WorldWideScience

Sample records for hybrid network architectures

  1. Hybrid architecture for building secure sensor networks

    Science.gov (United States)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  2. Software architecture for hybrid electrical/optical data center network

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    This paper presents hardware and software architecture based on Software-Defined Networking (SDN) paradigm and OpenFlow/NETCONF protocols for enabling topology management of hybrid electrical/optical switching data center networks. In particular, a development on top of SDN open-source controller...... OpenDaylight is presented to control an optical switching matrix based on Micro-Electro-Mechanical System (MEMS) technology....

  3. Hybrid RRM Architecture for Future Wireless Networks

    DEFF Research Database (Denmark)

    Tragos, Elias; Mihovska, Albena D.; Mino, Emilio

    2007-01-01

    The concept of ubiquitous and scalable system is applied in the IST WINNER II [1] project to deliver optimum performance for different deployment scenarios from local area to wide area wireless networks. The integration of cellular and local area networks in a unique radio system will provide a g...

  4. Testing a Cloud Provider Network for Hybrid P2P and Cloud Streaming Architectures

    OpenAIRE

    Cerviño Arriba, Javier; Rodríguez, Pedro; Trajkovska, Irena; Mozo Velasco, Alberto; Salvachúa Rodríguez, Joaquín

    2011-01-01

    The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Clou...

  5. Hybrid SDN Architecture for Resource Consolidation in MPLS Networks

    OpenAIRE

    Katov, Anton Nikolaev; Mihovska, Albena D.; Prasad, Neeli R.

    2015-01-01

    This paper proposes a methodology for resourceconsolidation towards minimizing the power consumption in alarge network, with a substantial resource overprovisioning. Thefocus is on the operation of the core MPLS networks. Theproposed approach is based on a software defined networking(SDN) scheme with a reconfigurable centralized controller, whichturns off certain network elements. The methodology comprisesthe process of identifying time periods with lower traffic demand;the ranking of the net...

  6. Hybrid SDN Architecture for Resource Consolidation in MPLS Networks

    DEFF Research Database (Denmark)

    Katov, Anton Nikolaev; Mihovska, Albena D.; Prasad, Neeli R.

    2015-01-01

    ) scheme with a reconfigurable centralized controller, which turns off certain network elements. The methodology comprises the process of identifying time periods with lower traffic demand; the ranking of the network elements, based on their utilization and criticality; the rerouting of the traffic off...... the least utilized elements; and finally, the switching off of the appropriate nodes or links. An algorithm for traffic rerouting, based on the MPLS traffic engineering techniques is proposed and its performance is evaluated in terms of the achieved energy efficiency in accordance with predefined...

  7. A novel survivable architecture for hybrid WDM/TDM passive optical networks

    Science.gov (United States)

    Qiu, Yang; Chan, Chun-Kit

    2014-02-01

    A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.

  8. A framework using cluster-based hybrid network architecture for collaborative virtual surgery.

    Science.gov (United States)

    Qin, Jing; Choi, Kup-Sze; Poon, Wai-Sang; Heng, Pheng-Ann

    2009-12-01

    Research on collaborative virtual environments (CVEs) opens the opportunity for simulating the cooperative work in surgical operations. It is however a challenging task to implement a high performance collaborative surgical simulation system because of the difficulty in maintaining state consistency with minimum network latencies, especially when sophisticated deformable models and haptics are involved. In this paper, an integrated framework using cluster-based hybrid network architecture is proposed to support collaborative virtual surgery. Multicast transmission is employed to transmit updated information among participants in order to reduce network latencies, while system consistency is maintained by an administrative server. Reliable multicast is implemented using distributed message acknowledgment based on cluster cooperation and sliding window technique. The robustness of the framework is guaranteed by the failure detection chain which enables smooth transition when participants join and leave the collaboration, including normal and involuntary leaving. Communication overhead is further reduced by implementing a number of management approaches such as computational policies and collaborative mechanisms. The feasibility of the proposed framework is demonstrated by successfully extending an existing standalone orthopedic surgery trainer into a collaborative simulation system. A series of experiments have been conducted to evaluate the system performance. The results demonstrate that the proposed framework is capable of supporting collaborative surgical simulation.

  9. Seafloor classification using echo- waveforms: A method employing hybrid neural network architecture

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mahale, V.; DeSouza, C.; Das, P.

    , neural network architecture, seafloor classification, self-organizing feature map (SOFM). I. INTRODUCTION S EAFLOOR classification and characterization using re- mote high-frequency acoustic system has been recognized as a useful tool (see [1...] and references therein). The seafloor’s characteristics are extremely complicated due to variations of the many parameters at different scales. The parameters include sediment grain size, relief height at the water–sediment inter- face, and variations within...

  10. QoS Supported IPTV Service Architecture over Hybrid-Tree-Based Explicit Routed Multicast Network

    Directory of Open Access Journals (Sweden)

    Chih-Chao Wen

    2012-01-01

    Full Text Available With the rapid advance in multimedia streaming and multicast transport technology, current IP multicast protocols, especially PIM-SM, become the major channel delivery mechanism for IPTV system over Internet. The goals for IPTV service are to provide two-way interactive services for viewers to select popular program channel with high quality for watching during fast channel surfing period. However, existing IP multicast protocol cannot meet above QoS requirements for IPTV applications between media server and subscribers. Therefore, we propose a cooperative scheme of hybrid-tree based on explicit routed multicast, called as HT-ERM to combine the advantages of shared tree and source tree for QoS-supported IPTV service. To increase network utilization, the constrained shortest path first (CSPF routing algorithm is designed for construction of hybrid tree to deliver the high-quality video stream over watching channel and standard quality over surfing channel. Furthermore, the Resource Reservation Protocol- Traffic Engineering (RSVP-TE is used as signaling mechanism to set up QoS path for multicast channel admission control. Our simulation results demonstrated that the proposed HT-ERM scheme outperforms other multicast QoS-based delivery scheme in terms of channel switching delay, resource utilization, and blocking ratio for IPTV service.

  11. FTS2000 network architecture

    Science.gov (United States)

    Klenart, John

    1991-01-01

    The network architecture of FTS2000 is graphically depicted. A map of network A topology is provided, with interservice nodes. Next, the four basic element of the architecture is laid out. Then, the FTS2000 time line is reproduced. A list of equipment supporting FTS2000 dedicated transmissions is given. Finally, access alternatives are shown.

  12. Information network architectures

    Science.gov (United States)

    Murray, N. D.

    1985-01-01

    Graphs, charts, diagrams and outlines of information relative to information network architectures for advanced aerospace missions, such as the Space Station, are presented. Local area information networks are considered a likely technology solution. The principle needs for the network are listed.

  13. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  14. Heterogeneous network architectures

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann

    2006-01-01

    is flexibility. This thesis investigates such heterogeneous network architectures and how to make them flexible. A survey of algorithms for network design is presented, and it is described how using heuristics can increase the speed. A hierarchical, MPLS based network architecture is described......Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. This means that instead of trying to find the olution, networks hould be designed as being heterogeneous. One of the key equirements here...... and it is discussed that it is advantageous to heterogeneous networks and illustrated by a number of examples. Modeling and simulation is a well-known way of doing performance evaluation. An approach to event-driven simulation of communication networks is presented and mixed complexity modeling, which can simplify...

  15. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing

    Science.gov (United States)

    Yang, Wei; Hall, Trevor J.

    2013-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  16. Mobile networks architecture

    CERN Document Server

    Perez, Andre

    2013-01-01

    This book explains the evolutions of architecture for mobiles and summarizes the different technologies:- 2G: the GSM (Global System for Mobile) network, the GPRS (General Packet Radio Service) network and the EDGE (Enhanced Data for Global Evolution) evolution;- 3G: the UMTS (Universal Mobile Telecommunications System) network and the HSPA (High Speed Packet Access) evolutions:- HSDPA (High Speed Downlink Packet Access),- HSUPA (High Speed Uplink Packet Access),- HSPA+;- 4G: the EPS (Evolved Packet System) network.The telephone service and data transmission are the

  17. Future Network Architectures

    DEFF Research Database (Denmark)

    Wessing, Henrik; Bozorgebrahimi, Kurosh; Belter, Bartosz

    2015-01-01

    This study identifies key requirements for NRENs towards future network architectures that become apparent as users become more mobile and have increased expectations in terms of availability of data. In addition, cost saving requirements call for federated use of, in particular, the optical...

  18. Quantifying loopy network architectures.

    Directory of Open Access Journals (Sweden)

    Eleni Katifori

    Full Text Available Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes from the metric topology (connectivity and edge weight and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  19. Towards a networkArchitecture

    DEFF Research Database (Denmark)

    Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    Planche, bidrag til DAL-konkurrencen. Hvor industrien har været inspirationen for udviklingen af den moderne arkitektur, er IT det tekniske og æstetiske grundlag for den spirende NetworkArchitecture. Computeren og netværker af computerne er således mere end en metafor for NetworkArchitecture....... NetworkArchitecture består af intelligente byggekomponenter forbundet med hinanden i et netværk og i interaktion med omgivelser....

  20. Architectural improvements and 28 nm FPGA implementation of the APEnet+ 3D Torus network for hybrid HPC systems

    International Nuclear Information System (INIS)

    Ammendola, Roberto; Biagioni, Andrea; Frezza, Ottorino; Cicero, Francesca Lo; Paolucci, Pier Stanislao; Lonardo, Alessandro; Rossetti, Davide; Simula, Francesco; Tosoratto, Laura; Vicini, Piero

    2014-01-01

    Modern Graphics Processing Units (GPUs) are now considered accelerators for general purpose computation. A tight interaction between the GPU and the interconnection network is the strategy to express the full potential on capability computing of a multi-GPU system on large HPC clusters; that is the reason why an efficient and scalable interconnect is a key technology to finally deliver GPUs for scientific HPC. In this paper we show the latest architectural and performance improvement of the APEnet+ network fabric, a FPGA-based PCIe board with 6 fully bidirectional off-board links with 34 Gbps of raw bandwidth per direction, and X8 Gen2 bandwidth towards the host PC. The board implements a Remote Direct Memory Access (RDMA) protocol that leverages upon peer-to-peer (P2P) capabilities of Fermi- and Kepler-class NVIDIA GPUs to obtain real zero-copy, low-latency GPU-to-GPU transfers. Finally, we report on the development activities for 2013 focusing on the adoption of the latest generation 28 nm FPGAs and the preliminary tests performed on this new platform.

  1. Architectural improvements and 28 nm FPGA implementation of the APEnet+ 3D Torus network for hybrid HPC systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, Roberto [INFN Sezione Roma Tor Vergata (Italy); Biagioni, Andrea; Frezza, Ottorino; Cicero, Francesca Lo; Paolucci, Pier Stanislao; Lonardo, Alessandro; Rossetti, Davide; Simula, Francesco; Tosoratto, Laura; Vicini, Piero [INFN Sezione Roma (Italy)

    2014-06-11

    Modern Graphics Processing Units (GPUs) are now considered accelerators for general purpose computation. A tight interaction between the GPU and the interconnection network is the strategy to express the full potential on capability computing of a multi-GPU system on large HPC clusters; that is the reason why an efficient and scalable interconnect is a key technology to finally deliver GPUs for scientific HPC. In this paper we show the latest architectural and performance improvement of the APEnet+ network fabric, a FPGA-based PCIe board with 6 fully bidirectional off-board links with 34 Gbps of raw bandwidth per direction, and X8 Gen2 bandwidth towards the host PC. The board implements a Remote Direct Memory Access (RDMA) protocol that leverages upon peer-to-peer (P2P) capabilities of Fermi- and Kepler-class NVIDIA GPUs to obtain real zero-copy, low-latency GPU-to-GPU transfers. Finally, we report on the development activities for 2013 focusing on the adoption of the latest generation 28 nm FPGAs and the preliminary tests performed on this new platform.

  2. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    Science.gov (United States)

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  3. Optical Neural Network Classifier Architectures

    National Research Council Canada - National Science Library

    Getbehead, Mark

    1998-01-01

    We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and classification of high-dimensional data for Air...

  4. Satellite ATM Networks: Architectures and Guidelines Developed

    Science.gov (United States)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  5. Architecture and evaluation of software-defined optical switching matrix for hybrid data centers

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    A software architecture is proposed for hybrid packet/optical data centers employing programmable NETCONF-enabled optical switching matrix, and a performance evaluation is presented comparing hybrid and electrical-only architectures for elephant flows under different traffic patterns. Network...

  6. Modular architectures for quantum networks

    Science.gov (United States)

    Pirker, A.; Wallnöfer, J.; Dür, W.

    2018-05-01

    We consider the problem of generating multipartite entangled states in a quantum network upon request. We follow a top-down approach, where the required entanglement is initially present in the network in form of network states shared between network devices, and then manipulated in such a way that the desired target state is generated. This minimizes generation times, and allows for network structures that are in principle independent of physical links. We present a modular and flexible architecture, where a multi-layer network consists of devices of varying complexity, including quantum network routers, switches and clients, that share certain resource states. We concentrate on the generation of graph states among clients, which are resources for numerous distributed quantum tasks. We assume minimal functionality for clients, i.e. they do not participate in the complex and distributed generation process of the target state. We present architectures based on shared multipartite entangled Greenberger–Horne–Zeilinger states of different size, and fully connected decorated graph states, respectively. We compare the features of these architectures to an approach that is based on bipartite entanglement, and identify advantages of the multipartite approach in terms of memory requirements and complexity of state manipulation. The architectures can handle parallel requests, and are designed in such a way that the network state can be dynamically extended if new clients or devices join the network. For generation or dynamical extension of the network states, we propose a quantum network configuration protocol, where entanglement purification is used to establish high fidelity states. The latter also allows one to show that the entanglement generated among clients is private, i.e. the network is secure.

  7. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  8. A novel scalable and low latency hybrid data center network architecture based on flow controlled fast optical switches

    NARCIS (Netherlands)

    Yan, Fulong; Guelbenzu, Gonzalo; Calabretta, Nicola

    2018-01-01

    We present a novel hybrid DCN based on flow-controlled fast optical switches. Results show packet loss < 1.4E-5 and latency < 2.4μs for 100,000 servers (0.3 load). Costs and power consumptions are also compared with current technologies.

  9. Data center networks and network architecture

    Science.gov (United States)

    Esaki, Hiroshi

    2014-02-01

    This paper discusses and proposes the architectural framework, which is for data center networks. The data center networks require new technical challenges, and it would be good opportunity to change the functions, which are not need in current and future networks. Based on the observation and consideration on data center networks, this paper proposes; (i) Broadcast-free layer 2 network (i.e., emulation of broadcast at the end-node), (ii) Full-mesh point-to-point pipes, and (iii) IRIDES (Invitation Routing aDvertisement for path Engineering System).

  10. Architecture in the network society

    DEFF Research Database (Denmark)

    2004-01-01

    Under the theme Architecture in the Network Society, participants were invited to focus on the dialog and sharing of knowledge between architects and other disciplines and to reflect on, and propose, new methods in the design process, to enhance and improve the impact of information technology...

  11. LINCS: Livermore's network architecture

    International Nuclear Information System (INIS)

    Fletcher, J.G.

    1982-01-01

    Octopus, a local computing network that has been evolving at the Lawrence Livermore National Laboratory for over fifteen years, is currently undergoing a major revision. The primary purpose of the revision is to consolidate and redefine the variety of conventions and formats, which have grown up over the years, into a single standard family of protocols, the Livermore Interactive Network Communication Standard (LINCS). This standard treats the entire network as a single distributed operating system such that access to a computing resource is obtained in a single way, whether that resource is local (on the same computer as the accessing process) or remote (on another computer). LINCS encompasses not only communication but also such issues as the relationship of customer to server processes and the structure, naming, and protection of resources. The discussion includes: an overview of the Livermore user community and computing hardware, the functions and structure of each of the seven layers of LINCS protocol, the reasons why we have designed our own protocols and why we are dissatisfied by the directions that current protocol standards are taking

  12. Peptoid-Peptide hybrid backbone architectures

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2010-01-01

    Peptidomimetic oligomers and foldamers have received considerable attention for over a decade, with beta-peptides and the so-called peptoids (N-alkylglycine oligomers) representing prominent examples of such architectures. Lately, hybrid or mixed backbones consisting of both alpha- and beta......-amino acids (alpha/beta-peptides) have been investigated in some detail as well. The present Minireview is a survey of the literature concerning hybrid structures of alpha-amino acids and peptoids, including beta-peptoids (N-alkyl-beta-alanine oligomers), and is intended to give an overview of this area...

  13. Evolution of hybrid defect networks

    International Nuclear Information System (INIS)

    Martins, C. J. A. P.

    2009-01-01

    We apply a recently developed analytic model for the evolution of monopole networks to the case of monopoles attached to one string, usually known as hybrid networks. We discuss scaling solutions for both local and global hybrid networks, and also find an interesting application for the case of vortons. Our quantitative results agree with previous estimates in indicating that the hybrid networks will usually annihilate soon after the string-forming phase transition. However, we also show that in some specific circumstances these networks can survive considerably more than a Hubble time.

  14. Hybrid Wavelength Routed and Optical Packet Switched Ring Networks for the Metropolitan Area Network

    DEFF Research Database (Denmark)

    Nord, Martin

    2005-01-01

    Increased data traffic in the metropolitan area network calls for new network architectures. This paper evaluates optical ring architectures based on optical packet switching, wavelength routing, and hybrid combinations of the two concepts. The evaluation includes overall throughput and fairness...... attractive when traffic is unbalanced....

  15. Data Architecture for Sensor Network

    Directory of Open Access Journals (Sweden)

    Jan Ježek

    2012-03-01

    Full Text Available Fast development of hardware in recent years leads to the high availability of simple sensing devices at minimal cost. As a consequence, there is many of sensor networks nowadays. These networks can continuously produce a large amount of observed data including the location of measurement. Optimal data architecture for such propose is a challenging issue due to its large scale and spatio-temporal nature.  The aim of this paper is to describe data architecture that was used in a particular solution for storage of sensor data. This solution is based on relation data model – concretely PostgreSQL and PostGIS. We will mention out experience from real world projects focused on car monitoring and project targeted on agriculture sensor networks. We will also shortly demonstrate the possibilities of client side API and the potential of other open source libraries that can be used for cartographic visualization (e.g. GeoServer. The main objective is to describe the strength and weakness of usage of relation database system for such propose and to introduce also alternative approaches based on NoSQL concept.

  16. The architectural design of networks of protein domain architectures.

    Science.gov (United States)

    Hsu, Chia-Hsin; Chen, Chien-Kuo; Hwang, Ming-Jing

    2013-08-23

    Protein domain architectures (PDAs), in which single domains are linked to form multiple-domain proteins, are a major molecular form used by evolution for the diversification of protein functions. However, the design principles of PDAs remain largely uninvestigated. In this study, we constructed networks to connect domain architectures that had grown out from the same single domain for every single domain in the Pfam-A database and found that there are three main distinctive types of these networks, which suggests that evolution can exploit PDAs in three different ways. Further analysis showed that these three different types of PDA networks are each adopted by different types of protein domains, although many networks exhibit the characteristics of more than one of the three types. Our results shed light on nature's blueprint for protein architecture and provide a framework for understanding architectural design from a network perspective.

  17. A COMPARATIVE STUDY OF SYSTEM NETWORK ARCHITECTURE Vs DIGITAL NETWORK ARCHITECTURE

    OpenAIRE

    Seema; Mukesh Arya

    2011-01-01

    The efficient managing system of sources is mandatory for the successful running of any network. Here this paper describes the most popular network architectures one of developed by IBM, System Network Architecture (SNA) and other is Digital Network Architecture (DNA). As we know that the network standards and protocols are needed for the network developers as well as users. Some standards are The IEEE 802.3 standards (The Institute of Electrical and Electronics Engineers 1980) (LAN), IBM Sta...

  18. Security Shift in Future Network Architectures

    NARCIS (Netherlands)

    Hartog, T.; Schotanus, H.A.; Verkoelen, C.A.A.

    2010-01-01

    In current practice military communication infrastructures are deployed as stand-alone networked information systems. Network-Enabled Capabilities (NEC) and combined military operations lead to new requirements which current communication architectures cannot deliver. This paper informs IT

  19. Information transmission on hybrid networks

    Science.gov (United States)

    Chen, Rongbin; Cui, Wei; Pu, Cunlai; Li, Jie; Ji, Bo; Gakis, Konstantinos; Pardalos, Panos M.

    2018-01-01

    Many real-world communication networks often have hybrid nature with both fixed nodes and moving modes, such as the mobile phone networks mainly composed of fixed base stations and mobile phones. In this paper, we discuss the information transmission process on the hybrid networks with both fixed and mobile nodes. The fixed nodes (base stations) are connected as a spatial lattice on the plane forming the information-carrying backbone, while the mobile nodes (users), which are the sources and destinations of information packets, connect to their current nearest fixed nodes respectively to deliver and receive information packets. We observe the phase transition of traffic load in the hybrid network when the packet generation rate goes from below and then above a critical value, which measures the network capacity of packets delivery. We obtain the optimal speed of moving nodes leading to the maximum network capacity. We further improve the network capacity by rewiring the fixed nodes and by considering the current load of fixed nodes during packets transmission. Our purpose is to optimize the network capacity of hybrid networks from the perspective of network science, and provide some insights for the construction of future communication infrastructures.

  20. Home networking architecture for IPv6

    OpenAIRE

    Arkko, Jari; Weil, Jason; Troan, Ole; Brandt, Anders

    2012-01-01

    This text describes evolving networking technology within increasingly large residential home networks. The goal of this document is to define an architecture for IPv6-based home networking while describing the associated principles, considerations and requirements. The text briefly highlights the specific implications of the introduction of IPv6 for home networking, discusses the elements of the architecture, and suggests how standard IPv6 mechanisms and addressing can be employed in home ne...

  1. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  2. Hybrid Power Management-Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  3. Tenet: An Architecture for Tiered Embedded Networks

    OpenAIRE

    Ramesh Govindan; Eddie Kohler; Deborah Estrin; Fang Bian; Krishna Chintalapudi; Om Gnawali; Sumit Rangwala; Ramakrishna Gummadi; Thanos Stathopoulos

    2005-01-01

    Future large-scale sensor network deployments will be tiered, with the motes providing dense sensing and a higher tier of 32-bit master nodes with more powerful radios providing increased overall network capacity. In this paper, we describe a functional architecture for wireless sensor networks that leverages this structure to simplify the overall system. Our Tenet architecture has the nice property that the mote-layer software is generic and reusable, and all application functionality reside...

  4. An Integrated Hybrid Transportation Architecture for Human Mars Expeditions

    Science.gov (United States)

    Merrill, Raymond G.; Chai, Patrick R.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture that uses both chemical and electric propulsion systems on the same vehicle to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By applying chemical and electrical propulsion where each is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper presents an integrated Hybrid in-space transportation architecture for piloted missions and delivery of cargo. A concept for a Mars campaign including orbital and Mars surface missions is described in detail including a system concept of operations and conceptual design. Specific constraints, margin, and pinch points are identified for the architecture and opportunities for critical path commercial and international collaboration are discussed.

  5. Inference in hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio

    2009-01-01

    Since the 1980s, Bayesian networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability techniques (like fault trees and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (the so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability.

  6. Hybrid-Source Impedance Networks

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2010-01-01

    Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into two generic network entities, before multiple of them can further be connected together by applying any of the two proposed generalized cascading concepts. The resulting two-level and three-level inverters implemented using...

  7. An architecture for human-network interfaces

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1990-01-01

    Some of the issues (and their consequences) that arise when human-network interfaces (HNIs) are viewed from the perspective of people who use and develop them are examined. Target attributes of HNI architecture are presented. A high-level architecture model that supports the attributes is discussed...

  8. An Architectural Modelfor Intelligent Network Management

    Institute of Scientific and Technical Information of China (English)

    罗军舟; 顾冠群; 费翔

    2000-01-01

    Traditional network management approach involves the management of each vendor's equipment and network segment in isolation through its own proprietary element management system. It is necessary to set up a new network management architecture that calls for operation consolidation across vendor and technology boundaries. In this paper, an architectural model for Intelligent Network Management (INM) is presented. The INM system includes a manager system, which controls all subsystems and coordinates different management tasks; an expert system, which is responsible for handling particularly difficult problems, and intelligent agents, which bring the management closer to applications and user requirements by spreading intelligent agents through network segments or domain. In the expert system model proposed, especially an intelligent fault management system is given.The architectural model is to build the INM system to meet the need of managing modern network systems.

  9. Microsoft Windows 2000 Network Architecture Guide

    National Research Council Canada - National Science Library

    Bartock, Paul

    2000-01-01

    The purpose of this guide is to inform the reader about the services that are available in the Microsoft Windows 2000 environment and how to integrate these services into their network architecture...

  10. Network topology descriptions in hybrid networks

    NARCIS (Netherlands)

    Grosso, P.; Brown, A.; Cedeyn, A.; Dijkstra, F.; van der Ham, J.; Patil, A.; Primet, P.; Swany, M.; Zurawski, J.

    2010-01-01

    The NML-WG goal is to define a schema for describing topologies of hybrid networks. This schema is in first instance intended for: • lightpath provisioning applications to exchange topology information intra and inter domain; • reporting performance metrics. This document constitutes Deliverable 1

  11. The functional consequences of mutualistic network architecture.

    Directory of Open Access Journals (Sweden)

    José M Gómez

    Full Text Available The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks.

  12. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  13. Smart business networks: architectural aspects and risks

    NARCIS (Netherlands)

    L-F. Pau (Louis-François)

    2004-01-01

    textabstractThis paper summarizes key attributes and the uniqueness of smart business networks [1], to propose thereafter an operational implementation architecture. It involves, amongst others, the embedding of business logic specific to a network of business partners, inside the communications

  14. UMA/GAN network architecture analysis

    Science.gov (United States)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  15. Virtualized cognitive network architecture for 5G cellular networks

    KAUST Repository

    Elsawy, Hesham

    2015-07-17

    Cellular networks have preserved an application agnostic and base station (BS) centric architecture1 for decades. Network functionalities (e.g. user association) are decided and performed regardless of the underlying application (e.g. automation, tactile Internet, online gaming, multimedia). Such an ossified architecture imposes several hurdles against achieving the ambitious metrics of next generation cellular systems. This article first highlights the features and drawbacks of such architectural ossification. Then the article proposes a virtualized and cognitive network architecture, wherein network functionalities are implemented via software instances in the cloud, and the underlying architecture can adapt to the application of interest as well as to changes in channels and traffic conditions. The adaptation is done in terms of the network topology by manipulating connectivities and steering traffic via different paths, so as to attain the applications\\' requirements and network design objectives. The article presents cognitive strategies to implement some of the classical network functionalities, along with their related implementation challenges. The article further presents a case study illustrating the performance improvement of the proposed architecture as compared to conventional cellular networks, both in terms of outage probability and handover rate.

  16. Mobile opportunistic networks architectures, protocols and applications

    CERN Document Server

    Denko, Mieso K

    2011-01-01

    Widespread availability of pervasive and mobile devices coupled with recent advances in networking technologies make opportunistic networks one of the most promising communication technologies for a growing number of future mobile applications. Covering the basics as well as advanced concepts, this book introduces state-of-the-art research findings, technologies, tools, and innovations. Prominent researchers from academia and industry report on communication architectures, network algorithms and protocols, emerging applications, experimental studies, simulation tools, implementation test beds,

  17. Security Shift in Future Network Architectures

    OpenAIRE

    Hartog, T.; Schotanus, H.A.; Verkoelen, C.A.A.

    2010-01-01

    In current practice military communication infrastructures are deployed as stand-alone networked information systems. Network-Enabled Capabilities (NEC) and combined military operations lead to new requirements which current communication architectures cannot deliver. This paper informs IT architects, information architects and security specialists about the separation of network and information security, the consequences of this shift and our view on future communication infrastructures in d...

  18. Routing architecture and security for airborne networks

    Science.gov (United States)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  19. Hybrid network defense model based on fuzzy evaluation.

    Science.gov (United States)

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  20. Stable architectures for deep neural networks

    Science.gov (United States)

    Haber, Eldad; Ruthotto, Lars

    2018-01-01

    Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.

  1. Genomic networks of hybrid sterility.

    Directory of Open Access Journals (Sweden)

    Leslie M Turner

    2014-02-01

    Full Text Available Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities". The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL. Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is

  2. Genomic networks of hybrid sterility.

    Science.gov (United States)

    Turner, Leslie M; White, Michael A; Tautz, Diethard; Payseur, Bret A

    2014-02-01

    Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad

  3. A Hybrid Architecture for Vision-Based Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Mehmet Serdar Güzel

    2013-01-01

    Full Text Available This paper proposes a new obstacle avoidance method using a single monocular vision camera as the only sensor which is called as Hybrid Architecture. This architecture integrates a high performance appearance-based obstacle detection method into an optical flow-based navigation system. The hybrid architecture was designed and implemented to run both methods simultaneously and is able to combine the results of each method using a novel arbitration mechanism. The proposed strategy successfully fused two different vision-based obstacle avoidance methods using this arbitration mechanism in order to permit a safer obstacle avoidance system. Accordingly, to establish the adequacy of the design of the obstacle avoidance system, a series of experiments were conducted. The results demonstrate the characteristics of the proposed architecture, and the results prove that its performance is somewhat better than the conventional optical flow-based architecture. Especially, the robot employing Hybrid Architecture avoids lateral obstacles in a more smooth and robust manner than when using the conventional optical flow-based technique.

  4. Software Defined Networks in Wireless Sensor Architectures

    Directory of Open Access Journals (Sweden)

    Jesús Antonio Puente Fernández

    2018-03-01

    Full Text Available Nowadays, different protocols coexist in Internet that provides services to users. Unfortunately, control decisions and distributed management make it hard to control networks. These problems result in an inefficient and unpredictable network behaviour. Software Defined Networks (SDN is a new concept of network architecture. It intends to be more flexible and to simplify the management in networks with respect to traditional architectures. Each of these aspects are possible because of the separation of control plane (controller and data plane (switches in network devices. OpenFlow is the most common protocol for SDN networks that provides the communication between control and data planes. Moreover, the advantage of decoupling control and data planes enables a quick evolution of protocols and also its deployment without replacing data plane switches. In this survey, we review the SDN technology and the OpenFlow protocol and their related works. Specifically, we describe some technologies as Wireless Sensor Networks and Wireless Cellular Networks and how SDN can be included within them in order to solve their challenges. We classify different solutions for each technology attending to the problem that is being fixed.

  5. A DRM Security Architecture for Home Networks

    NARCIS (Netherlands)

    Popescu, B.C.; Crispo, B.; Kamperman, F.L.A.J.; Tanenbaum, A.S.; Kiayias, A.; Yung, M.

    2004-01-01

    This paper describes a security architecture allowing digital rights management in home networks consisting of consumer electronic devices. The idea is to allow devices to establish dynamic groups, so called "Authorized Domains", where legally acquired copyrighted content can seamlessly move from

  6. An architectural model for network interconnection

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Vissers, C.A.; Kalin, T.

    1983-01-01

    This paper presents a technique of successive decomposition of a common users' activity to illustrate the problems of network interconnection. The criteria derived from this approach offer a structuring principle which is used to develop an architectural model that embeds heterogeneous subnetworks

  7. MIRAI Architecture for Heterogeneous Network

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Havinga, Paul J.M.

    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless

  8. Combining Performance and Flexibility for RMS with a Hybrid Architecture

    NARCIS (Netherlands)

    Dennis Koole; Arjan Groenewegen; Daniël Telgen; Patrick Wit; Leo van Moergestel; Arjan van Zanten; John-Jules Meyer; Ing. Erik Puik; Dick van der Steen; Pascal Muller

    2013-01-01

    Author supplied Combining Performance and Flexibility for RMS with a Hybrid Architecture Dani¨el Telgen 12? , Leo van Moergestel 1 , Erik Puik 1 , Pascal Muller 1 , Arjan Groenewegen 1 , Dick van der Steen 1 , Dennis Koole 1 , Patrick de Wit 1 , Arjen van Zanten 1 , and John-Jules

  9. Design of Hybrid Mobile Communication Networks for Planetary Exploration

    Science.gov (United States)

    Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom

    2004-01-01

    The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.

  10. Architectural contextualism and emerging hybrid morphologies

    NARCIS (Netherlands)

    Komez, E.

    2012-01-01

    Infrastructure networks have always been the primary feature of urbanism. As any aspects of urban environments, the understanding of infrastructure networks and their practices have witnessed changes due to the shifts first to modernist ideal and then to the globalized world view. In oppose to the

  11. An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Plank, James [University of Tennessee (UT); Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2016-01-01

    As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.

  12. Sea-floor classification using multibeam echo-sounding angular backscatter data: A real-time approach employing hybrid neural network architecture

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Kodagali, V.N.; Baracho, J.

    successfully initiated [5]. ANN architecture such as the self-organizing feature map (SOFM) exercises unsupervised competitive learning on unknown data, to align the input space into coarse clusters [6]. The trained output space is refined by learning vector... for beam directions varying between the incidence angles of 45 to 45 . The data are then moving averaged over ten samples in each bin, and interpolated, each vector consisting of 91 values ranging from 45 to 45 which are used for ANN training and testing...

  13. The plasma automata network (PAN) architecture

    International Nuclear Information System (INIS)

    Cameron-Carey, C.M.

    1991-01-01

    Conventional neural networks consist of processing elements which are interconnected according to a specified topology. Typically, the number of processing elements and the interconnection topology are fixed. A neural network's information processing capability lies mainly in the variability of interconnection strengths, which directly influence activation patterns; these patterns represent entities and their interrelationships. Contrast this architecture, with its fixed topology and variable interconnection strengths, against one having dynamic topology and fixed connection strength. This paper reports on this proposed architecture in which there are no connections between processing elements. Instead, the processing elements form a plasma, exchanging information upon collision. A plasma can be populated with several different types of processing elements, each with their won activation function and self-modification mechanism. The activation patterns that are the plasma;s response to stimulation drive natural selection among processing elements which evolve to optimize performance

  14. High-performance, scalable optical network-on-chip architectures

    Science.gov (United States)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  15. Re-engineering Nascom's network management architecture

    Science.gov (United States)

    Drake, Brian C.; Messent, David

    1994-01-01

    The development of Nascom systems for ground communications began in 1958 with Project Vanguard. The low-speed systems (rates less than 9.6 Kbs) were developed following existing standards; but, there were no comparable standards for high-speed systems. As a result, these systems were developed using custom protocols and custom hardware. Technology has made enormous strides since the ground support systems were implemented. Standards for computer equipment, software, and high-speed communications exist and the performance of current workstations exceeds that of the mainframes used in the development of the ground systems. Nascom is in the process of upgrading its ground support systems and providing additional services. The Message Switching System (MSS), Communications Address Processor (CAP), and Multiplexer/Demultiplexer (MDM) Automated Control System (MACS) are all examples of Nascom systems developed using standards such as, X-windows, Motif, and Simple Network Management Protocol (SNMP). Also, the Earth Observing System (EOS) Communications (Ecom) project is stressing standards as an integral part of its network. The move towards standards has produced a reduction in development, maintenance, and interoperability costs, while providing operational quality improvement. The Facility and Resource Manager (FARM) project has been established to integrate the Nascom networks and systems into a common network management architecture. The maximization of standards and implementation of computer automation in the architecture will lead to continued cost reductions and increased operational efficiency. The first step has been to derive overall Nascom requirements and identify the functionality common to all the current management systems. The identification of these common functions will enable the reuse of processes in the management architecture and promote increased use of automation throughout the Nascom network. The MSS, CAP, MACS, and Ecom projects have indicated

  16. Navigation Architecture for a Space Mobile Network

    Science.gov (United States)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  17. NATO Human View Architecture and Human Networks

    Science.gov (United States)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  18. Development of the brain's functional network architecture.

    Science.gov (United States)

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  19. Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture

    Science.gov (United States)

    Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble

    2015-01-01

    A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.

  20. Ensemble Network Architecture for Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Xi-liang Chen

    2018-01-01

    Full Text Available The popular deep Q learning algorithm is known to be instability because of the Q-value’s shake and overestimation action values under certain conditions. These issues tend to adversely affect their performance. In this paper, we develop the ensemble network architecture for deep reinforcement learning which is based on value function approximation. The temporal ensemble stabilizes the training process by reducing the variance of target approximation error and the ensemble of target values reduces the overestimate and makes better performance by estimating more accurate Q-value. Our results show that this architecture leads to statistically significant better value evaluation and more stable and better performance on several classical control tasks at OpenAI Gym environment.

  1. Thinking in networks: artistic–architectural responses to ubiquitous information

    Directory of Open Access Journals (Sweden)

    Yvonne Spielmann

    2011-12-01

    Full Text Available The article discusses creative practices that in aesthetical-technical ways intervene into the computer networked communication systems.I am interested in artist practices that use networks in different ways to make us aware about the possibilities to rethink media-cultural environments. I use the example of the Japanese art-architectural group Double Negative Architecture to give an example of creatively thinking in networks.Yvonne Spielmann (Ph.D., Dr. habil. is presently Research Professor and Chair of New Media at The University of the West of Scotland. Her work focuses on inter-relationships between media and culture, technology, art, science and communication, and in particular on Western/European and non-Western/South-East Asian interaction. Milestones of publish research output are four authored monographs and about 90 single authored articles. Her book, “Video, the Reflexive Medium” (published by MIT Press 2008, Japanese edition by Sangen-sha Press 2011 was rewarded the 2009 Lewis Mumford Award for Outstanding Scholarship in the Ecology of Technics. Her most recent book “Hybrid Cultures” was published in German by Suhrkamp Press in 2010, English edition from MIT Press in 2012. Spielmann's work has been published in German and English and has been translated into French, Polish, Croatian, Swedish, Japanese, and Korean. She holds the 2011 Swedish Prize for Swedish–German scientific co-operation.

  2. Cloud Radio Access Network architecture. Towards 5G mobile networks

    DEFF Research Database (Denmark)

    Checko, Aleksandra

    Cloud Radio Access Network (C-RAN) is a novel mobile network architecture which can address a number of challenges that mobile operators face while trying to support ever-growing end-users’ needs towards 5th generation of mobile networks (5G). The main idea behind C-RAN is to split the base...... stations into radio and baseband parts, and pool the Baseband Units (BBUs) from multiple base stations into a centralized and virtualized BBU Pool. This gives a number of benefits in terms of cost and capacity. However, the challenge is then to find an optimal functionality splitting point as well...... as to design the socalled fronthaul network, interconnecting those parts. This thesis focuses on quantifying those benefits and proposing a flexible and capacity-optimized fronthaul network. It is shown that a C-RAN with a functional split resulting in a variable bit rate on the fronthaul links brings cost...

  3. Dissecting the genetic architecture of F1 hybrid sterility in house mice.

    Science.gov (United States)

    Dzur-Gejdosova, Maria; Simecek, Petr; Gregorova, Sona; Bhattacharyya, Tanmoy; Forejt, Jiri

    2012-11-01

    Hybrid sterility as a postzygotic reproductive isolation mechanism has been studied for over 80 years, yet the first identifications of hybrid sterility genes in Drosophila and mouse are quite recent. To study the genetic architecture of F(1) hybrid sterility between young subspecies of house mouse Mus m. domesticus and M. m. musculus, we conducted QTL analysis of a backcross between inbred strains representing these two subspecies and probed the role of individual chromosomes in hybrid sterility using the intersubspecific chromosome substitution strains. We provide direct evidence that the asymmetry in male infertility between reciprocal crosses is conferred by the middle region of M. m. musculus Chr X, thus excluding other potential candidates such as Y, imprinted genes, and mitochondrial DNA. QTL analysis identified strong hybrid sterility loci on Chr 17 and Chr X and predicted a set of interchangeable autosomal loci, a subset of which is sufficient to activate the Dobzhansky-Muller incompatibility of the strong loci. Overall, our results indicate the oligogenic nature of F(1) hybrid sterility, which should be amenable to reconstruction by proper combination of chromosome substitution strains. Such a prefabricated model system should help to uncover the gene networks and molecular mechanisms underlying hybrid sterility. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  4. Collaborative-Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Tom [USC; Ghani, Nasir [UNM; Boyd, Eric [UCAID

    2010-08-31

    At a high level, there were four basic task areas identified for the Hybrid-MLN project. They are: o Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation, including OSCARS layer2 and InterDomain Adaptation, Integration of LambdaStation and Terapaths with Layer2 dynamic provisioning, Control plane software release, Scheduling, AAA, security architecture, Network Virtualization architecture, Multi-Layer Network Architecture Framework Definition; o Heterogeneous DataPlane Testing; o Simulation; o Project Publications, Reports, and Presentations.

  5. A Hybrid Web Browser Architecture for Mobile Devices

    Directory of Open Access Journals (Sweden)

    CHO, J.

    2014-08-01

    Full Text Available Web browsing on mobile networks is slow in comparison to wired or Wi-Fi networks. Particularly, the connection establishment phase including DNS lookups and TCP handshakes takes a long time on mobile networks due to its long round-trip latency. In this paper, we propose a novel web browser architecture that aims to improve mobile web browsing performance. Our approach delegates the connection establishment and HTTP header field delivery tasks to a dedicated proxy server located at the joint point between the WAN and mobile network. Since the traffic for the connection establishment and HTTP header fields delivery passes only through the WAN between the proxy and web servers, our approach significantly reduces both the number and size of packets on the mobile network. Our evaluation showed that the proposed scheme reduces the number of mobile network packets by up to 42% and, consequently, the average page loading time is shortened by up to 52%.

  6. Deep Space Network information system architecture study

    Science.gov (United States)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  7. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  8. Hybrid Experiential-Heuristic Cognitive Radio Engine Architecture and Implementation

    Directory of Open Access Journals (Sweden)

    Ashwin Amanna

    2012-01-01

    Full Text Available The concept of cognitive radio (CR focuses on devices that can sense their environment, adapt configuration parameters, and learn from past behaviors. Architectures tend towards simplified decision-making algorithms inspired by human cognition. Initial works defined cognitive engines (CEs founded on heuristics, such as genetic algorithms (GAs, and case-based reasoning (CBR experiential learning algorithms. This hybrid architecture enables both long-term learning, faster decisions based on past experience, and capability to still adapt to new environments. This paper details an autonomous implementation of a hybrid CBR-GA CE architecture on a universal serial radio peripheral (USRP software-defined radio focused on link adaptation. Details include overall process flow, case base structure/retrieval method, estimation approach within the GA, and hardware-software lessons learned. Unique solutions to realizing the concept include mechanisms for combining vector distance and past fitness into an aggregate quantification of similarity. Over-the-air performance under several interference conditions is measured using signal-to-noise ratio, packet error rate, spectral efficiency, and throughput as observable metrics. Results indicate that the CE is successfully able to autonomously change transmit power, modulation/coding, and packet size to maintain the link while a non-cognitive approach loses connectivity. Solutions to existing shortcomings are proposed for improving case-base searching and performance estimation methods.

  9. A Hybrid Power Management (HPM) Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Society desires vehicles with reduced fuel consumption and reduced emissions. This presents a challenge and an opportunity for industry and the government. The NASA John H. Glenn Research Center (GRC) has developed a Hybrid Power Management (HPM) based vehicle architecture for space and terrestrial vehicles. GRC's Electrical and Electromagnetics Branch of the Avionics and Electrical Systems Division initiated the HPM Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, providing all power to a common energy storage system, which is used to power the drive motors and vehicle accessory systems, as well as provide power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. This flexible vehicle architecture can be applied to all vehicles to considerably improve system efficiency, reliability, safety, security, and performance. This unique vehicle architecture has the potential to alleviate global energy concerns, improve the environment, stimulate the economy, and enable new missions.

  10. Underwater Sensor Networks: A New Energy Efficient and Robust Architecture

    NARCIS (Netherlands)

    Climent, Salvador; Capella, Juan Vincente; Meratnia, Nirvana; Serrano, Juan José

    2012-01-01

    The specific characteristics of underwater environments introduce new challenges for networking protocols. In this paper, a specialized architecture for underwater sensor networks (UWSNs) is proposed and evaluated. Experiments are conducted in order to analyze the suitability of this protocol for

  11. Establishment of a Spaceport Network Architecture

    Science.gov (United States)

    Larson, Wiley J.; Gill, Tracy R.; Mueller, Robert P.; Brink, Jeffrey S.

    2012-01-01

    Since the beginning of the space age, the main actors in space exploration have been governmental agencies, enabling a privileged access to space, but with very restricted and rare missions. The last decade has seen the rise of space tourism, and the founding of ambitious private space mining companies, showing the beginnings of a new exploration era, that is based on a more generalized and regular access to space and which is not limited to the Earth's vicinity. However, the cost of launching sufficient mass into orbit to sustain these inspiring challenges is prohibitive, and the necessary infrastructures to support these missions is still lacking. To provide easy and affordable access into orbital and deep space destinations, there is the need to create a network of spaceports via specific waypoint locations coupled with the use of natural resources, or In Situ Resource Utilization (ISRU), to provide a more economical solution. As part of the International Space University Space Studies Program 2012, the international and intercultural team of Operations and Service Infrastructure for Space (OASIS) proposes an interdisciplinary answer to the problem of economical space access and transportation. This paper presents a summary of a detailed report [1] of the different phases of a project for developing a network of spaceports throughout the Solar System in a timeframe of 50 years. The requirements, functions, critical technologies and mission architecture of this network of spaceports are outlined in a roadmap of the important steps and phases. The economic and financial aspects are emphasized in order to allow a sustainable development of the network in a public-private partnership via the formation of an International Spaceport Authority (ISPA). The approach includes engineering, scientific, financial, legal, policy, and societal aspects. Team OASIS intends to provide guidelines to make the development of space transportation via a spaceports logistics network

  12. Hybrid Architecture for Coordination of AGVs in FMS

    Directory of Open Access Journals (Sweden)

    Eduardo G. Hernandez-Martinez

    2014-03-01

    Full Text Available This paper presents a hybrid control architecture that coordinates the motion of groups of automated guided vehicles in flexible manufacturing systems. The high-level control is based on a Petri net model, using the industrial standard ISA-95, obtaining a task-based coordination of equipment and storage considering process restrictions, logical precedences, shared resources and the assignment of robots to move workpieces individually or in subgroups. On the other hand, in the low-level control, three basic control laws are designed for unicycle-type robots in order to achieve desired formation patterns and marching behaviours, avoiding inter-robot collisions. The control scheme combines the task assignment for the robots obtained from the discrete-event model and the implementation of formation and marching continuous control laws applied to the motion of the mobile robots. The hybrid architecture is implemented and validated for the case of a flexible manufacturing system and four mobile robots using a virtual reality platform.

  13. Hybrid parallel computing architecture for multiview phase shifting

    Science.gov (United States)

    Zhong, Kai; Li, Zhongwei; Zhou, Xiaohui; Shi, Yusheng; Wang, Congjun

    2014-11-01

    The multiview phase-shifting method shows its powerful capability in achieving high resolution three-dimensional (3-D) shape measurement. Unfortunately, this ability results in very high computation costs and 3-D computations have to be processed offline. To realize real-time 3-D shape measurement, a hybrid parallel computing architecture is proposed for multiview phase shifting. In this architecture, the central processing unit can co-operate with the graphic processing unit (GPU) to achieve hybrid parallel computing. The high computation cost procedures, including lens distortion rectification, phase computation, correspondence, and 3-D reconstruction, are implemented in GPU, and a three-layer kernel function model is designed to simultaneously realize coarse-grained and fine-grained paralleling computing. Experimental results verify that the developed system can perform 50 fps (frame per second) real-time 3-D measurement with 260 K 3-D points per frame. A speedup of up to 180 times is obtained for the performance of the proposed technique using a NVIDIA GT560Ti graphics card rather than a sequential C in a 3.4 GHZ Inter Core i7 3770.

  14. A research on the application of software defined networking in satellite network architecture

    Science.gov (United States)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  15. Study on Optimization of I and C Architecture for Research Reactors Using Bayesian Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Khaili Ur; Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-07-01

    The optimization in terms of redundancy of modules and components in Instrumentation and Control (I and C) architecture is based on cost and availability assuming regulatory requirements are satisfied. The motive of this study is to find an optimized I and C architecture, either in hybrid formation, fully digital or analog, with respect to system availability and relative cost of architecture. The cost of research reactors I and C systems is prone to have effect on marketing competitiveness. As a demonstrative example, the reactor protection system of research reactors is selected. The four cases with different architecture formation were developed with single and double redundancy of bi-stable modules, coincidence processor module, and safety or protection circuit actuation logic. The architecture configurations are transformed to reliability block diagram (RBD) based on logical operation and function of modules. A Bayesian Network (BN) model is constructed from RBD to assess availability. The cost estimation was proposed and reliability cost index RI was suggested.

  16. Study on Optimization of I and C Architecture for Research Reactors Using Bayesian Networks

    International Nuclear Information System (INIS)

    Rahman, Khaili Ur; Shin, Jinsoo; Heo, Gyunyoung

    2013-01-01

    The optimization in terms of redundancy of modules and components in Instrumentation and Control (I and C) architecture is based on cost and availability assuming regulatory requirements are satisfied. The motive of this study is to find an optimized I and C architecture, either in hybrid formation, fully digital or analog, with respect to system availability and relative cost of architecture. The cost of research reactors I and C systems is prone to have effect on marketing competitiveness. As a demonstrative example, the reactor protection system of research reactors is selected. The four cases with different architecture formation were developed with single and double redundancy of bi-stable modules, coincidence processor module, and safety or protection circuit actuation logic. The architecture configurations are transformed to reliability block diagram (RBD) based on logical operation and function of modules. A Bayesian Network (BN) model is constructed from RBD to assess availability. The cost estimation was proposed and reliability cost index RI was suggested

  17. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    Directory of Open Access Journals (Sweden)

    Florin Moldoveanu

    2010-11-01

    Full Text Available In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be constructed by combining these functional modules for a specific application. An embedded software with dynamic task uploading and multi-tasking abilities is developed in order to create better interface between robots and the command center and among the robots. The dynamic task uploading allows the robots change their behaviors in runtime. The flexibility of the robots is given by facts that the robots can work in multiagent system, as master-slave, or hybrid mode, can be equipped with different modules and possibly be used in other applications such as mobile sensor networks remote sensing, and plant monitoring.

  18. Architectures of electro-optical packet switched networks

    DEFF Research Database (Denmark)

    Berger, Michael Stubert

    2004-01-01

    and examines possible architectures for future high capacity networks with high capacity nodes. It is assumed that optics will play a key role in this scenario, and in this respect, the European IST research project DAVID aimed at proposing viable architectures for optical packet switching, exploiting the best...... from optics and electronics. An overview of the DAVID network architecture is given, focusing on the MAN and WAN architecture as well as the MPLS based network hierarchy. A statistical model of the optical slot generation process is presented and utilised to evaluate delay vs. efficiency. Furthermore...... architecture for a buffered crossbar switch is presented. The architecture uses two levels of backpressure (flow control) with different constraints on round trip time. No additional scheduling complexity is introduced, and for the actual example shown, a reduction in memory of 75% was obtained at the cost...

  19. Hybrid power system intelligent operation and protection involving distributed architectures and pulsed loads

    Science.gov (United States)

    Mohamed, Ahmed

    Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available

  20. Hybrid stochastic simplifications for multiscale gene networks

    Directory of Open Access Journals (Sweden)

    Debussche Arnaud

    2009-09-01

    Full Text Available Abstract Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion 123 which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  1. Advances in network systems architectures, security, and applications

    CERN Document Server

    Awad, Ali; Furtak, Janusz; Legierski, Jarosław

    2017-01-01

    This book provides the reader with a comprehensive selection of cutting–edge algorithms, technologies, and applications. The volume offers new insights into a range of fundamentally important topics in network architectures, network security, and network applications. It serves as a reference for researchers and practitioners by featuring research contributions exemplifying research done in the field of network systems. In addition, the book highlights several key topics in both theoretical and practical aspects of networking. These include wireless sensor networks, performance of TCP connections in mobile networks, photonic data transport networks, security policies, credentials management, data encryption for network transmission, risk management, live TV services, and multicore energy harvesting in distributed systems. .

  2. HoCaMA: Home Care Hybrid Multiagent Architecture

    Science.gov (United States)

    Fraile, Juan A.; Bajo, Javier; Abraham, Ajith; Corchado, Juan M.

    Home Care is one of the main objectives of Ambient Intelligence. Nowadays, the disabled and elderly population, which represents a significant part of our society, requires novel solutions for providing home care in an effective way. In this chapter, we present HoCaMA, a hybrid multiagent architecture that facilitates remote monitoring and care services for disabled patients at their homes. HoCaMA combines multiagent systems and Web services to facilitate the communication and integration with multiple health care systems. In addition, HoCaMA focuses on the design of reactive agents capable of interacting with different sensors present in the environment, and incorporates a system of alerts through SMS and MMS mobile technologies. Finally, it uses Radio Frequency IDentification and JavaCard technologies to provide advanced location and identification systems, as well as automatic access control facilities. HoCaMA has been implemented in a real environment and the results obtained are presented within this chapter.

  3. A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment

    Directory of Open Access Journals (Sweden)

    Alborz Geramifard

    2008-11-01

    Full Text Available This paper presents a new architecture called FAIS for imple- menting intelligent agents cooperating in a special Multi Agent environ- ment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.

  4. A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment

    Directory of Open Access Journals (Sweden)

    Alborz Geramifard

    2005-06-01

    Full Text Available This paper presents a new architecture called FAIS for implementing intelligent agents cooperating in a special Multi Agent environment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.

  5. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    Science.gov (United States)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  6. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  7. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2017-12-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  8. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2018-06-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  9. A hybrid method for evaluating enterprise architecture implementation.

    Science.gov (United States)

    Nikpay, Fatemeh; Ahmad, Rodina; Yin Kia, Chiam

    2017-02-01

    Enterprise Architecture (EA) implementation evaluation provides a set of methods and practices for evaluating the EA implementation artefacts within an EA implementation project. There are insufficient practices in existing EA evaluation models in terms of considering all EA functions and processes, using structured methods in developing EA implementation, employing matured practices, and using appropriate metrics to achieve proper evaluation. The aim of this research is to develop a hybrid evaluation method that supports achieving the objectives of EA implementation. To attain this aim, the first step is to identify EA implementation evaluation practices. To this end, a Systematic Literature Review (SLR) was conducted. Second, the proposed hybrid method was developed based on the foundation and information extracted from the SLR, semi-structured interviews with EA practitioners, program theory evaluation and Information Systems (ISs) evaluation. Finally, the proposed method was validated by means of a case study and expert reviews. This research provides a suitable foundation for researchers who wish to extend and continue this research topic with further analysis and exploration, and for practitioners who would like to employ an effective and lightweight evaluation method for EA projects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Scaling architecture-on-demand based optical networks

    NARCIS (Netherlands)

    Meyer, Hugo; Sancho, Jose Carlos; Mrdakovic, Milica; Peng, Shuping; Simeonidou, Dimitra; Miao, Wang; Calabretta, Nicola

    2016-01-01

    This paper analyzes methodologies that allow scaling properly Architecture-On-Demand (AoD) based optical networks. As Data Centers and HPC systems are growing in size and complexity, optical networks seem to be the way to scale the bandwidth of current network infrastructures. To scale the number of

  11. Security Aspects of an Enterprise-Wide Network Architecture.

    Science.gov (United States)

    Loew, Robert; Stengel, Ingo; Bleimann, Udo; McDonald, Aidan

    1999-01-01

    Presents an overview of two projects that concern local area networks and the common point between networks as they relate to network security. Discusses security architectures based on firewall components, packet filters, application gateways, security-management components, an intranet solution, user registration by Web form, and requests for…

  12. Hybrid discrete-time neural networks.

    Science.gov (United States)

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  13. The Hi-Ring architecture for datacentre networks

    DEFF Research Database (Denmark)

    Galili, Michael; Kamchevska, Valerija; Ding, Yunhong

    2016-01-01

    This paper summarizes recent work on a hierarchical ring-based network architecture (Hi-Ring) for datacentre and short-range applications. The architecture allows leveraging benefits of optical switching technologies while maintaining a high level of connection granularity. We discuss results...

  14. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  15. A network architecture supporting consistent rich behavior in collaborative interactive applications.

    Science.gov (United States)

    Marsh, James; Glencross, Mashhuda; Pettifer, Steve; Hubbold, Roger

    2006-01-01

    Network architectures for collaborative virtual reality have traditionally been dominated by client-server and peer-to-peer approaches, with peer-to-peer strategies typically being favored where minimizing latency is a priority, and client-server where consistency is key. With increasingly sophisticated behavior models and the demand for better support for haptics, we argue that neither approach provides sufficient support for these scenarios and, thus, a hybrid architecture is required. We discuss the relative performance of different distribution strategies in the face of real network conditions and illustrate the problems they face. Finally, we present an architecture that successfully meets many of these challenges and demonstrate its use in a distributed virtual prototyping application which supports simultaneous collaboration for assembly, maintenance, and training applications utilizing haptics.

  16. A Reference Architecture for Network-Centric Information Systems

    National Research Council Canada - National Science Library

    Renner, Scott; Schaefer, Ronald

    2003-01-01

    This paper presents the "C2 Enterprise Reference Architecture" (C2ERA), which is a new technical concept of operations for building information systems better suited to the Network-Centric Warfare (NCW) environment...

  17. Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm

    International Nuclear Information System (INIS)

    Xiao, Liye; Qian, Feng; Shao, Wei

    2017-01-01

    Highlights: • Propose a hybrid architecture based on a modified bat algorithm for multi-step wind speed forecasting. • Improve the accuracy of multi-step wind speed forecasting. • Modify bat algorithm with CG to improve optimized performance. - Abstract: As one of the most promising sustainable energy sources, wind energy plays an important role in energy development because of its cleanliness without causing pollution. Generally, wind speed forecasting, which has an essential influence on wind power systems, is regarded as a challenging task. Analyses based on single-step wind speed forecasting have been widely used, but their results are insufficient in ensuring the reliability and controllability of wind power systems. In this paper, a new forecasting architecture based on decomposing algorithms and modified neural networks is successfully developed for multi-step wind speed forecasting. Four different hybrid models are contained in this architecture, and to further improve the forecasting performance, a modified bat algorithm (BA) with the conjugate gradient (CG) method is developed to optimize the initial weights between layers and thresholds of the hidden layer of neural networks. To investigate the forecasting abilities of the four models, the wind speed data collected from four different wind power stations in Penglai, China, were used as a case study. The numerical experiments showed that the hybrid model including the singular spectrum analysis and general regression neural network with CG-BA (SSA-CG-BA-GRNN) achieved the most accurate forecasting results in one-step to three-step wind speed forecasting.

  18. Design of Network Architectures: Role of Game Theory and Economics

    OpenAIRE

    Shetty, Nikhil

    2010-01-01

    The economics of the market that a network architecture enables has a important bearing on its success and eventual adoption. Some of these economic issues are tightly coupled with the design of the network architecture. A poor design could end up making certain markets very difficult to enable, even if they are in the better interest of society. Theanalysis of these cross-disciplinary problems requires understanding both the technology and the economic aspects. This thesis introduces three m...

  19. Hybrid Mobile Communication Networks for Planetary Exploration

    Science.gov (United States)

    Alena, Richard; Lee, Charles; Walker, Edward; Osenfort, John; Stone, Thom

    2007-01-01

    A paper discusses the continuing work of the Mobile Exploration System Project, which has been performing studies toward the design of hybrid communication networks for future exploratory missions to remote planets. A typical network could include stationary radio transceivers on a remote planet, mobile radio transceivers carried by humans and robots on the planet, terrestrial units connected via the Internet to an interplanetary communication system, and radio relay transceivers aboard spacecraft in orbit about the planet. Prior studies have included tests on prototypes of these networks deployed in Arctic and desert regions chosen to approximate environmental conditions on Mars. Starting from the findings of the prior studies, the paper discusses methods of analysis, design, and testing of the hybrid communication networks. It identifies key radio-frequency (RF) and network engineering issues. Notable among these issues is the study of wireless LAN throughput loss due to repeater use, RF signal strength, and network latency variations. Another major issue is that of using RF-link analysis to ensure adequate link margin in the face of statistical variations in signal strengths.

  20. Modelling dependable systems using hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter

    2008-01-01

    A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems

  1. Analysis of Network Parameters Influencing Performance of Hybrid Multimedia Networks

    Directory of Open Access Journals (Sweden)

    Dominik Kovac

    2013-10-01

    Full Text Available Multimedia networks is an emerging subject that currently attracts the attention of research and industrial communities. This environment provides new entertainment services and business opportunities merged with all well-known network services like VoIP calls or file transfers. Such a heterogeneous system has to be able satisfy all network and end-user requirements which are increasing constantly. Therefore the simulation tools enabling deep analysis in order to find the key performance indicators and factors which influence the overall quality for specific network service the most are highly needed. This paper provides a study on the network parameters like communication technology, routing protocol, QoS mechanism, etc. and their effect on the performance of hybrid multimedia network. The analysis was performed in OPNET Modeler environment and the most interesting results are discussed at the end of this paper

  2. Comparing the Complexity of Two Network Architectures

    Directory of Open Access Journals (Sweden)

    Olivier Z. Zheng

    2017-10-01

    Full Text Available A Service Provider has different methods to provide a VPN service to its customers. But which method is the least complex to implement? In this paper, two architectures are described and analysed. Based on the analyses, two methods of complexity calculation are designed to evaluate the complexity of the architecture: the first method evaluates the resources consumed, the second evaluates the number of cases possible.

  3. Virtualized cognitive network architecture for 5G cellular networks

    KAUST Repository

    Elsawy, Hesham; Dahrouj, Hayssam; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    , tactile Internet, online gaming, multimedia). Such an ossified architecture imposes several hurdles against achieving the ambitious metrics of next generation cellular systems. This article first highlights the features and drawbacks of such architectural

  4. A security architecture for 5G networks

    OpenAIRE

    Arfaoui, Ghada; Bisson, Pascal; Blom, Rolf; Borgaonkar, Ravishankar; Englund, Håkan; Félix, Edith; Klaedtke, Felix; Nakarmi, Prajwol Kumar; Näslund, Mats; O’Hanlon, Piers; Papay, Juri; Suomalainen, Jani; Surridge, Mike; Wary, Jean-Philippe; Zahariev, Alexander

    2018-01-01

    5G networks will provide opportunities for the creation of new services, for new business models, and for new players to enter the mobile market. The networks will support efficient and cost-effective launch of a multitude of services, tailored for different vertical markets having varying service and security requirements, and involving a large number of actors. Key technology concepts are network slicing and network softwarisation, including network function virtualisation and software-defi...

  5. Novel WRM-based architecture of hybrid PON featuring online access and full-fiber-fault protection for smart grid

    Science.gov (United States)

    Li, Xingfeng; Gan, Chaoqin; Liu, Zongkang; Yan, Yuqi; Qiao, HuBao

    2018-01-01

    In this paper, a novel architecture of hybrid PON for smart grid is proposed by introducing a wavelength-routing module (WRM). By using conventional optical passive components, a WRM with M ports is designed. The symmetry and passivity of the WRM makes it be easily integrated and very cheap in practice. Via the WRM, two types of network based on different ONU-interconnected manner can realize online access. Depending on optical switches and interconnecting fibers, full-fiber-fault protection and dynamic bandwidth allocation are realized in these networks. With the help of amplitude modulation, DPSK modulation and RSOA technology, wavelength triple-reuse is achieved. By means of injecting signals into left and right branches in access ring simultaneously, the transmission delay is decreased. Finally, the performance analysis and simulation of the network verifies the feasibility of the proposed architecture.

  6. MSAT and cellular hybrid networking

    Science.gov (United States)

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  7. CSP: A Multifaceted Hybrid Architecture for Space Computing

    Science.gov (United States)

    Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron

    2014-01-01

    Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.

  8. Area analysis of interconnection networks implemented on the honeycomb architecture

    Energy Technology Data Exchange (ETDEWEB)

    Milutinovic, D

    1996-12-31

    The are utilization of interconnection networks for parallel processing on one form of uniform parallel architecture of cellular type is analyzed. Formulae for the number of cells necessity to realize a networks and the efficiency factor of the system are derived. 15 refs.

  9. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  10. Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  11. DAPNA: an architectural framework for data processing networks

    NARCIS (Netherlands)

    Sözer, Hasan; Nouta, Sander; Wombacher, Andreas; Perona, Paolo

    2013-01-01

    A data processing network is as a set of (software) components connected through communication channels to apply a series of operations on data. Realization and maintenance of large-scale data processing networks necessitate an architectural approach that supports analysis, verification,

  12. Designing network on-chip architectures in the nanoscale era

    CERN Document Server

    Flich, Jose

    2010-01-01

    Going beyond isolated research ideas and design experiences, Designing Network On-Chip Architectures in the Nanoscale Era covers the foundations and design methods of network on-chip (NoC) technology. The contributors draw on their own lessons learned to provide strong practical guidance on various design issues.Exploring the design process of the network, the first part of the book focuses on basic aspects of switch architecture and design, topology selection, and routing implementation. In the second part, contributors discuss their experiences in the industry, offering a roadmap to recent p

  13. Lightning talk slide for "SLACKHA: Software Library for Accelerating Chemical Kinetics on Hybrid Architectures"

    OpenAIRE

    Niemeyer, Kyle; Sung, Chih-Jen

    2018-01-01

    Lightning talk slide describing the "SLACKHA: Software Library for Accelerating Chemical Kinetics on Hybrid Architectures" project at the 2018 NSF SI2 PI meeting: https://si2-pi-community.github.io/2018-meeting/

  14. Hybrid VLSI/QCA Architecture for Computing FFTs

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarres, Katayoon; Spotnitz, Matthew

    2003-01-01

    A data-processor architecture that would incorporate elements of both conventional very-large-scale integrated (VLSI) circuitry and quantum-dot cellular automata (QCA) has been proposed to enable the highly parallel and systolic computation of fast Fourier transforms (FFTs). The proposed circuit would complement the QCA-based circuits described in several prior NASA Tech Briefs articles, namely Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), Vol. 25, No. 10 (October 2001), page 42; Compact Interconnection Networks Based on Quantum Dots (NPO-20855) Vol. 27, No. 1 (January 2003), page 32; and Bit-Serial Adder Based on Quantum Dots (NPO-20869), Vol. 27, No. 1 (January 2003), page 35. The cited prior articles described the limitations of very-large-scale integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCAbased signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes.

  15. THE ARCHITECTURE OF MULTI-COMPONENT DISTRIBUTED HYBRID EXPERT TRAINING SYSTEM

    Directory of Open Access Journals (Sweden)

    Оleh Shevchuk

    2016-09-01

    Full Text Available The paper reports on the design of a multi-component architecture of distributed hybrid expert training system that can be used for the study of knowledge base of both internal and external expert systems and artificial intelligence systems that are distributed on Internet servers and other computer networks. Expert training system is based on three groups of basic principles: cybernetic, reflecting experience of previous research of systems of artificial intelligence, expert training systems; pedagogical, determining the principles, on which pedagogical design and use of expert training systems are based; psychological, determining preconditious and understanding of pupils psychics, on which the processes of design and use of expert training systems in professional training of future specialists are based.It accounts for the efficient training through the distributed knowledge via the Internet, which greatly increases the didactic capabilities of the system.

  16. Interconnection network architectures based on integrated orbital angular momentum emitters

    Science.gov (United States)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  17. Optimum Neural Network Architecture for Precipitation Prediction of Myanmar

    OpenAIRE

    Khaing Win Mar; Thinn Thu Naing

    2008-01-01

    Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a s...

  18. Emulation of Neural Networks on a Nanoscale Architecture

    International Nuclear Information System (INIS)

    Eshaghian-Wilner, Mary M; Friesz, Aaron; Khitun, Alex; Navab, Shiva; Parker, Alice C; Wang, Kang L; Zhou, Chongwu

    2007-01-01

    In this paper, we propose using a nanoscale spin-wave-based architecture for implementing neural networks. We show that this architecture can efficiently realize highly interconnected neural network models such as the Hopfield model. In our proposed architecture, no point-to-point interconnection is required, so unlike standard VLSI design, no fan-in/fan-out constraint limits the interconnectivity. Using spin-waves, each neuron could broadcast to all other neurons simultaneously and similarly a neuron could concurrently receive and process multiple data. Therefore in this architecture, the total weighted sum to each neuron can be computed by the sum of the values from all the incoming waves to that neuron. In addition, using the superposition property of waves, this computation can be done in O(1) time, and neurons can update their states quite rapidly

  19. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Raddo, Thiago R.; Garrido-Balsells, José María

    2016-01-01

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network...... is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating...... can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber...

  20. Learning, memory, and the role of neural network architecture.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2011-06-01

    Full Text Available The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.

  1. Security Policy for a Generic Space Exploration Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  2. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring.

    Science.gov (United States)

    von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert

    2017-06-01

    For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).

  3. The hybrid thermography approach applied to architectural structures

    Science.gov (United States)

    Sfarra, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; Pasqualoni, G.

    2017-07-01

    This work contains an overview of infrared thermography (IRT) method and its applications relating to the investigation of architectural structures. In this method, the passive approach is usually used in civil engineering, since it provides a panoramic view of the thermal anomalies to be interpreted also thanks to the use of photographs focused on the region of interest (ROI). The active approach, is more suitable for laboratory or indoor inspections, as well as for objects having a small size. The external stress to be applied is thermal, coming from non-natural apparatus such as lamps or hot / cold air jets. In addition, the latter permits to obtain quantitative information related to defects not detectable to the naked eyes. Very recently, the hybrid thermography (HIRT) approach has been introduced to the attention of the scientific panorama. It can be applied when the radiation coming from the sun, directly arrives (i.e., possibly without the shadow cast effect) on a surface exposed to the air. A large number of thermograms must be collected and a post-processing analysis is subsequently applied via advanced algorithms. Therefore, an appraisal of the defect depth can be obtained passing through the calculation of the combined thermal diffusivity of the materials above the defect. The approach is validated herein by working, in a first stage, on a mosaic sample having known defects while, in a second stage, on a Church built in L'Aquila (Italy) and covered with a particular masonry structure called apparecchio aquilano. The results obtained appear promising.

  4. Architectural transformations in network services and distributed systems

    CERN Document Server

    Luntovskyy, Andriy

    2017-01-01

    With the given work we decided to help not only the readers but ourselves, as the professionals who actively involved in the networking branch, with understanding the trends that have developed in recent two decades in distributed systems and networks. Important architecture transformations of distributed systems have been examined. The examples of new architectural solutions are discussed. Content Periodization of service development Energy efficiency Architectural transformations in Distributed Systems Clustering and Parallel Computing, performance models Cloud Computing, RAICs, Virtualization, SDN Smart Grid, Internet of Things, Fog Computing Mobile Communication from LTE to 5G, DIDO, SAT-based systems Data Security Guaranteeing Distributed Systems Target Groups Students in EE and IT of universities and (dual) technical high schools Graduated engineers as well as teaching staff About the Authors Andriy Luntovskyy provides classes on networks, mobile communication, software technology, distributed systems, ...

  5. Modified-hybrid optical neural network filter for multiple object recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.

    2009-08-01

    Motivated by the non-linear interpolation and generalization abilities of the hybrid optical neural network filter between the reference and non-reference images of the true-class object we designed the modifiedhybrid optical neural network filter. We applied an optical mask to the hybrid optical neural network's filter input. The mask was built with the constant weight connections of a randomly chosen image included in the training set. The resulted design of the modified-hybrid optical neural network filter is optimized for performing best in cluttered scenes of the true-class object. Due to the shift invariance properties inherited by its correlator unit the filter can accommodate multiple objects of the same class to be detected within an input cluttered image. Additionally, the architecture of the neural network unit of the general hybrid optical neural network filter allows the recognition of multiple objects of different classes within the input cluttered image by modifying the output layer of the unit. We test the modified-hybrid optical neural network filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. The filter is shown to exhibit with a single pass over the input data simultaneously out-of-plane rotation, shift invariance and good clutter tolerance. It is able to successfully detect and classify correctly the true-class objects within background clutter for which there has been no previous training.

  6. Power, Avionics and Software Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  7. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  8. ExScal Backbone Network Architecture

    Science.gov (United States)

    2005-01-01

    802.11 battery powered nodes was laid over the sensor network. We adopted the Stargate platform for the backbone tier to serve as the basis for...its head. XSS Hardware and Network: XSS stands for eXtreme Scaling Stargate . A stargate is a linux-based single board computer. It has a 400 MHz

  9. Design Guidelines for New Generation Network Architecture

    Science.gov (United States)

    Harai, Hiroaki; Fujikawa, Kenji; Kafle, Ved P.; Miyazawa, Takaya; Murata, Masayuki; Ohnishi, Masaaki; Ohta, Masataka; Umezawa, Takeshi

    Limitations are found in the recent Internet because a lot of functions and protocols are patched to the original suite of layered protocols without considering global optimization. This reveals that end-to-end argument in the original Internet was neither sufficient for the current societal network and nor for a sustainable network of the future. In this position paper, we present design guidelines for a future network, which we call the New Generation Network, which provides the inclusion of diverse human requirements, reliable connection between the real-world and virtual network space, and promotion of social potentiality for human emergence. The guidelines consist of the crystal synthesis, the reality connection, and the sustainable & evolutional guidelines.

  10. Robust quantum network architectures and topologies for entanglement distribution

    Science.gov (United States)

    Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.

    2018-01-01

    Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.

  11. Public Safety Broadband Network Architecture Description

    Science.gov (United States)

    2013-08-01

    could be used to add an in-app purchase to the user’s mobile phone bill. Major operators , such as AT& T , Deutsche Telekom, Orange, Telefonica and...3GPP technologies such as CDMA2000 and WiMAX networks. MME Mobility Managemen t Entity The MME is the key control-node for the LTE access-network... operator ( operator -managed small cells, etc.) or provides sufficient security (authentication, encryption, etc.). See Figure D3. Figure D3: ITU- T

  12. Greening radio access networks using distributed base station architectures

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Soler, José; Dittmann, Lars

    2010-01-01

    Several actions for developing environmentally friendly technologies have been taken in most industrial fields. Significant resources have also been devoted in mobile communications industry. Moving towards eco-friendly alternatives is primarily a social responsibility for network operators....... However besides this, increasing energy efficiency represents a key factor for reducing operating expenses and deploying cost effective mobile networks. This paper presents how distributed base station architectures can contribute in greening radio access networks. More specifically, the advantages...... energy saving. Different subsystems have to be coordinated real-time and intelligent network nodes supporting complicated functionalities are necessary. Distributed base station architectures are ideal for this purpose mainly because of their high degree of configurability and self...

  13. Genetic optimization of neural network architecture

    International Nuclear Information System (INIS)

    Harp, S.A.; Samad, T.

    1994-03-01

    Neural networks are now a popular technology for a broad variety of application domains, including the electric utility industry. Yet, as the technology continues to gain increasing acceptance, it is also increasingly apparent that the power that neural networks provide is not an unconditional blessing. Considerable care must be exercised during application development if the full benefit of the technology is to be realized. At present, no fully general theory or methodology for neural network design is available, and application development is a trial-and-error process that is time-consuming and expertise-intensive. Each application demands appropriate selections of the network input space, the network structure, and values of learning algorithm parameters-design choices that are closely coupled in ways that largely remain a mystery. This EPRI-funded exploratory research project was initiated to take the key next step in this research program: the validation of the approach on a realistic problem. We focused on the problem of modeling the thermal performance of the TVA Sequoyah nuclear power plant (units 1 and 2)

  14. SYS6: Tenet: An Architecture for Tiered Embedded Networks

    OpenAIRE

    Krishna Chintalapudi; Deborah Estrin; Om Gnawali; Ramesh Govindan; Eddie Kohler; Jeong Paek; Sumit Rangwala; Thanos Sthathopoulos

    2005-01-01

    Over the last five years, sensor network research has seen significant advances in the development of hardware devices and platforms, and in the design of services and infrastructural elements such as routing, localization, and time synchronization. Deployed systems, however, have lagged behind. In this poster, we will describe an alternative architecture, called Tenet, for sensor networks that constrains placement of application-specific functionality on relatively unconstrained nodes. We w...

  15. Filtering in Hybrid Dynamic Bayesian Networks

    Science.gov (United States)

    Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin

    2000-01-01

    We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).

  16. Internet of Things Heterogeneous Interoperable Network Architecture Design

    DEFF Research Database (Denmark)

    Bhalerao, Dipashree M.

    2014-01-01

    Internet of Thing‘s (IoT) state of the art deduce that there is no mature Internet of Things architecture available. Thesis contributes an abstract generic IoT system reference architecture development with specifications. Novelties of thesis are proposed solutions and implementations....... It is proved that reduction of data at a source will result in huge vertical scalability and indirectly horizontal also. Second non functional feature contributes in heterogeneous interoperable network architecture for constrained Things. To eliminate increasing number of gateways, Wi-Fi access point...... with Bluetooth, Zigbee (new access point is called as BZ-Fi) is proposed. Co-existence of Wi-Fi, Bluetooth, and Zigbee network technologies results in interference. To reduce the interference, orthogonal frequency division multiplexing (OFDM) is proposed tobe implemented in Bluetooth and Zigbee. The proposed...

  17. Reconfigurable radio systems network architectures and standards

    CERN Document Server

    Iacobucci, Maria Stella

    2013-01-01

    This timely book provides a standards-based view of the development, evolution, techniques and potential future scenarios for the deployment of reconfigurable radio systems.  After an introduction to radiomobile and radio systems deployed in the access network, the book describes cognitive radio concepts and capabilities, which are the basis for reconfigurable radio systems.  The self-organizing network features introduced in 3GPP standards are discussed and IEEE 802.22, the first standard based on cognitive radio, is described. Then the ETSI reconfigurable radio systems functional ar

  18. Agent-based Personal Network (PN) service architecture

    DEFF Research Database (Denmark)

    Jiang, Bo; Olesen, Henning

    2004-01-01

    In this paper we proposte a new concept for a centralized agent system as the solution for the PN service architecture, which aims to efficiently control and manage the PN resources and enable the PN based services to run seamlessly over different networks and devices. The working principle...

  19. Time analysis of interconnection network implemented on the honeycomb architecture

    Energy Technology Data Exchange (ETDEWEB)

    Milutinovic, D [Inst. Michael Pupin, Belgrade (Yugoslavia)

    1996-12-31

    Problems of time domains analysis of the mapping of interconnection networks for parallel processing on one form of uniform massively parallel architecture of the cellular type are considered. The results of time analysis are discussed. It is found that changing the technology results in changing the mapping rules. 17 refs.

  20. Digital column readout architectures for hybrid pixel detector readout chips

    International Nuclear Information System (INIS)

    Poikela, T; Plosila, J; Westerlund, T; Buytaert, J; Campbell, M; Gaspari, M De; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; Beuzekom, M van; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 μm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures

  1. The development of brain network architecture

    NARCIS (Netherlands)

    Wierenga, Lara M.; van den Heuvel, Martijn P.; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A.; Durston, Sarah

    2016-01-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes

  2. A Security Architecture for Personal Networks

    NARCIS (Netherlands)

    Jehangir, A.

    2009-01-01

    The proliferation of personal mobile computing devices such as laptops and mo- bile phones, as well as wearable computing devices such as belt computers, digital bracelets and bio-medical sensors has created an opportunity to create a wireless network to share information and resources amongst

  3. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  4. Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2016-03-01

    Full Text Available Nowadays, with large-scale offshore wind power farms (WPFs becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA systems using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT, placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs.

  5. Design and optimizing factors of PACS network architecture

    International Nuclear Information System (INIS)

    Tao Yonghao; Miao Jingtao

    2001-01-01

    Objective: Exploring the design and optimizing factors of picture archiving and communication system (PACS) network architecture. Methods: Based on the PACS of shanghai first hospital to performed the measurements and tests on the requirements of network bandwidth and transmitting rate for different PACS functions and procedures respectively in static and dynamic network traffic situation, utilizing the network monitoring tools which built-in workstations and provided by Windows NT. Results: No obvious difference between switch equipment and HUB when measurements and tests implemented in static situation except route which slow down the rate markedly. In dynamic environment Switch is able to provide higher bandwidth utilizing than HUB and local system scope communication achieved faster transmitting rate than global system. Conclusion: The primary optimizing factors of PACS network architecture design include concise network topology and disassemble tremendous global traffic to multiple distributed local scope network communication to reduce the traffic of network backbone. The most important issue is guarantee essential bandwidth for diagnosis procedure of medical imaging

  6. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  7. Building and measuring a high performance network architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  8. Developing cyber security architecture for military networks using cognitive networking

    OpenAIRE

    Kärkkäinen, Anssi

    2015-01-01

    In recent years, the importance of cyber security has increased. Cyber security has not become a critical issue only for governmental or business actors, but also for armed forces that nowadays rely on national or even global networks in their daily activities. The Network Centric Warfare (NCW) paradigm has increased the significance of networking during last decades as it enables information superiority in which military combat power increased by networking the battlefield actors from perspe...

  9. System architecture for ubiquitous live video streaming in university network environment

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-09-01

    Full Text Available an architecture which supports ubiquitous live streaming for university or campus networks using a modified bluetooth inquiry mechanism with extended ID, integrated end-user device usage and adaptation to heterogeneous networks. Riding on that architecture...

  10. Development of the network architecture of the Canadian MSAT system

    Science.gov (United States)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-05-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  11. Network architecture test-beds as platforms for ubiquitous computing.

    Science.gov (United States)

    Roscoe, Timothy

    2008-10-28

    Distributed systems research, and in particular ubiquitous computing, has traditionally assumed the Internet as a basic underlying communications substrate. Recently, however, the networking research community has come to question the fundamental design or 'architecture' of the Internet. This has been led by two observations: first, that the Internet as it stands is now almost impossible to evolve to support new functionality; and second, that modern applications of all kinds now use the Internet rather differently, and frequently implement their own 'overlay' networks above it to work around its perceived deficiencies. In this paper, I discuss recent academic projects to allow disruptive change to the Internet architecture, and also outline a radically different view of networking for ubiquitous computing that such proposals might facilitate.

  12. Network Architecture: lessons from the past, vision for the future

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Architectural Principles of the Internet have dominated the past decade. Orthogonal to the telecommunications industry principles, they dramatically changed the networking landscape because they relied on iconoclastic ideas. First, the Internet end-to-end principle, which stipulates that the network should intervene minimally on the end-to-end traffic, pushing the complexity to the end-systems. Second, the ban of centralized functions: all the Internet techniques (routing, DNS, management) are based on distributed, decentralized mechanisms. Third, the absolute domination of connectionless (stateless) protocols (as with IP, HTTTP). However, when facing new requirements: multimedia traffic, security, Grid applications, these principles appear sometimes as architectural barriers. Multimedia requires QoS guarantees, but stateless systems are not good at QoS. Security requires active, intelligent networks, but dumb routers or plain end-to-end mail systems are insufficient. Grid applications require...

  13. Nexus network journal patterns in architecture

    CERN Document Server

    2007-01-01

    This issue is dedicated to various kinds of patterns in architecture. Buthayna Eilouti and Amer Al-Jokhadar address patterns in shape grammars in the ground plans of Mamluk madrasas, religious schools. Giulio Magli goes back further in history, to the age of Greek colonies in Italy before they were conquered by the Romans, to examine patterns in urban design. In Traditional Patterns in Pyrgi of Chios: Mathematics and Community Charoula Stathopoulou examines the geometric patterns that decorate the buildings of the town of Pyrgi, on the Greek island of Chios. Curve Fitting is a study of ways to construct a function so that its graph most closely approximates the pattern given by a set of points. Dirk Huylebrouck’s paper examines how a pattern of points extracted from an arch might be associated to a precise mathematical curve. James Harris looks at the designs of Frank Lloyd Wright and Piet Mondrian to extract the rules of their pattern generation and propose possible applications.

  14. Genetic architecture of male sterility and segregation distortion in Drosophila pseudoobscura Bogota-USA hybrids.

    Science.gov (United States)

    Phadnis, Nitin

    2011-11-01

    Understanding the genetic basis of reproductive isolation between recently diverged species is a central problem in evolutionary genetics. Here, I present analyses of the genetic architecture underlying hybrid male sterility and segregation distortion between the Bogota and USA subspecies of Drosophila pseudoobscura. Previously, a single gene, Overdrive (Ovd), was shown to be necessary but not sufficient for both male sterility and segregation distortion in F(1) hybrids between these subspecies, requiring several interacting partner loci for full manifestation of hybrid phenomena. I map these partner loci separately on the Bogota X chromosome and USA autosomes using a combination of different mapping strategies. I find that hybrid sterility involves a single hybrid incompatibility of at least seven interacting partner genes that includes three large-effect loci. Segregation distortion involves three loci on the Bogota X chromosome and one locus on the autosomes. The genetic bases of hybrid sterility and segregation distortion are at least partially--but not completely--overlapping. My results lay the foundation for fine-mapping experiments to identify the complete set of genes that interact with Overdrive. While individual genes that cause hybrid sterility or inviability have been identified in a few cases, my analysis provides a comprehensive look at the genetic architecture of all components of a hybrid incompatibility underlying F(1) hybrid sterility. Such an analysis would likely be unfeasible for most species pairs due to their divergence time and emphasizes the importance of young species pairs such as the D. pseudoobscura subspecies studied here.

  15. Genetic Architecture of Male Sterility and Segregation Distortion in Drosophila pseudoobscura Bogota–USA Hybrids

    Science.gov (United States)

    Phadnis, Nitin

    2011-01-01

    Understanding the genetic basis of reproductive isolation between recently diverged species is a central problem in evolutionary genetics. Here, I present analyses of the genetic architecture underlying hybrid male sterility and segregation distortion between the Bogota and USA subspecies of Drosophila pseudoobscura. Previously, a single gene, Overdrive (Ovd), was shown to be necessary but not sufficient for both male sterility and segregation distortion in F1 hybrids between these subspecies, requiring several interacting partner loci for full manifestation of hybrid phenomena. I map these partner loci separately on the Bogota X chromosome and USA autosomes using a combination of different mapping strategies. I find that hybrid sterility involves a single hybrid incompatibility of at least seven interacting partner genes that includes three large-effect loci. Segregation distortion involves three loci on the Bogota X chromosome and one locus on the autosomes. The genetic bases of hybrid sterility and segregation distortion are at least partially—but not completely—overlapping. My results lay the foundation for fine-mapping experiments to identify the complete set of genes that interact with Overdrive. While individual genes that cause hybrid sterility or inviability have been identified in a few cases, my analysis provides a comprehensive look at the genetic architecture of all components of a hybrid incompatibility underlying F1 hybrid sterility. Such an analysis would likely be unfeasible for most species pairs due to their divergence time and emphasizes the importance of young species pairs such as the D. pseudoobscura subspecies studied here. PMID:21900263

  16. A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs

    Directory of Open Access Journals (Sweden)

    Taner Cevik

    2013-01-01

    Full Text Available One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT which is the only competent authority, each optical network unit (ONU runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand.

  17. A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs

    Science.gov (United States)

    Cevik, Taner

    2013-01-01

    One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand. PMID:24194684

  18. Resting state networks' corticotopy: the dual intertwined rings architecture.

    Directory of Open Access Journals (Sweden)

    Salma Mesmoudi

    Full Text Available How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called "the dual intertwined rings architecture" that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or "corticotopy". Recent results suggest that the resting state networks (RSNs are organized into two large families: 1 a sensorimotor family that includes visual, somatic, and auditory areas and 2 a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1 the RSN functional roles by using a projection of the results on task based networks (TBNs as referenced in large databases of fMRI activation studies; and (2 relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring. The second ring integrates distant parietal, temporal and frontal regions (PTF ring through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This "dual intertwined architecture" suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi

  19. Network architecture in a converged optical + IP network

    Science.gov (United States)

    Wakim, Walid; Zottmann, Harald

    2012-01-01

    As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.

  20. The development of brain network architecture.

    Science.gov (United States)

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Model-based design of RNA hybridization networks implemented in living cells.

    Science.gov (United States)

    Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter; Daròs, José-Antonio; Jaramillo, Alfonso

    2017-09-19

    Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Hierarchical Communication Network Architectures for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2014-05-01

    Full Text Available Nowadays, large-scale wind power farms (WPFs bring new challenges for both electric systems and communication networks. Communication networks are an essential part of WPFs because they provide real-time control and monitoring of wind turbines from a remote location (local control center. However, different wind turbine applications have different requirements in terms of data volume, latency, bandwidth, QoS, etc. This paper proposes a hierarchical communication network architecture that consist of a turbine area network (TAN, farm area network (FAN, and control area network (CAN for offshore WPFs. The two types of offshore WPFs studied are small-scale WPFs close to the grid and medium-scale WPFs far from the grid. The wind turbines are modelled based on the logical nodes (LN concepts of the IEC 61400-25 standard. To keep pace with current developments in wind turbine technology, the network design takes into account the extension of the LNs for both the wind turbine foundation and meteorological measurements. The proposed hierarchical communication network is based on Switched Ethernet. Servers at the control center are used to store and process the data received from the WPF. The network architecture is modelled and evaluated via OPNET. We investigated the end-to-end (ETE delay for different WPF applications. The results are validated by comparing the amount of generated sensing data with that of received traffic at servers. The network performance is evaluated, analyzed and discussed in view of end-to-end (ETE delay for different link bandwidths.

  3. Architecture and dynamics of overlapped RNA regulatory networks.

    Science.gov (United States)

    Lapointe, Christopher P; Preston, Melanie A; Wilinski, Daniel; Saunders, Harriet A J; Campbell, Zachary T; Wickens, Marvin

    2017-11-01

    A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution. © 2017 Lapointe et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  4. Traffic sharing algorithms for hybrid mobile networks

    Science.gov (United States)

    Arcand, S.; Murthy, K. M. S.; Hafez, R.

    1995-01-01

    In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.

  5. Shifts in the architecture of the Nationwide Health Information Network.

    Science.gov (United States)

    Lenert, Leslie; Sundwall, David; Lenert, Michael Edward

    2012-01-01

    In the midst of a US $30 billion USD investment in the Nationwide Health Information Network (NwHIN) and electronic health records systems, a significant change in the architecture of the NwHIN is taking place. Prior to 2010, the focus of information exchange in the NwHIN was the Regional Health Information Organization (RHIO). Since 2010, the Office of the National Coordinator (ONC) has been sponsoring policies that promote an internet-like architecture that encourages point to-point information exchange and private health information exchange networks. The net effect of these activities is to undercut the limited business model for RHIOs, decreasing the likelihood of their success, while making the NwHIN dependent on nascent technologies for community level functions such as record locator services. These changes may impact the health of patients and communities. Independent, scientifically focused debate is needed on the wisdom of ONC's proposed changes in its strategy for the NwHIN.

  6. Overview of hybrid fiber-coaxial network deployment in the deregulated UK environment

    Science.gov (United States)

    Cox, Alan L.

    1995-11-01

    Cable operators in the U.K. enjoy unprecedented license to construct networks and operate cable TV and telecommunications services within their franchise areas. In general, operators have built hybrid-fiber-coax (HFC) networks for cable TV in parallel with fiber-copper-pair networks for telephony. The commonly used network architectures are reviewed, together with their present and future capacities. Despite this dual-technology approach, there is considerable interest in the integration of telephony services onto the HFC network and the development of new interactive services for which HFC may be more suitable than copper pairs. Certain technological and commercial developments may have considerable significance for HFC networks and their operators. These include the digitalization of TV distribution and the rising demand for high-rate digital access lines. Possible scenarios are discussed.

  7. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  8. Hybrid programming model for implicit PDE simulations on multicore architectures

    KAUST Repository

    Kaushik, Dinesh; Keyes, David E.; Balay, Satish; Smith, Barry F.

    2011-01-01

    The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.

  9. Cyber-Physical Architecture Assisted by Programmable Networking

    OpenAIRE

    Rubio-Hernan, Jose; Sahay, Rishikesh; De Cicco, Luca; Garcia-Alfaro, Joaquin

    2018-01-01

    Cyber-physical technologies are prone to attacks, in addition to faults and failures. The issue of protecting cyber-physical systems should be tackled by jointly addressing security at both cyber and physical domains, in order to promptly detect and mitigate cyber-physical threats. Towards this end, this letter proposes a new architecture combining control-theoretic solutions together with programmable networking techniques to jointly handle crucial threats to cyber-physical systems. The arch...

  10. Architecture, design and protection of electrical distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Sorrel, J.P. [Schneider electric Industries SA (France)

    2000-07-01

    Architectures related to AII Electric Ship (AES) require high level of propulsion power. Merchant ships and obviously warships require a low vulnerability, a high reliability and availability, a simple maintainability as well as an ordinary ode of operation. These constraints converge to an optimum single line diagram. We will focus on the mode of operation of the network, its constraints, the facilities to use a ring distribution for the ship service distribution system, the earthing of HV network as well as future developments. (author)

  11. Data center networks topologies, architectures and fault-tolerance characteristics

    CERN Document Server

    Liu, Yang; Veeraraghavan, Malathi; Lin, Dong; Hamdi, Mounir

    2013-01-01

    This SpringerBrief presents a survey of data center network designs and topologies and compares several properties in order to highlight their advantages and disadvantages. The brief also explores several routing protocols designed for these topologies and compares the basic algorithms to establish connections, the techniques used to gain better performance, and the mechanisms for fault-tolerance. Readers will be equipped to understand how current research on data center networks enables the design of future architectures that can improve performance and dependability of data centers. This con

  12. A multi-agent system architecture for sensor networks.

    Science.gov (United States)

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  13. A Multi-Agent System Architecture for Sensor Networks

    Directory of Open Access Journals (Sweden)

    María Guijarro

    2009-12-01

    Full Text Available The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  14. Identification of hybrid node and link communities in complex networks.

    Science.gov (United States)

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-02

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  15. Identification of hybrid node and link communities in complex networks

    Science.gov (United States)

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  16. A modular architecture for transparent computation in recurrent neural networks.

    Science.gov (United States)

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Software defined network architecture based research on load balancing strategy

    Science.gov (United States)

    You, Xiaoqian; Wu, Yang

    2018-05-01

    As a new type network architecture, software defined network has the key idea of separating the control place of the network from the transmission plane, to manage and control the network in a concentrated way; in addition, the network interface is opened on the control layer and the data layer, so as to achieve programmable control of the network. Considering that only the single shortest route is taken into the calculation of traditional network data flow transmission, and congestion and resource consumption caused by excessive load of link circuits are ignored, a link circuit load based flow media business QoS gurantee system is proposed in this article to divide the flow in the network into ordinary data flow and QoS flow. In this way, it supervises the link circuit load with the controller so as to calculate reasonable route rapidly and issue the flow table to the exchanger, to finish rapid data transmission. In addition, it establishes a simulation platform to acquire optimized result through simulation experiment.

  18. A Hybrid FPGA/Coarse Parallel Processing Architecture for Multi-modal Visual Feature Descriptors

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Alonso, Javier Díaz

    2008-01-01

    This paper describes the hybrid architecture developed for speeding up the processing of so-called multi-modal visual primitives which are sparse image descriptors extracted along contours. In the system, the first stages of visual processing are implemented on FPGAs due to their highly parallel...

  19. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  20. SpaceCubeX: A Framework for Evaluating Hybrid Multi-Core CPU FPGA DSP Architectures

    Science.gov (United States)

    Schmidt, Andrew G.; Weisz, Gabriel; French, Matthew; Flatley, Thomas; Villalpando, Carlos Y.

    2017-01-01

    The SpaceCubeX project is motivated by the need for high performance, modular, and scalable on-board processing to help scientists answer critical 21st century questions about global climate change, air quality, ocean health, and ecosystem dynamics, while adding new capabilities such as low-latency data products for extreme event warnings. These goals translate into on-board processing throughput requirements that are on the order of 100-1,000 more than those of previous Earth Science missions for standard processing, compression, storage, and downlink operations. To study possible future architectures to achieve these performance requirements, the SpaceCubeX project provides an evolvable testbed and framework that enables a focused design space exploration of candidate hybrid CPU/FPGA/DSP processing architectures. The framework includes ArchGen, an architecture generator tool populated with candidate architecture components, performance models, and IP cores, that allows an end user to specify the type, number, and connectivity of a hybrid architecture. The framework requires minimal extensions to integrate new processors, such as the anticipated High Performance Spaceflight Computer (HPSC), reducing time to initiate benchmarking by months. To evaluate the framework, we leverage a wide suite of high performance embedded computing benchmarks and Earth science scenarios to ensure robust architecture characterization. We report on our projects Year 1 efforts and demonstrate the capabilities across four simulation testbed models, a baseline SpaceCube 2.0 system, a dual ARM A9 processor system, a hybrid quad ARM A53 and FPGA system, and a hybrid quad ARM A53 and DSP system.

  1. Architecture for Collaborative Learning Activities in Hybrid Learning Environments

    OpenAIRE

    Ibáñez, María Blanca; Maroto, David; García Rueda, José Jesús; Leony, Derick; Delgado Kloos, Carlos

    2012-01-01

    3D virtual worlds are recognized as collaborative learning environments. However, the underlying technology is not sufficiently mature and the virtual worlds look cartoonish, unlinked to reality. Thus, it is important to enrich them with elements from the real world to enhance student engagement in learning activities. Our approach is to build learning environments where participants can either be in the real world or in its mirror world while sharing the same hybrid space in a collaborative ...

  2. An open, interoperable, and scalable prehospital information technology network architecture.

    Science.gov (United States)

    Landman, Adam B; Rokos, Ivan C; Burns, Kevin; Van Gelder, Carin M; Fisher, Roger M; Dunford, James V; Cone, David C; Bogucki, Sandy

    2011-01-01

    Some of the most intractable challenges in prehospital medicine include response time optimization, inefficiencies at the emergency medical services (EMS)-emergency department (ED) interface, and the ability to correlate field interventions with patient outcomes. Information technology (IT) can address these and other concerns by ensuring that system and patient information is received when and where it is needed, is fully integrated with prior and subsequent patient information, and is securely archived. Some EMS agencies have begun adopting information technologies, such as wireless transmission of 12-lead electrocardiograms, but few agencies have developed a comprehensive plan for management of their prehospital information and integration with other electronic medical records. This perspective article highlights the challenges and limitations of integrating IT elements without a strategic plan, and proposes an open, interoperable, and scalable prehospital information technology (PHIT) architecture. The two core components of this PHIT architecture are 1) routers with broadband network connectivity to share data between ambulance devices and EMS system information services and 2) an electronic patient care report to organize and archive all electronic prehospital data. To successfully implement this comprehensive PHIT architecture, data and technology requirements must be based on best available evidence, and the system must adhere to health data standards as well as privacy and security regulations. Recent federal legislation prioritizing health information technology may position federal agencies to help design and fund PHIT architectures.

  3. Self-Management of Hybrid Optical and Packet Switching Networks

    NARCIS (Netherlands)

    Fioreze, Tiago

    2010-01-01

    Hybrid optical and packet switching networks are composed of multi-service hybrid devices that enable forwarding of data at multiple levels. Large IP flows at the IP level may be therefore moved to the optical level bypassing therefore the per hop routing decisions of the IP level. Such move could

  4. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad; Celik, Abdulkadir; Kamal, Ahmed E.

    2018-01-01

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power

  5. SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2012-07-01

    Full Text Available After production and operations, finance and investments are one of the mostfrequent areas of neural network applications in business. The lack of standardizedparadigms that can determine the efficiency of certain NN architectures in a particularproblem domain is still present. The selection of NN architecture needs to take intoconsideration the type of the problem, the nature of the data in the model, as well as somestrategies based on result comparison. The paper describes previous research in that areaand suggests a forward strategy for selecting best NN algorithm and structure. Since thestrategy includes both parameter-based and variable-based testings, it can be used forselecting NN architectures as well as for extracting models. The backpropagation, radialbasis,modular, LVQ and probabilistic neural network algorithms were used on twoindependent sets: stock market and credit scoring data. The results show that neuralnetworks give better accuracy comparing to multiple regression and logistic regressionmodels. Since it is model-independant, the strategy can be used by researchers andprofessionals in other areas of application.

  6. Mobile network architecture of the long-range WindScanner system

    OpenAIRE

    Vasiljevic, Nikola; Lea, Guillaume; Hansen, Per; Jensen, Henrik M.

    2016-01-01

    In this report we have presented the network architecture of the long-range WindScanner system that allows utilization of mobile network connections without the use of static public IP addresses. The architecture mitigates the issues of additional fees and contractual obligations that are linked to the acquisition of the mobile network connections with static public IP addresses. The architecture consists of a hardware VPN solution based on the network appliances Z1 and MX60 from Cisco Meraki...

  7. An efficient optical architecture for sparsely connected neural networks

    Science.gov (United States)

    Hine, Butler P., III; Downie, John D.; Reid, Max B.

    1990-01-01

    An architecture for general-purpose optical neural network processor is presented in which the interconnections and weights are formed by directing coherent beams holographically, thereby making use of the space-bandwidth products of the recording medium for sparsely interconnected networks more efficiently that the commonly used vector-matrix multiplier, since all of the hologram area is in use. An investigation is made of the use of computer-generated holograms recorded on such updatable media as thermoplastic materials, in order to define the interconnections and weights of a neural network processor; attention is given to limits on interconnection densities, diffraction efficiencies, and weighing accuracies possible with such an updatable thin film holographic device.

  8. ABOUT HYBRID BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH DISCRETE DELAYS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, hybrid bidirectional associative memory neural networks with discrete delays is considered. By ingeniously importing real parameters di > 0(i = 1,2,···,n) which can be adjusted, we establish some new sufficient conditions for the dynamical characteristics of hybrid bidirectional associative memory neural networks with discrete delays by the method of variation of parameters and some analysis techniques. Our results generalize and improve the related results in [10,11]. Our work is significant...

  9. Iterative Multiuser Equalization for Subconnected Hybrid mmWave Massive MIMO Architecture

    Directory of Open Access Journals (Sweden)

    R. Magueta

    2017-01-01

    Full Text Available Millimeter waves and massive MIMO are a promising combination to achieve the multi-Gb/s required by future 5G wireless systems. However, fully digital architectures are not feasible due to hardware limitations, which means that there is a need to design signal processing techniques for hybrid analog-digital architectures. In this manuscript, we propose a hybrid iterative block multiuser equalizer for subconnected millimeter wave massive MIMO systems. The low complexity user-terminals employ pure-analog random precoders, each with a single RF chain. For the base station, a subconnected hybrid analog-digital equalizer is designed to remove multiuser interference. The hybrid equalizer is optimized using the average bit-error-rate as a metric. Due to the coupling between the RF chains in the optimization problem, the computation of the optimal solutions is too complex. To address this problem, we compute the analog part of the equalizer sequentially over the RF chains using a dictionary built from the array response vectors. The proposed subconnected hybrid iterative multiuser equalizer is compared with a recently proposed fully connected approach. The results show that the performance of the proposed scheme is close to the fully connected hybrid approach counterpart after just a few iterations.

  10. On hybrid cooperation in underlay cognitive radio networks

    KAUST Repository

    Mahmood, Nurul Huda

    2012-11-01

    In wireless systems where transmitters are subject to a strict received power constraint, such as in underlay cognitive radio networks, cooperative communication is a promising strategy to enhance network performance, as it helps to improve the coverage area and outage performance of a network. However, this comes at the expense of increased resource utilization. To balance the performance gain against the possible over-utilization of resources, we propose a hybrid-cooperation technique for underlay cognitive radio networks, where secondary users cooperate only when required. Various performance measures of the proposed hybrid-cooperation technique are analyzed in this paper, and are also further validated numerically. © 2012 IEEE.

  11. Resting State Networks' Corticotopy: The Dual Intertwined Rings Architecture

    Science.gov (United States)

    Mesmoudi, Salma; Perlbarg, Vincent; Rudrauf, David; Messe, Arnaud; Pinsard, Basile; Hasboun, Dominique; Cioli, Claudia; Marrelec, Guillaume; Toro, Roberto; Benali, Habib; Burnod, Yves

    2013-01-01

    How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called “the dual intertwined rings architecture”) that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or “corticotopy”). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This “dual intertwined architecture” suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi

  12. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated

  13. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-01-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated

  14. Small-Firm Networks: hybrid arrangement or organizational form?

    OpenAIRE

    Verschoore, Jorge Renato; Balestrin, Alsones; Perucia, Alexandre

    2014-01-01

    In the field of organizations, one relevant question is whether or not to consider networks as organizational forms. On the one hand, Williamson (1985) says that networks are hybrid arrangements. On the other, authors like Powell (1990) argue that networks constitute themselves as organizational forms. Given this dilemma, the present article proposes the analysis of organizational characteristics of small-firm networks (SFN). To reach such objective, twelve SFNs in distinct stages of developm...

  15. Multidimensional materials and device architectures for future hybrid energy storage

    Science.gov (United States)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  16. Signalling design and architecture for a proposed mobile satellite network

    Science.gov (United States)

    Yan, T.-Y.; Cheng, U.; Wang, C.

    1990-01-01

    In a frequency-division/demand-assigned multiple-access (FD/DAMA) architecture, each mobile subscriber must make a connection request to the Network Management Center before transmission for either open-end or closed-end services. Open-end services are for voice calls and long file transfer and are processed on a blocked-call-cleared basis. Closed-end services are for transmitting burst data and are processed on a first-come first-served basis. This paper presents the signalling design and architecture for non-voice services of an FD/DAMA mobile satellite network. The connection requests are made through the recently proposed multiple channel collision resolution scheme which provides a significantly higher throughput than the traditional slotted ALOHA scheme. For non-voice services, it is well known that retransmissions are necessary to ensure the delivery of a message in its entirety from the source to destination. Retransmission protocols for open-end and closed-end data transfer are investigated. The signal structure for the proposed network is derived from X-25 standards with appropriate modifications. The packet types and their usages are described in this paper.

  17. A Novel Architectural Concept for Enhanced 5G Network Facilities

    Directory of Open Access Journals (Sweden)

    Chochliouros Ioannis P.

    2017-01-01

    Full Text Available The 5G ESSENCE project’s context is based on the concept of Edge Cloud Computing and Small Cell-as-a-Service (SCaaS -as both have been previously identified in the SESAME 5G-PPP project of phase 1- and further “promotes” their role and/or influences within the related 5G vertical markets. 5G ESSENCE’s core innovation is focused upon the development/provision of a highly flexible and scalable platform, offering benefits to the involved market actors. The present work identifies a variety of challenges to be fulfilled by the 5G ESSENCE, in the scope of an enhanced architectural framework. The proposed technical approach exploits the profits of the centralization of Small Cell functions as scale grows through an edge cloud environment, based on a two-tier architecture with the first distributed tier being for offering low latency services and the second centralized tier being for the provision of high processing power for computing-intensive network applications. This permits decoupling the control and user planes of the Radio Access Network (RAN and achieving the advantages of Cloud-RAN without the enormous fronthaul latency restrictions. The use of end-to-end network slicing mechanisms allows for sharing the related infrastructure among multiple operators/vertical industries and customizing its capabilities on a per-tenant basis, creating a neutral host market and reducing operational costs.

  18. Saliency U-Net: A regional saliency map-driven hybrid deep learning network for anomaly segmentation

    Science.gov (United States)

    Karargyros, Alex; Syeda-Mahmood, Tanveer

    2018-02-01

    Deep learning networks are gaining popularity in many medical image analysis tasks due to their generalized ability to automatically extract relevant features from raw images. However, this can make the learning problem unnecessarily harder requiring network architectures of high complexity. In case of anomaly detection, in particular, there is often sufficient regional difference between the anomaly and the surrounding parenchyma that could be easily highlighted through bottom-up saliency operators. In this paper we propose a new hybrid deep learning network using a combination of raw image and such regional maps to more accurately learn the anomalies using simpler network architectures. Specifically, we modify a deep learning network called U-Net using both the raw and pre-segmented images as input to produce joint encoding (contraction) and expansion paths (decoding) in the U-Net. We present results of successfully delineating subdural and epidural hematomas in brain CT imaging and liver hemangioma in abdominal CT images using such network.

  19. On the Capacity of Hybrid Wireless Networks with Opportunistic Routing

    Directory of Open Access Journals (Sweden)

    Le Tan

    2010-01-01

    Full Text Available This paper studies the capacity of hybrid wireless networks with opportunistic routing (OR. We first extend the opportunistic routing algorithm to exploit high-speed data transmissions in infrastructure network through base stations. We then develop linear programming models to calculate the end-to-end throughput bounds from multiple source nodes to single as well as multiple destination nodes. The developed models are applied to study several hybrid wireless network examples. Through case studies, we investigate several factors that have significant impacts on the hybrid wireless network capacity under opportunistic routing, such as node transmission range, density and distribution pattern of base stations (BTs, and number of wireless channels on wireless nodes and base stations. Our numerical results demonstrate that opportunistic routing could achieve much higher throughput on both ad hoc and hybrid networks than traditional unicast routing (UR. Moreover, opportunistic routing can efficiently utilize base stations and achieve significantly higher throughput gains in hybrid wireless networks than in pure ad hoc networks especially with multiple-channel base stations.

  20. Computing all hybridization networks for multiple binary phylogenetic input trees.

    Science.gov (United States)

    Albrecht, Benjamin

    2015-07-30

    The computation of phylogenetic trees on the same set of species that are based on different orthologous genes can lead to incongruent trees. One possible explanation for this behavior are interspecific hybridization events recombining genes of different species. An important approach to analyze such events is the computation of hybridization networks. This work presents the first algorithm computing the hybridization number as well as a set of representative hybridization networks for multiple binary phylogenetic input trees on the same set of taxa. To improve its practical runtime, we show how this algorithm can be parallelized. Moreover, we demonstrate the efficiency of the software Hybroscale, containing an implementation of our algorithm, by comparing it to PIRNv2.0, which is so far the best available software computing the exact hybridization number for multiple binary phylogenetic trees on the same set of taxa. The algorithm is part of the software Hybroscale, which was developed specifically for the investigation of hybridization networks including their computation and visualization. Hybroscale is freely available(1) and runs on all three major operating systems. Our simulation study indicates that our approach is on average 100 times faster than PIRNv2.0. Moreover, we show how Hybroscale improves the interpretation of the reported hybridization networks by adding certain features to its graphical representation.

  1. SANDS: an architecture for clinical decision support in a National Health Information Network.

    Science.gov (United States)

    Wright, Adam; Sittig, Dean F

    2007-10-11

    A new architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support) is introduced and its performance evaluated. The architecture provides a method for performing clinical decision support across a network, as in a health information exchange. Using the prototype we demonstrated that, first, a number of useful types of decision support can be carried out using our architecture; and, second, that the architecture exhibits desirable reliability and performance characteristics.

  2. Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks

    NARCIS (Netherlands)

    Thebault, E.M.C.; Fontaine, C.

    2010-01-01

    Research on the relationship between the architecture of ecological networks and community stability has mainly focused on one type of interaction at a time, making difficult any comparison between different network types. We used a theoretical approach to show that the network architecture favoring

  3. Towards A New Opportunistic IoT Network Architecture for Wildlife Monitoring System

    NARCIS (Netherlands)

    Ayele, Eyuel Debebe; Meratnia, Nirvana; Havinga, Paul J.M.

    In this paper we introduce an opportunistic dual radio IoT network architecture for wildlife monitoring systems (WMS). Since data processing consumes less energy than transmitting the raw data, the proposed architecture leverages opportunistic mobile networks in a fixed LPWAN IoT network

  4. Mobile network architecture of the long-range WindScanner system

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Hansen, Per

    to the acquisition of the mobile network connections with static public IP addresses. The architecture consists of a hardware VPN solution based on the network appliances Z1 and MX60 from Cisco Meraki with additional 3G or 4G dongles. With the presented network architecture and appropriate configuration, we fulfill...

  5. Hybrid Distributed Iterative Capacity Allocation over Bluetooth Network

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2002-01-01

    of service requirements and constraints in Bluetooth network, such as limited capacity, decentralized, frequent changes of topology and of capacities assigned to nodes in the network. The simulation shows that the performance of Bluetooth could be improved by applying the hybrid distributed iterative...

  6. Hybrid Distributed Iterative Capacity Allocation over Bluetooth Network

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    of service requirements and constraints in Bluetooth network, such as limited capacity, decentralized, frequent changes of topology and of capacities assigned to nodes in the network. The simulation shows that the performance of Bluetooth could be improved by applying the hybrid distributed iterative...

  7. Self-Management of Hybrid Optical and Packet Switching Networks

    NARCIS (Netherlands)

    Fioreze, Tiago; Pras, Aiko

    Hybrid optical and packet switching networks enable data to be forwarded at multiple levels. Large IP flows at the IP level may be therefore moved to the optical level bypassing the per hop routing decisions of the IP level. Such move could be beneficial since congested IP networks could be

  8. ARCHITECTURES AND ALGORITHMS FOR COGNITIVE NETWORKS ENABLED BY QUALITATIVE MODELS

    DEFF Research Database (Denmark)

    Balamuralidhar, P.

    2013-01-01

    traditional limitations and potentially achieving better performance. The vision is that, networks should be able to monitor themselves, reason upon changes in self and environment, act towards the achievement of specific goals and learn from experience. The concept of a Cognitive Engine (CE) supporting...... cognitive functions, as part of network elements, enabling above said autonomic capabilities is gathering attention. Awareness of the self and the world is an important aspect of the cognitive engine to be autonomic. This is achieved through embedding their models in the engine, but the complexity...... of the cognitive engine that incorporates a context space based information structure to its knowledge model. I propose a set of guiding principles behind a cognitive system to be autonomic and use them with additional requirements to build a detailed architecture for the cognitive engine. I define a context space...

  9. Bosch automotive electrics and automotive electronics systems and components, networking and hybrid drive

    CERN Document Server

    2014-01-01

    The significance of electrical and electronic systems has increased considerably in the last few years and this trend is set to continue. The characteristics feature of innovative systems is the fact that they can work together in a network. This requires powerful bus systems that the electronic control units can use to exchange information. Networking and the various bus systems used in motor vehicles are the prominent new topic in the 5th edition of the "Automotive Electric, Automotive Electronics" technical manual. The existing chapters have also been updated, so that this new edition brings the reader up to date on the subjects of electrical and electronic systems in the motor vehicle. Content Electrical and electronical systems – Basic principles of networking - Examples of networked vehicles – Bus systems – Architecture of electronic systems – Mechatronics – Elektronics – Electronic control Units – Software – Sensors – Actuators – Hybrid drives – Vehicle electrical system – Start...

  10. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  11. Synthesis, characterization and frictional wear behavior of ceria hybrid architectures with {111} exposure planes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Pengfei [School of Mechanical Engineering, University of South China, Hengyang 421001 (China); Chen, Yong, E-mail: chenyongjsnt@163.com [School of Mechanical Engineering, University of South China, Hengyang 421001 (China); Sun, Rong [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai (Japan); Chen, Yue; Yin, Yaru [School of Mechanical Engineering, University of South China, Hengyang 421001 (China); Wang, Zhongchang, E-mail: zcwang@wpi-aimr.tohoku.ac.jp [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai (Japan)

    2017-04-15

    Highlights: • A hybrid architecture comprising three types of cerium nanoparticles (nano-octahedron and its’ ramifications) is synthesized. • The exposure planes of the prepared ceria nanoparticles are {111} crystal planes. • The nanoparticles show markedly material remove capacity and inferior polishing quality. - Abstract: A hybrid architecture comprising three types of cerium nanoparticles, nano-octahedron and its ramifications, is synthesized via a facile yet efficient hydrothermal process. Comprehensive transmission electron microscopy analysis identifies the exposure planes of the cube-shaped ceria nanoparticles as {111} crystal planes. As a result of this unique morphology, the nanoparticles are found to show markedly enhanced material removal capacity and inferior polishing quality compared to the sphere-shaped ceria nanoparticles.

  12. On Hybrid Cooperation in Underlay Cognitive Radio Networks

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Yilmaz, Ferkan; Øien, Geir E.

    2013-01-01

    of opportunistic wireless systems such as cognitive radio networks. In order to balance the performance gains from cooperative communication against the possible over-utilization of resources, we propose and analyze an adaptive-cooperation technique for underlay cognitive radio networks, termed as hybrid......Cooperative communication is a promising strategy to enhance the performance of a communication network as it helps to improve the coverage area and the outage performance. However, such enhancement comes at the expense of increased resource utilization, which is undesirable; more so in the case......-cooperation. Under the proposed cooperation scheme, secondary users in a cognitive radio network cooperate adaptively to enhance the spectral efficiency and the error performance of the network. The bit error rate, the spectral efficiency and the outage performance of the network under the proposed hybrid...

  13. Integrating deep and shallow natural language processing components : representations and hybrid architectures

    OpenAIRE

    Schäfer, Ulrich

    2006-01-01

    We describe basic concepts and software architectures for the integration of shallow and deep (linguistics-based, semantics-oriented) natural language processing (NLP) components. The main goal of this novel, hybrid integration paradigm is improving robustness of deep processing. After an introduction to constraint-based natural language parsing, we give an overview of typical shallow processing tasks. We introduce XML standoff markup as an additional abstraction layer that eases integration ...

  14. Structure and weights optimisation of a modified Elman network emotion classifier using hybrid computational intelligence algorithms: a comparative study

    Science.gov (United States)

    Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood

    2015-10-01

    Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.

  15. Cluster synchronization in community network with hybrid coupling

    International Nuclear Information System (INIS)

    Yang, Lixin; Jiang, Jun; Liu, Xiaojun

    2016-01-01

    Highlights: • A community network model with hybrid coupling is proposed. • Control scheme is designed via combining adaptive external coupling strength and feedback control. • The influence of topology structure on synchronization of community network is discussed. - Abstract: A general model of community network with hybrid coupling is proposed in this paper. In the community network model with hybrid coupling, the inner connections are in the same type of coupling within the same community and in different types of coupling in different communities. The connections between different pair of communities are also nonidentical. Cluster synchronization of community network with hybrid coupling is investigated via adaptive couplings control scheme. Effective controllers are designed for constructing an effective control scheme and adjusting automatically the adaptive external coupling strength by taking external coupling strength as adaptive variables on a small fraction of network edges. Moreover, the impact of the topology on the synchronizability of community network is investigated. The numerical results reveal that the number of links between communities and the degree of the connector nodes have significant effects on the synchronization performance.

  16. Firewall Architectures for High-Speed Networks: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Errin W. Fulp

    2007-08-20

    Firewalls are a key component for securing networks that are vital to government agencies and private industry. They enforce a security policy by inspecting and filtering traffic arriving or departing from a secure network. While performing these critical security operations, firewalls must act transparent to legitimate users, with little or no effect on the perceived network performance (QoS). Packets must be inspected and compared against increasingly complex rule sets and tables, which is a time-consuming process. As a result, current firewall systems can introduce significant delays and are unable to maintain QoS guarantees. Furthermore, firewalls are susceptible to Denial of Service (DoS) attacks that merely overload/saturate the firewall with illegitimate traffic. Current firewall technology only offers a short-term solution that is not scalable; therefore, the \\textbf{objective of this DOE project was to develop new firewall optimization techniques and architectures} that meet these important challenges. Firewall optimization concerns decreasing the number of comparisons required per packet, which reduces processing time and delay. This is done by reorganizing policy rules via special sorting techniques that maintain the original policy integrity. This research is important since it applies to current and future firewall systems. Another method for increasing firewall performance is with new firewall designs. The architectures under investigation consist of multiple firewalls that collectively enforce a security policy. Our innovative distributed systems quickly divide traffic across different levels based on perceived threat, allowing traffic to be processed in parallel (beyond current firewall sandwich technology). Traffic deemed safe is transmitted to the secure network, while remaining traffic is forwarded to lower levels for further examination. The result of this divide-and-conquer strategy is lower delays for legitimate traffic, higher throughput

  17. Fiber-wireless convergence in next-generation communication networks systems, architectures, and management

    CERN Document Server

    Chang, Gee-Kung; Ellinas, Georgios

    2017-01-01

    This book investigates new enabling technologies for Fi-Wi convergence. The editors discuss Fi-Wi technologies at the three major network levels involved in the path towards convergence: system level, network architecture level, and network management level. The main topics will be: a. At system level: Radio over Fiber (digitalized vs. analogic, standardization, E-band and beyond) and 5G wireless technologies; b. Network architecture level: NGPON, WDM-PON, BBU Hotelling, Cloud Radio Access Networks (C-RANs), HetNets. c. Network management level: SDN for convergence, Next-generation Point-of-Presence, Wi-Fi LTE Handover, Cooperative MultiPoint. • Addresses the Fi-Wi convergence issues at three different levels, namely at the system level, network architecture level, and network management level • Provides approaches in communication systems, network architecture, and management that are expected to steer the evolution towards fiber-wireless convergence • Contributions from leading experts in the field of...

  18. SNMS: an intelligent transportation system network architecture based on WSN and P2P network

    Institute of Scientific and Technical Information of China (English)

    LI Li; LIU Yuan-an; TANG Bi-hua

    2007-01-01

    With the development of city road networks, the question of how to obtain information about the roads is becoming more and more important. In this article, sensor network with mobile station (SNMS), a novel two-tiered intelligent transportation system (ITS) network architecture based on wireless sensor network (WSN) and peer-to-peer (P2P) network, is proposed to provide significant traffic information about the road and thereby, assist travelers to take optimum decisions when they are driving. A detailed explanation with regard to the strategy of each level as well as the design of two main components in the network, sensor unit (SU) and mobile station (MS), is presented. Finally, a representative scenario is described to display the operation of the system.

  19. The resilient hybrid fiber sensor network with self-healing function

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shibo, E-mail: Shibo-Xu@tju.edu.cn; Liu, Tiegen; Ge, Chunfeng; Chen, Qinnan; Zhang, Hongxia [College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin 300072 (China)

    2015-03-15

    This paper presents a novel resilient fiber sensor network (FSN) with multi-ring architecture, which could interconnect various kinds of fiber sensors responsible for more than one measurands. We explain how the intelligent control system provides sensors with self-healing function meanwhile sensors are working properly, besides each fiber in FSN is under real-time monitoring. We explain the software process and emergency mechanism to respond failures or other circumstances. To improve the efficiency in the use of limited spectrum resources in some situations, we have two different structures to distribute the light sources rationally. Then, we propose a hybrid sensor working in FSN which is a combination of a distributed sensor and a FBG (Fiber Bragg Grating) array fused in a common fiber sensing temperature and vibrations simultaneously with neglectable crosstalk to each other. By making a failure to a working fiber in experiment, the feasibility and effectiveness of the network with a hybrid sensor has been demonstrated, hybrid sensors could not only work as designed but also survive from destructive failures with the help of resilient network and smart and quick self-healing actions. The network has improved the viability of the fiber sensors and diversity of measurands.

  20. The resilient hybrid fiber sensor network with self-healing function

    Science.gov (United States)

    Xu, Shibo; Liu, Tiegen; Ge, Chunfeng; Chen, Qinnan; Zhang, Hongxia

    2015-03-01

    This paper presents a novel resilient fiber sensor network (FSN) with multi-ring architecture, which could interconnect various kinds of fiber sensors responsible for more than one measurands. We explain how the intelligent control system provides sensors with self-healing function meanwhile sensors are working properly, besides each fiber in FSN is under real-time monitoring. We explain the software process and emergency mechanism to respond failures or other circumstances. To improve the efficiency in the use of limited spectrum resources in some situations, we have two different structures to distribute the light sources rationally. Then, we propose a hybrid sensor working in FSN which is a combination of a distributed sensor and a FBG (Fiber Bragg Grating) array fused in a common fiber sensing temperature and vibrations simultaneously with neglectable crosstalk to each other. By making a failure to a working fiber in experiment, the feasibility and effectiveness of the network with a hybrid sensor has been demonstrated, hybrid sensors could not only work as designed but also survive from destructive failures with the help of resilient network and smart and quick self-healing actions. The network has improved the viability of the fiber sensors and diversity of measurands.

  1. The resilient hybrid fiber sensor network with self-healing function

    International Nuclear Information System (INIS)

    Xu, Shibo; Liu, Tiegen; Ge, Chunfeng; Chen, Qinnan; Zhang, Hongxia

    2015-01-01

    This paper presents a novel resilient fiber sensor network (FSN) with multi-ring architecture, which could interconnect various kinds of fiber sensors responsible for more than one measurands. We explain how the intelligent control system provides sensors with self-healing function meanwhile sensors are working properly, besides each fiber in FSN is under real-time monitoring. We explain the software process and emergency mechanism to respond failures or other circumstances. To improve the efficiency in the use of limited spectrum resources in some situations, we have two different structures to distribute the light sources rationally. Then, we propose a hybrid sensor working in FSN which is a combination of a distributed sensor and a FBG (Fiber Bragg Grating) array fused in a common fiber sensing temperature and vibrations simultaneously with neglectable crosstalk to each other. By making a failure to a working fiber in experiment, the feasibility and effectiveness of the network with a hybrid sensor has been demonstrated, hybrid sensors could not only work as designed but also survive from destructive failures with the help of resilient network and smart and quick self-healing actions. The network has improved the viability of the fiber sensors and diversity of measurands

  2. dSDiVN: a distributed Software-Defined Networking architecture for Infrastructure-less Vehicular Networks

    OpenAIRE

    Alioua, Ahmed; Senouci, Sidi-Mohammed; Moussaoui, Samira

    2017-01-01

    In the last few years, the emerging network architecture paradigm of Software-Defined Networking (SDN), has become one of the most important technology to manage large scale networks such as Vehicular Ad-hoc Networks (VANETs). Recently, several works have shown interest in the use of SDN paradigm in VANETs. SDN brings flexibility, scalability and management facility to current VANETs. However, almost all of proposed Software-Defined VANET (SDVN) architectures are infrastructure-based. This pa...

  3. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation.

    Science.gov (United States)

    Jurado-Navas, Antonio; Raddo, Thiago R; Garrido-Balsells, José María; Borges, Ben-Hur V; Olmos, Juan José Vegas; Monroy, Idelfonso Tafur

    2016-07-25

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.

  4. Efficient network-matrix architecture for general flow transport inspired by natural pinnate leaves.

    Science.gov (United States)

    Hu, Liguo; Zhou, Han; Zhu, Hanxing; Fan, Tongxiang; Zhang, Di

    2014-11-14

    Networks embedded in three dimensional matrices are beneficial to deliver physical flows to the matrices. Leaf architectures, pervasive natural network-matrix architectures, endow leaves with high transpiration rates and low water pressure drops, providing inspiration for efficient network-matrix architectures. In this study, the network-matrix model for general flow transport inspired by natural pinnate leaves is investigated analytically. The results indicate that the optimal network structure inspired by natural pinnate leaves can greatly reduce the maximum potential drop and the total potential drop caused by the flow through the network while maximizing the total flow rate through the matrix. These results can be used to design efficient networks in network-matrix architectures for a variety of practical applications, such as tissue engineering, cell culture, photovoltaic devices and heat transfer.

  5. Optical home network based on an N×N multimode fiber architecture and CWDM technology

    NARCIS (Netherlands)

    Richard, F.; Guignard, P.; Pizzinat, A.; Guillo, L.; Guillory, J.; Charbonnier, B; Koonen, A.M.J.; Martinez, E.O.; Tanguy, E.; Li, H.W.

    2011-01-01

    With this optical home network solution associating an N×N multimode architecture and CWDM technology, various applications and network topologies are supported by a unique multiformat infrastructure. Issues related to the use of MMF are discussed.

  6. Network architectures and protocols for the integration of ACTS and ISDN

    Science.gov (United States)

    Chitre, D. M.; Lowry, P. A.

    1992-01-01

    A close integration of satellite networks and the integrated services digital network (ISDN) is essential for satellite networks to carry ISDN traffic effectively. This also shows how a given (pre-ISDN) satellite network architecture can be enhanced to handle ISDN signaling and provide ISDN services. It also describes the functional architecture and high-level protocols that could be implemented in the NASA Advanced Communications Technology Satellite (ACTS) low burst rate communications system to provide ISDN services.

  7. A Novel, Privacy Preserving, Architecture for Online Social Networks

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-12-01

    Full Text Available The centralized nature of conventional OSNs poses serious risks to the privacy and security of information exchanged between their members. These risks prompted several attempts to create decentralized OSNs, or DOSNs. The basic idea underlying these attempts, is that each member of a social network keeps its data under its own control, instead of surrendering it to a central host, providing access to it to other members according to its own access-control policy. Unfortunately all existing versions of DOSNs have a very serious limitation. Namely, they are unable to subject the membership of a DOSN, and the interaction between its members, to any global policy—which is essential for many social communities. Moreover, the DOSN architecture is unable to support useful capabilities such as narrowcasting and profile based search. This paper describes a novel architecture of decentralized OSNs—called DOSC, for “online social community”. DOSC adopts the decentralization idea underlying DOSNs, but it is able to subject the membership of a DOSC-community, and the interaction between its members, to a wide range of policies, including privacy-preserving narrowcasting and profile-sensitive search.

  8. Existing PON Infrastructure Supported Hybrid Fiber-Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhao, Ying; Deng, Lei

    2012-01-01

    We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals.......We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals....

  9. Integrated resource management for Hybrid Optical Wireless (HOW) networks

    DEFF Research Database (Denmark)

    Yan, Ying; Yu, Hao; Wessing, Henrik

    2009-01-01

    Efficient utilization of available bandwidth over hybrid optical wireless networks is a critical issue, especially for multimedia applications with high data rates and stringent Quality of Service (QoS) requirements. In this paper, we propose an integrated resource management including an enhanced...... resource sharing scheme and an integrated admission control scheme for the hybrid optical wireless networks. It provides QoS guarantees for connections through both optical and wireless domain. Simulation results show that our proposed scheme improves QoS performances in terms of high throughput and low...

  10. Hybrid-source impedance network and its generalized cascading concepts

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2009-01-01

    Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters, with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into a single generic network entity, before generalized cascading concepts are proposed for connecting multiple of them together to form energy converters with a higher output voltage gain and other unique advantages...

  11. Hybrid Polymer-Network Hydrogels with Tunable Mechanical Response

    Directory of Open Access Journals (Sweden)

    Sebastian Czarnecki

    2016-03-01

    Full Text Available Hybrid polymer-network gels built by both physical and covalent polymer crosslinking combine the advantages of both these crosslinking types: they exhibit high mechanical strength along with excellent fracture toughness and extensibility. If these materials are extensively deformed, their physical crosslinks can break such that strain energy is dissipated and irreversible fracturing is restricted to high strain only. This mechanism of energy dissipation is determined by the kinetics and thermodynamics of the physical crosslinking contribution. In this paper, we present a poly(ethylene glycol (PEG based material toolkit to control these contributions in a rational and custom fashion. We form well-defined covalent polymer-network gels with regularly distributed additional supramolecular mechanical fuse links, whose strength of connectivity can be tuned without affecting the primary polymer-network composition. This is possible because the supramolecular fuse links are based on terpyridine–metal complexation, such that the mere choice of the fuse-linking metal ion adjusts their kinetics and thermodynamics of complexation–decomplexation, which directly affects the mechanical properties of the hybrid gels. We use oscillatory shear rheology to demonstrate this rational control and enhancement of the mechanical properties of the hybrid gels. In addition, static light scattering reveals their highly regular and well-defined polymer-network structures. As a result of both, the present approach provides an easy and reliable concept for preparing hybrid polymer-network gels with rationally designed properties.

  12. Network topology exploration of mesh-based coarse-grain reconfigurable architectures

    NARCIS (Netherlands)

    Bansal, N.; Gupta, S.; Dutt, N.D.; Nicolau, A.; Gupta, R.

    2004-01-01

    Several coarse-grain reconfigurable architectures proposed recently consist of a large number of processing elements (PEs) connected in a mesh-like network topology. We study the effects of three aspects of network topology exploration on the performance of applications on these architectures: (a)

  13. Architecture design of resistor/FET-logic demultiplexer for hybrid CMOS/nanodevice circuit interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Li Shu; Zhang Tong [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)], E-mail: lis4@rpi.edu, E-mail: tzhang@ecse.rpi.edu

    2008-05-07

    Hybrid nanoelectronics consisting of nanodevice crossbars on top of CMOS backplane circuits is emerging as one viable option to sustain Moore's law after the CMOS scaling limit is reached. One main design challenge in such hybrid nanoelectronics is the interface between the highly dense nanowires in nanodevice crossbars and relatively coarse microwires in the CMOS domain. Such an interface can be realized through a logic circuit called a demultiplexer (demux). In this context, all the prior work on demux design uses a single type of device, such as resistor, diode or field effect transistor (FET), to realize the demultiplexing function. However, different types of devices have their own advantages and disadvantages in terms of functionality, manufacturability, speed and power consumption. This makes none of them provide a satisfactory solution. To tackle this challenge, this work proposes to combine resistor with FET to implement the demux, leading to the hybrid resistor/FET-logic demux. Such hybrid demux architecture can make these two types of devices complement each other well to improve the overall demux design effectiveness. Furthermore, due to the inevitable fabrication process variations at the nanoscale, the effects of resistor conductance and FET threshold voltage variability are analyzed and evaluated based on computer simulations. The simulation results provide the requirement on the fabrication process to ensure a high demux reliability, and promise the hybrid resistor/FET-logic demux an improved addressability and process variance tolerance.

  14. Architecture design of resistor/FET-logic demultiplexer for hybrid CMOS/nanodevice circuit interconnect.

    Science.gov (United States)

    Li, Shu; Zhang, Tong

    2008-05-07

    Hybrid nanoelectronics consisting of nanodevice crossbars on top of CMOS backplane circuits is emerging as one viable option to sustain Moore's law after the CMOS scaling limit is reached. One main design challenge in such hybrid nanoelectronics is the interface between the highly dense nanowires in nanodevice crossbars and relatively coarse microwires in the CMOS domain. Such an interface can be realized through a logic circuit called a demultiplexer (demux). In this context, all the prior work on demux design uses a single type of device, such as resistor, diode or field effect transistor (FET), to realize the demultiplexing function. However, different types of devices have their own advantages and disadvantages in terms of functionality, manufacturability, speed and power consumption. This makes none of them provide a satisfactory solution. To tackle this challenge, this work proposes to combine resistor with FET to implement the demux, leading to the hybrid resistor/FET-logic demux. Such hybrid demux architecture can make these two types of devices complement each other well to improve the overall demux design effectiveness. Furthermore, due to the inevitable fabrication process variations at the nanoscale, the effects of resistor conductance and FET threshold voltage variability are analyzed and evaluated based on computer simulations. The simulation results provide the requirement on the fabrication process to ensure a high demux reliability, and promise the hybrid resistor/FET-logic demux an improved addressability and process variance tolerance.

  15. Architecture design of resistor/FET-logic demultiplexer for hybrid CMOS/nanodevice circuit interconnect

    International Nuclear Information System (INIS)

    Li Shu; Zhang Tong

    2008-01-01

    Hybrid nanoelectronics consisting of nanodevice crossbars on top of CMOS backplane circuits is emerging as one viable option to sustain Moore's law after the CMOS scaling limit is reached. One main design challenge in such hybrid nanoelectronics is the interface between the highly dense nanowires in nanodevice crossbars and relatively coarse microwires in the CMOS domain. Such an interface can be realized through a logic circuit called a demultiplexer (demux). In this context, all the prior work on demux design uses a single type of device, such as resistor, diode or field effect transistor (FET), to realize the demultiplexing function. However, different types of devices have their own advantages and disadvantages in terms of functionality, manufacturability, speed and power consumption. This makes none of them provide a satisfactory solution. To tackle this challenge, this work proposes to combine resistor with FET to implement the demux, leading to the hybrid resistor/FET-logic demux. Such hybrid demux architecture can make these two types of devices complement each other well to improve the overall demux design effectiveness. Furthermore, due to the inevitable fabrication process variations at the nanoscale, the effects of resistor conductance and FET threshold voltage variability are analyzed and evaluated based on computer simulations. The simulation results provide the requirement on the fabrication process to ensure a high demux reliability, and promise the hybrid resistor/FET-logic demux an improved addressability and process variance tolerance

  16. Genome-wide dissection of hybrid sterility in Drosophila confirms a polygenic threshold architecture.

    Science.gov (United States)

    Morán, Tomás; Fontdevila, Antonio

    2014-01-01

    To date, different studies about the genetic basis of hybrid male sterility (HMS), a postzygotic reproductive barrier thoroughly investigated using Drosophila species, have demonstrated that no single major gene can produce hybrid sterility without the cooperation of several genetic factors. Early work using hybrids between Drosophila koepferae (Dk) and Drosophila buzzatii (Db) was consistent with the idea that HMS requires the cooperation of several genetic factors, supporting a polygenic threshold (PT) model. Here we present a genome-wide mapping strategy to test the PT model, analyzing serially backcrossed fertile and sterile males in which the Dk genome was introgressed into the Db background. We identified 32 Dk-specific markers significantly associated with hybrid sterility. Our results demonstrate 1) a strong correlation between the number of segregated sterility markers and males' degree of sterility, 2) the exchangeability among markers, 3) their tendency to cluster into low-recombining chromosomal regions, and 4) the requirement for a minimum number (threshold) of markers to elicit sterility. Although our findings do not contradict a role for occasional major hybrid-sterility genes, they conform more to the view that HMS primarily evolves by the cumulative action of many interacting genes of minor effect in a complex PT architecture.

  17. Active semi-supervised learning method with hybrid deep belief networks.

    Science.gov (United States)

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

  18. Distributed Prognostics and Health Management with a Wireless Network Architecture

    Science.gov (United States)

    Goebel, Kai; Saha, Sankalita; Sha, Bhaskar

    2013-01-01

    A heterogeneous set of system components monitored by a varied suite of sensors and a particle-filtering (PF) framework, with the power and the flexibility to adapt to the different diagnostic and prognostic needs, has been developed. Both the diagnostic and prognostic tasks are formulated as a particle-filtering problem in order to explicitly represent and manage uncertainties in state estimation and remaining life estimation. Current state-of-the-art prognostic health management (PHM) systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to a loss in functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become for a number of reasons somewhat ungainly for successful deployment, and efficient distributed architectures can be more beneficial. The distributed health management architecture is comprised of a network of smart sensor devices. These devices monitor the health of various subsystems or modules. They perform diagnostics operations and trigger prognostics operations based on user-defined thresholds and rules. The sensor devices, called computing elements (CEs), consist of a sensor, or set of sensors, and a communication device (i.e., a wireless transceiver beside an embedded processing element). The CE runs in either a diagnostic or prognostic operating mode. The diagnostic mode is the default mode where a CE monitors a given subsystem or component through a low-weight diagnostic algorithm. If a CE detects a critical condition during monitoring, it raises a flag. Depending on availability of resources, a networked local cluster of CEs is formed that then carries out prognostics and fault mitigation by efficient distribution of the tasks. It should be noted that the CEs are expected not to suspend their previous tasks in the prognostic mode. When the

  19. Center for Hybrid Communications and Networks

    Science.gov (United States)

    2016-09-08

    being separated by a polarization beam splitter (PBS). The operations of all other blocks in transmitter are similar to those we reported in [7],[9...architecture. PBS/PBC: polarization beam splitter /combiner, EDFA: erbium-doped fiber amplifier. Ivan B. Djordjevic, ECE Dept., University of Arizona...an official Department of the Army position, policy or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S

  20. An Open Distributed Architecture for Sensor Networks for Risk Management

    Directory of Open Access Journals (Sweden)

    Ralf Denzer

    2008-03-01

    Full Text Available Sensors provide some of the basic input data for risk management of natural andman-made hazards. Here the word ‘sensors’ covers everything from remote sensingsatellites, providing invaluable images of large regions, through instruments installed on theEarth’s surface to instruments situated in deep boreholes and on the sea floor, providinghighly-detailed point-based information from single sites. Data from such sensors is used inall stages of risk management, from hazard, vulnerability and risk assessment in the preeventphase, information to provide on-site help during the crisis phase through to data toaid in recovery following an event. Because data from sensors play such an important part inimproving understanding of the causes of risk and consequently in its mitigation,considerable investment has been made in the construction and maintenance of highlysophisticatedsensor networks. In spite of the ubiquitous need for information from sensornetworks, the use of such data is hampered in many ways. Firstly, information about thepresence and capabilities of sensor networks operating in a region is difficult to obtain dueto a lack of easily available and usable meta-information. Secondly, once sensor networkshave been identified their data it is often difficult to access due to a lack of interoperability between dissemination and acquisition systems. Thirdly, the transfer and processing ofinformation from sensors is limited, again by incompatibilities between systems. Therefore,the current situation leads to a lack of efficiency and limited use of the available data thathas an important role to play in risk mitigation. In view of this situation, the EuropeanCommission (EC is funding a number of Integrated Projects within the Sixth FrameworkProgramme concerned with improving the accessibility of data and services for riskmanagement. Two of these projects: ‘Open Architecture and Spatial Data

  1. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    Science.gov (United States)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  2. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks

    OpenAIRE

    Schreck, Kathleen M.; Leung, Diana; Bowman, Christopher N.

    2011-01-01

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (Tg) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins ...

  3. Figure-ground segregation in a recurrent network architecture.

    Science.gov (United States)

    Roelfsema, Pieter R; Lamme, Victor A F; Spekreijse, Henk; Bosch, Holger

    2002-05-15

    Here we propose a model of how the visual brain segregates textured scenes into figures and background. During texture segregation, locations where the properties of texture elements change abruptly are assigned to boundaries, whereas image regions that are relatively homogeneous are grouped together. Boundary detection and grouping of image regions require different connection schemes, which are accommodated in a single network architecture by implementing them in different layers. As a result, all units carry signals related to boundary detection as well as grouping of image regions, in accordance with cortical physiology. Boundaries yield an early enhancement of network responses, but at a later point, an entire figural region is grouped together, because units that respond to it are labeled with enhanced activity. The model predicts which image regions are preferentially perceived as figure or as background and reproduces the spatio-temporal profile of neuronal activity in the visual cortex during texture segregation in intact animals, as well as in animals with cortical lesions.

  4. Seafloor classification using artificial neural network architecture from central western continental shelf of India

    Science.gov (United States)

    Mahale, Vasudev; Chakraborty, Bishwajit; Navelkar, Gajanan S.; Prabhu Desai, R. G.

    2005-04-01

    Seafloor classification studies are carried out at the central western continental shelf of India employing two frequency normal incidence single beam echo-sounder backscatter data. Echo waveform data from different seafloor sediment areas are utilized for present study. Three artificial neural network (ANN) architectures, e.g., Self-Organization Feature Maps (SOFM), Multi-Layer Perceptron (MLP), and Learning Vector Quantization (LVQ) are applied for seafloor classifications. In case of MLP, features are extracted from the received echo signal, on the basis of which, classification is carried out. In the case of the SOFM, a simple moving average echo waveform pre-processing technique is found to yield excellent classification results. Finally, LVQ, which is known as ANN of hybrid architecture is found to be the efficient seafloor classifier especially from the point of view of the real-time application. The simultaneously acquired sediment sample, multi-beam bathymetry and side scan sonar and echo waveform based seafloor classifications results are indicative of the depositional (inner shelf), non-depositional or erosion (outer shelf) environment and combination of both in the transition zone. [Work supported by DIT.

  5. Development of a hybrid system of artificial neural networks and ...

    African Journals Online (AJOL)

    Development of a hybrid system of artificial neural networks and artificial bee colony algorithm for prediction and modeling of customer choice in the market. ... attempted to present a new method for the modeling and prediction of customer choice in the market using the combination of artificial intelligence and data mining.

  6. Final Technical Report for Terabit-scale hybrid networking project.

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, Malathi [Univ. of Virginia, Charlottesville, VA (United States)

    2015-12-12

    This report describes our accomplishments and activities for the project titled Terabit-Scale Hybrid Networking. The key accomplishment is that we developed, tested and deployed an Alpha Flow Characterization System (AFCS) in ESnet. It is being run in production mode since Sept. 2015. Also, a new QoS class was added to ESnet5 to support alpha flows.

  7. Nafion–clay hybrids with a network structure

    KAUST Repository

    Burgaz, Engin; Lian, Huiqin; Alonso, Rafael Herrera; Estevez, Luis; Kelarakis, Antonios; Giannelis, Emmanuel P.

    2009-01-01

    Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.

  8. Nafion–clay hybrids with a network structure

    KAUST Repository

    Burgaz, Engin

    2009-05-01

    Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.

  9. Business architecture for inter-organisational innovation networks: A case study comparison from South Africa and Germany

    CSIR Research Space (South Africa)

    Gous, H

    2011-06-01

    Full Text Available systems architectures. An important step towards a deeper understanding of inter-organisational innovation networks is to compare the business architectures of network case studies to identify similarities and differences in terms of scope and context...

  10. Criteria for Evaluating Alternative Network and Link Layer Protocols for the NASA Constellation Program Communication Architecture

    Science.gov (United States)

    Benbenek, Daniel; Soloff, Jason; Lieb, Erica

    2010-01-01

    Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.

  11. Real-Time 3D Face Acquisition Using Reconfigurable Hybrid Architecture

    Directory of Open Access Journals (Sweden)

    Mitéran Johel

    2007-01-01

    Full Text Available Acquiring 3D data of human face is a general problem which can be applied in face recognition, virtual reality, and many other applications. It can be solved using stereovision. This technique consists in acquiring data in three dimensions from two cameras. The aim is to implement an algorithmic chain which makes it possible to obtain a three-dimensional space from two two-dimensional spaces: two images coming from the two cameras. Several implementations have already been considered. We propose a new simple real-time implementation based on a hybrid architecture (FPGA-DSP, allowing to consider an embedded and reconfigurable processing. Then we show our method which provides depth map of face, dense and reliable, and which can be implemented on an embedded architecture. A various architecture study led us to a judicious choice allowing to obtain the desired result. The real-time data processing is implemented in an embedded architecture. We obtain a dense face disparity map, precise enough for considered applications (multimedia, virtual worlds, biometrics and using a reliable method.

  12. Enabling Tussle-Agile Inter-networking Architectures by Underlay Virtualisation

    Science.gov (United States)

    Dianati, Mehrdad; Tafazolli, Rahim; Moessner, Klaus

    In this paper, we propose an underlay inter-network virtualisation framework in order to enable tussle-agile flexible networking over the existing inter-network infrastructures. The functionalities that inter-networking elements (transit nodes, access networks, etc.) need to support in order to enable virtualisation are discussed. We propose the base architectures of each the abstract elements to support the required inter-network virtualisation functionalities.

  13. The network architecture and site test of DCIS in Lungmen nuclear power station

    International Nuclear Information System (INIS)

    Lee, C. K.

    2006-01-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  14. The network architecture and site test of DCIS in Lungmen nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. K. [Instrument and Control Section, Lungmen Nuclear Power Station, Taiwan Power Company, Taipei County Taiwan (China)

    2006-07-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  15. Benefits of a parallel hybrid electric architecture on medium commercial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Boot, Marco Aimo; Consano, Ludovico [Iveco S.p.A, Turin (Italy)

    2009-07-01

    Hybrid electric technology is becoming an increasingly interesting solution for medium and heavy trucks involved in urban and suburban missions. The increasing demand for gas and oil, consequent price rises and environmental concerns are driving a market that is in need of alternative solutions. For these reasons, the growth in the global hybrid market significantly exceeded all the hybrid sales forecasts. The parallel hybrid electric vehicle (PHEV) employs an additional power source (electric motogenerator) in combination with the conventional diesel engine. This architecture exploits the benefits of both power sources in order to reduce the fuel consumption, increase the overall power, and above all, decrease CO2 emissions. Moreover, the emissions reduction target is lead by EU Regulations and local initiatives for traffic limitations, but the real drivers for the growth in the market are demonstrable fuel economy improvements and productivity costs optimization (global efficiency). This paper presents the results achieved by Iveco in the development and testing of parallel hybrid systems applied to medium range commercial vehicles, with the intent to evaluate the functionality, driveability performance and leading the best reduction in terms of fuel consumption and emissions in different real-world missions. The system architecture foresees one electric motor/generator and a single clutch unit. An external electrical power source for the battery recharging it is not necessary. The chosen configuration allows to implement the following functional modes: Stop and Start with Electric Launch, Hybrid Mode, Regenerative Braking Mode, Inertial Start and Creeping Mode. The software contained in the supervisor control unit has been tuned to the customer specific missions, taking in account on road data acquisition in order to demonstrate the reliability, driveability and the overall efficiency of the hybrid system. The field tests carried out in collaboration with

  16. On the Performance of Grooming Strategies for Offloading IP Flows onto Lightpaths in Hybrid Networks

    NARCIS (Netherlands)

    Biesbroek, Rudolf; Fioreze, Tiago; Granville, L.; Pras, Aiko

    Hybrid networks take data forwarding decisions at multiple network levels. In order to make an efficient use of hybrid networks, traffic engineering solutions (e.g., routing and data grooming techniques) are commonly employed. Within the specific context of a self-managed hybrid optical and packet

  17. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts

    International Nuclear Information System (INIS)

    Zhang Bin; Chen Xudong; Ma Shaohua; Yang Jin; Zhang Mingqiu; Chen Yujie

    2010-01-01

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  18. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts.

    Science.gov (United States)

    Zhang, Bin; Chen, Xudong; Ma, Shaohua; Chen, Yujie; Yang, Jin; Zhang, Mingqiu

    2010-02-10

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  19. A Case Study of a Hybrid Parallel 3D Surface Rendering Graphics Architecture

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik; Madsen, Jan; Pedersen, Steen

    1997-01-01

    This paper presents a case study in the design strategy used inbuilding a graphics computer, for drawing very complex 3Dgeometric surfaces. The goal is to build a PC based computer systemcapable of handling surfaces built from about 2 million triangles, andto be able to render a perspective view...... of these on a computer displayat interactive frame rates, i.e. processing around 50 milliontriangles per second. The paper presents a hardware/softwarearchitecture called HPGA (Hybrid Parallel Graphics Architecture) whichis likely to be able to carry out this task. The case study focuses ontechniques to increase...

  20. A Hybrid Hardware and Software Component Architecture for Embedded System Design

    Science.gov (United States)

    Marcondes, Hugo; Fröhlich, Antônio Augusto

    Embedded systems are increasing in complexity, while several metrics such as time-to-market, reliability, safety and performance should be considered during the design of such systems. A component-based design which enables the migration of its components between hardware and software can cope to achieve such metrics. To enable that, we define hybrid hardware and software components as a development artifact that can be deployed by different combinations of hardware and software elements. In this paper, we present an architecture for developing such components in order to construct a repository of components that can migrate between the hardware and software domains to meet the design system requirements.

  1. Quantum perceptron over a field and neural network architecture selection in a quantum computer.

    Science.gov (United States)

    da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa

    2016-04-01

    In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hidden Neural Networks: A Framework for HMM/NN Hybrids

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric; Krogh, Anders Stærmose

    1997-01-01

    This paper presents a general framework for hybrids of hidden Markov models (HMM) and neural networks (NN). In the new framework called hidden neural networks (HNN) the usual HMM probability parameters are replaced by neural network outputs. To ensure a probabilistic interpretation the HNN is nor...... HMMs on TIMIT continuous speech recognition benchmarks. On the task of recognizing five broad phoneme classes an accuracy of 84% is obtained compared to 76% for a standard HMM. Additionally, we report a preliminary result of 69% accuracy on the TIMIT 39 phoneme task...

  3. Hybrid Neural Network Approach Based Tool for the Modelling of Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2015-01-01

    Full Text Available A hybrid neural network approach based tool for identifying the photovoltaic one-diode model is presented. The generalization capabilities of neural networks are used together with the robustness of the reduced form of one-diode model. Indeed, from the studies performed by the authors and the works present in the literature, it was found that a direct computation of the five parameters via multiple inputs and multiple outputs neural network is a very difficult task. The reduced form consists in a series of explicit formulae for the support to the neural network that, in our case, is aimed at predicting just two parameters among the five ones identifying the model: the other three parameters are computed by reduced form. The present hybrid approach is efficient from the computational cost point of view and accurate in the estimation of the five parameters. It constitutes a complete and extremely easy tool suitable to be implemented in a microcontroller based architecture. Validations are made on about 10000 PV panels belonging to the California Energy Commission database.

  4. Exponential Synchronization of Networked Chaotic Delayed Neural Network by a Hybrid Event Trigger Scheme.

    Science.gov (United States)

    Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun; Zhongyang Fei; Chaoxu Guan; Huijun Gao; Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun

    2018-06-01

    This paper is concerned with the exponential synchronization for master-slave chaotic delayed neural network with event trigger control scheme. The model is established on a network control framework, where both external disturbance and network-induced delay are taken into consideration. The desired aim is to synchronize the master and slave systems with limited communication capacity and network bandwidth. In order to save the network resource, we adopt a hybrid event trigger approach, which not only reduces the data package sending out, but also gets rid of the Zeno phenomenon. By using an appropriate Lyapunov functional, a sufficient criterion for the stability is proposed for the error system with extended ( , , )-dissipativity performance index. Moreover, hybrid event trigger scheme and controller are codesigned for network-based delayed neural network to guarantee the exponential synchronization between the master and slave systems. The effectiveness and potential of the proposed results are demonstrated through a numerical example.

  5. Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network

    Science.gov (United States)

    Pratiwi, A. B.; Damayanti, A.; Miswanto

    2017-07-01

    Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.

  6. Probabilistic Wind Power Forecasting with Hybrid Artificial Neural Networks

    DEFF Research Database (Denmark)

    Wan, Can; Song, Yonghua; Xu, Zhao

    2016-01-01

    probabilities of prediction errors provide an alternative yet effective solution. This article proposes a hybrid artificial neural network approach to generate prediction intervals of wind power. An extreme learning machine is applied to conduct point prediction of wind power and estimate model uncertainties...... via a bootstrap technique. Subsequently, the maximum likelihood estimation method is employed to construct a distinct neural network to estimate the noise variance of forecasting results. The proposed approach has been tested on multi-step forecasting of high-resolution (10-min) wind power using...... actual wind power data from Denmark. The numerical results demonstrate that the proposed hybrid artificial neural network approach is effective and efficient for probabilistic forecasting of wind power and has high potential in practical applications....

  7. CRISP. Distributed Network Architectures D1.7

    International Nuclear Information System (INIS)

    Andrieu, C.; Fontela, M.; Raison, B.; Enacheanu, B.; Pham, H.; Besanger, Y.; Randrup, M.; Nilsson, U.B.; Kamphuis, I.G.; Schaeffer, G.J.

    2005-08-01

    This document summarises a possible evolution of the merge of ICT network and EPS in the scope of a future electrical architecture. A general overview on several aspects of the transmission and the distribution networks (technical operation, trading, securing, defence plan) and on several aspects of ICT improvement and risks has been given in previous work packages of the part I of the CRISP project. This document brings a common point of view between the partners on this future merge of the various domains involved. The approach is based on the study of given application based on chosen cases, trying then to show a more general view on the whole system. The MV network, including of course the main HV/MV substation, has a specific position in our purpose: historical, technical and trading boundary between the transmission and the distribution system, involving new functions in the context of a future massive and dispersed generation. The whole electrical system is not yet ready to work properly (supply performances maintained at the same level) with a lot of DG and DG-RES and at the same time with a new and complete electrical deregulated market. The multiplication of actors (production, transmission, distribution, customers, local networks) led by the rules of deregulation is an additional issue for planning and operating correctly the network in the long term. The interactions expected between the low level of the network (distribution EPS, VPP, customers, small aggregators) and the high level of the network (transmission EPS, large plants, LSVPP, large aggregators) require to structure the system in different integrated levels, allowing the operators at each stage to manage efficiently the power flux for steady-state, transients and temporary electrical variations. Compared with the present SCADA situation, the ICT will allow the needed information to be shared by various tools and actors at various locations, and will allow the local intelligence to be

  8. Hybrid neural network bushing model for vehicle dynamics simulation

    International Nuclear Information System (INIS)

    Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk

    2008-01-01

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  9. Designing Networked Adaptive Interactive Hybrid Systems

    NARCIS (Netherlands)

    Kester, L.J.H.M.

    2008-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. In these systems humans and intelligent machines will, in close interaction, be able to reach their goals under

  10. T-SDN architecture for space and ground integrated optical transport network

    Science.gov (United States)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  11. Energy efficiency in hybrid mobile and wireless networks

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Ziaul Haq

    2012-07-01

    Wireless Internet access is almost pervasive nowadays, and many types of wireless networks can be used to access the Internet. However, along with this growth, there is an even greater concern about the energy consumption and efficiency of mobile devices as well as of the supporting networks, triggering the appearance of the concept of green communication. While some efforts have been made towards this direction, challenges still exist and need to be tackled from diverse perspectives. Cellular networks, WLANs, and ad hoc networks in the form of wireless mesh networks are the most popular technologies for wireless Internet access. The availability of such a variety of access networks has also paved the way to explore synergistic approaches for Internet access, leading to the concept of hybrid networks and relay communications. In addition, many mobile devices are being equipped with multiple interfaces, enabling them to operate in hybrid networks. In contrast, the improvements in the battery technology itself have not matched the pace of the emerging mobile applications. The situation becomes more sophisticated when a mobile device functions also as a relay node to forward other station's data. In the literature, energy efficiency of mobile devices has been addressed from various perspectives such as protocol-level efforts, battery management efforts, etc. However, there is little work on energy efficiency in hybrid mobile and wireless networks and devices with heterogeneous connections. For example, when there are multiple networks available to a mobile device, how to achieve optimum long-term energy consumption of such a device is an open question. Furthermore, in today's cellular networks, micro-, pico-, and femto-cells are the most popular network topologies in order to support high data rate services and high user density. With the growth of such small-cell solutions, the energy consumption of these networks is also becoming an important concern for operators

  12. Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis

    International Nuclear Information System (INIS)

    Hutchinson, Tim; Burgess, Stuart; Herrmann, Guido

    2014-01-01

    Highlights: • Design data for 44 hybrid cars available in the US has been gathered and analysed. • An empirical life cycle assessment of greenhouse gas emissions is performed. • Empirical whole-life cost modelling is used to evaluate powertrain architectures. • The value to be seen in each architecture is highly dependent on its application. • Mild, HSD and Plug-in HSD powertrains are the most likely architectures to dominate. - Abstract: The recent introduction of hybrid-electric powertrain technology has disrupted the automotive industry, causing significant powertrain design divergence. As this radical powertrain innovation matures, will hybrid vehicles dominate the future automotive market and does this represent a positive shift in the environmental impact of the industry? The answer to this question is sought within this paper. It seeks to take advantage of the position that the industry has reached, replacing previous theoretical studies with the first extensive empirical models of life cycle emissions and whole-life costing. A comprehensive snapshot of today’s hybrid market is presented, with detailed descriptions of the various hybrid powertrain architectures. Design data has been gathered for 44 hybrid passenger cars currently available in the US. The empirical data is used to explore the relative life cycle greenhouse gas emissions and whole-life costing of different hybrid powertrain architectures. Potential dominant designs are identified and their emissions are shown to be reduced. However, both the emissions and economic competitiveness of different hybrid powertrains are shown to vary significantly depending on how the vehicle is used

  13. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network.

    Science.gov (United States)

    Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian

    2015-11-16

    Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively.

  14. Mobility-aware Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Random mobility of node causes the frequent changes in the network dynamics causing the increased cost in terms of energy and bandwidth. It needs the additional efforts to synchronize the activities of nodes during data collection and transmission in Wireless Sensor Networks (WSNs). A key challenge...... in maintaining the effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Mobility-aware Hybrid Synchronization Algorithm (MHS) which works on the formation of cluster based on spanning tree mechanism (SPT). Nodes used...... for formation of the network have random mobility and heterogeneous in terms of energy with static sink. The nodes in the cluster and cluster heads in the network are synchronized with the notion of global time scale. In the initial stage, the algorithm establishes the hierarchical structure of the network...

  15. Hybrid recommendation methods in complex networks.

    Science.gov (United States)

    Fiasconaro, A; Tumminello, M; Nicosia, V; Latora, V; Mantegna, R N

    2015-07-01

    We propose two recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three data sets, and we compare the performance of our methods to other recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow us to attain an improvement of performances of up to 20% with respect to existing nonparametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a careful choice of the most suitable method is highly relevant for an effective recommendation on a given system. Finally, we study how an increasing presence of random links in the network affects the recommendation scores, finding that one of the two recommendation algorithms introduced here can systematically outperform the others in noisy data sets.

  16. Noise suppress or express exponential growth for hybrid Hopfield neural networks

    International Nuclear Information System (INIS)

    Zhu Song; Shen Yi; Chen Guici

    2010-01-01

    In this Letter, we will show that noise can make the given hybrid Hopfield neural networks whose solution may grows exponentially become the new stochastic hybrid Hopfield neural networks whose solution will grows at most polynomially. On the other hand, we will also show that noise can make the given hybrid Hopfield neural networks whose solution grows at most polynomially become the new stochastic hybrid Hopfield neural networks whose solution will grows at exponentially. In other words, we will reveal that the noise can suppress or express exponential growth for hybrid Hopfield neural networks.

  17. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  18. A Smart Gateway Architecture for Improving Efficiency of Home Network Applications

    OpenAIRE

    Ding, Fei; Song, Aiguo; Tong, En; Li, Jianqing

    2016-01-01

    A smart home gateway plays an important role in the Internet of Things (IoT) system that takes responsibility for the connection between the network layer and the ubiquitous sensor network (USN) layer. Even though the home network application is developing rapidly, researches on the home gateway based open development architecture are less. This makes it difficult to extend the home network to support new applications, share service, and interoperate with other home network systems. An integr...

  19. On hybrid cooperation in underlay cognitive radio networks

    KAUST Repository

    Mahmood, Nurul Huda

    2013-09-01

    Cooperative communication is a promising strategy to enhance the performance of a communication network as it helps to improve the coverage area and the outage performance. However, such enhancement comes at the expense of increased resource utilization, which is undesirable; more so in the case of opportunistic wireless systems such as cognitive radio networks. In order to balance the performance gains from cooperative communication against the possible over-utilization of resources, we propose and analyze an adaptive-cooperation technique for underlay cognitive radio networks, termed as hybrid-cooperation. Under the proposed cooperation scheme, secondary users in a cognitive radio network cooperate adaptively to enhance the spectral efficiency and the error performance of the network. The bit error rate, the spectral efficiency and the outage performance of the network under the proposed hybrid cooperation scheme with amplify-and-forward relaying are analyzed in this paper, and compared against conventional cooperation technique. Findings of the analytical performance analyses are further validated numerically through selected computer-based Monte-Carlo simulations. The proposed scheme is found to achieve significantly better performance in terms of the spectral efficiency and the bit error rate, compared to the conventional amplify-and-forward cooperation scheme. © 2013 IEEE.

  20. Architecture

    OpenAIRE

    Clear, Nic

    2014-01-01

    When discussing science fiction’s relationship with architecture, the usual practice is to look at the architecture “in” science fiction—in particular, the architecture in SF films (see Kuhn 75-143) since the spaces of literary SF present obvious difficulties as they have to be imagined. In this essay, that relationship will be reversed: I will instead discuss science fiction “in” architecture, mapping out a number of architectural movements and projects that can be viewed explicitly as scien...

  1. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    Science.gov (United States)

    2014-11-01

    Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures Allan Fong, MS1,3, Ranjeev...the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the...type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network

  2. HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks

    Directory of Open Access Journals (Sweden)

    Luca Marchetti

    2017-01-01

    Full Text Available HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA. HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA.

  3. PV-Diesel Hybrid SCADA Experiment Network Design

    Science.gov (United States)

    Kalu, Alex; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.; Acosta, R.

    1999-01-01

    The essential features of an experimental network for renewable power system satellite based supervisory, control and data acquisition (SCADA) are communication links, controllers, diagnostic equipment and a hybrid power system. Required components for implementing the network consist of two satellite ground stations, to satellite modems, two 486 PCs, two telephone receivers, two telephone modems, two analog telephone lines, one digital telephone line, a hybrid-power system equipped with controller and a satellite spacecraft. In the technology verification experiment (TVE) conducted by Savannah State University and Florida Solar Energy Center, the renewable energy hybrid system is the Apex-1000 Mini-Hybrid which is equipped with NGC3188 for user interface and remote control and the NGC2010 for monitoring and basic control tasks. This power system is connected to a satellite modem via a smart interface, RS232. Commands are sent to the power system control unit through a control PC designed as PC1. PC1 is thus connected to a satellite model through RS232. A second PC, designated PC2, the diagnostic PC is connected to both satellite modems via separate analog telephone lines for checking modems'health. PC2 is also connected to PC1 via a telephone line. Due to the unavailability of a second ground station for the ACTS, one ground station is used to serve both the sending and receiving functions in this experiment. Signal is sent from the control PC to the Hybrid system at a frequency f(sub 1), different from f(sub 2), the signal from the hybrid system to the control PC. f(sub l) and f(sub 2) are sufficiently separated to avoid interference.

  4. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation.

    Directory of Open Access Journals (Sweden)

    Laura K Reed

    Full Text Available BACKGROUND: The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. METHODOLOGY/PRINCIPAL FINDINGS: Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL mapping analyses directly on F(1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS in the F(1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects. CONCLUSIONS/SIGNIFICANCE: The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

  5. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation.

    Science.gov (United States)

    Reed, Laura K; LaFlamme, Brooke A; Markow, Therese A

    2008-08-27

    The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1) sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F(1) hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F(1) is complex, involving multiple QTL, epistasis, and cytoplasmic effects. The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

  6. Intrinsic and task-evoked network architectures of the human brain

    Science.gov (United States)

    Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.

    2014-01-01

    Summary Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organization. Further, a set of small but consistent changes common across tasks suggests the existence of a task-general network architecture distinguishing task states from rest. These results indicate the brain’s functional network architecture during task performance is shaped primarily by an intrinsic network architecture that is also present during rest, and secondarily by evoked task-general and task-specific network changes. This establishes a strong relationship between resting-state functional connectivity and task-evoked functional connectivity – areas of neuroscientific inquiry typically considered separately. PMID:24991964

  7. Joint Hybrid Backhaul and Access Links Design in Cloud-Radio Access Networks

    KAUST Repository

    Dhifallah, Oussama Najeeb

    2015-09-06

    The cloud-radio access network (CRAN) is expected to be the core network architecture for next generation mobile radio systems. In this paper, we consider the downlink of a CRAN formed of one central processor (the cloud) and several base station (BS), where each BS is connected to the cloud via either a wireless or capacity-limited wireline backhaul link. The paper addresses the joint design of the hybrid backhaul links (i.e., designing the wireline and wireless backhaul connections from the cloud to the BSs) and the access links (i.e., determining the sparse beamforming solution from the BSs to the users). The paper formulates the hybrid backhaul and access link design problem by minimizing the total network power consumption. The paper solves the problem using a two-stage heuristic algorithm. At one stage, the sparse beamforming solution is found using a weighted mixed 11/12 norm minimization approach; the correlation matrix of the quantization noise of the wireline backhaul links is computed using the classical rate-distortion theory. At the second stage, the transmit powers of the wireless backhaul links are found by solving a power minimization problem subject to quality-of-service constraints, based on the principle of conservation of rate by utilizing the rates found in the first stage. Simulation results suggest that the performance of the proposed algorithm approaches the global optimum solution, especially at high signal-to-interference-plus-noise ratio (SINR).

  8. Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing

    Directory of Open Access Journals (Sweden)

    Aydin Azizi

    2017-01-01

    Full Text Available Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE and Ring Probabilistic Logic Neural Networks (RPLNN. The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS, and results have been compared with Genetic Algorithm (GA that demonstrates the feasibility of the proposed architecture successfully.

  9. Fuzzy Based Advanced Hybrid Intrusion Detection System to Detect Malicious Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2017-01-01

    Full Text Available In this paper, an Advanced Hybrid Intrusion Detection System (AHIDS that automatically detects the WSNs attacks is proposed. AHIDS makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes. AHIDS uses anomaly detection and misuse detection based on fuzzy rule sets along with the Multilayer Perceptron Neural Network. The Feed Forward Neural Network along with the Backpropagation Neural Network are utilized to integrate the detection results and indicate the different types of attackers (i.e., Sybil attack, wormhole attack, and hello flood attack. For detection of Sybil attack, Advanced Sybil Attack Detection Algorithm is developed while the detection of wormhole attack is done by Wormhole Resistant Hybrid Technique. The detection of hello flood attack is done by using signal strength and distance. An experimental analysis is carried out in a set of nodes; 13.33% of the nodes are determined as misbehaving nodes, which classified attackers along with a detection rate of the true positive rate and false positive rate. Sybil attack is detected at a rate of 99,40%; hello flood attack has a detection rate of 98, 20%; and wormhole attack has a detection rate of 99, 20%.

  10. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    Science.gov (United States)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  11. A Formally Verified Decentralized Key Management Architecture for Wireless Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Corin, R.J.; Etalle, Sandro; Hartel, Pieter H.

    We present a decentralized key management architecture for wireless sensor networks, covering the aspects of key deployment, key refreshment and key establishment. Our architecture is based on a clear set of assumptions and guidelines. Balance between security and energy consumption is achieved by

  12. Filtering in hybrid dynamic Bayesian networks

    DEFF Research Database (Denmark)

    Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin

    2004-01-01

    for inference. We extend the experiment and perform approximate inference using The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). Furthermore, we combine these techniques in a 'non-strict' Rao-Blackwellisation framework and apply it to the watertank system. We show that UKF and UKF in a PF...... framework outperform the generic PF, EKF and EKF in a PF framework with respect to accuracy and robustness in terms of estimation RMSE (root-mean-square error). Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. We also show...... that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the watertank simulation. Theory and implementation is based on the theory presented in (v.d. Merwe et al...

  13. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry

    NARCIS (Netherlands)

    Liu, Fan; Heck, Albert J R

    2015-01-01

    Proteins are involved in almost all processes of the living cell. They are organized through extensive networks of interaction, by tightly bound macromolecular assemblies or more transiently via signaling nodes. Therefore, revealing the architecture of protein complexes and protein interaction

  14. Dynamic Resource Allocation in Hybrid Access Femtocell Network

    Directory of Open Access Journals (Sweden)

    Afaz Uddin Ahmed

    2014-01-01

    Full Text Available Intercell interference is one of the most challenging issues in femtocell deployment under the coverage of existing macrocell. Allocation of resources between femtocell and macrocell is essential to counter the effects of interference in dense femtocell networks. Advances in resource management strategies have improved the control mechanism for interference reduction at lower node density, but most of them are ineffective at higher node density. In this paper, a dynamic resource allocation management algorithm (DRAMA for spectrum shared hybrid access OFDMA femtocell network is proposed. To reduce the macro-femto-tier interference and to improve the quality of service, the proposed algorithm features a dynamic resource allocation scheme by controlling them both centrally and locally. The proposed scheme focuses on Femtocell Access Point (FAP owners’ satisfaction and allows maximum utilization of available resources based on congestion in the network. A simulation environment is developed to study the quantitative performance of DRAMA in hybrid access-control femtocell network and compare it to closed and open access mechanisms. The performance analysis shows that higher number of random users gets connected to the FAP without compromising FAP owners’ satisfaction allowing the macrocell to offload a large number of users in a dense heterogeneous network.

  15. Modeling of a 3DTV service in the software-defined networking architecture

    Science.gov (United States)

    Wilczewski, Grzegorz

    2014-11-01

    In this article a newly developed concept towards modeling of a multimedia service offering stereoscopic motion imagery is presented. Proposed model is based on the approach of utilization of Software-defined Networking or Software Defined Networks architecture (SDN). The definition of 3D television service spanning SDN concept is identified, exposing basic characteristic of a 3DTV service in a modern networking organization layout. Furthermore, exemplary functionalities of the proposed 3DTV model are depicted. It is indicated that modeling of a 3DTV service in the Software-defined Networking architecture leads to multiplicity of improvements, especially towards flexibility of a service supporting heterogeneity of end user devices.

  16. Proposing Hybrid Architecture to Implement Cloud Computing in Higher Education Institutions Using a Meta-synthesis Appro

    Directory of Open Access Journals (Sweden)

    hamid reza bazi

    2017-12-01

    Full Text Available Cloud computing is a new technology that considerably helps Higher Education Institutions (HEIs to develop and create competitive advantage with inherent characteristics such as flexibility, scalability, accessibility, reliability, fault tolerant and economic efficiency. Due to the numerous advantages of cloud computing, and in order to take advantage of cloud computing infrastructure, services of universities and HEIs need to migrate to the cloud. However, this transition involves many challenges, one of which is lack or shortage of appropriate architecture for migration to the technology. Using a reliable architecture for migration ensures managers to mitigate risks in the cloud computing technology. Therefore, organizations always search for suitable cloud computing architecture. In previous studies, these important features have received less attention and have not been achieved in a comprehensive way. The aim of this study is to use a meta-synthesis method for the first time to analyze the previously published studies and to suggest appropriate hybrid cloud migration architecture (IUHEC. We reviewed many papers from relevant journals and conference proceedings. The concepts extracted from these papers are classified to related categories and sub-categories. Then, we developed our proposed hybrid architecture based on these concepts and categories. The proposed architecture was validated by a panel of experts and Lawshe’s model was used to determine the content validity. Due to its innovative yet user-friendly nature, comprehensiveness, and high security, this architecture can help HEIs have an effective migration to cloud computing environment.

  17. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  18. SIMULATION OF WIRELESS SENSOR NETWORK WITH HYBRID TOPOLOGY

    Directory of Open Access Journals (Sweden)

    J. Jaslin Deva Gifty

    2016-03-01

    Full Text Available The design of low rate Wireless Personal Area Network (WPAN by IEEE 802.15.4 standard has been developed to support lower data rates and low power consuming application. Zigbee Wireless Sensor Network (WSN works on the network and application layer in IEEE 802.15.4. Zigbee network can be configured in star, tree or mesh topology. The performance varies from topology to topology. The performance parameters such as network lifetime, energy consumption, throughput, delay in data delivery and sensor field coverage area varies depending on the network topology. In this paper, designing of hybrid topology by using two possible combinations such as star-tree and star-mesh is simulated to verify the communication reliability. This approach is to combine all the benefits of two network model. The parameters such as jitter, delay and throughput are measured for these scenarios. Further, MAC parameters impact such as beacon order (BO and super frame order (SO for low power consumption and high channel utilization, has been analysed for star, tree and mesh topology in beacon disable mode and beacon enable mode by varying CBR traffic loads.

  19. A comparison of neural network architectures for the prediction of MRR in EDM

    Science.gov (United States)

    Jena, A. R.; Das, Raja

    2017-11-01

    The aim of the research work is to predict the material removal rate of a work-piece in electrical discharge machining (EDM). Here, an effort has been made to predict the material removal rate through back-propagation neural network (BPN) and radial basis function neural network (RBFN) for a work-piece of AISI D2 steel. The input parameters for the architecture are discharge-current (Ip), pulse-duration (Ton), and duty-cycle (τ) taken for consideration to obtained the output for material removal rate of the work-piece. In the architecture, it has been observed that radial basis function neural network is comparatively faster than back-propagation neural network but logically back-propagation neural network results more real value. Therefore BPN may consider as a better process in this architecture for consistent prediction to save time and money for conducting experiments.

  20. A hybrid parallel architecture for electrostatic interactions in the simulation of dissipative particle dynamics

    Science.gov (United States)

    Yang, Sheng-Chun; Lu, Zhong-Yuan; Qian, Hu-Jun; Wang, Yong-Lei; Han, Jie-Ping

    2017-11-01

    , which approximately take up most of the total simulation time. Although the parallel method CU-ENUF (Yang et al., 2016) based on GPU has achieved a qualitative leap compared with previous methods in electrostatic interactions computation, the computation capability is limited to the throughput capacity of a single GPU for super-scale simulation system. Therefore, we should look for an effective method to handle the calculation of electrostatic interactions efficiently for a simulation system with super-scale size. Solution method: We constructed a hybrid parallel architecture, in which CPU and GPU are combined to accelerate the electrostatic computation effectively. Firstly, the simulation system is divided into many subtasks via domain-decomposition method. Then MPI (Message Passing Interface) is used to implement the CPU-parallel computation with each computer node corresponding to a particular subtask, and furthermore each subtask in one computer node will be executed in GPU in parallel efficiently. In this hybrid parallel method, the most critical technical problem is how to parallelize a CUNFFT (nonequispaced fast Fourier transform based on CUDA) in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Restrictions: The HP-ENUF is mainly oriented to super-scale system simulations, in which the performance superiority is shown adequately. However, for a small simulation system containing less than 106 particles, the mode of multiple computer nodes has no apparent efficiency advantage or even lower efficiency due to the serious network delay among computer nodes, than the mode of single computer node. References: (1) S.-C. Yang, H.-J. Qian, Z.-Y. Lu, Appl. Comput. Harmon. Anal. 2016, http://dx.doi.org/10.1016/j.acha.2016.04.009. (2) S.-C. Yang, Y.-L. Wang, G.-S. Jiao, H.-J. Qian, Z.-Y. Lu, J. Comput. Chem. 37 (2016) 378. (3) S.-C. Yang, Y.-L. Zhu, H.-J. Qian, Z.-Y. Lu, Appl. Chem. Res. Chin. Univ

  1. A Hybrid Multilevel Storage Architecture for Electric Power Dispatching Big Data

    Science.gov (United States)

    Yan, Hu; Huang, Bibin; Hong, Bowen; Hu, Jing

    2017-10-01

    Electric power dispatching is the center of the whole power system. In the long run time, the power dispatching center has accumulated a large amount of data. These data are now stored in different power professional systems and form lots of information isolated islands. Integrating these data and do comprehensive analysis can greatly improve the intelligent level of power dispatching. In this paper, a hybrid multilevel storage architecture for electrical power dispatching big data is proposed. It introduces relational database and NoSQL database to establish a power grid panoramic data center, effectively meet power dispatching big data storage needs, including the unified storage of structured and unstructured data fast access of massive real-time data, data version management and so on. It can be solid foundation for follow-up depth analysis of power dispatching big data.

  2. Hybrid Three-Phase/Single-Phase Microgrid Architecture with Power Management Capabilities

    DEFF Research Database (Denmark)

    Sun, Qiuye; Zhou, Jianguo; Guerrero, Josep M.

    2015-01-01

    With the fast proliferation of single-phase distributed generation (DG) units and loads integrated into residential microgrids, independent power sharing per phase and full use of the energy generated by DGs have become crucial. To address these issues, this paper proposes a hybrid microgrid...... architecture and its power management strategy. In this microgrid structure, a power sharing unit (PSU), composed of three single-phase back-to-back (SPBTB) converters, is proposed to be installed at the point of common coupling (PCC). The aim of the PSU is mainly to realize the power exchange and coordinated...... control of load power sharing among phases, as well as to allow fully utilization of the energy generated by DGs. Meanwhile, the method combining the modified adaptive backstepping-sliding mode control approach and droop control is also proposed to design the SPBTB system controllers. With the application...

  3. Architecture and characterization of the P4DI CMOS hybrid pixel sensor

    International Nuclear Information System (INIS)

    Chatzistratis, D.; Theodoratos, G.; Kazas, I.; Loukas, D.; Zervakis, E.; Lambropoulos, C.P.

    2017-01-01

    Gamma ray imaging can be used for the extraction either of the activity map of a source or of the attenuation map of an object or both, as well as for the identification of the material composition of the emitting source or the object. All these imaging modalities can benefit from instruments giving the information of the energy of the converted photons and also the spatial and time coordinates of the conversion. The P4DI CMOS and hybrid provides the core technology for this task being a 2-D array based on Cd(Zn)Te material for the sensing layer. It consists of 1250 pixels with 400 μ m pitch. The energy resolution of the 241 Am photopeak is 3.5 keV, time resolution is less than 12 μ s and power consumption is less than 100 mW. Architecture and characterization are described.

  4. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    International Nuclear Information System (INIS)

    Ma, J; Chen, K

    2016-01-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni 3 S 2 @Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2 /r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol −1 L s −1 (for the kale-like and cabbage-like Ni 3 S 2 @Ni, respectively) will shed some light on the development of new-type MRI contrast agents. (paper)

  5. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  6. Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Summerhill, Richard [Internet2, Washington, DC (United States); Lehman, Tom [Univ. of Southern California, Los Angeles, CA (United States). Information Sciences Inst. (ISI); Ghani, Nasir [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical & Computer Engineering; Boyd, Eric [Univ. Corporation for Advanced Internet Development (UCAID), Washington, DC (United States)

    2009-08-14

    There were four basic task areas identified for the Hybrid-MLN project. They are: Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation; Heterogeneous DataPlane Testing; Simulation; Project Publications, Reports, and Presentations.

  7. Bandwidth Efficient Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Data collection and transmission are the fundamental operations of Wireless Sensor Networks (WSNs). A key challenge in effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Bandwidth Efficient Hybrid...... in the network and then perform the pair-wise synchronization. With the mobility of node, the structure frequently changes causing an increase in energy consumption. To mitigate the problem BESDA aggregate data with the notion of a global timescale throughout the network and schedule based time-division multiple...... accesses (TDMA) techniques as MAC layer protocol. It reduces the collision of packets. Simulation results show that BESDA is energy efficient, with increased throughput, and has less delay as compared with state-of-the-art....

  8. An overview of 5G network slicing architecture

    Science.gov (United States)

    Chen, Qiang; Wang, Xiaolei; Lv, Yingying

    2018-05-01

    With the development of mobile communication technology, the traditional single network model has been unable to meet the needs of users, and the demand for differentiated services is increasing. In order to solve this problem, the fifth generation of mobile communication technology came into being, and as one of the key technologies of 5G, network slice is the core technology of network virtualization and software defined network, enabling network slices to flexibly provide one or more network services according to users' needs[1]. Each slice can independently tailor the network functions according to the requirements of the business scene and the traffic model and manage the layout of the corresponding network resources, to improve the flexibility of network services and the utilization of resources, and enhance the robustness and reliability of the whole network [2].

  9. Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

    Science.gov (United States)

    Caseys, Celine; Stritt, Christoph; Glauser, Gaetan; Blanchard, Thierry; Lexer, Christian

    2015-01-01

    The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.

  10. Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

    Directory of Open Access Journals (Sweden)

    Celine Caseys

    Full Text Available The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar and P. tremula (European aspen and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS. We detected 41 quantitative trait loci (QTL for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.

  11. High performance 3D neutron transport on peta scale and hybrid architectures within APOLLO3 code

    International Nuclear Information System (INIS)

    Jamelot, E.; Dubois, J.; Lautard, J-J.; Calvin, C.; Baudron, A-M.

    2011-01-01

    APOLLO3 code is a common project of CEA, AREVA and EDF for the development of a new generation system for core physics analysis. We present here the parallelization of two deterministic transport solvers of APOLLO3: MINOS, a simplified 3D transport solver on structured Cartesian and hexagonal grids, and MINARET, a transport solver based on triangular meshes on 2D and prismatic ones in 3D. We used two different techniques to accelerate MINOS: a domain decomposition method, combined with an accelerated algorithm using GPU. The domain decomposition is based on the Schwarz iterative algorithm, with Robin boundary conditions to exchange information. The Robin parameters influence the convergence and we detail how we optimized the choice of these parameters. MINARET parallelization is based on angular directions calculation using explicit message passing. Fine grain parallelization is also available for each angular direction using shared memory multithreaded acceleration. Many performance results are presented on massively parallel architectures using more than 103 cores and on hybrid architectures using some tens of GPUs. This work contributes to the HPC development in reactor physics at the CEA Nuclear Energy Division. (author)

  12. Automation of column-based radiochemical separations. A comparison of fluidic, robotic, and hybrid architectures

    Energy Technology Data Exchange (ETDEWEB)

    Grate, J.W.; O' Hara, M.J.; Farawila, A.F.; Ozanich, R.M.; Owsley, S.L. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2011-07-01

    Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on using disposable components so that no sample contacts any surface that any other sample has contacted, and setting up samples and columns in parallel for subsequent automated processing. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions one of four rows of six vials below the columns. The samples are delivered to each column via a manual 3-port disposable valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is a simpler more efficient approach for performing anion exchange procedures for the recovery and purification of plutonium from samples. The automation architectures described can also be adapted to column-based extraction chromatography separations. (orig.)

  13. SEMICONDUCTOR INTEGRATED CIRCUITS: A high performance 90 nm CMOS SAR ADC with hybrid architecture

    Science.gov (United States)

    Xingyuan, Tong; Jianming, Chen; Zhangming, Zhu; Yintang, Yang

    2010-01-01

    A 10-bit 2.5 MS/s SAR A/D converter is presented. In the circuit design, an R-C hybrid architecture D/A converter, pseudo-differential comparison architecture and low power voltage level shifters are utilized. Design challenges and considerations are also discussed. In the layout design, each unit resistor is sided by dummies for good matching performance, and the capacitors are routed with a common-central symmetry method to reduce the nonlin-earity error. This proposed converter is implemented based on 90 nm CMOS logic process. With a 3.3 V analog supply and a 1.0 V digital supply, the differential and integral nonlinearity are measured to be less than 0.36 LSB and 0.69 LSB respectively. With an input frequency of 1.2 MHz at 2.5 MS/s sampling rate, the SFDR and ENOB are measured to be 72.86 dB and 9.43 bits respectively, and the power dissipation is measured to be 6.62 mW including the output drivers. This SAR A/D converter occupies an area of 238 × 214 μm2. The design results of this converter show that it is suitable for multi-supply embedded SoC applications.

  14. A high performance 90 nm CMOS SAR ADC with hybrid architecture

    International Nuclear Information System (INIS)

    Tong Xingyuan; Zhu Zhangming; Yang Yintang; Chen Jianming

    2010-01-01

    A 10-bit 2.5 MS/s SAR A/D converter is presented. In the circuit design, an R-C hybrid architecture D/A converter, pseudo-differential comparison architecture and low power voltage level shifters are utilized. Design challenges and considerations are also discussed. In the layout design, each unit resistor is sided by dummies for good matching performance, and the capacitors are routed with a common-central symmetry method to reduce the nonlin-earity error. This proposed converter is implemented based on 90 nm CMOS logic process. With a 3.3 V analog supply and a 1.0 V digital supply, the differential and integral nonlinearity are measured to be less than 0.36 LSB and 0.69 LSB respectively. With an input frequency of 1.2 MHz at 2.5 MS/s sampling rate, the SFDR and ENOB are measured to be 72.86 dB and 9.43 bits respectively, and the power dissipation is measured to be 6.62 mW including the output drivers. This SAR A/D converter occupies an area of 238 x 214 μm 2 . The design results of this converter show that it is suitable for multi-supply embedded SoC applications. (semiconductor integrated circuits)

  15. DevOps for network function virtualisation: an architectural approach

    OpenAIRE

    Karl, H.; Draexler, S.; Peuster, M.; Galis, A.; Bredel, M.; Ramos, A.; Martrat, J.; Siddiqui, M. S.; Van Rossem, S.; Tavernier, W.; Xilouris, G.

    2016-01-01

    The Service Programming and Orchestration for Virtualised Software Networks (SONATA) project targets both the flexible programmability of software networks and the optimisation of their deployments by means of integrating Development and Operations in order to accelerate industry adoption of software networks and reduce time-to-market for networked services. SONATA supports network function chaining and orchestration, making service platforms modular and easier to customise to the needs of di...

  16. Control of a hybrid compensator in a power network by an artificial neural network

    Directory of Open Access Journals (Sweden)

    I. S. Shaw

    1998-07-01

    Full Text Available Increased interest in the elimination of distortion in electrical power networks has led to the development of various compensator topologies. The increasing cost of electrical energy necessitates the cost-effective operation of any of these topologies. This paper considers the development of an artificial neural network based controller, trained by means of the backpropagation method, that ensures the cost-effective operation of the hybrid compensator consisting of various converters and filters.

  17. Delivering low-bandwidth telemedicine services over hybrid networks in developing countries.

    Science.gov (United States)

    Amble, R; Comparini, A; Kumar, K R; Dahlgren, R; Lurie, Y M

    2004-01-01

    The results of medical specialist consultations sampled from several rural clinics located throughout India indicate that remote expert opinions can improve the speed and accuracy of diagnosis. Central to this presentation is a description of how real-time and store & forward telemedicine services can be provided to rural populations over hybrid networks made up of ISDN, POTS, VSAT, cellular, and Cable Internet connections. A model for meeting the specialized medical needs of developing countries will be highlighted. Descriptions, examples, and benefits of how Browser-based client-server architectures are being used in over 20 locations in India and Mexico for triaging real-time vital signs, DICOM images, audio & video, and clinical text information will be highlighted.

  18. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    Science.gov (United States)

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  19. Metrics of brain network architecture capture the impact of disease in children with epilepsy

    Directory of Open Access Journals (Sweden)

    Michael J. Paldino

    2017-01-01

    Conclusions: We observed that a machine learning algorithm accurately predicted epilepsy duration based on global metrics of network architecture derived from resting state fMRI. These findings suggest that network metrics have the potential to form the basis for statistical models that translate quantitative imaging data into patient-level markers of cognitive deterioration.

  20. mCRAN: A radio access network architecture for 5G indoor ccommunications

    NARCIS (Netherlands)

    Chandra, Kishor; Cao, Zizheng; Bruintjes, Tom; Prasad, R.V.; Karagiannis, Georgios; Tangdiongga, E.; van den Boom, H.P.A.; Kokkeler, Andre B.J.

    2015-01-01

    Millimeter wave (mmWave) communication is being seen as a disruptive technology for 5G era. In particular, 60GHz frequency band has emerged as a promising candidate for multi-Gbps connectivity in indoor and hotspot areas. In terms of network architecture, cloud radio access network (CRAN) has

  1. mCRAN : a radio access network architecture for 5G indoor communications

    NARCIS (Netherlands)

    Chandra, Kishor; Cao, Zizheng; Bruintjes, T. M.; Prasad, R. Venkatesha; Karagiannis, G.; Tangdiongga, Eduward; van den Boom, H.P.A.; Kokkeler, A. B J

    2015-01-01

    Millimeter wave (mmWave) communication is being seen as a disruptive technology for 5G era. In particular, 60GHz frequency band has emerged as a promising candidate for multi-Gbps connectivity in indoor and hotspot areas. In terms of network architecture, cloud radio access network (CRAN) has

  2. OTN Transport of Baseband Radio Serial Protocols in C-RAN Architecture for Mobile Network Applications

    DEFF Research Database (Denmark)

    Checko, Aleksandra; Kardaras, Georgios; Lanzani, Christian Fabio Alessandro

    This white paper presents a proof of concept implementation of digital baseband radio data transport over Optical Transport Network (OTN) compliant to 3GPP Long Term Evolution – Advanced (LTE-A) standard enabling Cloud Radio Access Network (C-RAN) architecture. The transport between the baseband ...

  3. Modular Neural Tile Architecture for Compact Embedded Hardware Spiking Neural Network

    NARCIS (Netherlands)

    Pande, Sandeep; Morgan, Fearghal; Cawley, Seamus; Bruintjes, Tom; Smit, Gerardus Johannes Maria; McGinley, Brian; Carrillo, Snaider; Harkin, Jim; McDaid, Liam

    2013-01-01

    Biologically-inspired packet switched network on chip (NoC) based hardware spiking neural network (SNN) architectures have been proposed as an embedded computing platform for classification, estimation and control applications. Storage of large synaptic connectivity (SNN topology) information in

  4. ATLANTIDES: An Architecture for Alert Verification in Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Crispo, Bruno; Etalle, Sandro

    2007-01-01

    We present an architecture designed for alert verification (i.e., to reduce false positives) in network intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-based analysis of the system output, which provides useful context information regarding the network

  5. A HYBRID HOPFIELD NEURAL NETWORK AND TABU SEARCH ALGORITHM TO SOLVE ROUTING PROBLEM IN COMMUNICATION NETWORK

    Directory of Open Access Journals (Sweden)

    MANAR Y. KASHMOLA

    2012-06-01

    Full Text Available The development of hybrid algorithms for solving complex optimization problems focuses on enhancing the strengths and compensating for the weakness of two or more complementary approaches. The goal is to intelligently combine the key elements of these approaches to find superior solutions to solve optimization problems. Optimal routing in communication network is considering a complex optimization problem. In this paper we propose a hybrid Hopfield Neural Network (HNN and Tabu Search (TS algorithm, this algorithm called hybrid HNN-TS algorithm. The paradigm of this hybridization is embedded. We embed the short-term memory and tabu restriction features from TS algorithm in the HNN model. The short-term memory and tabu restriction control the neuron selection process in the HNN model in order to get around the local minima problem and find an optimal solution using the HNN model to solve complex optimization problem. The proposed algorithm is intended to find the optimal path for packet transmission in the network which is fills in the field of routing problem. The optimal path that will be selected is depending on 4-tuples (delay, cost, reliability and capacity. Test results show that the propose algorithm can find path with optimal cost and a reasonable number of iterations. It also shows that the complexity of the network model won’t be a problem since the neuron selection is done heuristically.

  6. A network architecture for International Business Satellite communications

    Science.gov (United States)

    Takahata, Fumio; Nohara, Mitsuo; Takeuchi, Yoshio

    Demand Assignment (DA) control is expected to be introduced in the International Business Satellte communications (IBS) network in order to cope with a growing international business traffic. The paper discusses the DA/IBS network from the viewpoints of network configuration, satellite channel configuration and DA control. The network configuration proposed here consists of one Central Station with network management function and several Network Coordination Stations with user management function. A satellite channel configuration is also presented along with a tradeoff study on transmission bit rate, high power amplifier output power requirement, and service quality. The DA control flow and protocol based on CCITT Signalling System No. 7 are also proposed.

  7. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

    Science.gov (United States)

    Graves, Alex; Schmidhuber, Jürgen

    2005-01-01

    In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and suggest that BLSTM is an effective architecture with which to exploit it.

  8. Separating VNF and Network Control for Hardware‐Acceleration of SDN/NFV Architecture

    Directory of Open Access Journals (Sweden)

    Tong Duan

    2017-08-01

    Full Text Available A hardware‐acceleration architecture that separates virtual network functions (VNFs and network control (called HSN is proposed to solve the mismatch between the simple flow steering requirements and strong packet processing abilities of software‐defined networking (SDN forwarding elements (FEs in SDN/network function virtualization (NFV architecture, while improving the efficiency of NFV infrastructure and the performance of network‐intensive functions. HSN makes full use of FEs and accelerates VNFs through two mechanisms: (1 separation of traffic steering and packet processing in the FEs; (2 separation of SDN and NFV control in the FEs. Our HSN prototype, built on NetFPGA‐10G, demonstrates that the processing performance can be greatly improved with only a small modification of the traditional SDN/NFV architecture.

  9. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    Science.gov (United States)

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  10. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2015-05-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other\\'s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network\\'s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network\\'s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. © 2015 IEEE.

  11. Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs.

    Science.gov (United States)

    Pesavento, Michael J; Pinto, David J

    2012-11-01

    Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent's primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input's temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole cell recordings of in vitro neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence) and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons had identical membrane properties, the sensitivity of in vitro neurons to temporal vs. magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network's temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect.

  12. Design mobile satellite system architecture as an integral part of the cellular access digital network

    Science.gov (United States)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  13. Study of Hybrid Localization Noncooperative Scheme in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Irfan Dwiguna Sumitra

    2017-01-01

    Full Text Available In this paper, we evaluated the experiment and analysis measurement accuracy to determine object location based on wireless sensor network (WSN. The algorithm estimates the position of sensor nodes employing received signal strength (RSS from scattered nodes in the environment, in particular for the indoor building. Besides that, we considered another algorithm based on weight centroid localization (WCL. In particular testbed, we combined both RSS and WCL as hybrid localization in case of noncooperative scheme with considering that source nodes directly communicate only with anchor nodes. Our experimental result shows localization accuracy of more than 90% and obtained the estimation error reduction to 4% compared to existing algorithms.

  14. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  15. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation.

    Science.gov (United States)

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-07-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  16. Logarithmic r-θ mapping for hybrid optical neural network filter for multiple objects recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.

    2009-04-01

    θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.

  17. Towards Horizontal Architecture for Autonomic M2M Service Networks

    Directory of Open Access Journals (Sweden)

    Juhani Latvakoski

    2014-05-01

    Full Text Available Today, increasing number of industrial application cases rely on the Machine to Machine (M2M services exposed from physical devices. Such M2M services enable interaction of physical world with the core processes of company information systems. However, there are grand challenges related to complexity and “vertical silos” limiting the M2M market scale and interoperability. It is here expected that horizontal approach for the system architecture is required for solving these challenges. Therefore, a set of architectural principles and key enablers for the horizontal architecture have been specified in this work. A selected set of key enablers called as autonomic M2M manager, M2M service capabilities, M2M messaging system, M2M gateways towards energy constrained M2M asset devices and creation of trust to enable end-to-end security for M2M applications have been developed. The developed key enablers have been evaluated separately in different scenarios dealing with smart metering, car sharing and electric bike experiments. The evaluation results shows that the provided architectural principles, and developed key enablers establish a solid ground for future research and seem to enable communication between objects and applications, which are not initially been designed to communicate together. The aim as the next step in this research is to create a combined experimental system to evaluate the system interoperability and performance in a more detailed manner.

  18. Network Coding Parallelization Based on Matrix Operations for Multicore Architectures

    DEFF Research Database (Denmark)

    Wunderlich, Simon; Cabrera, Juan; Fitzek, Frank

    2015-01-01

    such as the Raspberry Pi2 with four cores in the order of up to one full magnitude. The speed increase gain is even higher than the number of cores of the Raspberry Pi2 since the newly introduced approach exploits the cache architecture way better than by-the-book matrix operations. Copyright © 2015 by the Institute...

  19. Gas ultracentrifuge separative parameters modeling using hybrid neural networks

    International Nuclear Information System (INIS)

    Crus, Maria Ursulina de Lima

    2005-01-01

    A hybrid neural network is developed for the calculation of the separative performance of an ultracentrifuge. A feed forward neural network is trained to estimate the internal flow parameters of a gas ultracentrifuge, and then these parameters are applied in the diffusion equation. For this study, a 573 experimental data set is used to establish the relation between the separative performance and the controlled variables. The process control variables considered are: the feed flow rate F, the cut θ and the product pressure Pp. The mechanical arrangements consider the radial waste scoop dimension, the rotating baffle size D s and the axial feed location Z E . The methodology was validated through the comparison of the calculated separative performance with experimental values. This methodology may be applied to other processes, just by adapting the phenomenological procedures. (author)

  20. ANOMALY DETECTION IN NETWORKING USING HYBRID ARTIFICIAL IMMUNE ALGORITHM

    Directory of Open Access Journals (Sweden)

    D. Amutha Guka

    2012-01-01

    Full Text Available Especially in today’s network scenario, when computers are interconnected through internet, security of an information system is very important issue. Because no system can be absolutely secure, the timely and accurate detection of anomalies is necessary. The main aim of this research paper is to improve the anomaly detection by using Hybrid Artificial Immune Algorithm (HAIA which is based on Artificial Immune Systems (AIS and Genetic Algorithm (GA. In this research work, HAIA approach is used to develop Network Anomaly Detection System (NADS. The detector set is generated by using GA and the anomalies are identified using Negative Selection Algorithm (NSA which is based on AIS. The HAIA algorithm is tested with KDD Cup 99 benchmark dataset. The detection rate is used to measure the effectiveness of the NADS. The results and consistency of the HAIA are compared with earlier approaches and the results are presented. The proposed algorithm gives best results when compared to the earlier approaches.

  1. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  2. Neural-network hybrid control for antilock braking systems.

    Science.gov (United States)

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  3. On Hybrid Energy Utilization in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Tala’t

    2017-11-01

    Full Text Available In a wireless sensor network (WSN, many applications have limited energy resources for data transmission. In order to accomplish a better green communication for WSN, a hybrid energy scheme can supply a more reliable energy source. In this article, hybrid energy utilization—which consists of constant energy source and solar harvested energy—is considered for WSN. To minimize constant energy usage from the hybrid source, a Markov decision process (MDP is designed to find the optimal transmission policy. With a finite packet buffer and a finite battery size, an MDP model is presented to define the states, actions, state transition probabilities, and the cost function including the cost values for all actions. A weighted sum of constant energy source consumption and a packet dropping probability (PDP are adopted as the cost value, enabling us to find the optimal solution for balancing the minimization of the constant energy source utilization and the PDP using a value iteration algorithm. As shown in the simulation results, the performance of optimal solution using MDP achieves a significant improvement compared to solution without its use.

  4. Reference Architecture for Multi-Layer Software Defined Optical Data Center Networks

    Directory of Open Access Journals (Sweden)

    Casimer DeCusatis

    2015-09-01

    Full Text Available As cloud computing data centers grow larger and networking devices proliferate; many complex issues arise in the network management architecture. We propose a framework for multi-layer; multi-vendor optical network management using open standards-based software defined networking (SDN. Experimental results are demonstrated in a test bed consisting of three data centers interconnected by a 125 km metropolitan area network; running OpenStack with KVM and VMW are components. Use cases include inter-data center connectivity via a packet-optical metropolitan area network; intra-data center connectivity using an optical mesh network; and SDN coordination of networking equipment within and between multiple data centers. We create and demonstrate original software to implement virtual network slicing and affinity policy-as-a-service offerings. Enhancements to synchronous storage backup; cloud exchanges; and Fibre Channel over Ethernet topologies are also discussed.

  5. Wireless local network architecture for Naval medical treatment facilities

    OpenAIRE

    Deason, Russell C.

    2004-01-01

    Approved for public release; distribution is unlimited In today's Navy Medicine, an approach towards wireless networks is coming into view. The idea of developing and deploying workable Wireless Local Area Networks (WLAN) throughout Naval hospitals is but just a few years down the road. Currently Naval Medical Treatment Facilities (MTF) are using wired Local Area Networks (LANs) throughout the infrastructure of each facility. Civilian hospitals and other medical treatment facilities have b...

  6. A SECURE MESSAGE TRANSMISSION SYSTEM ARCHITECTURE FOR COMPUTER NETWORKS EMPLOYING SMART CARDS

    Directory of Open Access Journals (Sweden)

    Geylani KARDAŞ

    2008-01-01

    Full Text Available In this study, we introduce a mobile system architecture which employs smart cards for secure message transmission in computer networks. The use of smart card provides two security services as authentication and confidentiality in our design. The security of the system is provided by asymmetric encryption. Hence, smart cards are used to store personal account information as well as private key of each user for encryption / decryption operations. This offers further security, authentication and mobility to the system architecture. A real implementation of the proposed architecture which utilizes the JavaCard technology is also discussed in this study.

  7. A Holistic Management Architecture for Large-Scale Adaptive Networks

    National Research Council Canada - National Science Library

    Clement, Michael R

    2007-01-01

    This thesis extends the traditional notion of network management as an indicator of resource availability and utilization into a systemic model of resource requirements, capabilities, and adaptable...

  8. Marginally Stable Triangular Recurrent Neural Network Architecture for Time Series Prediction.

    Science.gov (United States)

    Sivakumar, Seshadri; Sivakumar, Shyamala

    2017-09-25

    This paper introduces a discrete-time recurrent neural network architecture using triangular feedback weight matrices that allows a simplified approach to ensuring network and training stability. The triangular structure of the weight matrices is exploited to readily ensure that the eigenvalues of the feedback weight matrix represented by the block diagonal elements lie on the unit circle in the complex z-plane by updating these weights based on the differential of the angular error variable. Such placement of the eigenvalues together with the extended close interaction between state variables facilitated by the nondiagonal triangular elements, enhances the learning ability of the proposed architecture. Simulation results show that the proposed architecture is highly effective in time-series prediction tasks associated with nonlinear and chaotic dynamic systems with underlying oscillatory modes. This modular architecture with dual upper and lower triangular feedback weight matrices mimics fully recurrent network architectures, while maintaining learning stability with a simplified training process. While training, the block-diagonal weights (hence the eigenvalues) of the dual triangular matrices are constrained to the same values during weight updates aimed at minimizing the possibility of overfitting. The dual triangular architecture also exploits the benefit of parsing the input and selectively applying the parsed inputs to the two subnetworks to facilitate enhanced learning performance.

  9. Softwarization of Mobile Network Functions towards Agile and Energy Efficient 5G Architectures: A Survey

    Directory of Open Access Journals (Sweden)

    Dlamini Thembelihle

    2017-01-01

    Full Text Available Future mobile networks (MNs are required to be flexible with minimal infrastructure complexity, unlike current ones that rely on proprietary network elements to offer their services. Moreover, they are expected to make use of renewable energy to decrease their carbon footprint and of virtualization technologies for improved adaptability and flexibility, thus resulting in green and self-organized systems. In this article, we discuss the application of software defined networking (SDN and network function virtualization (NFV technologies towards softwarization of the mobile network functions, taking into account different architectural proposals. In addition, we elaborate on whether mobile edge computing (MEC, a new architectural concept that uses NFV techniques, can enhance communication in 5G cellular networks, reducing latency due to its proximity deployment. Besides discussing existing techniques, expounding their pros and cons and comparing state-of-the-art architectural proposals, we examine the role of machine learning and data mining tools, analyzing their use within fully SDN- and NFV-enabled mobile systems. Finally, we outline the challenges and the open issues related to evolved packet core (EPC and MEC architectures.

  10. Distributed Fault-Tolerant Quality Of Service Routing in Hybrid Directional Wireless Networks

    National Research Council Canada - National Science Library

    Llewellyn, II, Larry C

    2007-01-01

    This thesis presents a distributed fault-tolerant routing protocol (EFDCB) for QoS supporting hybrid mobile ad hoc networks with the aim of mitigating QoS disruption time when network failures occur...

  11. Metropolitian area network services comprised of virtual local area networks running over hybrid fiber-coax and asynchronous transfer mode technologies

    Science.gov (United States)

    Biedron, William S.

    1995-11-01

    Since 1990 there has been a rapid increase in the demand for communication services, especially local and wide area network (LAN/WAN) oriented services. With the introduction of the DFB laser transmitter, hybrid-fiber-coax (HFC) cable plant designs, ATM transport technologies and rf modems, new LAN/WAN services can now be defined and marketed to residential and business customers over existing cable TV systems. The term metropolitan area network (MAN) can be used to describe this overall network. This paper discusses the technical components needed to provision these services as well as provides some perspectives on integration issues. Architecture at the headend and in the backbone is discussed, as well as specific service definitions and the technology issues associated with each. The TCP/IP protocol is suggested as a primary protocol to be used throughout the MAN.

  12. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-05-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other’s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network’s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network’s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. Furthermore, with the use of fractional cooperation, the average recovery overhead is further reduced by around 5% for the primary network and around 10% for the secondary network when a high fractional cooperation probability is used.

  13. Design Methodology of a Sensor Network Architecture Supporting Urgent Information and Its Evaluation

    Science.gov (United States)

    Kawai, Tetsuya; Wakamiya, Naoki; Murata, Masayuki

    Wireless sensor networks are expected to become an important social infrastructure which helps our life to be safe, secure, and comfortable. In this paper, we propose design methodology of an architecture for fast and reliable transmission of urgent information in wireless sensor networks. In this methodology, instead of establishing single complicated monolithic mechanism, several simple and fully-distributed control mechanisms which function in different spatial and temporal levels are incorporated on each node. These mechanisms work autonomously and independently responding to the surrounding situation. We also show an example of a network architecture designed following the methodology. We evaluated the performance of the architecture by extensive simulation and practical experiments and our claim was supported by the results of these experiments.

  14. A Novel Buffer Management Architecture for Epidemic Routing in Delay Tolerant Networks (DTNs)

    KAUST Repository

    Elwhishi, Ahmed; Ho, Pin-Han; Naik, K.; Shihada, Basem

    2010-01-01

    Delay tolerant networks (DTNs) are wireless networks in which an end-to-end path for a given node pair can never exist for an extended period. It has been reported as a viable approach in launching multiple message replicas in order to increase message delivery ratio and reduce message delivery delay. This advantage, nonetheless, is at the expense of taking more buffer space at each node. The combination of custody and replication entails high buffer and bandwidth overhead. This paper investigates a new buffer management architecture for epidemic routing in DTNs, which helps each node to make a decision on which message should be forwarded or dropped. The proposed buffer management architecture is characterized by a suite of novel functional modules, including Summary Vector Exchange Module (SVEM), Networks State Estimation Module (NSEM), and Utility Calculation Module (UCM). Extensive simulation results show that the proposed buffer management architecture can achieve superb performance against its counterparts in terms of delivery ratio and delivery delay.

  15. A Novel Buffer Management Architecture for Epidemic Routing in Delay Tolerant Networks (DTNs)

    KAUST Repository

    Elwhishi, Ahmed

    2010-11-17

    Delay tolerant networks (DTNs) are wireless networks in which an end-to-end path for a given node pair can never exist for an extended period. It has been reported as a viable approach in launching multiple message replicas in order to increase message delivery ratio and reduce message delivery delay. This advantage, nonetheless, is at the expense of taking more buffer space at each node. The combination of custody and replication entails high buffer and bandwidth overhead. This paper investigates a new buffer management architecture for epidemic routing in DTNs, which helps each node to make a decision on which message should be forwarded or dropped. The proposed buffer management architecture is characterized by a suite of novel functional modules, including Summary Vector Exchange Module (SVEM), Networks State Estimation Module (NSEM), and Utility Calculation Module (UCM). Extensive simulation results show that the proposed buffer management architecture can achieve superb performance against its counterparts in terms of delivery ratio and delivery delay.

  16. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks.

    Science.gov (United States)

    Schreck, Kathleen M; Leung, Diana; Bowman, Christopher N

    2011-09-15

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (T(g)) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins incorporating silsesquioxane (SSQ) species into the photopolymerized networks were investigated as a route to improve these properties. Thiol- and ene-functionalized SSQs (SH-SSQ and allyl-SSQ, respectively) were synthesized via alkoxysilane hydrolysis/condensation chemistry, using a photopolymerizable monomer [either pentaerythriol tetrakis(3-mercaptopropionate) (PETMP) or 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO)] as the reaction solvent. The resulting SSQ-containing solutions (SSQ-PETMP and SSQ-TATATO) were characterized, and their incorporation into photopolymerized networks was evaluated.

  17. Hybrid emergency radiation detection: a wireless sensor network application for consequence management of a radiological release

    Science.gov (United States)

    Kyker, Ronald D.; Berry, Nina; Stark, Doug; Nachtigal, Noel; Kershaw, Chris

    2004-08-01

    The Hybrid Emergency Radiation Detection (HERD) system is a rapidly deployable ad-hoc wireless sensor network for monitoring the radiation hazard associated with a radiation release. The system is designed for low power, small size, low cost, and rapid deployment in order to provide early notification and minimize exposure. The many design tradeoffs, decisions, and challenges in the implementation of this wireless sensor network design will be presented and compared to the commercial systems available. Our research in a scaleable modular architectural highlights the need and implementation of a system level approach that provides flexibility and adaptability for a variety of applications. This approach seeks to minimize power, provide mission specific specialization, and provide the capability to upgrade the system with the most recent technology advancements by encapsulation and modularity. The implementation of a low power, widely available Real Time Operating System (RTOS) for multitasking with an improvement in code maintenance, portability, and reuse will be presented. Finally future design enhancements technology trends affecting wireless sensor networks will be presented.

  18. Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.

    Science.gov (United States)

    Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra

    2011-12-12

    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America

  19. The architecture of dynamic reservoir in the echo state network

    Science.gov (United States)

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  20. Toward a Mobility-Driven Architecture for Multimodal Underwater Networking

    Science.gov (United States)

    2017-02-01

    correspondence to high-level functionalities defined in the classical OSI model ...the Network and Transport layers of the Open Systems Interconnection ( OSI ) model . Specific technology requirements are mentioned as required. Before...functional layers of MobArch and their correspondence to high-level functionalities defined in the classical OSI model . 4.1 NETWORKING LAYER This

  1. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  2. The Hi-Ring Architecture for Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Ding, Yunhong; Berger, Michael Stübert

    2018-01-01

    Optical technologies have long been used for standard telecom applications ranging from long haul to metro and access networks. With the rapid expansion of traffic in data center networks, the deployment of optical technologies for computationally intensive short reach networking has attracted...... a lot of attention. The main interest in photonics comes from the fact that optical technologies are known for providing high bandwidth at low-cost and low power consumption. Unlike electrical switching, optical switching offers bit rate-independent operation; thus, the required processing capacity can...

  3. Evaluation of Flex-Grid architecture for NREN optical networks

    DEFF Research Database (Denmark)

    Turus, Ioan; Kleist, Josva; Fagertun, Anna Manolova

    2014-01-01

    The paper presents an in-depth and structured evaluation of the impact that Flex-Grid technology reveals within current NRENs’ core optical networks. The evaluation is based on simulations performed with OPNET Modeler tool and considers NORDUnet as well as a normalized GEANT core optical network...... as reference topologies. Flex-Grid technology is suggested as a solution to cope with the different challenges in NREN transport networks such as traffic increase and introduction of novel physical layer services. Flex-Grid refers to narrow channel spacing values and requires a control plane which would enable...

  4. Towards Sustainable Smart Homes by a Hierarchical Hybrid Architecture of an Intelligent Agent

    Directory of Open Access Journals (Sweden)

    K. Yang

    2016-10-01

    Full Text Available A smart home can be realized by the provision of services, such as building control, automation and security implemented in accordance with a user’s request. One of the important issues is how to respond quickly and appropriately to a user’s request in a “dynamic environment”. An intelligent agent infers the user’s intention and provides the intact service. This paper proposes a smart home agent system based on a hierarchical hybrid architecture of a user intention model, which models the user intention as a hierarchical structure and implements it in a dynamic environment. The conventional rule-based approach needs to obtain all information before it is executed, which requires a large number of rules and is hardly scalable as the control objects are increasing. On the other hand, the proposed system consists of several modules that construct a hierarchical user intention model. The smart home system needs to take account of the information, such as time, state of device and state of the home, in addition to users’ intention. We evaluate the performance of the proposed system in a dynamic environment and conduct a blind test with seven subjects to measure the satisfaction of service, resulting in the average score of 81.46.

  5. The effect of dimensionality of nanostructured carbon on the architecture of organic-inorganic hybrid materials.

    Science.gov (United States)

    Misra, R D K; Depan, D; Shah, J

    2013-08-21

    The natural tendency of carbon nanotubes (CNTs) to agglomerate is an underlying reason that prevents the realization of their full potential. On the other hand, covalent functionalization of CNTs to control dispersion leads to disruption of π-conjugation in CNTs and the non-covalent functionalization leads to a weak CNT-polymer interface. To overcome these challenges, we describe the characteristics of fostering of direct nucleation of polymers on nanostructured carbon (CNTs of diameters (~2-200 nm), carbon nanofibers (~200-300 nm), and graphene), which culminates in interfacial adhesion, resulting from electrostatic and van der Waals interaction in the hybrid nanostructured carbon-polymer architecture. Furthermore, the structure is tunable through a change in undercooling. High density polyethylene and polypropylene were selected as two model polymers and two sets of experiments were carried out. The first set of experiments was carried out using CNTs of diameter ~2-5 nm to explore the effect of undercooling and polymer concentration. The second set of experiments was focused on studying the effect of dimensionality on geometrical confinements. The periodic crystallization of polyethylene on small diameter CNTs is demonstrated to be a consequence of the geometrical confinement effect, rather than epitaxy, such that petal-like disks nucleate on large diameter CNTs, carbon nanofibers, and graphene. The application of the process is illustrated in terms of fabricating a system for cellular uptake and bioimaging.

  6. Assembling high activity phosphotriesterase composites using hybrid nanoparticle peptide-DNA scaffolded architectures

    Science.gov (United States)

    Breger, Joyce C.; Buckhout-White, Susan; Walper, Scott A.; Oh, Eunkeu; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2017-06-01

    Nanoparticle (NP) display potentially offers a new way to both stabilize and, in many cases, enhance enzyme activity over that seen for native protein in solution. However, the large, globular and sometimes multimeric nature of many enzymes limits their ability to attach directly to the surface of NPs, especially when the latter are colloidally stabilized with bulky PEGylated ligands. Engineering extended protein linkers into the enzymes to achieve direct attachment through the PEG surface often detrimentally alters the enzymes catalytic ability. Here, we demonstrate an alternate, hybrid biomaterials-based approach to achieving directed enzyme assembly on PEGylated NPs. We self-assemble a unique architecture consisting of a central semiconductor quantum dot (QD) scaffold displaying controlled ratios of extended peptide-DNA linkers which penetrate through the PEG surface to directly couple enzymes to the QD surface. As a test case, we utilize phosphotriesterase (PTE), an enzyme of bio-defense interest due to its ability to hydrolyze organophosphate nerve agents. Moreover, this unique approach still allows PTE to maintain enhanced activity while also suggesting the ability of DNA to enhance enzyme activity in and of itself.

  7. Single and combined fault diagnosis of reciprocating compressor valves using a hybrid deep belief network

    NARCIS (Netherlands)

    Tran, Van Tung; Thobiani, Faisal Al; Tinga, Tiedo; Ball, Andrew David; Niu, Gang

    2017-01-01

    In this paper, a hybrid deep belief network is proposed to diagnose single and combined faults of suction and discharge valves in a reciprocating compressor. This hybrid integrates the deep belief network structured by multiple stacked restricted Boltzmann machines for pre-training and simplified

  8. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.

    Science.gov (United States)

    Hearne, Luke J; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B

    2017-08-30

    Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity. SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that

  9. Building 3D Layer-by-Layer Graphene-Gold Nanoparticle Hybrid Architecture with Tunable Interlayer Distance

    Science.gov (United States)

    2014-06-26

    saturated 0.1 M KOH electrolyte aqueous solution. Cyclic voltammetry (CV) and LSV curves were measured on a computer-controlled potentiostat (CHI 760C...analyzed by Raman spectroscopy, molecular simulation using Gaussian 09, X-ray photoelectron spectroscopy (XPS), and electron diffraction (ED). The typical... Raman features of GO are Figure 1. Synthesis of GO-Cys-GNR. Figure 2. Scheme of the representative layer-by-layer graphene−GNR hybrid architecture. The

  10. Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture

    Directory of Open Access Journals (Sweden)

    Michael A. Ferguson

    2017-06-01

    Full Text Available Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830, we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease. In our study, we aimed to understand how individual differences in intellectual functioning are reflected in the intrinsic network architecture of the human brain. We applied statistical methods, known as spectral decompositions, in order to identify individual differences in the synchronous patterns of spontaneous brain activity that reliably predict core aspects of human intelligence. The synchrony of brain activity at rest across multiple discrete neural networks demonstrated positive relationships with fluid intelligence. In contrast, global synchrony within the brain’s network architecture reliably, and inversely, predicted mental flexibility, a core facet of intellectual functioning. The multinetwork systems approach described here represents a methodological and conceptual extension of earlier efforts that related differences in

  11. Architectural Design for the Global Legal Information Network

    Science.gov (United States)

    Kalpakis, Konstantinos

    1999-01-01

    In this report, we provide a summary of our activities regarding the goals, requirements analysis, design, and prototype implementation for the Global Legal Information Network, a joint effort between the Law Library of Congress and NASA.

  12. Use of communication architecture test bed to evaluate data network performance

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Swail, B.K.; Naser, J.A.

    1994-01-01

    Local area networks (LANs) are becoming more prevalent in nuclear power plants. Traditionally, LANs were only used as information highways, providing office automation services. LANs are now being used as data highways for applications in plant data acquisition and control systems. A communication architecture test bed, which contains network simulators, is needed to allow network performance studies and to resolve design issues prior to equipment purchase. Two levels of granularity of simulation are needed to provide the dynamic information about network performance. A coarse-grain simulator is used to estimate the dynamic performance of the network due to major resources such as workstations, gateways, and data acquisition systems. A fine-grain simulator allows a greater level of detail about the underlying network protocol and resources to be simulated. The combination of coarse-grain and fine-grain simulation packages provides the network designer with the required tools to thoroughly understand the behavior of the modeled network. This paper describes the development of a communication architecture test bed using commercial network simulation packages. Network simulators allow the resolution of major design issues in software without the expense of purchasing costly hardware components

  13. Energy-aware architecture for multi-rate ad hoc networks

    Directory of Open Access Journals (Sweden)

    Ahmed Yahya

    2010-06-01

    Full Text Available The backbone of ad hoc network design is energy performance and bandwidth resources limitations. Multi-rate adaptation architectures have been proposed to reduce the control overhead and to increase bandwidth utilization efficiency. In this paper, we propose a multi-rate protocol to provide the highest network performance under very low control overhead. The efficiency of the proposed auto multi-rate protocol is validated extensive simulations using QualNet network simulator. The simulation results demonstrate that our solution significantly improves the overall network performance.

  14. Research on the Architecture of a Basic Reconfigurable Information Communication Network

    Directory of Open Access Journals (Sweden)

    Ruimin Wang

    2013-01-01

    Full Text Available The current information network cannot fundamentally meet some urgent requirements, such as providing ubiquitous information services and various types of heterogeneous network, supporting diverse and comprehensive network services, possessing high quality communication effects, ensuring the security and credibility of information interaction, and implementing effective supervisory control. This paper provides the theory system for the basic reconfigurable information communication network based on the analysis of present problems on the Internet and summarizes the root of these problems. It also provides an in-depth discussion about the related technologies and the prime components of the architecture.

  15. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David; Hadjichristidis, Nikolaos

    2015-01-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization

  16. Hybrid Collaborative Learning for Classification and Clustering in Sensor Networks

    Science.gov (United States)

    Wagstaff, Kiri L.; Sosnowski, Scott; Lane, Terran

    2012-01-01

    Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events as well as faster responses, such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if learners at individual nodes can communicate with their neighbors. In previous work, methods were developed by which classification algorithms deployed at sensor nodes can communicate information about event labels to each other, building on prior work with co-training, self-training, and active learning. The idea of collaborative learning was extended to function for clustering algorithms as well, similar to ideas from penta-training and consensus clustering. However, collaboration between these learner types had not been explored. A new protocol was developed by which classifiers and clusterers can share key information about their observations and conclusions as they learn. This is an active collaboration in which learners of either type can query their neighbors for information that they then use to re-train or re-learn the concept they are studying. The protocol also supports broadcasts from the classifiers and clusterers to the rest of the network to announce new discoveries. Classifiers observe an event and assign it a label (type). Clusterers instead group observations into clusters without assigning them a label, and they collaborate in terms of pairwise constraints between two events [same-cluster (mustlink) or different-cluster (cannot-link)]. Fundamentally, these two learner types speak different languages. To bridge this gap, the new communication protocol provides four types of exchanges: hybrid queries for information, hybrid "broadcasts" of learned information, each specified for classifiers-to-clusterers, and clusterers

  17. Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks.

    Science.gov (United States)

    Yetton, Benjamin D; McDevitt, Elizabeth A; Cellini, Nicola; Shelton, Christian; Mednick, Sara C

    2018-01-01

    The pattern of sleep stages across a night (sleep architecture) is influenced by biological, behavioral, and clinical variables. However, traditional measures of sleep architecture such as stage proportions, fail to capture sleep dynamics. Here we quantify the impact of individual differences on the dynamics of sleep architecture and determine which factors or set of factors best predict the next sleep stage from current stage information. We investigated the influence of age, sex, body mass index, time of day, and sleep time on static (e.g. minutes in stage, sleep efficiency) and dynamic measures of sleep architecture (e.g. transition probabilities and stage duration distributions) using a large dataset of 3202 nights from a non-clinical population. Multi-level regressions show that sex effects duration of all Non-Rapid Eye Movement (NREM) stages, and age has a curvilinear relationship for Wake After Sleep Onset (WASO) and slow wave sleep (SWS) minutes. Bayesian network modeling reveals sleep architecture depends on time of day, total sleep time, age and sex, but not BMI. Older adults, and particularly males, have shorter bouts (more fragmentation) of Stage 2, SWS, and they transition less frequently to these stages. Additionally, we showed that the next sleep stage and its duration can be optimally predicted by the prior 2 stages and age. Our results demonstrate the potential benefit of big data and Bayesian network approaches in quantifying static and dynamic architecture of normal sleep.

  18. OTN Transport of Baseband Radio Serial Protocols in C-RAN Architecture for Mobile Network Applications

    OpenAIRE

    Checko, Aleksandra; Kardaras, Georgios; Lanzani, Christian Fabio Alessandro; Temple, Dan; Mathiasen, Carsten; Pedersen, Lars A.; Klaps, Bert

    2014-01-01

    This white paper presents a proof of concept implementation of digital baseband radio data transport over Optical Transport Network (OTN) compliant to 3GPP Long Term Evolution – Advanced (LTE-A) standard enabling Cloud Radio Access Network (C-RAN) architecture. The transport between the baseband module and a remote radio module is compliant to Common Public Radio Interface (CPRI) and to the OBSAI reference point 3 - 01 (RP3-01) interface protocols, respectively. The purpose is to demonstrate ...

  19. TopoGen: A Network Topology Generation Architecture with application to automating simulations of Software Defined Networks

    CERN Document Server

    Laurito, Andres; The ATLAS collaboration

    2017-01-01

    Simulation is an important tool to validate the performance impact of control decisions in Software Defined Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and tool for systematic translation and generation of network topologies. TopoGen can be used to generate network simulation models automatically by querying information available at diverse sources, notably SDN controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers and generators to grow its scope of applicability. This permits to design arbitrary workflows of topology transformations. We tested TopoGen in a network engineering project for the ATLAS detector ...

  20. TopoGen: A Network Topology Generation Architecture with application to automating simulations of Software Defined Networks

    CERN Document Server

    Laurito, Andres; The ATLAS collaboration

    2018-01-01

    Simulation is an important tool to validate the performance impact of control decisions in Software Defined Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and tool for systematic translation and generation of network topologies. TopoGen can be used to generate network simulation models automatically by querying information available at diverse sources, notably SDN controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers and generators to grow its scope of applicability. This permits to design arbitrary workflows of topology transformations. We tested TopoGen in a network engineering project for the ATLAS detector ...

  1. Robustness Analysis of Hybrid Stochastic Neural Networks with Neutral Terms and Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Chunmei Wu

    2015-01-01

    Full Text Available We analyze the robustness of global exponential stability of hybrid stochastic neural networks subject to neutral terms and time-varying delays simultaneously. Given globally exponentially stable hybrid stochastic neural networks, we characterize the upper bounds of contraction coefficients of neutral terms and time-varying delays by using the transcendental equation. Moreover, we prove theoretically that, for any globally exponentially stable hybrid stochastic neural networks, if additive neutral terms and time-varying delays are smaller than the upper bounds arrived, then the perturbed neural networks are guaranteed to also be globally exponentially stable. Finally, a numerical simulation example is given to illustrate the presented criteria.

  2. Modeling, analysis and optimization of network-on-chip communication architectures

    CERN Document Server

    Ogras, Umit Y

    2013-01-01

    Traditionally, design space exploration for Systems-on-Chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, the communication architecture plays a major role in the area, performance and energy consumption of the overall system. As a result, a shift from computation-based to communication-based design becomes mandatory. Towards this end, network-on-chip (NoC) communication architectures have emerged recently as a promising alternative to classical bus and point-to-point communication architectures. This book explores outstanding research problems related to modeling, analysis and optimization of NoC communication architectures. More precisely, we present novel design methodologies, software tools and FPGA prototypes to aid the design of application-specific NoCs.

  3. Causality in Psychiatry: A Hybrid Symptom Network Construct Model

    Directory of Open Access Journals (Sweden)

    Gerald eYoung

    2015-11-01

    Full Text Available Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved that inform approaches to nosology, or classification, such as in the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; American Psychiatric Association, 2013. However, network approaches to symptom interaction (i.e., symptoms are formative of the construct; e.g., McNally, Robinaugh, Wu, Wang, Deserno, & Borsboom, 2014, for PTSD (posttraumatic stress disorder are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth nonlinear dynamical systems theory (NLDST. The article applies the concept of emergent circular causality (Young, 2011 to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning and universal (e.g., causal processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments.

  4. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    Science.gov (United States)

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  5. A Hybrid Energy Sharing Framework for Green Cellular Networks

    KAUST Repository

    Farooq, Muhammad Junaid

    2016-12-09

    Cellular operators are increasingly turning towards renewable energy (RE) as an alternative to using traditional electricity in order to reduce operational expenditure and carbon footprint. Due to the randomness in both RE generation and mobile traffic at each base station (BS), a surplus or shortfall of energy may occur at any given time. To increase energy selfreliance and minimize the network’s energy cost, the operator needs to efficiently exploit the RE generated across all BSs. In this paper, a hybrid energy sharing framework for cellular network is proposed, where a combination of physical power lines and energy trading with other BSs using smart grid is used. Algorithms for physical power lines deployment between BSs, based on average and complete statistics of the net RE available, are developed. Afterwards, an energy management framework is formulated to optimally determine the quantities of electricity and RE to be procured and exchanged among BSs, respectively, while considering battery capacities and real-time energy pricing. Three cases are investigated where RE generation is unknown, perfectly known, and partially known ahead of time. Results investigate the time varying energy management of BSs and demonstrate considerable reduction in average energy cost thanks to the hybrid energy sharing scheme.

  6. Two-phase hybrid cryptography algorithm for wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Rawya Rizk

    2015-12-01

    Full Text Available For achieving security in wireless sensor networks (WSNs, cryptography plays an important role. In this paper, a new security algorithm using combination of both symmetric and asymmetric cryptographic techniques is proposed to provide high security with minimized key maintenance. It guarantees three cryptographic primitives, integrity, confidentiality and authentication. Elliptical Curve Cryptography (ECC and Advanced Encryption Standard (AES are combined to provide encryption. XOR-DUAL RSA algorithm is considered for authentication and Message Digest-5 (MD5 for integrity. The results show that the proposed hybrid algorithm gives better performance in terms of computation time, the size of cipher text, and the energy consumption in WSN. It is also robust against different types of attacks in the case of image encryption.

  7. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad

    2018-02-12

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power supply of green (renewable) and traditional micro-grid, such that traditional micro-grid is not exploited as long as the BSS can meet their power demands from harvested and stored green energy. Therefore, our goal is to minimize the networkwide energy consumption subject to users\\' certain quality of service and BSS\\' power consumption constraints. As a result of binary BS sleeping status and user-cell association variables, proposed is formulated as a binary linear programming (BLP) problem. A green communication algorithm based on binary particle swarm optimization is implemented to solve the problem with low complexity time.

  8. An Architecture to Manage Incoming Traffic of Inter-Domain Routing Using OpenFlow Networks

    Directory of Open Access Journals (Sweden)

    Walber José Adriano Silva

    2018-04-01

    Full Text Available The Border Gateway Protocol (BGP is the current state-of-the-art inter-domain routing between Autonomous Systems (ASes. Although BGP has different mechanisms to manage outbound traffic in an AS domain, it lacks an efficient tool for inbound traffic control from transit ASes such as Internet Service Providers (ISPs. For inter-domain routing, the BGP’s destination-based forwarding paradigm limits the granularity of distributing the network traffic among the multiple paths of the current Internet topology. Thus, this work offered a new architecture to manage incoming traffic in the inter-domain using OpenFlow networks. The architecture explored direct inter-domain communication to exchange control information and the functionalities of the OpenFlow protocol. Based on the achieved results of the size of exchanging messages, the proposed architecture is not only scalable, but also capable of performing load balancing for inbound traffic using different strategies.

  9. Design Considerations for a 5G Network Architecture

    OpenAIRE

    Bergren, Steven

    2017-01-01

    The data rates of up to 10 GB/s will characterize 5G networks telecommunications standards that are envisioned to replace the current 4G/IMT standards. The number of network-connected devices is expected to be 7 trillion by the end of this year and the traffic is expected to rise by an order of magnitude in the next 8 years. It is expected that elements of 5G will be rolled out by early 2020s to meet business and consumer demands as well as requirements of the Internet of Things. China's Mini...

  10. Middleware Architecture for Ambient Intelligence in the Networked Home

    Science.gov (United States)

    Georgantas, Nikolaos; Issarny, Valerie; Mokhtar, Sonia Ben; Bromberg, Yerom-David; Bianco, Sebastien; Thomson, Graham; Raverdy, Pierre-Guillaume; Urbieta, Aitor; Cardoso, Roberto Speicys

    With computing and communication capabilities now embedded in most physical objects of the surrounding environment and most users carrying wireless computing devices, the Ambient Intelligence (AmI) / pervasive computing vision [28] pioneered by Mark Weiser [32] is becoming a reality. Devices carried by nomadic users can seamlessly network with a variety of devices, both stationary and mobile, both nearby and remote, providing a wide range of functional capabilities, from base sensing and actuating to rich applications (e.g., smart spaces). This then allows the dynamic deployment of pervasive applications, which dynamically compose functional capabilities accessible in the pervasive network at the given time and place of an application request.

  11. Improvements to Integrated Tradespace Analysis of Communications Architectures (ITACA) Network Loading Analysis Tool

    Science.gov (United States)

    Lee, Nathaniel; Welch, Bryan W.

    2018-01-01

    NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters.

  12. A multi-tiered architecture for content retrieval in mobile peer-to-peer networks.

    Science.gov (United States)

    2012-01-01

    In this paper, we address content retrieval in Mobile Peer-to-Peer (P2P) Networks. We design a multi-tiered architecture for content : retrieval, where at Tier 1, we design a protocol for content similarity governed by a parameter that trades accu...

  13. Hybrid POMDP-BDI Agent Architecture with Online Stochastic Planning and Desires with Changing Intensity Levels

    CSIR Research Space (South Africa)

    Rens, GB

    2015-01-01

    Full Text Available The authors propose an agent architecture which combines Partially observable Markov decision processes (POMDPs) and the belief-desire-intention (BDI) framework have several complementary strengths. The authors propose an agent architecture, which...

  14. A hybrid POMDP-BDI agent architecture with online stochastic planning and plan caching

    CSIR Research Space (South Africa)

    Moodley, D

    2016-12-01

    Full Text Available This article presents an agent architecture for controlling an autonomous agent in stochastic, noisy environments. The architecture combines the partially observable Markov decision process (POMDP) model with the belief-desire-intention (BDI...

  15. An Architecture for Anonymous Mobile Coupons in a Large Network

    Directory of Open Access Journals (Sweden)

    Alberto Bartoli

    2016-01-01

    Full Text Available A mobile coupon (m-coupon can be presented with a smartphone for obtaining a financial discount when purchasing a product or a service. M-coupons are a powerful marketing tool that has enjoyed a huge growth and diffusion, involving tens of millions of people each year. We propose an architecture which may enable significant improvements over current m-coupon technology, in terms of acceptance of potential customers and of marketing actions that become feasible: the customer does not need to install any dedicated app; an m-coupon is not bound to any specific device or customer; an m-coupon may be redeemed at any store in a set of potentially many thousands of stores, without any prior arrangement between customer and store. We are not aware of any proposal with these properties.

  16. Feedback control architecture and the bacterial chemotaxis network.

    Directory of Open Access Journals (Sweden)

    Abdullah Hamadeh

    2011-05-01

    Full Text Available Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance.

  17. Signatures of arithmetic simplicity in metabolic network architecture.

    Directory of Open Access Journals (Sweden)

    William J Riehl

    2010-04-01

    Full Text Available Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.

  18. Architecture of the rat nephron-arterial network

    DEFF Research Database (Denmark)

    Marsh, Donald J; Postnov, Dmitry D; Rowland, Douglas

    2017-01-01

    Among solid organs the kidney's vascular network stands out because each nephron has 2 distinct capillary structures in series, and because tubuloglomerular feedback (TGF), one of the mechanisms responsible for blood flow autoregulation, is specific to renal tubules. TGF and the myogenic mechanis...

  19. Validation of Bosch' Mobile Communication NetworkArchitecture with SPIN

    NARCIS (Netherlands)

    Ruys, T.C.; Langerak, Romanus

    This paper discusses validation projects carried out for the Mobile Communication Division of Robert Bosch GmbH. We verified parts of their Mobile Communication Network (MCNet), a communication system which is to be used in infotainment systems of future cars. The protocols of the MCNet have been

  20. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  1. Architecture, design and protection of power distribution networks; Architecture, conception et protection des reseaux de distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sorrel, J.P. [Schneider Electric SA, 92 - Boulogne-Billancourt (France)

    2000-10-01

    The design of all-electric ships calls for high power levels in the propulsion systems. Merchant ships and especially naval vessels demand rugged, reliable propulsion systems with high availability, low maintenance and ease of operation. These constraints imply the choice of an optimized single winding system. The design of the network topology and protection system, and the choice of operating voltage and HT neutral configuration are the main steps in the design. (author)

  2. Tree-based server-middleman-client architecture: improving scalability and reliability for voting-based network games in ad hoc wireless networks

    Science.gov (United States)

    Guo, Y.; Fujinoki, H.

    2006-10-01

    The concept of a new tree-based architecture for networked multi-player games was proposed by Matuszek to improve scalability in network traffic at the same time to improve reliability. The architecture (we refer it as "Tree-Based Server- Middlemen-Client architecture") will solve the two major problems in ad-hoc wireless networks: frequent link failures and significance in battery power consumption at wireless transceivers by using two new techniques, recursive aggregation of client messages and subscription-based propagation of game state. However, the performance of the TBSMC architecture has never been quantitatively studied. In this paper, the TB-SMC architecture is compared with the client-server architecture using simulation experiments. We developed an event driven simulator to evaluate the performance of the TB-SMC architecture. In the network traffic scalability experiments, the TB-SMC architecture resulted in less than 1/14 of the network traffic load for 200 end users. In the reliability experiments, the TB-SMC architecture improved the number of successfully delivered players' votes by 31.6, 19.0, and 12.4% from the clientserver architecture at high (failure probability of 90%), moderate (50%) and low (10%) failure probability.

  3. Energy storage technologies and hybrid architectures for specific diesel-driven rail duty cycles: Design and system integration aspects

    International Nuclear Information System (INIS)

    Meinert, M.; Prenleloup, P.; Schmid, S.; Palacin, R.

    2015-01-01

    Highlights: • We assessed integration of energy storage systems into hybrid system architectures. • We considered mechanical and electrical energy storage systems. • Potential of different combinations has been analyzed by standardized duty cycles. • Most promising are diesel-driven suburban, regional and shunting operations. • Double-layer capacitors and Lithium-ion batteries have the highest potential. - Abstract: The use of diesel-driven traction is an intrinsic part of the functioning of railway systems and it is expected to continue being so for the foreseeable future. The recent introduction of more restrictive greenhouse gas emission levels and other legislation aiming at the improvement of the environmental performance of railway systems has led to the need of exploring alternatives for cleaner diesel rolling stock. This paper focuses on assessing energy storage systems and the design of hybrid system architectures to determine their potential use in specific diesel-driven rail duty cycles. Hydrostatic accumulators, flywheels, Lithium-ion batteries and double-layer capacitors have been assessed and used to design hybrid system architectures. The potential of the different technology combinations has been analyzed using standardized duty cycles enhanced with gradient profiles related to suburban, regional and shunting operations. The results show that double-layer capacitors and Lithium-ion batteries have the highest potential to be successfully integrated into the system architecture of diesel-driven rail vehicles. Furthermore, the results also suggest that combining these two energy storage technologies into a single hybridisation package is a highly promising design that draws on their strengthens without any significant drawbacks.

  4. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture.

    Science.gov (United States)

    Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.

  5. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks.

    Science.gov (United States)

    Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario

    2018-03-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.

  6. Real-time services in IP network architectures

    Science.gov (United States)

    Gilardi, Antonella

    1996-12-01

    The worldwide internet system seems to be the success key for the provision of real time multimedia services to both residential and business users and someone says that in such a way broadband networks will have a reason to exist. This new class of applications that use multiple media (voice, video and data) impose constraints to the global network nowadays consisting of subnets with various data links. The attention will be focused on the interconnection of IP non ATM and ATM networks. IETF and ATM forum are currently involved in the developing specifications suited to adapt the connectionless IP protocol to the connection oriented ATM protocol. First of all the link between the ATM and the IP service model has to be set in order to match the QoS and traffic requirements defined in the relative environment. A further significant topic is represented by the mapping of IP resource reservation model onto the ATM signalling and in the end it is necessary to define how the routing works when there are QoS parameters associated. This paper, considering only unicast applications, will examine the above issues taking as a starting point the situation where an host launches as call set up request with the relevant QoS and traffic descriptor and at some point a router at the edge of the ATM network has to decide how forwarding and request in order to establish an end to end link with the right capabilities. The aim is to compare the proposals emerging from different standard bodies to point out convergency or incompatibility.

  7. Intelligent Middle-Ware Architecture for Mobile Networks

    Science.gov (United States)

    Rayana, Rayene Ben; Bonnin, Jean-Marie

    Recent advances in electronic and automotive industries as well as in wireless telecommunication technologies have drawn a new picture where each vehicle became “fully networked”. Multiple stake-holders (network operators, drivers, car manufacturers, service providers, etc.) will participate in this emerging market, which could grow following various models. To free the market from technical constraints, it is important to return to the basics of the Internet, i.e., providing embarked devices with a fully operational Internet connectivity (IPv6).

  8. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    Science.gov (United States)

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  9. Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks

    Science.gov (United States)

    Ray, Loye Lynn

    2014-01-01

    The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…

  10. Network based control point for UPnP QoS architecture

    DEFF Research Database (Denmark)

    Brewka, Lukasz Jerzy; Wessing, Henrik; Rossello Busquet, Ana

    2011-01-01

    Enabling coexistence of non-UPnP Devices in an UPnP QoS Architecture is an important issue that might have a major impact on the deployment and usability of UPnP in future home networks. The work presented here shows potential issues of placing non-UPnP Device in the network managed by UPnP QoS. We...... address this issue by extensions to the UPnP QoS Architecture that can prevent non-UPnP Devices from degrading the overall QoS level. The obtained results show that deploying Network Based Control Point service with efficient traffic classifier, improves significantly the end-to-end packet delay...

  11. Algorithm-structured computer arrays and networks architectures and processes for images, percepts, models, information

    CERN Document Server

    Uhr, Leonard

    1984-01-01

    Computer Science and Applied Mathematics: Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information examines the parallel-array, pipeline, and other network multi-computers.This book describes and explores arrays and networks, those built, being designed, or proposed. The problems of developing higher-level languages for systems and designing algorithm, program, data flow, and computer structure are also discussed. This text likewise describes several sequences of successively more general attempts to combine the power of arrays wi

  12. A proposed architecture for a satellite-based mobile communications network - The lowest three layers

    Science.gov (United States)

    Yan, T. Y.; Naderi, F. M.

    1986-01-01

    Architecture for a commercial mobile satellite network is proposed. The mobile satellite system (MSS) is composed of a network management center, mobile terminals, base stations, and gateways; the functions of each component are described. The satellite is a 'bent pipe' that performs frequency translations, and it has multiple UHF beams. The development of the MSS design based on the seven-layer open system interconnection model is examined. Consideration is given to the functions of the physical, data link, and network layers and the integrated adaptive mobile access protocol.

  13. Examining the volume efficiency of the cortical architecture in a multi-processor network model.

    Science.gov (United States)

    Ruppin, E; Schwartz, E L; Yeshurun, Y

    1993-01-01

    The convoluted form of the sheet-like mammalian cortex naturally raises the question whether there is a simple geometrical reason for the prevalence of cortical architecture in the brains of higher vertebrates. Addressing this question, we present a formal analysis of the volume occupied by a massively connected network or processors (neurons) and then consider the pertaining cortical data. Three gross macroscopic features of cortical organization are examined: the segregation of white and gray matter, the circumferential organization of the gray matter around the white matter, and the folded cortical structure. Our results testify to the efficiency of cortical architecture.

  14. AziSA: An architecture for underground measurement and control networks - 2nd CSIR Biennial Conference

    CSIR Research Space (South Africa)

    Stewart, R

    2008-11-01

    Full Text Available products from various manufacturers. SOLUTION The architecture that has been developed at the CSIR is called AziSA, an isiZulu word meaning ‘to inform’. The AziSA architecture AziSA is a specification for an open measurement and control network... for in-mine communications even if the link with the outside world is disrupted. This requirement for robustness implies that processing in the system must be distributed and not totally dependent on central coordination. Decisions should be made...

  15. Research on mixed network architecture collaborative application model

    Science.gov (United States)

    Jing, Changfeng; Zhao, Xi'an; Liang, Song

    2009-10-01

    When facing complex requirements of city development, ever-growing spatial data, rapid development of geographical business and increasing business complexity, collaboration between multiple users and departments is needed urgently, however conventional GIS software (such as Client/Server model or Browser/Server model) are not support this well. Collaborative application is one of the good resolutions. Collaborative application has four main problems to resolve: consistency and co-edit conflict, real-time responsiveness, unconstrained operation, spatial data recoverability. In paper, application model called AMCM is put forward based on agent and multi-level cache. AMCM can be used in mixed network structure and supports distributed collaborative. Agent is an autonomous, interactive, initiative and reactive computing entity in a distributed environment. Agent has been used in many fields such as compute science and automation. Agent brings new methods for cooperation and the access for spatial data. Multi-level cache is a part of full data. It reduces the network load and improves the access and handle of spatial data, especially, in editing the spatial data. With agent technology, we make full use of its characteristics of intelligent for managing the cache and cooperative editing that brings a new method for distributed cooperation and improves the efficiency.

  16. SDN-enabled hybrid emergency message transmission architecture in internet-of-vehicles

    Science.gov (United States)

    Zhu, Wanting; Gao, Deyun; Zhao, Weicheng; Zhang, Hongke; Chiang, Hua-Pei

    2018-04-01

    With the increasing number of vehicles connected to the Internet-of-Things (IoT), Internet-of-Vehicles (IoV) is becoming a hot research topic. It can improve traffic safety and efficiency and promote the development of the intelligent transportation that is a very important element in Smart Cities. As an important part of the safety application in IoV, the emergency message transmission is designed to inform all the vehicles in the relevant area timely of the accident information through the multi-hop broadcast communication. In this paper, we propose a hybrid emergency message transmission (HEMT), which introduces the SDN technology into the vehicular network environment and utilizes the flexibility of inter-vehicle communication. By deploying SDN-enabled central controller and RSU switches, we can obtain reliable and fast emergency message dissemination. Moreover, considering the space between the coverages of RSUs caused by the sparse deployment, we also use inter-vehicle multi-hop broadcast communication to improve the message coverage ratio by adding the packet modification module on the RSU switch. Simulation results show the feasibility and effectiveness of our proposed scheme.

  17. Analysis methodology for flow-level evaluation of a hybrid mobile-sensor network

    NARCIS (Netherlands)

    Dimitrova, D.C.; Heijenk, Geert; Braun, T.

    2012-01-01

    Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper

  18. Adaptive Security Architecture based on EC-MQV Algorithm in Personal Network (PN)

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Prasad, Neeli R.

    2007-01-01

    Abstract — Personal Networks (PNs) have been focused on in order to support the user’s business and private activities without jeopardizing privacy and security of the users and their data. In such a network, it is necessary to produce a proper key agreement method according to the feature...... of the network. One of the features of the network is that the personal devices have deferent capabilities such as computational ability, memory size, transmission power, processing speed and implementation cost. Therefore an adaptive security mechanism should be contrived for such a network of various device...... combinations based on user’s location and device’s capability. The paper proposes new adaptive security architecture with three levels of asymmetric key agreement scheme by using context-aware security manager (CASM) based on elliptic curve cryptosystem (EC-MQV)....

  19. Survivable architectures for time and wavelength division multiplexed passive optical networks

    Science.gov (United States)

    Wong, Elaine

    2014-08-01

    The increased network reach and customer base of next-generation time and wavelength division multiplexed PON (TWDM-PONs) have necessitated rapid fault detection and subsequent restoration of services to its users. However, direct application of existing solutions for conventional PONs to TWDM-PONs is unsuitable as these schemes rely on the loss of signal (LOS) of upstream transmissions to trigger protection switching. As TWDM-PONs are required to potentially use sleep/doze mode optical network units (ONU), the loss of upstream transmission from a sleeping or dozing ONU could erroneously trigger protection switching. Further, TWDM-PONs require its monitoring modules for fiber/device fault detection to be more sensitive than those typically deployed in conventional PONs. To address the above issues, three survivable architectures that are compliant with TWDM-PON specifications are presented in this work. These architectures combine rapid detection and protection switching against multipoint failure, and most importantly do not rely on upstream transmissions for LOS activation. Survivability analyses as well as evaluations of the additional costs incurred to achieve survivability are performed and compared to the unprotected TWDM-PON. Network parameters that impact the maximum achievable network reach, maximum split ratio, connection availability, fault impact, and the incremental reliability costs for each proposed survivable architecture are highlighted.

  20. IMPLEMENTATION OF TRANSMITTER AND RECEIVER ARCHITECTURE FOR PHYSICAL HYBRID INDICATOR CHANNEL OF LTE-ADVANCED USING PARTIAL RECONFIGURATION IN ML605 VIRTEX-6 DEVICE

    Directory of Open Access Journals (Sweden)

    S. Syed Ameer Abbas

    2014-09-01

    Full Text Available LTE-A (Long Term Evolution-Advanced is the fourth generation technology to increase the speed of wireless data network. The LTE-A Physical layer provides both data and control information between an enhanced base station and mobile user equipment which is quite complex and consists of a mixture of technologies. Since there is requirement for more resources to accommodate all the channels in a single FPGA, Partial Reconfiguration (PR technique is introduced to configure the total hardware into sub modules that configure and operate in different instants of time. PR enables a part of FPGA to be reconfigured, while the rest continues to function without any interruptions and reduces the hardware resource power and fabric area. This work proposes the realization of transmitter and receiver architecture of Physical Hybrid Indicator Channel (PHICH channel for LTE-A using partial reconfiguration on xc6vlx240tff1156-1 FPGA. The receiver architecture for PHICH is to report the correct reception of uplink user data to the User Equipment (UE in the form of Acknowledgment (ACK, or Negative ACK (NACK in a 1 millisecond duration sub-frame of Long Term Evolution (LTE System. The modules for the different diversities are reconfigured based on the control signals from the transmitter.

  1. MPTCP Tunnel: An Architecture for Aggregating Bandwidth of Heterogeneous Access Networks

    Directory of Open Access Journals (Sweden)

    Xiaolan Liu

    2018-01-01

    Full Text Available Fixed and cellular networks are two typical access networks provided by operators. Fixed access network is widely employed; nevertheless, its bandwidth is sometimes not sufficient enough to meet user bandwidth requirements. Meanwhile, cellular access network owns unique advantages of wider coverage, faster increasing link speed, more flexible deployment, and so forth. Therefore, it is attractive for operators to mitigate the bandwidth shortage by bundling these two. Actually, there have been existing schemes proposed to aggregate the bandwidth of two access networks, whereas they all have their own problems, like packet reordering or extra latency overhead. To address this problem, we design new architecture, MPTCP Tunnel, to aggregate the bandwidth of multiple heterogeneous access networks from the perspective of operators. MPTCP Tunnel uses MPTCP, which solves the reordering problem essentially, to bundle multiple access networks. Besides, MPTCP Tunnel sets up only one MPTCP connection at play which adapts itself to multiple traffic types and TCP flows. Furthermore, MPTCP Tunnel forwards intact IP packets through access networks, maintaining the end-to-end TCP semantics. Experimental results manifest that MPTCP Tunnel can efficiently aggregate the bandwidth of multiple access networks and is more adaptable to the increasing heterogeneity of access networks than existing mechanisms.

  2. Low Cost Design of a Hybrid Architecture of Integer Inverse DCT for H.264, VC-1, AVS, and HEVC

    Directory of Open Access Journals (Sweden)

    Muhammad Martuza

    2012-01-01

    Full Text Available The paper presents a unified hybrid architecture to compute the 8×8 integer inverse discrete cosine transform (IDCT of multiple modern video codecs—AVS, H.264/AVC, VC-1, and HEVC (under development. Based on the symmetric structure of the matrices and the similarity in matrix operation, we develop a generalized “decompose and share” algorithm to compute the 8×8 IDCT. The algorithm is later applied to four video standards. The hardware-share approach ensures the maximum circuit reuse during the computation. The architecture is designed with only adders and shifters to reduce the hardware cost significantly. The design is implemented on FPGA and later synthesized in CMOS 0.18 um technology. The results meet the requirements of advanced video coding applications.

  3. Genetic algorithm and neural network hybrid approach for job-shop scheduling

    OpenAIRE

    Zhao, Kai; Yang, Shengxiang; Wang, Dingwei

    1998-01-01

    Copyright @ 1998 ACTA Press This paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and ...

  4. Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses

    International Nuclear Information System (INIS)

    Wang, Jiang; Guo, Xinmeng; Yu, Haitao; Liu, Chen; Deng, Bin; Wei, Xile; Chen, Yingyuan

    2014-01-01

    Highlights: •We study stochastic resonance in small-world neural networks with hybrid synapses. •The resonance effect depends largely on the probability of chemical synapse. •An optimal chemical synapse probability exists to evoke network resonance. •Network topology affects the stochastic resonance in hybrid neuronal networks. - Abstract: The dependence of stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses on the probability of chemical synapse and the rewiring probability is investigated. A subthreshold periodic signal is imposed on one single neuron within the neuronal network as a pacemaker. It is shown that, irrespective of the probability of chemical synapse, there exists a moderate intensity of external noise optimizing the response of neuronal networks to the pacemaker. Moreover, the effect of pacemaker driven stochastic resonance of the system depends largely on the probability of chemical synapse. A high probability of chemical synapse will need lower noise intensity to evoke the phenomenon of stochastic resonance in the networked neuronal systems. In addition, for fixed noise intensity, there is an optimal chemical synapse probability, which can promote the propagation of the localized subthreshold pacemaker across neural networks. And the optimal chemical synapses probability turns even larger as the coupling strength decreases. Furthermore, the small-world topology has a significant impact on the stochastic resonance in hybrid neuronal networks. It is found that increasing the rewiring probability can always enhance the stochastic resonance until it approaches the random network limit

  5. Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.

    Science.gov (United States)

    Mirzaei, Sajad; Wu, Yufeng

    2016-01-01

    Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets.

  6. An eConsent-based System Architecture Supporting Cooperation in Integrated Healthcare Networks.

    Science.gov (United States)

    Bergmann, Joachim; Bott, Oliver J; Hoffmann, Ina; Pretschner, Dietrich P

    2005-01-01

    The economical need for efficient healthcare leads to cooperative shared care networks. A virtual electronic health record is required, which integrates patient related information but reflects the distributed infrastructure and restricts access only to those health professionals involved into the care process. Our work aims on specification and development of a system architecture fulfilling these requirements to be used in concrete regional pilot studies. Methodical analysis and specification have been performed in a healthcare network using the formal method and modelling tool MOSAIK-M. The complexity of the application field was reduced by focusing on the scenario of thyroid disease care, which still includes various interdisciplinary cooperation. Result is an architecture for a secure distributed electronic health record for integrated care networks, specified in terms of a MOSAIK-M-based system model. The architecture proposes business processes, application services, and a sophisticated security concept, providing a platform for distributed document-based, patient-centred, and secure cooperation. A corresponding system prototype has been developed for pilot studies, using advanced application server technologies. The architecture combines a consolidated patient-centred document management with a decentralized system structure without needs for replication management. An eConsent-based approach assures, that access to the distributed health record remains under control of the patient. The proposed architecture replaces message-based communication approaches, because it implements a virtual health record providing complete and current information. Acceptance of the new communication services depends on compatibility with the clinical routine. Unique and cross-institutional identification of a patient is also a challenge, but will loose significance with establishing common patient cards.

  7. Biomimetic Hybrid Feedback Feedforward Neural-Network Learning Control.

    Science.gov (United States)

    Pan, Yongping; Yu, Haoyong

    2017-06-01

    This brief presents a biomimetic hybrid feedback feedforward neural-network learning control (NNLC) strategy inspired by the human motor learning control mechanism for a class of uncertain nonlinear systems. The control structure includes a proportional-derivative controller acting as a feedback servo machine and a radial-basis-function (RBF) NN acting as a feedforward predictive machine. Under the sufficient constraints on control parameters, the closed-loop system achieves semiglobal practical exponential stability, such that an accurate NN approximation is guaranteed in a local region along recurrent reference trajectories. Compared with the existing NNLC methods, the novelties of the proposed method include: 1) the implementation of an adaptive NN control to guarantee plant states being recurrent is not needed, since recurrent reference signals rather than plant states are utilized as NN inputs, which greatly simplifies the analysis and synthesis of the NNLC and 2) the domain of NN approximation can be determined a priori by the given reference signals, which leads to an easy construction of the RBF-NNs. Simulation results have verified the effectiveness of this approach.

  8. Hybrid case-neural network (CNN) diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    recently, the mobile health care has a great attention for the researcher and people all over the world. Case based reasoning (CBR) systems have proved their performance as world wide web (WWW) medical diagnostic systems. They were preferred rather than different reasoning approaches due to their high performance and results' explanation. But, their operations require a complex knowledge acquisition and management processes. On the other hand, it is found that, artificial neural network (ANN) has a great acceptance as a classifier methodology using a little amount of knowledge. But, ANN lacks of an explanation capability .The present research introduces a new web-based hybrid diagnostic system that can use the ANN inside the CBR , cycle.It can provide higher performance for the web diagnostic systems. Besides, the proposed system can be used as a web diagnostic system. It can be applied for diagnosis different types of systems in several domains. It has been applied in diagnosis of the cancer diseases that has a great spreading in recent years as a case of study . However, the suggested system has proved its acceptance in the manner.

  9. NEURAL NETWORKS CONTROL OF THE HYBRID POWER UNIT BASED ON THE METHOD OF ADAPTIVE CRITICS

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2012-01-01

    Full Text Available The formal statement of the optimization problem of hybrid vehicle power unit control is given. Its solving by neural networks method application on the basis of adaptive critic is considered.

  10. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    Science.gov (United States)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  11. Recurrent neural network based hybrid model for reconstructing gene regulatory network.

    Science.gov (United States)

    Raza, Khalid; Alam, Mansaf

    2016-10-01

    One of the exciting problems in systems biology research is to decipher how genome controls the development of complex biological system. The gene regulatory networks (GRNs) help in the identification of regulatory interactions between genes and offer fruitful information related to functional role of individual gene in a cellular system. Discovering GRNs lead to a wide range of applications, including identification of disease related pathways providing novel tentative drug targets, helps to predict disease response, and also assists in diagnosing various diseases including cancer. Reconstruction of GRNs from available biological data is still an open problem. This paper proposes a recurrent neural network (RNN) based model of GRN, hybridized with generalized extended Kalman filter for weight update in backpropagation through time training algorithm. The RNN is a complex neural network that gives a better settlement between biological closeness and mathematical flexibility to model GRN; and is also able to capture complex, non-linear and dynamic relationships among variables. Gene expression data are inherently noisy and Kalman filter performs well for estimation problem even in noisy data. Hence, we applied non-linear version of Kalman filter, known as generalized extended Kalman filter, for weight update during RNN training. The developed model has been tested on four benchmark networks such as DNA SOS repair network, IRMA network, and two synthetic networks from DREAM Challenge. We performed a comparison of our results with other state-of-the-art techniques which shows superiority of our proposed model. Further, 5% Gaussian noise has been induced in the dataset and result of the proposed model shows negligible effect of noise on results, demonstrating the noise tolerance capability of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Role of graph architecture in controlling dynamical networks with applications to neural systems

    Science.gov (United States)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  13. A Smart Gateway Architecture for Improving Efficiency of Home Network Applications

    Directory of Open Access Journals (Sweden)

    Fei Ding

    2016-01-01

    Full Text Available A smart home gateway plays an important role in the Internet of Things (IoT system that takes responsibility for the connection between the network layer and the ubiquitous sensor network (USN layer. Even though the home network application is developing rapidly, researches on the home gateway based open development architecture are less. This makes it difficult to extend the home network to support new applications, share service, and interoperate with other home network systems. An integrated access gateway (IAGW is proposed in this paper which upward connects with the operator machine-to-machine platform (M2M P/F. In this home network scheme, the gateway provides standard interfaces for supporting various applications in home environments, ranging from on-site configuration to node and service access. In addition, communication management ability is also provided by M2M P/F. A testbed of a simple home network application system that includes the IAGW prototype is created to test its user interaction capabilities. Experimental results show that the proposed gateway provides significant flexibility for users to configure and deploy a home automation network; it can be applied to other monitoring areas and simultaneously supports a multi-ubiquitous sensor network.

  14. GEYSERS: a novel architecture for virtualization and co-provisioning of dynamic optical networks and IT services

    NARCIS (Netherlands)

    Escalona, E.; Peng, S.; Nejabati, R.; Simeonidou, D.; García-Espín, J.A.; Ferrer, J.; Figuerola, S.; Landi, G.; Ciulli, N.; Jiménez, J.; Belter, B.; Demchenko, Y.; de Laat, C.; Chen, X.; Yukan, A.; Soudan, S.; Vicat-Blanc, P.; Buysse, J.; de Leenheer, M.; Develder, C.; Tzanakaki, A.; Robinson, P.; Brogle, M.; Bohnert, T.M.

    2011-01-01

    GEYSERS aims at defining an end-to-end network architecture that offers a novel planning, provisioning and operational framework for optical network and IT infrastructure providers and operators. In this framework, physical infrastructure resources (network and IT) are dynamically partitioned to

  15. Receding horizon control of hybrid linear delayed systems: Application to sewer networks

    OpenAIRE

    Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela

    2013-01-01

    A control-oriented hybrid linear model for water transport in sewer networks is proposed as a suitable framework for the computation of real-time controllers for the minimization of flooding in presence of heavy-rain events. The model is based on individual network elements (sewers, gates, weirs and tanks) and does not rely on topological simplifications, thus providing a better description of the hydrological and hydraulic phenomena than in similar works. Using a generic form of a hybrid lin...

  16. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    OpenAIRE

    S Safinaz; A V Ravi Kumar

    2017-01-01

    In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames t...

  17. Reconfigurable FPGA architecture for computer vision applications in Smart Camera Networks

    OpenAIRE

    Maggiani , Luca; Salvadori , Claudio; Petracca , Matteo; Pagano , Paolo; Saletti , Roberto

    2013-01-01

    International audience; Smart Camera Networks (SCNs) is nowadays an emerging research field which represents the natural evolution of centralized computer vision applications towards full distributed and pervasive systems. In such a scenario, one of the biggest effort is in the definition of a flexible and reconfigurable SCN node architecture able to remotely support the possibility of updating the application parameters and changing the running computer vision applications at run-time. In th...

  18. Research on key technology of planning and design for AC/DC hybrid distribution network

    Science.gov (United States)

    Shen, Yu; Wu, Guilian; Zheng, Huan; Deng, Junpeng; Shi, Pengjia

    2018-04-01

    With the increasing demand of DC generation and DC load, the development of DC technology, AC and DC distribution network integrating will become an important form of future distribution network. In this paper, the key technology of planning and design for AC/DC hybrid distribution network is proposed, including the selection of AC and DC voltage series, the design of typical grid structure and the comprehensive evaluation method of planning scheme. The research results provide some ideas and directions for the future development of AC/DC hybrid distribution network.

  19. Principles of Network Architecture Emerging from Comparisons of the Cerebral Cortex in Large and Small Brains.

    Directory of Open Access Journals (Sweden)

    Barbara L Finlay

    2016-09-01

    Full Text Available The cerebral cortex retains its fundamental organization, layering, and input-output relations as it scales in volume over many orders of magnitude in mammals. How is its network architecture affected by size scaling? By comparing network organization of the mouse and rhesus macaque cortical connectome derived from complete neuroanatomical tracing studies, a recent study in PLOS Biology shows that an exponential distance rule emerges that reveals the falloff in connection probability with distance in the two brains that in turn determines common organizational features.

  20. LIDeA: A Distributed Lightweight Intrusion Detection Architecture for Sensor Networks

    DEFF Research Database (Denmark)

    Giannetsos, Athanasios; Krontiris, Ioannis; Dimitriou, Tassos

    2008-01-01

    to achieve a more autonomic and complete defense mechanism, even against attacks that have not been anticipated in advance. In this paper, we present a lightweight intrusion detection system, called LIDeA, designed for wireless sensor networks. LIDeA is based on a distributed architecture, in which nodes......Wireless sensor networks are vulnerable to adversaries as they are frequently deployed in open and unattended environments. Preventive mechanisms can be applied to protect them from an assortment of attacks. However, more sophisticated methods, like intrusion detection systems, are needed...

  1. Definition and verification of a set of reusable reference architectures for hybrid vehicle development

    OpenAIRE

    Harrington, Cian

    2012-01-01

    Current concerns regarding climate change and energy security have resulted in an increasing demand for low carbon vehicles, including: more efficient internal combustion engine vehicles, alternative fuel vehicles, electric vehicles and hybrid vehicles. Unlike traditional internal combustion engine vehicles and electric vehicles, hybrid vehicles contain a m...

  2. An In-Home Digital Network Architecture for Real-Time and Non-Real-Time Communication

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hanssen, F.T.Y.; Hattink, Tjalling

    2002-01-01

    This paper describes an in-home digital network architecture that supports both real-time and non-real-time communication. The architecture deploys a distributed token mechanism to schedule communication streams and to offer guaranteed quality-ofservice. Essentially, the token mechanism prevents

  3. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types.

    Science.gov (United States)

    Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor

    2016-11-30

    Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).

  4. Service oriented network architecture for control and management of home appliances

    Science.gov (United States)

    Hayakawa, Hiroshi; Koita, Takahiro; Sato, Kenya

    2005-12-01

    Recent advances in multimedia network systems and mechatronics have led to the development of a new generation of applications that associate the use of various multimedia objects with the behavior of multiple robotic actors. The connection of audio and video devices through high speed multimedia networks is expected to make the system more convenient to use. For example, many home appliances, such as a video camera, a display monitor, a video recorder, an audio system and so on, are being equipped with a communication interface in the near future. Recently some platforms (i.e. UPnP1, HAVi2 and so on) are proposed for constructing home networks; however, there are some issues to be solved to realize various services by connecting different equipment via the pervasive peer-to-peer network. UPnP offers network connectivity of PCs of intelligent home appliances, practically, which means to require a PC in the network to control other devices. Meanwhile, HAVi has been developed for intelligent AV equipments with sophisticated functions using high CPU power and large memory. Considering the targets of home alliances are embedded systems, this situation raises issues of software and hardware complexity, cost, power consumption and so on. In this study, we have proposed and developed the service oriented network architecture for control and management of home appliances, named SONICA (Service Oriented Network Interoperability for Component Adaptation), to address these issues described before.

  5. A 10 Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture

    NARCIS (Netherlands)

    Tran, N.C.; Jung, H.D.; Okonkwo, C.M.; Tangdiongga, E.; Koonen, A.M.J.

    2011-01-01

    We propose a cost-effective, reconfigurable optical access network by employing passive components in the remote node and dual conventional optical transceivers in ONUs. The architecture is demonstrated with bidirectional transmission at 10 Gb/s.

  6. A Neutral-Network-Fusion Architecture for Automatic Extraction of Oceanographic Features from Satellite Remote Sensing Imagery

    National Research Council Canada - National Science Library

    Askari, Farid

    1999-01-01

    This report describes an approach for automatic feature detection from fusion of remote sensing imagery using a combination of neural network architecture and the Dempster-Shafer (DS) theory of evidence...

  7. On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network

    DEFF Research Database (Denmark)

    Alizadeh, Tohid

    2008-01-01

    This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP......-RBF neural network uses a modified unscented kalman filter (UKF) with forgetting factor scheme as the required on-line learning algorithm. The effectiveness of the resulting identification approach is tested and evaluated on a simulated benchmark hybrid system....

  8. Joint Hybrid Backhaul and Access Links Design in Cloud-Radio Access Networks

    KAUST Repository

    Dhifallah, Oussama Najeeb; Dahrouj, Hayssam; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    The cloud-radio access network (CRAN) is expected to be the core network architecture for next generation mobile radio systems. In this paper, we consider the downlink of a CRAN formed of one central processor (the cloud) and several base station

  9. Architecture and performance of neural networks for efficient A/C control in buildings

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed A.; Ben-Nakhi, Abdullatif E.

    2003-01-01

    The feasibility of using neural networks (NNs) for optimizing air conditioning (AC) setback scheduling in public buildings was investigated. The main focus is on optimizing the network architecture in order to achieve best performance. To save energy, the temperature inside public buildings is allowed to rise after business hours by setting back the thermostat. The objective is to predict the time of the end of thermostat setback (EoS) such that the design temperature inside the building is restored in time for the start of business hours. State of the art building simulation software, ESP-r, was used to generate a database that covered the years 1995-1999. The software was used to calculate the EoS for two office buildings using the climate records in Kuwait. The EoS data for 1995 and 1996 were used for training and testing the NNs. The robustness of the trained NN was tested by applying them to a 'production' data set (1997-1999), which the networks have never 'seen' before. For each of the six different NN architectures evaluated, parametric studies were performed to determine the network parameters that best predict the EoS. External hourly temperature readings were used as network inputs, and the thermostat end of setback (EoS) is the output. The NN predictions were improved by developing a neural control scheme (NC). This scheme is based on using the temperature readings as they become available. For each NN architecture considered, six NNs were designed and trained for this purpose. The performance of the NN analysis was evaluated using a statistical indicator (the coefficient of multiple determination) and by statistical analysis of the error patterns, including ANOVA (analysis of variance). The results show that the NC, when used with a properly designed NN, is a powerful instrument for optimizing AC setback scheduling based only on external temperature records

  10. A new architecture and MAC protocol for fully flexible hybrid WDM/TDM PON

    NARCIS (Netherlands)

    Das, G.; Lannoo, B.; Jung, H.D.; Koonen, A.M.J.; Colle, D.; Pickavet, M.; Demeester, P.

    2009-01-01

    In this paper we propose a novel architecture and MAC protocol for a scalable, cost effective WDM / TDM PON providing fully flexible dynamic bandwidth allocation for upstream and downstream data transmission.

  11. Ensuring Data Storage Security in Tree cast Routing Architecture for Sensor Networks

    Science.gov (United States)

    Kumar, K. E. Naresh; Sagar, U. Vidya; Waheed, Mohd. Abdul

    2010-10-01

    In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In contrast to traditional solutions, where the IT services are under proper physical, logical and personnel controls, this routing architecture moves the application software and databases to the large data centers, where the management of the data and services may not be fully trustworthy. This unique attribute, however, poses many new security challenges which have not been well understood. In this paper, we focus on data storage security, which has always been an important aspect of quality of service. To ensure the correctness of users' data in this architecture, we propose an effective and flexible distributed scheme with two salient features, opposing to its predecessors. By utilizing the homomorphic token with distributed verification of erasure-coded data, our scheme achieves the integration of storage correctness insurance and data error localization, i.e., the identification of misbehaving server(s). Unlike most prior works, the new scheme further supports secure and efficient dynamic operations on data blocks, including: data update, delete and append. Extensive security and performance analysis shows that the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server

  12. Hybrid Multilevel Monte Carlo Simulation of Stochastic Reaction Networks

    KAUST Repository

    Moraes, Alvaro

    2015-01-07

    Stochastic reaction networks (SRNs) is a class of continuous-time Markov chains intended to describe, from the kinetic point of view, the time-evolution of chemical systems in which molecules of different chemical species undergo a finite set of reaction channels. This talk is based on articles [4, 5, 6], where we are interested in the following problem: given a SRN, X, defined though its set of reaction channels, and its initial state, x0, estimate E (g(X(T))); that is, the expected value of a scalar observable, g, of the process, X, at a fixed time, T. This problem lead us to define a series of Monte Carlo estimators, M, such that, with high probability can produce values close to the quantity of interest, E (g(X(T))). More specifically, given a user-selected tolerance, TOL, and a small confidence level, η, find an estimator, M, based on approximate sampled paths of X, such that, P (|E (g(X(T))) − M| ≤ TOL) ≥ 1 − η; even more, we want to achieve this objective with near optimal computational work. We first introduce a hybrid path-simulation scheme based on the well-known stochastic simulation algorithm (SSA)[3] and the tau-leap method [2]. Then, we introduce a Multilevel Monte Carlo strategy that allows us to achieve a computational complexity of order O(T OL−2), this is the same computational complexity as in an exact method but with a smaller constant. We provide numerical examples to show our results.

  13. Architecture of the Multi-Modal Organizational Research and Production Heterogeneous Network (MORPHnet)

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, R.J.; Carlson, R.A.; Foster, I.T. [and others

    1997-01-01

    The research and education (R&E) community requires persistent and scaleable network infrastructure to concurrently support production and research applications as well as network research. In the past, the R&E community has relied on supporting parallel network and end-node infrastructures, which can be very expensive and inefficient for network service managers and application programmers. The grand challenge in networking is to provide support for multiple, concurrent, multi-layer views of the network for the applications and the network researchers, and to satisfy the sometimes conflicting requirements of both while ensuring one type of traffic does not adversely affect the other. Internet and telecommunications service providers will also benefit from a multi-modal infrastructure, which can provide smoother transitions to new technologies and allow for testing of these technologies with real user traffic while they are still in the pre-production mode. The authors proposed approach requires the use of as much of the same network and end system infrastructure as possible to reduce the costs needed to support both classes of activities (i.e., production and research). Breaking the infrastructure into segments and objects (e.g., routers, switches, multiplexors, circuits, paths, etc.) gives the capability to dynamically construct and configure the virtual active networks to address these requirements. These capabilities must be supported at the campus, regional, and wide-area network levels to allow for collaboration by geographically dispersed groups. The Multi-Modal Organizational Research and Production Heterogeneous Network (MORPHnet) described in this report is an initial architecture and framework designed to identify and support the capabilities needed for the proposed combined infrastructure and to address related research issues.

  14. A Location-Aware Vertical Handoff Algorithm for Hybrid Networks

    KAUST Repository

    Mehbodniya, Abolfazl; Aissa, Sonia; Chitizadeh, Jalil

    2010-01-01

    . Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user's active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network

  15. Convolutional neural networks for event-related potential detection: impact of the architecture.

    Science.gov (United States)

    Cecotti, H

    2017-07-01

    The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.

  16. On the complexity of neural network classifiers: a comparison between shallow and deep architectures.

    Science.gov (United States)

    Bianchini, Monica; Scarselli, Franco

    2014-08-01

    Recently, researchers in the artificial neural network field have focused their attention on connectionist models composed by several hidden layers. In fact, experimental results and heuristic considerations suggest that deep architectures are more suitable than shallow ones for modern applications, facing very complex problems, e.g., vision and human language understanding. However, the actual theoretical results supporting such a claim are still few and incomplete. In this paper, we propose a new approach to study how the depth of feedforward neural networks impacts on their ability in implementing high complexity functions. First, a new measure based on topological concepts is introduced, aimed at evaluating the complexity of the function implemented by a neural network, used for classification purposes. Then, deep and shallow neural architectures with common sigmoidal activation functions are compared, by deriving upper and lower bounds on their complexity, and studying how the complexity depends on the number of hidden units and the used activation function. The obtained results seem to support the idea that deep networks actually implements functions of higher complexity, so that they are able, with the same number of resources, to address more difficult problems.

  17. Evaluation of an IP Fabric network architecture for CERN's data center

    CERN Document Server

    AUTHOR|(CDS)2156318; Barceló Ordinas, José M.

    CERN has a large-scale data center with over 11500 servers used to analyze massive amounts of data acquired from the physics experiments and to provide IT services to workers. Its current network architecture is based on the classic three-tier design and it uses both IPv4 and IPv6. Between the access and aggregation layers the traffic is switched in Layer 2, while between aggregation and core it is routed using dual-stack OSPF. A new architecture is needed to increase redundancy and to provide virtual machine mobility and traffic isolation. The state-of-the-art architecture IP Fabric with EVPN is evaluated as a possible solution. The evaluation comprises a study of different features and options, including BGP table scalability and autonomous system number distributions. The proposed solution contains eBGP as the routing protocol, a route control policy, fast convergence mechanisms and an EVPN overlay with iBGP routing and VXLAN encapsulation. The solution is tested in the lab with the network equipment curre...

  18. A flexible data fusion architecture for persistent surveillance using ultra-low-power wireless sensor networks

    Science.gov (United States)

    Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.

    2011-06-01

    We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.

  19. Source-synchronous networks-on-chip circuit and architectural interconnect modeling

    CERN Document Server

    Mandal, Ayan; Mahapatra, Rabi

    2014-01-01

    This book describes novel methods for network-on-chip (NoC) design, using source-synchronous high-speed resonant clocks.  The authors discuss NoCs from the bottom up, providing circuit level details, before providing architectural simulations. As a result, readers will get a complete picture of how a NoC can be designed and optimized.  Using the methods described in this book, readers are enabled to design NoCs that are 5X better than existing approaches in terms of latency and throughput and can also sustain a significantly greater amount of traffic.   • Describes novel methods for high-speed network-on-chip (NoC) design; • Enables readers to understand NoC design from both circuit and architectural levels; • Provides circuit-level details of the NoC (including clocking, router design), along with a high-speed, resonant clocking style which is used in the NoC; • Includes architectural simulations of the NoC, demonstrating significantly superior performance over the state-of-the-art.

  20. A performance analysis of advanced I/O architectures for PC-based network file servers

    Science.gov (United States)

    Huynh, K. D.; Khoshgoftaar, T. M.

    1994-12-01

    In the personal computing and workstation environments, more and more I/O adapters are becoming complete functional subsystems that are intelligent enough to handle I/O operations on their own without much intervention from the host processor. The IBM Subsystem Control Block (SCB) architecture has been defined to enhance the potential of these intelligent adapters by defining services and conventions that deliver command information and data to and from the adapters. In recent years, a new storage architecture, the Redundant Array of Independent Disks (RAID), has been quickly gaining acceptance in the world of computing. In this paper, we would like to discuss critical system design issues that are important to the performance of a network file server. We then present a performance analysis of the SCB architecture and disk array technology in typical network file server environments based on personal computers (PCs). One of the key issues investigated in this paper is whether a disk array can outperform a group of disks (of same type, same data capacity, and same cost) operating independently, not in parallel as in a disk array.

  1. Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays

    International Nuclear Information System (INIS)

    Wan Li; Zhou Qinghua

    2007-01-01

    The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem

  2. Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays

    Science.gov (United States)

    Wan, Li; Zhou, Qinghua

    2007-10-01

    The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.

  3. A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks

    Directory of Open Access Journals (Sweden)

    Page Michel

    2009-12-01

    Full Text Available Abstract Background The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level. Results We have developed a generic and modular web service, based on a service-oriented architecture, for integrating the modeling and formal verification of genetic regulatory networks. The architecture has been implemented in the context of the qualitative modeling and simulation tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification module for the specification and checking of biological properties. The verification module also allows the display and visual inspection of the verification results. Conclusions The practical use of the proposed web service is illustrated by means of a scenario involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-oriented architecture allows modelers to define the model and proceed with the specification and formal verification of the biological properties by means of a unified graphical user interface. This guarantees a transparent access to formal verification technology for modelers of genetic regulatory networks.

  4. A Performance Analytical Strategy for Network-on-Chip Router with Input Buffer Architecture

    Directory of Open Access Journals (Sweden)

    WANG, J.

    2012-11-01

    Full Text Available In this paper, a performance analytical strategy is proposed for Network-on-Chip router with input buffer architecture. First, an analytical model is developed based on semi-Markov process. For the non-work-conserving router with small buffer size, the model can be used to analyze the schedule delay and the average service time for each buffer when given the related parameters. Then, the packet average delay in router is calculated by using the model. Finally, we validate the effectiveness of our strategy by simulation. By comparing our analytical results to simulation results, we show that our strategy successfully captures the Network-on-Chip router performance and it performs better than the state-of-art technology. Therefore, our strategy can be used as an efficiency performance analytical tool for Network-on-Chip design.

  5. Effective Utilization of Resources and Infrastructure for a Spaceport Network Architecture

    Science.gov (United States)

    Gill, Tracy; Larson, Wiley; Mueller, Robert; Roberson, Luke

    2012-01-01

    Providing routine, affordable access to a variety of orbital and deep space destinations requires an intricate network of ground, planetary surface, and space-based spaceports like those on Earth (land and sea), in various Earth orbits, and on other extraterrestrial surfaces. Advancements in technology and international collaboration are critical to establish a spaceport network that satisfies the requirements for private and government research, exploration, and commercial objectives. Technologies, interfaces, assembly techniques, and protocols must be adapted to enable mission critical capabilities and interoperability throughout the spaceport network. The conceptual space mission architecture must address the full range of required spaceport services, from managing propellants for a variety of spacecraft to governance structure. In order to accomplish affordability and sustainability goals, the network architecture must consider deriving propellants from in situ planetary resources to the maximum extent possible. Water on the Moon and Mars, Mars' atmospheric CO2, and O2 extracted from lunar regolith are examples of in situ resources that could be used to generate propellants for various spacecraft, orbital stages and trajectories, and the commodities to support habitation and human operations at these destinations. The ability to use in-space fuel depots containing in situ derived propellants would drastically reduce the mass required to launch long-duration or deep space missions from Earth's gravity well. Advances in transformative technologies and common capabilities, interfaces, umbilicals, commodities, protocols, and agreements will facilitate a cost-effective, safe, reliable infrastructure for a versatile network of Earth- and extraterrestrial spaceports. Defining a common infrastructure on Earth, planetary surfaces, and in space, as well as deriving propellants from in situ planetary resources to construct in-space propellant depots to serve the spaceport

  6. Investigation of Hybrid Pseudo Bipolar HVDC Performances Supply Power to Passive AC Network

    Directory of Open Access Journals (Sweden)

    Kuan Li

    2014-07-01

    Full Text Available The traditional HVDC plays an important role in the development of power grid. But the traditional HVDC cannot supply power either to entirely passive AC network or to weak AC system. In fact, an entirely passive AC network can be effectively powered through VSC-HVDC. However, the cost of investment in VSC-HVDC is amazingly high due to the limitation of power electronics technology. Based on CSC and VSC, this paper proposes a method to build Hybrid HVDC, which makes the power supply to the passive AC network come true and, at the same time, lowers the investment cost. The effect of topology, steady mathematical model, startup characteristic, steady and transient characteristics in Hybrid HVDC system are systematically studied in this paper. The simulation result shows that Hybrid HVDC can supply power to the passive AC network with high stability. This study provides a theoretical basis for the further development of HVDC.

  7. Control Architecture for Intentional Island Operation in Distribution Network with High Penetration of Distributed Generation

    DEFF Research Database (Denmark)

    Chen, Yu

    , the feasibility of the application of Artificial Neural Network (ANN) to ICA is studied, in order to improve the computation efficiency for ISR calculation. Finally, the integration of ICA into Dynamic Security Assessment (DSA), the ICA implementation, and the development of ICA are discussed....... to utilize them for maintaining the security of the power supply under the emergency situations, has been of great interest for study. One proposal is the intentional island operation. This PhD project is intended to develop a control architecture for the island operation in distribution system with high...... amount of DGs. As part of the NextGen project, this project focuses on the system modeling and simulation regarding the control architecture and recommends the development of a communication and information exchange system based on IEC 61850. This thesis starts with the background of this PhD project...

  8. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.

    Science.gov (United States)

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-02-09

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  9. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    Directory of Open Access Journals (Sweden)

    Murad Khan

    2017-02-01

    Full Text Available The Web of Things (WoT plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN, which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  10. Extraction of fibre network architecture by X-ray tomography and prediction of elastic properties using an affine analytical model

    International Nuclear Information System (INIS)

    Tsarouchas, D.; Markaki, A.E.

    2011-01-01

    This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing.

  11. Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks

    Science.gov (United States)

    Ivancic, William D.

    2009-01-01

    A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.

  12. Role of architecture in the elastic response of semiflexible polymer and fiber networks

    Science.gov (United States)

    Heussinger, Claus; Frey, Erwin

    2007-01-01

    We study the elasticity of cross-linked networks of thermally fluctuating stiff polymers. As compared to their purely mechanical counterparts, it is shown that these thermal networks have a qualitatively different elastic response. By accounting for the entropic origin of the single-polymer elasticity, the networks acquire a strong susceptibility to polydispersity and structural randomness that is completely absent in athermal models. In extensive numerical studies we systematically vary the architecture of the networks and identify a wealth of phenomena that clearly show the strong dependence of the emergent macroscopic moduli on the underlying mesoscopic network structure. In particular, we highlight the importance of the polymer length, which to a large extent controls the elastic response of the network, surprisingly, even in parameter regions where it does not enter the macroscopic moduli explicitly. Understanding these subtle effects is only possible by going beyond the conventional approach that considers the response of typical polymer segments only. Instead, we propose to describe the elasticity in terms of a typical polymer filament and the spatial distribution of cross-links along its backbone. We provide theoretical scaling arguments to relate the observed macroscopic elasticity to the physical mechanisms on the microscopic and mesoscopic scales.

  13. Reconfiguration of brain network architecture to support executive control in aging.

    Science.gov (United States)

    Gallen, Courtney L; Turner, Gary R; Adnan, Areeba; D'Esposito, Mark

    2016-08-01

    Aging is accompanied by declines in executive control abilities and changes in underlying brain network architecture. Here, we examined brain networks in young and older adults during a task-free resting state and an N-back task and investigated age-related changes in the modular network organization of the brain. Compared with young adults, older adults showed larger changes in network organization between resting state and task. Although young adults exhibited increased connectivity between lateral frontal regions and other network modules during the most difficult task condition, older adults also exhibited this pattern of increased connectivity during less-demanding task conditions. Moreover, the increase in between-module connectivity in older adults was related to faster task performance and greater fractional anisotropy of the superior longitudinal fasciculus. These results demonstrate that older adults who exhibit more pronounced network changes between a resting state and task have better executive control performance and greater structural connectivity of a core frontal-posterior white matter pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.

    Science.gov (United States)

    Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup

    2011-10-01

    The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.

  15. Three-dimensional hybrid networks based on aspartic acid

    Indian Academy of Sciences (India)

    WINTEC

    Keywords. Aspartic acid; hybrid compounds; nickel aspartate; lead aspartate; achiral frameworks. ..... and coordinated to water molecules as well as car- .... (b) Dan M 2004 J. Mol. Struct. ... Sheldrick G M 1994 SADABS: Siemens area detector.

  16. A FD/DAMA network architecture for the first generation land mobile satellite services

    Science.gov (United States)

    Yan, T.-Y.; Wang, C.; Cheng, U.; Dessouky, K.; Rafferty, W.

    1989-01-01

    A frequency division/demand assigned multiple access (FD/DAMA) network architecture for the first-generation land mobile satellite services is presented. Rationales and technical approaches are described. In this architecture, each mobile subscriber must follow a channel access protocol to make a service request to the network management center before transmission for either open-end or closed-end services. Open-end service requests will be processed on a blocked call cleared basis, while closed-end requests will be processed on a first-come-first-served basis. Two channel access protocols are investigated, namely, a recently proposed multiple channel collision resolution scheme which provides a significantly higher useful throughput, and the traditional slotted Aloha scheme. The number of channels allocated for either open-end or closed-end services can be adaptively changed according to aggregated traffic requests. Both theoretical and simulation results are presented. Theoretical results have been verified by simulation on the JPL network testbed.

  17. Energy-Saving Traffic Scheduling in Hybrid Software Defined Wireless Rechargeable Sensor Networks.

    Science.gov (United States)

    Wei, Yunkai; Ma, Xiaohui; Yang, Ning; Chen, Yijin

    2017-09-15

    Software Defined Wireless Rechargeable Sensor Networks (SDWRSNs) are an inexorable trend for Wireless Sensor Networks (WSNs), including Wireless Rechargeable Sensor Network (WRSNs). However, the traditional network devices cannot be completely substituted in the short term. Hybrid SDWRSNs, where software defined devices and traditional devices coexist, will last for a long time. Hybrid SDWRSNs bring new challenges as well as opportunities for energy saving issues, which is still a key problem considering that the wireless chargers are also exhaustible, especially in some rigid environment out of the main supply. Numerous energy saving schemes for WSNs, or even some works for WRSNs, are no longer suitable for the new features of hybrid SDWRSNs. To solve this problem, this paper puts forward an Energy-saving Traffic Scheduling (ETS) algorithm. The ETS algorithm adequately considers the new characters in hybrid SDWRSNs, and takes advantage of the Software Defined Networking (SDN) controller's direct control ability on SDN nodes and indirect control ability on normal nodes. The simulation results show that, comparing with traditional Minimum Transmission Energy (MTE) protocol, ETS can substantially improve the energy efficiency in hybrid SDWRSNs for up to 20-40% while ensuring feasible data delay.

  18. Energy-Saving Traffic Scheduling in Hybrid Software Defined Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yunkai Wei

    2017-09-01

    Full Text Available Software Defined Wireless Rechargeable Sensor Networks (SDWRSNs are an inexorable trend for Wireless Sensor Networks (WSNs, including Wireless Rechargeable Sensor Network (WRSNs. However, the traditional network devices cannot be completely substituted in the short term. Hybrid SDWRSNs, where software defined devices and traditional devices coexist, will last for a long time. Hybrid SDWRSNs bring new challenges as well as opportunities for energy saving issues, which is still a key problem considering that the wireless chargers are also exhaustible, especially in some rigid environment out of the main supply. Numerous energy saving schemes for WSNs, or even some works for WRSNs, are no longer suitable for the new features of hybrid SDWRSNs. To solve this problem, this paper puts forward an Energy-saving Traffic Scheduling (ETS algorithm. The ETS algorithm adequately considers the new characters in hybrid SDWRSNs, and takes advantage of the Software Defined Networking (SDN controller’s direct control ability on SDN nodes and indirect control ability on normal nodes. The simulation results show that, comparing with traditional Minimum Transmission Energy (MTE protocol, ETS can substantially improve the energy efficiency in hybrid SDWRSNs for up to 20–40% while ensuring feasible data delay.

  19. The Hybrid Studio--Introducing Google+ as a Blended Learning Platform for Architectural Design Studio Teaching

    Science.gov (United States)

    Steinø, Nicolai; Khalid, Md. Saufuddin

    2017-01-01

    Much architecture and design teaching is based on the studio format, where the co-presence in time and space of students, instructors and physical learning artefacts form a triangle from which the learning emerges. Yet with the advent of online communication platforms and learning management systems (LMS), there is reason to study how these…

  20. Compartmentalization in hybrid metallacarborane nanoparticles formed by block copolymers with star-like architecture

    Czech Academy of Sciences Publication Activity Database

    Ďorďovič, V.; Uchman, M.; Zhigunov, Alexander; Nykänen, A.; Ruokolainen, J.; Matějíček, P.

    2014-01-01

    Roč. 3, č. 11 (2014), s. 1151-1155 ISSN 2161-1653 R&D Projects: GA ČR(CZ) GA14-14608S Institutional support: RVO:61389013 Keywords : nanoparticles * block copolymers * star-like architecture Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.764, year: 2014