 1H-NMR, UV-Vis, DSC and second harmonic generation (SHG) measurement. The results indicated that the chemical bonding of the chromophores to the inorganic SiO2 networks induces Iow dipole alignment relaxation and preferable orientational stability. The SHG measurements also showed that the bonded polymer film containing 75 wt% of the akoxysilane dye has a high electro-optic coefficient (r33) of7. 1 pm/V at 1.1 μm wavelength, and exhibit good SHG stability, the r33 values can maintain about 92.7% of its initial value at room temperature for 90 days, and can maintain about 59.3% at 100℃ for 300 min.``

  7. Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts.

    Science.gov (United States)

    Petty, Jeffrey T; Nicholson, David A; Sergev, Orlin O; Graham, Stuart K

    2014-09-16

    Silver clusters with ~10 atoms form within DNA strands, and the conjugates are chemical sensors. The DNA host hybridizes with short oligonucleotides, and the cluster moieties optically respond to these analytes. Our studies focus on how the cluster adducts perturb the structure of their DNA hosts. Our sensor is comprised of an oligonucleotide with two components: a 5'-cluster domain that complexes silver clusters and a 3'-recognition site that hybridizes with a target oligonucleotide. The single-stranded sensor encapsulates an ~11 silver atom cluster with violet absorption at 400 nm and with minimal emission. The recognition site hybridizes with complementary oligonucleotides, and the violet cluster converts to an emissive near-infrared cluster with absorption at 730 nm. Our key finding is that the near-infrared cluster coordinates two of its hybridized hosts. The resulting tertiary structure was investigated using intermolecular and intramolecular variants of the same dimer. The intermolecular dimer assembles in concentrated (~5 μM) DNA solutions. Strand stoichiometries and orientations were chromatographically determined using thymine-modified complements that increase the overall conjugate size. The intramolecular dimer develops within a DNA scaffold that is founded on three linked duplexes. The high local cluster concentrations and relative strand arrangements again favor the antiparallel dimer for the near-infrared cluster. When the two monomeric DNA/violet cluster conjugates transform to one dimeric DNA/near-infrared conjugate, the DNA strands accumulate silver. We propose that these correlated changes in DNA structure and silver stoichiometry underlie the violet to near-infrared cluster transformation.

  8. Hybrid magnetic – Semiconductor nanocomposites: optical, magnetic and nanosecond dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Emam, A.N.; Girgis, E.; Mostafa, A.A. [National Research Center, Dokki, Giza (Egypt); Guirguis, O.W. [Biophysics Department, Faculty of Science, Cairo University, Giza (Egypt); Mohamed, M.B., E-mail: monabmohamed@gmail.com [National Institute of Laser Enhanced Science, Cairo University, Giza (Egypt); NanoTech Egypt for Photoelectronics, Dreamland, Giza (Egypt)

    2015-07-15

    A series of colloidal CdSe quantum dots doped with different concentration of cobalt ions has been prepared via organometallic pyrolysis of a mixture of cadmium stearate and cobalt dithiocarbazate. The conditions required for successful doping depend on the source of cobalt ions and the dopant concentration. The structure and morphology of the prepared nanocrystals have been characterized using X-Ray Diffraction (XRD), and Transmission Electron Microscope (TEM). Slight shift in the interplaner space was observed in the XRD pattern of the doped nanocrystals. Formation of separate cobalt nanoclusters has been observed in the TEM images upon increasing the cobalt concentration more than 2% of the original cadmium concentration. This was confirmed by magnetic measurements of the prepared samples. Room-temperature ferromagnetism has been observed, in which the switching field increases as the cobalt ratio increases. Increasing the cobalt ratio more than 5% increases the coercivity due to formation of Co{sup 0} nanoclusters. Moreover, the presence of localized magnetic ions in semiconductor QDs leads to strong exchange interactions between sp band electrons and the magnetic ions d electrons. This would influence the optical properties such as absorption, emission, as well as nanosecond relaxation dynamics. - Graphical abstract: Display Omitted - Highlights: • Hybrid semiconductor-magnetic nanostructure was prepared via chemical method. • Room-temperature ferromagnetism for hybrid CdSe–Co quantum dots has been observed. • Co{sup +2} ions induces slight shift in the interplaner space distance of the doped QDs. • Hybrid CdSe–Co QDs have better quantum yield than pure CdSe QDs. • Hybrid CdSe–Co nanocrystals have faster electron-hole dynamics than pure CdSe QDs.

  9. Equivalence of Optical and Electrical Noise Equivalent Power of Hybrid NbTiN-Al Microwave Kinetic Inductance Detectors

    CERN Document Server

    Janssen, R M J; de Visser, P J; Klapwijk, T M; Baselmans, J J A

    2014-01-01

    We have measured and compared the response of hybrid NbTiN-Al Microwave Kinetic Inductance Detectors (MKIDs) to changes in bath temperature and illumination by sub-mm radiation. We show that these two stimulants have an equivalent effect on the resonance feature of hybrid MKIDs. We determine an electrical NEP from the measured temperature responsivity, quasiparticle recombination time, superconducting transition temperature and noise spectrum, all of which can be measured in a dark environment. For the two hybrid NbTiN-Al MKIDs studied in detail the electrical NEP is within a factor of two of the optical NEP, which is measured directly using a blackbody source.

  10. Computational and experimental determinations of the UV adsorption of polyvinylsilsesquioxane-silica and titanium dioxide hybrids.

    Science.gov (United States)

    Wang, Haiyan; Lin, Derong; Wang, Di; Hu, Lijiang; Huang, Yudong; Liu, Li; Loy, Douglas A

    2014-01-01

    Sunscreens that absorb UV light without photodegradation could reduce skin cancer. Polyvinyl silsesquioxanes are known to have greater thermal and photochemical stability than organic compounds, such as those in sunscreens. This paper evaluates the UV transparency of vinyl silsesquioxanes (VS) and its hybrids with SiO2(VSTE) and TiO2(VSTT) experimentally and computationally. Based on films of VS prepared by sol-gel polymerization, using benzoyl peroxide as an initiator, vinyltrimethoxysilane (VMS) formulated oligomer through thermal curing. Similarly, VSTE films were prepared from VMS and 5-25 wt-% tetraethoxysilane (TEOS) and VSTT films were prepared from VMS and 5-25 wt-% titanium tetrabutoxide (TTB). Experimental average transparencies of the modified films were found to be about 9-14% between 280-320 nm, 67-73% between 320-350nm, and 86-89% between 350-400nm. Computation of the band gap was absorption edges for the hybrids in excellent agreement with experimental data. VS, VSTE and VSTT showed good absorption in UV-C and UV-B range, but absorbed virtually no UV-A. Addition of SiO2 or TiO2 does not improve UV-B absorption, but on the opposite increases transparency of thin films to UV. This increase was validated with molecular simulations. Results show computational design can predict better sunscreens and reduce the effort of creating sunscreens that are capable of absorbing more UV-B and UV-A.

  11. 32 x 10 and 64 × 10 Gb/s transmission using hybrid Raman-Erbium doped optical amplifiers

    Directory of Open Access Journals (Sweden)

    Shveta Singh

    2011-08-01

    Full Text Available We have successfully demonstrated a long-haul transmission of 32 × 10 Gbit/s and 64 × 10 Gbit/s over single-mode fiber of 650 km and 530 km respectively by using RAMAN-EDFA hybrid optical amplifier as inline and preamplifier amplifiers. The measured Q-factors and BER of the 32 and 64 channels after 650 and 530 km respectively (16.99–17 dB and (10-13 were higher than the standard acceptable value, which offers feasibility of the hybrid amplifiers including EDFA optical amplifiers for the long-haul transmission.

  12. Fluorescent Nanodiamond-Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging.

    Science.gov (United States)

    Liu, Weina; Naydenov, Boris; Chakrabortty, Sabyasachi; Wuensch, Bettina; Hübner, Kristina; Ritz, Sandra; Cölfen, Helmut; Barth, Holger; Koynov, Kaloian; Qi, Haoyuan; Leiter, Robert; Reuter, Rolf; Wrachtrup, Jörg; Boldt, Felix; Scheuer, Jonas; Kaiser, Ute; Sison, Miguel; Lasser, Theo; Tinnefeld, Philip; Jelezko, Fedor; Walther, Paul; Wu, Yuzhou; Weil, Tanja

    2016-10-12

    There is a continuous demand for imaging probes offering excellent performance in various microscopy techniques for comprehensive investigations of cellular processes by more than one technique. Fluorescent nanodiamond-gold nanoparticles (FND-Au) constitute a new class of "all-in-one" hybrid particles providing unique features for multimodal cellular imaging including optical imaging, electron microscopy, and, and potentially even quantum sensing. Confocal and optical coherence microscopy of the FND-Au allow fast investigations inside living cells via emission, scattering, and photothermal imaging techniques because the FND emission is not quenched by AuNPs. In electron microscopy, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) analysis of FND-Au reveals greatly enhanced contrast due to the gold particles as well as an extraordinary flickering behavior in three-dimensional cellular environments originating from the nanodiamonds. The unique multimodal imaging characteristics of FND-Au enable detailed studies inside cells ranging from statistical distributions at the entire cellular level (micrometers) down to the tracking of individual particles in subcellular organelles (nanometers). Herein, the processes of endosomal membrane uptake and release of FNDs were elucidated for the first time by the imaging of individual FND-Au hybrid nanoparticles with single-particle resolution. Their convenient preparation, the availability of various surface groups, their flexible detection modalities, and their single-particle contrast in combination with the capability for endosomal penetration and low cytotoxicity make FND-Au unique candidates for multimodal optical-electronic imaging applications with great potential for emerging techniques, such as quantum sensing inside living cells.

  13. Computer simulation of diffractive optical element (DOE) performance

    Science.gov (United States)

    Delacour, Jacques F.; Venturino, Jean-Claude; Gouedard, Yannick

    2004-02-01

    Diffractive optical elements (DOE), also known as computer generated holograms (CGH), can transform an illuminating laser beam into a specified intensity distribution by diffraction rather than refraction or reflection. These are widely used in coherent light systems with beam shaping purposes, as an alignment tool or as a structured light generator. The diffractive surface is split into an array of sub-wavelength depth cells. Each of these locally transforms the beam by phase adaptation. Based on the work of the LSP lab from the University of Strasbourg, France, we have developed a unique industry-oriented tool. It allows the user first to optimize a DOE using the Gerchberg-Saxton algorithm. This part can manage sources from the simple plane wave to high order Gaussian modes or complex maps defined beams and objective patterns based on BMP images. A simulation part permits then to test the performance of the DOE with regard to system parameters, dealing with the beam, the DOE itself and the system organization. This will meet the needs of people concerned by tolerancing issues. Focusing on the industrial problem of beam shaping, we will present the whole DOE design sequence, starting from the generation of a DOE up to the study of the sensitivity of its performance according to the variation of several parameters of the system. For example, we will show the influence of the position of the beam on diffraction efficiency. This unique feature formerly neglected in industrial design process will lead the way to production quality improvement.

  14. Higher Order Modeling in Hybrid Approaches to the Computation of Electromagnetic Fields

    Science.gov (United States)

    Wilton, Donald R.; Fink, Patrick W.; Graglia, Roberto D.

    2000-01-01

    Higher order geometry representations and interpolatory basis functions for computational electromagnetics are reviewed. Two types of vector-valued basis functions are described: curl-conforming bases, used primarily in finite element solutions, and divergence-conforming bases used primarily in integral equation formulations. Both sets satisfy Nedelec constraints, which optimally reduce the number of degrees of freedom required for a given order. Results are presented illustrating the improved accuracy and convergence properties of higher order representations for hybrid integral equation and finite element methods.

  15. Public vs Private vs Hybrid vs Community - Cloud Computing: A Critical Review

    Directory of Open Access Journals (Sweden)

    Sumit Goyal

    2014-02-01

    Full Text Available These days cloud computing is booming like no other technology. Every organization whether it's small, mid-sized or big, wants to adapt this cutting edge technology for its business. As cloud technology becomes immensely popular among these businesses, the question arises: Which cloud model to consider for your business? There are four types of cloud models available in the market: Public, Private, Hybrid and Community. This review paper answers the question, which model would be most beneficial for your business. All the four models are defined, discussed and compared with the benefits and pitfalls, thus giving you a clear idea, which model to adopt for your organization.

  16. Quantum computation in a quantum-dot-Majorana-fermion hybrid system

    CERN Document Server

    Xue, Zheng-Yuan

    2012-01-01

    We propose a scheme to implement universal quantum computation in a quantum-dot-Majorana-fermion hybrid system. Quantum information is encoded on pairs of Majorana fermions, which live on the the interface between topologically trivial and nontrivial sections of a quantum nanowire deposited on an s-wave superconductor. Universal single-qubit gates on topological qubit can be achieved. A measurement-based two-qubit Controlled-Not gate is produced with the help of parity measurements assisted by the quantum-dot and followed by prescribed single-qubit gates. The parity measurement, on the quantum-dot and a topological qubit, is achieved by the Aharonov- Casher effect.

  17. Hybrid EEG-EOG brain-computer interface system for practical machine control.

    Science.gov (United States)

    Punsawad, Yunyong; Wongsawat, Yodchanan; Parnichkun, Manukid

    2010-01-01

    Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.

  18. Treatment of early and late reflections in a hybrid computer model for room acoustics

    DEFF Research Database (Denmark)

    Naylor, Graham

    1992-01-01

    The ODEON computer model for acoustics in large rooms is intended for use both in design (by predicting room acoustical indices quickly and easily) and in research (by forming the basis of an auralization system and allowing study of various room acoustical phenomena). These conflicting demands...... preclude the use of both ``pure'' image source and ``pure'' particle tracing methods. A hybrid model has been developed, in which rays discover potential image sources up to a specified order. Thereafter, the same ray tracing process is used in a different way to rapidly generate a dense reverberant decay...

  19. Assessment of asthmatic inflammation using hybrid fluorescence molecular tomography-x-ray computed tomography

    Science.gov (United States)

    Ma, Xiaopeng; Prakash, Jaya; Ruscitti, Francesca; Glasl, Sarah; Stellari, Fabio Franco; Villetti, Gino; Ntziachristos, Vasilis

    2016-01-01

    Nuclear imaging plays a critical role in asthma research but is limited in its readings of biology due to the short-lived signals of radio-isotopes. We employed hybrid fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) for the assessment of asthmatic inflammation based on resolving cathepsin activity and matrix metalloproteinase activity in dust mite, ragweed, and Aspergillus species-challenged mice. The reconstructed multimodal fluorescence distribution showed good correspondence with ex vivo cryosection images and histological images, confirming FMT-XCT as an interesting alternative for asthma research.

  20. Quantum teleportation and entanglement. A hybrid approach to optical quantum information procesing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Tokyo Univ. (Japan). Dept. of Applied Physics; Loock, Peter van [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Optik

    2011-07-01

    Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information. (orig.)

  1. Magneto-optical mode conversion in a hybrid glass waveguide made by sol-gel and ion-exchange techniques

    Science.gov (United States)

    Royer, François; Amata, Hadi; Parsy, François; Jamon, Damien; Ghibaudo, Elise; Broquin, Jean-Emmanuel; Neveu, Sophie

    2012-01-01

    The integration of magneto-optical materials with classical technologies being still a difficult problem, this study explores the possibility to realize a mode converter based on a hybrid structure. A composite magneto-optical layer made of a silica/zirconia matrix doped by magnetic nanoparticles is coated on the top face of ion-exchanged glass waveguides. Optical characterizations that have been carried out demonstrated the efficiency of these hybrid structures in terms of lateral confinement. Furthermore, TE to TM mode conversion has been observed when a longitudinal magnetic field is applied to the device. The amount of this conversion is analysed taking into account the magneto-optical confinement and the modal birefringence of the structure.

  2. Hybrid simulation of scatter intensity in industrial cone-beam computed tomography

    Science.gov (United States)

    Thierry, R.; Miceli, A.; Hofmann, J.; Flisch, A.; Sennhauser, U.

    2009-01-01

    A cone-beam computed tomography (CT) system using a 450 kV X-ray tube has been developed to challenge the three-dimensional imaging of parts of the automotive industry in short acquisition time. Because the probability of detecting scattered photons is high regarding the energy range and the area of detection, a scattering correction becomes mandatory for generating reliable images with enhanced contrast detectability. In this paper, we present a hybrid simulator for the fast and accurate calculation of the scattering intensity distribution. The full acquisition chain, from the generation of a polyenergetic photon beam, its interaction with the scanned object and the energy deposit in the detector is simulated. Object phantoms can be spatially described in form of voxels, mathematical primitives or CAD models. Uncollided radiation is treated with a ray-tracing method and scattered radiation is split into single and multiple scattering. The single scattering is calculated with a deterministic approach accelerated with a forced detection method. The residual noisy signal is subsequently deconvoluted with the iterative Richardson-Lucy method. Finally the multiple scattering is addressed with a coarse Monte Carlo (MC) simulation. The proposed hybrid method has been validated on aluminium phantoms with varying size and object-to-detector distance, and found in good agreement with the MC code Geant4. The acceleration achieved by the hybrid method over the standard MC on a single projection is approximately of three orders of magnitude.

  3. Hybrid Numerical Solvers for Massively Parallel Eigenvalue Computation and Their Benchmark with Electronic Structure Calculations

    CERN Document Server

    Imachi, Hiroto

    2015-01-01

    Optimally hybrid numerical solvers were constructed for massively parallel generalized eigenvalue problem (GEP).The strong scaling benchmark was carried out on the K computer and other supercomputers for electronic structure calculation problems in the matrix sizes of M = 10^4-10^6 with upto 105 cores. The procedure of GEP is decomposed into the two subprocedures of the reducer to the standard eigenvalue problem (SEP) and the solver of SEP. A hybrid solver is constructed, when a routine is chosen for each subprocedure from the three parallel solver libraries of ScaLAPACK, ELPA and EigenExa. The hybrid solvers with the two newer libraries, ELPA and EigenExa, give better benchmark results than the conventional ScaLAPACK library. The detailed analysis on the results implies that the reducer can be a bottleneck in next-generation (exa-scale) supercomputers, which indicates the guidance for future research. The code was developed as a middleware and a mini-application and will appear online.

  4. Porous silicon-VO{sub 2} based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.; Basurto, M. A.; Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. 62209 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Mor. 62580 (Mexico); Jiménez Sandoval, S. [Laboratorio de Investigación en Materiales, Centro de Investigación y estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Qro. 76001 (Mexico)

    2015-10-07

    Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.

  5. Research related to improved computer aided design software package. [comparative efficiency of finite, boundary, and hybrid element methods in elastostatics

    Science.gov (United States)

    Walston, W. H., Jr.

    1986-01-01

    The comparative computational efficiencies of the finite element (FEM), boundary element (BEM), and hybrid boundary element-finite element (HVFEM) analysis techniques are evaluated for representative bounded domain interior and unbounded domain exterior problems in elastostatics. Computational efficiency is carefully defined in this study as the computer time required to attain a specified level of solution accuracy. The study found the FEM superior to the BEM for the interior problem, while the reverse was true for the exterior problem. The hybrid analysis technique was found to be comparable or superior to both the FEM and BEM for both the interior and exterior problems.

  6. The 650-nm variable optical attenuator based on polymer/silica hybrid waveguide

    Science.gov (United States)

    Yue-Yang, Yu; Xiao-Qiang, Sun; Lan-Ting, Ji; Guo-Bing, He; Xi-Bin, Wang; Yun-Ji, Yi; Chang-Ming, Chen; Fei, Wang; Da-Ming, Zhang

    2016-05-01

    Visible light variable optical attenuators (VOA) are essential devices in the application of channel power regulation and equalization in wavelength-division multiplexing cross-connect nodes in plastic optical fiber (POF) transmission systems. In this paper, a polymer/silica hybrid waveguide thermo-optic attenuator based on multimode interference (MMI) coupler is designed and fabricated to operate at 650 nm. The single-mode transmission condition, MMI coupler, and transition taper dimensions are optimized through the beam propagation method. Thermal analysis based on material properties provides the optimized heater placement angle. The fabricated VOA presents an attenuation of 26.5 dB with a 21-mW electrical input power at 650 nm. The rise time and fall time are 51.99 and 192 μs, respectively. The time-stability measurement results prove its working reliability. Project supported by the National Natural Science Foundation of China (Grant Nos. 61205032, 61475061, 61405070, 61177027, 61275033, and 61261130586) and the Science and Technology Development Plan of Jilin Province, China (Grant No. 20140519006JH).

  7. Analysis of SDWDM Ring Network and Enhancement Using Different Hybrid Optical Amplifiers and Modulation Formats

    Science.gov (United States)

    Anand, Vineet; Sharma, Anurag

    2016-09-01

    In this paper, performance enhancement of super-dense wavelength division multiplexing (SDWDM) optical add-drop multiplexer optical ring network for six nodes, 50 wavelengths having channel spacing of 0.2 nm for 300 km unidirectional nonlinear fiber is successfully demonstrated. The performance of the designed system is enhanced by comparing different modulation formats (non-return to zero (NRZ), return to zero (RZ), soliton, chirped return to zero (CRZ), carrier-suppressed RZ (CSRZ)) and hybrid amplifiers (Erbium-doped fiber amplifier (EDFA)-EDFA, semiconductor optical amplifier (SOA)-SOA, SOA, EDFA, EDFA-SOA) on the basis of eye diagram and bit error rate (BER). It has been observed that CRZ modulation format and EDFA-SOA shows the best results. It has been reported that EDFA-SOA/CRZ modulation format can achieve BER as better as e-13, which gives best performance. The effect of channel spacing on SDWDM system and performance degradation due to crosstalk is also evaluated.

  8. Evaluating a hybrid three-dimensional metrology system: merging data from optical and touch probe devices

    Science.gov (United States)

    Gerde, Janice R.; Christens-Barry, William A.

    2011-08-01

    In a project to meet requirements for CBP Laboratory analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS), a hybrid metrology system comprising both optical and touch probe devices has been assembled. A unique requirement must be met: To identify the interface-typically obscured in samples of concern-of the "external surface area upper" (ESAU) and the sole without physically destroying the sample. The sample outer surface is determined by discrete point cloud coordinates obtained using laser scanner optical measurements. Measurements from the optically inaccessible insole region are obtained using a coordinate measuring machine (CMM). That surface similarly is defined by point cloud data. Mathematically, the individual CMM and scanner data sets are transformed into a single, common reference frame. Custom software then fits a polynomial surface to the insole data and extends it to intersect the mesh fitted to the outer surface point cloud. This line of intersection defines the required ESAU boundary, thus permitting further fractional area calculations to determine the percentage of materials present. With a draft method in place, and first-level method validation underway, we examine the transformation of the two dissimilar data sets into the single, common reference frame. We also will consider the six previously-identified potential error factors versus the method process. This paper reports our on-going work and discusses our findings to date.

  9. Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding

    Science.gov (United States)

    Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin

    2014-10-01

    Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.

  10. A Hybrid Computational Intelligence Approach Combining Genetic Programming And Heuristic Classification for Pap-Smear Diagnosis

    DEFF Research Database (Denmark)

    Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan;

    2001-01-01

    The paper suggests the combined use of different computational intelligence (CI) techniques in a hybrid scheme, as an effective approach to medical diagnosis. Getting to know the advantages and disadvantages of each computational intelligence technique in the recent years, the time has come...... diagnoses. The final result is a short but robust rule based classification scheme, achieving high degree of classification accuracy (exceeding 90% of accuracy for most classes) in a meaningful and user-friendly representation form for the medical expert. The domain of application analyzed through the paper...... is the well-known Pap-Test problem, corresponding to a numerical database, which consists of 450 medical records, 25 diagnostic attributes and 5 different diagnostic classes. Experimental data are divided in two equal parts for the training and testing phase, and 8 mutually dependent rules for diagnosis...

  11. PWR hybrid computer model for assessing the safety implications of control systems

    Energy Technology Data Exchange (ETDEWEB)

    Smith, O L; Renier, J P; Difilippo, F C; Clapp, N E; Sozer, A; Booth, R S; Craddick, W G; Morris, D G

    1986-03-01

    The ORNL study of safety-related aspects of nuclear power plant control systems consists of two interrelated tasks: (1) failure mode and effects analysis (FMEA) that identified single and multiple component failures that might lead to significant plant upsets and (2) computer models that used these failures as initial conditions and traced the dynamic impact on the control system and remainder of the plant. This report describes the simulation of Oconee Unit 1, the first plant analyzed. A first-principles, best-estimate model was developed and implemented on a hybrid computer consisting of AD-4 analog and PDP-10 digital machines. Controls were placed primarily on the analog to use its interactive capability to simulate operator action. 48 refs., 138 figs., 15 tabs.

  12. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform.

    Science.gov (United States)

    Wu, Xin; Koslowski, Axel; Thiel, Walter

    2012-07-10

    In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU-GPU computing platform. Semiempirical calculations using the MNDO, AM1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by one order of magnitude for all methods, as compared to runs on a single CPU core.

  13. The UF family of reference hybrid phantoms for computational radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, MD 20852 (United States); Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Williams, Jonathan L [Department of Radiology, University of Florida, Gainesville, FL 32611 (United States); Bolch, Wesley E [Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)], E-mail: wbolch@ufl.edu

    2010-01-21

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR(TM). NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros(TM). The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  14. BF-PSO-TS: Hybrid Heuristic Algorithms for Optimizing Task Schedulingon Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Hussin M. Alkhashai

    2016-06-01

    Full Text Available Task Scheduling is a major problem in Cloud computing because the cloud provider has to serve many users. Also, a good scheduling algorithm helps in the proper and efficient utilization of the resources. So, task scheduling is considered as one of the major issues on the Cloud computing systems. The objective of this paper is to assign the tasks to multiple computing resources. Consequently, the total cost of execution is to be minimum and load to be shared between these computing resources. Therefore, two hybrid algorithms based on Particle Swarm Optimization (PSO have been introduced to schedule the tasks; Best-Fit-PSO (BFPSO and PSO-Tabu Search (PSOTS. According to BFPSO algorithm, Best-Fit (BF algorithm has been merged into the PSO algorithm to improve the performance. The main principle of the modified BFSOP algorithm is that BF algorithm is used to generate the initial population of the standard PSO algorithm instead of being initiated randomly. According to the proposed PSOTS algorithm, the Tabu-Search (TS has been used to improve the local research by avoiding the trap of the local optimality which could be occurred using the standard PSO algorithm. The two proposed algorithms (i.e., BFPSO and PSOTS have been implemented using Cloudsim and evaluated comparing to the standard PSO algorithm using five problems with different number of independent tasks and resources. The performance parameters have been considered are the execution time (Makspan, cost, and resources utilization. The implementation results prove that the proposed hybrid algorithms (i.e., BFPSO, PSOTS outperform the standard PSO algorithm.

  15. A simplified computational fluid-dynamic approach to the oxidizer injector design in hybrid rockets

    Science.gov (United States)

    Di Martino, Giuseppe D.; Malgieri, Paolo; Carmicino, Carmine; Savino, Raffaele

    2016-12-01

    Fuel regression rate in hybrid rockets is non-negligibly affected by the oxidizer injection pattern. In this paper a simplified computational approach developed in an attempt to optimize the oxidizer injector design is discussed. Numerical simulations of the thermo-fluid-dynamic field in a hybrid rocket are carried out, with a commercial solver, to investigate into several injection configurations with the aim of increasing the fuel regression rate and minimizing the consumption unevenness, but still favoring the establishment of flow recirculation at the motor head end, which is generated with an axial nozzle injector and has been demonstrated to promote combustion stability, and both larger efficiency and regression rate. All the computations have been performed on the configuration of a lab-scale hybrid rocket motor available at the propulsion laboratory of the University of Naples with typical operating conditions. After a preliminary comparison between the two baseline limiting cases of an axial subsonic nozzle injector and a uniform injection through the prechamber, a parametric analysis has been carried out by varying the oxidizer jet flow divergence angle, as well as the grain port diameter and the oxidizer mass flux to study the effect of the flow divergence on heat transfer distribution over the fuel surface. Some experimental firing test data are presented, and, under the hypothesis that fuel regression rate and surface heat flux are proportional, the measured fuel consumption axial profiles are compared with the predicted surface heat flux showing fairly good agreement, which allowed validating the employed design approach. Finally an optimized injector design is proposed.

  16. No-go theorem for passive single-rail linear optical quantum computing.

    Science.gov (United States)

    Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A

    2013-01-01

    Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.

  17. The study of hybrid model identification,computation analysis and fault location for nonlinear dynamic circuits and systems

    Institute of Scientific and Technical Information of China (English)

    XIE Hong; HE Yi-gang; ZENG Guan-da

    2006-01-01

    This paper presents the hybrid model identification for a class of nonlinear circuits and systems via a combination of the block-pulse function transform with the Volterra series.After discussing the method to establish the hybrid model and introducing the hybrid model identification,a set of relative formulas are derived for calculating the hybrid model and computing the Volterra series solution of nonlinear dynamic circuits and systems.In order to significantly reduce the computation cost for fault location,the paper presents a new fault diagnosis method based on multiple preset models that can be realized online.An example of identification simulation and fault diagnosis are given.Results show that the method has high accuracy and efficiency for fault location of nonlinear dynamic circuits and systems.

  18. Poly(ethylene oxide)-silica hybrids entrapping sensitive dyes for biomedical optical pH sensors: Molecular dynamics and optical response

    Science.gov (United States)

    Fabbri, Paola; Pilati, Francesco; Rovati, Luigi; McKenzie, Ruel; Mijovic, Jovan

    2011-06-01

    Polymer-silica hybrid nanocomposites prepared by sol-gel process based on triethoxisilane-terminated poly(ethylene oxide) chains and tetraethoxysilane as silica precursor, doped with organic pH sensitive dyes, have been prepared and their suitability for use as sensors coupled with plastic optic fibers has been evaluated. Sensors were prepared by immobilizing a drop of the hybrid materials onto the tip of a multi-mode poly(methyl methacrylate) optical fiber. The performance of the optical sensor in terms of sensitivity and response time was tested in different experimental conditions, and was found to be markedly higher than analogous sensors present on the market. The very fast kinetic of the hybrid's optical response was supported by studies performed at the molecular level by broadband dielectric relaxation spectroscopy (DRS), investigated over a wide range of frequency and temperature, showing that poly(ethylene oxide) chains maintain their dynamics even when covalently bonded to silica domains, which decrease the self-association interactions and promote motions of polymer chain segments. Due to the fast response kinetic observed, these pH optical sensors result suitable for the fast-detection of biomedical parameters, i.e. fast esophageous pH-metry.

  19. Predictors of incomplete optical colonoscopy using computed tomographic colonography

    Directory of Open Access Journals (Sweden)

    Reetika Sachdeva

    2016-01-01

    Full Text Available Background/Aims: Optical colonoscopy (OC is the primary modality for investigation of colonic pathology. Although there is data on demographic factors for incomplete OC, paucity of data exists for anatomic variables that are associated with an incomplete OC. These anatomic variables can be visualized using computed tomographic colonography (CTC. We aim to retrospectively identify variables associated with incomplete OC using CTC and develop a scoring method to predict the outcome of OC. Patients and Methods: In this case-control study, 70 cases ( with incomplete OC and 70 controls (with complete OC were identified. CTC images of cases and controls were independently reviewed by a single CTC radiologist. Demographic and anatomical parameters were recorded. Data was examined using descriptive linear statistics and multivariate logistic regression model. Results: On analysis, female gender (80% vs 58.6% P = 0.007, prior abdominal/pelvic surgeries (51.4% vs 14.3% P < 0.001, colonic length (187.6 ± 30.0 cm vs 163.8 ± 27.2 cm P < 0.001, and number of flexures (11.4 ± 3.1 vs 8.4 ± 2.9 P < 0.001 increased the risk for incomplete OC. No significant association was observed for increasing age (P = 0.881 and history of severe diverticulosis (P = 0.867 with incomplete OC. A scoring system to predict the outcome of OC is proposed based on CTC findings. Conclusion: Female gender, prior surgery, and increasing colonic length and tortuosity were associated with incomplete OC, whereas increasing age and history of severe diverticulosis were not. These factors may be used in the future to predict those patients who are at risk of incomplete OC.

  20. Optical and electrochemical evaluation of colloidal Au nanoparticle-ITO hybrid optically transparent electrodes and their application to attenuated total reflectance spectroelectrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, John N.; Aguilar, Zoraida; Kaval, Necati; Andria, Sara E.; Shtoyko, Tanya; Seliskar, Carl J.; Heineman, William R

    2003-12-15

    Colloidal Au nanoparticle monolayers covalently deposited on conductive layers of indium tin oxide (ITO) were fabricated and evaluated as optically transparent electrodes (OTEs) for spectroelectrochemical applications. Specifically, the electrodes were characterized using UV-Vis spectroscopy and cyclic voltammetry; comparisons are made with other types of hybrid ITO optically transparent electrodes. The optical modulation of surface-bound colloidal Au in response to potential cycling over a wide potential window (0.6 to -1.0 V) was acquired in an attenuated total reflectance (ATR) spectroelectrochemical cell. Finally, uptake of a model analyte, tris-(2,2'-bipyridyl)ruthenium(II) chloride, into a Nafion charge selective film spin coated onto the colloidal Au-ITO hybrid electrode was examined using ATR absorbance spectroelectrochemistry. Dependence of uptake on film thickness is addressed, and non-optimized detection limits of 10 nM are reported.

  1. Photonic Routing Systems Using All-optical, Hybrid Integrated Wavelength Converter Arrays

    Directory of Open Access Journals (Sweden)

    Leontios Stampoulidis

    2010-02-01

    Full Text Available The integration of a new generation of all-optical wavelength converters within European project ISTMUFINS has enabled the development of compact and multi-functional photonic processing systems. Here we present the realization of demanding functionalities required in high-capacity photonic routers using these highly integrated components including: Clock recovery, data/label recovery, wavelength routing and contention resolution; all implemented with multi-signal processing using a single photonic chip – a quadruple array of SOAMZI wavelength converters which occupies a chip area of only 15 x 58 mm2. In addition, we present the capability of the technology to build WDM signal processing systems with the simultaneous operation of four quad devices in a four wavelength burst-mode regenerator. Finally, the potential of the technology to provide photonic systems-onchip is demonstrated with the first hybrid integrated alloptical burst-mode receiver prototype.

  2. Modeling and Testing of a PV/T hybrid system with Water based Optical Filter

    Directory of Open Access Journals (Sweden)

    Sachin Gupta

    2015-12-01

    Full Text Available A theoretical model has been developed for the Non-imaging V-trough hybrid PV/T concentrator systems along with optical filter and validated with the designed and fabricated system to assess over all thermal efficiency of the PV/T system. A V-trough concentrator system has been developed for two axes tracking. Commercially available solar modules were evaluated for their usability under 2-sun concentration. V-trough concentrator with geometric concentration ratio of 2 (2-sun, we are getting an average overall efficiency of the PV/T system increased by 23.54 % extra overall thermal efficiency of the PV/T system as compared to the solar module efficiency at standard test conditions.

  3. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Timothy A [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Bankson, James [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Aaron, Jesse [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Sokolov, Konstantin [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-08-15

    Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T{sub 2} (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.

  4. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome.

    Science.gov (United States)

    Shearer, Lindsay A; Anderson, Lorinda K; de Jong, Hans; Smit, Sandra; Goicoechea, José Luis; Roe, Bruce A; Hua, Axin; Giovannoni, James J; Stack, Stephen M

    2014-05-30

    The order and orientation (arrangement) of all 91 sequenced scaffolds in the 12 pseudomolecules of the recently published tomato (Solanum lycopersicum, 2n = 2x = 24) genome sequence were positioned based on marker order in a high-density linkage map. Here, we report the arrangement of these scaffolds determined by two independent physical methods, bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) and optical mapping. By localizing BACs at the ends of scaffolds to spreads of tomato synaptonemal complexes (pachytene chromosomes), we showed that 45 scaffolds, representing one-third of the tomato genome, were arranged differently than predicted by the linkage map. These scaffolds occur mostly in pericentric heterochromatin where 77% of the tomato genome is located and where linkage mapping is less accurate due to reduced crossing over. Although useful for only part of the genome, optical mapping results were in complete agreement with scaffold arrangement by FISH but often disagreed with scaffold arrangement based on the linkage map. The scaffold arrangement based on FISH and optical mapping changes the positions of hundreds of markers in the linkage map, especially in heterochromatin. These results suggest that similar errors exist in pseudomolecules from other large genomes that have been assembled using only linkage maps to predict scaffold arrangement, and these errors can be corrected using FISH and/or optical mapping. Of note, BAC-FISH also permits estimates of the sizes of gaps between scaffolds, and unanchored BACs are often visualized by FISH in gaps between scaffolds and thus represent starting points for filling these gaps.

  5. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko

    2013-01-01

    We experimentally assess the performance of a 64 × 64 optical switch fabric used for ns-speed optical cell switching in supercomputer optical interconnects. More specifically, we study four alternative modulation formats and detection schemes, namely, 10-Gb/s nonreturn-to-zero differential phase......-shift keying with balanced direct detection, 10-Gb/s polarization division multiplexed (PDM) quadrature phase-shift keying, 40-Gb/s single-polarization 16-ary quadrature amplitude modulation (16QAM), and 80-Gb/s PDM-16QAM, with coherent intradyne detection, in conjunction with an optimized version...... of the optical shared memory supercomputer interconnect system switch fabric. In particular, we investigate the resilience of the aforementioned advanced modulation formats to the nonlinearities of semiconductor optical amplifiers, used as ON/OFF gates in the supercomputer optical switch fabric under study...

  6. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yaoyu; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia)

    2014-12-29

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures.

  7. Intercalation assembly of optical hybrid materials based on layered terbium hydroxide hosts and organic sensitizer anions guests

    Institute of Scientific and Technical Information of China (English)

    Liang-Liang Liu; Qin Wang; Dan Xia; Ting-Ting Shen; Ming-Hui Yu; Wei-Sheng Liu; Yu Tang

    2013-01-01

    Optical hybrid materials based on inorganic hosts and organic sensitizer guests hold promise for a virtually unlimited number of applications.In particular,the interaction and the combination of the properties of a defined inorganic matrix and a specific sensitizer could lead to synergistic effects in luminescence enhancing and tuning.The current article focuses on the intercalation assembly of optical hybrid materials based on the layered terbium hydroxide (LTbH) hosts and organic divalent carboxylic sensitizer anion guests by a hydrothermal process.The studies on the interactions between hosts and guests indicate that the type and arrangement of organic guests in the layer spacing of the LTbH hosts can make a difference in the luminescence of the hybrid inorganic-organic materials.

  8. Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials.

    Science.gov (United States)

    Meng, Qinglong; Zhong, Zheqiang; Zhang, Bin

    2017-03-30

    The optically tunable properties of the hybrid three-dimensional (3D) metamaterials with dual- and broadband response frequencies are theoretically investigated in the terahertz spectrum. The planar double-split-ring resonators (DSRRs) and the standup double-split-ring resonators are fabricated on a sapphire substrate, forming a 3D array structures. The bi-anisotropy of the hybrid 3D metamaterials is considered because the stand-up DSRRs are not symmetrical with respect to the electric field vector. Due to the electric and magnetic response realized by the planar and the standup double-split-ring resonators respectively, the dual-band resonance response and the negative refractive index can be achieved. The potential of the phase modulation under photoexcitation is also demonstrated. Further analysis indicates that, photoexcitation of free carriers in the silicon within the capacitive region of the standup DSRRs results in a broad resonance response bandwidth (about 0.47 THz), and also functions as a broadband negative refractive index that roughly lies between 0.80 and 2.01 THz. This tunable metamaterials is proposed for the potential application of electromagnetic wave propagation in terahertz area.

  9. Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials

    Science.gov (United States)

    Meng, Qinglong; Zhong, Zheqiang; Zhang, Bin

    2017-03-01

    The optically tunable properties of the hybrid three-dimensional (3D) metamaterials with dual- and broadband response frequencies are theoretically investigated in the terahertz spectrum. The planar double-split-ring resonators (DSRRs) and the standup double-split-ring resonators are fabricated on a sapphire substrate, forming a 3D array structures. The bi-anisotropy of the hybrid 3D metamaterials is considered because the stand-up DSRRs are not symmetrical with respect to the electric field vector. Due to the electric and magnetic response realized by the planar and the standup double-split-ring resonators respectively, the dual-band resonance response and the negative refractive index can be achieved. The potential of the phase modulation under photoexcitation is also demonstrated. Further analysis indicates that, photoexcitation of free carriers in the silicon within the capacitive region of the standup DSRRs results in a broad resonance response bandwidth (about 0.47 THz), and also functions as a broadband negative refractive index that roughly lies between 0.80 and 2.01 THz. This tunable metamaterials is proposed for the potential application of electromagnetic wave propagation in terahertz area.

  10. An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva

    Directory of Open Access Journals (Sweden)

    Chongdai Luo

    2017-03-01

    Full Text Available Saliva contains important personal physiological information that is related to some diseases, and it is a valuable source of biochemical information that can be collected rapidly, frequently, and without stress. In this article, we reported a new and simple localized surface plasmon resonance (LSPR substrate composed of polyaniline (PANI-gold hybrid nanostructures as an optical sensor for monitoring the pH of saliva samples. The overall appearance and topography of the substrates, the composition, and the wettability of the LSPR surfaces were characterized by optical and scanning electron microscope (SEM images, infrared spectra, and contact angles measurement, respectively. The PANI-gold hybrid substrate readily responded to the pH. The response time was very short, which was 3.5 s when the pH switched from 2 to 7, and 4.5 s from 7 to 2. The changes of visible-near-infrared (NIR spectra of this sensor upon varying pH in solution showed that—for the absorption at given wavelengths of 665 nm and 785 nm—the sensitivities were 0.0299 a.u./pH (a.u. = arbitrary unit with a linear range of pH = 5–8 and 0.0234 a.u./pH with linear range of pH = 2–8, respectively. By using this new sensor, the pH of a real saliva sample was monitored and was consistent with the parallel measurements with a standard laboratory method. The results suggest that this novel LSPR sensor shows great potential in the field of mobile healthcare and home medical devices, and could also be modified by different sensitive materials to detect various molecules or ions in the future.

  11. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions.

    Science.gov (United States)

    Gogoi, Neelam; Barooah, Mayuri; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-02-11

    A robust solid sensing platform for an on-site operational and accurate detection of heavy metal is still a challenge. We introduce chitosan based carbon dots rooted agarose hydrogel film as a hybrid solid sensing platform for detection of heavy metal ions. The fabrication of the solid sensing platform is centered on simple electrostatic interaction between the NH3+ group present in the carbon dots and the OH- groups present in agarose. Simply on dipping the hydrogel film strip into the heavy metal ion solution, in particular Cr6+, Cu2+, Fe3+, Pb2+, Mn2+, the strip displays a color change, viz., Cr6+→yellow, Cu2+→blue, Fe3+→brown, Pb2+→white, Mn2+→tan brown. The optical detection limit of the respective metal ion is found to be 1 pM for Cr6+, 0.5 μM for Cu2+, and 0.5 nM for Fe3+, Pb2+, and Mn2+ by studying the changes in UV-visible reflectance spectrum of the hydrogel film. Moreover, the hydrogel film finds applicability as an efficient filtration membrane for separation of these quintet heavy metal ions. The strategic fundamental feature of this sensing platform is the successful capability of chitosan to form colored chelates with transition metals. This proficient hybrid hydrogel solid sensing platform is thus the most suitable to employ as an on-site operational, portable, cheap colorimetric-optical detector of heavy metal ion with potential skill in their separation. Details of the possible mechanistic insight into the colorimetric detection and ion separation are also discussed.

  12. Quantum Computations with Transverse Modes of an Optical Field Propagating in Waveguides

    Institute of Scientific and Technical Information of China (English)

    符建; 唐少芳

    2003-01-01

    A fully optical method to perform quantum computation with transverse modes of the optical field propagating in waveguide is proposed by supplying the prescriptions for a universal set of quantum gates. The proposal for quantum computation is based on implementing a quantum bit with two normal modes of multi-mode waveguides. The proposed C-NOT gate has the potential of being more compact and easily realized than some optical implementations, since it is based on planar lightwave circuit technology and can be constructed by using Mach-Zehnder interferometer having semiconductor optical amplifiers with very large refractive nonlinearity in its arms.

  13. A hybrid multi-scale computational scheme for advection-diffusion-reaction equation

    Science.gov (United States)

    Karimi, S.; Nakshatrala, K. B.

    2016-12-01

    Simulation of transport and reaction processes in porous media and subsurface science has become more vital than ever. Over the past few decades, a variety of mathematical models and numerical methodologies for porous media simulations have been developed. As the demand for higher accuracy and validity of the models grows, the issue of disparate temporal and spatial scales becomes more problematic. The variety of reaction processes and complexity of pore geometry poses a huge computational burden in a real-world or reservoir scale simulation. Meanwhile, methods based on averaging or up- scaling techniques do not provide reliable estimates to pore-scale processes. To overcome this problem, development of hybrid and multi-scale computational techniques is considered a promising approach. In these methods, pore-scale and continuum-scale models are combined, hence, a more reliable estimate to pore-scale processes is obtained without having to deal with the tremendous computational overhead of pore-scale methods. In this presentation, we propose a computational framework that allows coupling of lattice Boltzmann method (for pore-scale simulation) and finite element method (for continuum-scale simulation) for advection-diffusion-reaction equations. To capture disparate in time and length events, non-matching grid and time-steps are allowed. Apart from application of this method to benchmark problems, multi-scale simulation of chemical reactions in porous media is also showcased.

  14. A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices

    CERN Document Server

    Schell, Andreas W; Schröder, Tim; Wolters, Janik; Aichele, Thomas; Benson, Oliver

    2011-01-01

    Integrated quantum optical hybrid devices consist of fundamental constituents such as single emitters and tailored photonic nanostructures. A reliable fabrication method requires the controlled deposition of active nanoparticles on arbitrary nanostructures with highest precision. Here, we describe an easily adaptable technique that employs picking and placing of nanoparticles with an atomic force microscope combined with a confocal setup. In this way, both the topography and the optical response can be monitored simultaneously before and after the assembly. The technique can be applied to arbitrary particles. Here, we focus on nanodiamonds containing single nitrogen vacancy centers, which are particularly interesting for quantum optical experiments on the single photon and single emitter level.

  15. Implementation of a cell-wise Block-Gauss-Seidel iterative method for SN transport on a hybrid parallel computer architecture

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Massimiliano [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Perks, Michael [Los Alamos National Laboratory

    2010-12-14

    We have implemented a cell-wise, block-Gauss-Seidel (bGS) iterative algorithm, for the solution of the S{sub n} transport equations on the Roadrunner hybrid, parallel computer architecture. A compute node of this massively parallel machine comprises AMD Opteron cores that are linked to a Cell Broadband Engine{trademark} (Cell/B.E.). LAPACK routines have been ported to the Cell/B.E. in order to make use of its parallel Synergistic Processing Elements (SPEs). The bGS algorithm is based on the LU factorization and solution of a linear system that couples the fluxes for all S{sub n} angles and energy groups on a mesh cell. For every cell of a mesh that has been parallel decomposed on the higher-level Opteron processors, a linear system is transferred to the Cell/B.E. and the parallel LAPACK routines are used to compute a solution, which is then transferred back to the Opteron, where the rest of the computations for the S{sub n} transport problem take place. Compared to standard parallel machines, a hundred-fold speedup of the bGS was observed on the hybrid Roadrunner architecture. Numerical experiments with strong and weak parallel scaling demonstrate the bGS method is viable and compares favorably to full parallel sweeps (FPS) on two-dimensional, unstructured meshes when it is applied to optically thick, multi-material problems. As expected, however, it is not as efficient as FPS in optically thin problems.

  16. Ethylenediamine-modified graphene oxide covalently functionalized with a tetracarboxylic Zn(ii) phthalocyanine hybrid for enhanced nonlinear optical properties.

    Science.gov (United States)

    Li, Zongle; He, Chunying; Wang, Zhao; Gao, Yachen; Dong, Yongli; Zhao, Cheng; Chen, Zhimin; Wu, Yiqun; Song, Weina

    2016-07-06

    Tetracarboxylic Zn(ii) phthalocyanine-amino functionalized graphene oxide (ZnPcC4-NGO) hybrid materials have been prepared by a covalent functionalization method. The characterizations indicate that the amino-functionalization of GO has an important influence on the structure and photophysical properties of the ZnPcC4-NGO hybrid. The ZnPcC4-NGO hybrid exhibits enhanced photo-induced electron transfer or energy transfer (PET/ET), compared to the ZnPcC4 covalent functionalized GO (ZnPcC4-GO), owing to the presence of the extended sp(2) carbon configurations, along with the partial reduction of the NGO nanosheets and the introduction of electron-donating ethylenediamine. The nonlinear optical (NLO) properties of the hybrids were investigated using the Z-scan technique at 532 nm with 4 ns laser pulses. The results show that the efficient covalent functionalization and partial reduction of NGO cause the ZnPcC4-NGO hybrid to possess evidently larger NLO properties than the individual NGO, ZnPcC4 and the ZnPcC4-GO hybrid. The enhanced NLO performance can be attributed to the increased excited state absorption from the extended sp(2) carbon configurations of the NGO moiety, reverse saturable absorption arising from ZnPcC4 moiety, and the contribution of the efficient PET/ET process between the ZnPcC4 and NGO moieties in the hybrid.

  17. Ka-Band Link Study and Analysis for a Mars Hybrid RF/Optical Software Defined Radio

    Science.gov (United States)

    Zeleznikar, Daniel J.; Nappier, Jennifer M.; Downey, Joseph A.

    2014-01-01

    The integrated radio and optical communications (iROC) project at the NASA Glenn Research Center (GRC) is investigating the feasibility of a hybrid RF and optical communication subsystem for future deep space missions. The hybrid communications subsystem enables the advancement of optical communications while simultaneously mitigating the risk of infusion by combining an experimental optical transmitter and telescope with a reliable Ka-band RF transmitter and antenna. The iROC communications subsystem seeks to maximize the total data return over the course of a potential 2-year mission in Mars orbit beginning in 2021. Although optical communication by itself offers potential for greater data return over RF, the reliable Ka-band link is also being designed for high data return capability in this hybrid system. A daily analysis of the RF link budget over the 2-year span is performed to optimize and provide detailed estimates of the RF data return. In particular, the bandwidth dependence of these data return estimates is analyzed for candidate waveforms. In this effort, a data return modeling tool was created to analyze candidate RF modulation and coding schemes with respect to their spectral efficiency, amplifier output power back-off, required digital to analog conversion (DAC) sampling rates, and support by ground receivers. A set of RF waveforms is recommended for use on the iROC platform.

  18. Mesoporous sol-gel silica cladding for hybrid TiO2/electro-optic polymer waveguide modulators.

    Science.gov (United States)

    Enami, Yasufumi; Kayaba, Yasuhisa; Luo, Jingdong; Jen, Alex K-Y

    2014-06-30

    We report the efficient poling of an electro-optic (EO) polymer in a hybrid TiO(2)/electro-optic polymer multilayer waveguide modulator on mesoporous sol-gel silica cladding. The mesoporous sol-gel silica has nanometer-sized pores and a low refractive index of 1.24, which improves mode confinement in the 400-nm-thick EO polymer film in the modulators and prevents optical absorption from the lower Au electrode, thereby resulting in a lower half-wave voltage of the modulators. The half-wave voltage (Vπ) of the hybrid modulator fabricated on the mesoporous sol-gel silica cladding is 6.0 V for an electrode length (Le) of 5 mm at a wavelength of 1550 nm (VπLe product of 3.0 V·cm) using a low-index guest-host EO polymer (in-device EO coefficient of 75 pm/V).

  19. Plasmon-induced optical anisotropy in hybrid graphene-metal nanoparticle systems.

    Science.gov (United States)

    Gilbertson, Adam M; Francescato, Yan; Roschuk, Tyler; Shautsova, Viktoryia; Chen, Yiguo; Sidiropoulos, Themistoklis P H; Hong, Minghui; Giannini, Vincenzo; Maier, Stefan A; Cohen, Lesley F; Oulton, Rupert F

    2015-05-13

    Hybrid plasmonic metal-graphene systems are emerging as a class of optical metamaterials that facilitate strong light-matter interactions and are of potential importance for hot carrier graphene-based light harvesting and active plasmonic applications. Here we use femtosecond pump-probe measurements to study the near-field interaction between graphene and plasmonic gold nanodisk resonators. By selectively probing the plasmon-induced hot carrier dynamics in samples with tailored graphene-gold interfaces, we show that plasmon-induced hot carrier generation in the graphene is dominated by direct photoexcitation with minimal contribution from charge transfer from the gold. The strong near-field interaction manifests as an unexpected and long-lived extrinsic optical anisotropy. The observations are explained by the action of highly localized plasmon-induced hot carriers in the graphene on the subresonant polarizability of the disk resonator. Because localized hot carrier generation in graphene can be exploited to drive electrical currents, plasmonic metal-graphene nanostructures present opportunities for novel hot carrier device concepts.

  20. Design of hybrid optical tweezers system for controlled three-dimensional micromanipulation

    Science.gov (United States)

    Tanaka, Yoshio; Tsutsui, Shogo; Kitajima, Hiroyuki

    2013-04-01

    Three-dimensional (3D) micro/nano-manipulation using optical tweezers is a significant technique for various scientific fields ranging from biology to nanotechnology. For the dynamic handling of multiple/individual micro-objects in a true 3D working space, we present an improved hybrid optical tweezers system consisting of two multibeam techniques. These two techniques include the generalized phase contrast method with a spatial light modulator and the time-shared scanning method with a two-axis steering mirror and an electrically focus-tunable lens. Unlike our previously reported system that could only handle micro-objects in a two and half dimensional working space, the present system has high versatility for controlled manipulation of multiple micro-objects in a true 3D working space. The controlled rotation of five beads forming a pentagon, that of four beads forming a tetrahedron about arbitrary axes, and the fully automated assembly and subsequent 3D translation of micro-bead arrays are successfully demonstrated as part of the 3D manipulation experiment.

  1. Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite.

    Science.gov (United States)

    Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-07-26

    Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

  2. Improved nonlinear optical and optical limiting properties in non-covalent functionalized reduced graphene oxide/silver nanoparticle (NF-RGO/Ag-NPs) hybrid

    Science.gov (United States)

    Sakho, El hadji Mamour; Oluwafemi, Oluwatobi S.; Sreekanth, P.; Philip, Reji; Thomas, Sabu; Kalarikkal, Nandakumar

    2016-08-01

    Nonlinear optical (NLO) response under near infrared (800 nm) and visible (532 nm) laser excitations, of 100 fs (fs) and 5 ns (ns) pulse durations respectively, of reduced graphene oxide (RGO), non-covalent functionalized reduced graphene oxide (NF-RGO) and NF-RGO decorated with various concentration of silver nanoparticles (NF-RGO/Ag-NPs) have been investigated using the Open-aperture Z-Scan technique. For both femtosecond and nanosecond laser excitations, the studied graphene-based materials exhibit good nonlinear optical power limiting properties (OL), with NF-RGO/Ag-NPs sample prepared with 0.1 M AgNO3 showing the best nonlinear optical properties. For the ns regime, the optical limiting threshold decreased from 8.3 J/cm2 in NF-RGO to 4.3 J/cm2 in NF-RGO/Ag-NPs, while at fs regime, the nonlinear absorption coefficient (β) was found to increase with decrease in concentration of Ag-NPs in the hybrid. Two-photon absorption (2 PA) in combination with saturable absorption (SA) in femtosecond regime, and reverse saturable absorption (RSA) along with saturable absorption (SA) in the nanosecond regime, are responsible for the observed nonlinear optical absorption (NLA) behavior in these materials. These findings show that the as-synthesized NF-RGO/Ag-NPs hybrid is a relatively better material for nonlinear optical limiting applications.

  3. Optimal Performance Monitoring of Hybrid Mid-Infrared Wavelength MIMO Free Space Optical and RF Wireless Networks in Fading Channels

    Science.gov (United States)

    Schmidt, Barnet Michael

    An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the

  4. Hybrid Optical Devices: The Case of the Unification of the Electrochromic Device and the Organic Solar Cell

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2016-06-01

    Full Text Available The development of Hybrid Optical Devices, using some flexible optically transparent substrate material and organic semiconductor materials, has been widely utilized by the organic electronic industry, when manufacturing new technological products. The Hybrid Optical Device is constituted by the union of the electrochromic device and the organic solar cell. The flexible organic photovoltaic solar cells, in this hybrid optical device, have been the Poly base (3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, all being deposited in Indium Tin Oxide, ITO. In addition, the thin film, obtained by the deposition of PANI, and prepared in perchloric acid solution, has been identified through PANI-X1. In the flexible electrochromic device, the Poly base (3,4-ethylenedioxythiophene, PEDOT, has been prepared in Propylene Carbonate, PC, being deposited in Indium Tin Oxide, ITO. Also, both devices have been united by an electrolyte solution prepared with Vanadium Pentoxide, V2O5, Lithium Perchlorate, LiClO4, and Polymethylmethacrylate, PMMA. This device has been characterized through Electrical Measurements, such as UV-Vis Spectroscopy and Scanning Electron Microscopy (SEM. Thus, the result obtained through electrical measurements has demonstrated that the flexible organic photovoltaic solar cell presented the characteristic curve of standard solar cell after spin-coating and electrodeposition. Accordingly, the results obtained with optical and electrical characterization have revealed that the electrochromic device demonstrated some change in optical absorption, when subjected to some voltage difference. Moreover, the inclusion of the V2O5/PANI-X1 layer reduced the effects of degradation that this hybrid organic device caused, that is, solar irradiation. Studies on Scanning Electron Microscopy (SEM have found out that the surface of V2O5/PANI-X1 layers can be strongly conditioned by the surface morphology of the

  5. Computing the laser beam path in optical cavities: a geometric Newton's method based approach

    CERN Document Server

    Cuccato, Davide; Ortolan, Antonello; Beghi, Alessandro

    2015-01-01

    In the last decade, increasing attention has been drawn to high precision optical experiments, which push resolution and accuracy of the measured quantities beyond their current limits. This challenge requires to place optical elements (e.g. mirrors, lenses, etc.) and to steer light beams with sub-nanometer precision. Existing methods for beam direction computing in resonators, e.g. iterative ray tracing or generalized ray transfer matrices, are either computationally expensive or rely on overparametrized models of optical elements. By exploiting Fermat's principle, we develop a novel method to compute the steady-state beam configurations in resonant optical cavities formed by spherical mirrors, as a function of mirror positions and curvature radii. The proposed procedure is based on the geometric Newton method on matrix manifold, a tool with second order convergence rate that relies on a second order model of the cavity optical length. As we avoid coordinates to parametrize the beam position on mirror surfac...

  6. Resource-Efficient, Hierarchical Auto-Tuning of a Hybrid Lattice Boltzmann Computation on the Cray XT4

    OpenAIRE

    Williams, Samuel; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; NERSC, Lawrence Berkeley National Laboratory; Computer Science Department, University of California, Irvine, CA

    2009-01-01

    We apply auto-tuning to a hybrid MPI-pthreads lattice Boltzmann computation running on the Cray XT4 at National Energy Research Scientific Computing Center (NERSC). Previous work showed that multicore-specific auto-tuning can improve the performance of lattice Boltzmann magnetohydrodynamics (LBMHD) by a factor of 4x when running on dual- and quad-core Opteron dual-socket SMPs. We extend these studies to the distributed memory arena via a hybrid MPI/pthreads implementation. In addition to con...

  7. Parallel Computing Characteristics of CUPID code under MPI and Hybrid environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ryong; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeon, Byoung Jin; Choi, Hyoung Gwon [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of)

    2014-05-15

    In this paper, a characteristic of parallel algorithm is presented for solving an elliptic type equation of CUPID via domain decomposition method using the MPI and the parallel performance is estimated in terms of a scalability which shows the speedup ratio. In addition, the time-consuming pattern of major subroutines is studied. Two different grid systems are taken into account: 40,000 meshes for coarse system and 320,000 meshes for fine system. Since the matrix of the CUPID code differs according to whether the flow is single-phase or two-phase, the effect of matrix shape is evaluated. Finally, the effect of the preconditioner for matrix solver is also investigated. Finally, the hybrid (OpenMP+MPI) parallel algorithm is introduced and discussed in detail for solving pressure solver. Component-scale thermal-hydraulics code, CUPID has been developed for two-phase flow analysis, which adopts a three-dimensional, transient, three-field model, and parallelized to fulfill a recent demand for long-transient and highly resolved multi-phase flow behavior. In this study, the parallel performance of the CUPID code was investigated in terms of scalability. The CUPID code was parallelized with domain decomposition method. The MPI library was adopted to communicate the information at the neighboring domain. For managing the sparse matrix effectively, the CSR storage format is used. To take into account the characteristics of the pressure matrix which turns to be asymmetric for two-phase flow, both single-phase and two-phase calculations were run. In addition, the effect of the matrix size and preconditioning was also investigated. The fine mesh calculation shows better scalability than the coarse mesh because the number of coarse mesh does not need to decompose the computational domain excessively. The fine mesh can be present good scalability when dividing geometry with considering the ratio between computation and communication time. For a given mesh, single-phase flow

  8. Detecting awareness in patients with disorders of consciousness using a hybrid brain-computer interface

    Science.gov (United States)

    Pan, Jiahui; Xie, Qiuyou; He, Yanbin; Wang, Fei; Di, Haibo; Laureys, Steven; Yu, Ronghao; Li, Yuanqing

    2014-10-01

    Objective. The bedside detection of potential awareness in patients with disorders of consciousness (DOC) currently relies only on behavioral observations and tests; however, the misdiagnosis rates in this patient group are historically relatively high. In this study, we proposed a visual hybrid brain-computer interface (BCI) combining P300 and steady-state evoked potential (SSVEP) responses to detect awareness in severely brain injured patients. Approach. Four healthy subjects, seven DOC patients who were in a vegetative state (VS, n = 4) or minimally conscious state (MCS, n = 3), and one locked-in syndrome (LIS) patient attempted a command-following experiment. In each experimental trial, two photos were presented to each patient; one was the patient's own photo, and the other photo was unfamiliar. The patients were instructed to focus on their own or the unfamiliar photos. The BCI system determined which photo the patient focused on with both P300 and SSVEP detections. Main results. Four healthy subjects, one of the 4 VS, one of the 3 MCS, and the LIS patient were able to selectively attend to their own or the unfamiliar photos (classification accuracy, 66-100%). Two additional patients (one VS and one MCS) failed to attend the unfamiliar photo (50-52%) but achieved significant accuracies for their own photo (64-68%). All other patients failed to show any significant response to commands (46-55%). Significance. Through the hybrid BCI system, command following was detected in four healthy subjects, two of 7 DOC patients, and one LIS patient. We suggest that the hybrid BCI system could be used as a supportive bedside tool to detect awareness in patients with DOC.

  9. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Directory of Open Access Journals (Sweden)

    Pablo Guzmán

    2010-03-01

    Full Text Available The purpose of this study is to develop a motion sensor (delivering optical flow estimations using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip. Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane and digital (NIOS II processor. The system is fully functional and is organized in different stages where the early processing (focal plane stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  10. Optical flow in a smart sensor based on hybrid analog-digital architecture.

    Science.gov (United States)

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system's performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  11. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    Science.gov (United States)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  12. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 3: Computer program listings

    Science.gov (United States)

    1979-01-01

    A description and listing is presented of two computer programs: Hybrid Vehicle Design Program (HYVELD) and Hybrid Vehicle Simulation Program (HYVEC). Both of the programs are modifications and extensions of similar programs developed as part of the Electric and Hybrid Vehicle System Research and Development Project.

  13. A scheme of optical interconnection for super high speed parallel computer

    Institute of Scientific and Technical Information of China (English)

    Youju Mao(毛幼菊); Yi L(u)(吕翊); Jiang Liu(刘江); Mingrui Dang(党明瑞)

    2004-01-01

    An optical cross connection network which adopts coarse wavelength division multiplexing (CWDM) and data packet is introduced. It can be used to realize communication between multi-CPU and multi-MEM in parallel computing system. It provides an effective way to upgrade the capability of parallel computer by combining optical wavelength division multiplexing (WDM) and data packet switching technology. CWDM used in network construction, optical cross connection (OXC) based on optical switch arrays, and data packet format used in network construction were analyzed. We have also done the optimizing analysis of the number of optical switches needed in different scales of network in this paper. The architecture of the optical interconnection for 8 wavelength channels and 128 bits parallel transmission has been researched. Finally, a parallel transmission system with 4 nodes, 8 channels per node, has been designed.

  14. Computation and validation of two-dimensional PSF simulation based on physical optics

    CERN Document Server

    Tayabaly, K; Sironi, G; Canestrari, R; Lavagna, M; Pareschi, G

    2016-01-01

    The Point Spread Function (PSF) is a key figure of merit for specifying the angular resolution of optical systems and, as the demand for higher and higher angular resolution increases, the problem of surface finishing must be taken seriously even in optical telescopes. From the optical design of the instrument, reliable ray-tracing routines allow computing and display of the PSF based on geometrical optics. However, such an approach does not directly account for the scattering caused by surface microroughness, which is interferential in nature. Although the scattering effect can be separately modeled, its inclusion in the ray-tracing routine requires assumptions that are difficult to verify. In that context, a purely physical optics approach is more appropriate as it remains valid regardless of the shape and size of the defects appearing on the optical surface. Such a computation, when performed in two-dimensional consideration, is memory and time consuming because it requires one to process a surface map wit...

  15. Adaptation of hybrid human-computer interaction systems using EEG error-related potentials.

    Science.gov (United States)

    Chavarriaga, Ricardo; Biasiucci, Andrea; Forster, Killian; Roggen, Daniel; Troster, Gerhard; Millan, Jose Del R

    2010-01-01

    Performance improvement in both humans and artificial systems strongly relies in the ability of recognizing erroneous behavior or decisions. This paper, that builds upon previous studies on EEG error-related signals, presents a hybrid approach for human computer interaction that uses human gestures to send commands to a computer and exploits brain activity to provide implicit feedback about the recognition of such commands. Using a simple computer game as a case study, we show that EEG activity evoked by erroneous gesture recognition can be classified in single trials above random levels. Automatic artifact rejection techniques are used, taking into account that subjects are allowed to move during the experiment. Moreover, we present a simple adaptation mechanism that uses the EEG signal to label newly acquired samples and can be used to re-calibrate the gesture recognition system in a supervised manner. Offline analysis show that, although the achieved EEG decoding accuracy is far from being perfect, these signals convey sufficient information to significantly improve the overall system performance.

  16. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Directory of Open Access Journals (Sweden)

    Lukas Falat

    2016-01-01

    Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  17. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    Science.gov (United States)

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  18. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  19. Optimization of a Continuous Hybrid Impeller Mixer via Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    N. Othman

    2014-01-01

    Full Text Available This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD using computational fluid dynamics (CFD. In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT. Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.

  20. SWNT-DNA and SWNT-polyC hybrids: AFM study and computer modeling.

    Science.gov (United States)

    Karachevtsev, M V; Lytvyn, O S; Stepanian, S G; Leontiev, V S; Adamowicz, L; Karachevtsev, V A

    2008-03-01

    Hybrids of carbon single-walled nanotubes (SWNT) with fragmented single or double-stranded DNA (fss- or fds-DNA) or polyC were studied by Atom Force Microscopy (AFM) and computer modeling. It was found that fragments of the polymer wrap in several layers around the nanotube, forming a strand-like spindle. In contrast to the fss-DNA, the fds-DNA also forms compact structures near the tube surface due to the formation of self-assembly structures consisting of a few DNA fragments. The hybrids of SWNT with wrapped single-, double- or triple strands of the biopolymer were simulated, and it was shown that such structures are stable. To explain the reason of multi-layer polymeric coating of the nanotube surface, the energy of the intermolecular interactions between different components of polyC was calculated at the MP2/6-31++G** level as well as the interaction energy in the SWNT-cytosine complex.

  1. Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy

    Directory of Open Access Journals (Sweden)

    Andrej M. Savić

    2014-01-01

    Full Text Available We present a feasibility study of a novel hybrid brain-computer interface (BCI system for advanced functional electrical therapy (FET of grasp. FET procedure is improved with both automated stimulation pattern selection and stimulation triggering. The proposed hybrid BCI comprises the two BCI control signals: steady-state visual evoked potentials (SSVEP and event-related desynchronization (ERD. The sequence of the two stages, SSVEP-BCI and ERD-BCI, runs in a closed-loop architecture. The first stage, SSVEP-BCI, acts as a selector of electrical stimulation pattern that corresponds to one of the three basic types of grasp: palmar, lateral, or precision. In the second stage, ERD-BCI operates as a brain switch which activates the stimulation pattern selected in the previous stage. The system was tested in 6 healthy subjects who were all able to control the device with accuracy in a range of 0.64–0.96. The results provided the reference data needed for the planned clinical study. This novel BCI may promote further restoration of the impaired motor function by closing the loop between the “will to move” and contingent temporally synchronized sensory feedback.

  2. A computer code for beam optics calculation--third order approximation

    Institute of Scientific and Technical Information of China (English)

    L(U) Jianqin; LI Jinhai

    2006-01-01

    To calculate the beam transport in the ion optical systems accurately, a beam dynamics computer program of third order approximation is developed. Many conventional optical elements are incorporated in the program. Particle distributions of uniform type or Gaussian type in the ( x, y, z ) 3D ellipses can be selected by the users. The optimization procedures are provided to make the calculations reasonable and fast. The calculated results can be graphically displayed on the computer monitor.

  3. Single-Board-Computer-Based Traffic Generator for a Heterogeneous and Hybrid Smart Grid Communication Network

    Directory of Open Access Journals (Sweden)

    Do Nguyet Quang

    2014-02-01

    Full Text Available In smart grid communication implementation, network traffic pattern is one of the main factors that affect the system’s performance. Examining different traffic patterns in smart grid is therefore crucial when analyzing the network performance. Due to the heterogeneous and hybrid nature of smart grid, the type of traffic distribution in the network is still unknown. The traffic that popularly used for simulation and analysis no longer reflects the real traffic in a multi-technology and bi-directional communication system. Hence, in this study, a single-board computer is implemented as a traffic generator which can generate network traffic similar to those generated by various applications in the fully operational smart grid. By placing in a strategic and appropriate position, a collection of traffic generators allow network administrators to investigate and test the effect of heavy traffic on performance of smart grid communication system.

  4. Evaluation of hybrid SART  +  OS  +  TV iterative reconstruction algorithm for optical-CT gel dosimeter imaging

    Science.gov (United States)

    Du, Yi; Wang, Xiangang; Xiang, Xincheng; Wei, Zhouping

    2016-12-01

    Optical computed tomography (optical-CT) is a high-resolution, fast, and easily accessible readout modality for gel dosimeters. This paper evaluates a hybrid iterative image reconstruction algorithm for optical-CT gel dosimeter imaging, namely, the simultaneous algebraic reconstruction technique (SART) integrated with ordered subsets (OS) iteration and total variation (TV) minimization regularization. The mathematical theory and implementation workflow of the algorithm are detailed. Experiments on two different optical-CT scanners were performed for cross-platform validation. For algorithm evaluation, the iterative convergence is first shown, and peak-to-noise-ratio (PNR) and contrast-to-noise ratio (CNR) results are given with the cone-beam filtered backprojection (FDK) algorithm and the FDK results followed by median filtering (mFDK) as reference. The effect on spatial gradients and reconstruction artefacts is also investigated. The PNR curve illustrates that the results of SART  +  OS  +  TV finally converges to that of FDK but with less noise, which implies that the dose-OD calibration method for FDK is also applicable to the proposed algorithm. The CNR in selected regions-of-interest (ROIs) of SART  +  OS  +  TV results is almost double that of FDK and 50% higher than that of mFDK. The artefacts in SART  +  OS  +  TV results are still visible, but have been much suppressed with little spatial gradient loss. Based on the assessment, we can conclude that this hybrid SART  +  OS  +  TV algorithm outperforms both FDK and mFDK in denoising, preserving spatial dose gradients and reducing artefacts, and its effectiveness and efficiency are platform independent.

  5. Integration of variable-rate OWC with OFDM-PON for hybrid optical access based on adaptive envelope modulation

    Science.gov (United States)

    Chen, Chen; Zhong, Wen-De; Wu, Dehao

    2016-12-01

    In this paper, we investigate an integrated optical wireless communication (OWC) and orthogonal frequency division multiplexing based passive optical network (OFDM-PON) system for hybrid wired and wireless optical access, based on an adaptive envelope modulation technique. Both the outdoor and indoor wireless communications are considered in the integrated system. The data for wired access is carried by a conventional OFDM signal, while the data for wireless access is carried by an M-ary pulse amplitude modulation (M-PAM) signal which is modulated onto the envelope of a phase-modulated OFDM signal. By adaptively modulating the wireless M-PAM signal onto the envelope of the wired phase-modulated constant envelope OFDM (CE-OFDM) signal, hybrid wired and wireless optical access can be seamlessly integrated and variable-rate optical wireless transmission can also be achieved. Analytical bit-error-rate (BER) expressions are derived for both the CE-OFDM signal with M-PAM overlay and the overlaid unipolar M-PAM signal, which are verified by Monte Carlo simulations. The BER performances of wired access, indoor OWC wireless access and outdoor OWC wireless access are evaluated. Moreover, variable-rate indoor and outdoor optical wireless access based on the adaptive envelope modulation technique is also discussed.

  6. An Efficient Framework for EEG Analysis with Application to Hybrid Brain Computer Interfaces Based on Motor Imagery and P300

    Directory of Open Access Journals (Sweden)

    Jinyi Long

    2017-01-01

    Full Text Available The hybrid brain computer interface (BCI based on motor imagery (MI and P300 has been a preferred strategy aiming to improve the detection performance through combining the features of each. However, current methods used for combining these two modalities optimize them separately, which does not result in optimal performance. Here, we present an efficient framework to optimize them together by concatenating the features of MI and P300 in a block diagonal form. Then a linear classifier under a dual spectral norm regularizer is applied to the combined features. Under this framework, the hybrid features of MI and P300 can be learned, selected, and combined together directly. Experimental results on the data set of hybrid BCI based on MI and P300 are provided to illustrate competitive performance of the proposed method against other conventional methods. This provides an evidence that the method used here contributes to the discrimination performance of the brain state in hybrid BCI.

  7. An Efficient Framework for EEG Analysis with Application to Hybrid Brain Computer Interfaces Based on Motor Imagery and P300

    Science.gov (United States)

    Wang, Jue; Yu, Tianyou

    2017-01-01

    The hybrid brain computer interface (BCI) based on motor imagery (MI) and P300 has been a preferred strategy aiming to improve the detection performance through combining the features of each. However, current methods used for combining these two modalities optimize them separately, which does not result in optimal performance. Here, we present an efficient framework to optimize them together by concatenating the features of MI and P300 in a block diagonal form. Then a linear classifier under a dual spectral norm regularizer is applied to the combined features. Under this framework, the hybrid features of MI and P300 can be learned, selected, and combined together directly. Experimental results on the data set of hybrid BCI based on MI and P300 are provided to illustrate competitive performance of the proposed method against other conventional methods. This provides an evidence that the method used here contributes to the discrimination performance of the brain state in hybrid BCI. PMID:28316617

  8. A hybrid method for the computation of quasi-3D seismograms.

    Science.gov (United States)

    Masson, Yder; Romanowicz, Barbara

    2013-04-01

    The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these

  9. Optical protein modulation via quantum dot coupling and use of a hybrid sensor protein.

    Science.gov (United States)

    Griep, Mark; Winder, Eric; Lueking, Donald; Friedrich, Craig; Mallick, Govind; Karna, Shashi

    2010-09-01

    Harnessing the energy transfer interactions between the optical protein bacteriorhodopsin (bR) and CdSe/ZnS quantum dots (QDs) could provide a novel bio-nano electronics substrate with a variety of applications. In the present study, a polydimethyldiallyammonium chloride based I-SAM technique has been utilized to produce bilayers, trilayers and multilayers of alternating monolayers of bR, PDAC and QD's on a conductive ITO substrate. The construction of multilayer systems was directly monitored by measuring the unique A570 nm absorbance of bR, as well as QD fluorescence emission. Both of these parameters displayed a linear relationship to the number of monolayers present on the ITO substrate. The photovoltaic response of bilayers of bR/PDAC was observed over a range of 3 to 12 bilayers and the ability to efficiently create an electrically active multilayered substrate composed of bR and QDs has been demonstrated for the first time. Evaluation of QD fluorescence emission in the multilayer system strongly suggests that FRET coupling is occurring and, since the I-SAM technique provide a means to control the bR/QD separation distance on the nanometer scale, this technique may prove highly valuable for optimizing the distance dependent energy transfer effects for maximum sensitivity to target molecule binding by a biosensor. Finally, preliminary studies on the production of a sensor protein/bR hybrid gene construct are presented. It is proposed that the energy associated with target molecule binding to a hybrid sensor protein would provide a means to directly modulate the electrical output from a sensor protein/bR biosensor platform.

  10. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    Science.gov (United States)

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  11. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullahi

    Full Text Available Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS has been shown to perform competitively with Particle Swarm Optimization (PSO. The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA based SOS (SASOS in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  12. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment

    Science.gov (United States)

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127

  13. Computational imaging through a fiber-optic bundle

    Science.gov (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  14. A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow

    Directory of Open Access Journals (Sweden)

    Lluís Garrido

    2015-06-01

    Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.

  15. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques.

    Science.gov (United States)

    Akram, M Usman; Tariq, Anam; Khalid, Shehzad; Javed, M Younus; Abbas, Sarmad; Yasin, Ubaid Ullah

    2015-12-01

    Glaucoma is a chronic and irreversible neuro-degenerative disease in which the neuro-retinal nerve that connects the eye to the brain (optic nerve) is progressively damaged and patients suffer from vision loss and blindness. The timely detection and treatment of glaucoma is very crucial to save patient's vision. Computer aided diagnostic systems are used for automated detection of glaucoma that calculate cup to disc ratio from colored retinal images. In this article, we present a novel method for early and accurate detection of glaucoma. The proposed system consists of preprocessing, optic disc segmentation, extraction of features from optic disc region of interest and classification for detection of glaucoma. The main novelty of the proposed method lies in the formation of a feature vector which consists of spatial and spectral features along with cup to disc ratio, rim to disc ratio and modeling of a novel mediods based classier for accurate detection of glaucoma. The performance of the proposed system is tested using publicly available fundus image databases along with one locally gathered database. Experimental results using a variety of publicly available and local databases demonstrate the superiority of the proposed approach as compared to the competitors.

  16. COED Transactions, Vol. IX, No. 3, March 1977. Evaluation of a Complex Variable Using Analog/Hybrid Computation Techniques.

    Science.gov (United States)

    Marcovitz, Alan B., Ed.

    Described is the use of an analog/hybrid computer installation to study those physical phenomena that can be described through the evaluation of an algebraic function of a complex variable. This is an alternative way to study such phenomena on an interactive graphics terminal. The typical problem used, involving complex variables, is that of…

  17. Reducing the phase sensitivity of laser-based optical reservoir computing systems.

    Science.gov (United States)

    Nguimdo, Romain Modeste; Verschaffelt, Guy; Danckaert, Jan; Van der Sande, Guy

    2016-01-25

    Optical implementations of reservoir computing systems are very promising because of their high processing speeds and the possibility to process several tasks in parallel. These systems can be implemented using semiconductor lasers subject to optical delayed feedback and optical injection. While the amount of the feedback/injection can be easily controlled, it is much more difficult to control the optical feedback/injection phase. We present extensive numerical investigations of the influence of the feedback/injection phases on laser-based reservoir computing systems with feedback. We show that a change in the phase can lead to a strong reduction in the reservoir computing system performance. We introduce a new readout layer design that -at least for some tasks- reduces this sensitivity to changes in the phase. It consists in optimizing the readout weights from a coherent combination of the reservoir's readout signal and its delayed version rather than only from the reservoir's readout signal as is usually done.

  18. Myocardial Motion Estimation: An Evaluation of Optical Flow Computation Techniques on Echocardiographic Images

    Directory of Open Access Journals (Sweden)

    Slamet Riyadi

    2011-01-01

    Full Text Available The use of image processing technique for cardiac motion analysis has been an active research in the past decade. The estimation of myocardial motion eases the cardiologist in diagnosing cardiac abnormalities. In term of movement analysis, optical flow is the most popular technique that has been used by researchers. This paper describes the implementation and evaluation of three optical flow computation techniques to estimate the myocardial motion using echocardiographic images. The three techniquesare the global smoothness method (GSM, the local smoothness method (LSM and warping technique (WT. Optical flow field is computed based on healthy cardiac video on parasternal short axes view. These techniques look promising since the optical flow fields can be utilized to estimate the myocardial movement and comply with its true movement. The performances of each technique in terms of the direction, homogeneity and computing time, are also discussed.

  19. Computer modeling for investigating the stress-strainstate of beams with hybrid reinforcement

    Directory of Open Access Journals (Sweden)

    Rakhmonov Ahmadzhon Dzhamoliddinovich

    2014-01-01

    Full Text Available In this article the operation of a continuous double-span beam with hybrid reinforcement, steel and composite reinforcement under the action of concentrated forces is considered. The nature of stress-strain state of structures is investigated with the help of computer modeling using a three-dimensional model. Five models of beams with different characteristics were studied. According to the results of numerical studies the data on the distribution of stresses and displacements in continuous beams was provided. The dependence of the stress-strain state on increasing the percentage of the top reinforcement (composite of fittings and change in the concrete class is determined and presented in the article. Currently, the interest in the use of composite reinforcement as a working reinforcement of concrete structures in Russia has increased significantly, which is reflected in the increase of the number of scientific and practical publications devoted to the study of the properties and use of composite materials in construction, as well as emerging draft documents for design of such structures. One of the proposals for basalt reinforcement application is to use it in bending elements with combined reinforcement. For theoretical justification of the proposed nature of reinforcement and improvement of the calculation method the authors conduct a study of stress-strain state of continuous beams with the use of modern computing systems. The software program LIRA is most often used compared to other programs representing strain-stress state analysis of concrete structures.

  20. A Hybrid Scheme for Fine-Grained Search and Access Authorization in Fog Computing Environment

    Science.gov (United States)

    Xiao, Min; Zhou, Jing; Liu, Xuejiao; Jiang, Mingda

    2017-01-01

    In the fog computing environment, the encrypted sensitive data may be transferred to multiple fog nodes on the edge of a network for low latency; thus, fog nodes need to implement a search over encrypted data as a cloud server. Since the fog nodes tend to provide service for IoT applications often running on resource-constrained end devices, it is necessary to design lightweight solutions. At present, there is little research on this issue. In this paper, we propose a fine-grained owner-forced data search and access authorization scheme spanning user-fog-cloud for resource constrained end users. Compared to existing schemes only supporting either index encryption with search ability or data encryption with fine-grained access control ability, the proposed hybrid scheme supports both abilities simultaneously, and index ciphertext and data ciphertext are constructed based on a single ciphertext-policy attribute based encryption (CP-ABE) primitive and share the same key pair, thus the data access efficiency is significantly improved and the cost of key management is greatly reduced. Moreover, in the proposed scheme, the resource constrained end devices are allowed to rapidly assemble ciphertexts online and securely outsource most of decryption task to fog nodes, and mediated encryption mechanism is also adopted to achieve instantaneous user revocation instead of re-encrypting ciphertexts with many copies in many fog nodes. The security and the performance analysis show that our scheme is suitable for a fog computing environment. PMID:28629131

  1. Numerical investigation of optical Tamm states in two-dimensional hybrid plasmonic-photonic crystal nanobeams

    Science.gov (United States)

    Meng, Zi-Ming; Hu, Yi-Hua; Ju, Gui-Fang; Zhong, Xiao-Lan; Ding, Wei; Li, Zhi-Yuan

    2014-07-01

    Optical Tamm states (OTSs) in analogy with its electronic counterpart confined at the surface of crystals are optical surface modes at the interfaces between uniform metallic films and distributed Bragg reflectors. In this paper, OTSs are numerically investigated in two-dimensional hybrid plasmonic-photonic crystal nanobeams (HPPCN), which are constructed by inserting a metallic nanoparticle into a photonic crystal nanobeam formed by periodically etching square air holes into dielectric waveguides. The evidences of OTSs can be verified by transmission spectra and the field distribution at resonant frequency. Similar to OTSs in one-dimensional multilayer structures OTSs in HPPCN can be excited by both TE and TM polarization. The physical origin of OTSs in HPPCN is due to the combined contribution of strong reflection imposed by the photonic band gap (PBG) of the photonic crystal (PC) nanobeam and strong backward scattering exerted by the nanoparticle. For TE, incidence OTSs can be obtained at the frequency near the center of the photonic band gap. The transmissivity and the resonant frequency can be finely tuned by the dimension of nanoparticles. While for TM incidence OTSs are observed for relatively larger metallic nanoparticles compared with TE polarization. The differences between TE and TM polarization can be explained by two reasons. For one reason stronger backward scattering of nanoparticles for TE polarization can be achieved by the excitation of localized surface plasmon polariton of nanoparticles. This assumption has been proved by examining the scattering, absorption, and extinction cross section of the metallic nanoparticle. The other can be attributed to the deep and wide PBG available for TE polarization with less number of air holes compared with TM polarization. Our results show great promise in extending the application scope of OTSs from one-dimensional structures to practical integrated photonic devices and circuits.

  2. Numerical investigation of optical Tamm states in two-dimensional hybrid plasmonic-photonic crystal nanobeams

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zi-Ming, E-mail: mengzm@gdut.edu.cn, E-mail: lizy@aphy.iphy.ac.cn; Hu, Yi-Hua; Ju, Gui-Fang [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Zhong, Xiao-Lan; Ding, Wei; Li, Zhi-Yuan, E-mail: mengzm@gdut.edu.cn, E-mail: lizy@aphy.iphy.ac.cn [Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China)

    2014-07-28

    Optical Tamm states (OTSs) in analogy with its electronic counterpart confined at the surface of crystals are optical surface modes at the interfaces between uniform metallic films and distributed Bragg reflectors. In this paper, OTSs are numerically investigated in two-dimensional hybrid plasmonic-photonic crystal nanobeams (HPPCN), which are constructed by inserting a metallic nanoparticle into a photonic crystal nanobeam formed by periodically etching square air holes into dielectric waveguides. The evidences of OTSs can be verified by transmission spectra and the field distribution at resonant frequency. Similar to OTSs in one-dimensional multilayer structures OTSs in HPPCN can be excited by both TE and TM polarization. The physical origin of OTSs in HPPCN is due to the combined contribution of strong reflection imposed by the photonic band gap (PBG) of the photonic crystal (PC) nanobeam and strong backward scattering exerted by the nanoparticle. For TE, incidence OTSs can be obtained at the frequency near the center of the photonic band gap. The transmissivity and the resonant frequency can be finely tuned by the dimension of nanoparticles. While for TM incidence OTSs are observed for relatively larger metallic nanoparticles compared with TE polarization. The differences between TE and TM polarization can be explained by two reasons. For one reason stronger backward scattering of nanoparticles for TE polarization can be achieved by the excitation of localized surface plasmon polariton of nanoparticles. This assumption has been proved by examining the scattering, absorption, and extinction cross section of the metallic nanoparticle. The other can be attributed to the deep and wide PBG available for TE polarization with less number of air holes compared with TM polarization. Our results show great promise in extending the application scope of OTSs from one-dimensional structures to practical integrated photonic devices and circuits.

  3. Hybrid hierarchical bio-based materials: Development and characterization through experimentation and computational simulations

    Science.gov (United States)

    Haq, Mahmoodul

    Environmentally friendly bio-based composites with improved properties can be obtained by harnessing the synergy offered by hybrid constituents such as multiscale (nano- and micro-scale) reinforcement in bio-based resins composed of blends of synthetic and natural resins. Bio-based composites have recently gained much attention due to their low cost, environmental appeal and their potential to compete with synthetic composites. The advantage of multiscale reinforcement is that it offers synergy at various length scales, and when combined with bio-based resins provide stiffness-toughness balance, improved thermal and barrier properties, and increased environmental appeal to the resulting composites. Moreover, these hybrid materials are tailorable in performance and in environmental impact. While the use of different concepts of multiscale reinforcement has been studied for synthetic composites, the study of mukiphase/multiscale reinforcements for developing new types of sustainable materials is limited. The research summarized in this dissertation focused on development of multiscale reinforced bio-based composites and the effort to understand and exploit the synergy of its constituents through experimental characterization and computational simulations. Bio-based composites consisting of petroleum-based resin (unsaturated polyester), natural or bio-resin (epoxidized soybean and linseed oils), natural fibers (industrial hemp), and nanosilicate (nanoclay) inclusions were developed. The work followed the "materials by Mahmoodul Haq design" philosophy by incorporating an integrated experimental and computational approach to strategically explore the design possibilities and limits. Experiments demonstrated that the drawbacks of bio-resin addition, which lowers stiffness, strength and increases permeability, can be counter-balanced through nanoclay reinforcement. Bio-resin addition yields benefits in impact strength and ductility. Conversely, nanoclay enhances stiffness

  4. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots

    KAUST Repository

    Tsai, Meng Lin

    2015-12-18

    By employing graphene quantum dots (GQDs) in PEDOT:PSS, we have achieved an efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT:PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

  5. Equivalence of optical and electrical noise equivalent power of hybrid NbTiN-Al microwave kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, R. M. J., E-mail: r.m.j.janssen@tudelft.nl [Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Endo, A. [Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology, Mekelweg 4, 2628 CD Delft (Netherlands); Visser, P. J. de [Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584CA Utrecht (Netherlands); Klapwijk, T. M. [Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Baselmans, J. J. A. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584CA Utrecht (Netherlands)

    2014-11-10

    We have measured and compared the response of hybrid NbTiN-Al Microwave Kinetic Inductance Detectors (MKIDs) to changes in bath temperature and illumination by sub-mm radiation. We show that these two stimulants have an equivalent effect on the resonance feature of hybrid MKIDs. We determine an electrical noise equivalent power (NEP) from the measured temperature responsivity, quasiparticle recombination time, superconducting transition temperature, and noise spectrum, all of which can be measured in a dark environment. For the two hybrid NbTiN-Al MKIDs studied in detail, the electrical NEP is within a factor of two of the optical NEP, which is measured directly using a blackbody source.

  6. An ultra-narrow-band optical filter based on whispering-gallery-mode hybrid-microsphere-cavity

    Science.gov (United States)

    Wan, Hongdan; Zhu, Haohan; Liu, Linqian; Xu, Ji; Wang, Jin

    2016-10-01

    We demonstrate an ultra-narrow-band mode-selection method based on a hybrid-microsphere-cavity which consists of a coated silica microsphere. Optical field distribution and narrow-band transmission spectrum of the whispering gallery modes (WGM) are investigated by finite-difference time-domain method. WGM transmission spectra are measured for microsphere and tapered fibers with different diameters. A high refractive index layer coated on the microsphere-cavity make the Q factor increased, the transmission spectrum bandwidth compressed and the side-mode suppression ratio increased. Parameters of the hybrid-microsphere-cavity, namely, the coated shell thickness and its refractive index are optimized under different excitation light source as to investigate the whispering-gallery-modes' transmission spectrum. The 3dB bandwidth of the proposed filter can be less than MHz which will have great potential for applications in all-optical sensing and communication systems.

  7. Enhanced optical second harmonic generation in hybrid polymer nanoassemblies based on coupled surface plasmon resonance of a gold nanoparticle array

    Science.gov (United States)

    Ishifuji, Miki; Mitsuishi, Masaya; Miyashita, Tokuji

    2006-07-01

    Effective utilization of coupled surface plasmon resonance from gold nanoparticles was demonstrated experimentally for optoelectronic applications based on second-order nonlinear optics. Hybrid polymer nanoassemblies were constructed by manipulating gold nanoparticle arrays with nonlinear optical active polymer nanosheets to investigate the second harmonic generation. The gold nanoparticle arrays were assembled on heterodeposited polymer nanosheets. The second harmonic light intensity was enhanced by a factor of 8. The observed enhancement was attributed to coupling of surface plasmons between two adjacent gold nanoparticles, thereby enhancing the surface electromagnetic field around the nanoparticles at the fundamental light wavelength (1064nm).

  8. A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring

    Directory of Open Access Journals (Sweden)

    Marcel Fajkus

    2017-01-01

    Full Text Available In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG. The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS. The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person's chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field.

  9. Optical Property Characterization of Novel Graphene-X (X=Ag, Au and Cu Nanoparticle Hybrids

    Directory of Open Access Journals (Sweden)

    Sumit Ranjan Sahu

    2013-01-01

    Full Text Available The present investigation reports new results on optical properties of graphene-metal nanocomposites. These composites were prepared by a solution-based chemical approach. Graphene has been prepared by thermal reduction of graphene oxide (GO at 90°C by hydrazine hydrate in an ammoniacal medium. This ammoniacal solution acts as a solvent as well as a basic medium where agglomeration of graphene can be prevented. This graphene solution has further been used for functionalization with Ag, Au, and Cu nanoparticles (NPs. The samples were characterized by X-ray diffraction (XRD, Raman spectroscopy, UV-Vis spectroscopy, scanning electron microscopy (SEM, and transmission electron microscopy (TEM to reveal the nature and type of interaction of metal nanoparticles with graphene. The results indicate distinct shift of graphene bands both in Raman and UV-Vis spectroscopies due to the presence of the metal nanoparticles. Raman spectroscopic analysis indicates blue shift of D and G bands in Raman spectra of graphene due to the presence of metal nanoparticles except for the G band of Cu-G, which undergoes red shift, reflecting the charge transfer interaction between graphene sheets and metal nanoparticles. UV-Vis spectroscopic analysis also indicates blue shift of graphene absorption peak in the hybrids. The plasmon peak position undergoes blue shift in Ag-G, whereas red shift is observed in Au-G and Cu-G.

  10. A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir; Nazeran, Homer; Siska, Petr

    2017-01-01

    In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person’s chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field. PMID:28075341

  11. A hybrid humidity sensor using optical waveguides on a quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Shinbo, Kazunari, E-mail: kshinbo@eng.niigata-u.ac.j [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Otuki, Shunya; Kanbayashi, Yuichi [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Ohdaira, Yasuo [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Baba, Akira [Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Kato, Keizo; Kaneko, Futao [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Miyadera, Nobuo [Hitachi Chemical Co., Ltd., 48 Wadai, Tsukuba City, Ibaraki 300-4247 (Japan)

    2009-11-30

    In this study, slab and ridge optical waveguides (OWGs) made of fluorinated polyimides were deposited on a quartz crystal microbalance (QCM), and hybrid sensors using OWG spectroscopy and the QCM technique were prepared. Polyvinyl alcohol (PVA) film with CoCl{sub 2} was deposited on the OWGs, and the characteristics of humidity sensing were investigated. A prism coupler was used to enter a He-Ne laser beam ({lambda} = 632.8 nm) to the slab OWG. The output light intensity markedly changed due to chromism of the CoCl{sub 2} as a result of humidity sorption, and this change was dependent on the incident angle of the laser beam to the slab OWG. During the measurement of output light, the QCM frequency was simultaneously monitored. The humidity dependence of the sensor with the slab OWG was also investigated in the range from 15 to 85%. For the sensor with the ridge OWG, white light was entered by butt-coupling, and the characteristics of humidity sensing were investigated by observing the output light spectrum and the QCM frequency.

  12. Automatic artefact removal in a self-paced hybrid brain- computer interface system

    Directory of Open Access Journals (Sweden)

    Yong Xinyi

    2012-07-01

    Full Text Available Abstract Background A novel artefact removal algorithm is proposed for a self-paced hybrid brain-computer interface (BCI system. This hybrid system combines a self-paced BCI with an eye-tracker to operate a virtual keyboard. To select a letter, the user must gaze at the target for at least a specific period of time (dwell time and then activate the BCI by performing a mental task. Unfortunately, electroencephalogram (EEG signals are often contaminated with artefacts. Artefacts change the quality of EEG signals and subsequently degrade the BCI’s performance. Methods To remove artefacts in EEG signals, the proposed algorithm uses the stationary wavelet transform combined with a new adaptive thresholding mechanism. To evaluate the performance of the proposed algorithm and other artefact handling/removal methods, semi-simulated EEG signals (i.e., real EEG signals mixed with simulated artefacts and real EEG signals obtained from seven participants are used. For real EEG signals, the hybrid BCI system’s performance is evaluated in an online-like manner, i.e., using the continuous data from the last session as in a real-time environment. Results With semi-simulated EEG signals, we show that the proposed algorithm achieves lower signal distortion in both time and frequency domains. With real EEG signals, we demonstrate that for dwell time of 0.0s, the number of false-positives/minute is 2 and the true positive rate (TPR achieved by the proposed algorithm is 44.7%, which is more than 15.0% higher compared to other state-of-the-art artefact handling methods. As dwell time increases to 1.0s, the TPR increases to 73.1%. Conclusions The proposed artefact removal algorithm greatly improves the BCI’s performance. It also has the following advantages: a it does not require additional electrooculogram/electromyogram channels, long data segments or a large number of EEG channels, b it allows real-time processing, and c it reduces signal distortion.

  13. Logarithmic r-θ mapping for hybrid optical neural network filter for multiple objects recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.

    2009-04-01

    θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.

  14. Optics learning by computing, with examples using Maple, MathCad, Mathematica, and MATLAB

    CERN Document Server

    Moeller, Karl Dieter

    2007-01-01

    This new edition is intended for a one semester course in optics for juniors and seniors in science and engineering; it uses scripts from Maple, MathCad, Mathematica, and MATLAB provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption. The text covers all the standard topics of a traditional optics course, including: geometrical optics and aberration, interference and diffraction, coherence, Maxwell's equations, wave guides and propagating modes, blackbody radiation, atomic emission and lasers, optical properties of materials, Fourier transforms and FT spectroscopy, image formation, and holography. It contains step by step derivations of all basic formulas in geometrical, wave and Fourier optics. The basic text is supplemented by over 170 files in Maple, MathCad, Mathematica, and MATLAB (many of which are in the text, each suggesting programs to solve a particular problem, and each linked to a topic in or application of optics. The computer files are d...

  15. Optically Driven Spin Based Quantum Dots for Quantum Computing

    Science.gov (United States)

    2008-01-01

    a), no deco - herence or inhomogeneous broadening is present (T−12 = σ = 0); In (b), T2 = 200 ns but σ = 0; In (c), T2 = 200 ns and σ−1 = 10 ns. (d...processes involves at least two orders of optical field and hole-burning two more. The state-of-the- art spec- troscopy already has the ultrahigh resolution

  16. HyCFS, a high-resolution shock capturing code for numerical simulation on hybrid computational clusters

    Science.gov (United States)

    Shershnev, Anton A.; Kudryavtsev, Alexey N.; Kashkovsky, Alexander V.; Khotyanovsky, Dmitry V.

    2016-10-01

    The present paper describes HyCFS code, developed for numerical simulation of compressible high-speed flows on hybrid CPU/GPU (Central Processing Unit / Graphical Processing Unit) computational clusters on the basis of full unsteady Navier-Stokes equations, using modern shock capturing high-order TVD (Total Variation Diminishing) and WENO (Weighted Essentially Non-Oscillatory) schemes on general curvilinear structured grids. We discuss the specific features of hybrid architecture and details of program implementation and present the results of code verification.

  17. Comparison of computer-based and optical face recognition paradigms

    Science.gov (United States)

    Alorf, Abdulaziz A.

    The main objectives of this thesis are to validate an improved principal components analysis (IPCA) algorithm on images; designing and simulating a digital model for image compression, face recognition and image detection by using a principal components analysis (PCA) algorithm and the IPCA algorithm; designing and simulating an optical model for face recognition and object detection by using the joint transform correlator (JTC); establishing detection and recognition thresholds for each model; comparing between the performance of the PCA algorithm and the performance of the IPCA algorithm in compression, recognition and, detection; and comparing between the performance of the digital model and the performance of the optical model in recognition and detection. The MATLAB(c) software was used for simulating the models. PCA is a technique used for identifying patterns in data and representing the data in order to highlight any similarities or differences. The identification of patterns in data of high dimensions (more than three dimensions) is too difficult because the graphical representation of data is impossible. Therefore, PCA is a powerful method for analyzing data. IPCA is another statistical tool for identifying patterns in data. It uses information theory for improving PCA. The joint transform correlator (JTC) is an optical correlator used for synthesizing a frequency plane filter for coherent optical systems. The IPCA algorithm, in general, behaves better than the PCA algorithm in the most of the applications. It is better than the PCA algorithm in image compression because it obtains higher compression, more accurate reconstruction, and faster processing speed with acceptable errors; in addition, it is better than the PCA algorithm in real-time image detection due to the fact that it achieves the smallest error rate as well as remarkable speed. On the other hand, the PCA algorithm performs better than the IPCA algorithm in face recognition because it offers

  18. Computer Generated Optical Illusions: A Teaching and Research Tool.

    Science.gov (United States)

    Bailey, Bruce; Harman, Wade

    Interactive computer-generated simulations that highlight psychological principles were investigated in this study in which 33 female and 19 male undergraduate college student volunteers of median age 21 matched line and circle sizes in six variations of Ponzo's illusion. Prior to working with the illusions, data were collected based on subjects'…

  19. Optimization of computer-generated holograms for dynamic optical manipulation with uniform structured light spots

    Institute of Scientific and Technical Information of China (English)

    Jing Bu; Guanghui Yuan; Yuyang Sun; Siwei Zhu; Xiaocong Yuan

    2011-01-01

    An optimized iterative technique combining the merits of conventional Gerchber-Saxton (G-S) and adaptive-additive (A-A) algorithms to design multilevel computer-generated holograms for the creation of a desirable structured intensity pattern for multiple optical manipulation is theoretically adopted. Optical trap arrays are demonstrated with the help of liquid crystal spatial light modulator and a microscopic optical tweezer system. Additionally, continuous locked-in transport and deflection of microparticles with the generated optical lattice is proven experimentally. The proposed method possesses apparent high efficiency, high uniformity, and dynamic and reconfigurable advantages.%@@ An optimized iterative technique combining the merits of conventional Gerchber-Saxton (G-S) and adaptive-additive (A-A) algorithms to design multilevel computer-generated holograms for the creation of a desirable structured intensity pattern for multiple optical manipulation is theoretically adopted.Optical trap arrays are demonstrated with the help of liquid crystal spatial light modulator and a microscopic optical tweezer system.Additionally, continuous locked-in transport and deflection of microparticles with the generated optical lattice is proven experimentally.The proposed method possesses apparent high efficiency, high uniformity, and dynamic and reconfigurable advantages.

  20. Potential of Hybrid Computational Phantoms for Retrospective Heart Dosimetry After Breast Radiation Therapy: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moignier, Alexandra, E-mail: alexandra.moignier@irsn.fr [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Derreumaux, Sylvie; Broggio, David; Beurrier, Julien [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Chea, Michel; Boisserie, Gilbert [Groupe Hospitalier Pitie Salpetriere, Service de Radiotherapie, Paris (France); Franck, Didier; Aubert, Bernard [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Mazeron, Jean-Jacques [Groupe Hospitalier Pitie Salpetriere, Service de Radiotherapie, Paris (France)

    2013-02-01

    Purpose: Current retrospective cardiovascular dosimetry studies are based on a representative patient or simple mathematic phantoms. Here, a process of patient modeling was developed to personalize the anatomy of the thorax and to include a heart model with coronary arteries. Methods and Materials: The patient models were hybrid computational phantoms (HCPs) with an inserted detailed heart model. A computed tomography (CT) acquisition (pseudo-CT) was derived from HCP and imported into a treatment planning system where treatment conditions were reproduced. Six current patients were selected: 3 were modeled from their CT images (A patients) and the others were modelled from 2 orthogonal radiographs (B patients). The method performance and limitation were investigated by quantitative comparison between the initial CT and the pseudo-CT, namely, the morphology and the dose calculation were compared. For the B patients, a comparison with 2 kinds of representative patients was also conducted. Finally, dose assessment was focused on the whole coronary artery tree and the left anterior descending coronary. Results: When 3-dimensional anatomic information was available, the dose calculations performed on the initial CT and the pseudo-CT were in good agreement. For the B patients, comparison of doses derived from HCP and representative patients showed that the HCP doses were either better or equivalent. In the left breast radiation therapy context and for the studied cases, coronary mean doses were at least 5-fold higher than heart mean doses. Conclusions: For retrospective dose studies, it is suggested that HCP offers a better surrogate, in terms of dose accuracy, than representative patients. The use of a detailed heart model eliminates the problem of identifying the coronaries on the patient's CT.